forked from bhattaraiprayag/LLM-Pruning-And-Fairness
-
Notifications
You must be signed in to change notification settings - Fork 0
/
performance.py
99 lines (82 loc) · 4.07 KB
/
performance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import evaluate
import torch
from datasets import load_dataset
from evaluation.utils.bias_sts import get_device
def load_test_dataset(task, model_no):
"""Loads the test dataset based on the specified task."""
if task == 'mnli':
if model_no == 1: # uses original split of the data
return (
load_dataset('glue', 'mnli', split='validation_matched[-50%:]'),
load_dataset('glue', 'mnli', split='validation_mismatched[-50%:]')
)
else: # uses shuffled split based on seed
full_dataset = load_dataset(
"glue",
"mnli",
split=['train+validation_matched', 'validation_mismatched[:50%]', 'validation_mismatched[-50%:]']
)
# 2.5% test_matched + validation_matched (keep the same ratio as in the original split)
train_testvalid = full_dataset[0].train_test_split(test_size=0.025, shuffle=True, seed=model_no)
# Split test_matched + validation_matched in half test_matched, half validation_matched
test_valid = train_testvalid['test'].train_test_split(test_size=0.5, shuffle=True, seed=model_no)
# return test portion (matched and mismatchend)
return (
test_valid['train'],
full_dataset[2]
)
elif task == 'stsb':
if model_no == 1: # uses original split of the data
return load_dataset('glue', 'stsb', split='validation[-50%:]')
else: # uses shuffled split based on seed
full_dataset = load_dataset(
"glue",
"stsb",
split='train+validation'
)
# 20% test + validation (keep the same ratio as in the original split)
train_testvalid = full_dataset.train_test_split(test_size=0.2, shuffle=True, seed=model_no)
# Split test + valid in half test, half valid
test_valid = train_testvalid['test'].train_test_split(test_size=0.5, shuffle=True, seed=model_no)
# return test portion
return test_valid['test']
else:
raise ValueError(f'No evaluation dataset found for task {task}')
def evaluate_metrics(model, head_mask, tokenizer, task, test_dataset):
"""Evaluates task-specific metrics and returns results."""
results_dict = {}
if task == 'mnli':
eval_matched, eval_mismatched = test_dataset
mnli_matched = evaluate_model(model, head_mask, tokenizer, task, eval_matched)
mnli_mismatched = evaluate_model(model, head_mask, tokenizer, task, eval_mismatched)
results_dict['Matched Acc'], results_dict['Mismatched Acc'] = mnli_matched['accuracy'], mnli_mismatched[
'accuracy']
elif task == 'stsb':
eval_results = evaluate_model(model, head_mask, tokenizer, task, test_dataset)
results_dict['Spearmanr'], results_dict['Pearson'] = eval_results['spearmanr'], eval_results['pearson']
else:
raise ValueError(f'No evaluation metrics found for task {task}')
return results_dict
def evaluate_model(model, head_mask, tokenizer, task_name, test_dataset):
device = get_device()
# define the names of the sentence keys based on task
if task_name == "mnli":
sent1, sent2 = "premise", "hypothesis"
else: # STS-B
sent1, sent2 = "sentence1", "sentence2"
preds = []
for i in range(test_dataset.shape[0]):
# tokenize the current sentence pair
row = test_dataset[i]
inputs = tokenizer(row[sent1], row[sent2], max_length=512, truncation=True, padding=True, return_tensors='pt')
inputs.to(device)
# do inference and get prediction
outputs = model(**inputs, head_mask=head_mask)
pred = outputs[0].tolist()[0][0] if task_name == "stsb" else torch.argmax(outputs.logits.softmax(dim=1)).item()
preds.append(pred)
# get labels from dataset
labels = test_dataset['label']
# calculate performance metric(s)
metric = evaluate.load("glue", task_name)
result = metric.compute(predictions=preds, references=labels)
return result