forked from datahub-project/datahub
-
Notifications
You must be signed in to change notification settings - Fork 12
/
setup.py
941 lines (887 loc) · 37 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
from typing import Dict, Set
import setuptools
package_metadata: dict = {}
with open("./src/datahub/__init__.py") as fp:
exec(fp.read(), package_metadata)
_version: str = package_metadata["__version__"]
_self_pin = (
f"=={_version}"
if not (_version.endswith(("dev0", "dev1")) or "docker" in _version)
else ""
)
base_requirements = {
# Our min version of typing_extensions is somewhat constrained by Airflow.
"typing_extensions>=4.2.0",
# Actual dependencies.
"typing-inspect",
# pydantic 1.8.2 is incompatible with mypy 0.910.
# See https://github.com/samuelcolvin/pydantic/pull/3175#issuecomment-995382910.
# pydantic 1.10.3 is incompatible with typing-extensions 4.1.1 - https://github.com/pydantic/pydantic/issues/4885
"pydantic>=1.10.0,!=1.10.3",
"mixpanel>=4.9.0",
# Airflow depends on fairly old versions of sentry-sdk, so we want to be loose with our constraints.
"sentry-sdk",
}
framework_common = {
"click>=7.1.2",
"click-default-group",
"PyYAML",
"toml>=0.10.0",
# In Python 3.10+, importlib_metadata is included in the standard library.
"importlib_metadata>=4.0.0; python_version < '3.10'",
"docker",
"expandvars>=0.6.5",
"avro-gen3==0.7.16",
# "avro-gen3 @ git+https://github.com/acryldata/avro_gen@master#egg=avro-gen3",
"avro>=1.11.3,<1.12",
"python-dateutil>=2.8.0",
"tabulate",
"progressbar2",
"psutil>=5.8.0",
"Deprecated",
"humanfriendly",
"packaging",
"aiohttp<4",
"cached_property",
"ijson",
"click-spinner",
"requests_file",
"jsonref",
"jsonschema",
"ruamel.yaml",
}
pydantic_no_v2 = {
# pydantic 2 makes major, backwards-incompatible changes - https://github.com/pydantic/pydantic/issues/4887
# Tags sources that require the pydantic v2 API.
"pydantic<2",
}
plugin_common = {
# While pydantic v2 support is experimental, require that all plugins
# continue to use v1. This will ensure that no ingestion recipes break.
*pydantic_no_v2,
}
rest_common = {"requests", "requests_file"}
kafka_common = {
# Note that confluent_kafka 1.9.0 introduced a hard compatibility break, and
# requires librdkafka >=1.9.0. This is generally not an issue, since they
# now provide prebuilt wheels for most platforms, including M1 Macs and
# Linux aarch64 (e.g. Docker's linux/arm64). Installing confluent_kafka
# from source remains a pain.
"confluent_kafka[schemaregistry]>=1.9.0",
# We currently require both Avro libraries. The codegen uses avro-python3 (above)
# schema parsers at runtime for generating and reading JSON into Python objects.
# At the same time, we use Kafka's AvroSerializer, which internally relies on
# fastavro for serialization. We do not use confluent_kafka[avro], since it
# is incompatible with its own dep on avro-python3.
"fastavro>=1.2.0",
}
kafka_protobuf = {
"networkx>=2.6.2",
# Required to generate protobuf python modules from the schema downloaded from the schema registry
# NOTE: potential conflict with feast also depending on grpcio
"grpcio>=1.44.0,<2",
"grpcio-tools>=1.44.0,<2",
}
usage_common = {
"sqlparse",
}
sqlglot_lib = {
# We heavily monkeypatch sqlglot.
# Prior to the patching, we originally maintained an acryl-sqlglot fork:
# https://github.com/tobymao/sqlglot/compare/main...hsheth2:sqlglot:main?expand=1
"sqlglot[rs]==25.32.1",
"patchy==2.8.0",
}
classification_lib = {
"acryl-datahub-classify==0.0.11",
# schwifty is needed for the classify plugin but in 2024.08.0 they broke the python 3.8 compatibility
"schwifty<2024.08.0",
# This is a bit of a hack. Because we download the SpaCy model at runtime in the classify plugin,
# we need pip to be available.
"pip",
# We were seeing an error like this `numpy.dtype size changed, may indicate binary incompatibility. Expected 96 from C header, got 88 from PyObject`
# with numpy 2.0. This likely indicates a mismatch between scikit-learn and numpy versions.
# https://stackoverflow.com/questions/40845304/runtimewarning-numpy-dtype-size-changed-may-indicate-binary-incompatibility
