forked from rusticata/tls-parser
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tls.rs
997 lines (885 loc) · 30.9 KB
/
tls.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
//! # TLS parser
//! Parsing functions for the TLS protocol, supporting versions 1.0 to 1.3
use alloc::{vec, vec::Vec};
use core::convert::TryInto;
use core::fmt;
use core::ops::Deref;
use nom::branch::alt;
use nom::bytes::streaming::take;
use nom::combinator::{complete, cond, map, map_parser, opt, verify};
use nom::error::{make_error, ErrorKind};
use nom::multi::{length_count, length_data, many0, many1};
use nom::number::streaming::{be_u16, be_u24, be_u32, be_u8};
use nom_derive::*;
use rusticata_macros::newtype_enum;
use crate::tls_alert::*;
use crate::tls_ciphers::*;
use crate::tls_ec::ECPoint;
pub use nom::{Err, IResult};
/// Max record size (RFC8446 5.1)
pub const MAX_RECORD_LEN: u16 = 1 << 14;
/// Handshake type
///
/// Handshake types are defined in [RFC5246](https://tools.ietf.org/html/rfc5246) and
/// the [IANA HandshakeType
/// Registry](https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-7)
#[derive(Clone, Copy, PartialEq, Eq, NomBE)]
pub struct TlsHandshakeType(pub u8);
newtype_enum! {
impl debug TlsHandshakeType {
HelloRequest = 0x00,
ClientHello = 0x01,
ServerHello = 0x02,
HelloVerifyRequest = 0x03,
NewSessionTicket = 0x04,
EndOfEarlyData = 0x05,
HelloRetryRequest = 0x06,
EncryptedExtensions = 0x08,
Certificate = 0x0b,
ServerKeyExchange = 0x0c,
CertificateRequest = 0x0d,
ServerDone = 0x0e,
CertificateVerify = 0x0f,
ClientKeyExchange = 0x10,
Finished = 0x14,
CertificateURL = 0x15,
CertificateStatus = 0x16,
KeyUpdate = 0x18,
NextProtocol = 0x43,
}
}
impl From<TlsHandshakeType> for u8 {
fn from(v: TlsHandshakeType) -> u8 {
v.0
}
}
/// TLS version
///
/// Only the TLS version defined in the TLS message header is meaningful, the
/// version defined in the record should be ignored or set to TLS 1.0
#[derive(Clone, Copy, Default, PartialEq, Eq, NomBE)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct TlsVersion(pub u16);
impl TlsVersion {
pub const fn to_be_bytes(&self) -> [u8; 2] {
self.0.to_be_bytes()
}
}
newtype_enum! {
impl debug TlsVersion {
Ssl30 = 0x0300,
Tls10 = 0x0301,
Tls11 = 0x0302,
Tls12 = 0x0303,
Tls13 = 0x0304,
Tls13Draft18 = 0x7f12,
Tls13Draft19 = 0x7f13,
Tls13Draft20 = 0x7f14,
Tls13Draft21 = 0x7f15,
Tls13Draft22 = 0x7f16,
Tls13Draft23 = 0x7f17,
DTls10 = 0xfeff,
DTls11 = 0xfefe,
DTls12 = 0xfefd,
}
}
impl From<TlsVersion> for u16 {
fn from(v: TlsVersion) -> u16 {
v.0
}
}
impl fmt::LowerHex for TlsVersion {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{:x}", self.0)
}
}
/// Heartbeat type, as defined in [RFC6520](https://tools.ietf.org/html/rfc6520) section 3
#[derive(Clone, Copy, PartialEq, Eq, NomBE)]
pub struct TlsHeartbeatMessageType(pub u8);
newtype_enum! {
impl debug TlsHeartbeatMessageType {
HeartBeatRequest = 0x1,
HeartBeatResponse = 0x2,
}
}
impl From<TlsHeartbeatMessageType> for u8 {
fn from(v: TlsHeartbeatMessageType) -> u8 {
v.0
}
}
/// Content type, as defined in IANA TLS ContentType registry
#[derive(Clone, Copy, PartialEq, Eq, NomBE)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct TlsRecordType(pub u8);
newtype_enum! {
impl debug TlsRecordType {
ChangeCipherSpec = 0x14,
Alert = 0x15,
Handshake = 0x16,
ApplicationData = 0x17,
Heartbeat = 0x18,
}
}
impl From<TlsRecordType> for u8 {
fn from(v: TlsRecordType) -> u8 {
v.0
}
}
#[derive(Clone, Copy, Default, PartialEq, Eq, NomBE)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct TlsCompressionID(pub u8);
newtype_enum! {
impl debug TlsCompressionID {
Null = 0x00,
Deflate = 0x01,
}
}
impl From<TlsCompressionID> for u8 {
fn from(c: TlsCompressionID) -> u8 {
c.0
}
}
impl Deref for TlsCompressionID {
type Target = u8;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl AsRef<u8> for TlsCompressionID {
fn as_ref(&self) -> &u8 {
&self.0
}
}
#[derive(Clone, Copy, Default, PartialEq, Eq, NomBE)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct TlsCipherSuiteID(pub u16);
impl TlsCipherSuiteID {
pub fn get_ciphersuite(self) -> Option<&'static TlsCipherSuite> {
TlsCipherSuite::from_id(self.0)
}
}
impl From<TlsCipherSuiteID> for u16 {
fn from(c: TlsCipherSuiteID) -> u16 {
c.0
}
}
impl Deref for TlsCipherSuiteID {
type Target = u16;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl AsRef<u16> for TlsCipherSuiteID {
fn as_ref(&self) -> &u16 {
&self.0
}
}
impl fmt::Display for TlsCipherSuiteID {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.0)
}
}
impl fmt::Debug for TlsCipherSuiteID {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match TlsCipherSuite::from_id(self.0) {
Some(c) => write!(f, "0x{:04x}({})", self.0, c.name),
None => write!(f, "0x{:04x}(Unknown cipher)", self.0),
}
}
}
impl fmt::LowerHex for TlsCipherSuiteID {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{:x}", self.0)
}
}
/// A trait that both TLS & DTLS satisfy
pub trait ClientHello<'a> {
/// TLS version of message
fn version(&self) -> TlsVersion;
fn random(&self) -> &'a [u8];
// Get the first part (4 bytes) of random
fn rand_time(&self) -> u32 {
self.random()
.try_into()
.map(u32::from_be_bytes)
.unwrap_or(0)
}
// Get the second part (28 bytes) of random
fn rand_bytes(&self) -> &'a [u8] {
self.random().get(4..).unwrap_or(&[])
}
fn session_id(&self) -> Option<&'a [u8]>;
/// A list of ciphers supported by client
fn ciphers(&self) -> &Vec<TlsCipherSuiteID>;
fn cipher_suites(&self) -> Vec<Option<&'static TlsCipherSuite>> {
self.ciphers()
.iter()
.map(|&x| x.get_ciphersuite())
.collect()
}
/// A list of compression methods supported by client
fn comp(&self) -> &Vec<TlsCompressionID>;
fn ext(&self) -> Option<&'a [u8]>;
}
/// TLS Client Hello (from TLS 1.0 to TLS 1.2)
///
/// Some fields are unparsed (for performance reasons), for ex to parse `ext`,
/// call the `parse_tls_extensions` function.
#[derive(Clone, PartialEq)]
pub struct TlsClientHelloContents<'a> {
/// TLS version of message
pub version: TlsVersion,
pub random: &'a [u8],
pub session_id: Option<&'a [u8]>,
/// A list of ciphers supported by client
pub ciphers: Vec<TlsCipherSuiteID>,
/// A list of compression methods supported by client
pub comp: Vec<TlsCompressionID>,
pub ext: Option<&'a [u8]>,
}
impl<'a> TlsClientHelloContents<'a> {
pub fn new(
v: u16,
random: &'a [u8],
sid: Option<&'a [u8]>,
c: Vec<TlsCipherSuiteID>,
co: Vec<TlsCompressionID>,
e: Option<&'a [u8]>,
) -> Self {
TlsClientHelloContents {
version: TlsVersion(v),
random,
session_id: sid,
ciphers: c,
comp: co,
ext: e,
}
}
pub fn get_version(&self) -> TlsVersion {
self.version
}
pub fn get_ciphers(&self) -> Vec<Option<&'static TlsCipherSuite>> {
self.ciphers.iter().map(|&x| x.get_ciphersuite()).collect()
}
}
impl<'a> ClientHello<'a> for TlsClientHelloContents<'a> {
fn version(&self) -> TlsVersion {
self.version
}
fn random(&self) -> &'a [u8] {
self.random
}
fn session_id(&self) -> Option<&'a [u8]> {
self.session_id
}
fn ciphers(&self) -> &Vec<TlsCipherSuiteID> {
&self.ciphers
}
fn comp(&self) -> &Vec<TlsCompressionID> {
&self.comp
}
fn ext(&self) -> Option<&'a [u8]> {
self.ext
}
}
/// TLS Server Hello (from TLS 1.0 to TLS 1.2)
#[derive(Clone, PartialEq)]
pub struct TlsServerHelloContents<'a> {
pub version: TlsVersion,
pub random: &'a [u8],
pub session_id: Option<&'a [u8]>,
pub cipher: TlsCipherSuiteID,
pub compression: TlsCompressionID,
pub ext: Option<&'a [u8]>,
}
/// TLS Server Hello (TLS 1.3 draft 18)
#[derive(Clone, PartialEq)]
pub struct TlsServerHelloV13Draft18Contents<'a> {
pub version: TlsVersion,
pub random: &'a [u8],
pub cipher: TlsCipherSuiteID,
pub ext: Option<&'a [u8]>,
}
/// TLS Hello Retry Request (TLS 1.3)
