diff --git a/Major Project Submissions/data.csv b/Major Project Submissions/data.csv
new file mode 100644
index 0000000..915ecc5
--- /dev/null
+++ b/Major Project Submissions/data.csv
@@ -0,0 +1,300 @@
+age,anaemia,creatinine_phosphokinase,diabetes,ejection_fraction,high_blood_pressure,platelets,serum_creatinine,serum_sodium,sex,smoking,time,DEATH_EVENT
+75,0,582,0,20,1,265000,1.9,130,1,0,4,1
+55,0,7861,0,38,0,263358.03,1.1,136,1,0,6,1
+65,0,146,0,20,0,162000,1.3,129,1,1,7,1
+50,1,111,0,20,0,210000,1.9,137,1,0,7,1
+65,1,160,1,20,0,327000,2.7,116,0,0,8,1
+90,1,47,0,40,1,204000,2.1,132,1,1,8,1
+75,1,246,0,15,0,127000,1.2,137,1,0,10,1
+60,1,315,1,60,0,454000,1.1,131,1,1,10,1
+65,0,157,0,65,0,263358.03,1.5,138,0,0,10,1
+80,1,123,0,35,1,388000,9.4,133,1,1,10,1
+75,1,81,0,38,1,368000,4,131,1,1,10,1
+62,0,231,0,25,1,253000,0.9,140,1,1,10,1
+45,1,981,0,30,0,136000,1.1,137,1,0,11,1
+50,1,168,0,38,1,276000,1.1,137,1,0,11,1
+49,1,80,0,30,1,427000,1,138,0,0,12,0
+82,1,379,0,50,0,47000,1.3,136,1,0,13,1
+87,1,149,0,38,0,262000,0.9,140,1,0,14,1
+45,0,582,0,14,0,166000,0.8,127,1,0,14,1
+70,1,125,0,25,1,237000,1,140,0,0,15,1
+48,1,582,1,55,0,87000,1.9,121,0,0,15,1
+65,1,52,0,25,1,276000,1.3,137,0,0,16,0
+65,1,128,1,30,1,297000,1.6,136,0,0,20,1
+68,1,220,0,35,1,289000,0.9,140,1,1,20,1
+53,0,63,1,60,0,368000,0.8,135,1,0,22,0
+75,0,582,1,30,1,263358.03,1.83,134,0,0,23,1
+80,0,148,1,38,0,149000,1.9,144,1,1,23,1
+95,1,112,0,40,1,196000,1,138,0,0,24,1
+70,0,122,1,45,1,284000,1.3,136,1,1,26,1
+58,1,60,0,38,0,153000,5.8,134,1,0,26,1
+82,0,70,1,30,0,200000,1.2,132,1,1,26,1
+94,0,582,1,38,1,263358.03,1.83,134,1,0,27,1
+85,0,23,0,45,0,360000,3,132,1,0,28,1
+50,1,249,1,35,1,319000,1,128,0,0,28,1
+50,1,159,1,30,0,302000,1.2,138,0,0,29,0
+65,0,94,1,50,1,188000,1,140,1,0,29,1
+69,0,582,1,35,0,228000,3.5,134,1,0,30,1
+90,1,60,1,50,0,226000,1,134,1,0,30,1
+82,1,855,1,50,1,321000,1,145,0,0,30,1
+60,0,2656,1,30,0,305000,2.3,137,1,0,30,0
+60,0,235,1,38,0,329000,3,142,0,0,30,1
+70,0,582,0,20,1,263358.03,1.83,134,1,1,31,1
+50,0,124,1,30,1,153000,1.2,136,0,1,32,1
+70,0,571,1,45,1,185000,1.2,139,1,1,33,1
+72,0,127,1,50,1,218000,1,134,1,0,33,0
+60,1,588,1,60,0,194000,1.1,142,0,0,33,1
+50,0,582,1,38,0,310000,1.9,135,1,1,35,1
+51,0,1380,0,25,1,271000,0.9,130,1,0,38,1
+60,0,582,1,38,1,451000,0.6,138,1,1,40,1
+80,1,553,0,20,1,140000,4.4,133,1,0,41,1
+57,1,129,0,30,0,395000,1,140,0,0,42,1
+68,1,577,0,25,1,166000,1,138,1,0,43,1
+53,1,91,0,20,1,418000,1.4,139,0,0,43,1
+60,0,3964,1,62,0,263358.03,6.8,146,0,0,43,1
+70,1,69,1,50,1,351000,1,134,0,0,44,1
+60,1,260,1,38,0,255000,2.2,132,0,1,45,1
+95,1,371,0,30,0,461000,2,132,1,0,50,1
+70,1,75,0,35,0,223000,2.7,138,1,1,54,0
+60,1,607,0,40,0,216000,0.6,138,1,1,54,0
+49,0,789,0,20,1,319000,1.1,136,1,1,55,1
+72,0,364,1,20,1,254000,1.3,136,1,1,59,1
+45,0,7702,1,25,1,390000,1,139,1,0,60,1
+50,0,318,0,40,1,216000,2.3,131,0,0,60,1
+55,0,109,0,35,0,254000,1.1,139,1,1,60,0
+45,0,582,0,35,0,385000,1,145,1,0,61,1
+45,0,582,0,80,0,263358.03,1.18,137,0,0,63,0
+60,0,68,0,20,0,119000,2.9,127,1,1,64,1
+42,1,250,1,15,0,213000,1.3,136,0,0,65,1
+72,1,110,0,25,0,274000,1,140,1,1,65,1
+70,0,161,0,25,0,244000,1.2,142,0,0,66,1
+65,0,113,1,25,0,497000,1.83,135,1,0,67,1
+41,0,148,0,40,0,374000,0.8,140,1,1,68,0
+58,0,582,1,35,0,122000,0.9,139,1,1,71,0
+85,0,5882,0,35,0,243000,1,132,1,1,72,1
+65,0,224,1,50,0,149000,1.3,137,1,1,72,0
+69,0,582,0,20,0,266000,1.2,134,1,1,73,1
+60,1,47,0,20,0,204000,0.7,139,1,1,73,1
+70,0,92,0,60,1,317000,0.8,140,0,1,74,0
+42,0,102,1,40,0,237000,1.2,140,1,0,74,0
+75,1,203,1,38,1,283000,0.6,131,1,1,74,0
+55,0,336,0,45,1,324000,0.9,140,0,0,74,0
+70,0,69,0,40,0,293000,1.7,136,0,0,75,0
+67,0,582,0,50,0,263358.03,1.18,137,1,1,76,0
+60,1,76,1,25,0,196000,2.5,132,0,0,77,1
+79,1,55,0,50,1,172000,1.8,133,1,0,78,0
+59,1,280,1,25,1,302000,1,141,0,0,78,1
+51,0,78,0,50,0,406000,0.7,140,1,0,79,0
+55,0,47,0,35,1,173000,1.1,137,1,0,79,0
+65,1,68,1,60,1,304000,0.8,140,1,0,79,0
+44,0,84,1,40,1,235000,0.7,139,1,0,79,0
+57,1,115,0,25,1,181000,1.1,144,1,0,79,0
+70,0,66,1,45,0,249000,0.8,136,1,1,80,0
+60,0,897,1,45,0,297000,1,133,1,0,80,0
+42,0,582,0,60,0,263358.03,1.18,137,0,0,82,0
+60,1,154,0,25,0,210000,1.7,135,1,0,82,1
+58,0,144,1,38,1,327000,0.7,142,0,0,83,0
+58,1,133,0,60,1,219000,1,141,1,0,83,0
+63,1,514,1,25,1,254000,1.3,134,1,0,83,0
+70,1,59,0,60,0,255000,1.1,136,0,0,85,0
+60,1,156,1,25,1,318000,1.2,137,0,0,85,0
+63,1,61,1,40,0,221000,1.1,140,0,0,86,0
+65,1,305,0,25,0,298000,1.1,141,1,0,87,0
+75,0,582,0,45,1,263358.03,1.18,137,1,0,87,0
+80,0,898,0,25,0,149000,1.1,144,1,1,87,0
+42,0,5209,0,30,0,226000,1,140,1,1,87,0
+60,0,53,0,50,1,286000,2.3,143,0,0,87,0
+72,1,328,0,30,1,621000,1.7,138,0,1,88,1
+55,0,748,0,45,0,263000,1.3,137,1,0,88,0
+45,1,1876,1,35,0,226000,0.9,138,1,0,88,0
+63,0,936,0,38,0,304000,1.1,133,1,1,88,0
+45,0,292,1,35,0,850000,1.3,142,1,1,88,0
+85,0,129,0,60,0,306000,1.2,132,1,1,90,1
+55,0,60,0,35,0,228000,1.2,135,1,1,90,0
+50,0,369,1,25,0,252000,1.6,136,1,0,90,0
+70,1,143,0,60,0,351000,1.3,137,0,0,90,1
+60,1,754,1,40,1,328000,1.2,126,1,0,91,0
+58,1,400,0,40,0,164000,1,139,0,0,91,0
+60,1,96,1,60,1,271000,0.7,136,0,0,94,0
+85,1,102,0,60,0,507000,3.2,138,0,0,94,0
+65,1,113,1,60,1,203000,0.9,140,0,0,94,0
+86,0,582,0,38,0,263358.03,1.83,134,0,0,95,1
+60,1,737,0,60,1,210000,1.5,135,1,1,95,0
+66,1,68,1,38,1,162000,1,136,0,0,95,0
+60,0,96,1,38,0,228000,0.75,140,0,0,95,0
+60,1,582,0,30,1,127000,0.9,145,0,0,95,0
+60,0,582,0,40,0,217000,3.7,134,1,0,96,1
+43,1,358,0,50,0,237000,1.3,135,0,0,97,0
+46,0,168,1,17,1,271000,2.1,124,0,0,100,1
+58,1,200,1,60,0,300000,0.8,137,0,0,104,0
+61,0,248,0,30,1,267000,0.7,136,1,1,104,0
+53,1,270,1,35,0,227000,3.4,145,1,0,105,0
+53,1,1808,0,60,1,249000,0.7,138,1,1,106,0
+60,1,1082,1,45,0,250000,6.1,131,1,0,107,0
+46,0,719,0,40,1,263358.03,1.18,137,0,0,107,0
+63,0,193,0,60,1,295000,1.3,145,1,1,107,0
+81,0,4540,0,35,0,231000,1.18,137,1,1,107,0
+75,0,582,0,40,0,263358.03,1.18,137,1,0,107,0
+65,1,59,1,60,0,172000,0.9,137,0,0,107,0
+68,1,646,0,25,0,305000,2.1,130,1,0,108,0
+62,0,281,1,35,0,221000,1,136,0,0,108,0
+50,0,1548,0,30,1,211000,0.8,138,1,0,108,0
+80,0,805,0,38,0,263358.03,1.1,134,1,0,109,1
+46,1,291,0,35,0,348000,0.9,140,0,0,109,0
+50,0,482,1,30,0,329000,0.9,132,0,0,109,0
+61,1,84,0,40,1,229000,0.9,141,0,0,110,0
+72,1,943,0,25,1,338000,1.7,139,1,1,111,1
+50,0,185,0,30,0,266000,0.7,141,1,1,112,0
+52,0,132,0,30,0,218000,0.7,136,1,1,112,0
+64,0,1610,0,60,0,242000,1,137,1,0,113,0
+75,1,582,0,30,0,225000,1.83,134,1,0,113,1
+60,0,2261,0,35,1,228000,0.9,136,1,0,115,0
+72,0,233,0,45,1,235000,2.5,135,0,0,115,1
+62,0,30,1,60,1,244000,0.9,139,1,0,117,0
+50,0,115,0,45,1,184000,0.9,134,1,1,118,0
+50,0,1846,1,35,0,263358.03,1.18,137,1,1,119,0
+65,1,335,0,35,1,235000,0.8,136,0,0,120,0
+60,1,231,1,25,0,194000,1.7,140,1,0,120,0
+52,1,58,0,35,0,277000,1.4,136,0,0,120,0
+50,0,250,0,25,0,262000,1,136,1,1,120,0
+85,1,910,0,50,0,235000,1.3,134,1,0,121,0
+59,1,129,0,45,1,362000,1.1,139,1,1,121,0
+66,1,72,0,40,1,242000,1.2,134,1,0,121,0
+45,1,130,0,35,0,174000,0.8,139,1,1,121,0
+63,1,582,0,40,0,448000,0.9,137,1,1,123,0
+50,1,2334,1,35,0,75000,0.9,142,0,0,126,1
+45,0,2442,1,30,0,334000,1.1,139,1,0,129,1
+80,0,776,1,38,1,192000,1.3,135,0,0,130,1
+53,0,196,0,60,0,220000,0.7,133,1,1,134,0
+59,0,66,1,20,0,70000,2.4,134,1,0,135,1
+65,0,582,1,40,0,270000,1,138,0,0,140,0
+70,0,835,0,35,1,305000,0.8,133,0,0,145,0
+51,1,582,1,35,0,263358.03,1.5,136,1,1,145,0
+52,0,3966,0,40,0,325000,0.9,140,1,1,146,0
+70,1,171,0,60,1,176000,1.1,145,1,1,146,0
+50,1,115,0,20,0,189000,0.8,139,1,0,146,0
+65,0,198,1,35,1,281000,0.9,137,1,1,146,0
+60,1,95,0,60,0,337000,1,138,1,1,146,0
+69,0,1419,0,40,0,105000,1,135,1,1,147,0
+49,1,69,0,50,0,132000,1,140,0,0,147,0
+63,1,122,1,60,0,267000,1.2,145,1,0,147,0
+55,0,835,0,40,0,279000,0.7,140,1,1,147,0
+40,0,478,1,30,0,303000,0.9,136,1,0,148,0
+59,1,176,1,25,0,221000,1,136,1,1,150,1
+65,0,395,1,25,0,265000,1.2,136,1,1,154,1
+75,0,99,0,38,1,224000,2.5,134,1,0,162,1
+58,1,145,0,25,0,219000,1.2,137,1,1,170,1
+60.667,1,104,1,30,0,389000,1.5,136,1,0,171,1
+50,0,582,0,50,0,153000,0.6,134,0,0,172,1
+60,0,1896,1,25,0,365000,2.1,144,0,0,172,1
+60.667,1,151,1,40,1,201000,1,136,0,0,172,0
+40,0,244,0,45,1,275000,0.9,140,0,0,174,0
+80,0,582,1,35,0,350000,2.1,134,1,0,174,0
+64,1,62,0,60,0,309000,1.5,135,0,0,174,0
+50,1,121,1,40,0,260000,0.7,130,1,0,175,0
+73,1,231,1,30,0,160000,1.18,142,1,1,180,0
+45,0,582,0,20,1,126000,1.6,135,1,0,180,1
+77,1,418,0,45,0,223000,1.8,145,1,0,180,1
+45,0,582,1,38,1,263358.03,1.18,137,0,0,185,0
+65,0,167,0,30,0,259000,0.8,138,0,0,186,0
+50,1,582,1,20,1,279000,1,134,0,0,186,0
+60,0,1211,1,35,0,263358.03,1.8,113,1,1,186,0
+63,1,1767,0,45,0,73000,0.7,137,1,0,186,0
+45,0,308,1,60,1,377000,1,136,1,0,186,0
+70,0,97,0,60,1,220000,0.9,138,1,0,186,0
+60,0,59,0,25,1,212000,3.5,136,1,1,187,0
+78,1,64,0,40,0,277000,0.7,137,1,1,187,0
+50,1,167,1,45,0,362000,1,136,0,0,187,0
+40,1,101,0,40,0,226000,0.8,141,0,0,187,0
+85,0,212,0,38,0,186000,0.9,136,1,0,187,0
+60,1,2281,1,40,0,283000,1,141,0,0,187,0
+49,0,972,1,35,1,268000,0.8,130,0,0,187,0
+70,0,212,1,17,1,389000,1,136,1,1,188,0
+50,0,582,0,62,1,147000,0.8,140,1,1,192,0
+78,0,224,0,50,0,481000,1.4,138,1,1,192,0
+48,1,131,1,30,1,244000,1.6,130,0,0,193,1
+65,1,135,0,35,1,290000,0.8,134,1,0,194,0
+73,0,582,0,35,1,203000,1.3,134,1,0,195,0
+70,0,1202,0,50,1,358000,0.9,141,0,0,196,0
+54,1,427,0,70,1,151000,9,137,0,0,196,1
+68,1,1021,1,35,0,271000,1.1,134,1,0,197,0
+55,0,582,1,35,1,371000,0.7,140,0,0,197,0
+73,0,582,0,20,0,263358.03,1.83,134,1,0,198,1
+65,0,118,0,50,0,194000,1.1,145,1,1,200,0
+42,1,86,0,35,0,365000,1.1,139,1,1,201,0
+47,0,582,0,25,0,130000,0.8,134,1,0,201,0
+58,0,582,1,25,0,504000,1,138,1,0,205,0
+75,0,675,1,60,0,265000,1.4,125,0,0,205,0
+58,1,57,0,25,0,189000,1.3,132,1,1,205,0
+55,1,2794,0,35,1,141000,1,140,1,0,206,0