"numpy<2",
}
dbt_common = {
*sqlglot_lib,
"more_itertools",
}
cachetools_lib = {
"cachetools",
}
sql_common = (
{
# Required for all SQL sources.
# This is temporary lower bound that we're open to loosening/tightening as requirements show up
"sqlalchemy>=1.4.39, <2",
# Required for SQL profiling.
"great-expectations>=0.15.12, <=0.15.50",
*pydantic_no_v2, # because of great-expectations
# scipy version restricted to reduce backtracking, used by great-expectations,
"scipy>=1.7.2",
# GE added handling for higher version of jinja2
# https://github.com/great-expectations/great_expectations/pull/5382/files
# datahub does not depend on traitlets directly but great expectations does.
# https://github.com/ipython/traitlets/issues/741
"traitlets!=5.2.2",
# GE depends on IPython - we have no direct dependency on it.
# IPython 8.22.0 added a dependency on traitlets 5.13.x, but only declared a
# version requirement of traitlets>5.
# See https://github.com/ipython/ipython/issues/14352.
# This issue was fixed by https://github.com/ipython/ipython/pull/14353,
# which first appeared in IPython 8.22.1.
# As such, we just need to avoid that version in order to get the
# dependencies that we need. IPython probably should've yanked 8.22.0.
"IPython!=8.22.0",
"greenlet",
*cachetools_lib,
}
| usage_common
| sqlglot_lib
| classification_lib
)
aws_common = {
# AWS Python SDK
"boto3",
# Deal with a version incompatibility between botocore (used by boto3) and urllib3.
# See https://github.com/boto/botocore/pull/2563.
"botocore!=1.23.0",
}
path_spec_common = {
"parse>=1.19.0",
"wcmatch",
}
looker_common = {
# Looker Python SDK
"looker-sdk>=23.0.0",
# This version of lkml contains a fix for parsing lists in
# LookML files with spaces between an item and the following comma.
# See https://github.com/joshtemple/lkml/issues/73.
"lkml>=1.3.4",
*sqlglot_lib,
"GitPython>2",
"python-liquid",
"deepmerge>=1.1.1",
}
bigquery_common = {
# Google cloud logging library
"google-cloud-logging<=3.5.0",
"google-cloud-bigquery",
"google-cloud-datacatalog>=1.5.0",
"google-cloud-resource-manager",
"more-itertools>=8.12.0",
"sqlalchemy-bigquery>=1.4.1",
*path_spec_common,
}
clickhouse_common = {
# Clickhouse 0.2.0 adds support for SQLAlchemy 1.4.x
# Disallow 0.2.5 because of https://github.com/xzkostyan/clickhouse-sqlalchemy/issues/272.
# Note that there's also a known issue around nested map types: https://github.com/xzkostyan/clickhouse-sqlalchemy/issues/269.