#[derive(Clone, PartialEq)]
pub struct TlsHelloRetryRequestContents<'a> {
pub version: TlsVersion,
pub cipher: TlsCipherSuiteID,
pub ext: Option<&'a [u8]>,
}
impl<'a> TlsServerHelloContents<'a> {
pub fn new(
v: u16,
random: &'a [u8],
sid: Option<&'a [u8]>,
c: u16,
co: u8,
e: Option<&'a [u8]>,
) -> Self {
TlsServerHelloContents {
version: TlsVersion(v),
random,
session_id: sid,
cipher: TlsCipherSuiteID(c),
compression: TlsCompressionID(co),
ext: e,
}
}
pub fn get_version(&self) -> TlsVersion {
self.version
}
pub fn get_cipher(&self) -> Option<&'static TlsCipherSuite> {
self.cipher.get_ciphersuite()
}
}
/// Session ticket, as defined in [RFC5077](https://tools.ietf.org/html/rfc5077)
#[derive(Clone, Debug, PartialEq)]
pub struct TlsNewSessionTicketContent<'a> {
pub ticket_lifetime_hint: u32,
pub ticket: &'a [u8],
}
/// A raw certificate, which should be a DER-encoded X.509 certificate.
///
/// See [RFC5280](https://tools.ietf.org/html/rfc5280) for X509v3 certificate format.
#[derive(Clone, PartialEq)]
pub struct RawCertificate<'a> {
pub data: &'a [u8],
}
/// The certificate chain, usually composed of the certificate, and all
/// required certificate authorities.
#[derive(Clone, Debug, PartialEq)]
pub struct TlsCertificateContents<'a> {
pub cert_chain: Vec<RawCertificate<'a>>,
}
/// Certificate request, as defined in [RFC5246](https://tools.ietf.org/html/rfc5246) section 7.4.4
///
/// Note: TLS 1.2 adds SignatureAndHashAlgorithm (chapter 7.4.4) but do not declare it in A.4.2
#[derive(Clone, Debug, PartialEq)]
pub struct TlsCertificateRequestContents<'a> {
pub cert_types: Vec<u8>,
pub sig_hash_algs: Option<Vec<u16>>,
/// A list of DER-encoded distinguished names. See
/// [X.501](http://www.itu.int/rec/T-REC-X.501/en)
pub unparsed_ca: Vec<&'a [u8]>,
}
/// Server key exchange parameters
///
/// This is an opaque struct, since the content depends on the selected
/// key exchange method.
#[derive(Clone, PartialEq)]
pub struct TlsServerKeyExchangeContents<'a> {
pub parameters: &'a [u8],
}
/// Client key exchange parameters
///
/// Content depends on the selected key exchange method.
#[derive(Clone, PartialEq)]
pub enum TlsClientKeyExchangeContents<'a> {
Dh(&'a [u8]),
Ecdh(ECPoint<'a>),
Unknown(&'a [u8]),
}
/// Certificate status response, as defined in [RFC6066](https://tools.ietf.org/html/rfc6066) section 8
#[derive(Clone, Debug, PartialEq)]
pub struct TlsCertificateStatusContents<'a> {
pub status_type: u8,
pub blob: &'a [u8],
}
/// Next protocol response, defined in
/// [draft-agl-tls-nextprotoneg-03](https://tools.ietf.org/html/draft-agl-tls-nextprotoneg-03)
#[derive(Clone, Debug, PartialEq)]
pub struct TlsNextProtocolContent<'a> {
pub selected_protocol: &'a [u8],
pub padding: &'a [u8],
}
/// Key update request (TLS 1.3)
#[derive(Copy, Clone, PartialEq, Eq)]
pub struct KeyUpdateRequest(pub u8);
newtype_enum! {
impl KeyUpdateRequest {
NotRequested = 0x0,
Requested = 0x1,
}
}
/// Generic handshake message
#[derive(Clone, Debug, PartialEq)]
pub enum TlsMessageHandshake<'a> {
HelloRequest,
ClientHello(TlsClientHelloContents<'a>),
ServerHello(TlsServerHelloContents<'a>),
ServerHelloV13Draft18(TlsServerHelloV13Draft18Contents<'a>),
NewSessionTicket(TlsNewSessionTicketContent<'a>),
EndOfEarlyData,
HelloRetryRequest(TlsHelloRetryRequestContents<'a>),
Certificate(TlsCertificateContents<'a>),
ServerKeyExchange(TlsServerKeyExchangeContents<'a>),
CertificateRequest(TlsCertificateRequestContents<'a>),
ServerDone(&'a [u8]),
CertificateVerify(&'a [u8]),
ClientKeyExchange(TlsClientKeyExchangeContents<'a>),
Finished(&'a [u8]),
CertificateStatus(TlsCertificateStatusContents<'a>),
NextProtocol(TlsNextProtocolContent<'a>),
KeyUpdate(u8),
}
/// TLS application data
///
/// Since this message can only be sent after the handshake, data is
/// stored as opaque.
#[derive(Clone, Debug, PartialEq)]
pub struct TlsMessageApplicationData<'a> {
pub blob: &'a [u8],
}
/// TLS heartbeat message, as defined in [RFC6520](https://tools.ietf.org/html/rfc6520)
///
/// Heartbeat messages should not be sent during handshake, but in practise
/// they can (and this caused heartbleed).
#[derive(Clone, Debug, PartialEq)]
pub struct TlsMessageHeartbeat<'a> {
pub heartbeat_type: TlsHeartbeatMessageType,
pub payload_len: u16,
pub payload: &'a [u8],
}
/// TLS record header
#[derive(Clone, Copy, PartialEq, NomBE)]
pub struct TlsRecordHeader {
pub record_type: TlsRecordType,
pub version: TlsVersion,
pub len: u16,
}
/// TLS plaintext message
///
/// Plaintext records can only be found during the handshake.
#[derive(Clone, Debug, PartialEq)]
pub enum TlsMessage<'a> {
Handshake(TlsMessageHandshake<'a>),
ChangeCipherSpec,
Alert(TlsMessageAlert),
ApplicationData(TlsMessageApplicationData<'a>),
Heartbeat(TlsMessageHeartbeat<'a>),
}
/// TLS plaintext record
///
/// A TLS record can contain multiple messages (sharing the same record type).
/// Plaintext records can only be found during the handshake.
#[derive(Clone, Debug, PartialEq)]
pub struct TlsPlaintext<'a> {
pub hdr: TlsRecordHeader,
pub msg: Vec<TlsMessage<'a>>,
}
/// TLS encrypted data
///
/// This struct only contains an opaque pointer (data are encrypted).
#[derive(Clone, Debug, PartialEq)]
pub struct TlsEncryptedContent<'a> {
pub blob: &'a [u8],
}
/// Encrypted TLS record (containing opaque data)
#[derive(Clone, Debug, PartialEq)]
pub struct TlsEncrypted<'a> {
pub hdr: TlsRecordHeader,
pub msg: TlsEncryptedContent<'a>,
}
/// Tls Record with raw (unparsed) data
///
/// Use `parse_tls_raw_record` to parse content
#[derive(Clone, Debug, PartialEq)]
pub struct TlsRawRecord<'a> {
pub hdr: TlsRecordHeader,
pub data: &'a [u8],
}
pub(crate) fn parse_cipher_suites(i: &[u8], len: usize) -> IResult<&[u8], Vec<TlsCipherSuiteID>> {
if len == 0 {
return Ok((i, Vec::new()));
}
if len % 2 == 1 || len > i.len() {
return Err(Err::Error(make_error(i, ErrorKind::LengthValue)));
}
let v = (i[..len])
.chunks(2)
.map(|chunk| TlsCipherSuiteID((chunk[0] as u16) << 8 | chunk[1] as u16))
.collect();
Ok((&i[len..], v))
}
pub(crate) fn parse_compressions_algs(
i: &[u8],
len: usize,
) -> IResult<&[u8], Vec<TlsCompressionID>> {
if len == 0 {
return Ok((i, Vec::new()));
}
if len > i.len() {
return Err(Err::Error(make_error(i, ErrorKind::LengthValue)));
}
let v = (i[..len]).iter().map(|&it| TlsCompressionID(it)).collect();
Ok((&i[len..], v))
}
pub(crate) fn parse_tls_versions(i: &[u8]) -> IResult<&[u8], Vec<TlsVersion>> {
let len = i.len();
if len == 0 {
return Ok((i, Vec::new()));
}
if len % 2 == 1 || len > i.len() {
return Err(Err::Error(make_error(i, ErrorKind::LengthValue)));
}
let v = (i[..len])
.chunks(2)
.map(|chunk| TlsVersion((chunk[0] as u16) << 8 | chunk[1] as u16))
.collect();
Ok((&i[len..], v))
}
fn parse_certs(i: &[u8]) -> IResult<&[u8], Vec<RawCertificate>> {
many0(complete(map(length_data(be_u24), |data| RawCertificate {
data,
})))(i)
}
/// Read TLS record header
///
/// This function is used to get the record header.
