generated from fastai/nbdev_template
-
Notifications
You must be signed in to change notification settings - Fork 150
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
fc28ad6
commit 28b2ee1
Showing
7 changed files
with
115 additions
and
127 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,123 +1,111 @@ | ||
__all__ = [ | ||
# "ice_mobilenetv2_100", | ||
# "ice_mobilenetv2_110d", | ||
# "ice_mobilenetv2_120d", | ||
# "ice_mobilenetv2_140", | ||
"ice_mobilenetv3_large_075", | ||
"ice_mobilenetv3_large_100", | ||
"ice_mobilenetv3_rw", | ||
"ice_mobilenetv3_small_075", | ||
"ice_mobilenetv3_small_100", | ||
"ice_tf_mobilenetv3_large_075", | ||
"ice_tf_mobilenetv3_large_100", | ||
"ice_tf_mobilenetv3_large_minimal_100", | ||
"ice_tf_mobilenetv3_small_075", | ||
"ice_tf_mobilenetv3_small_100", | ||
"ice_tf_mobilenetv3_small_minimal_100", | ||
# "mobilenetv2_100", | ||
# "mobilenetv2_110d", | ||
# "mobilenetv2_120d", | ||
# "mobilenetv2_140", | ||
"mobilenetv3_large_075", | ||
"mobilenetv3_large_100", | ||
"mobilenetv3_rw", | ||
"mobilenetv3_small_075", | ||
"mobilenetv3_small_100", | ||
"tf_mobilenetv3_large_075", | ||
"tf_mobilenetv3_large_100", | ||
"tf_mobilenetv3_large_minimal_100", | ||
"tf_mobilenetv3_small_075", | ||
"tf_mobilenetv3_small_100", | ||
"tf_mobilenetv3_small_minimal_100", | ||
] | ||
|
||
from icevision.soft_dependencies import SoftDependencies | ||
|
||
from timm.models.mobilenetv3 import * | ||
|
||
|
||
# def ice_mobilenetv2_100(pretrained=True, out_indices=(0, 1, 2, 3, 4), **kwargs): | ||
# def mobilenetv2_100(pretrained=True, out_indices=(2, 3, 4), **kwargs): | ||
# return mobilenetv2_100( | ||
# pretrained=pretrained, features_only=True, out_indices=out_indices, **kwargs | ||
# ) | ||
|
||
|
||
# def ice_mobilenetv2_110d(pretrained=True, out_indices=(0, 1, 2, 3, 4), **kwargs): | ||
# def mobilenetv2_110d(pretrained=True, out_indices=(2, 3, 4), **kwargs): | ||
# return mobilenetv2_110d( | ||
# pretrained=pretrained, features_only=True, out_indices=out_indices, **kwargs | ||
# ) | ||
|
||
|
||
# def ice_mobilenetv2_120d(pretrained=True, out_indices=(0, 1, 2, 3, 4), **kwargs): | ||
# def mobilenetv2_120d(pretrained=True, out_indices=(2, 3, 4), **kwargs): | ||
# return mobilenetv2_120d( | ||
# pretrained=pretrained, features_only=True, out_indices=out_indices, **kwargs | ||
# ) | ||
|
||
|
||
# def ice_mobilenetv2_140(pretrained=True, out_indices=(0, 1, 2, 3, 4), **kwargs): | ||
# def mobilenetv2_140(pretrained=True, out_indices=(2, 3, 4), **kwargs): | ||
# return mobilenetv2_140( | ||
# pretrained=pretrained, features_only=True, out_indices=out_indices, **kwargs | ||
# ) | ||
|
||
|
||
def ice_mobilenetv3_large_075(pretrained=True, out_indices=(0, 1, 2, 3, 4), **kwargs): | ||
def mobilenetv3_large_075(pretrained=True, out_indices=(2, 3, 4), **kwargs): | ||
return mobilenetv3_large_075( | ||
pretrained=pretrained, features_only=True, out_indices=out_indices, **kwargs | ||
) | ||
|
||
|
||
def ice_mobilenetv3_large_100(pretrained=True, out_indices=(0, 1, 2, 3, 4), **kwargs): | ||