"clickhouse-sqlalchemy>=0.2.0,<0.2.5",
}
redshift_common = {
# Clickhouse 0.8.3 adds support for SQLAlchemy 1.4.x
"sqlalchemy-redshift>=0.8.3",
"GeoAlchemy2",
"redshift-connector>=2.1.0",
*path_spec_common,
}
snowflake_common = {
# Snowflake plugin utilizes sql common
*sql_common,
# https://github.com/snowflakedb/snowflake-sqlalchemy/issues/350
"snowflake-sqlalchemy>=1.4.3",
"snowflake-connector-python>=3.4.0",
"pandas",
"cryptography",
"msal",
*cachetools_lib,
} | classification_lib
trino = {
"trino[sqlalchemy]>=0.308",
}
pyhive_common = {
# Acryl Data maintains a fork of PyHive
# - 0.6.11 adds support for table comments and column comments,
# and also releases HTTP and HTTPS transport schemes
# - 0.6.12 adds support for Spark Thrift Server
# - 0.6.13 adds a small fix for Databricks
# - 0.6.14 uses pure-sasl instead of sasl so it builds on Python 3.11
# - 0.6.15 adds support for thrift > 0.14 (cherry-picked from https://github.com/apache/thrift/pull/2491)
# - 0.6.16 fixes a regression in 0.6.15 (https://github.com/acryldata/PyHive/pull/9)
"acryl-pyhive[hive-pure-sasl]==0.6.16",
# As per https://github.com/datahub-project/datahub/issues/8405
# and https://github.com/dropbox/PyHive/issues/417, version 0.14.0
# of thrift broke PyHive's hive+http transport.
# Fixed by https://github.com/apache/thrift/pull/2491 in version 0.17.0
# which is unfortunately not on PyPi.
# Instead, we put the fix in our PyHive fork, so no thrift pin is needed.
}
microsoft_common = {"msal>=1.24.0"}
iceberg_common = {
# Iceberg Python SDK
# Kept at 0.4.0 due to higher versions requiring pydantic>2, as soon as we are fine with it, bump this dependency
"pyiceberg>=0.4.0",
}
mssql_common = {
"sqlalchemy-pytds>=0.3",
"pyOpenSSL",
}
postgres_common = {
"psycopg2-binary",
"GeoAlchemy2",
}
s3_base = {
*aws_common,
"more-itertools>=8.12.0",
"parse>=1.19.0",
"pyarrow>=6.0.1",
"tableschema>=1.20.2",
# ujson 5.2.0 has the JSONDecodeError exception type, which we need for error handling.
"ujson>=5.2.0",
"smart-open[s3]>=5.2.1",
# moto 5.0.0 drops support for Python 3.7
"moto[s3]<5.0.0",
*path_spec_common,
}
threading_timeout_common = {
"stopit==1.1.2",
# stopit uses pkg_resources internally, which means there's an implied
# dependency on setuptools.
"setuptools",
}
abs_base = {
"azure-core==1.29.4",
"azure-identity>=1.17.1",
"azure-storage-blob>=12.19.0",
"azure-storage-file-datalake>=12.14.0",
"more-itertools>=8.12.0",
"pyarrow>=6.0.1",
"smart-open[azure]>=5.2.1",
"tableschema>=1.20.2",
"ujson>=5.2.0",
*path_spec_common,
}
data_lake_profiling = {
"pydeequ>=1.1.0",
"pyspark~=3.5.0",
}
delta_lake = {
*s3_base,
*abs_base,
# Version 0.18.0 broken on ARM Macs: https://github.com/delta-io/delta-rs/issues/2577
"deltalake>=0.6.3, != 0.6.4, < 0.18.0; platform_system == 'Darwin' and platform_machine == 'arm64'",
"deltalake>=0.6.3, != 0.6.4; platform_system != 'Darwin' or platform_machine != 'arm64'",
}
powerbi_report_server = {"requests", "requests_ntlm"}
slack = {"slack-sdk==3.18.1"}
databricks = {
# 0.1.11 appears to have authentication issues with azure databricks
# 0.22.0 has support for `include_browse` in metadata list apis
"databricks-sdk>=0.30.0",
"pyspark~=3.5.0",
"requests",
# Version 2.4.0 includes sqlalchemy dialect, 2.8.0 includes some bug fixes
# Version 3.0.0 required SQLAlchemy > 2.0.21
"databricks-sql-connector>=2.8.0,<3.0.0",
# Due to https://github.com/databricks/databricks-sql-python/issues/326
# databricks-sql-connector<3.0.0 requires pandas<2.2.0
"pandas<2.2.0",
}
mysql = sql_common | {"pymysql>=1.0.2"}
sac = {
"requests",
"pyodata>=1.11.1",
"Authlib",
}
superset_common = {
"requests",
"sqlalchemy",
"great_expectations",
"greenlet",
}
# Note: for all of these, framework_common will be added.
plugins: Dict[str, Set[str]] = {
# Sink plugins.
"datahub-kafka": kafka_common,
"datahub-rest": rest_common,
"sync-file-emitter": {"filelock"},
"datahub-lite": {
"duckdb",
"fastapi",
"uvicorn",
},
# Integrations.
"airflow": {
f"acryl-datahub-airflow-plugin{_self_pin}",
},
"circuit-breaker": {
"gql>=3.3.0",
"gql[requests]>=3.3.0",
},
"datahub": mysql | kafka_common,
"great-expectations": {
f"acryl-datahub-gx-plugin{_self_pin}",
},
# Misc plugins.
"sql-parser": sqlglot_lib,
# Source plugins
# sqlalchemy-bigquery is included here since it provides an implementation of
# a SQLalchemy-conform STRUCT type definition
"athena": sql_common
# We need to set tenacity lower than 8.4.0 as
# this version has missing dependency asyncio
# https://github.com/jd/tenacity/issues/471
| {
"PyAthena[SQLAlchemy]>=2.6.0,<3.0.0",
"sqlalchemy-bigquery>=1.4.1",
"tenacity!=8.4.0",
},
"azure-ad": set(),
"bigquery": sql_common
| bigquery_common
| sqlglot_lib
| classification_lib
| {
"google-cloud-datacatalog-lineage==0.2.2",
},
"bigquery-queries": sql_common | bigquery_common | sqlglot_lib,
"clickhouse": sql_common | clickhouse_common,
"clickhouse-usage": sql_common | usage_common | clickhouse_common,
"cockroachdb": sql_common | postgres_common | {"sqlalchemy-cockroachdb<2.0.0"},
"datahub-lineage-file": set(),
"datahub-business-glossary": set(),
"delta-lake": {*data_lake_profiling, *delta_lake},
"dbt": {"requests"} | dbt_common | aws_common,
"dbt-cloud": {"requests"} | dbt_common,
"dremio": {"requests"} | sql_common,
"druid": sql_common | {"pydruid>=0.6.2"},
"dynamodb": aws_common | classification_lib,
# Starting with 7.14.0 python client is checking if it is connected to elasticsearch client. If its not it throws
# UnsupportedProductError
# https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/release-notes.html#rn-7-14-0
# https://github.com/elastic/elasticsearch-py/issues/1639#issuecomment-883587433
"elasticsearch": {"elasticsearch==7.13.4"},
"cassandra": {
"cassandra-driver>=3.28.0",
# We were seeing an error like this `numpy.dtype size changed, may indicate binary incompatibility. Expected 96 from C header, got 88 from PyObject`
# with numpy 2.0. This likely indicates a mismatch between scikit-learn and numpy versions.
# https://stackoverflow.com/questions/40845304/runtimewarning-numpy-dtype-size-changed-may-indicate-binary-incompatibility
"numpy<2",
},
"feast": {
"feast>=0.34.0,<1",
"flask-openid>=1.3.0",
"dask[dataframe]<2024.7.0",
# We were seeing an error like this `numpy.dtype size changed, may indicate binary incompatibility. Expected 96 from C header, got 88 from PyObject`
# with numpy 2.0. This likely indicates a mismatch between scikit-learn and numpy versions.
# https://stackoverflow.com/questions/40845304/runtimewarning-numpy-dtype-size-changed-may-indicate-binary-incompatibility
"numpy<2",
},
"grafana": {"requests"},
"glue": aws_common,
# hdbcli is supported officially by SAP, sqlalchemy-hana is built on top but not officially supported
"hana": sql_common
| {
"sqlalchemy-hana>=0.5.0; platform_machine != 'aarch64' and platform_machine != 'arm64'",
"hdbcli>=2.11.20; platform_machine != 'aarch64' and platform_machine != 'arm64'",
},
"hive": sql_common
| pyhive_common
| {
"databricks-dbapi",
# Due to https://github.com/great-expectations/great_expectations/issues/6146,
# we cannot allow 0.15.{23-26}. This was fixed in 0.15.27 by
# https://github.com/great-expectations/great_expectations/pull/6149.
"great-expectations != 0.15.23, != 0.15.24, != 0.15.25, != 0.15.26",
},
# keep in sync with presto-on-hive until presto-on-hive will be removed
"hive-metastore": sql_common
| pyhive_common
| {"psycopg2-binary", "pymysql>=1.0.2"},
"iceberg": iceberg_common,
"json-schema": set(),
"kafka": kafka_common | kafka_protobuf,
"kafka-connect": sql_common | {"requests", "JPype1"},
"ldap": {"python-ldap>=2.4"},
"looker": looker_common,
"lookml": looker_common,
"metabase": {"requests"} | sqlglot_lib,
"mlflow": {
"mlflow-skinny>=2.3.0",
# It's technically wrong for packages to depend on setuptools. However, it seems mlflow does it anyways.
"setuptools",
},
"mode": {"requests", "python-liquid", "tenacity>=8.0.1"} | sqlglot_lib,
"mongodb": {"pymongo[srv]>=3.11", "packaging"},
"mssql": sql_common | mssql_common,
"mssql-odbc": sql_common | mssql_common | {"pyodbc"},
"mysql": mysql,
# mariadb should have same dependency as mysql
"mariadb": sql_common | {"pymysql>=1.0.2"},
"okta": {"okta~=1.7.0", "nest-asyncio"},
"oracle": sql_common | {"oracledb"},
"postgres": sql_common | postgres_common,
"presto": sql_common | pyhive_common | trino,
# presto-on-hive is an alias for hive-metastore and needs to be kept in sync
"presto-on-hive": sql_common
| pyhive_common
| {"psycopg2-binary", "pymysql>=1.0.2"},
"pulsar": {"requests"},
"redash": {"redash-toolbelt", "sql-metadata"} | sqlglot_lib,
"redshift": sql_common
| redshift_common
| usage_common
| sqlglot_lib
| classification_lib
| {"db-dtypes"} # Pandas extension data types
| cachetools_lib,
"s3": {*s3_base, *data_lake_profiling},
"gcs": {*s3_base, *data_lake_profiling},
"abs": {*abs_base, *data_lake_profiling},
"sagemaker": aws_common,
"salesforce": {"simple-salesforce"},
"snowflake": snowflake_common | usage_common | sqlglot_lib,
"snowflake-summary": snowflake_common | usage_common | sqlglot_lib,
"snowflake-queries": snowflake_common | usage_common | sqlglot_lib,
"sqlalchemy": sql_common,
"sql-queries": usage_common | sqlglot_lib,
"slack": slack,
"superset": superset_common,
"preset": superset_common,
"tableau": {"tableauserverclient>=0.24.0"} | sqlglot_lib,
"teradata": sql_common
| usage_common
| sqlglot_lib
| {
# On 2024-10-30, teradatasqlalchemy 20.0.0.2 was released. This version seemed to cause issues
# in our CI, so we're pinning the version for now.
"teradatasqlalchemy>=17.20.0.0,<=20.0.0.2",
},
"trino": sql_common | trino,
"starburst-trino-usage": sql_common | usage_common | trino,
"nifi": {"requests", "packaging", "requests-gssapi"},
"powerbi": (
(
microsoft_common
| {"lark[regex]==1.1.4", "sqlparse", "more-itertools"}
| sqlglot_lib
| threading_timeout_common
)
),
"powerbi-report-server": powerbi_report_server,
"vertica": sql_common | {"vertica-sqlalchemy-dialect[vertica-python]==0.0.8.2"},
"unity-catalog": databricks | sql_common,
# databricks is alias for unity-catalog and needs to be kept in sync
"databricks": databricks | sql_common,