/// After calling this function, caller can read the expected number of bytes and use
/// `parse_tls_record_with_header` to parse content.
#[inline]
pub fn parse_tls_record_header(i: &[u8]) -> IResult<&[u8], TlsRecordHeader> {
TlsRecordHeader::parse(i)
}
#[allow(clippy::unnecessary_wraps)]
fn parse_tls_handshake_msg_hello_request(i: &[u8]) -> IResult<&[u8], TlsMessageHandshake> {
Ok((i, TlsMessageHandshake::HelloRequest))
}
fn parse_tls_handshake_msg_client_hello(i: &[u8]) -> IResult<&[u8], TlsMessageHandshake> {
let (i, version) = be_u16(i)?;
let (i, random) = take(32usize)(i)?;
let (i, sidlen) = verify(be_u8, |&n| n <= 32)(i)?;
let (i, sid) = cond(sidlen > 0, take(sidlen as usize))(i)?;
let (i, ciphers_len) = be_u16(i)?;
let (i, ciphers) = parse_cipher_suites(i, ciphers_len as usize)?;
let (i, comp_len) = be_u8(i)?;
let (i, comp) = parse_compressions_algs(i, comp_len as usize)?;
let (i, ext) = opt(complete(length_data(be_u16)))(i)?;
let content = TlsClientHelloContents::new(version, random, sid, ciphers, comp, ext);
Ok((i, TlsMessageHandshake::ClientHello(content)))
}
fn parse_tls_handshake_msg_server_hello_tlsv12<const HAS_EXT: bool>(
i: &[u8],
) -> IResult<&[u8], TlsMessageHandshake> {
map(
parse_tls_server_hello_tlsv12::<HAS_EXT>,
TlsMessageHandshake::ServerHello,
)(i)
}
pub(crate) fn parse_tls_server_hello_tlsv12<const HAS_EXT: bool>(
i: &[u8],
) -> IResult<&[u8], TlsServerHelloContents> {
let (i, version) = be_u16(i)?;
let (i, random) = take(32usize)(i)?;
let (i, sidlen) = verify(be_u8, |&n| n <= 32)(i)?;
let (i, sid) = cond(sidlen > 0, take(sidlen as usize))(i)?;
let (i, cipher) = be_u16(i)?;
let (i, comp) = be_u8(i)?;
let (i, ext) = if HAS_EXT {
opt(complete(length_data(be_u16)))(i)?
} else {
(i, None)
};
let content = TlsServerHelloContents::new(version, random, sid, cipher, comp, ext);
Ok((i, content))
}
fn parse_tls_handshake_msg_server_hello_tlsv13draft18(
i: &[u8],
) -> IResult<&[u8], TlsMessageHandshake> {
let (i, version) = TlsVersion::parse(i)?;
let (i, random) = take(32usize)(i)?;
let (i, cipher) = map(be_u16, TlsCipherSuiteID)(i)?;
let (i, ext) = opt(complete(length_data(be_u16)))(i)?;
let content = TlsServerHelloV13Draft18Contents {
version,
random,
cipher,
ext,
};
Ok((i, TlsMessageHandshake::ServerHelloV13Draft18(content)))
}
fn parse_tls_handshake_msg_server_hello(i: &[u8]) -> IResult<&[u8], TlsMessageHandshake> {
let (_, version) = be_u16(i)?;
match version {
0x7f12 => parse_tls_handshake_msg_server_hello_tlsv13draft18(i),
0x0303 => parse_tls_handshake_msg_server_hello_tlsv12::<true>(i),
0x0302 => parse_tls_handshake_msg_server_hello_tlsv12::<true>(i),
0x0301 => parse_tls_handshake_msg_server_hello_tlsv12::<true>(i),
0x0300 => parse_tls_handshake_msg_server_hello_tlsv12::<false>(i),
_ => Err(Err::Error(make_error(i, ErrorKind::Tag))),
}
}
// RFC 5077 Stateless TLS Session Resumption
fn parse_tls_handshake_msg_newsessionticket(
i: &[u8],
len: usize,
) -> IResult<&[u8], TlsMessageHandshake> {
if len < 4 {
return Err(Err::Error(make_error(i, ErrorKind::Verify)));
}
let (i, ticket_lifetime_hint) = be_u32(i)?;
let (i, ticket) = take(len - 4)(i)?;
let content = TlsNewSessionTicketContent {
ticket_lifetime_hint,
ticket,
};
Ok((i, TlsMessageHandshake::NewSessionTicket(content)))
}
fn parse_tls_handshake_msg_hello_retry_request(i: &[u8]) -> IResult<&[u8], TlsMessageHandshake> {
let (i, version) = TlsVersion::parse(i)?;
let (i, cipher) = map(be_u16, TlsCipherSuiteID)(i)?;
let (i, ext) = opt(complete(length_data(be_u16)))(i)?;
let content = TlsHelloRetryRequestContents {
version,
cipher,
ext,
};
Ok((i, TlsMessageHandshake::HelloRetryRequest(content)))
}
pub(crate) fn parse_tls_certificate(i: &[u8]) -> IResult<&[u8], TlsCertificateContents> {
let (i, cert_len) = be_u24(i)?;
let (i, cert_chain) = map_parser(take(cert_len as usize), parse_certs)(i)?;
let content = TlsCertificateContents { cert_chain };
Ok((i, content))
}
fn parse_tls_handshake_msg_certificate(i: &[u8]) -> IResult<&[u8], TlsMessageHandshake> {
map(parse_tls_certificate, TlsMessageHandshake::Certificate)(i)
}
fn parse_tls_handshake_msg_serverkeyexchange(
i: &[u8],
len: usize,
) -> IResult<&[u8], TlsMessageHandshake> {
map(take(len), |ext| {
TlsMessageHandshake::ServerKeyExchange(TlsServerKeyExchangeContents { parameters: ext })
})(i)
}
fn parse_tls_handshake_msg_serverdone(i: &[u8], len: usize) -> IResult<&[u8], TlsMessageHandshake> {
map(take(len), TlsMessageHandshake::ServerDone)(i)
}
fn parse_tls_handshake_msg_certificateverify(
i: &[u8],
len: usize,
) -> IResult<&[u8], TlsMessageHandshake> {
map(take(len), TlsMessageHandshake::CertificateVerify)(i)
}
pub(crate) fn parse_tls_clientkeyexchange(
len: usize,
) -> impl FnMut(&[u8]) -> IResult<&[u8], TlsClientKeyExchangeContents> {
move |i| map(take(len), TlsClientKeyExchangeContents::Unknown)(i)
}
fn parse_tls_handshake_msg_clientkeyexchange(
i: &[u8],
len: usize,
) -> IResult<&[u8], TlsMessageHandshake> {
map(
parse_tls_clientkeyexchange(len),
TlsMessageHandshake::ClientKeyExchange,
)(i)
}
fn parse_certrequest_nosigalg(i: &[u8]) -> IResult<&[u8], TlsMessageHandshake> {
let (i, cert_types) = length_count(be_u8, be_u8)(i)?;
let (i, ca_len) = be_u16(i)?;
let (i, unparsed_ca) =
map_parser(take(ca_len as usize), many0(complete(length_data(be_u16))))(i)?;
let content = TlsCertificateRequestContents {
cert_types,
// sig_hash_algs: Some(sig_hash_algs),
sig_hash_algs: None,
unparsed_ca,
};
Ok((i, TlsMessageHandshake::CertificateRequest(content)))
}
fn parse_certrequest_full(i: &[u8]) -> IResult<&[u8], TlsMessageHandshake> {
let (i, cert_types) = length_count(be_u8, be_u8)(i)?;
let (i, sig_hash_algs_len) = be_u16(i)?;
let (i, sig_hash_algs) =
map_parser(take(sig_hash_algs_len as usize), many0(complete(be_u16)))(i)?;
let (i, ca_len) = be_u16(i)?;
let (i, unparsed_ca) =
map_parser(take(ca_len as usize), many0(complete(length_data(be_u16))))(i)?;
let content = TlsCertificateRequestContents {
cert_types,
sig_hash_algs: Some(sig_hash_algs),
unparsed_ca,
};
Ok((i, TlsMessageHandshake::CertificateRequest(content)))
}
#[inline]
fn parse_tls_handshake_msg_certificaterequest(i: &[u8]) -> IResult<&[u8], TlsMessageHandshake> {
alt((
complete(parse_certrequest_full),
complete(parse_certrequest_nosigalg),
))(i)
}
fn parse_tls_handshake_msg_finished(i: &[u8], len: usize) -> IResult<&[u8], TlsMessageHandshake> {
map(take(len), TlsMessageHandshake::Finished)(i)
}
// Defined in [RFC6066]
// if status_type == 0, blob is a OCSPResponse, as defined in [RFC2560](https://tools.ietf.org/html/rfc2560)
// Note that the OCSPResponse object is DER-encoded.
fn parse_tls_handshake_msg_certificatestatus(i: &[u8]) -> IResult<&[u8], TlsMessageHandshake> {
let (i, status_type) = be_u8(i)?;
let (i, blob) = length_data(be_u24)(i)?;
let content = TlsCertificateStatusContents { status_type, blob };
Ok((i, TlsMessageHandshake::CertificateStatus(content)))
}
/// NextProtocol handshake message, as defined in
/// [draft-agl-tls-nextprotoneg-03](https://tools.ietf.org/html/draft-agl-tls-nextprotoneg-03)
/// Deprecated in favour of ALPN.
fn parse_tls_handshake_msg_next_protocol(i: &[u8]) -> IResult<&[u8], TlsMessageHandshake> {
let (i, selected_protocol) = length_data(be_u8)(i)?;
let (i, padding) = length_data(be_u8)(i)?;
let next_proto = TlsNextProtocolContent {
selected_protocol,
padding,
};
Ok((i, TlsMessageHandshake::NextProtocol(next_proto)))
}
fn parse_tls_handshake_msg_key_update(i: &[u8]) -> IResult<&[u8], TlsMessageHandshake> {
map(be_u8, TlsMessageHandshake::KeyUpdate)(i)
}
/// Parse a TLS handshake message
pub fn parse_tls_message_handshake(i: &[u8]) -> IResult<&[u8], TlsMessage> {
let (i, ht) = be_u8(i)?;
let (i, hl) = be_u24(i)?;
let (i, raw_msg) = take(hl)(i)?;
let (_, msg) = match TlsHandshakeType(ht) {
TlsHandshakeType::HelloRequest => parse_tls_handshake_msg_hello_request(raw_msg),
TlsHandshakeType::ClientHello => parse_tls_handshake_msg_client_hello(raw_msg),
TlsHandshakeType::ServerHello => parse_tls_handshake_msg_server_hello(raw_msg),
TlsHandshakeType::NewSessionTicket => {
parse_tls_handshake_msg_newsessionticket(raw_msg, hl as usize)
}
TlsHandshakeType::EndOfEarlyData => Ok((raw_msg, TlsMessageHandshake::EndOfEarlyData)),
TlsHandshakeType::HelloRetryRequest => parse_tls_handshake_msg_hello_retry_request(raw_msg),
TlsHandshakeType::Certificate => parse_tls_handshake_msg_certificate(raw_msg),
TlsHandshakeType::ServerKeyExchange => {
parse_tls_handshake_msg_serverkeyexchange(raw_msg, hl as usize)
}
TlsHandshakeType::CertificateRequest => parse_tls_handshake_msg_certificaterequest(raw_msg),
TlsHandshakeType::ServerDone => parse_tls_handshake_msg_serverdone(raw_msg, hl as usize),
TlsHandshakeType::CertificateVerify => {
parse_tls_handshake_msg_certificateverify(raw_msg, hl as usize)
}
TlsHandshakeType::ClientKeyExchange => {
parse_tls_handshake_msg_clientkeyexchange(raw_msg, hl as usize)
}
TlsHandshakeType::Finished => parse_tls_handshake_msg_finished(raw_msg, hl as usize),
// TlsHandshakeType::CertificateURL => parse_tls_handshake_msg_certificateurl(raw_msg),
TlsHandshakeType::CertificateStatus => parse_tls_handshake_msg_certificatestatus(raw_msg),
TlsHandshakeType::KeyUpdate => parse_tls_handshake_msg_key_update(raw_msg),
TlsHandshakeType::NextProtocol => parse_tls_handshake_msg_next_protocol(raw_msg),
_ => Err(Err::Error(make_error(i, ErrorKind::Switch))),
}?;
Ok((i, TlsMessage::Handshake(msg)))
}
/// Parse a TLS changecipherspec message
// XXX add extra verification hdr.len == 1
pub fn parse_tls_message_changecipherspec(i: &[u8]) -> IResult<&[u8], TlsMessage> {
let (i, _) = verify(be_u8, |&tag| tag == 0x01)(i)?;
Ok((i, TlsMessage::ChangeCipherSpec))
}
/// Parse a TLS alert message
// XXX add extra verification hdr.len == 2
pub fn parse_tls_message_alert(i: &[u8]) -> IResult<&[u8], TlsMessage> {
let (i, alert) = TlsMessageAlert::parse(i)?;
Ok((i, TlsMessage::Alert(alert)))
}
/// Parse a TLS applicationdata message
///
/// Read the entire input as applicationdata
pub fn parse_tls_message_applicationdata(i: &[u8]) -> IResult<&[u8], TlsMessage> {
let msg = TlsMessage::ApplicationData(TlsMessageApplicationData { blob: i });
Ok((&[], msg))
}
/// Parse a TLS heartbeat message
pub fn parse_tls_message_heartbeat(
i: &[u8],
tls_plaintext_len: u16,
) -> IResult<&[u8], Vec<TlsMessage>> {
let (i, heartbeat_type) = TlsHeartbeatMessageType::parse(i)?;
let (i, payload_len) = be_u16(i)?;
if tls_plaintext_len < 3 {
return Err(Err::Error(make_error(i, ErrorKind::Verify)));
}
let (i, payload) = take(payload_len as usize)(i)?;
let v = vec![TlsMessage::Heartbeat(TlsMessageHeartbeat {
heartbeat_type,
payload_len,
payload,
})];
Ok((i, v))
}
/// Given data and a TLS record header, parse content.