+65,0,56,0,25,0,237000,5,130,0,0,207,0
+72,0,211,0,25,0,274000,1.2,134,0,0,207,0
+60,0,166,0,30,0,62000,1.7,127,0,0,207,1
+70,0,93,0,35,0,185000,1.1,134,1,1,208,0
+40,1,129,0,35,0,255000,0.9,137,1,0,209,0
+53,1,707,0,38,0,330000,1.4,137,1,1,209,0
+53,1,582,0,45,0,305000,1.1,137,1,1,209,0
+77,1,109,0,50,1,406000,1.1,137,1,0,209,0
+75,0,119,0,50,1,248000,1.1,148,1,0,209,0
+70,0,232,0,30,0,173000,1.2,132,1,0,210,0
+65,1,720,1,40,0,257000,1,136,0,0,210,0
+55,1,180,0,45,0,263358.03,1.18,137,1,1,211,0
+70,0,81,1,35,1,533000,1.3,139,0,0,212,0
+65,0,582,1,30,0,249000,1.3,136,1,1,212,0
+40,0,90,0,35,0,255000,1.1,136,1,1,212,0
+73,1,1185,0,40,1,220000,0.9,141,0,0,213,0
+54,0,582,1,38,0,264000,1.8,134,1,0,213,0
+61,1,80,1,38,0,282000,1.4,137,1,0,213,0
+55,0,2017,0,25,0,314000,1.1,138,1,0,214,1
+64,0,143,0,25,0,246000,2.4,135,1,0,214,0
+40,0,624,0,35,0,301000,1,142,1,1,214,0
+53,0,207,1,40,0,223000,1.2,130,0,0,214,0
+50,0,2522,0,30,1,404000,0.5,139,0,0,214,0
+55,0,572,1,35,0,231000,0.8,143,0,0,215,0
+50,0,245,0,45,1,274000,1,133,1,0,215,0
+70,0,88,1,35,1,236000,1.2,132,0,0,215,0
+53,1,446,0,60,1,263358.03,1,139,1,0,215,0
+52,1,191,1,30,1,334000,1,142,1,1,216,0
+65,0,326,0,38,0,294000,1.7,139,0,0,220,0
+58,0,132,1,38,1,253000,1,139,1,0,230,0
+45,1,66,1,25,0,233000,0.8,135,1,0,230,0
+53,0,56,0,50,0,308000,0.7,135,1,1,231,0
+55,0,66,0,40,0,203000,1,138,1,0,233,0
+62,1,655,0,40,0,283000,0.7,133,0,0,233,0
+65,1,258,1,25,0,198000,1.4,129,1,0,235,1
+68,1,157,1,60,0,208000,1,140,0,0,237,0
+61,0,582,1,38,0,147000,1.2,141,1,0,237,0
+50,1,298,0,35,0,362000,0.9,140,1,1,240,0
+55,0,1199,0,20,0,263358.03,1.83,134,1,1,241,1
+56,1,135,1,38,0,133000,1.7,140,1,0,244,0
+45,0,582,1,38,0,302000,0.9,140,0,0,244,0
+40,0,582,1,35,0,222000,1,132,1,0,244,0
+44,0,582,1,30,1,263358.03,1.6,130,1,1,244,0
+51,0,582,1,40,0,221000,0.9,134,0,0,244,0
+67,0,213,0,38,0,215000,1.2,133,0,0,245,0
+42,0,64,0,40,0,189000,0.7,140,1,0,245,0
+60,1,257,1,30,0,150000,1,137,1,1,245,0
+45,0,582,0,38,1,422000,0.8,137,0,0,245,0
+70,0,618,0,35,0,327000,1.1,142,0,0,245,0
+70,0,582,1,38,0,25100,1.1,140,1,0,246,0
+50,1,1051,1,30,0,232000,0.7,136,0,0,246,0
+55,0,84,1,38,0,451000,1.3,136,0,0,246,0
+70,0,2695,1,40,0,241000,1,137,1,0,247,0
+70,0,582,0,40,0,51000,2.7,136,1,1,250,0
+42,0,64,0,30,0,215000,3.8,128,1,1,250,0
+65,0,1688,0,38,0,263358.03,1.1,138,1,1,250,0
+50,1,54,0,40,0,279000,0.8,141,1,0,250,0
+55,1,170,1,40,0,336000,1.2,135,1,0,250,0
+60,0,253,0,35,0,279000,1.7,140,1,0,250,0
+45,0,582,1,55,0,543000,1,132,0,0,250,0
+65,0,892,1,35,0,263358.03,1.1,142,0,0,256,0
+90,1,337,0,38,0,390000,0.9,144,0,0,256,0
+45,0,615,1,55,0,222000,0.8,141,0,0,257,0
+60,0,320,0,35,0,133000,1.4,139,1,0,258,0
+52,0,190,1,38,0,382000,1,140,1,1,258,0
+63,1,103,1,35,0,179000,0.9,136,1,1,270,0
+62,0,61,1,38,1,155000,1.1,143,1,1,270,0
+55,0,1820,0,38,0,270000,1.2,139,0,0,271,0
+45,0,2060,1,60,0,742000,0.8,138,0,0,278,0
+45,0,2413,0,38,0,140000,1.4,140,1,1,280,0
+50,0,196,0,45,0,395000,1.6,136,1,1,285,0
diff --git a/Major Project Submissions/heart_failure_analysis.ipynb b/Major Project Submissions/heart_failure_analysis.ipynb
new file mode 100644
index 0000000..1a53e0e
--- /dev/null
+++ b/Major Project Submissions/heart_failure_analysis.ipynb
@@ -0,0 +1,1008 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "4fc1abab-c6fc-42ca-bbcd-de8f6e23d8c1",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# data manipulation libraries\n",
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "\n",
+ "# data visualiation\n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns \n",
+ "import matplotlib\n",
+ "import plotly.graph_objects as go\n",
+ "import plotly.express as px\n",
+ "\n",
+ "from sklearn.metrics import classification_report,confusion_matrix\n",
+ "import itertools\n",
+ "\n",
+ "from sklearn import preprocessing\n",
+ "from sklearn import metrics\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "61bdb522-501a-48a2-8f78-cb194b3213f6",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df = pd.read_csv('data.csv') # load data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "3f2e45b3-c50a-4720-b9a2-ec43b58081c6",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " age | \n",
+ " anaemia | \n",
+ " creatinine_phosphokinase | \n",
+ " diabetes | \n",
+ " ejection_fraction | \n",
+ " high_blood_pressure | \n",
+ " platelets | \n",
+ " serum_creatinine | \n",
+ " serum_sodium | \n",
+ " sex | \n",
+ " smoking | \n",
+ " time | \n",
+ " DEATH_EVENT | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 75.0 | \n",
+ " 0 | \n",
+ " 582 | \n",
+ " 0 | \n",
+ " 20 | \n",
+ " 1 | \n",
+ " 265000.00 | \n",
+ " 1.9 | \n",
+ " 130 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 4 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 55.0 | \n",
+ " 0 | \n",
+ " 7861 | \n",
+ " 0 | \n",
+ " 38 | \n",
+ " 0 | \n",
+ " 263358.03 | \n",
+ " 1.1 | \n",
+ " 136 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 6 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 65.0 | \n",
+ " 0 | \n",
+ " 146 | \n",
+ " 0 | \n",
+ " 20 | \n",
+ " 0 | \n",
+ " 162000.00 | \n",
+ " 1.3 | \n",
+ " 129 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 7 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 50.0 | \n",
+ " 1 | \n",
+ " 111 | \n",
+ " 0 | \n",
+ " 20 | \n",
+ " 0 | \n",
+ " 210000.00 | \n",
+ " 1.9 | \n",
+ " 137 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 7 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 65.0 | \n",
+ " 1 | \n",
+ " 160 | \n",
+ " 1 | \n",
+ " 20 | \n",
+ " 0 | \n",
+ " 327000.00 | \n",
+ " 2.7 | \n",
+ " 116 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 8 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " age anaemia creatinine_phosphokinase diabetes ejection_fraction \\\n",
+ "0 75.0 0 582 0 20 \n",
+ "1 55.0 0 7861 0 38 \n",
+ "2 65.0 0 146 0 20 \n",
+ "3 50.0 1 111 0 20 \n",
+ "4 65.0 1 160 1 20 \n",
+ "\n",
+ " high_blood_pressure platelets serum_creatinine serum_sodium sex \\\n",
+ "0 1 265000.00 1.9 130 1 \n",
+ "1 0 263358.03 1.1 136 1 \n",
+ "2 0 162000.00 1.3 129 1 \n",
+ "3 0 210000.00 1.9 137 1 \n",
+ "4 0 327000.00 2.7 116 0 \n",
+ "\n",
+ " smoking time DEATH_EVENT \n",
+ "0 0 4 1 \n",
+ "1 0 6 1 \n",
+ "2 1 7 1 \n",
+ "3 0 7 1 \n",
+ "4 0 8 1 "
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "189395ca-c96b-4c9d-94d0-1774f5955c08",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " age | \n",
+ " anaemia | \n",
+ " creatinine_phosphokinase | \n",
+ " diabetes | \n",
+ " ejection_fraction | \n",
+ " high_blood_pressure | \n",
+ " platelets | \n",
+ " serum_creatinine | \n",
+ " serum_sodium | \n",
+ " sex | \n",
+ " smoking | \n",
+ " time | \n",
+ " DEATH_EVENT | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " count | \n",
+ " 299.000000 | \n",
+ " 299.000000 | \n",
+ " 299.000000 | \n",
+ " 299.000000 | \n",
+ " 299.000000 | \n",
+ " 299.000000 | \n",
+ " 299.000000 | \n",
+ " 299.00000 | \n",
+ " 299.000000 | \n",
+ " 299.000000 | \n",
+ " 299.00000 | \n",
+ " 299.000000 | \n",
+ " 299.00000 | \n",
+ "
\n",
+ " \n",
+ " mean | \n",
+ " 60.833893 | \n",
+ " 0.431438 | \n",
+ " 581.839465 | \n",
+ " 0.418060 | \n",
+ " 38.083612 | \n",
+ " 0.351171 | \n",
+ " 263358.029264 | \n",
+ " 1.39388 | \n",
+ " 136.625418 | \n",
+ " 0.648829 | \n",
+ " 0.32107 | \n",
+ " 130.260870 | \n",
+ " 0.32107 | \n",
+ "
\n",
+ " \n",
+ " std | \n",
+ " 11.894809 | \n",
+ " 0.496107 | \n",
+ " 970.287881 | \n",
+ " 0.494067 | \n",
+ " 11.834841 | \n",
+ " 0.478136 | \n",
+ " 97804.236869 | \n",
+ " 1.03451 | \n",
+ " 4.412477 | \n",
+ " 0.478136 | \n",
+ " 0.46767 | \n",
+ " 77.614208 | \n",
+ " 0.46767 | \n",
+ "
\n",
+ " \n",
+ " min | \n",
+ " 40.000000 | \n",
+ " 0.000000 | \n",
+ " 23.000000 | \n",
+ " 0.000000 | \n",
+ " 14.000000 | \n",
+ " 0.000000 | \n",
+ " 25100.000000 | \n",
+ " 0.50000 | \n",
+ " 113.000000 | \n",
+ " 0.000000 | \n",
+ " 0.00000 | \n",
+ " 4.000000 | \n",
+ " 0.00000 | \n",
+ "
\n",
+ " \n",
+ " 25% | \n",
+ " 51.000000 | \n",
+ " 0.000000 | \n",
+ " 116.500000 | \n",
+ " 0.000000 | \n",
+ " 30.000000 | \n",
+ " 0.000000 | \n",
+ " 212500.000000 | \n",
+ " 0.90000 | \n",
+ " 134.000000 | \n",
+ " 0.000000 | \n",
+ " 0.00000 | \n",
+ " 73.000000 | \n",
+ " 0.00000 | \n",
+ "
\n",
+ " \n",
+ " 50% | \n",
+ " 60.000000 | \n",
+ " 0.000000 | \n",
+ " 250.000000 | \n",
+ " 0.000000 | \n",
+ " 38.000000 | \n",
+ " 0.000000 | \n",
+ " 262000.000000 | \n",
+ " 1.10000 | \n",
+ " 137.000000 | \n",
+ " 1.000000 | \n",
+ " 0.00000 | \n",
+ " 115.000000 | \n",
+ " 0.00000 | \n",
+ "
\n",
+ " \n",
+ " 75% | \n",
+ " 70.000000 | \n",
+ " 1.000000 | \n",
+ " 582.000000 | \n",
+ " 1.000000 | \n",
+ " 45.000000 | \n",
+ " 1.000000 | \n",
+ " 303500.000000 | \n",
+ " 1.40000 | \n",
+ " 140.000000 | \n",
+ " 1.000000 | \n",
+ " 1.00000 | \n",
+ " 203.000000 | \n",
+ " 1.00000 | \n",
+ "
\n",
+ " \n",
+ " max | \n",
+ " 95.000000 | \n",
+ " 1.000000 | \n",
+ " 7861.000000 | \n",
+ " 1.000000 | \n",
+ " 80.000000 | \n",
+ " 1.000000 | \n",
+ " 850000.000000 | \n",
+ " 9.40000 | \n",
+ " 148.000000 | \n",
+ " 1.000000 | \n",
+ " 1.00000 | \n",
+ " 285.000000 | \n",
+ " 1.00000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " age anaemia creatinine_phosphokinase diabetes \\\n",
+ "count 299.000000 299.000000 299.000000 299.000000 \n",
+ "mean 60.833893 0.431438 581.839465 0.418060 \n",
+ "std 11.894809 0.496107 970.287881 0.494067 \n",
+ "min 40.000000 0.000000 23.000000 0.000000 \n",
+ "25% 51.000000 0.000000 116.500000 0.000000 \n",
+ "50% 60.000000 0.000000 250.000000 0.000000 \n",
+ "75% 70.000000 1.000000 582.000000 1.000000 \n",
+ "max 95.000000 1.000000 7861.000000 1.000000 \n",
+ "\n",
+ " ejection_fraction high_blood_pressure platelets \\\n",
+ "count 299.000000 299.000000 299.000000 \n",
+ "mean 38.083612 0.351171 263358.029264 \n",
