-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcode.R
697 lines (499 loc) · 20.7 KB
/
code.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
###library
#package for simulating data
library(Umpire)
#packages for employed methods
library(RLT)
library(BART)
library(randomForest)
#package for application data
library(datamicroarray)
#package for cross validation
library(caret)
#package for parallel calculations
library(foreach)
library(doParallel)
##############################DATA SIMULATION FUNCION#####################################
###########################################################################################
########size of block - sizeb - {5, 15, 30}#################################################
#######number of observations - nobs - {50, 100, 200}#####################################
data_sim<-function(sizeb,nobs){
checkneg=0 #have to manually check whether in the train sample there are at least 20% positive cases and 20% negative cases
checkpos=0
while((checkpos<0.2*nobs)|(checkneg<0.2*nobs)){
################################train data####################################
## Build a CancerModel with 1 subtype
nBlocks <- 20 # number of possible hits
cm <- CancerModel(name="cansim",
nPossible=nBlocks,
nPattern=1,
OUT = function(n) rnorm(n, 0, 1))
## Include 100 blocks/pathways that are not hit by cancer
nTotalBlocks <- nBlocks + 100
## Assign values to hyperparameters
## block size
blockSize <- round(rnorm(nTotalBlocks, sizeb, 0.3*sizeb))
blockSize<-replace(blockSize,blockSize<=0 ,1)
## log normal mean hypers
mu0 <- 6
sigma0 <- 1.5
## log normal sigma hypers
rate <- 28.11
shape <- 44.25
## block corr
p <- 0.6
w <- 5
#transcriptional activity
active <- 0.7
## Set up the baseline Engine
rho <- rbeta(nTotalBlocks, p*w, (1-p)*w)
base <- lapply(1:nTotalBlocks,
function(i) {
bs <- blockSize[i]
co <- matrix(rho[i], nrow=bs, ncol=bs)
diag(co) <- 1
mu <- rnorm(bs, mu0, sigma0)
sigma <- matrix(1/rgamma(bs, rate=rate, shape=shape), nrow=1)
covo <- co *(t(sigma) %*% sigma)
MVN(mu, covo)
})
eng <- EngineWithActivity(active, base, 2)
## Alter the means if there is a hit
altered <- alterMean(eng, normalOffset, delta=0, sigma=1)
## Build the CancerEngine using character strings
object <- CancerEngine(cm, "eng", "altered")
#summary(object)
## Simulate the data
temp <- rand(object, nobs+100)
## Add noise
nu <- 10
tau <- 20
phi <- 0.1
nm <- NoiseModel(nu, tau, phi)
temp$data<- blur(nm, temp$data) #realData
indx<-sample(1:(nobs+100),nobs)
dset<-list()
dset$data<-temp$data[,indx]
dset$clinical<-temp$clinical[indx,]
checkpos=sum(dset$clinical=="Bad")
checkneg=sum(dset$clinical=="Good")
}
###############################test data#######################################
#dsettest <- rand(object, 100)
#dsettest$data<- blur(nm, dsettest$data) #realData
dsettest<-list()
dsettest$data<-temp$data[,-indx]
dsettest$clinical<-temp$clinical[-indx,]
returnlist=list("dset"=dset,"dsettest"=dsettest)
return(returnlist)
}
##############################SIMULATION EXPERIMENT FUNCION################################
#100 repetitions for each setting of parameters for simulated data
###########################################################################################
simulation<-function(n,sb_k,reps){
