From 20f7fd532a27fcea6cbc7aa1183e6979f484e5c9 Mon Sep 17 00:00:00 2001 From: ai-fast-track Date: Fri, 16 Jul 2021 16:00:35 -0400 Subject: [PATCH] added tests for mobilnetv3 timm backbone --- tests/models/mmdet/test_timm_backbones.py | 55 +++++++++++++++++++++++ 1 file changed, 55 insertions(+) create mode 100644 tests/models/mmdet/test_timm_backbones.py diff --git a/tests/models/mmdet/test_timm_backbones.py b/tests/models/mmdet/test_timm_backbones.py new file mode 100644 index 000000000..6c60764ef --- /dev/null +++ b/tests/models/mmdet/test_timm_backbones.py @@ -0,0 +1,55 @@ +import pytest +from icevision.all import * + + +@pytest.mark.parametrize( + "ds, model_type", + [ + ( + "fridge_ds", + models.mmdet.retinanet, + ), + ], +) +class TestTimmBackbones: + def dls_model(self, ds, model_type, samples_source, request): + train_ds, valid_ds = request.getfixturevalue(ds) + train_dl = model_type.train_dl(train_ds, batch_size=2) + valid_dl = model_type.valid_dl(valid_ds, batch_size=2) + + # backbone = model_type.backbones.mmdet.resnet50_fpn_1x() + backbone = model_type.backbones.timm.mobilenet.mobilenetv3_large_100 + backbone.config_path = samples_source / backbone.config_path + + model = model_type.model(backbone=backbone, num_classes=5) + + return train_dl, valid_dl, model + + def test_mmdet_bbox_models_fastai(self, ds, model_type, samples_source, request): + train_dl, valid_dl, model = self.dls_model( + ds, model_type, samples_source, request + ) + + learn = model_type.fastai.learner( + dls=[train_dl, valid_dl], model=model, splitter=fastai.trainable_params + ) + learn.fine_tune(1, 3e-4) + + def test_mmdet_bbox_models_light(self, ds, model_type, samples_source, request): + train_dl, valid_dl, model = self.dls_model( + ds, model_type, samples_source, request + ) + + class LitModel(model_type.lightning.ModelAdapter): + def configure_optimizers(self): + return Adam(self.parameters(), lr=1e-4) + + light_model = LitModel(model) + trainer = pl.Trainer( + max_epochs=1, + weights_summary=None, + num_sanity_val_steps=0, + logger=False, + checkpoint_callback=False, + ) + trainer.fit(light_model, train_dl, valid_dl)