+ "std 11.834841 0.478136 97804.236869 \n",
+ "min 14.000000 0.000000 25100.000000 \n",
+ "25% 30.000000 0.000000 212500.000000 \n",
+ "50% 38.000000 0.000000 262000.000000 \n",
+ "75% 45.000000 1.000000 303500.000000 \n",
+ "max 80.000000 1.000000 850000.000000 \n",
+ "\n",
+ " serum_creatinine serum_sodium sex smoking time \\\n",
+ "count 299.00000 299.000000 299.000000 299.00000 299.000000 \n",
+ "mean 1.39388 136.625418 0.648829 0.32107 130.260870 \n",
+ "std 1.03451 4.412477 0.478136 0.46767 77.614208 \n",
+ "min 0.50000 113.000000 0.000000 0.00000 4.000000 \n",
+ "25% 0.90000 134.000000 0.000000 0.00000 73.000000 \n",
+ "50% 1.10000 137.000000 1.000000 0.00000 115.000000 \n",
+ "75% 1.40000 140.000000 1.000000 1.00000 203.000000 \n",
+ "max 9.40000 148.000000 1.000000 1.00000 285.000000 \n",
+ "\n",
+ " DEATH_EVENT \n",
+ "count 299.00000 \n",
+ "mean 0.32107 \n",
+ "std 0.46767 \n",
+ "min 0.00000 \n",
+ "25% 0.00000 \n",
+ "50% 0.00000 \n",
+ "75% 1.00000 \n",
+ "max 1.00000 "
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.describe()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "dad8ab09-99d6-47b2-8156-a8242e8f8547",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "False"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.isnull().values.any()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "011b4382-1a13-41d8-bf4a-5bad80e0171d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df.fillna(0,inplace=True) # inplace filling missing data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "40332e9b-86ef-4b2f-a009-1d2f05f3acbf",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 203\n",
+ "1 96\n",
+ "Name: DEATH_EVENT, dtype: int64"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df['DEATH_EVENT'].value_counts() # counting the number of deaths"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "ce0080af-86d9-4ce0-8fd4-406fbb8258ef",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "RangeIndex: 299 entries, 0 to 298\n",
+ "Data columns (total 13 columns):\n",
+ " # Column Non-Null Count Dtype \n",
+ "--- ------ -------------- ----- \n",
+ " 0 age 299 non-null float64\n",
+ " 1 anaemia 299 non-null int64 \n",
+ " 2 creatinine_phosphokinase 299 non-null int64 \n",
+ " 3 diabetes 299 non-null int64 \n",
+ " 4 ejection_fraction 299 non-null int64 \n",
+ " 5 high_blood_pressure 299 non-null int64 \n",
+ " 6 platelets 299 non-null float64\n",
+ " 7 serum_creatinine 299 non-null float64\n",
+ " 8 serum_sodium 299 non-null int64 \n",
+ " 9 sex 299 non-null int64 \n",
+ " 10 smoking 299 non-null int64 \n",
+ " 11 time 299 non-null int64 \n",
+ " 12 DEATH_EVENT 299 non-null int64 \n",
+ "dtypes: float64(3), int64(10)\n",
+ "memory usage: 30.5 KB\n"
+ ]
+ }
+ ],
+ "source": [
+ "df.info()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "1d115339-fd12-4ed9-97ca-aaf9d3741ba8",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Index(['age', 'anaemia', 'creatinine_phosphokinase', 'diabetes',\n",
+ " 'ejection_fraction', 'high_blood_pressure', 'platelets',\n",
+ " 'serum_creatinine', 'serum_sodium', 'sex', 'smoking', 'time',\n",
+ " 'DEATH_EVENT'],\n",
+ " dtype='object')"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.columns"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "be90ae16-324d-41a0-b786-448e2aa8fe32",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAANeCAYAAABTTOyRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAACh10lEQVR4nOzdebxdVX3//9fbhEAYakDgEnIDQY1QBkVMkVZbbwAVkBrs1zLUMggWB8QpfA2ov0JVWmJvRJzQIEhwYBClUIoDIrfUbwUliAmjRCAkMQMzBFsy+Pn9sdeFnZtz7j3z3ufe9/PxOI+zz9rT5+yz19l77b3W2ooIzMzMzMzMrPxeUnQAZmZmZmZmVhsX4MzMzMzMzLqEC3BmZmZmZmZdwgU4MzMzMzOzLuECnJmZmZmZWZdwAc7MzMzMzKxLuABnZlYSknaTtFbSuKJjsbEn7Xsvb/W07SApJL2yg+ubltY5voF5+yQtrzLuLyXd33yEZsOTdKmkz9azz0k6SdLP2x2b1c8FODOzkoiIRyJi24jYWHQsNrpJGpD0nnxa2vcerGX+eqa16iLivyJiz6LjsLGjU/ucC3/t5QKcmZlZl2nkTpCZmY0OLsB1IUlnSvqdpGcl3SPpHSl9nKR5kh6T9JCkD+arfEh6qaSLJa2UtCLdSndVLRszhsk7J0n6uaR+SU+m/HN4br53S7o3zfegpPcOWe6Rku6U9JSk/5b06ty4hyX9X0mLJD2X8mCPpB+m5f1U0vZp2k2qaY20XhudJE2V9ANJj0p6XNKX0z76/ySdL+lx4BxJW6Z99hFJqyV9TdLEtIztJV2flvFkGu5N484F/hL4cqoK+eWU/kK1xFTd6iuS/iPtf7dJekUuxnqm3UvSjZKekHS/pKNr2AaXpu9zY1rmf0rafchkh0p6IOW7r0hSmvclkj4laamkNZIuk/TSNG4rSd9O2/UpSb+S1JPGDUj6F0m/lPSMpGsl7TBkne9K2/sxSZ/MxbulpC9I+n16fUHSllW+24fS/0+vhlSvTP8XZ6T/i6clXSlpq5F+0zT+pPQ/8ayy/7B35cadnP5LnpT04wrb0kYZSa+VdEfaH64EBvejoftcxePipovSl9P+eJ+kQ3IjKp5XSvpT4GvAn6f/mKfS9MP9Z+2Y9umn0n/Ff0lyOaWaiPCry17A3wK7khXAjwGeAyYD7wPuAXqB7YGfAgGMT/NdA3wd2AbYGfgl8N6iv49ffnXqNUzeOQlYD/wDMA54P/B7QGm+twGvAAS8CfgDcEAa91pgDfD6NO+JwMPAlmn8w8CtQA8wJU17R5pvK+BnwNlp2mlD8mzV9fo1Ol9pH/oNcH76r94KeGPaRzcApwPjgYlpmuuAHYDtgH8H/iUt52XA/wG2TuO+B/xbbj0DwHuGrDuAV6bhS4HHgQPT+r4DXFHvtOk7LAPenca9FngM2HuE7XAp8CzwV8CWwAXAz4es/3pgErAb8ChwWBp3MrAEeDmwLfAD4Ftp3HvTdto6bevXAX+S2yYrgH1T3N8Hvp3GDebNi9K2fw3wPPCnafynyfL5zsBOwH8Dn0nj+oDlafgfyfL/TkPHpc8Pkx2bd02/673A+0b6TVO8zwB7ps+TgX3S8Ky0Pf40/QafAv676H3dr/a9gAnAUuCjwBbAO8mOcZ+tsM9VPC6mcSeR/e8MLucY4GlghzS+6nllmvfnQ+Ia7j/rX8gKfVuk11+SjsF+VfiNiw7Arxb8iHBn+oP+GbkCGXBoOuCMJzt5fB6YmBt/HHBz0fH75VdRr1zeOQlYkkvfOuWdXarM92/Ah9PwhYMnarnx9wNvSsMPA+/Kjfs+cGHu8+m5k7Bp5Apww63Xr9H5Av6crDAyfkj6ScAjuc9KJ1qvGDLvQ1WWuz/wZO7zACMX4L6RG3cEcF+906YTvv8asp6vky5aDLMdLmXTAuO2wEZgam79b8yNvwo4Mw3fBHwgN25PspPX8WSFu/8GXl1hnQPAebnPewPryAp6g3mzNzf+l8Cxafh3wBG5cW8FHk7DfWQFw88DPwdempuuj80LcH+f+/w54Gsj/aZkJ9BPkRXwJg6Z7ofAKbnPLyG7GLR70fu7X+15kV34eOEiZEr7byoU4CrMeycwKw2fVGE5vwSOZ4TzSoYU4BjhP4vsIsi1pP8Vv4Z/+dZkF5J0gl6srvUU2dXCHcmuoCzLTZof3p3sisbK3HxfJ7tiYjYmDJN3AFYNThcRf0iD26b5Dpd0a6rW8RTZCergfLsDsweXmcZPJcuPg1bnhv+nwudtq8Q73HptdJoKLI2IDRXG5f/TdyK70LAwt9/9KKUjaWtJX0/VCJ8BbgEmqb5q86tyw3+gyn46wrS7A68fkj/eBexSw/pf+L4RsRZ4gk3zVbV17kp292HQUl68kPkt4MfAFamq4+ckbVFpnWm+Ldg0z9Wzznysk4BTye42PD30iw5RcR3D/aYR8RxZYfl9ZMf5/5C0V1rG7sAFue3/BNnJ9JQR4rDutSuwIlLJKFlaacIRjotUWc6u1H9eOex/FvCvZHeKf5KqAp9Z87cdg1yA6zKp3vpFwAeBl0XEJOAusj/jlWTVJwdNzQ0vI7tSsmNETEqvP4mIfToTuVmxRsg7w823Jdlds36gJ813Q26+ZcC5uXw1KSK2jojLm4x3pPXa6LQM2E2VOynJn0Q9Rlb43ye33700IgYLFLPJ7jy9PiL+hOyKPLy4/+SX1U7LgP8ckj+2jYj31zDvC8cwSduSVbv6fQ3z/Z7s5HLQbmTVwFZHxPqI+KeI2Bv4C+BI4IRK60zzrSfb1o2sMx/rk2ld35T0hhqWV8mwv2lE/Dgi3kxWffI+sv87yH6D9w75DSZGxH83GIeV30pgiqT88WK3oRPVeFystJzfM/J55dD/mGH/syLi2YiYHREvB94OfCzf3s425QJc99mGLFM8ClknB2RXSyCrQvJhSVMkTQLmDM4UESuBnwDzJP2Jskber5D0po5Gb1ac4fLOcCaQtcF5FNigrHOTt+TGXwS8T9LrldlG0tskbddkvCOt10anX5KdfJ2X9qWtKp3wR8Qfyfa98yXtDJD++9+aJtmO7GTpKWUdcZw9ZBGrydqItdv1wKskHS9pi/T6s9TJwUiOkPRGSROAzwC3RsSykWYCLgc+KmmPVPD7Z+DKiNggaaak/dKdyGfICmh/zM3795L2lrQ1WZWuq6O2x3pcDnxK0k6SdiRr6/bt/AQRMUB29/EHkg6sYZlDVf1NlXWMNEvSNmQn1Wtz3+trwFmS9knTvlTS3zawfusevyC7aPGhlOf+hqyN6lC1HBd3zi3nb8naUt5Qw3nlaqA35d8R/7OUdQb2ylRYfJqsynQ+b1qOC3BdJiLuAeaRZc7VwH7A/0ujLyLLTIuAX5Ndrd9Algkgu8o4gayjkyeBq8mu1JmNeiPkneHmexb4ENkFkieBvyNrhD04/nayzk++nMYvIav732y8w67XRqdUWPhr4JXAI8Bysqpxlcwh299uTVXqfkp2hwbgC2SdbTxG1rnGj4bMewHwTmW9En6xld8hL+3HbwGOJbtqvwqYS3ZxYiTfJSukPEHW2cjf17jaS8iqSt4CPAT8L1lbU8iqbl5NVni7F/jPNO2gb5G1v1tF1oHMh2pc52eB28mOv4vJOir57NCJIuJGsnZ4/y7pgBqXPegLVP9NXwJ8jGwbP0HW6dH70zqvIdvmV6T95C7gcGzUioh1wN+QHYueIPsP+UGF6Wo5Lt4GTCfb784F3hkRj6dxw51X/gy4G1glafAu9nD/WdPT57Upnq9GxM0NbYAxYLCHNRuF0hX7r0XE7iNObGZmVhKSLiXraOFTHVznAFmvk9/o1DrNzBrhO3CjiKSJko6QNF7SFLIrl9cUHZeZmZmZmbWGC3Cji4B/IruN/Wuy6iH/WGhEZmZmFUi6W9lDfoe+3jXy3GZmY5erUJqZmZmZmXUJ34EzMzMzMzPrEpWeM9NxO+64Y0ybNq3q+Oeee45tttmmcwF12Gj/fjB6vuPChQsfi4idRp6yOZIuIXtm0JqI2DelXcmLvTVNAp6KiP0lTSOrLnt/GndrRLxvpHV0c75zbPUra1wwcmydyned4HzXPo6vcZVic74rB8fWmLLG1rLjXUQU/nrd614Xw7n55puHHd/tRvv3ixg93xG4PTqQJ8ge0HoAcFeV8fOAf0zD06pNN9yrm/OdY6tfWeOKGDm2TuW7Tryc79rH8TWuUmzOd+Xg2BpT1thadbwrxR04M9tURNyS7qxtJj3k8mjg4I4GZWZmZmaFcxs4s+7zl8DqiHggl7aHpF9L+k9Jf1lUYGZmZmbWXr4DZ9Z9jgMuz31eCewWEY9Leh3wb5L2iYhnhs4o6VTgVICenh4GBgaqrmTt2rXDji+SY6tfWeOCcsdmZu3ViTbfZqONC3BmXUTSeOBvgNcNpkXE88DzaXihpN8BrwJuHzp/RMwH5gPMmDEj+vr6qq5rYGCA4cYXybHVr6xxQbljM7O2uxT4MnDZYEJEHDM4LGke8HRu+t9FxP6dCs6sjFyF0qy7HArcFxHLBxMk7SRpXBp+OTAdeLCg+My6lqSpkm6WdE96yPSHU/o5klZIujO9jsjNc5akJZLul/TW4qI3604RcQvwRKVxuTbfl1cabzZW+Q6cWQlJuhzoA3aUtBw4OyIuBo5l8wPZXwGflrQe+CPwvoioeDA0s2FtAGZHxB2StgMWSroxjTs/IvrzE0vamyxP7gPsCvxU0qsiYmNHozYbvaq2+QaeAT4VEf9VaUY3GWg/x1a/VsXlAlybTe7djVUrlg07TX9/PzNnztwsfZcpU1m5/JF2hWYlFhHHVUk/qULa94HvtzqGRYsWV9wva+X917pNRKwka1NKRDwr6V5gyjCzzAKuSNWYH5K0BDgQ+EWjMTjfmW2i4Tbf9TQZ+OIXv8SHP/yhhoNsZ74rcxVzx1a/VsXlAlybrVqxjN3nXD/sNBN22VBxmqVzj2xXWGYjWr9+3Yj77nC8/1o3S50lvBa4DXgD8EFJJ5C1LZ0dEU+SFe5uzc22nOELfCNyvjPLNNvmux7Od9ZtXIAzMzPLkbQt2V3tj0TEM5IuBD4DRHqfB5xcx/JqrsrV29vL7F02NBz7uv7+tlUbKmuVpEGOr3Elja1im2/giYjY6DbfNpa5AGdmZpZI2oKs8PadiPgBQESszo2/CBi8VL8CmJqbvTelbaKeqlzz5s3jS4/u1XD8S+eeQUQ0PP9wylolaZDja1yRsbnNt1n9XIAzMzPjhR7vLgbujYjP59Inp/ZxAO8A7krD1wHflfR5sk5MpgO/7GDIZl2vDG2+zbqNC3BmZmaZNwDHA4sl3ZnSPgEcJ2l/siqUDwPvBYiIuyVdBdxD1oPlae6B0szM2s0FODMzMyAifg6owqgbhpnnXODctgVlZmY2hB/kbWZmZmZm1iVcgDMzMzMzM+sSLsCZmZmZmZl1CRfgzMzMzMzMuoQLcGZmZmZmZl2iqV4oJT0MPAtsBDZExAxJOwBXAtPIuls+OiKebC5MMzMzMzMza8UduJkRsX9EzEifzwRuiojpwE3ps5mZmZmZmTWpHVUoZwEL0vAC4Kg2rMPMzMzMzGzMafZB3gH8RFIAX4+I+UBPRKxM41cBPZVmlHQqcCpAT08PAwMDVVeydu3aYceXWX9/PxN22TDsND0TYfZ+m0+zrr+/a7/3UN38G5qZmZmZlUWzBbg3RsQKSTsDN0q6Lz8yIiIV7jaTCnvzAWbMmBF9fX1VVzIwMMBw48ts5syZ7D7n+mGnmb3fBuYt3vynWDr3DCIqbr6u082/YREkXQIcCayJiH1T2jnAPwCPpsk+ERE3pHFnAaeQtUf9UET8uONBm5mZmVnbNVWFMiJWpPc1wDXAgcBqSZMB0vuaZoM0G4MuBQ6rkH5+anO6f67wtjdwLLBPmuerksZ1LFIzMzMz65iGC3CStpG03eAw8BbgLuA64MQ02YnAtc0GaTbWRMQtwBM1Tj4LuCIino+Ih4AlZBdTzMzMzGyUaaYKZQ9wjaTB5Xw3In4k6VfAVZJOAZYCRzcfppklH5R0AnA7MDs9omMKcGtumuUpbTP1tD3t7e1l9gjtN4fTzjacZW5TWdbYyhoXlDs2M2s/Nxswq0/DBbiIeBB4TYX0x4FDmgnKzCq6EPgMWedBnwHmASfXs4B62p7OmzePLz26V6OxtrUNZ5nbVJY1trLGBeWOzcw64lLgy8BlQ9LPj4j+fMKQZgO7Aj+V9KqI2NiJQM3KoB2PETCzNoiI1RGxMSL+CFzEi9UkVwBTc5P2pjQzM7PSc7MBs/o02wulmXWIpMm5R3S8g6zNKWTtTr8r6fNkVyOnA78sIEQzM7NWarjZgJsMtJ9jq1+r4nIBzqyEJF0O9AE7SloOnA30SdqfrArlw8B7ASLibklXAfcAG4DTXJXEzMy6XFPNBtxkoP0cW/1aFZcLcGYlFBHHVUi+eJjpzwXObV9EZmZmnRMRqweHJV0EDD5U180