#container for calculating TP,TN,FP, FN for each method
ERT=matrix(NA,ncol=5,nrow=reps,dimnames = list(c(1:reps),c('TP','TN','FP','FN','accur')))
BART=matrix(NA,ncol=5,nrow=reps,dimnames = list(c(1:reps),c('TP','TN','FP','FN','accur')))
DART=matrix(NA,ncol=5,nrow=reps,dimnames = list(c(1:reps),c('TP','TN','FP','FN','accur')))
RF=matrix(NA,ncol=5,nrow=reps,dimnames = list(c(1:reps),c('TP','TN','FP','FN','accur')))
for (i in 1:reps){
#simulating data with given parameters
temp=data_sim(sizeb=sb_k,nobs=n)
temp_data = temp$dset
temp_datatest=temp$dsettest
#decoding
temp_data$clinical[,2]=ifelse(temp_data$clinical[,2]=='Bad',1,0)
temp_datatest$clinical[,2]=ifelse(temp_datatest$clinical[,2]=='Bad',1,0)
#train data
trainx = t(temp_data$data)
trainyfact = t(as.factor(as.matrix(t(temp_data$clinical[,2]))))
trainy = t(as.matrix(t(temp_data$clinical[,2])))
#test data
testx = t(temp_datatest$data)
testyfact= t(as.factor(as.matrix(t(temp_datatest$clinical[,2]))))
testy = t(as.matrix(t(temp_datatest$clinical[,2])))
#####################Random Forest######################################################
RF.fit <- randomForest(trainx,trainyfact,type='classification',mtry=dim(trainx)[2],nodesize=round(n^(1/3)))
RF.pred<-predict(RF.fit ,testx,type='response')
TP=sum((RF.pred=='1')&(testyfact=='1'))
TN=sum((RF.pred=='0')&(testyfact=='0'))
FP=sum((RF.pred=='1')&(testyfact=='0'))
FN=sum((RF.pred=='0')&(testyfact=='1'))
RF[i,'TP']=TP
RF[i,'TN']=TN
RF[i,'FP']=FP
RF[i,'FN']=FN
RF[i,'accur']=(TP+TN)/(TP+TN+FP+FN)
################Extremely Randomised Trees##########################################
ERT.fit = RLT(trainx, trainyfact, model = "classification")
ERT.pred = predict(ERT.fit, testx)
TP=sum((ERT.pred$Prediction=='1')&(testyfact=='1'))
TN=sum((ERT.pred$Prediction=='0')&(testyfact=='0'))
FP=sum((ERT.pred$Prediction=='1')&(testyfact=='0'))
FN=sum((ERT.pred$Prediction=='0')&(testyfact=='1'))
ERT[i,'TP']=TP
ERT[i,'TN']=TN
ERT[i,'FP']=FP
ERT[i,'FN']=FN
ERT[i,'accur']=(TP+TN)/(TP+TN+FP+FN)
#################################BART################################################
post<-lbart(trainx, trainy, nskip=100, ntree=20, ndpost=1000,sparse=FALSE,binaryOffset=0,k=3,power=10,base=0.75,rho=dim(trainx)[2],augment=TRUE)
pred <- predict(post, testx)
pred_y<-ifelse(pred$prob.test.mean<0.5,0,1)
TP=sum((pred_y==1)&(testy==1))
NT=sum((pred_y==0)&(testy==0))
FP=sum((pred_y==1)&(testy==0))
FN=sum((pred_y==0)&(testy==1))
BART[i,'TP']=TP
BART[i,'TN']=TN
BART[i,'FP']=FP
BART[i,'FN']=FN
BART[i,'accur']=(TP+TN)/(TP+TN+FP+FN)
#################################DART################################################
post<-lbart(trainx, trainy, nskip=100, ntree=50, ndpost=1000,sparse=TRUE,binaryOffset=0,k=3,power=10,base=0.75,a=1,rho=dim(trainx)[2],augment=TRUE)
pred <- predict(post, testx)
pred_y<-ifelse(pred$prob.test.mean<0.5,0,1)
TP=sum((pred_y==1)&(testy==1))
TN=sum((pred_y==0)&(testy==0))
FP=sum((pred_y==1)&(testy==0))
FN=sum((pred_y==0)&(testy==1))
DART[i,'TP']=TP
DART[i,'TN']=TN
DART[i,'FP']=FP
DART[i,'FN']=FN
DART[i,'accur']=(TP+TN)/(TP+TN+FP+FN)
}
#TP
TPBART=BART[,"TP"]
TPDART=DART[,"TP"]
TPERT=ERT[,"TP"]
TPRF=RF[,"TP"]
#TN
TNBART=BART[,"TN"]
TNDART=DART[,"TN"]
TNERT=ERT[,"TN"]
TNRF=RF[,"TN"]
#FP
FPBART=BART[,"FP"]
FPDART=DART[,"FP"]
FPERT=ERT[,"FP"]
FPRF=RF[,"FP"]