def mobilenetv3_large_100(pretrained=True, out_indices=(2, 3, 4), **kwargs): | ||
return mobilenetv3_large_100( | ||
pretrained=pretrained, features_only=True, out_indices=out_indices, **kwargs | ||
) | ||
|
||
|
||
def ice_mobilenetv3_rw(pretrained=True, out_indices=(0, 1, 2, 3, 4), **kwargs): | ||
def mobilenetv3_rw(pretrained=True, out_indices=(2, 3, 4), **kwargs): | ||
return mobilenetv3_rw( | ||
pretrained=pretrained, features_only=True, out_indices=out_indices, **kwargs | ||
) | ||
|
||
|
||
def ice_mobilenetv3_small_075(pretrained=True, out_indices=(0, 1, 2, 3, 4), **kwargs): | ||
def mobilenetv3_small_075(pretrained=True, out_indices=(2, 3, 4), **kwargs): | ||
return mobilenetv3_small_075( | ||
pretrained=pretrained, features_only=True, out_indices=out_indices, **kwargs | ||
) | ||
|
||
|
||
def ice_mobilenetv3_small_100(pretrained=True, out_indices=(0, 1, 2, 3, 4), **kwargs): | ||
def mobilenetv3_small_100(pretrained=True, out_indices=(2, 3, 4), **kwargs): | ||
return mobilenetv3_small_100( | ||
pretrained=pretrained, features_only=True, out_indices=out_indices, **kwargs | ||
) | ||
|
||
|
||
def ice_tf_mobilenetv3_large_075( | ||
pretrained=True, out_indices=(0, 1, 2, 3, 4), **kwargs | ||
): | ||
def tf_mobilenetv3_large_075(pretrained=True, out_indices=(2, 3, 4), **kwargs): | ||
return tf_mobilenetv3_large_075( | ||
pretrained=pretrained, features_only=True, out_indices=out_indices, **kwargs | ||
) | ||
|
||
|
||
def ice_tf_mobilenetv3_large_100( | ||
pretrained=True, out_indices=(0, 1, 2, 3, 4), **kwargs | ||
): | ||
def tf_mobilenetv3_large_100(pretrained=True, out_indices=(2, 3, 4), **kwargs): | ||
return tf_mobilenetv3_large_100( | ||
pretrained=pretrained, features_only=True, out_indices=out_indices, **kwargs | ||
) | ||
|
||
|
||
def ice_tf_mobilenetv3_large_minimal_100( | ||
pretrained=True, out_indices=(0, 1, 2, 3, 4), **kwargs | ||
): | ||
def tf_mobilenetv3_large_minimal_100(pretrained=True, out_indices=(2, 3, 4), **kwargs): | ||
return tf_mobilenetv3_large_100( | ||
pretrained=pretrained, features_only=True, out_indices=out_indices, **kwargs | ||
) | ||
|
||
|
||
def ice_tf_mobilenetv3_small_075( | ||
pretrained=True, out_indices=(0, 1, 2, 3, 4), **kwargs | ||
): | ||
def tf_mobilenetv3_small_075(pretrained=True, out_indices=(2, 3, 4), **kwargs): | ||
return tf_mobilenetv3_small_075( | ||
pretrained=pretrained, features_only=True, out_indices=out_indices, **kwargs | ||
) | ||
|
||
|
||
def ice_tf_mobilenetv3_small_100( | ||
pretrained=True, out_indices=(0, 1, 2, 3, 4), **kwargs | ||
): | ||
def tf_mobilenetv3_small_100(pretrained=True, out_indices=(2, 3, 4), **kwargs): | ||
return tf_mobilenetv3_small_100( | ||
pretrained=pretrained, features_only=True, out_indices=out_indices, **kwargs | ||
) | ||
|
||
|
||
def ice_tf_mobilenetv3_small_minimal_100( | ||
pretrained=True, out_indices=(0, 1, 2, 3, 4), **kwargs | ||
): | ||
def tf_mobilenetv3_small_minimal_100(pretrained=True, out_indices=(2, 3, 4), **kwargs): | ||