"fivetran": snowflake_common | bigquery_common | sqlglot_lib,
"qlik-sense": sqlglot_lib | {"requests", "websocket-client"},
"sigma": sqlglot_lib | {"requests"},
"sac": sac,
"neo4j": {"pandas", "neo4j"},
}
# This is mainly used to exclude plugins from the Docker image.
all_exclude_plugins: Set[str] = {
# The Airflow extra is only retained for compatibility, but new users should
# be using the datahub-airflow-plugin package instead.
"airflow",
# The great-expectations extra is only retained for compatibility, but new users should
# be using the datahub-gx-plugin package instead.
"great-expectations",
# SQL Server ODBC requires additional drivers, and so we don't want to keep
# it included in the default "all" installation.
"mssql-odbc",
# duckdb doesn't have a prebuilt wheel for Linux arm7l or aarch64, so we
# simply exclude it.
"datahub-lite",
# Feast tends to have overly restrictive dependencies and hence doesn't
# play nice with the "all" installation.
"feast",
}
mypy_stubs = {
"types-dataclasses",
"types-setuptools",
"types-six",
"types-python-dateutil",
# We need to avoid 2.31.0.5 and 2.31.0.4 due to
# https://github.com/python/typeshed/issues/10764. Once that
# issue is resolved, we can remove the upper bound and change it
# to a != constraint.
# We have a PR up to fix the underlying issue: https://github.com/python/typeshed/pull/10776.
"types-requests>=2.28.11.6,<=2.31.0.3",
"types-toml",
"types-PyMySQL",
"types-PyYAML",
"types-cachetools",
# versions 0.1.13 and 0.1.14 seem to have issues
"types-click==0.1.12",
# The boto3-stubs package seems to have regularly breaking minor releases,
# we pin to a specific version to avoid this.
"boto3-stubs[s3,glue,sagemaker,sts,dynamodb]==1.28.15",
"mypy-boto3-sagemaker==1.28.15", # For some reason, above pin only restricts `mypy-boto3-sagemaker<1.29.0,>=1.28.0`
"types-tabulate",
# avrogen package requires this
"types-pytz",
"types-pyOpenSSL",
"types-click-spinner>=0.1.13.1",
"types-ujson>=5.2.0",
"types-Deprecated",
"types-protobuf>=4.21.0.1",
"sqlalchemy2-stubs",
}
test_api_requirements = {
"pytest>=6.2.2",
"pytest-timeout",
# Missing numpy requirement in 8.0.0
"deepdiff!=8.0.0",
"PyYAML",
"pytest-docker>=1.1.0",
}
debug_requirements = {
"memray",
}
lint_requirements = {
# This is pinned only to avoid spurious errors in CI.
# We should make an effort to keep it up to date.
"black==23.3.0",
"flake8>=6.0.0",
"flake8-tidy-imports>=4.3.0",
"flake8-bugbear==23.3.12",
"isort>=5.7.0",
"mypy==1.10.1",
}
base_dev_requirements = {
*base_requirements,
*framework_common,
*mypy_stubs,
*s3_base,
*lint_requirements,
*test_api_requirements,
"coverage>=5.1",
"faker>=18.4.0",
"pytest-asyncio>=0.16.0",
"pytest-cov>=2.8.1",
"pytest-random-order~=1.1.0",
"requests-mock",
"freezegun",
"jsonpickle",
"build",
"twine",
*list(
dependency
for plugin in [
"abs",
"athena",
"bigquery",
"clickhouse",
"clickhouse-usage",
"cockroachdb",
"delta-lake",
"dremio",
"druid",
"elasticsearch",
"feast",
"iceberg",
"mlflow",
"json-schema",
"ldap",
"looker",
"lookml",
"glue",
"mariadb",
"okta",
"oracle",
"postgres",
"sagemaker",
"kafka",
"datahub-rest",
"datahub-lite",
"presto",
"redash",
"redshift",
"s3",
"snowflake",
"slack",
"tableau",
"teradata",
"trino",
"hive",
"starburst-trino-usage",
"powerbi",
"powerbi-report-server",
"salesforce",
"unity-catalog",
"nifi",
"vertica",
"mode",
"fivetran",
"kafka-connect",
"qlik-sense",
"sigma",
"sac",
"cassandra",
"neo4j",
]
if plugin
for dependency in plugins[plugin]
),
}
dev_requirements = {
*base_dev_requirements,
}
full_test_dev_requirements = {
*list(
dependency
for plugin in [
"athena",
"circuit-breaker",
"clickhouse",
"delta-lake",
"druid",
"feast",
"hana",
"hive",
"iceberg",
"kafka-connect",
"ldap",
"mongodb",
"slack",
"mssql",
"mysql",
"mariadb",
"redash",
"vertica",
]
if plugin
for dependency in plugins[plugin]
),
}
entry_points = {
"console_scripts": ["datahub = datahub.entrypoints:main"],
"datahub.ingestion.source.plugins": [
"abs = datahub.ingestion.source.abs.source:ABSSource",
"csv-enricher = datahub.ingestion.source.csv_enricher:CSVEnricherSource",
"file = datahub.ingestion.source.file:GenericFileSource",