#FN
FNBART=BART[,"FN"]
FNDART=DART[,"FN"]
FNERT=ERT[,"FN"]
FNRF=RF[,"FN"]
return_list=list("TPBART"=TPBART,"TPDART"=TPDART,
"TPERT"=TPERT,"TPRF"=TPRF,
"TNBART"=TNBART,"TNDART"=TNDART,
"TNERT"=TNERT,"TNRF"=TNRF,
"FPBART"=FPBART,"FPDART"=FPDART,
"FPERT"=FPERT,"FPRF"=FPRF,
"FNBART"=FNBART,"FNDART"=FNDART,
"FNERT"=FNERT,"FNRF"=FNRF)
return(return_list)
}
############################IMPLEMENTATION OF SIMULATION EXPERIMENT########################
###########################################################################################
###########################################################################################
#5 - 600
#15 - 1500
#30 - 3500
list2=c("TPBART","TPDART","TPERT","TPRF",
"TNBART","TNDART","TNERT","TNRF",
"FPBART","FPDART","FPERT","FPRF",
"FNBART","FNDART","FNERT","FNRF")
simulations_res5<-list()
simulations_res15<-list()
simulations_res30<-list()
#seting for parallel calculations
no_cores=detectCores()-1
cl <- makePSOCKcluster(no_cores, outfile='')
registerDoParallel(cl)
#registerDoSEQ()
#stopCluster(cl)
reps_n=100 #number of repetitions
Mark0 = proc.time()
simulations_res5 = foreach(n_i=c(50,100,200),.combine=rbind, .packages = c("dplyr",'Umpire','randomForest',"RLT","BART")) %dopar% {
set.seed(391629+n_i)
sb_k_i=5
simulations5=matrix(NA,ncol=16,nrow=reps_n,dimnames = list(c(1:reps_n),list2))
sim<-simulation(n=n_i,sb_k=sb_k_i,reps=reps_n)
simulations5[,"TPBART"]<-sim$TPBART
simulations5[,"TPDART"]<-sim$TPDART
simulations5[,"TPERT"]<-sim$TPERT
simulations5[,"TPRF"]<-sim$TPRF
simulations5[,"TNBART"]<-sim$TNBART
simulations5[,"TNDART"]<-sim$TNDART
simulations5[,"TNERT"]<-sim$TNERT
simulations5[,"TNRF"]<-sim$TNRF
simulations5[,"FPBART"]<-sim$FPBART
simulations5[,"FPDART"]<-sim$FPDART
simulations5[,"FPERT"]<-sim$FPERT
simulations5[,"FPRF"]<-sim$FPRF
simulations5[,"FNBART"]<-sim$FNBART
simulations5[,"FNDART"]<-sim$FNDART
simulations5[,"FNERT"]<-sim$FNERT
simulations5[,"FNRF"]<-sim$FNRF
simulations5
}
#85 mins approx
simulations_res15 = foreach(n_i=c(50,100,200),.combine=rbind, .packages = c("dplyr",'Umpire','randomForest',"RLT","BART")) %dopar% {
set.seed(391629+n_i)
sb_k_i=15
simulations15=matrix(NA,ncol=16,nrow=reps_n,dimnames = list(c(1:reps_n),list2))
sim<-simulation(n=n_i,sb_k=sb_k_i,reps=100)
simulations15[,"TPBART"]<-sim$TPBART
simulations15[,"TPDART"]<-sim$TPDART
simulations15[,"TPERT"]<-sim$TPERT
simulations15[,"TPRF"]<-sim$TPRF
simulations15[,"TNBART"]<-sim$TNBART
simulations15[,"TNDART"]<-sim$TNDART
simulations15[,"TNERT"]<-sim$TNERT
simulations15[,"TNRF"]<-sim$TNRF
simulations15[,"FPBART"]<-sim$FPBART
simulations15[,"FPDART"]<-sim$FPDART
simulations15[,"FPERT"]<-sim$FPERT
simulations15[,"FPRF"]<-sim$FPRF
simulations15[,"FNBART"]<-sim$FNBART
simulations15[,"FNDART"]<-sim$FNDART
simulations15[,"FNERT"]<-sim$FNERT
simulations15[,"FNRF"]<-sim$FNRF
simulations15
}
#125 mins approx
simulations_res30 = foreach(n_i=c(50,100,200),.combine=rbind, .packages = c("dplyr",'Umpire','randomForest',"RLT","BART")) %dopar% {
set.seed(391629+n_i)
sb_k_i=30
simulations30=matrix(NA,ncol=16,nrow=reps_n,dimnames = list(c(1:reps_n),list2))
sim<-simulation(n=n_i,sb_k=sb_k_i,reps=100)
simulations30[,"TPBART"]<-sim$TPBART
simulations30[,"TPDART"]<-sim$TPDART
simulations30[,"TPERT"]<-sim$TPERT
simulations30[,"TPRF"]<-sim$TPRF
simulations30[,"TNBART"]<-sim$TNBART
simulations30[,"TNDART"]<-sim$TNDART
simulations30[,"TNERT"]<-sim$TNERT
simulations30[,"TNRF"]<-sim$TNRF
simulations30[,"FPBART"]<-sim$FPBART
simulations30[,"FPDART"]<-sim$FPDART
simulations30[,"FPERT"]<-sim$FPERT
simulations30[,"FPRF"]<-sim$FPRF
simulations30[,"FNBART"]<-sim$FNBART
simulations30[,"FNDART"]<-sim$FNDART
simulations30[,"FNERT"]<-sim$FNERT
simulations30[,"FNRF"]<-sim$FNRF
simulations30
}
#####210 mins approx
timeH20=proc.time() - Mark0
timeH20
#######################
#overall 432 mins (7 hours 12 mins) approx
#25932.97 secs
#3 cores were used (can be faster with more cores)
##########################EVALUATING THE PERFORMANCE#######################################
###########################################################################################
##########################################################################################
#function for caclulating the evaluation measures for each method
#precision, recall, F1, specificity
evaluation<-function(data){
#precision
precRF=data[,'TPRF']/(data[,'TPRF']+data[,'FPRF'])
precERT=data[,'TPERT']/(data[,'TPERT']+data[,'FPERT'])
precBART=data[,'TPBART']/(data[,'TPBART']+data[,'FPBART'])
precDART=data[,'TPDART']/(data[,'TPDART']+data[,'FPDART'])
#recall
recRF=data[,'TPRF']/(data[,'TPRF']+data[,'FNRF'])
recERT=data[,'TPERT']/(data[,'TPERT']+data[,'FNERT'])
recBART=data[,'TPBART']/(data[,'TPBART']+data[,'FNBART'])
recDART=data[,'TPDART']/(data[,'TPDART']+data[,'FNDART'])
#F1
F1RF=2*precRF*recRF/(precRF+recRF)
F1ERT=2*precERT*recERT/(precERT+recERT)
F1BART=2*precBART*recBART/(precBART+recBART)
F1DART=2*precDART*recDART/(precDART+recDART)
#accuracy
accRF=(data[,'TPRF']+data[,'TNRF'])/(data[,'FPRF']+data[,'FNRF']+data[,'TPRF']+data[,'TNRF'])
accERT=(data[,'TPERT']+data[,'TNERT'])/(data[,'FPERT']+data[,'FNERT']+data[,'TPERT']+data[,'TNERT'])
accBART=(data[,'TPBART']+data[,'TNBART'])/(data[,'FPBART']+data[,'FNBART']+data[,'TPBART']+data[,'TNBART'])
accDART=(data[,'TPDART']+data[,'TNDART'])/(data[,'FPDART']+data[,'FNDART']+data[,'TPDART']+data[,'TNDART'])
return_list=list('recRF'=recRF,'recERT'=recERT,'recBART'=recBART,'recDART'=recDART,
'precRF'=precRF,'precERT'=precERT,'precBART'=precBART,'precDART'=precDART,
'F1RF'=F1RF,'F1ERT'=F1ERT,'F1BART'=F1BART,'F1DART'=F1DART,
'accRF'=accRF,'accERT'=accERT,'accBART'=accBART,'accDART'=accDART)
return(return_list)
}
ev5<-evaluation(simulations_res5)
ev15<-evaluation(simulations_res15)
ev30<-evaluation(simulations_res30)
###################APPLICATION FOR A REAL DATA#################################
###############################################################################
###############################################################################
#downloading real data
data('gravier', package = 'datamicroarray')
gravier$y<-as.matrix(gravier$y)
#evaluate performance with 5-fold cross validation
folds=10
ERT=matrix(NA,ncol=5,nrow=folds,dimnames = list(c(1:folds),c('TP','TN','FP','FN','accur')))
BART=matrix(NA,ncol=5,nrow=folds,dimnames = list(c(1:folds),c('TP','TN','FP','FN','accur')))
DART=matrix(NA,ncol=5,nrow=folds,dimnames = list(c(1:folds),c('TP','TN','FP','FN','accur')))
RF=matrix(NA,ncol=5,nrow=folds,dimnames = list(c(1:folds),c('TP','TN','FP','FN','accur')))
#create folds
set.seed(391629)
flds <- createFolds(gravier$y, k = folds, list = TRUE, returnTrain = FALSE)
###running CV
CV_res=list()
CV_res=foreach(i=c(1:folds),.combine=rbind, .packages = c("dplyr",'Umpire','randomForest',"RLT","BART")) %dopar% {
names(flds)[i] <- "test"
set.seed(391629+i)
#test data
testy<-as.matrix(gravier$y[flds$test,])
testy<-ifelse(testy=='poor',1,0)
testyfact<-as.factor(testy)
testx<-gravier$x[flds$test, ]
#train data
trainy<-as.matrix(gravier$y[-flds$test,])
trainy<-ifelse(trainy=='poor',1,0)
trainyfact<-as.factor(trainy)
trainx<-gravier$x[-flds$test, ]
###Random Forest
RF.fit <- randomForest(trainx,trainyfact,type='classification',mtry=dim(trainx)[2],nodesize=round((dim(trainx)[1])^(1/3)))
RF.pred<-predict(RF.fit ,testx,type='response')
TP=sum((RF.pred=='1')&(testyfact=='1'))
TN=sum((RF.pred=='0')&(testyfact=='0'))
FP=sum((RF.pred=='1')&(testyfact=='0'))
FN=sum((RF.pred=='0')&(testyfact=='1'))
RF[i,'TP']=TP
RF[i,'TN']=TN
RF[i,'FP']=FP
RF[i,'FN']=FN
RF[i,'accur']=(TP+TN)/(TP+TN+FP+FN)
###Extremely Randomized Trees
ERT.fit = RLT(trainx, trainyfact, model = "classification")
ERT.pred = predict(ERT.fit, testx)
TP=sum((ERT.pred$Prediction=='1')&(testyfact=='1'))
TN=sum((ERT.pred$Prediction=='0')&(testyfact=='0'))
FP=sum((ERT.pred$Prediction=='1')&(testyfact=='0'))
FN=sum((ERT.pred$Prediction=='0')&(testyfact=='1'))
ERT[i,'TP']=TP
ERT[i,'TN']=TN
ERT[i,'FP']=FP
ERT[i,'FN']=FN
ERT[i,'accur']=(TP+TN)/(TP+TN+FP+FN)
###BART
post<-lbart(trainx, trainy, nskip=100, ntree=20, ndpost=1000,sparse=FALSE,binaryOffset=0,k=3,power=3,base=0.9,rho=dim(trainx)[2],augment=TRUE)
pred <- predict(post, testx)
pred_y<-ifelse(pred$prob.test.mean<0.5,0,1)
TP=sum((pred_y==1)&(testy==1))
NT=sum((pred_y==0)&(testy==0))
FP=sum((pred_y==1)&(testy==0))
FN=sum((pred_y==0)&(testy==1))
BART[i,'TP']=TP
BART[i,'TN']=TN
BART[i,'FP']=FP
BART[i,'FN']=FN
BART[i,'accur']=(TP+TN)/(TP+TN+FP+FN)
###DART
post<-lbart(trainx, trainy, nskip=100, ntree=50, ndpost=1000,sparse=TRUE,binaryOffset=0,k=3,power=3,base=0.9,a=1,rho=dim(trainx)[2],augment=TRUE)
pred <- predict(post, testx)
pred_y<-ifelse(pred$prob.test.mean<0.5,0,1)
TP=sum((pred_y==1)&(testy==1))
TN=sum((pred_y==0)&(testy==0))
FP=sum((pred_y==1)&(testy==0))
FN=sum((pred_y==0)&(testy==1))
DART[i,'TP']=TP
DART[i,'TN']=TN
DART[i,'FP']=FP
DART[i,'FN']=FN
DART[i,'accur']=(TP+TN)/(TP+TN+FP+FN)
CV_temp<-cbind(BART[i,'TP'],DART[i,'TP'],ERT[i,'TP'],RF[i,'TP'],
BART[i,'TN'],DART[i,'TN'],ERT[i,'TN'],RF[i,'TN'],
BART[i,'FP'],DART[i,'FP'],ERT[i,'FP'],RF[i,'FP'],
BART[i,'FN'],DART[i,'FN'],ERT[i,'FN'],RF[i,'FN'])
CV_temp
}
##approx 7 mins
#stop parallel execution
registerDoSEQ()
stopCluster(cl)
### evaluating
colnames(CV_res)=list2
#function
evaluation_CV<-function(data){
#precision
precRF=mean(data$precRF,na.rm = TRUE)
precERT=mean(data$precERT,na.rm = TRUE)
precBART=mean(data$precBART,na.rm = TRUE)
precDART=mean(data$precDART,na.rm = TRUE)
#recall
recRF=mean(data$recRF,na.rm = TRUE)
recERT=mean(data$recERT,na.rm = TRUE)
recBART=mean(data$recBART,na.rm = TRUE)
recDART=mean(data$recDART,na.rm = TRUE)
#F1
F1RF=mean(data$F1RF,na.rm = TRUE)
F1ERT=mean(data$F1ERT,na.rm = TRUE)
F1BART=mean(data$F1BART,na.rm = TRUE)
F1DART=mean(data$F1DART,na.rm = TRUE)
#accuracy
