-
Notifications
You must be signed in to change notification settings - Fork 0
/
models_densenet121.py
141 lines (121 loc) · 5.57 KB
/
models_densenet121.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.python.framework.ops import Graph
import tensorflow_addons as tfa
import tensorflow.keras.backend as K
from sklearn.metrics import roc_auc_score, f1_score, precision_score, recall_score, precision_recall_curve, roc_curve
# from classification_models.tfkeras import Classifiers
# BATCH_SIZE = 32
# DROPOUT = 0.25
# LR = 2e-3
# OHEM_RATE = 0.5
# NUM_EPOCHS = 5
# NUM_CLASSES = 2
# IMG_SIZE = (227, 227, 3)
class gem(keras.layers.Layer):
def __init__(self):
super(gem, self).__init__()
self.gm_exp = tf.Variable(3.0, dtype='float32')
def call(self, x):
return (tf.reduce_mean(
tf.abs(x ** self.gm_exp),
axis=[1, 2],
keepdims=False
) + K.epsilon()) ** (1. / self.gm_exp)
# gm_exp = tf.Variable(3.0, dtype='float32')
# def gem():
# lambda_layer = keras.layers.Lambda(lambda x: (tf.reduce_mean(tf.abs(x ** gm_exp),
# axis=[1, 2], keepdims=False) + K.epsilon()) ** (
# 1. / gm_exp))
# lambda_layer.trainable_weights.extend([gm_exp])
# return lambda_layer
def ohem_loss(ytrue, ypred, batch_size=32, ohem_rate=0.5):
result = K.binary_crossentropy(ytrue, ypred)
loss = tf.sort(result, direction='DESCENDING')
ohem_loss = K.mean(loss[:int(batch_size * ohem_rate)])
return ohem_loss
def model_build(num_train_samples, num_epochs = 10, batch_size=32, lr=2e-3, ohem_rate=0.5,
drop_out = 0.2, img_size = (227, 227, 3), model_name='densenet121'):
total = ((num_train_samples + batch_size - 1) // batch_size) * num_epochs
# model_structure, _ = Classifiers.get(model_name)
# backbone = model_structure(input_shape=img_size, weights='imagenet', include_top=False)
backbone = keras.applications.densenet.DenseNet121(include_top=False, input_shape=img_size)
# x = keras.layers.BatchNormalization()(x)
# x = keras.layers.Dropout(DROPOUT)(x)
# x = keras.layers.Dense(512, activation='relu')(x)
# x = keras.layers.BatchNormalization()(x)
# gem_out = gem()(backbone.output)
pooling = keras.layers.GlobalAveragePooling2D() #gem()
# gap1 = pooling(backbone.get_layer('pool4_relu').output)
gap2 = pooling(backbone.get_layer('pool2_relu').output)
gap3 = pooling(backbone.get_layer('pool3_relu').output)
x = keras.layers.Concatenate(axis=-1)([gap2, gap3])
# x = keras.layers.BatchNormalization()(gap)
x = keras.layers.Dropout(drop_out)(x)
out = keras.layers.Dense(1, activation='sigmoid', name='pneumonia')(x)
model = keras.models.Model(backbone.input, out)
model.compile(
keras.optimizers.Adam(learning_rate=keras.experimental.CosineDecay(lr, total, alpha=0)),
loss='binary_crossentropy',
# loss = ohem_loss,
# loss_weights={
# 'root': 0.5,
# 'vowel': 0.25,
# 'consonant': 0.25
# }
)
return model
def compute_metrics(y_true, y_pred):
roc_auc = roc_auc_score(y_true, y_pred)
precision = precision_score(y_true, np.array(y_pred > 0.5).astype(int))
recall = recall_score(y_true, np.array(y_pred > 0.5).astype(int))
f1 = f1_score(y_true, np.array(y_pred > 0.5).astype(int))
return roc_auc, precision, recall, f1
class IntervalEval(keras.callbacks.Callback):
def __init__(
self,
model_outdir,
valid_set,
# len_valid_set,
valid_labels,
test_set,
# len_test_set,
test_labels):
super(IntervalEval, self).__init__()
self.model_outdir = model_outdir
self.score_max = [-1] * 4
# self.score_max_auc = -1
self.valid_set = valid_set
# self.len_valid_set = len_valid_set
self.valid_labels = valid_labels
self.test_set = test_set
# self.len_test_set = len_test_set
self.test_labels = test_labels
self.best_model_f1 = None
# self.best_model_auc = None
def on_epoch_end(self, epoch, logs={}):
val_pred = self.model.predict(self.valid_set, verbose=0)
roc_auc, precision, recall, f1 = compute_metrics(self.valid_labels, val_pred)
print(f'\nAUC: {roc_auc:.5f} Precision: {precision:.5f} Recall: {recall:.5f} F1: {f1: .5f}')
if f1 > self.score_max[-1]:
print(f'F1 improved from {self.score_max[-1]:.5f} to {f1:.5f}')
self.score_max = [roc_auc, precision, recall, f1]
self.best_model_f1 = self.model
# if roc_auc > self.score_max_auc:
# print(f'AUC improved from {self.score_max_auc:.5f} to {roc_auc:.5f}')
# self.score_max_auc = roc_auc
# self.best_model_auc = self.model
def on_train_end(self, logs=None):
self.test_preds = self.best_model_f1.predict(self.test_set)
self.test_score = compute_metrics(self.test_labels, self.test_preds)
test_auc, test_pre, test_rec, test_f1 = self.test_score
val_auc, val_pre, val_rec, val_f1 = self.score_max
self.f1_name = f'{self.model_outdir}_val{str(val_f1)[2:7]}_test{str(test_f1)[2:7]}.h5'
self.best_model_f1.save_weights(self.f1_name)
print('-' * 20 + 'Model Saved!' + '-' * 20)
print('-' * 20 + 'Val set metrics' + '-' * 20)
print(f'AUC: {val_auc:.5f} Precision: {val_pre:.5f} Recall: {val_rec:.5f} F1: {val_f1: .5f}')
print('-' * 20 + 'Test set metrics' + '-' * 20)
print(f'AUC: {test_auc:.5f} Precision: {test_pre:.5f} Recall: {test_rec:.5f} F1: {test_f1: .5f}')