///
/// A record can contain multiple messages (with the same type).
///
/// Note that message length is checked (not required for parser safety, but for
/// strict protocol conformance).
#[rustfmt::skip]
#[allow(clippy::trivially_copy_pass_by_ref)] // TlsRecordHeader is only 6 bytes, but we prefer not breaking current API
pub fn parse_tls_record_with_header<'i>(i:&'i [u8], hdr:&TlsRecordHeader ) -> IResult<&'i [u8], Vec<TlsMessage<'i>>> {
match hdr.record_type {
TlsRecordType::ChangeCipherSpec => many1(complete(parse_tls_message_changecipherspec))(i),
TlsRecordType::Alert => many1(complete(parse_tls_message_alert))(i),
TlsRecordType::Handshake => many1(complete(parse_tls_message_handshake))(i),
TlsRecordType::ApplicationData => many1(complete(parse_tls_message_applicationdata))(i),
TlsRecordType::Heartbeat => parse_tls_message_heartbeat(i, hdr.len),
_ => Err(Err::Error(make_error(i, ErrorKind::Switch)))
}
}
/// Parse one packet only, as plaintext
/// A single record can contain multiple messages, they must share the same record type
pub fn parse_tls_plaintext(i: &[u8]) -> IResult<&[u8], TlsPlaintext> {
let (i, hdr) = parse_tls_record_header(i)?;
if hdr.len > MAX_RECORD_LEN {
return Err(Err::Error(make_error(i, ErrorKind::TooLarge)));
}
let (i, msg) = map_parser(take(hdr.len as usize), |i| {
parse_tls_record_with_header(i, &hdr)
})(i)?;
Ok((i, TlsPlaintext { hdr, msg }))
}
/// Parse one packet only, as encrypted content
pub fn parse_tls_encrypted(i: &[u8]) -> IResult<&[u8], TlsEncrypted> {
let (i, hdr) = parse_tls_record_header(i)?;
if hdr.len > MAX_RECORD_LEN {
return Err(Err::Error(make_error(i, ErrorKind::TooLarge)));
}
let (i, blob) = take(hdr.len as usize)(i)?;
let msg = TlsEncryptedContent { blob };
Ok((i, TlsEncrypted { hdr, msg }))
}
/// Read TLS record envelope, but do not decode data
///
/// This function is used to get the record type, and to make sure the record is
/// complete (not fragmented).
/// After calling this function, use `parse_tls_record_with_header` to parse content.
pub fn parse_tls_raw_record(i: &[u8]) -> IResult<&[u8], TlsRawRecord> {
let (i, hdr) = parse_tls_record_header(i)?;
if hdr.len > MAX_RECORD_LEN {
return Err(Err::Error(make_error(i, ErrorKind::TooLarge)));
}
let (i, data) = take(hdr.len as usize)(i)?;
Ok((i, TlsRawRecord { hdr, data }))
}
/// Parse one packet only, as plaintext
/// This function is deprecated. Use `parse_tls_plaintext` instead.
///
/// This function will be removed from API, as the name is not correct: it is
/// not possible to parse TLS packets without knowing the TLS state.
#[deprecated(since = "0.5.0", note = "Use parse_tls_plaintext")]
#[inline]
pub fn tls_parser(i: &[u8]) -> IResult<&[u8], TlsPlaintext> {
parse_tls_plaintext(i)
}
/// Parse one chunk of data, possibly containing multiple TLS plaintext records
/// This function is deprecated. Use `parse_tls_plaintext` instead, checking if
/// there are remaining bytes, and calling `parse_tls_plaintext` recursively.
///
/// This function will be removed from API, as it should be replaced by a more
/// useful one to handle fragmentation.
pub fn tls_parser_many(i: &[u8]) -> IResult<&[u8], Vec<TlsPlaintext>> {
many1(complete(parse_tls_plaintext))(i)
}