GbMxzGzgzMzMzK5XBZwonQ5sNHCtpS0l74GYDNgb5DlyZjduC9JiGhuwyZSorlz/SwoDMzMzMWsvNBszq4wJcmW1cz+5zrh95uiqWzj2yhcGYmZmZtZ6bDZjVx1UozczMzMzMuoQLcGZmZmZmZl3CBTgzMzNA0lRJN0u6R9Ldkj6c0neQdKOkB9L79ildkr4oaYmkRZIOKPYbmJnZWOACnJmZWWYD2cOC9wYOAk6TtDdwJnBTREwHbkqfAQ4n6wFvOtkDgy/sfMhmZjbWuABnZmYGRMTKiLgjDT8L3AtMAWYBC9JkC4Cj0vAs4LLI3ApMGtL1uZmZWcu5F0ozM7MhJE0DXgvcBvRExMo0ahXQk4anAMtysy1PaStzaUg6lewOHT09PQwMDFRdb29vL7N32dBw3Ov6+4ddfjPWrl3btmW3guNrXJljM7PNuQBnZmaWI2lb4PvARyLimfzzOCMiJEU9y4uI+cB8gBkzZkRfX1/VaefNm8eXHt2rkbABWDr3DCLqCq9mAwMDDBd70Rxf48ocm5ltzlUozczMEklbkBXevhMRP0jJqwerRqb3NSl9BTA1N3tvSjMzM2sbF+DMzMzIepUke3jwvRHx+dyo64AT0/CJwLW59BNSb5QHAU/nqlqamZm1hatQmpmZZd4AHA8slnRnSvsEcB5wlaRTgKXA0WncDcARwBLgD8C7OxqtmZmNSS7AmZmZARHxc0BVRh9SYfoATmtrUGZmZkO4CqVZCUm6RNIaSXfl0v5V0n3pgcHXSJqU0qdJ+h9Jd6bX1woL3Masyb27Iamh16JFi4sO38zMrGs0fQdO0jjgdmBFRBwpaQ/gCuBlwELg+IhY1+x6zMaYS4EvA5fl0m4EzoqIDZLmAmcBc9K430XE/h2N0Cxn1Ypl7D7n+obmXb/+vhZHY2ZmNnq14g7ch8kedjpoLnB+RLwSeBI4pQXrMBtTIuIW4IkhaT+JiMEHRN1K1uOdmZmZmY0hTd2Bk9QLvA04F/hY6sHrYODv0iQLgHOAC5tZj5lt5mTgytznPST9GngG+FRE/FelmfxA4fYra2ztjqu/v58JDe4vO4/vLeU2M7P2k3QJcCSwJiL2TWn/Cvw1sA74HfDuiHhK0jSymwb3p9lvjYj3dT5qs2I1W4XyC8DHge3S55cBT+XuEiwHpjS5DjPLkfRJYAPwnZS0EtgtIh6X9Drg3yTtExHPDJ3XDxRuv7LG1u64Zs6c2XAVytN3Ws4xxxzT4ojMrEtcipsMmNWl4QKcpMGrJQsl9TUwf813Asp6RbsWtVyV7pkIs/fbfJp1TVzRzuafx7x58xqad4stJvDqV+/X8LqH6ubfsEwknUR2pfKQ1AMeEfE88HwaXijpd8CryNqmmpmZlVZE3JLurOXTfpL7eCvwzo4GZVZyzdyBewPwdklHAFsBfwJcAEySND7dhesFVlSauZ47AWW9ol2LWq5Kz95vA/MWb/5TLJ17RsNXtLP5Zzc8/9K5R7b07kk3/4ZlIekwsjveb4qIP+TSdwKeiIiNkl4OTAceLChMMzOzVnKTgZJeAB+rsS1atJj16xvrn3Hq1KktiavhAlxEnEV2S5t0B+6MiHiXpO+RXSm5AjgRuLbpKAs0uXc3Vq1YVnQYNsZIuhzoA3aUtBw4myy/bQncmDU3faHu/18Bn5a0Hvgj8L6IeKLigs3MzLqEmwyU+wL4WI2tqSYD3MfRRx/ddAzteJD3HOAKSZ8Ffg1c3IZ1dEwzXWNDdifLrF4RcVyF5Ip5KSK+D3y/vRGZmZl1jpsMmFXXkgJcRAwAA2n4QeDAVizXzMzMzMYWNxkwG1477sCZmZmZmY3ITQbM6ucCnJmZmZkVwk0GzOr3kqIDMDMzMzMzs9p0RQFu0aLFSGroNX7LiQ3Pm27bm5mZmZmZlUJXVKFcv35dU88zcy+SZmZmZmY2GnTFHTgzMzMzMzNzAc7MzMzMzKxruABnZmZmZmbWJVyAMzMzMzMz6xIuwJmZmZmZmXUJF+DMzMzMzMy6hAtwZmZmZmZmXcIFODMzM0DSJZLWSLorl3aOpBWS7kyvI3LjzpK0RNL9kt5aTNRmZjbWuABnVlJVTiZ3kHSjpAfS+/YpXZK+mE4mF0k6oLjIzbrWpcBhFdLPj4j90+sGAEl7A8cC+6R5vippXMciNTOzMcsFOLPyupTNTybPBG6KiOnATekzwOHA9PQ6FbiwQzGajRoRcQvwRI2TzwKuiIjnI+IhYAlwYNuCMzMzS8YXHYCZVRYRt0iaNiR5FtCXhhcAA8CclH5ZRARwq6RJkiZHxMoOhWs2mn1Q0gnA7cDsiHgSmALcmptmeUrbjKRTyS6s0NPTw8DAQNUV9fb2MnuXDQ0Huq6/f9jlN2Pt2rVtW3YrOL7GlTk2M9ucC3Bm3aUnVyhbBfSk4SnAstx0gyeTLsCZNedC4DNApPd5wMn1LCAi5gPzAWbMmBF9fX1Vp503bx5fenSvRmNl6dwzyK7jtN7AwADDxV40x9e4omOTdAlwJLAmIvZNaTsAVwLTgIeBoyPiSUkCLgCOAP4AnBQRdxQRt1lRXIAz61IREZLqOlPznYD2K2ts7Y6rv7+fCQ3uLzuP7y3lNgOIiNWDw5IuAq5PH1cAU3OT9qY0M6vfpcCXgctyaYNNBs6TdGb6PIdNmwy8nuwiy+s7Gq1ZwVyAM+suqwerRkqaDKxJ6TWdTPpOQPuVNbZ2xzVz5kx2n3P9yBNWcPpOyznmmGNaHFFrDKmK/A5gsFOh64DvSvo8sCvZyeQvCwjRrOu5yYBZfVyAM+su1wEnAuel92tz6R+UdAXZlcinfTAzq4+ky8lOGHeUtBw4G+iTtD9ZFcqHgfcCRMTdkq4C7gE2AKdFxMYCwjYbrZpqMuAaJ+03VmMrQ42ThgtwkrYCbgG2TMu5OiLOlrQHcAXwMmAhcHxErGs6UrMxpsrJ5HnAVZJOAZYCR6fJbyBrD7CErE3AuzsesFmXi4jjKiRfPMz05wLnti8iM4PGmgy4xkn7jdXYylDjpJk7cM8DB0fEWklbAD+X9EPgY2TPzLlC0teAU3CX5mZ1q3IyCXBIhWkDOK29EZmZmXVMU00GzEazhp8DF5m16eMW6RXAwcDVKX0BcFQzAZqZmZnZmDPYZAA2bzJwgjIH4SYDNgY11QZO0jiyapKvBL4C/A54KiIGK4YW/lycdU3UU+3U/D0TYfZ+m09TZOytrs9d5nrSZmZmVhw3GTCrT1MFuNRge39Jk4BrgJorEHeqbvLSuWc0XE+1U/PP3m8D8xZv/lMUGXur63OXuZ60mZmZFcdNBszq03AVyryIeAq4GfhzYJKkwdKI6yWbmZmZmZm1SMMFOEk7pTtvSJoIvBm4l6wg9840Wb7OspmZmZmZmTWhmSqUk4EFqR3cS4CrIuJ6SfcAV0j6LPBrhumC2czMzMzMzGrXcAEuIhYBr62Q/iBwYDNBmZmZmZmZ2eZa0gbOzMzMzMzM2s8FODMzMzMzsy7hApyZmZmZmVmXcAHOzMzMzMysS7gAZ2ZmZmZm1iVcgDMzMzMzM+sSLsCZmZmZmZl1CRfgzMzMzMzMukTDD/I2s86TtCdwZS7p5cA/ApOAfwAeTemfiIgbOhudmZmZmbWbC3BmXSQi7gf2B5A0DlgBXAO8Gzg/IvqLi87MzKw1fMHSrDoX4My61yHA7yJiqaSiYzEzM2sZX7A0q84FOLPudSxwee7zByWdANwOzI6IJ4fOIOlU4FSAnp4eBgYGqi68t7eX2btsaDi4df39wy6/GWvXrm3bsptV1tjaHVd/fz8TGtxfdh7fW8ptZmal4QuWZjkuwJl1IUkTgLcDZ6WkC4HPAJHe5wEnD50vIuYD8wFmzJgRfX19Vdcxb948vvToXg3HuHTuGUREw/MPZ2BggOFiL1JZY2t3XDNnzmT3Odc3NO/pOy3nmGOOaXFEZjaK+IJlCY3V2MpwwdIFOLPudDhwR0SsBhh8B5B0EdDYmbSZmVmJ+IJlOS8KwtiNrQwXLP0YAbPudBy5q5GSJufGvQO4q+MRmZmZtd5mFywjYmNE/BG4CDiw0OjMCuACnFmXkbQN8GbgB7nkz0laLGkRMBP4aCHBmXU5SZdIWiPprlzaDpJulPRAet8+pUvSFyUtkbRI0gHFRW42avmCpdkQLsCZdZmIeC4iXhYRT+fSjo+I/SLi1RHx9ohYWWSMZl3sUuCwIWlnAjdFxHTgpvQZsjsD09PrVLKqXWbWIr5gaVaZ28CZmZklEXGLpGlDkmcBfWl4ATAAzEnpl0XW+OVWSZMkTfYFFLPWiIjngJcNSTu+oHDMSsMFODMzs+H15Aplq4CeNDwFWJabbnlK26QA597wOsPxNa7MsZnZ5lyAMzMzq1FEhKS6uptzb3id4fgaV+bYzGxzDbeBkzRV0s2S7pF0t6QPp/SKjb3NzMy61OrBjhPS+5qUvgKYmpuuN6WZmZm1TTOdmGwge3ji3sBBwGmS9qZ6Y28zM7NudB1wYho+Ebg2l35C6o3yIOBpt38zM7N2a7gAFxErI+KONPwscC9Z3f9ZZI28Se9HNRmjmZlZR0i6HPgFsKek5ZJOAc4D3izpAeDQ9BngBuBBYAnZ86g+UEDIZmY2xrSkDVzqseu1wG1Ub+w9dJ6ONOpe19/PhCYbhLd7/p6JMHu/zacpMvZWN4R3A2kz6wYRcVyVUYdUmDaA09obkZmZ2aaaLsBJ2hb4PvCRiHhG0gvjhmvs3alG3UvnnsHuc65vaN5OzT97vw3MW7z5T1Fk7K1uCO8G0mZmZmZmzWvqQd6StiArvH0nIgYfslitsbeZmZmZmZk1oZleKAVcDNwbEZ/PjarW2Nu6ybgtkNTwa3LvbkV/AzMzMzOzUaeZKpRvAI4HFku6M6V9gqxx91Wp4fdS4OimIrRibFzfZPXNI1sYjJmZmZmZQRMFuIj4OaAqozdr7G1mZmZmZmbNaaoNnJmZmZmZmXWOC3BmZmZmZmZdoiXPgTOzzpH0MPAssBHYEBEzJO0AXAlMAx4Gjo6IJ4uK0czMzMzaw3fgzLrTzIjYPyJmpM9nAjdFxHTgpvTZzMysq0l6WNJiSXdKuj2l7SDpRkkPpPfti47TrJNcgDMbHWYBC9LwAuCo4kIxMzNrKV+0NMtxFUqz7hPATyQF8PWImA/0RMTKNH4V0FNpRkmnAqcC9PT0MDAwUHUlvb29zN5lQ8NBruvvH3b5zVi7dm3blt2sssbW7rj6+/uZ0OD+svP43lJuMzMrrVlAXxpeAAwAc4oKxqzTXIAz6z5vjIgVknYGbpR0X35kREQq3G0mFfbmA8yYMSP6+vqqrmTevHl86dG9Gg5y6dwziKgYRtMGBgYYLvYilTW2dsc1c+bMhp8defpOyznmmGNaHJGZjRINXbT0Bcv2G6uxleGCpQtwZl0mIlak9zWSrgEOBFZLmhwRKyVNBtYUGqSZmVlrNHTR0hcs22+sxlaGC5ZuA2fWRSRtI2m7wWHgLcBdwHXAiWmyE4Fri4nQzMysdfIXLYFNLloC+KKljUUuwJl1lx7g55J+A/wS+I+I+BFwHvBmSQ8Ah6bPZmZmXcsXLc0qcxVKsy4SEQ8Cr6mQ/jhwSOcjMjMza5se4BpJkJ2zfjcifiTpV8BVkk4BlgJHFxijWce5AGdmZmZmpeOLlmaVuQqlmZmZmZlZl3ABzszMzMzMrEu4AGdmZmZmZtYlXIAzMzMzMzPrEi7AmZmZmZmZdQkX4Kw9xm2BpBdeCxcu3OTzcK/JvbsVHb2Z2WYkPSxpsaQ7Jd2e0naQdKOkB9L79kXHaWZmo5sfI2DtsXE9u8+5/oWPE3bZsMnn4Syde2S7ojIza9bMiHgs9/lM4KaIOE/SmenznGJCMzOzscB34MzMzBo3C1iQhhcARxUXipmZjQVN3YGTdAlwJLAmIvZNaTsAVwLTgIeBoyPiyebCNDMzK1wAP5EUwNcjYj7QExEr0/hVQM/QmSSdCpwK0NPTw8DAQNUV9Pb2MnuXDQ0HuK6/f9jlN2Pt2rVtW3YrOL7GlTk2M9tcs1UoLwW+DFyWS3N1EjMzG43eGBErJO0M3CjpvvzIiIhUuGNI+nxgPsCMGTOir6+v6grmzZvHlx7dq+EAl849g4jNQmiJgYEBhou9aI6vcWWOzcw211QVyoi4BXhiSLKrk5iZ2agTESvS+xrgGuBAYLWkyQDpfU1xEZqZ2VjQjk5MRqxOAp2rUrKuv58JTVZHaff8PRNh9n6bT1Nk7K1ed7XvWG1eV+UwszKRtA3wkoh4Ng2/Bfg0cB1wInBeer+2uCjNzGwsaGsvlNWqk6RxHalSsnTuGTX3fljU/LP328C8xZv/FEXG3up1V/uO1eZtVxUgM7MG9QDXSILs2PndiPiRpF8BV0k6BVgKHF1gjGZmNga0owC3WtLkiFjp6iRmrSVpKlmb0x6yDhXmR8QFks4B/gF4NE36iYi4oZgozUafiHgQeE2F9MeBQzofkZmZjVXteIzAYHUScHUSs1bbAMyOiL2Bg4DTJO2dxp0fEfunlwtvZmbWtSRNlXSzpHsk3S3pwyn9HEkrJN2ZXkcUHatZpzX7GIHLgT5gR0nLgbPJ2gG4OolZG6T2pSvT8LOS7gWmFBuVmZlZyw1esLxD0nbAQkk3pnHnR0R/gbGZFaqpAlxEHFdllKuTmLWZpGnAa4HbgDcAH5R0AnA72UHPz180M7Ou5AuWZtW1tRMTs4aM24LUUUBDdpkylZXLH2lhQOUjaVvg+8BHIuIZSRcCnyFrF/cZYB5wcoX5/EDhNitrbO2Oq7+Jnmt3Ht9bym1mZuXQyAVLH+/ab6zGVobjnQtwVj4b1zfZA+aRLQymfCRtQVZ4+05E/AAgIlbnxl8EVNyAfqBw+5U1tnbHNXPmzIbz7ek7LeeYY45pcURmNho0esHSx7v2G6uxleF4145OTMysTZTdmrwYuDciPp9Ln5yb7B3AXZ2OzczMrJWqXbCMiI0R8UfgIuDAImM0K4LvwJl1lzcAxwOLJd2Z0j4BHCdpf7Irkg8D7y0iODMzs1YY7oJlah8HvmBpY5QLcGZdJCJ+DlRqIOjHBpiZ2WjiC5ZmVbgAZ2ZmZmal4guWZtW5DZyNPqkXy0Zek3t3Kzp6MzMzM7OqfAfORp8merEc7T1YmpmZmVl38x04MzMzMzOzLuECnJmZmZmZWZdwAc7MzGy0cBtgM7NRz23gzMzMRgu3ATYzG/V8B87MzMzMzKxLuABnZmZmZmbWJVyAMzMzMzMz6xIuwJmZmdmIHaAsXLjQnaCYmZWAOzExMzOzETtAmbDLhmHHuxMUM7PO8B04MzMzMzOzLuECnJmZmZmZWZdwAc7MzMya54eIm5l1RNvawEk6DLgAGAd8IyLOa9e6zCzjfGfWec53iR8ibh3kfGdjWVvuwEkaB3wFOBzYGzhO0t7tWJeZZZzvzDrP+a4cJvfuNmIvmb77N3o439lY1647cAcCSyLiQQBJVwCzgHvatD4zc74zK4LzXQmsWrGMCbu8sqE7gEv734Gkhtc9bsJWbFz3vyNO19/fz8yZMzdJ22XKVFYuf6ThdU/u3Y1VK5Y1NG+z6y6Y852NaYqI1i9UeidwWES8J30+Hnh9RHwwN82pwKnp457A/cMsckfgsZYHWh6j/fvB6PmOu0fETkUHUckYy3eOrX5ljQtGjs35rhzKHBs4vmZUis35rhwcW2PKGltLjneFPQcuIuYD82uZVtLtETGjzSEVZrR/Pxgb37EbjJZ859jqV9a4oNyxtYLzXWc4vsaVObZGOd+1n2OrX6vialcvlCuAqbnPvSnNzNrH+c6s85zvzDrP+c7GtHYV4H4FTJe0h6QJwLHAdW1al5llnO/MOs/5zqzznO9sTGtLFcqI2CDpg8CPybp3vSQi7m5ikTXdAu9io/37wdj4joUaY/nOsdWvrHFBuWMblvNdqTi+xpU5ts0435WGY6tfS+JqSycmZmZmZmZm1nrtqkJpZmZmZmZmLeYCnJmZmZmZWZcoZQFO0jhJv5Z0ffq8h6TbJC2RdGVqsNq1JE2SdLWk+yTdK+nPJe0g6UZJD6T37YuOs1GSPirpbkl3Sbpc0laj7TfsdpIOk3R/+j3OrDB+y/Q7LUm/27TcuLNS+v2S3trhuD4m6R5JiyTdJGn33LiNku5Mr5Y3Zq8htpMkPZqL4T25cSemvP2ApBMLiO38XFy/lfRUblzbtpukSyStkXRXlfGS9MUU9yJJB+TGtXWblc1Iv2Gb1jlV0s0pT90t6cMpveLxqKjfq9ZzgiL+t1TH8bzT2091HIuL2HadUsP/o4939cfm493m6+3s8S4iSvcCPgZ8F7g+fb4KODYNfw14f9ExNvn9FgDvScMTgEnA54AzU9qZwNyi42zwu00BHgIm5n67k0bbb9jNL7IG378DXp72v98Aew+Z5gPA19LwscCVaXjvNP2WwB5pOeM6GNdMYOs0/P7BuNLntQVvs5OAL1eYdwfgwfS+fRrevpOxDZn+dLIG/53Ybn8FHADcVWX8EcAPAQEHAbd1YpuV7VXvb9jC9U4GDkjD2wG/TXm84vGoqN+LGs8JCvrfqvl43sntR53H4iK2XSdeteStgvYbH+/aFNuQ6Uft8a50d+Ak9QJvA76RPgs4GLg6TbIAOKqQ4FpA0kvJfuSLASJiXUQ8Bcwi+27Q5d+RrHfTiZLGA1sDKxlFv+EocCCwJCIejIh1wBVk+19efn+8Gjgk5cVZwBUR8XxEPAQsScvrSFwRcXNE/CF9vJXs2T+dUMs2q+atwI0R8UREPAncCBxWYGzHAZe3cP1VRcQtwBPDTDILuCwytwKTJE2m/dusbJrZvxoWESsj4o40/CxwL9mJf7XjUcd/rzrPCTr6v9XA8bzT26+eY3ER//md4ONdG2Ibho931bU0/5euAAd8Afg48Mf0+WXAUxGxIX1eTnaA6VZ7AI8C31RWJeQbkrYBeiJiZZpmFdBTWIRNiIgVQD/wCNnB4mlgIaPrN+x2U4Bluc+Vfo8Xpkm/29NkebGWedsZV94pZFezBm0l6XZJt0o6qkUx1Rvb/0lVI66WNPiQ2XZus7qWn6rg7AH8LJfczu02kmqxt3ublU3h3zdVG3stcBvVj0dF/F5foPZzgk7/b9V7PO/Y9mvgWFzEf34n+HjXvth8vKtPS/N/qQpwko4E1kTEwqJjaaPxZLdYL4yI1wLPkVWxeEFk91S78vkOyur6zyLLNLsC2zC6r5xbAST9PTAD+Ndc8u4RMQP4O+ALkl7R4bD+HZgWEa8mu4K2YITpi3AscHVEbMylFb3drGCStgW+D3wkIp7JjyvyeNQF5wSlPZ77WDx6+HjXsFF9vCtVAQ54A/B2SQ+T3RY9GLiA7Dbj4EPHe4EVxYTXEsuB5RFxW/p8NdkBYHW6lUp6X1NQfM06FHgoIh6NiPXAD8h+19H0G3a7FcDU3OdKv8cL06Tf7aXA4zXO2864kHQo8Eng7RHx/GB6uuJMRDwIDJDdTWiVEWOLiMdz8XwDeF2t87Y7tpxjGVKdpM3bbSTVYm/3Niubwr6vpC3ICm/fiYgfpORqx6NO/171nhN0+n+r3uN5J7dfvcfiIv7zO8HHuzbE5uNdQ1qb/6NNjfmafQF9vNhg+Xts2uj2A0XH1+R3+y9gzzR8DtlVlX9l00bPnys6zga/2+uBu8nq24vsqszpo+037OYX2VXjB8muzA42At5nyDSnsWmj7qvS8D5s2qj7QVrXqLuWuF5L1oB5+pD07YEt0/COwAO0sBOIGmObnBt+B3BrGt6BrDOB7dPrIWCHTsaWptsLeBhQp7ZbWu40qjfqfhubNur+ZSe2Wdletf6GbVivgMuALwxJr3g8KvL3ooZzgoL+t2o+nndy+1HnsbiIbdeJVy15q6D9xse7NsWWphv1x7vCM9cwG6GPF/+sXw78kqwB6fcGf4BufQH7A7cDi4B/Sz/Yy4Cb0g7101bu8AV8v38C7gPuAr6V/vxG1W/Y7S+y3pB+mw4On0xpnya7ygewVfqdlqTf7eW5eT+Z5rsfOLzDcf0UWA3cmV7XpfS/ABanP/PFwCkFbLN/ITth+g1wM7BXbt6T07ZcAry707Glz+cA5w2Zr63bjezq50pgPdndilOA9wHvS+MFfCXFvRiY0altVrZXpd+wA+t8I1n1vkW5PHVEteNRkb8XNZwTUMD/FnUczzu9/ajjWFzEtuvUq1Lewse7ZmPz8W7zuDp6vFOa0czMzMzMzEqubG3gzMzMzMzMrAoX4MzMzMzMzLqEC3BmZmZmZmZdwgU4MzMzMzOzLuECnJmZmZmZWZdwAc7MzMzMzKxLuABnZmZmZmbWJVyAMzMzMzMz6xIuwJmZmZmZmXUJF+DMzMzMzMy6hAtwZmZmZmZmXcIFODMzMzMzsy7hApyZmZmZmVmXcAHOzMzMzMysS7gAZ2ZmZmZm1iVcgDMzMzMzM+sSLsCZmZmZmZl1CRfgzMzMzMzMuoQLcHWS9AlJ3+iW5Q5Zx/slrZa0VtLL2ryuv5R0fzvXYeUn6WFJh1ZIr3n/kNQnaXkD675U0meHGR+SXlnvcmtYb8XvbGabajRvF71sM2s/SXdL6mv1tKPF+KID6DYR8c/NLiPtZN+OiN5WLneEdW4BfB44KCJ+04blBzA9IpYARMR/AXu2ej02Onj/MLN6SDoJeE9EvLENyz4HeGVE/H2rl21mI5N0KbA8Ij41mBYR+9Q6fz3Tjha+Azd29ABbAXdXGinJhXmzEipD3ixDDGZmVs7/4zLGNNq5AFeFpF0lfV/So5IekvShlH6OpG/npjtI0n9LekrSb/K3cCXtIOmbkn4v6UlJ/yZpG+CHwK6pKuPatK6hy317uiX8lKQBSX+aG/ewpDMkLZL0tKQrJW01zHd5FTBYXe0pST9L6SHpNEkPAA+ktAskLZP0jKSFkv4yt5xxqarn7yQ9m8ZPlXRLmuQ36fscM7T6iqQ/Td/jqfS93p4bd6mkr0j6j7Tc2yS9op7fy0pt/6H7aoX94wBJv06///fSdJtUf5Q0W9IaSSslvbvGde8o6ca03P+UtHuliSS9VNJlKb8vlfQpSS9J416SPi9N679M0ktz8x6fxj0u6ZO1BJXy+9Xpez4r6Q5Jr8mNf1jSHEmLgOckjR/hv+YkSQ+mZT0k6V0p/ZXpez8t6TFJV6b0aSn/j88tY0DSe3LL+3+Szpf0OHCOpC0l9Ut6RFlV7K9Jmljj72BjWNqfz5J0j7Jj4TcrHbMknZk7vtwj6R0p/U+BrwF/no4xT6X0mvdJVT+mHwZ8AjgmLfs3Kb1injJrVvpvX5H2rfslHZKOM4P7/+OSrpK0Q5p+8P/6FEmPAD8begxN071QfT8dY74n6dtpPYslvSrlwzXKzvPeUkOsm53HpvQ+ScvTd1kFfHO475Dm+Z6kVel4dIukfVL6qcC7gI+nPPjvVb7PVcqOv88qO4+cMcx3H27aiv8F3cYFuAqUnbj9O/AbYApwCPARSW8dMt0U4D+AzwI7AGcA35e0U5rkW8DWwD7AzsD5EfEccDjw+4jYNr1+P2S5rwIuBz4C7ATcAPy7pAm5yY4GDgP2AF4NnFTt+0TEb1MMAJMi4uDc6KOA1wN7p8+/AvZP3+e7wPdyB9qPAccBRwB/ApwM/CEi/iqNf036PlcO+T5bkG3Pn6TtcDrwHUn5KnTHAv8EbA8sAc6t9n2s6wy7r6b9+hrgUrL97nLgHUOWsQvwUrL8eArwFUnb17DudwGfAXYE7gS+U2W6L6Xlvxx4E3ACMFhIPCm9Zqbx2wJfTrHvDVwIHA/sCrwM6KU2s4Dv8WJe+7eUVwYdB7wNmER2B73if42yi0JfBA6PiO2Av0jflfTdf0KWr3rT96zV64EH07rPBc4DXkX2//BKst/iH+tYno1t7wLeCryCbD/6VIVpfgf8JVle/Cfg25ImR8S9wPuAX6RjzKQ0fU375HDH9Ij4EfDPwJVp2a8ZIU+ZNSyd93wQ+LO0b70VeJjsvOgosuPPrsCTwFeGzP4m4E/TPLX4a7Lz0O2BXwM/JjvvnwJ8Gvh6DcvY7Dw2N24XsuPR7sCpNXyHHwLT03LuIB2PI2J+Gv5cyoN/XSWWtwNXkB0TryMdh+uZttbz+64QEX4NeZGduDwyJO0s4JvAOWTt1wDmAN8aMt2PgROBycAfge0rLL+PrK5vPi2/3P8PuCo37iXACqAvfX4Y+Pvc+M8BXxvhO00DAhifSwvg4BHme5KsYAbZXbxZVaYLsjYEm31HsgPyKuAlufGXA+ek4UuBb+TGHQHcV/R+4Ffzr2r76pD946/S/q3cdD8HPpvbl/5nyL67hqw953DrvhS4Ivd5W2AjMDV9DrKTvnHAOmDv3LTvBQbS8E3AB3Lj9gTWk7Uh/sch69gmLevQEWI7B7g19/klwErgL3Pb7eTc+OH+a7YBngL+DzBxyDSXAfOB3iHplf4PBsjaGEFWYH0kN07Ac8Arcml/DjxU9D7mV/lfaX9+X+7zEWSFtRf+B6rMdyfpmJP2yZ/nxg27Tw75j6l6TE/D55COv+lz1Tzll1/NvNIxZw1wKLBFLv1e4JDc58m548zg//XLc+M3yzspnx2ahs8BbsyN+2tgLTAufd4uLXPSMLGOdB67Dtiqlu9QYf5Jaf0vTZ8vJR3zh/k+P82N2xv4n3qnHem/oJtevgNX2e5kVRyfGnyRVbHoqTDd3w6Z7o1kO+1U4ImIeLKB9e8KLB38EBF/BJaRXS0YtCo3/Aeyk9NGLMt/UFY18950i/spsiuhO6bRU8kOuvXaFViWvsegpbTn+1j5jPTb7gqsiPRPmiwbMs3jEbFhhOVU8sJyImIt8ERaX96OwBbk8hyb7p+7Vhg3nuz/YNch63gOeLyGuIbG9kdg+ZDY8tug6n9NWucxZHcoViqrirxXmu/jZCe6v0zVSE6uMbah69+J7Crswtz6f5TSzWqR35+Wsnk+RNIJku7M7WP78uLxZ6h69slaj+nAC/m4Wp4ya1hkHb19hKyQsUbSFZJ2JdtHr8ntn/eSXXDM76NDj4sjWZ0b/h/gsYjYmPsMwx9HRzqPfTQi/jf3uep3UNYE57xUvfIZsgIXVM/flQw9l9hK1dveVZu2rv+CMnMBrrJlZFfxJuVe20XEERWm+9aQ6baJiPPSuB0kTaqw/KiQlvd7sp0MAEkiy0grGv5G1b0Qi7L2bh8nq/K2fWTVVJ4mOwGE7Ds10jbt98DUdOt60G605/tY91kJTEn7+aCpLVr2C8uRtC1ZdY/fD5nmMbKrhPn2cfn98/cVxm0gOziuHLKOrcmqUdYb20vIqjjmYxtaoK32X0NE/Dgi3kx28eg+4KKUvioi/iEidiW7q/hVZY9OeC4td+vcOnYZEl9+/Y+RHfD3ya3/pRHhCy1Wq3ye3o0h+VBZ+9SLyKqXvSwdf+7ixePP0ONmPfvkSMf0zY7J1fKUWbMi4ruR9aa6O9m+N5dsHz18yD66VUTkz5Py++lz5P6/JY2j9RfUhjuPHRrP4PTVvsPfkTUbOJTsxsC0wdCrLKtdaj2/Lz0X4Cr7JfBsapw5MV052FfSnw2Z7tvAX0t6a5pmsHOG3ohYSVbf96uStpe0haTBtmKrgZcp1xHCEFcBb1PWsHULYDbwPPDfrf+qm9iO7MT0UWC8pH8ka+s26BvAZyRNV+bVevF5cqvJ2gdVchvZFZCPp+3QR3Y7/4o2fAfrPr8gu0r3QWWddcwCDmzRso+Q9MbUzu4zZNUWN7mKma5IXgWcK2m7dCL5MbL8DVl1349K2iMVAgfby2wArgaOzK3j09T+v/o6SX+Trgp+hCyP31pl2qr/NZJ6JM1K7XaeJ6sm80cASX8rabBN3pNkB8k/RsSjZAXUv0/LO5lhLs6kO4QXAedL2jkte0pXthuwopyW9tcdgE8CVw4Zvw3Z/vkogLKOivbNjV8N9KZ8Vu8+OdIxfTUwTS92XFQ1T5k1Q9Kekg6WtCXwv2QXIf5I1rTg3HT8QVn75lnDLOq3ZHeV3pbOEz8FbNnKWEc4j61kuO+wHVleepys4Dn00VnDnUO2Uq3n96XnAlwF6YTuSLKG0Q+RXen7BtlVg/x0y8iuKHyC7KCzDPi/vLhdjye7sn8fWZ3nj6T57iM7KXww3cLddchy7wf+nqzDgcfICjt/HRHrWvtNN/NjsioovyWr4vK/bHrL/vNkJ7o/AZ4BLgYGe/w6B1iQvs/R+YWmuP+arPOWx4CvAiek7WBjXNo//oasc5KnyPb968n+7Jv1XeBssqqTr0vLruR0siuaD5K1v/sucEkadwlZQ+5byP4P/jdNT0TcDZyWpl9JVkiq9eHB15JV03qS7L/ibyJifaUJR/iveQlZgfP36Xu+CXh/mvXPgNskrSVryP3hiHgwjfuHtIzHyRqoj3SBaA5ZB0O3piowP8XP8rPafZfs2PEgWVX8TXqZjYh7gHlkF3RWA/sB/y83yc/IHoOzStJjKa2mfbKGY/r30vvjku5g+Dxl1owtyTrfeYysmt/OZG2wLiD7j/6JpGfJLua9vtpCIuJp4ANk+/EKsuNXOx5cX/E8torhvsNlZOeVK4B72Pxi5cXA3ukc8t9aFfxQtZ7fdwNt2uzERiLp02QdAtTTlsTM6iDpNrKOeb5ZdCztID842MYQSQ+TdZDz06JjMTMbDXwHrg6pjc7eZKV2M2sRSW+StEuqQnki2eMGflR0XGZmZmZl4wJcfe4g62iglI2ZlT1ke22F1w+Ljs1sBHuSPZflKbI2n+9M9e+HpaxnxUr7fOEP3ZX0wyqxfaLo2MzMzACqHKfWKuvYzkrKVSjNzMzMzMy6hO/AmZmZmZmZdYlqD8DrqB133DGmTZvW8uU+99xzbLPNNi1fbic49mKMFPvChQsfi4i2P7xY0lSyXpt6yLrWnh8RF6QuuK8ke4bKw8DREfFkap95AXAE2SMbToqIO4Zbx0j5rsy/o2OrX1njgvLkOwBJl5D1UrYmIvYdMm420A/sFBGPNZvvyvqbOK7alTEmaE1cncx37dau88x6lWl/cSyVFR1LzfkuIgp/ve51r4t2uPnmm9uy3E5w7MUYKXbg9uhAniB7eOwBaXg7skc77A18DjgzpZ8JzE3DR5A9r0XAQcBtI61jpHxX5t/RsdWvrHFFlCffZavir4ADgLuGpE8le9TKUmDHaEG+K+tv4rhqV8aYIloTVyfzXbtf7TrPrFeZ9hfHUlnRsdSa71yF0qyEImJlpCv5EfEscC8whexZYAvSZAuAo9LwLOCylP9vBSZJmtzZqM26X0TcQvbsr6HOBz5Odkd8kPOdmZl1XCmqUJpZdZKmAa8FbgN64sXeGVeRVbGErHCXf+j68pS2SU+Okk4FTgXo6elhYGCg6nrXrl077PgiObb6lTUuKHdsAJJmASsi4jdZrckXNJXvyvq9HVftyhgTlDcuM2sNF+DMSkzStsD3gY9ExDP5k8eICEl1dSMbEfOB+QAzZsyIvr6+qtMODAww3PgiObb6lTUuKHdskrYGPgG8pdFlVMt3Zf3ejqt2ZYwJyhuXmbWGq1CalZSkLcgKb9+JiB+k5NWDVbTS+5qUvoKsjc6g3pRmZs15BbAH8BtJD5PlrTsk7YLznZmZFcAFOLMSSr3bXQzcGxGfz426DjgxDZ8IXJtLP0GZg4Cno4YHYZvZ8CJicUTsHBHTImIaWTXJAyJiFc53ZmZWAFehNCunNwDHA4sl3ZnSPgGcB1wl6RSy3vCOTuNuIOsRbwlZd+bv7mi0ZqOEpMuBPmBHScuBsyPi4iqTO9+ZmVnH+Q5cm03u3Q1Jdb8WLlzI5N7dig7fChIRP48IRcSrI2L/9LohIh6PiEMiYnpEHBoRT6TpIyJOi4hXRMR+EXF7szEsWrS4oX138OX917pRRBwXEZMjYouI6B1aeEt34h5Lwy3Pd0UaPF4tXLjQed7GlEbP1bzvW1F8B67NVq1Yxu5zrq97vgm7bGDVimUjT2jWJuvXr2to3x20dO6RLYzGzNpt8Hg1YZcNDeV953nrVo2eqw3yvm+d5jtwZmZmZmZmXcIFODMzMzMzsy4xYgFO0iWS1ki6K5f2r5Luk7RI0jWSJuXGnSVpiaT7Jb21TXGbmZmZmZmNObXcgbsUOGxI2o3AvhHxauC3wFkAkvYGjgX2SfN8VdK4lkVrZmZmZmY2ho1YgIuIW4AnhqT9JCI2pI+3kj28FGAWcEVEPB8RD5F1rXxgC+M1MzMzMzMbs1rRC+XJwJVpeApZgW7Q8pS2GUmnAqcC9PT0MDAw0IJQNrV27dq2LLce/f39TNhlw8gTDtEzMZu36PgbUYbt3qhujt3MzMzMRr+mCnCSPglsAL5T77wRMR+YDzBjxozo6+trJpSKBgYGaMdy6zFz5syGuqadvd8GzjjjDCKiDVG1Vxm2e6O6OXYzMzMzG/0aLsBJOgk4EjgkXixlrACm5ibrTWlmZmZmZmbWpIYeIyDpMODjwNsj4g+5UdcBx0raUtIewHTgl82HaWZmZmajjaSpkm6WdI+kuyV9OKXvIOlGSQ+k9+1TuiR9MfV4vkjSAcV+A7POq+UxApcDvwD2lLRc0inAl4HtgBsl3SnpawARcTdwFXAP8CPgtIjY2LbozczMzKybbQBmR8TewEHAaalX8zOBmyJiOnBT+gxwONkNgulkfSlc2PmQzYo1YhXKiDiuQvLFw0x/LnBuM0GZmZmZ2egXESuBlWn4WUn3knWANwvoS5MtAAaAOSn9stR851ZJkyRNTssxGxNa0QulmZmZmVlTJE0DXgvcBvTkCmWrgJ40PAVYlpttsMfzTQpw9fR23miP4YPW1dhreJl6unYslZUpluG4AGdmZmZmhZK0LfB94CMR8YykF8ZFREiqq1vueno7b7TH8EFL59bWa3iZerp2LJWVKZbhNNSJiZmZ2Wgj6RJJayTdlUv7V0n3pc4SrpE0KTfurNSRwv2S3lpI0GajgKQtyApv34mIH6Tk1ZImp/GTgTUp3T2e25jnApyZmVnmUuCwIWk3AvtGxKuB3wJnAaROFo4F9knzfFXSuM6FajY6KLvVdjFwb0R8PjfqOuDENHwicG0u/YTUG+VBwNNu/2ZjjQtwZmZmQETcAjwxJO0nETHYOOZWsqv9kHWkcEVEPB8RDwFLgAM7FqzZ6PEG4Hjg4NSz+Z2SjgDOA94s6QHg0PQZ4AbgQbI8dxHwgQJiNiuU28CZmZnV5mTgyjQ8haxAN2iwI4XNVOtMoWyN5Qc7cuiZCLP3q79Dh1o7cmhU2bYXlDMmKG9clUTEzwFVGX1IhekDOK2tQZmVnAtwZmZmI5D0SbLnVX2n3nmrdaZQtsbygx05zN5vA/MW1396UGtHDo0q2/aCcsYE5Y3LzFrDBTgzM7NhSDoJOBI4JF4sobgjBTMzK4TbwJmZmVUh6TDg48DbI+IPuVHXAcdK2lLSHsB04JdFxGhmZmOL78CZmZkBki4H+oAdJS0HzibrdXJL4Mb0XKpbI+J9EXG3pKuAe8iqVp4WERuLidzMzMYSF+DMzMyAiDiuQvLFw0x/LnBu+yIyMzPbnKtQmpmZmZmZdQkX4MzMzMzMzLqEC3BmZmZmZmZdwgU4MzMzMzOzLuECnJmZmZmZWZcYsQAn6RJJayTdlUvbQdKNkh5I79undEn6oqQlkhZJOqCdwZuZmZmZmY0ltdyBuxQ4bEjamcBNETEduCl9Bjic7GGm04FTgQtbE6aZmZmZmZmNWICLiFuAJ4YkzwIWpOEFwFG59MsicyswSdLkFsVqZmZmZmY2pjX6IO+eiFiZhlcBPWl4CrAsN93ylLaSISSdSnaXjp6eHgYGBhoMpbq1a9e2Zbn16O/vZ8IuG+qer2diNm/R8TeiDNu9UWWJXdIlwJHAmojYN6WdA/wD8Gia7BMRcUMadxZwCrAR+FBE/LjjQZuZmZlZ2zVagHtBRISkaGC++cB8gBkzZkRfX1+zoWxmYGCAdiy3HjNnzmT3OdfXPd/s/TZwxhlnEFH3pi1cGbZ7o0oU+6XAl4HLhqSfHxH9+QRJewPHAvsAuwI/lfSqiNjYiUDNzMzMrHMa7YVy9WDVyPS+JqWvAKbmputNaWZWhypVl6uZBVwREc9HxEPAEuDAtgVnZmZmZoVptAB3HXBiGj4RuDaXfkLqjfIg4OlcVUsza94HUw+vlwz2/kr1qstmZmZmNsqMWIVS0uVAH7CjpOXA2cB5wFWSTgGWAkenyW8AjiC7A/AH4N1tiNlsrLoQ+AwQ6X0ecHI9C6in7Wlvby+zG2i/OWhdG9twlqWtYiVlja2scUG5YzMzMyubEQtwEXFclVGHVJg2gNOaDcrMNhcRqweHJV0EDDaurLnqcj1tT+fNm8eXHt2r4XiXzm1fG84StVXcTFljK2tcUO7YzMzMyqbRKpRm1mFDHsnxDuCuNHwdcKykLSXtQfYcxl92Oj6z0SBVT14j6a5c2g6SbpT0QHrfPqVL0hclLUlVmw8oLnIzMxsrXIAzK6FUdfkXwJ6Slqfqyp+TtFjSImAm8FGAiLgbuAq4B/gRcJp7oDRr2KXAYUPSzgRuiojpwE3pM8DhZBdMppNVTb6wQzGamdkY1vRjBMys9apUXb54mOnPBc5tX0RmY0NE3CJp2pDkWWRtwQEWAAPAnJR+WWo+cKukSZImu/MuMzNrJ9+BMzMzG15PrlC2CuhJw+4B1szMOs534MzMzGoUESGprt55qvX+WrbeN/v7+5mwywZ6JsLs/ervgbadPc9C+bYXlDMmKG9cZtYaLsCZmZkNb/Vg1cjUmdCalF5TD7DVen8tW++bM2fOZPc51zN7vw3MW1z/6UE7e56F8m0vKGdMUN64zKw1XIXSzMxseNcBJ6bhE4Frc+knpN4oDwKedvs3MzNrN9+BMzMzS1IPsH3AjpKWA2cD5wFXpd5glwJHp8lvAI4AlgB/AN7d8YDNzGzMcQHOzMwsqdIDLMAhFaYN4LT2RmQ2+km6BDgSWBMR+6a0c4B/AB5Nk30iIm5I484CTgE2Ah+KiB93PGizArkKpZmZmZkV6VI2f/4iwPkRsX96DRbe9gaOBfZJ83xV0riORWpWAi7AmZmZmVlhIuIW4IkaJ58FXBERz0fEQ2RVmA9sW3BmJeQqlGZmZmZWRh+UdAJwOzA7Ip4ke9birblpKj5/sdrjOyoZfIRGo2p9hEaZHu/gWCorUyzDcQHOzMzMzMrmQuAzQKT3ecDJtc5c7fEdlQw+QqNRtT5Co0yPd3AslZUpluG4CqWZmZmZlUpErI6IjRHxR+AiXqwmWdPzF81GMxfgzMzMzKxUJE3OfXwHcFcavg44VtKWkvYApgO/7HR8ZkVyFUozMzMzK0yV5y/2SdqfrArlw8B7ASLibklXAfcAG4DTImJjAWGbFaapApykjwLvIctci8keYjoZuAJ4GbAQOD4i1jUZp5mZmZmNQlWev3jxMNOfC5zbvojMyq3hKpSSpgAfAmakhy6OI3sux1yy53a8EniS7EGLZmZmZmZm1qRm28CNByZKGg9sDawEDgauTuMXAEc1uQ4zMzMzMzOjiQJcRKwA+oFHyApuT5NVmXwqIgYfplHx2RxmZmZmZmZWv4bbwEnaHpgF7AE8BXwPOKyO+Wt+wGKjyvAwvkYfDtkzMZu36PgbUYbt3qhujt3MzMzMRr9mOjE5FHgoIh4FkPQD4A3AJEnj0124qs/mqOcBi40qw8P4Gn045Oz9NnDGGbU9GLJsyrDdG9XNsZuZmZnZ6NdMG7hHgIMkbS1JwCFkXbreDLwzTXMicG1zIZqZmZmZmRk01wbuNrLOSu4ge4TAS8juqM0BPiZpCdmjBKp2A2tmZmZmZma1a+o5cBFxNtnDFvMeBA5sZrlmZmZl4ueemplZWTT7GAEzM7NRzc89NTOzMnEBzszMbGR+7qmZmZVCU1UozczMRruIWCFp8Lmn/wP8hDqee1rtsTlle2zJ4GNveiZmPSHXa12bH31Ttu0F5YwJyhuXmbWGC3BmZmbDaPa5p9Uem1O2x5YMPvZm9n4bmLe4/tODpXPb++ibsm0vKGdMUN64zKw1XIXSzMxseC889zQi1gObPPc0TVP1uadmZmat5AKcmZnZ8PzcUzMzKw0X4MzMzIbh556amVmZuA2cmZnZCPzcUzMzKwvfgTMzMzMzM+sSLsCZmVnTJvfuhqSGXosWLS46fDMzs67hKpRmJSXpEuBIYE1E7JvSdgCuBKYBDwNHR8STqWOFC4AjgD8AJ0XEHUXEbWPTqhXL2H3O9Q3Nu379fS2OxszMbPTyHTiz8rqUzZ81dSZwU0RMB25KnwEOB6an16nAhR2K0czMzMw6yAU4s5KKiFuAJ4YkzwIWpOEFwFG59MsicyvZ86kmdyRQMzMzM+sYV6E06y49EbEyDa8CetLwFGBZbrrlKW1lLg1Jp5LdoaOnp4eBgYGqK+rt7WX2LhsaDnRdf/+wy2/G2rVr27bsZpU1tnbH1d/fz4QG95edx/eWcpuZmZmVkQtwZl0qIkJS1DnPfLLnVzFjxozo6+urOu28efP40qN7NRzf0rlnEFFXeDUbGBhguNiLVNbY2h3XzJkzG24Dd/pOyznmmGNaHJGZmdno5CqUZt1l9WDVyPS+JqWvAKbmputNaWZmZmY2ijRVgJM0SdLVku6TdK+kP5e0g6QbJT2Q3rdvVbBmxnXAiWn4RODaXPoJyhwEPJ2ramlmZmZmo0Szd+AuAH4UEXsBrwHupXoveWZWB0mXA78A9pS0XNIpwHnAmyU9AByaPgPcADwILAEuAj5QQMhmNpaN26LhZwFO7t2t6OjNzLpGw23gJL0U+CvgJICIWAeskzQL6EuTLQAGgDnNBGk2FkXEcVVGHVJh2gBOa29EZmbD2Li+4XaQS+ce2eJgzMxGr2buwO0BPAp8U9KvJX1D0jZU7yXPzMzMzGwTki6RtEbSXbm0ik1yUlOBL0paImmRpAOKi9ysGM30QjkeOAA4PSJuk3QBQ6pLDtdLXj3dmTeqDN15N9q1ds/EbN6i429EGbZ7o7o5djMzsy51KfBl4LJc2mCTnPMknZk+zwEOB6an1+uBC9O72ZjRTAFuObA8Im5Ln68my1yrJU2OiJVDesnbRD3dmTeqDN15N9q19uz9NnDGGe3rhr2dyrDdG9XNsZuZmXWjiLhF0rQhydWa5MwCLktNB25NHepNdsddNpY0XICLiFWSlknaMyLuJ2uXc096nUjWuUK+lzwzM7OuJGkS8A1gXyCAk4H7gSuBacDDwNER8WQxEZqNOtWa5EwBluWmW57SNinA1VPTq9HaUoPW1Vhjqky1fBxLZWWKZTjNPsj7dOA7kiaQ9YD3brJ2dVelHvOWAkc3uQ4zM7OiDfa6/M50zNsa+ASVq3iZWQsN1yRnmHlqrunVaG2pQUvn1lZjqky1fBxLZWWKZThNFeAi4k5gRoVRm/WSZ2Zm1o3c67JZIao1yVkBTM1N15vSzMaMZu/AmZmZjXb5XpdfAywEPkyNvS5Xq8pVtqo6g9XIeiZm7bDrta6Jami1VEEr2/aCcsYE5Y2rTtdRuUnOdcAHJV1B1nnJ027/ZmONC3BmZmbDa6rX5WpVucpWVWewGtns/TYwb3H9pwdL557RxHPgRq6CVrbtBeWMCcobVzWSLie7m72jpOXA2WQFt0pNcm4AjgCWAH8ga75jNqa4AGdmZja8pnpdNrPhRcRxVUZt1iQn9T55WnsjMiu3Zh7kbWZmNupFxCpgmaQ9U9Jgr8uDVbzAvS6bmVmH+A6cmZnZyNzrspmZlYILcGZmZiNwr8tmZlYWrkJpZmZmZmbWJVyAMzMzMzMz6xIuwJmZmZmZmXUJF+DMzMzMzMy6hAtwZmZmZmZmXcIFODMzMzMzsy7hApyZmZmZmVmXcAHOzMzMzMysS7gAZ2ZmZmZm1iVcgDMzMzMzM+sSLsCZmZmZmZl1iaYLcJLGSfq1pOvT5z0k3SZpiaQrJU1oPkwzMzMbyeTe3ZDU0MvMzLrD+BYs48PAvcCfpM9zgfMj4gpJXwNOAS5swXrMzMxsGKtWLGP3Odc3NO/SuUe2OBozM2uHpu7ASeoF3gZ8I30WcDBwdZpkAXBUM+swMzMzMzOzTLN34L4AfBzYLn1+GfBURGxIn5cDUyrNKOlU4FSAnp4eBgYGmgxlc2vXrm3LcuvR39/PhF02jDzhED0Ts3mLjr8RZdjujerm2M2svSSNA24HVkTEkZL2AK4gO/YtBI6PiHVFxmhmZqNfwwU4SUcCayJioaS+euePiPnAfIAZM2ZEX1/dixjRwMAA7VhuPWbOnNlQdZbZ+23gjDPOICLaEFV7lWG7N6qbYzeztnOTATMzK1wzVSjfALxd0sNkVyAPBi4AJkkaLBj2AiuaitDMzKxgbjJgZmZl0XABLiLOiojeiJgGHAv8LCLeBdwMvDNNdiJwbdNRmpmZFesLZE0G/pg+19xkwMzMrJVa0QvlUHOAKyR9Fvg1cHEb1mFmZtYRzTYZqNbmux1tbhttdw2wLs3bMzGrxt/o/I2ue6RtUcY2ymWMCcobl5m1RksKcBExAAyk4QeBA1ux3FaY3Lsbq1Ysa3j+XaZMZeXyR1oYkZmZdZnBJgNHAFuRtYF7oclAugtXtclAtTbf7Whz22i7a4Clc89g9znXM3u/DcxbXP/pweD8ja57pDbfZWyjXMaYoLxxmVlrtOMOXKk080wc8HNxrHxSu9NngY3AhoiYIWkH4EpgGvAwcHREPFlUjGajSUScBZwFkO7AnRER75L0PbImA1fgJgNmZtYhTT0HbkwYtwWSGn51q8m9uzX8nRcuXMjk3t2K/gqj3cyI2D8iZqTPZwI3RcR04Kb02czaaw7wMUlLyNrEucmAmZm13ai/A9e0jevH5B28Zu5cTthlQ1PVVq0hs4C+NLyArErznKKCMRutytxkwMzMxgYX4My6TwA/kRTA11P7mp6IWJnGrwJ6Ks1YrTOFSnp7e5ndYIcEUFunBI0qcwP9ssbW7ria6Txj5/G9pdxmZmZmZeQCnFn3eWNErJC0M3CjpPvyIyMiUuFuM9U6U6hk3rx5fOnRvRoOspZOCRpV5gb6ZY2t3XE103nG6Tst55hjjmlxRGZmZqOT28CZdZmIWJHe1wDXkFXhWi1pMkB6X1NchGZmZq0h6WFJiyXdKen2lLaDpBslPZDety86TrNOcgHOrItI2kbSdoPDwFuAu4DryHrBA/eGZ2Zmo0u5O+6qscO7hQsXbpbmTt+sEa5CadZdeoBrUg+n44HvRsSPJP0KuErSKcBS4OgCYzQzM2uncnXcVWOHdxN22bDZdN3a2Z0VywU4sy6Ser17TYX0x4FDOh+RmZlZWzXUcVc9nXY10wkTZJ121TJ/z0SYvd+m07Wzw6/hlKnDLcdSPxfgzMzMzKysGuq4q55Ou5rphAmyTrtqmX/2fhuYt3jTU+92dvg1nDJ1uOVY6uc2cGZmZmZWSu64y2xzLsCZmZmZWem44y6zylyF0szMzMzKyB13mVXgO3BmZmZWrBq6Ya/UBbu7Yh/dIuLBiHhNeu0TEeem9Mcj4pCImB4Rh0bEE0XHatZJvgNnZmZmxaqhG/ZKXbAPclfsZjaWdMUduMm9u9X0gMRKV+vMzMzMzMxGi4bvwEmaClxGVj85gPkRcYGkHYArgWnAw8DREfFkM0GuWrGsoe5dm3mmh5mZmZmZWdk0cwduAzA7IvYGDgJOk7Q3cCZwU0RMB25Kn83MzMzMzKxJDRfgImJlRNyRhp8F7gWmALOABWmyBcBRTcZoDWq06mnq7cnMzMhqnEi6WdI9ku6W9OGUvoOkGyU9kN63LzpWMzMb/VrSiYmkacBrgduAnohYmUatIqtiWWmeU4FTAXp6ehgYGKi6/P7+/oaqQ/ZMbHzeQesKmj+LfR7z5s1reN1nfPTDTNjllQ3Nu27Vkoa/9+B2H+43Lau1a9d2Zdxm1laDNU7uSM+kWijpRuAkshon50k6k6zGyZwC4zQzszGg6QKcpG2B7wMfiYhn8ndvIiIkRaX5ImI+MB9gxowZ0dfXV3UdM2fObKgN3Oz9NnDGGWc0NO+gpXOLmT+LfXaT6z6y4fmb+d6D2z2i4k9fagMDAwy3L5rZ2JMuSq5Mw89Kytc46UuTLQAGcAHOzMzarKkCnKQtyApv34mIH6Tk1ZImR8RKSZOBNc0GaWZmVgatrHHSjjv+zdQ6Gawx0jMxuxDX6PzNrHs4w8W1rqBaH2WttVHWuMysNZrphVLAxcC9EfH53KjrgBOB89L7tU1FaGZmVgKtrnHSjjv+jdZYgRdrXszebwPzFtd/etBMzY1a5h0urqVzi6n1UdZaG2WNy8xao5leKN8AHA8cLOnO9DqCrOD2ZkkPAIemz2ZmZl1ruBonabxrnJiZWUc0fAcuIn4OVOuu8JBGl2tmZlYmrnFiZmZl0pJeKM3MzEaxwRoniyXdmdI+QVZwu0rSKcBS4OhiwjMzs7HEBTgzM7NhuMaJmZmVSTNt4MzMzMzMzKyDXIAzMzMzMzPrEi7AmZmZmZmZdQkX4MzMzMzMzLqEC3BmZmZmZmZdwgU4MzMzMzOzLuECnJmZmZmZWZdwAc7MzKwkJvfuhqSGX2PWuC0a3maTe3crOnoby5rYd73/jl1+kLeZmVlJrFqxjN3nXN/w/EvnHtnCaLrIxvUNb7cxu82sHJrYd8H771jlO3BmZmZmZmZdwgU4MzMzMzOzLuECnJmZmZmZWZdwAc7MzMzMrBs12AnKwoUL3QFKF3MnJtYe6Q+lEbtMmcrK5Y+0OCAzMzOzUabBTlAm7LKBVSuWtSEg64S2FeAkHQZcAIwDvhER57VrXVZC7hGsEM53Zp3nfGfWec53Npa1pQqlpHHAV4DDgb2B4yTt3Y51mVnG+c6s85zvRoEmnsPlamjFcL6zsa5dd+AOBJZExIMAkq4AZgH3tGl9Npo0Uf0SYNyErdi47n8bmveCC75IX19fw+sumPOdWec533W7JmqMTNhlA6tWrWr4mNXM8Wq4+fv7+5k5c+aw83Z5cwXnu1Yo8HwrP28t+2sr193svj+5d7eGq5+2Kt8pIppeyGYLld4JHBYR70mfjwdeHxEfzE1zKnBq+rgncH/LA4EdgcfasNxOcOzFGCn23SNip04FU4825Lsy/46OrX5ljQvGbr4r62/iuGpXxpigNXGN1nxXpDLtL46lsqJjqSnfFdaJSUTMB+a3cx2Sbo+IGe1cR7s49mJ0c+y1qCfflXlbOLb6lTUuKHdsrVAt35X1ezuu2pUxJihvXJ3UifPMepXpd3EslZUpluG06zECK4Cpuc+9Kc3M2sf5zqzznO/MOs/5zsa0dhXgfgVMl7SHpAnAscB1bVqXmWWc78w6z/nOrPOc72xMa0sVyojYIOmDwI/June9JCLubse6RlCqW+d1cuzF6NrY25DvyrwtHFv9yhoXlDu2YTWZ78r6vR1X7coYE5Q3rpYo0Xlmvcr0uziWysoUS1Vt6cTEzMzMzMzMWq9dVSjNzMzMzMysxVyAMzMzMzMz6xKjpgAnaaqkmyXdI+luSR9O6TtIulHSA+l9+6JjrUTSOEm/lnR9+ryHpNskLZF0ZWqkW0qSJkm6WtJ9ku6V9OddtN0/mvaXuyRdLmmrbtr2jZJ0mKT703c8s8L4LdN3X5K2xbTcuLNS+v2S3trhuD6W8vgiSTdJ2j03bqOkO9Or5Y3Za4jtJEmP5mJ4T27ciSkvPCDpxAJiOz8X128lPZUb17btJukSSWsk3VVlvCR9McW9SNIBuXFt3WZFG+k3a3CZdR0HG9n+kl4naXGa54tS9hTgkf7zVeMxrpH/nmrbsto6cuNrPnZ1eFt9VDUelzq5vaxx1fJmwTFtkicLjGOzfFhgLJvlvaJiGVFEjIoXMBk4IA1vB/wW2Bv4HHBmSj8TmFt0rFXi/xjwXeD69Pkq4Ng0/DXg/UXHOEzsC4D3pOEJwKRu2O7AFOAhYGJum5/UTdu+we89Dvgd8PL0e/0G2HvINB8AvpaGjwWuTMN7p+m3BPZIyxnXwbhmAlun4fcPxpU+ry14m50EfLnCvDsAD6b37dPw9p2Mbcj0p5M1+O/Edvsr4ADgrirjjwB+CAg4CLitE9us6Fe9v1kdy63rONjI9gd+maZVmvfwlD7sfz41HuOo879nuG1ZbR25mGo+dnVqW1HncamT28uv1ufNgmPaJE8WGMdm+bCgOCrmvaL3nWqvUXMHLiJWRsQdafhZ4F6yH2MW2c5Bej+qkACHIakXeBvwjfRZwMHA1WmSUsYNIOmlZCdpFwNExLqIeIou2O7JeGCipPHA1sBKumTbN+FAYElEPBgR64AryH6vvPzvdzVwSNovZwFXRMTzEfEQsCQtryNxRcTNEfGH9PFWsmf/dEIt26yatwI3RsQTEfEkcCNwWIGxHQdc3sL1VxURtwBPDDPJLOCyyNwKTJI0mfZvs6I1sz9V1cBxsK7tn8b9SUTcGtkZzmVDllXxP7/OY1y9/z0Vt+VIx9EGjl0d2VZJPceljmwva84webMQQ/NkgXFUy4dFGZr3fl9gLMMaNQW4vFSF4LXAbUBPRKxMo1YBPUXFNYwvAB8H/pg+vwx4KiI2pM/LKTCjj2AP4FHgm+lW/DckbUMXbPeIWAH0A4+QHSCfBhbSPdu+UVOAZbnPlb7jC9OkbfE02X5Zy7ztjCvvFLKr2oO2knS7pFslHdWimOqN7f+k6lVXSxp8yGw7t1ldy1dW5XQP4Ge55HZut5FUi73d26xobf9+NR4H693+U9JwpbiH+8//ArUf4+r976mWPtJxtN5jV0e2VQPHpU5tL2uRIXmzKF9g0zxZlGr5sOMq5b2I+EkRsdRi1BXgJG0LfB/4SEQ8kx+XroKV6rkJko4E1kTEwqJjadB4sipSF0bEa4HnyKqEvKCM2x0gtTuYRfYHsiuwDaPrKv+oJenvgRnAv+aSd4+IGcDfAV+Q9IoOh/XvwLSIeDXZVfgFI0xfhGOBqyNiYy6t6O1mLVb0cTC/jhIf40px7Bq6Dh+XRrfh8mYHYyhTnhwxH3ZKpbyXzjVKaVQV4CRtQZYxvhMRP0jJq1NVBtL7mqLiq+INwNslPUxWleFg4AKy6hmDD1rvBVYUE96IlgPLI2LwStLVZJmx7Nsd4FDgoYh4NCLWAz8g+z26Zds3agUwNfe50nd8YZq0LV4KPF7jvO2MC0mHAp8E3h4Rzw+mp6tnRMSDwADZFc5WGTG2iHg8F883gNfVOm+7Y8s5liHVJ9u83UZSLfZ2b7Oite371XkcrHf7r2DTasv5uKuto95jXL3/PdXSHx9mHVD/sasT2wrqPy51antZk6rkzSJsliclfbugWKrlwyJUynt/UVAsIxo1BbhUf/ti4N6I+Hxu1HXAYK9QJwLXdjq24UTEWRHRGxHTyE6ufhYR7wJuBt6ZJitd3IMiYhWwTNKeKekQ4B5Kvt2TR4CDJG2d9p/B2Lti2zfhV8D01OPYBLL9bmjvg/nf751k+2Wk9GOV9Xy2BzCdrKF+R+KS9Frg62SFtzW59O0lbZmGdyQ7QN3TorhqjW1y7uPbydo4APwYeEuKcXvgLSmtY7Gl+PYi62ThF7m0dm+3kVwHnKDMQWRVVlbS/m1WtJp+s3o1cBysa/uncc9IOiit64Qhy9psHQ0c4+r976m4LdM8Vf/LGzh2tX1bJfUelzqyvaw5w+TNjquSJwu50zRMPixCpbx37wjzFCdK0JNKK17AG8mqISwC7kyvI8jqdd8EPAD8FNih6FiH+Q59vNhD18vJ/myXAN8Dtiw6vmHi3h+4PW37fyM7SeyK7Q78E3AfcBfwLbIeu7pm2zfxvY8g6wXrd8AnU9qnyQpGAFul774kbYuX5+b9ZJrvflKvah2M66fA6lwevy6l/wWwmKxHtcXAKQVss38B7k4x3AzslZv35LQtlwDv7nRs6fM5wHlD5mvrdiO727cSWE92pfUU4H3A+9J4AV9JcS8GZnRqmxX9qvSbtWCZdR0HG9n+ZFWX70rzfBlQSh/xP58ajnE08N9TbVtWW0du/P7UeOzq5LaijuNSJ7eXX63PmyWI64U8WWAMm+XDAmPZLO8V/RtVew3+mZiZmZmZmVnJjZoqlGZmZmZmZqOdC3BmZmZmZmZdwgU4MzMzMzOzLuECnJmZmZmZWZdwAc7MzMzMzKxLuABnZmZmZmbWJVyAMzMzMzMz6xIuwJmZmZmZmXUJF+DMzMzMzMy6hAtwZmZmZmZmXcIFODMzMzMzsy7hApyZmZmZmVmXcAHOzMzMzMysS7gAZ2ZmZmZm1iVcgDMzMzMzM+sSLsCZmZmZmZl1CRfgzMzMzMzMuoQLcGZmZmZmZl3CBTgzMzPrapLOkfTtKuM+IekbnY7JrFtJ2k3SWknjio7FKnMBzkYk6WFJh6ZhHwjNzKxrRMQ/R8R7io7DrMzy53oR8UhEbBsRG4uOyyobX3QA1l0i4p+LjsHMzMzMbKzyHbgOk+RCs1mXkjRH0gpJz0q6X9Ihkl4i6UxJv5P0uKSrJO2Qpr9Q0vdz88+VdJMkFfctzDqvSt45R9L3JH07pS+W9CpJZ0laI2mZpLfklrGrpOskPSFpiaR/qLKuLSRdLun7kibkq1dKmiYpJJ0o6RFJj0n6ZG7eiZIWSHpS0r2SPi5pefu3kFlxJH0L2A3491R18uMpn4xP4wckfVbSf6fx/y7pZZK+I+kZSb+SNC23vL0k3Zjy6v2Sji7oq41aLsDVqYETuMGDxSmSHgF+Jqlv6AFhSDXFug5qw8R6kqQH0zIekvSulP4SSZ+StDQt7zJJL83Nd3wa93j+wJaLbfBA2JHvYVYGkvYEPgj8WURsB7wVeBg4HTgKeBOwK/Ak8JU022xgv5QX/xI4BTgxIqKz0ZsVZ5i8A/DXwLeA7YFfAz8mOzeZAnwa+HpuUVcAy8ny2TuBf5Z08JB1TQT+DXgeODoi1lUJ643AnsAhwD9K+tOUfjYwDXg58Gbg7xv4ymZdJSKOBx4B/joitgWuqjDZscDxZHnzFcAvgG8COwD3kuUdJG0D3Ah8F9g5zfdVSXu3+WuMKS7A1aHBE7hBbwL+NM1Ti3oOapVi3Qb4InB4ivUvgDvT6JPSaybZQWpb4Mtpvr2BC8ky6a7Ay4DeGmNu+fcwK5GNwJbA3pK2iIiHI+J3wPuAT0bE8oh4HjgHeKek8RHxB7K89Hng28DpEeGr+TbWVMs7AP8VET+OiA3A94CdgPMiYj1ZgW2apEmSpgJvAOZExP9GxJ3AN4ATcuv5E+BHwO+Ad4/QfuefIuJ/IuI3wG+A16T0o4F/jognU179Ygu+v9lo8M2I+F1EPA38EPhdRPw0l3dfm6Y7Eng4Ir4ZERsi4tfA94G/LSbs0ckFuPrUfQKXm/eciHguIv6nxnXVdFAbYRl/BPaVNDEiVkbE3Sn9XcDnI+LBiFgLnAUcm+J9J3B9RNySvsv/l5bTqFZ8D7PCRcQS4CNk+XuNpCsk7QrsDlwj6SlJT5FdidwI9KT5bgMeBETlq5pmo9oweQdgdW7S/wEeyxW8Bo+X25JdUHwiIp7NTb+U7GLgoIOAV5MdY0a6y70qN/yHtA7SepblxuWHzcayoXl16OfBPLQ78PrBY2I6Lr4L2KUjUY4RLsDVodETuKTeg0CtB7VqsT4HHENWuFwp6T8k7ZVG70p24Bu0lKxDmx6GHLzSch6vM/aWfQ+zMomI70bEG8nyfABzyfLL4RExKffaKiJWAEg6jezCz++BjxcVu1mRquSdevwe2EHSdrm03YAVuc8/Af4FuElS/vhbj5VsWutkaoPLMes2raravwz4zyHHxG0j4v0tWr7hAlzdGjmBG5w1N/wcsPXgB2XP2dipDbH+OCLeDEwG7gMuSqN+n+IftBuwgaywtZLcAUvS1mTVKCvpyPcwKwNJe0o6WNKWwP+SXYD4I/A14FxJu6fpdpI0Kw2/CvgsWTua44GPS9q/iPjNijJM3qlZRCwD/hv4F0lbSXo1WZvSbw+Z7nNkbW9ukrRjA+FeBZwlaXtJU8iaTZiNBavJmtU063rgVak/hS3S689y7UytBVyAq0MjJ3BV/BbYStLbJG0BfIrsCn0rY+2RNCu1hXseWMuLB8zLgY9K2kPStsA/A1emao5XA0dKeqOkCWTt1KrtJ23/HmYlsiVwHvAYWfWrncmqH18AXAf8RNKzwK1k1UfGk51czo2I30TEA8AngG+l/xCzsaJa3qnXcWQdjPweuAY4OyJ+OnSiiPgMWUcmP1XqUKwOnybrKOUh4Kdkx8TnG4jVrNv8C/CpVJPsnY0uJFVzfgtZ5yW/J8vzc/H5YUu5S/v6DB6E/hRYT3Y18FSynVNkJ3C7AmuAK4FrKy0kIp6W9AGyBtjjgM+RHTBa6SXAx4DLyO7+3QkM3r6+hKyq5C3AVmQdi5yeYrs7Vfn6LrANWecLFWPr0PcwK4WIWAQcWGX059NrqE2mj4gLyToJMhszhsk75wyZ7qdkBbTBzxvIjq2Dn5eTdZBQaR1Dl/UpsouKm6wnIh7OLzOl9eWGnyO7Ww6ApPfj45qNARFxLZuet/bnxvUNmfZTQz7/FHhl7vP9wNvaEqgBIPdmbWZmZgaSJpNVI/sFMB34D+DLEfGFIuMyM8vzHTgzMzOzzASyx9vsATxF1lvyV4sMyMxsKN+B63KS1lYZdXhE/FdHgzEzMzMzs7ZyAc7MzMzMzKxLlKIK5Y477hjTpk0rOoyKnnvuObbZZpuiw6hZt8UL3RXzwoULH4uItj8qQdJUsg5oesg6oZkfERekHtWuJGvo/zBwdEQ8KUlkvSEeQfZQ2pMi4o7h1jFSvivz7+LY6lfWuGDk2DqV7zrB+a49HFv9nO/K+9u0gr9bd6o530VE4a/Xve51UVY333xz0SHUpdvijeiumIHbowN5guzZfQek4e3IHtmwN1lPn2em9DPJuqiHrOD2Q7Le1Q4CbhtpHSPluzL/Lo6tfmWNK2Lk2DqV7zrxcr5rD8dWP+e78v42reDv1p1qzXd+DpxZCUXEykh30CJ7psq9wBRgFrAgTbYAOCoNzwIuS/n/VmBS6k3NzMzMzEaRUlShNLPqJE0DXgvcBvRExMo0ahVZFUvICnfLcrMtT2krc2lIOpXs2YX09PQwMDBQdb1r164ddnyRHFv9yhoXlDs2MzOzsnEBzqzEJG0LfB/4SEQ8kzV1y0RESKqrF6KImA/MB5gxY0b09fVVnXZgYIDhxhfJsdWvrHFBuWMzMzMrG1ehNCspSVuQFd6+ExE/SMmrB6tGpvc1KX0FMDU3e29KMzMzM7NRxAU4sxJKvUpeDNwbEZ/PjboOODENnwhcm0s/QZmDgKdzVS3NzMzMbJRwAc6snN4AHA8cLOnO9DoCOA94s6QHgEPTZ4AbgAeBJcBFwAcKiNmsq0maKulmSfdIulvSh1P6DpJulPRAet8+pUvSFyUtkbRI0gHFfgMzMxsLXICziib37oakhl+Te3cr+it0tYj4eUQoIl4dEfun1w0R8XhEHBIR0yPi0Ih4Ik0fEXFaRLwiIvaLiNuL/g42tjTzn7Fo0eKiwx+0AZgdEXuTPY7jNEl7kz2y46aImA7clD4DHA5MT69TgQubDWDRosX+7zUbQ3y+ZY1wJyZW0aoVy9h9zvUNz7907pEtjMbMyq6Z/4z16+9rcTSNSdWOV6bhZyXlH9/RlyZbAAwAc8g9vgO4VdIkSZObqb68fv06//eajSE+37JGuABnZmY2RFGP7+jt7WX2Lhsajntdf3/bHslQ5sc9OLb6lTUuMxuZC3BmZmY5RT6+Y968eXzp0b0aCRuApXPPILsh2HplftyDY6tfWeMys5GN2AZO0iWS1ki6K5f2r5LuS422r5E0KTfurNSg+35Jb21T3GZmZi3nx3eYmVnZ1dKJyaXAYUPSbgT2jYhXA78FzgJIjb2PBfZJ83xV0riWRWtmZtYmfnyHmZl1gxELcBFxC/DEkLSfRMRgJf1bya46Qtag+4qIeD4iHiLr0vzAFsZrZmbWLn58h5mZlV4r2sCdDFyZhqeQFegGDTboNjMzK7WI+DmgKqMPqTB9AKe1NSgzM7MhmirASfok2XNzvtPAvDX3ylWkbuulqVXx9vf3M6FDPaF12zY2MzMzMytKwwU4SScBRwKHxItdXtXcoLueXrmK1G29NLUq3pkzZzb5XJLae0Lrtm1sZmZmZlaUWjox2Yykw4CPA2+PiD/kRl0HHCtpS0l7ANOBXzYfppmZmZmZmY14B07S5UAfsKOk5cDZZL1ObgncmJ6Pc2tEvC8i7pZ0FXAPWdXK0yJiY7uCNzMzMzMzG0tGLMBFxHEVki8eZvpzgXObCcrMzMzMzMw211AVSjMzMzMzM+s8F+DMzMzMzMy6hAtwZmZmZmZmXcIFODMzMzMzsy7hApyZmZmZjVmTe3dDUsOvyb27Ff0VbIxp+EHeZmZmZmbdbtWKZew+5/qG518698gWRmM2Mt+BMzMzMzMz6xIuwJmZmZlZKUkaJ+nXkq5Pn/eQdJukJZKulDSh6BgLNW6LitU6Fy5c6Kqfo5irUJqZmZlZWX0YuBf4k/R5LnB+RFwh6WvAKcCFRQVXuI3rK1b/nLDLhhGrhbrqZ/fyHTgzMzMzKx1JvcDbgG+kzwIOBq5OkywAjiokOLMCuQBnZmZmZmX0BeDjwB/T55cBT0XEhvR5OTClgLjMCuUqlGZmZmZWKpKOBNZExEJJfQ3MfypwKkBPTw8DAwObTbN27VoGBgbo7+9nwi4bNhtfq3X9/RWXX4tWrLvS/D0TYfZ+wy+3mbiLNPi7jWUuwJmZmZlZ2bwBeLukI4CtyNrAXQBMkjQ+3YXrBVZUmjki5gPzAWbMmBF9fX2bTTMwMEBfXx8zZ85s8jECZxARDc3binVXmn/2fhuYt3j40/xm4i7S4O82lrkKpZmZmZmVSkScFRG9ETENOBb4WUS8C7gZeGea7ETg2oJCNCuMC3BmZmZm1i3mAB+TtISsTdzFBcdj1nGuQmlmZmZmpRURA8BAGn4QOLDIeMyKNuIdOEmXSFoj6a5c2g6SbpT0QHrfPqVL0hfTwxUXSTqgncGbmZmZmZmNJbVUobwUOGxI2pnATRExHbgpfQY4HJieXqcylh+saGZmZmZm1mIjFuAi4hbgiSHJs8gengibPkRxFnBZZG4l6ylocotiNTMzMzMzG9Ma7cSkJyJWpuFVQE8angIsy03nByyamZmZmZm1SNOdmERESKr7IRK1PGCxDLrtYYGtireTD7Xstm3cCZIuAQYfYrpvSjsH+Afg0TTZJyLihjTuLOAUYCPwoYj4cceDNjMzM7O2a7QAt1rS5IhYmapIrknpK4CpuemaesBiGXTbwwJbFW8nH2rZbdu4Qy4FvgxcNiT9/IjozydI2pvsGTn7ALsCP5X0qojY2IlAzczMzKxzGq1CeR3ZwxNh04coXgeckHqjPAh4OlfV0sxqVKXtaTWzgCsi4vmIeAhYgrtYNjMzMxuVRrwDJ+lyoA/YUdJy4GzgPOAqSacAS4Gj0+Q3AEeQnUD+AXh3G2I2G8s+KOkE4HZgdkQ8SdbO9NbcNFXbntZTdbnMVVsdW/3aHVcz1a53Ht9bym1mZmZWRiMW4CLiuCqjDqkwbQCnNRuUmVV0IfAZINL7PODkehZQT9XlMldtdWz1a3dczVS7Pn2n5RxzzDEtjsjMzGx0arQKpZl1WESsjoiNEfFH4CJerCZZc9tTM6tO0iWS1ki6K5d2jqQVku5MryNy486StETS/ZLeWkzUZmY21rgAZ9YlhjxT8R3A4EnmdcCxkraUtAcwHfhlp+MzGwUuBQ6rkH5+ROyfXoM9v+Y7DzoM+KqkcR2L1MzMxqymHyNgZq1Xpe1pn6T9yapQPgy8FyAi7pZ0FXAPsAE4zT1QmtUvIm6RNK3GyV/oPAh4SNJg50G/aFd8ZmaWmdy7G6tWLBt5wgp2mTKVlcsfaXFEneUCnFkJVWl7evEw058LnNu+iMzGtI51HtTb28vsDj2Ds15l7aAHHFsjyhqXWS1WrVjWcLvrpXOPbHE0necCnJmZWXUd7Txo3rx5fOnRvRqNta5ncNarrB30gGNrRFnjMrORuQ2cmZlZFe48yMzMysYFODMzsyrceZCZmZWNq1CamZnhzoPMzKw7uABnZmaGOw8yM7Pu4CqUZmZmZmbWMZN7d0NSQ6+FCxc2t/JxWzS8bklM7t2tNRuhCb4DZ2ZmZmZmHdPMYwAmNPGoFQA2rm943VCOxxD4DpyZmZmZmVmXcAHOzMzMzMysS7gAZ2ZmZmZm1iVcgDMzMzMzM+sSLsCZmZmZmZl1CRfgzMzMzKx0JG0l6ZeSfiPpbkn/lNL3kHSbpCWSrpQ0oehYzTqpqQKcpI+mDHWXpMtTRnOmMjMzM7NmPQ8cHBGvAfYHDpN0EDAXOD8iXgk8CZxSXIhmnddwAU7SFOBDwIyI2BcYBxyLM5WZmZmZNSkya9PHLdIrgIOBq1P6AuCozkdnVpxmH+Q9HpgoaT2wNbCSLFP9XRq/ADgHuLDJ9ZiZmZnZGCNpHLAQeCXwFeB3wFMRMfg05+XAlArznQqcCtDT08PAwMBmy167di0DAwP09/c39XDodf39FZdfi1asu9L8PRNh9n7DL7eZuJvVzPfumdjc/NW2WT3zF7XdBjVcgIuIFZL6gUeA/wF+QpbBRsxUUFvGKoPBzN0tWhVv838o85g3b15N0/b29m4y7RZbTODVr96v4XWbmZnZ6BARG4H9JU0CrgH2qnG++cB8gBkzZkRfX99m0wwMDNDX18fMmTPZfc71Dce4dO4ZRERD87Zi3ZXmn73fBuYtHv40v5m4m9XM95693wbOOKPy965FtW1Wz/xFbbdBDRfgJG0PzAL2AJ4CvgccVuv8tWSsMhjM3N2iVfE2/4cyu+b5Z++ygS89+uL/8dK5RxaeMczMzKw8IuIpSTcDfw5MkjQ+3TDoBVYUG51ZZzXTicmhwEMR8WhErAd+ALyBlKnSNM5UZmZmZlY3STulO29Imgi8GbgXuBl4Z5rsRODaQgI0K0gzBbhHgIMkbS1JwCHAPThTmZmZmVnzJgM3S1oE/Aq4MSKuB+YAH5O0BHgZcHGBMZp1XDNt4G6TdDVwB7AB+DVZlcj/AK6Q9NmU5kxlZmZmZnWJiEXAayukPwgc2PmIzMqhqV4oI+Js4Owhyc5UZmZmZmZmbdDUg7zNzMzMzMysc1yAMzMzMzMz6xIuwJmZmZmZmXUJF+DMzMzMzMy6hAtwZmZmZmZmXcIFODMzMzMzsy7hApyZmZmZmVmXcAHOzMzMzMysS7gAZ2ZmZmZm1iVcgDOzihYtWoykhl+Te3cr+iuYmZmZjTrjiw7AzCqTdAlwJLAmIvZNaTsAVwLTgIeBoyPiSUkCLgCOAP4AnBQRdzSz/vXr17H7nOsbnn/p3CObWb2ZmZmZVeA7cGbldSlw2JC0M4GbImI6cFP6DHA4MD29TgUu7FCMZmZmZtZBLsCZlVRE3AI8MSR5FrAgDS8AjsqlXxaZW4FJkiZ3JFAzMzMz6xhXoTTrLj0RsTINrwJ60vAUYFluuuUpbWUuDUmnkt2ho6enh4GBgaor6u3tZfYuGxoOdF1//7DLb8batWvbtuxmlTW2dsfV39/PhAb3l53H95ZmmxVdddnMzGwkLsCZdamICElR5zzzgfkAM2bMiL6+vqrTzps3jy89ulfD8S2dewYRdYVXs4GBAYaLvUhlja3dcc2cObPhNpOn77ScY445psURNexS4MvAZbm0warL50k6M32ew6ZVl19PVnX59R2N1szMxhxXoTTrLqsHq0am9zUpfQUwNTddb0ozszq46rKZmZVdU3fgJE0CvgHsCwRwMnA/FaqaNLMeM3vBdcCJwHnp/dpc+gclXUF2B+DpXFVLM2uOqy5T3urB4NgaUda4zGxkzVahvAD4UUS8U9IEYGvgE1SuamJmdZB0OdAH7ChpOXA2WcHtKkmnAEuBo9PkN5C1w1lC1hbn3R0P2GwMcNXlvrYsu1mOrX5ljcvMRtZwAU7SS4G/Ak4CiIh1wDpJs8hOOiGrajKAC3BmdYuI46qMOqTCtAGc1t6IzMas1ZImR8RKV102M7OiNXMHbg/gUeCbkl4DLAQ+TPWqJpuop0pJkbqtikGr4m2mRznIqvHUOn/PRJi934vTtrMKkJlZA1x12czMSqOZAtx44ADg9Ii4TdIFvPhQYWD4qib1VCkpUrdVMWhVvM30KAdZNZ5a55+93wbmLX5xV2xnFSAzs+G46rJ1k8m9u7FqxbKRJ6zgggu+2FXnN2b2omYKcMuB5RFxW/p8NVkBrlpVEzMzs1Jz1WXrJqtWLGv4Yuv69fe1OBoz65SGHyMQEauAZZL2TEmHAPfwYlUT+P/bu/toO8r60OPfXxMQS2xJjB7SJCTUpuWiVjGnyK29vSfFKlJq6NKFUMWgeFNboHU1rIKyVu3Vay/RRKv2RXOFZWgpgaJeU5bWptFzva4WNPFiwotojESS5gV5UVItIenv/rHnwHA4L/vsvefsPWd/P2vN2jPPzDPzm9nnSc7vzMzzPP1RE0mSJElSG9rthfIK4MaiB8rdNB4f+QnGftREkiRJktSGthK4zLwTGBxj1TMeNZEkSZKaFRGLgRtodIiXwIbM/HBEzKOXxhyedRwR0bXDq/+0ewdOkiRJqsJRYE1mfj0ingNsj4gtNIaw6p0xh4890fK7iHvWntfhYNQPWn4HTpIkSapKZu7PzK8X848B9wILgZU0xhqm+Dy/KwFKXeIdOEmSJPW0iFgKnAHcQRNjDjcz3vDI2LnTOfZtJ+tOVH/0GLvj1W1n3N0dO3byxBNHWqrbzjUfeHZ79Ttxzbs9XrEJnCRJknpWRMwBPgW8IzN/WH7fbLwxh5sZb3hk7NzpHPu2k3Unqj96jN3x6rYz7m47123P2vNarrvmxUe58sruXvNuj1fsI5SSJEnqSRFxHI3k7cbM/HRRfLAYaxjHHFY/MoGTJElSz4nGrbbrgHsz84OlVY45rL7mI5SSJEnqRa8ALgZ2RsSdRdm7gGtxzGH1MRM4SZIk9ZzM/Aow3gBrjjmsvuUjlJIkSZJUE96BkyRJkvrNrOMo9+ip+jCBkyRJkvrNsSfa7E7/vA4Go6nwEUpJkiRJqgkTOEmSJEmqCRM4SZIkSaoJEzhJkiRJqgkTOEmSJEmqibYTuIiYFRH/LyJuK5ZPjYg7ImJXRNwcEce3H6YkSZIkqRN34P4AuLe0vBb4UGb+HPAIcGkHjiFJkiRJfa+tBC4iFgG/AXyiWA7g14Bbi002Aue3cwxJkiRJUkO7A3n/GfBHwHOK5ecCj2bm0WJ5L7BwrIoRsRpYDTAwMMDw8HCboVTj8OHDPRvbWDoV77p16zj+5KOTbziOI1OoP/BsWPPip7Y9sm5dra65JEmSNF1aTuAi4jzgUGZuj4ihqdbPzA3ABoDBwcEcGpryLqbF8PAwvRrbWDoV74oVK1hy1W0t19+z9sqm66958VHW73zqR3HP2ivJzJaPLUmSJM1U7dyBewXw2og4FzgB+Cngw8BJETG7uAu3CNjXfpiSJEmSpJbfgcvMd2bmosxcClwIfDEz3wh8CXh9sdkq4LNtRylJkiRJqmQcuKuAP4yIXTTeibuugmNIkiRJUt9ptxMTADJzGBgu5ncDZ3Ziv5IkSZKkp3QkgZM0fSLifuAx4BhwNDMHI2IecDOwFLgfuCAzH+lWjJIkSapGFY9QSqreisx8aWYOFstXA1szcxmwtViWJEnSDGMCJ80MK4GNxfxG4PzuhSLNTBFxf0TsjIg7I2JbUTYvIrZExLeLz7ndjlOSNLOZwEn1k8A/RsT2iFhdlA1k5v5i/gAw0J3QpBnPu9+SpK7yHTipfn4lM/dFxPOBLRHxzfLKzMyIGHMk9CLhWw0wMDDA8PDwuAdZtGgRa04+2nKQR9atm3D/7Th8+HBl+25Xr8ZWdVzr1q3j+BZ/Xp4/e1FPXrMmrQSGivmNNDr0uqpbwUiSZj4TOPWeWccRES1XP3nhYvbv/V4HA+otmbmv+DwUEZ+h0evrwYhYkJn7I2IBcGicuhuADQCDg4M5NDQ07nHWr1/PRx88reU496y9kswx88i2DQ8PM1Hs3dSrsVUd14oVK1hy1W0t1b3ieXt5wxve0OGIKjFy9zuBjxftadK73/7hpHr9Glsf/+FE6msmcOo9x55o+RdBgD1rz+tgML0lIk4EfiIzHyvmXwW8B9gMrAKuLT4/270opRmrpbvf/uGkev0aW5/84UTSKCZwUr0MAJ8p7lDOBv42M/8hIr4G3BIRlwJ7gAu6GKM0I7Vz91uSpE6xE5MZbMGiU4iIlib1pszcnZkvKaYXZub7ivKHMvPszFyWma/MzIe7Has0k0TEiRHxnJF5Gne/7+Kpu9/g3W+poyLi+og4FBF3lcrs+VV9zztwM9iBfQ+0/GjFTH4MUZJa4N1vafp9Evhz4IZS2UjPr9dGxNXFsh0Hqa+YwEmSNInM3A28ZIzyh4Czpz8iaebLzC9HxNJRxfb8qr5nAidJkqS6aGrc02Z6fx3pIbSd3jyh0ftrq/XbqTtR/YFnw5oXT7zfqo5ddd2BZ7fXA2snzrvbPbiawEmSJKl2Jhr3tJneX0d6CG2nN09o9P7a+isrrdedqP6aFx9l/c6Jf82v6thV113z4qNceWV3r3lVvf02y05MJEmSVBcHix5fsedX9SsTOEmSJNWFPb+qu2Yd13Iv7wsWndKREHyEUpIkST0nIm6i0WHJ/IjYC7wbuBZ7flU3HXui6728t5zARcRiGt26DgAJbMjMD0fEPOBmYClwP3BBZj7SfqiSJEnqF5l50Tir7PlVfa2dRyiPAmsy83TgLOCyiDidp8bnWAZsLZYlSZIkSW1qOYHLzP2Z+fVi/jHgXmAhjfE5NhabbQTObzNGSZIkSRIdegeuGGTxDOAOOjg+Ry8YGSOkLsrxdnuMjGbrjx6rZCaMzyFJkiRVoe0ELiLmAJ8C3pGZP4yIJ9e1Oz5HLxgZI6QuyvG2M67JdI4NMnqskpkwPockSZJUhbaGEYiI42gkbzdm5qeLYsfnkCRJkqQKtJzAReNW23XAvZn5wdIqx+eQJEmSpAq08wjlK4CLgZ0RcWdR9i4cn0OSJEmSKtFOL5RfyczIzF/MzJcW0+cy86HMPDszl2XmKzPz4U4G3E8WLDplyiO8b9++/cl5SZIkSTNLR3qhVDUO7Htgyp15HH/y0SfrdGq0d0mSJEm9oa1OTCRJkiRJ08cETpIkSZJqwgROkiRJkmrCBE6SJEmSasIETpIkSZJqwgROM8+s46Y8/MLItGDRKd2OXpIkSRqXwwho5jn2xJSHXxjh0AuSJEnqZd6BkyRJkqSaMIGTJEmSpJowgZMkSZKkmjCBkyRJkqSaMIGTJEmSpJowgZMkSZKkmjCBkyRJkqSaMIGTJEmSpJqoLIGLiHMi4r6I2BURV1d1nF63YNEpRERLkzRVtjtp+tnupOlnu1M/m13FTiNiFvAXwK8De4GvRcTmzLynlf0tWHQKB/Y90FIsJy9czP6932upbicc2PcAS666raW6e9ae1+FoNJN1ut1JmpztTpp+tjv1u0oSOOBMYFdm7gaIiE3ASqClhtXNJGjHjp2sWLGirX1I06Sj7U5SU2x30vSz3amvRWZ2fqcRrwfOycy3FcsXAy/PzMtL26wGVheLvwDc1/FAOmM+8P1uBzEFdYsX6hXzksx8XreDGEsF7a6Xvxdjm7pejQsmj8121xuMrTW9Gpvtrne/m07w3OqpqXZX1R24SWXmBmBDt47frIjYlpmD3Y6jWXWLF+oZc11Npd318vdibFPXq3FBb8fWCba76hnb1PVqXJ3STLubydfAc5vZqurEZB+wuLS8qCiTVB3bnTT9bHfS9LPdqa9VlcB9DVgWEadGxPHAhcDmio4lqcF2J00/2500/Wx36muVPEKZmUcj4nLgC8As4PrMvLuKY02Dnn/Mc5S6xQv1jLnnVNDuevl7Mbap69W4oLdjm5DtrmcY29T1alyT6mC7q+01aILnNoNV0omJJEmSJKnzKhvIW5IkSZLUWSZwkiRJklQTfZ/ARcT1EXEoIu4qlX0gIr4ZETsi4jMRcVJp3TsjYldE3BcRr+6ReN9bxHpnRPxjRPxMUR4R8ZEi3h0R8bJeiLe0bk1EZETM75V4+0VEnFP8DO+KiKvHWP+siLi5WH9HRCwtrausDTQR1x9GxD3Fz8fWiFhSWnesaAN3RkTHX2ZvIrZLIuLBUgxvK61bFRHfLqZVXYjtQ6W4vhURj5bWVXbdJmr/xfpx23zV16wbbHeVxGa7e+ZxbXeTmOy7q4OxvueImBcRW4rvb0tEzC3Kx/3Oe1FELI6ILxX/7twdEX9QlM+I8+uIzOzrCfhV4GXAXaWyVwGzi/m1wNpi/nTgG8CzgFOB7wCzeiDenyrN/z7wsWL+XODzQABnAXf0wvUtyhfTePl4DzC/V+Lth4nGC9/fAX4WOL74mT591Da/V/o5uhC4uZivrA00GdcK4CeL+d8diatYPtzla3YJ8Odj1J0H7C4+5xbzc6cztlHbX0Hjhf/puG5jtv/S+jHbfNXXrBuT7a6y2Gx3zzyW7a6D312vTmN9z8D7gauL+at56vfXWv1+BSwAXlbMPwf4VvHv4Iw4v05MfX8HLjO/DDw8quwfM/NosXg7jfFFAFYCmzLz8cz8LrALOHPagmXceH9YWjwRGOmZZiVwQzbcDpwUEQumJ9InY3tGvIUPAX/EU7FCD8TbJ84EdmXm7sw8Amyice3LVgIbi/lbgbMjIqi2DUwaV2Z+KTN/VCyW22bVmrlm43k1sCUzH87MR4AtwDldjO0i4KYOHn9cE7T/EeO1+aqvWTfY7iqIbQK2u/H1U7sbSzs/Vz1jnO+5/G/IRuD8Unltfr/KzP2Z+fVi/jHgXmAhM+T8OqHvE7gmvJVGVg+NH54HSuv2FmVdFxHvi4gHgDcCf1wU92S8EbES2JeZ3xi1qifjnYGauc5PblP8MeMHwHObrFtlXGWX8lTbBDghIrZFxO0RcX6HYppqbK8rHt+4NSJGBpmt+ue66f0Xj76dCnyxVFzldZvMeLHPxH8LbHfVxWa7m5p+andjmcnnOZCZ+4v5A8BAMV/bc47Go+RnAHcwA8+vVSZwE4iIa4CjwI3djmUymXlNZi6mEevl3Y5nPBHxk8C7eCrJlKYsIt4EDAIfKBUvycxB4LeBP4uIF0xzWH8PLM3MX6Txl+uNk2zfDRcCt2bmsVJZt6+basJ21zLbnaZdZiZPf8qpdiJiDvAp4B2jnjabEefXDhO4cUTEJcB5wBuLHxKAfTTe3RqxqCjrJTcCryvmezHeF9D4S+Q3IuJ+GjF9PSJOpjfjnYmauc5PbhMRs4GfBh5qsm6VcRERrwSuAV6bmY+PlGfmvuJzNzBM4y92nTJpbJn5UCmeTwDLm61bdWwlFzLqMa6Kr9tkxot9Jv5bYLurIDbbXUv6qd2NZSaf58GRRweLz0NFee3OOSKOo5G83ZiZny6KZ8z5tW2iF+T6ZQKW8vSXQM8B7gGeN2q7F/L0F8l3M82dmIwT77LS/BU0/tIH8Bs8/aXOr/bC9R217n6e6sSkJ+Kd6RMwu/jZPZWnXuB+4ahtLuPpnSncUsxX1gaajOsMGi+fLxtVPhd4VjE/H/g2HXwpvcnYFpTmfwu4vZifB3y3iHFuMT9vOmMrtjutaG8xXdet2O9E7X/MNl/1NevGZLurLDbb3djx2e7a/O7qMI3+nmncHS938vH+ib7zXp2KOG8A/mxU+Yw4v45co24H0O2Jxl/F9gNP0Hhm9lIaL4g/ANxZTB8rbX9N8R/ZfcBreiTeTwF3ATtoPE6ysNg2gL8o4t0JDPZCvKPW389TCVzX4+2XiUaPTd8qrvU1Rdl7aPx1HeAE4O+KtvBV4GdLdStrA03E9U/AwVLb3FyU/3LxM/ON4vPSTsbVZGz/E7i7iOFLwGmlum8truUu4C3THVux/CfAtaPqVXrdxvn36u3A24v147b5qq9ZNybbne1uOq6b7a61765u0zjf83OBrTT+KPBPFAn4RN95L07Ar9B4PHJH6d+dc2fK+XViiuLEJUmSJEk9znfgJEmSJKkmTOAkSZIkqSZM4CRJkiSpJkzgJEmSJKkmTOAkSZIkqSZM4CRJkiSpJkzgJEmSJKkmTOAkSZIkqSZM4CRJkiSpJkzgJEmSJKkmTOAkSZIkqSZM4CRJkiSpJkzgJEmSJKkmTOAkSZIkqSZM4CRJkiSpJkzgJEmSJKkmTOAkSZIkqSZM4CRJkiSpJkzgJEmSJKkmTOAkSZIkqSZM4FoQEfdHxI8j4rGIeDQi/jki3h4RP1Gs/2REHImIw6XpG6P2Maco/3yp7O7S9sci4t9Ly++KiEsi4ivjxPPKSWK+pNjn4VHTz0TEP0TEe8aoszIiDkTE7InOKSKWRkRGxOdG1f+biPiTiHhjqc6PI+I/yvuZ2tWXJEmS+pcJXOt+MzOfAywBrgWuAq4rrX9/Zs4pTS8ZVf91wOPAr0fEyQCZ+cKR7YH/C1xeqv+nHYj5X0bFNCcz/xXYCLwpImLU9hcDN2bm0SbP6eUR8cujD5qZN5bO6zXAv5b304HzkiRJkvqCCVybMvMHmbkZeAOwKiJe1GTVVcDHgB3Am6qKr0n/G3gu8F9GCiJiLnAecMMU9vN+4H0djUySJEnSk0zgOiQzvwrspZQEjScilgBDwI3F9OZKg5tEZv4YuGVUHBcA38zMb4xda0x/Cfz8ZI9zSpIkSWqNCVxn/Sswr5i/sng/bmTaWNruYmBHZt4DbAJeGBFnNHmMs0bt91HglBbrfqe0biPw+og4oVh+c1FWNtE5AfyYxh24/9FkPJIkSZKmwASusxYCDxfz6zLzpNK0qrTdm2nceSMz9wH/h8Yjlc24fdR+TwK+12LdF4ysyMyvAN8Hzo+IFwBnAn87qv5E5zTiE8BARPxmkzFJkiRJapIJXIdExC/RSOCe0UvkqO1+GVgGvLPo4fEA8HLgtyNidvWRTugGGsnlm4AvZObBqe4gM48A/x14LzC6UxRJkiRJbTCBa1NE/FREnEfjUci/ycydk1RZBWwBTgdeWkwvAp5No4fGbroBeCXw33jm45NT8dfACcA5nQhKkiRJUoMJXOv+PiIeAx4ArgE+CLyltP6PRo2Z9v3i/bILgI9m5oHS9F0aSU+zj1G26j+PMQ7cL42szMz7gX8GTgQ2j1H/Gec01kEy8xjwxzz1PqAkSZKkDojM7HYMkiRJkqQmeAdOkiRJkmrCBG4GiYiPjfGI5OGI+Fi3Y5MkSZLUPh+hlCRJkqSa6Ha39QDMnz8/ly5dOu76f/u3f+PEE0+cvoCmwNimrlfjgslj2759+/cz83nTGJIkSZL0pJ5I4JYuXcq2bdvGXT88PMzQ0ND0BTQFxjZ1vRoXTB5bROyZvmgkSZKkp/MdOEmSJEmqCRM4SZIkSaoJEzhJkiRJqgkTOEmSJEmqCRM4SZIkSaqJSRO4iFgcEV+KiHsi4u6I+IOifF5EbImIbxefc4vyiIiPRMSuiNgRES+r+iQkSZIkqR80cwfuKLAmM08HzgIui4jTgauBrZm5DNhaLAO8BlhWTKuBv2o3yB07dhIRLU0LFp3S7uElSZIkqSdMOg5cZu4H9hfzj0XEvcBCYCUwVGy2ERgGrirKb8jMBG6PiJMiYkGxn5Y88cQRllx1W0t196w9r9XDSpIkSVJPmdI7cBGxFDgDuAMYKCVlB4CBYn4h8ECp2t6iTJIkSZLUhknvwI2IiDnAp4B3ZOYPI+LJdZmZEZFTOXBErKbxiCUDAwMMDw+Pu+2iRYtYc/LRqez+SUfWrZtw3+06fPhwpftvR6/G1qtxQW/HJkmSJDWVwEXEcTSStxsz89NF8cGRRyMjYgFwqCjfBywuVV9UlD1NZm4ANgAMDg7m0NDQuMdfv349H33wtGZCfYY9a6+k8TRnNYaHh5ko9m7q1dh6NS7o7dgkSZKkZnqhDOA64N7M/GBp1WZgVTG/CvhsqfzNRW+UZwE/aOf9N0mSJElSQzN34F4BXAzsjIg7i7J3AdcCt0TEpcAe4IJi3eeAc4FdwI+At3QyYEmSJEnqV830QvkVIMZZffYY2ydwWZtxSZIkSZJGmVIvlJIkSZKk7jGBkyRJkqSaMIGTJEmSpJowgZMkSZKkmjCBkyRJkqSaMIGTJEmSpJowgZMkSZKkmjCBkyRJkqSaMIGTJEmSpJowgZMkSZKkmjCBkyRJkqSaMIGTJEmSpJowgZMkSZKkmjCBkyRJkqSaMIGTJEmSpJowgZMkSZKkmjCBkyRJkqSaMIGTJEmSpJowgZMkSZKkmjCBkyRJkqSaMIGTJEmSpJowgZMkSZKkmjCBkyRJkqSaMIGTJEmSpJowgZMkSZKkmjCBkyRJkqSaMIGTJEmSpJowgZMkSZKkmjCBkyRJkqSaMIGTJEmSpJqYNIGLiOsj4lBE3FUq+5OI2BcRdxbTuaV174yIXRFxX0S8uqrAJUmSJKnfNHMH7pPAOWOUfygzX1pMnwOIiNOBC4EXFnX+MiJmdSpYSZIkSepnkyZwmfll4OEm97cS2JSZj2fmd4FdwJltxCdJkiRJKrTzDtzlEbGjeMRyblG2EHigtM3eokySJEmS1KbIzMk3ilgK3JaZLyqWB4DvAwm8F1iQmW+NiD8Hbs/Mvym2uw74fGbeOsY+VwOrAQYGBpZv2rRp3OMfPHiQQ0dPmOKpNRw5sIvly5e3VLcZhw8fZs6cOZXtvx29GluvxgWTx7ZixYrtmTk4jSFJkiRJT5rdSqXMPDgyHxH/C7itWNwHLC5tuqgoG2sfG4ANAIODgzk0NDTu8davX89HHzytlVDZs/ZKmklSWzU8PMxEsXdTr8bWq3FBb8cmSZIktfQIZUQsKC3+FjDSQ+Vm4MKIeFZEnAosA77aXoiSJEmSJGjiDlxE3AQMAfMjYi/wbmAoIl5K4xHK+4HfAcjMuyPiFuAe4ChwWWYeqyRySZIkSeozkyZwmXnRGMXXTbD9+4D3tROUJEmSJOmZ2umFUpIkSZI0jUzgJEmSJKkmTOAkSZIkqSZM4CRJkiSpJkzgJEmSJKkmTOAkSZIkqSZM4CRJkiSpJkzgJEmSJKkmTOAkSZIkqSZM4CRJkiSpJkzgJEmSJKkmTOAkSZIkqSZM4CRJkiSpJkzgJEmSJKkmTOAkSZIkqSZM4CRJkiSpJkzgJEmSJKkmTOAkSZIkqSZM4CRJkiSpJkzgJEmSJKkmTOAkSZIkqSZM4CRJkiSpJkzgJEmSJKkmTOAkSZIkqSZM4CRJkiSpJkzgJEmSJKkmTOAkSZIkqSZM4CRJkiSpJkzgJEmSJKkmTOAkSZIkqSZM4CRJkiSpJiZN4CLi+og4FBF3lcrmRcSWiPh28Tm3KI+I+EhE7IqIHRHxsiqDlyRJkqR+0swduE8C54wquxrYmpnLgK3FMsBrgGXFtBr4q86EKUmSJEmaNIHLzC8DD48qXglsLOY3AueXym/IhtuBkyJiQYdilSRJkqS+Fpk5+UYRS4HbMvNFxfKjmXlSMR/AI5l5UkTcBlybmV8p1m0FrsrMbWPsczWNu3QMDAws37Rp07jHP3jwIIeOnjDFU2s4cmAXy5cvb6luMw4fPsycOXMq2387ejW2Xo0LJo9txYoV2zNzcBpDkiRJkp40u90dZGZGxORZ4DPrbQA2AAwODubQ0NC4265fv56PPnhaS/HtWXslzSSprRoeHmai2LupV2Pr1bigt2OTJEmSWu2F8uDIo5HF56GifB+wuLTdoqJMkiRJktSmVhO4zcCqYn4V8NlS+ZuL3ijPAn6QmfvbjFGakgWLTiEiWpp27NjZ7fAlSZKkcU36CGVE3AQMAfMjYi/wbuBa4JaIuBTYA1xQbP454FxgF/Aj4C0VxCxN6MC+B1hy1W0t1X3iiW92OBpJkiSpcyZN4DLzonFWnT3Gtglc1m5QkiRJkqRnavURSkmSJEnSNDOBkyRJkqSaMIGTJEmSpJowgZMkSZKkmjCBkyRJkqSaMIGTJEmSpJowgZMkSZKkmjCBkyRJkqSaMIGTJEmSpJowgZMkSZKkmjCBkyRJkqSaMIGTJEmSpJowgZMkSZKkmjCBkyRJkqSaMIGTJEmSpJowgZMkSZKkmjCBkyRJkqSaMIGTJEmSpJowgZMkSZKkmjCBkyRJkqSaMIGTJEmSpJowgZMkSZKkmjCBkyRJkqSaMIGTJEmSpJowgZMkSZKkmjCBkyRJkqSaMIGTJEmSpJowgZMkSZKkmjCBkyRJkqSaMIGTJEmSpJqY3U7liLgfeAw4BhzNzMGImAfcDCwF7gcuyMxH2gtTkiRJktSJO3ArMvOlmTlYLF8NbM3MZcDWYlmSJEmS1KYqHqFcCWws5jcC51dwDEmSJEnqO5GZrVeO+C7wCJDAxzNzQ0Q8mpknFesDeGRkeVTd1cBqgIGBgeWbNm0a9zgHDx7k0NETWorxyIFdLF++vKW6zTh8+DBz5sypbP/t6NXYqo5r+/btHH/yz7VU9/mz/52BgYFx169YsWJ76W6zJEmSNK3aTeAWZua+iHg+sAW4AthcTtgi4pHMnDvRfgYHB3Pbtm3jrl+/fj0fffC0lmLcs/Y82jnHyQwPDzM0NFTZ/tvRq7FVHVdEsOSq21qqe8XzvsmaNWsm2rcJnCRJkrqmrUcoM3Nf8XkI+AxwJnAwIhYAFJ+H2g1SkiRJktRGAhcRJ0bEc0bmgVcBdwGbgVXFZquAz7YbpCRJkiSpvWEEBoDPNF5zYzbwt5n5DxHxNeCWiLgU2ANc0H6YkiRJkqSWE7jM3A28ZIzyh4Cz2wlKkiRJkvRMVQwjIEmSJEmqgAmcJEmSJNWECZwkSZIk1YQJnCRJkiTVhAmcJEmSJNWECZwkSZIk1YQJnCRJkiTVhAmcJEmSJNWECZwkSZIk1YQJnCRJkiTVhAmcJEmSJNWECZwkSZIk1YQJnCRJkiTVhAmcJEmSJNWECZwkSZIk1YQJnCRJkiTVhAmcJEmSJNWECZwkSZIk1YQJnCRJkiTVhAmcJEmSJNWECZwkSZIk1YQJnCRJkiTVhAmcJEmSJNWECZwkSZIk1YQJnCRJkiTVhAmcJEmSJNWECZwkSZIk1YQJnCRJkiTVhAmcJEmSJNWECZwkSZIk1URlCVxEnBMR90XEroi4uqrjSJIkSVK/qCSBi4hZwF8ArwFOBy6KiNOrOJYkSZIk9Yuq7sCdCezKzN2ZeQTYBKys6FiSJEmS1BciMzu/04jXA+dk5tuK5YuBl2fm5aVtVgOri8VfAO6bYJfzge93PNDOMLap69W4YPLYlmTm86YrGEmSJKlsdrcOnJkbgA3NbBsR2zJzsOKQWmJsU9ercUFvxyZJkiRV9QjlPmBxaXlRUSZJkiRJalFVCdzXgGURcWpEHA9cCGyu6FiSJEmS1BcqeYQyM49GxOXAF4BZwPWZeXcbu2zqUcsuMbap69W4oLdjkyRJUp+rpBMTSZIkSVLnVTaQtyRJkiSps0zgJEmSJKkmup7ARcQ5EXFfROyKiKvHWP+siLi5WH9HRCwtrXtnUX5fRLx6muP6w4i4JyJ2RMTWiFhSWncsIu4spo533tJEbJdExIOlGN5WWrcqIr5dTKu6ENuHSnF9KyIeLa2r7LpFxPURcSgi7hpnfUTER4q4d0TEy0rrKr1mkiRJUrO6+g5cRMwCvgX8OrCXRu+VF2XmPaVtfg/4xcx8e0RcCPxWZr4hIk4HbgLOBH4G+Cfg5zPz2DTFtQK4IzN/FBG/Cwxl5huKdYczc067cbQR2yXAYHng9KJ8HrANGAQS2A4sz8xHpiu2UdtfAZyRmW8tlqu8br8KHAZuyMwXjbH+XOAK4Fzg5cCHM/PlVV8zSZIkaSq6fQfuTGBXZu7OzCPAJmDlqG1WAhuL+VuBsyMiivJNmfl4Zn4X2FXsb1riyswvZeaPisXbaYx1Nx2auWbjeTWwJTMfLhKQLcA5XYztIhpJeOUy88vAwxNsspJGcpeZeTtwUkQsoPprJkmSJDWt2wncQuCB0vLeomzMbTLzKPAD4LlN1q0yrrJLgc+Xlk+IiG0RcXtEnN+hmKYa2+uKRwFvjYiRQdWrvGZT2n/xyOmpwBdLxVVet8mMF3vV10ySJElqWiXjwPWTiHgTjcfr/mupeElm7ouInwW+GBE7M/M70xjW3wM3ZebjEfE7NO5g/to0Hr8ZFwK3jnrktdvXTZIkSepp3b4Dtw9YXFpeVJSNuU1EzAZ+GnioybpVxkVEvBK4BnhtZj4+Up6Z+4rP3cAwcEaH4moqtsx8qBTPJ4DlzdatOraSCxn1+GTF120y48Ve9TWTJEmSmtbtBO5rwLKIODUijqfxS/3o3gc3AyM9/70e+GI2el7ZDFxY9FJ5KrAM+Op0xRURZwAfp5G8HSqVz42IZxXz84FXAGN24lFhbAtKi68F7i3mvwC8qohxLvCqomzaYiviOw2YC/xLqazq6zaZzcCbi94ozwJ+kJn7qf6aSZIkSU3r6iOUmXk0Ii6n8QvxLOD6zLw7It4DbMvMzcB1wF9HxC4anVBcWNS9OyJuofFL/lHgsk70QDmFuD4AzAH+rtGnCt/LzNcC/wn4eET8B40E+drxemGsMLbfj4jX0rguDwOXFHUfjoj30ki0AN6TmRN17FFFbND4Djfl07tArfS6RcRNwBAwPyL2Au8Gjivi/hjwORo9UO4CfgS8pVhX6TWTJEmSpqKrwwhIkiRJkprX7UcoJUmSJElNMoGTJEmSpJowgZMkSZKkmjCBkyRJkqSaMIGTJEmSpJowgZMkSZKkmjCBkyRJkqSa+P9bBK2iEnpvsgAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "