-
Notifications
You must be signed in to change notification settings - Fork 0
/
agent.py
178 lines (139 loc) · 5.88 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import torch
from brain import MarioNet
from collections import deque
import numpy as np
from numpy.random import default_rng
import random
class Mario:
def __init__(self, state_dim, action_dim, save_dir, checkpoint = None):
self.state_dim = state_dim
self.action_dim = action_dim
self.save_dir = save_dir
if torch.cuda.is_available():
self.device = "cuda"
elif torch.backends.mps.is_available():
self.device = "mps"
else:
self.device="cpu"
self.net = MarioNet(self.state_dim, self.action_dim).float()
self.net = self.net.to(device=self.device)
self.rng = default_rng()
## DEFINING PARAMETERS
# Acting Params
self.exploration_rate = 1
self.exploration_rate_decay = 0.99999975
self.exploration_rate_min = 0.1
self.curr_step = 0
self.save_every = 5e5
# Caching Params
self.memory = deque(maxlen=100000)
self.batch_size = 32
# Learning Params
self.gamma = 0.9
# Updating Params
self.optimizer = torch.optim.Adam(self.net.parameters(), lr=0.00025)
self.loss_fn = torch.nn.SmoothL1Loss()
# Saving Params
self.burnin = 1e4 # min. experiences before training
self.learn_every = 3 # no. of experiences between updates to Q_online
self.sync_every = 1e4 # no. of experiences between Q_target & Q_online sync
print('Model ready')
if checkpoint:
print(f"chkpt at {checkpoint}")
self.load(checkpoint)
else:
print('No chkpt passed')
def act(self, state):
# Exploration
if self.rng.random() < self.exploration_rate:
action_idx = self.rng.integers(self.action_dim)
# Exploitation
else:
if isinstance(state, tuple):
state = state[0].__array__()
else:
state = state.__array__()
state = torch.tensor(state, device=self.device).unsqueeze(0)
action_values = self.net(state, model = "online")
action_idx = torch.argmax(action_values,axis = 1).item()
# Decrease Exploration Rate
self.exploration_rate *= self.exploration_rate_decay
self.exploration_rate = max(self.exploration_rate, self.exploration_rate_min)
# Increment Step
self.curr_step += 1
return action_idx
def cache(self, state, next_state, action, reward, done):
# Defining the state
def first_if_tuple(x):
return x[0] if isinstance(x, tuple) else x
state = first_if_tuple(state).__array__()
next_state = first_if_tuple(next_state).__array__()
state = torch.tensor(state, device=self.device)
next_state = torch.tensor(next_state, device=self.device)
action = torch.tensor([action], device=self.device)
reward = torch.tensor([reward], device=self.device)
done = torch.tensor([done], device=self.device)
# This enables the memories to be replayed (replay buffer)
self.memory.append((state, next_state, action, reward, done,))
def recall(self):
"""
Retrieve a batch of experiences from memory
"""
batch = random.sample(self.memory, self.batch_size)
state, next_state, action, reward, done = map(torch.stack, zip(*batch))
return state, next_state, action.squeeze(), reward.squeeze(), done.squeeze()
def td_estimate(self, state, action):
current_Q = self.net(state, model="online")[
np.arange(0, self.batch_size), action
] # Q_online(s,a)
return current_Q
@torch.no_grad()
def td_target(self, reward, next_state, done):
next_state_Q = self.net(next_state, model="online")
best_action = torch.argmax(next_state_Q, axis=1)
next_Q = self.net(next_state, model="target")[np.arange(0, self.batch_size), best_action]
return (reward + (1 - done.float()) * self.gamma * next_Q).float()
def update_Q_online(self, td_estimate, td_target):
loss = self.loss_fn(td_estimate, td_target)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
return loss.item()
def sync_Q_target(self):
self.net.target.load_state_dict(self.net.online.state_dict())
def learn(self):
if self.curr_step % self.sync_every == 0:
self.sync_Q_target()
if self.curr_step == 0 or self.curr_step % self.save_every == 0:
self.save()
if self.curr_step < self.burnin:
return None, None
if self.curr_step % self.learn_every != 0:
return None, None
# Sample from memory
state, next_state, action, reward, done = self.recall()
# Get TD Estimate
td_est = self.td_estimate(state, action)
# Get TD Target
td_tgt = self.td_target(reward, next_state, done)
# Backpropagate loss through Q_online
loss = self.update_Q_online(td_est, td_tgt)
return (td_est.mean().item(), loss)
def save(self):
save_path = (
self.save_dir / f"mario_net_{int(self.curr_step // self.save_every)}.chkpt"
)
torch.save(
dict(model=self.net.state_dict(), exploration_rate=self.exploration_rate),
save_path,
)
print(f"MarioNet saved to {save_path} at step {self.curr_step}")
def load(self, load_path):
if not load_path.exists():
raise ValueError(f"{load_path} does not exist")
ckp = torch.load(load_path, map_location=(self.device))
exploration_rate = ckp.get('exploration_rate')
state_dict = ckp.get('model')
print(f"Loading model at {load_path} with exploration rate {exploration_rate}")
self.net.load_state_dict(state_dict)
self.exploration_rate = exploration_rate