accRF=mean(data$accRF,na.rm = TRUE)
accERT=mean(data$accERT,na.rm = TRUE)
accBART=mean(data$accBART,na.rm = TRUE)
accDART=mean(data$accDART,na.rm = TRUE)
return_list=list('recRF'=round(recRF,4),'recERT'=round(recERT,4),'recBART'=round(recBART,4),'recDART'=round(recDART,4),
'precRF'=round(precRF,4),'precERT'=round(precERT,4),'precBART'=round(precBART,4),'precDART'=round(precDART,4),
'F1RF'=round(F1RF,4),'F1ERT'=round(F1ERT,4),'F1BART'=round(F1BART,4),'F1DART'=round(F1DART,4),
'accRF'=round(accRF,4),'accERT'=round(accERT,4),'accBART'=round(accBART,4),'accDART'=round(accDART,4))
return(return_list)
}
###########################FORMATTING THE OUTPUT (TABLES)#############
#################################################################################
#################################################################################
####for Application
CV_ev<-evaluation_CV(evaluation(CV_res))
###organising output
colrec<-rbind(CV_ev$recBART,CV_ev$recDART,CV_ev$recRF)
colprec<-rbind(CV_ev$precBART,CV_ev$precDART,CV_ev$precRF)
colf1<-rbind(CV_ev$F1BART,CV_ev$F1DART,CV_ev$F1RF)
colacc<-rbind(CV_ev$accBART,CV_ev$accDART,CV_ev$accRF)
#colspec<-rbind(CV_ev$specBART,CV_ev$specDART,CV_ev$specRF)
CV_results<-cbind(colrec,colprec,colf1,colacc)
colnames(CV_results)<-c('recall','precision','F1','accuracy')
rownames(CV_results)<-c('BART','DART','RF')
for (i in 1:dim(CV_results)[2]){
CV_results[,i] = replace(CV_results[,i],CV_results[,i]==max(CV_results[,i]),paste("!",as.character(max(CV_results[,i])),"!"))
}
#how to provide output
#CV_results
####For Simulations
#function for producing tables
result_table<-function(data){
temp_table50=evaluation_CV(evaluation(data[1:100,]))
temp_table100=evaluation_CV(evaluation(data[101:200,]))
temp_table200=evaluation_CV(evaluation(data[201:300,]))
col50<-cbind(rbind(temp_table50$recBART,temp_table50$recDART,temp_table50$recRF),
rbind(temp_table50$precBART,temp_table50$precDART,temp_table50$precRF),
rbind(temp_table50$F1BART,temp_table50$F1DART,temp_table50$F1RF),
rbind(temp_table50$accBART,temp_table50$accDART,temp_table50$accRF))
col100<-cbind(rbind(temp_table100$recBART,temp_table100$recDART,temp_table100$recRF),
rbind(temp_table100$precBART,temp_table100$precDART,temp_table100$precRF),
rbind(temp_table100$F1BART,temp_table100$F1DART,temp_table100$F1RF),
rbind(temp_table100$accBART,temp_table100$accDART,temp_table100$accRF))
col200<-cbind(rbind(temp_table200$recBART,temp_table200$recDART,temp_table200$recRF),
rbind(temp_table200$precBART,temp_table200$precDART,temp_table200$precRF),
rbind(temp_table200$F1BART,temp_table200$F1DART,temp_table200$F1RF),
rbind(temp_table200$accBART,temp_table200$accDART,temp_table200$accRF))
temp_results<-rbind(c('recall','precision','F1','accuracy',
'recall','precision','F1','accuracy',
'recall','precision','F1','accuracy'),
cbind(col50,col100,col200))
#adding "!" around the best performance
for (i in 1:dim(temp_results)[2]){
temp_results[,i] = replace(temp_results[,i],temp_results[,i]==max(temp_results[2:4,i]),paste("!",as.character(max(temp_results[2:4,i])),"!"))
}
colnames(temp_results)<-c('N=50','','','','N=100','','','','N=200','','','')
rownames(temp_results)<-c('','BART','DART','RF')
return(temp_results)
}
#how to use
#result_table(simulations_res15)