We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
https://codeforces.com/blog/entry/54090
With minor changes to the linear prime sieve, there's actually a way to linearly sieve any multiplicative function (phi, mobius, divisor, etc).
You just need to define f(p^k) where f is the multiplicative function and p is a prime. This uniquely identifies a multiplicative function.
f(p^k)
f
p
I propose we add this generalized linear sieve.
The text was updated successfully, but these errors were encountered:
ongyiumark
No branches or pull requests
https://codeforces.com/blog/entry/54090
With minor changes to the linear prime sieve, there's actually a way to linearly sieve any multiplicative function (phi, mobius, divisor, etc).
You just need to define
f(p^k)
wheref
is the multiplicative function andp
is a prime. This uniquely identifies a multiplicative function.I propose we add this generalized linear sieve.
The text was updated successfully, but these errors were encountered: