forked from zjunlp/OpenUE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
146 lines (98 loc) · 4.84 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
"""Experiment-running framework."""
import argparse
import importlib
import numpy as np
import torch
import pytorch_lightning as pl
import openue.lit_models as lit_models
import yaml
import time
from openue.lit_models import MyTrainer
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# In order to ensure reproducible experiments, we must set random seeds.
def _import_class(module_and_class_name: str) -> type:
"""Import class from a module, e.g. 'text_recognizer.models.MLP'"""
module_name, class_name = module_and_class_name.rsplit(".", 1)
module = importlib.import_module(module_name)
class_ = getattr(module, class_name)
return class_
def _setup_parser():
"""Set up Python's ArgumentParser with data, model, trainer, and other arguments."""
parser = argparse.ArgumentParser(add_help=False)
# Add Trainer specific arguments, such as --max_epochs, --gpus, --precision
trainer_parser = pl.Trainer.add_argparse_args(parser)
trainer_parser._action_groups[1].title = "Trainer Args" # pylint: disable=protected-access
parser = argparse.ArgumentParser(add_help=False, parents=[trainer_parser])
# Basic arguments
parser.add_argument("--wandb", action="store_true", default=False)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--litmodel_class", type=str, default="SEQLitModel")
parser.add_argument("--data_class", type=str, default="REDataset")
parser.add_argument("--model_class", type=str, default="bert.BertForSequenceClassification")
parser.add_argument("--load_checkpoint", type=str, default=None)
# Get the data and model classes, so that we can add their specific arguments
temp_args, _ = parser.parse_known_args()
data_class = _import_class(f"openue.data.{temp_args.data_class}")
model_class = _import_class(f"openue.models.{temp_args.model_class}")
# Get data, model, and LitModel specific arguments
data_group = parser.add_argument_group("Data Args")
data_class.add_to_argparse(data_group)
model_group = parser.add_argument_group("Model Args")
model_class.add_to_argparse(model_group)
lit_model_group = parser.add_argument_group("LitModel Args")
lit_models.BaseLitModel.add_to_argparse(lit_model_group)
parser.add_argument("--help", "-h", action="help")
return parser
def _save_model(litmodel, tokenizer, path):
os.system(f"mkdir -p {path}")
litmodel.model.save_pretrained(path)
tokenizer.save_pretrained(path)
litmodel.config.save_pretrained(path)
def main():
parser = _setup_parser()
args = parser.parse_args()
if not os.path.exists("config"):
os.mkdir("config")
config_file_name = time.strftime("%H:%M:%S", time.localtime()) + ".yaml"
day_name = time.strftime("%Y-%m-%d")
if not os.path.exists(os.path.join("config", day_name)):
os.mkdir(os.path.join("config", time.strftime("%Y-%m-%d")))
config = vars(args)
with open(os.path.join(os.path.join("config", day_name), config_file_name), "w") as file:
file.write(yaml.dump(config))
np.random.seed(args.seed)
torch.manual_seed(args.seed)
data_class = _import_class(f"openue.data.{args.data_class}")
model_class = _import_class(f"openue.models.{args.model_class}")
litmodel_class = _import_class(f"openue.lit_models.{args.litmodel_class}")
data = data_class(args)
lit_model = litmodel_class(args=args, data_config=data.get_config())
logger = pl.loggers.TensorBoardLogger("training/logs")
if args.wandb:
logger = pl.loggers.WandbLogger(project="dialogue_pl")
logger.log_hyperparams(vars(args))
early_callback = pl.callbacks.EarlyStopping(monitor="Eval/f1", mode="max", patience=5)
model_checkpoint = pl.callbacks.ModelCheckpoint(monitor="Eval/f1", mode="max",
filename=args.data_dir.split("/")[-1] +'/'+ args.task_name + r'/{epoch}-{Eval/f1:.2f}',
dirpath="output",
save_weights_only=True
)
callbacks = [early_callback, model_checkpoint]
# args.weights_summary = "full" # Print full summary of the model
trainer = pl.Trainer.from_argparse_args(args, callbacks=callbacks, logger=logger, default_root_dir="training/logs")
test_only = "interactive" in args.task_name
if not test_only: trainer.fit(lit_model, datamodule=data)
# two steps
path = model_checkpoint.best_model_path
# make sure the litmodel is the best model in dev
if not test_only: lit_model.load_state_dict(torch.load(path)["state_dict"])
# show the inference function
if test_only:
inputs = data.tokenizer("姚明出生在中国。", return_tensors='pt')
print(lit_model.inference(inputs))
trainer.test(lit_model, datamodule=data)
if hasattr(lit_model.model, "save_pretrained"):
_save_model(lit_model, data.tokenizer, path.rsplit("/", 1)[0])
if __name__ == "__main__":
main()