return tf_mobilenetv3_small_100( | ||
pretrained=pretrained, features_only=True, out_indices=out_indices, **kwargs | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,62 +1,62 @@ | ||
__all__ = [ | ||
"ice_resnest14d", | ||
"ice_resnest26d", | ||
"ice_resnest50d", | ||
"ice_resnest50d_1s4x24d", | ||
"ice_resnest50d_4s2x40d", | ||
"ice_resnest101e", | ||
"ice_resnest200e", | ||
"ice_resnest269e", | ||
"resnest14d", | ||
"resnest26d", | ||
"resnest50d", | ||
"resnest50d_1s4x24d", | ||
"resnest50d_4s2x40d", | ||
"resnest101e", | ||
"resnest200e", | ||
"resnest269e", | ||
] | ||
|
||
from icevision.soft_dependencies import SoftDependencies | ||
|
||
from timm.models.resnest import * | ||
|
||
|
||
def ice_resnest14d(pretrained=True, out_indices=(0, 1, 2, 3, 4), **kwargs): | ||
def resnest14d(pretrained=True, out_indices=(2, 3, 4), **kwargs): | ||
return resnest14d( | ||
pretrained=pretrained, features_only=True, out_indices=out_indices, **kwargs | ||
) | ||
|
||
|
||
def ice_resnest26d(pretrained=True, out_indices=(0, 1, 2, 3, 4), **kwargs): | ||
def resnest26d(pretrained=True, out_indices=(2, 3, 4), **kwargs): | ||
return resnest26d( | ||
pretrained=pretrained, features_only=True, out_indices=out_indices, **kwargs | ||
) | ||
|
||
|
||
def ice_resnest50d(pretrained=True, out_indices=(0, 1, 2, 3, 4), **kwargs): | ||
def resnest50d(pretrained=True, out_indices=(2, 3, 4), **kwargs): | ||
return resnest50d( | ||
pretrained=pretrained, features_only=True, out_indices=out_indices, **kwargs | ||
) | ||
|
||
|
||
def ice_resnest50d_1s4x24d(pretrained=True, out_indices=(0, 1, 2, 3, 4), **kwargs): | ||
def resnest50d_1s4x24d(pretrained=True, out_indices=(2, 3, 4), **kwargs): | ||
return resnest50d_1s4x24d( | ||
pretrained=pretrained, features_only=True, out_indices=out_indices, **kwargs | ||
) | ||
|
||
|
||
def ice_resnest50d_4s2x40d(pretrained=True, out_indices=(0, 1, 2, 3, 4), **kwargs): | ||
def resnest50d_4s2x40d(pretrained=True, out_indices=(2, 3, 4), **kwargs): | ||
return resnest50d_4s2x40d( | ||
pretrained=pretrained, features_only=True, out_indices=out_indices, **kwargs | ||
) | ||
|
||
|
||
def ice_resnest101e(pretrained=True, out_indices=(0, 1, 2, 3, 4), **kwargs): | ||
def resnest101e(pretrained=True, out_indices=(2, 3, 4), **kwargs): | ||
return resnest101e( | ||
pretrained=pretrained, features_only=True, out_indices=out_indices, **kwargs | ||
) | ||
|
||
|
||
def ice_resnest200e(pretrained=True, out_indices=(0, 1, 2, 3, 4), **kwargs): | ||
def resnest200e(pretrained=True, out_indices=(2, 3, 4), **kwargs): | ||
return resnest200e( | ||
pretrained=pretrained, features_only=True, out_indices=out_indices, **kwargs | ||
) | ||
|
||
|
||
def ice_resnest269e(pretrained=True, out_indices=(0, 1, 2, 3, 4), **kwargs): | ||
def resnest269e(pretrained=True, out_indices=(2, 3, 4), **kwargs): | ||
return resnest269e( | ||
pretrained=pretrained, features_only=True, out_indices=out_indices, **kwargs | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.