diff --git a/flib/preprocess/feature_engineering.py b/flib/preprocess/feature_engineering.py index fae0845..19632a1 100644 --- a/flib/preprocess/feature_engineering.py +++ b/flib/preprocess/feature_engineering.py @@ -50,44 +50,49 @@ def cal_node_features(df:pd.DataFrame, bank, windows=1) -> pd.DataFrame: df_nodes = pd.DataFrame() df_nodes = pd.concat([df_out[['account', 'bank']], df_in[['account', 'bank']]]).drop_duplicates().set_index('account') + node_features = {} # calculate spending features for window in windows: gb = df_spending[(df_spending['step']>=window[0])&(df_spending['step']<=window[1])].groupby(['account']) - df_nodes[f'sums_spending_{window[0]}_{window[1]}'] = gb['amount'].sum() - df_nodes[f'means_spending_{window[0]}_{window[1]}'] = gb['amount'].mean() - df_nodes[f'medians_spending_{window[0]}_{window[1]}'] = gb['amount'].median() - df_nodes[f'stds_spending_{window[0]}_{window[1]}'] = gb['amount'].std() - df_nodes[f'maxs_spending_{window[0]}_{window[1]}'] = gb['amount'].max() - df_nodes[f'mins_spending_{window[0]}_{window[1]}'] = gb['amount'].min() - df_nodes[f'counts_spending_{window[0]}_{window[1]}'] = gb['amount'].count() + node_features[f'sums_spending_{window[0]}_{window[1]}'] = gb['amount'].sum() + node_features[f'means_spending_{window[0]}_{window[1]}'] = gb['amount'].mean() + node_features[f'medians_spending_{window[0]}_{window[1]}'] = gb['amount'].median() + node_features[f'stds_spending_{window[0]}_{window[1]}'] = gb['amount'].std() + node_features[f'maxs_spending_{window[0]}_{window[1]}'] = gb['amount'].max() + node_features[f'mins_spending_{window[0]}_{window[1]}'] = gb['amount'].min() + node_features[f'counts_spending_{window[0]}_{window[1]}'] = gb['amount'].count() # calculate network features for window in windows: gb_in = df_in[(df_in['step']>=window[0])&(df_in['step']<=window[1])].groupby(['account']) - df_nodes[f'sum_in{window[0]}_{window[1]}'] = gb_in['amount'].apply(lambda x: x[x > 0].sum()) - df_nodes[f'mean_in_{window[0]}_{window[1]}'] = gb_in['amount'].mean() - df_nodes[f'median_in{window[0]}_{window[1]}'] = gb_in['amount'].median() - df_nodes[f'std_in{window[0]}_{window[1]}'] = gb_in['amount'].std() - df_nodes[f'max_in_{window[0]}_{window[1]}'] = gb_in['amount'].max() - df_nodes[f'min_in_{window[0]}_{window[1]}'] = gb_in['amount'].min() - df_nodes[f'count_in_{window[0]}_{window[1]}'] = gb_in['amount'].count() - df_nodes[f'count_unique_in_{window[0]}_{window[1]}'] = gb_in['counterpart'].nunique() + node_features[f'sum_in{window[0]}_{window[1]}'] = gb_in['amount'].apply(lambda x: x[x > 0].sum()) + node_features[f'mean_in_{window[0]}_{window[1]}'] = gb_in['amount'].mean() + node_features[f'median_in{window[0]}_{window[1]}'] = gb_in['amount'].median() + node_features[f'std_in{window[0]}_{window[1]}'] = gb_in['amount'].std() + node_features[f'max_in_{window[0]}_{window[1]}'] = gb_in['amount'].max() + node_features[f'min_in_{window[0]}_{window[1]}'] = gb_in['amount'].min() + node_features[f'count_in_{window[0]}_{window[1]}'] = gb_in['amount'].count() + node_features[f'count_unique_in_{window[0]}_{window[1]}'] = gb_in['counterpart'].nunique() gb_out = df_out[(df_out['step']>=window[0])&(df_out['step']<=window[1])].groupby(['account']) - df_nodes[f'sum_out{window[0]}_{window[1]}'] = gb_out['amount'].apply(lambda x: x[x > 0].sum()) - df_nodes[f'mean_out_{window[0]}_{window[1]}'] = gb_out['amount'].mean() - df_nodes[f'median_out{window[0]}_{window[1]}'] = gb_out['amount'].median() - df_nodes[f'std_out{window[0]}_{window[1]}'] = gb_out['amount'].std() - df_nodes[f'max_out_{window[0]}_{window[1]}'] = gb_out['amount'].max() - df_nodes[f'min_out_{window[0]}_{window[1]}'] = gb_out['amount'].min() - df_nodes[f'count_out_{window[0]}_{window[1]}'] = gb_out['amount'].count() - df_nodes[f'count_unique_out_{window[0]}_{window[1]}'] = gb_out['counterpart'].nunique() + node_features[f'sum_out{window[0]}_{window[1]}'] = gb_out['amount'].apply(lambda x: x[x > 0].sum()) + node_features[f'mean_out_{window[0]}_{window[1]}'] = gb_out['amount'].mean() + node_features[f'median_out{window[0]}_{window[1]}'] = gb_out['amount'].median() + node_features[f'std_out{window[0]}_{window[1]}'] = gb_out['amount'].std() + node_features[f'max_out_{window[0]}_{window[1]}'] = gb_out['amount'].max() + node_features[f'min_out_{window[0]}_{window[1]}'] = gb_out['amount'].min() + node_features[f'count_out_{window[0]}_{window[1]}'] = gb_out['amount'].count() + node_features[f'count_unique_out_{window[0]}_{window[1]}'] = gb_out['counterpart'].nunique() # calculate non window related features - df = pd.concat([df_in[['account', 'days_in_bank', 'n_phone_changes', 'is_sar']], df_out[['account', 'days_in_bank', 'n_phone_changes', 'is_sar']]]) - gb = df.groupby('account') - df_nodes[f'counts_days_in_bank'] = gb['days_in_bank'].max() - df_nodes[f'counts_phone_changes'] = gb['n_phone_changes'].max() + df_combined = pd.concat([df_in[['account', 'days_in_bank', 'n_phone_changes', 'is_sar']], df_out[['account', 'days_in_bank', 'n_phone_changes', 'is_sar']]]) + gb = df_combined.groupby('account') + node_features['counts_days_in_bank'] = gb['days_in_bank'].max() + node_features['counts_phone_changes'] = gb['n_phone_changes'].max() # find label - df_nodes['is_sar'] = gb['is_sar'].max() + node_features['is_sar'] = gb['is_sar'].max() + # concat features + node_features_df = pd.concat(node_features, axis=1) + # merge with nodes + df_nodes = df_nodes.join(node_features_df) # filter out nodes not belonging to the bank df_nodes = df_nodes[df_nodes['bank'] == bank] # TODO: keep these nodes? see TODO below about get edges # if any value is nan, there was no transaction in the window for that account and hence the feature should be 0