-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
82 lines (67 loc) · 2.63 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import streamlit as st
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import PyPDFLoader, DirectoryLoader
from langchain.chains.summarize import load_summarize_chain
from transformers import T5Tokenizer, T5ForConditionalGeneration
from transformers import pipeline
import torch
import base64
# Model & Tokenizer
checkpoint = "LaMini-Flan-T5-248M"
tokenizer = T5Tokenizer.from_pretrained(checkpoint)
base_model = T5ForConditionalGeneration.from_pretrained('MBZUAI/LaMini-Flan-T5-248M', device_map='auto', torch_dtype=torch.float32)
#File Loader & Preprocessing
def file_preprocessing(file):
loader = PyPDFLoader(file)
pages = loader.load_and_split()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=50)
texts= text_splitter.split_documents(pages)
final_texts = ""
for text in texts:
print(text)
final_texts = final_texts + text.page_content
return final_texts
# LM Pipeline
def llm_pipeline(filepath):
pipe_sum = pipeline(
'summarization',
model = base_model,
tokenizer = tokenizer,
max_length = 500,
min_length = 50
)
input_text = file_preprocessing(filepath)
result = pipe_sum(input_text)
result = result[0]['summary_text']
return result
@st.cache_data
#functionto display the PDF of a given file
def displayPDF(file):
#Opening file from file path
with open(file, "rb") as f:
base64_pdf =base64.b64encode(f.read()).decode('utf-8')
#Embeding PDF to HTML
pdf_display= F'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></iframe>'
#Displaying file
st.markdown(pdf_display, unsafe_allow_html=True)
# streamlit code
st.set_page_config(layout='wide', page_title="Summarizatin App")
def main():
st.title("PDF Summarization App using LLM")
st.write("This is a simple app to summarize PDF files.")
uploaded_file = st.file_uploader("Upload your PDF file", type=["pdf"])
if uploaded_file is not None:
if st.button("Summarize"):
col1, col2 = st.columns(2)
filePath = "data/"+uploaded_file.name
with open(filePath, "wb") as temp_file:
temp_file.write(uploaded_file.read())
with col1:
st.info("Uploaded PDF file")
pdf_viewer = displayPDF(filePath)
with col2:
st.info("Summarization is below")
summary = llm_pipeline(filePath)
st.success(summary)
if __name__ == '__main__':
main()