"datahub = datahub.ingestion.source.datahub.datahub_source:DataHubSource",
"sqlalchemy = datahub.ingestion.source.sql.sql_generic:SQLAlchemyGenericSource",
"athena = datahub.ingestion.source.sql.athena:AthenaSource",
"azure-ad = datahub.ingestion.source.identity.azure_ad:AzureADSource",
"bigquery = datahub.ingestion.source.bigquery_v2.bigquery:BigqueryV2Source",
"bigquery-queries = datahub.ingestion.source.bigquery_v2.bigquery_queries:BigQueryQueriesSource",
"clickhouse = datahub.ingestion.source.sql.clickhouse:ClickHouseSource",
"clickhouse-usage = datahub.ingestion.source.usage.clickhouse_usage:ClickHouseUsageSource",
"cockroachdb = datahub.ingestion.source.sql.cockroachdb:CockroachDBSource",
"delta-lake = datahub.ingestion.source.delta_lake:DeltaLakeSource",
"s3 = datahub.ingestion.source.s3:S3Source",
"dbt = datahub.ingestion.source.dbt.dbt_core:DBTCoreSource",
"dbt-cloud = datahub.ingestion.source.dbt.dbt_cloud:DBTCloudSource",
"dremio = datahub.ingestion.source.dremio.dremio_source:DremioSource",
"druid = datahub.ingestion.source.sql.druid:DruidSource",
"dynamodb = datahub.ingestion.source.dynamodb.dynamodb:DynamoDBSource",
"elasticsearch = datahub.ingestion.source.elastic_search:ElasticsearchSource",
"feast = datahub.ingestion.source.feast:FeastRepositorySource",
"grafana = datahub.ingestion.source.grafana.grafana_source:GrafanaSource",
"glue = datahub.ingestion.source.aws.glue:GlueSource",
"sagemaker = datahub.ingestion.source.aws.sagemaker:SagemakerSource",
"hana = datahub.ingestion.source.sql.hana:HanaSource",
"hive = datahub.ingestion.source.sql.hive:HiveSource",
"hive-metastore = datahub.ingestion.source.sql.hive_metastore:HiveMetastoreSource",
"json-schema = datahub.ingestion.source.schema.json_schema:JsonSchemaSource",
"kafka = datahub.ingestion.source.kafka.kafka:KafkaSource",
"kafka-connect = datahub.ingestion.source.kafka_connect.kafka_connect:KafkaConnectSource",
"ldap = datahub.ingestion.source.ldap:LDAPSource",
"looker = datahub.ingestion.source.looker.looker_source:LookerDashboardSource",
"lookml = datahub.ingestion.source.looker.lookml_source:LookMLSource",
"datahub-gc = datahub.ingestion.source.gc.datahub_gc:DataHubGcSource",
"datahub-lineage-file = datahub.ingestion.source.metadata.lineage:LineageFileSource",
"datahub-business-glossary = datahub.ingestion.source.metadata.business_glossary:BusinessGlossaryFileSource",
"mlflow = datahub.ingestion.source.mlflow:MLflowSource",
"mode = datahub.ingestion.source.mode:ModeSource",
"mongodb = datahub.ingestion.source.mongodb:MongoDBSource",
"mssql = datahub.ingestion.source.sql.mssql:SQLServerSource",
"mysql = datahub.ingestion.source.sql.mysql:MySQLSource",
"mariadb = datahub.ingestion.source.sql.mariadb.MariaDBSource",
"okta = datahub.ingestion.source.identity.okta:OktaSource",
"oracle = datahub.ingestion.source.sql.oracle:OracleSource",
"postgres = datahub.ingestion.source.sql.postgres:PostgresSource",
"redash = datahub.ingestion.source.redash:RedashSource",
"redshift = datahub.ingestion.source.redshift.redshift:RedshiftSource",
"slack = datahub.ingestion.source.slack.slack:SlackSource",
"snowflake = datahub.ingestion.source.snowflake.snowflake_v2:SnowflakeV2Source",
"snowflake-summary = datahub.ingestion.source.snowflake.snowflake_summary:SnowflakeSummarySource",
"snowflake-queries = datahub.ingestion.source.snowflake.snowflake_queries:SnowflakeQueriesSource",
"superset = datahub.ingestion.source.superset:SupersetSource",
"preset = datahub.ingestion.source.preset:PresetSource",
"tableau = datahub.ingestion.source.tableau.tableau:TableauSource",
"openapi = datahub.ingestion.source.openapi:OpenApiSource",
"metabase = datahub.ingestion.source.metabase:MetabaseSource",
"teradata = datahub.ingestion.source.sql.teradata:TeradataSource",
"trino = datahub.ingestion.source.sql.trino:TrinoSource",
"starburst-trino-usage = datahub.ingestion.source.usage.starburst_trino_usage:TrinoUsageSource",
"nifi = datahub.ingestion.source.nifi:NifiSource",
"powerbi = datahub.ingestion.source.powerbi.powerbi:PowerBiDashboardSource",
"powerbi-report-server = datahub.ingestion.source.powerbi_report_server:PowerBiReportServerDashboardSource",
"iceberg = datahub.ingestion.source.iceberg.iceberg:IcebergSource",
"vertica = datahub.ingestion.source.sql.vertica:VerticaSource",
"presto = datahub.ingestion.source.sql.presto:PrestoSource",
# This is only here for backward compatibility. Use the `hive-metastore` source instead.
"presto-on-hive = datahub.ingestion.source.sql.hive_metastore:HiveMetastoreSource",
"pulsar = datahub.ingestion.source.pulsar:PulsarSource",
"salesforce = datahub.ingestion.source.salesforce:SalesforceSource",
"demo-data = datahub.ingestion.source.demo_data.DemoDataSource",
"unity-catalog = datahub.ingestion.source.unity.source:UnityCatalogSource",
"gcs = datahub.ingestion.source.gcs.gcs_source:GCSSource",
"sql-queries = datahub.ingestion.source.sql_queries:SqlQueriesSource",
"fivetran = datahub.ingestion.source.fivetran.fivetran:FivetranSource",
"qlik-sense = datahub.ingestion.source.qlik_sense.qlik_sense:QlikSenseSource",
"sigma = datahub.ingestion.source.sigma.sigma:SigmaSource",
"sac = datahub.ingestion.source.sac.sac:SACSource",
"cassandra = datahub.ingestion.source.cassandra.cassandra:CassandraSource",
"neo4j = datahub.ingestion.source.neo4j.neo4j_source:Neo4jSource",
],
"datahub.ingestion.transformer.plugins": [
"pattern_cleanup_ownership = datahub.ingestion.transformer.pattern_cleanup_ownership:PatternCleanUpOwnership",
"simple_remove_dataset_ownership = datahub.ingestion.transformer.remove_dataset_ownership:SimpleRemoveDatasetOwnership",
"mark_dataset_status = datahub.ingestion.transformer.mark_dataset_status:MarkDatasetStatus",
"set_dataset_browse_path = datahub.ingestion.transformer.add_dataset_browse_path:AddDatasetBrowsePathTransformer",
"add_dataset_ownership = datahub.ingestion.transformer.add_dataset_ownership:AddDatasetOwnership",
"simple_add_dataset_ownership = datahub.ingestion.transformer.add_dataset_ownership:SimpleAddDatasetOwnership",
"pattern_add_dataset_ownership = datahub.ingestion.transformer.add_dataset_ownership:PatternAddDatasetOwnership",
"add_dataset_domain = datahub.ingestion.transformer.dataset_domain:AddDatasetDomain",
"simple_add_dataset_domain = datahub.ingestion.transformer.dataset_domain:SimpleAddDatasetDomain",
"pattern_add_dataset_domain = datahub.ingestion.transformer.dataset_domain:PatternAddDatasetDomain",
"add_dataset_tags = datahub.ingestion.transformer.add_dataset_tags:AddDatasetTags",
"simple_add_dataset_tags = datahub.ingestion.transformer.add_dataset_tags:SimpleAddDatasetTags",
"pattern_add_dataset_tags = datahub.ingestion.transformer.add_dataset_tags:PatternAddDatasetTags",
"extract_dataset_tags = datahub.ingestion.transformer.extract_dataset_tags:ExtractDatasetTags",
"add_dataset_terms = datahub.ingestion.transformer.add_dataset_terms:AddDatasetTerms",
"simple_add_dataset_terms = datahub.ingestion.transformer.add_dataset_terms:SimpleAddDatasetTerms",
"pattern_add_dataset_terms = datahub.ingestion.transformer.add_dataset_terms:PatternAddDatasetTerms",
"add_dataset_properties = datahub.ingestion.transformer.add_dataset_properties:AddDatasetProperties",
"simple_add_dataset_properties = datahub.ingestion.transformer.add_dataset_properties:SimpleAddDatasetProperties",
"pattern_add_dataset_schema_terms = datahub.ingestion.transformer.add_dataset_schema_terms:PatternAddDatasetSchemaTerms",
"pattern_add_dataset_schema_tags = datahub.ingestion.transformer.add_dataset_schema_tags:PatternAddDatasetSchemaTags",
"extract_ownership_from_tags = datahub.ingestion.transformer.extract_ownership_from_tags:ExtractOwnersFromTagsTransformer",
"add_dataset_dataproduct = datahub.ingestion.transformer.add_dataset_dataproduct:AddDatasetDataProduct",
"simple_add_dataset_dataproduct = datahub.ingestion.transformer.add_dataset_dataproduct:SimpleAddDatasetDataProduct",
"pattern_add_dataset_dataproduct = datahub.ingestion.transformer.add_dataset_dataproduct:PatternAddDatasetDataProduct",
"replace_external_url = datahub.ingestion.transformer.replace_external_url:ReplaceExternalUrlDataset",
"replace_external_url_container = datahub.ingestion.transformer.replace_external_url:ReplaceExternalUrlContainer",
"pattern_cleanup_dataset_usage_user = datahub.ingestion.transformer.pattern_cleanup_dataset_usage_user:PatternCleanupDatasetUsageUser",
"domain_mapping_based_on_tags = datahub.ingestion.transformer.dataset_domain_based_on_tags:DatasetTagDomainMapper",
"tags_to_term = datahub.ingestion.transformer.tags_to_terms:TagsToTermMapper",
],
"datahub.ingestion.sink.plugins": [
"file = datahub.ingestion.sink.file:FileSink",
"console = datahub.ingestion.sink.console:ConsoleSink",
"blackhole = datahub.ingestion.sink.blackhole:BlackHoleSink",
"datahub-kafka = datahub.ingestion.sink.datahub_kafka:DatahubKafkaSink",
"datahub-rest = datahub.ingestion.sink.datahub_rest:DatahubRestSink",
"datahub-lite = datahub.ingestion.sink.datahub_lite:DataHubLiteSink",
],
"datahub.ingestion.checkpointing_provider.plugins": [
"datahub = datahub.ingestion.source.state_provider.datahub_ingestion_checkpointing_provider:DatahubIngestionCheckpointingProvider",
"file = datahub.ingestion.source.state_provider.file_ingestion_checkpointing_provider:FileIngestionCheckpointingProvider",
],
"datahub.ingestion.reporting_provider.plugins": [
"datahub = datahub.ingestion.reporting.datahub_ingestion_run_summary_provider:DatahubIngestionRunSummaryProvider",
"file = datahub.ingestion.reporting.file_reporter:FileReporter",
],
"datahub.custom_packages": [],
"datahub.fs.plugins": [
"s3 = datahub.ingestion.fs.s3_fs:S3FileSystem",
"file = datahub.ingestion.fs.local_fs:LocalFileSystem",
"http = datahub.ingestion.fs.http_fs:HttpFileSystem",
],
}
setuptools.setup(
# Package metadata.
name=package_metadata["__package_name__"],
version=_version,
url="https://datahubproject.io/",
project_urls={
"Documentation": "https://datahubproject.io/docs/",
"Source": "https://github.com/datahub-project/datahub",
"Changelog": "https://github.com/datahub-project/datahub/releases",
"Releases": "https://github.com/acryldata/datahub/releases",
},
license="Apache License 2.0",
description="A CLI to work with DataHub metadata",
long_description="""\
The `acryl-datahub` package contains a CLI and SDK for interacting with DataHub,
as well as an integration framework for pulling/pushing metadata from external systems.
See the [DataHub docs](https://datahubproject.io/docs/metadata-ingestion).
""",
long_description_content_type="text/markdown",
classifiers=[
"Development Status :: 5 - Production/Stable",
"Programming Language :: Python",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3 :: Only",
"Intended Audience :: Developers",
"Intended Audience :: Information Technology",
"Intended Audience :: System Administrators",
"License :: OSI Approved",
"License :: OSI Approved :: Apache Software License",
"Operating System :: Unix",
"Operating System :: POSIX :: Linux",
"Environment :: Console",
"Environment :: MacOS X",
"Topic :: Software Development",
],
# Package info.
zip_safe=False,
python_requires=">=3.8",
package_dir={"": "src"},
packages=setuptools.find_namespace_packages(where="./src"),
package_data={
"datahub": ["py.typed"],
"datahub.metadata": ["schema.avsc"],
"datahub.metadata.schemas": ["*.avsc"],
"datahub.ingestion.source.powerbi": ["powerbi-lexical-grammar.rule"],
},
entry_points=entry_points,
# Dependencies.
install_requires=list(base_requirements | framework_common),
extras_require={
"base": list(framework_common),
**{
plugin: list(
framework_common
| (
plugin_common
if plugin
not in {
"airflow",
"datahub-rest",
"datahub-kafka",
"sync-file-emitter",
"sql-parser",
"iceberg",
"feast",
}
else set()
)
| dependencies
)
for (plugin, dependencies) in plugins.items()
},
"all": list(
framework_common.union(
*[
requirements
for plugin, requirements in plugins.items()
if plugin not in all_exclude_plugins
]
)
),
"cloud": ["acryl-datahub-cloud"],
"dev": list(dev_requirements),
"lint": list(lint_requirements),
"testing-utils": list(test_api_requirements), # To import `datahub.testing`
"integration-tests": list(full_test_dev_requirements),
"debug": list(debug_requirements),
},
)