diff --git a/Emotion_Recognition_Audio/README.md b/Emotion_Recognition_Audio/README.md
new file mode 100644
index 000000000..f2d3df893
--- /dev/null
+++ b/Emotion_Recognition_Audio/README.md
@@ -0,0 +1,25 @@
+# Emotion Recognition from Audio using Deep Learning
+
+This project aims to recognize emotions from audio files using deep learning. The pipeline includes loading and processing audio data, visualizing waveforms and spectrograms, extracting MFCC features, and training a neural network model.
+
+Dataset Download link: https://www.kaggle.com/ejlok1/toronto-emotional-speech-set-tess More Datasets: https://www.kaggle.com/dmitrybabko/speech-emotion-recognition-en
+
+## Project Structure
+
+my_project/
+│
+├── dataset/
+│
+├── main.ipynb
+├── README.md
+└── requirements.txt
+
+
+## Installation
+
+1. Clone the repository
+ ```sh
+ https://github.com/ChethanaPotukanam/DL-Simplified/tree/main/Emotion_Recognition_Audio
+
+#### To install the required packages
+pip install -r requirements.txt
\ No newline at end of file
diff --git a/Emotion_Recognition_Audio/main.ipynb b/Emotion_Recognition_Audio/main.ipynb
new file mode 100644
index 000000000..b64344dd0
--- /dev/null
+++ b/Emotion_Recognition_Audio/main.ipynb
@@ -0,0 +1,1165 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "import os\n",
+ "import seaborn as sns\n",
+ "import matplotlib.pyplot as plt\n",
+ "import librosa\n",
+ "import librosa.display\n",
+ "from IPython.display import Audio\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Dataset is Loaded\n"
+ ]
+ }
+ ],
+ "source": [
+ "import os\n",
+ "\n",
+ "paths = []\n",
+ "labels = []\n",
+ "\n",
+ "# Replace '/kaggle/input' with your local dataset directory\n",
+ "for dirname, _, filenames in os.walk('dataset'):\n",
+ " for filename in filenames:\n",
+ " if filename.endswith('.wav'): # Ensure only .wav files are processed\n",
+ " paths.append(os.path.join(dirname, filename))\n",
+ " label = filename.split('_')[-1]\n",
+ " label = label.split('.')[0]\n",
+ " labels.append(label.lower())\n",
+ " if len(paths) == 2800:\n",
+ " break\n",
+ "\n",
+ "print('Dataset is Loaded')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "5600"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "len(paths)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "['dataset/TESS Toronto emotional speech set data/YAF_sad/YAF_pick_sad.wav',\n",
+ " 'dataset/TESS Toronto emotional speech set data/YAF_sad/YAF_kick_sad.wav',\n",
+ " 'dataset/TESS Toronto emotional speech set data/YAF_sad/YAF_road_sad.wav',\n",
+ " 'dataset/TESS Toronto emotional speech set data/YAF_sad/YAF_jar_sad.wav',\n",
+ " 'dataset/TESS Toronto emotional speech set data/YAF_sad/YAF_hall_sad.wav']"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "paths[:5]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "['sad', 'sad', 'sad', 'sad', 'sad']"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "labels[:5]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " speech | \n",
+ " label | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " dataset/TESS Toronto emotional speech set data... | \n",
+ " sad | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " dataset/TESS Toronto emotional speech set data... | \n",
+ " sad | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " dataset/TESS Toronto emotional speech set data... | \n",
+ " sad | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " dataset/TESS Toronto emotional speech set data... | \n",
+ " sad | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " dataset/TESS Toronto emotional speech set data... | \n",
+ " sad | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " speech label\n",
+ "0 dataset/TESS Toronto emotional speech set data... sad\n",
+ "1 dataset/TESS Toronto emotional speech set data... sad\n",
+ "2 dataset/TESS Toronto emotional speech set data... sad\n",
+ "3 dataset/TESS Toronto emotional speech set data... sad\n",
+ "4 dataset/TESS Toronto emotional speech set data... sad"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "## Create a dataframe\n",
+ "df = pd.DataFrame()\n",
+ "df['speech'] = paths\n",
+ "df['label'] = labels\n",
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "label\n",
+ "sad 800\n",
+ "fear 800\n",
+ "angry 800\n",
+ "disgust 800\n",
+ "ps 800\n",
+ "happy 800\n",
+ "neutral 800\n",
+ "Name: count, dtype: int64"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df['label'].value_counts()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA8DklEQVR4nO3de1xVVf7/8feRu3JRUDkyomLiLfCSlqkljII+LLXGJmvsWzqaWZpGaTqOXZimoCyRwrL0Z15zqKlwqinzUjIaYyFqqZlakZeCoRwEUQKE9fujr/vbEahE5ODu9Xw89iPP2p+9z1orzvHt2vtwHMYYIwAAAJtq4u4OAAAAXEiEHQAAYGuEHQAAYGuEHQAAYGuEHQAAYGuEHQAAYGuEHQAAYGue7u5AY1BVVaVvvvlGAQEBcjgc7u4OAAD4BYwxOnHihMLCwtSkSe3rN4QdSd98843Cw8Pd3Q0AAFAHR44cUdu2bWvdT9iRFBAQIOmHyQoMDHRzbwAAwC9RXFys8PBw6+/x2hB2JOvSVWBgIGEHAICLzM/dgsINygAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNbcGnZOnz6tBx54QBEREfLz81PHjh31yCOPqKqqyqoxxigxMVFhYWHy8/NTbGys9u7d63KesrIyTZs2TS1btlSzZs00atQoHT16tKGHAwAAGiG3hp0nnnhCzz//vBYuXKh9+/Zp3rx5evLJJ5WWlmbVzJs3TykpKVq4cKGys7PldDoVHx+vEydOWDUJCQnKyMhQenq6tm7dqpKSEo0YMUKVlZXuGBYAAGhEHMYY464nHzFihEJDQ7V06VKr7YYbblDTpk21atUqGWMUFhamhIQEzZ49W9IPqzihoaF64oknNHnyZBUVFalVq1ZatWqVbrrpJknSN998o/DwcL399tsaNmzYz/ajuLhYQUFBKioq4lvPAQC4SPzSv7/durJz1VVXadOmTTpw4IAk6eOPP9bWrVt1zTXXSJJyc3OVn5+voUOHWsf4+PgoJiZGWVlZkqScnBxVVFS41ISFhSkqKsqqOVtZWZmKi4tdNgAAYE+e7nzy2bNnq6ioSF27dpWHh4cqKyv12GOP6Q9/+IMkKT8/X5IUGhrqclxoaKgOHTpk1Xh7e6tFixbVas4cf7bk5GT95S9/+cX97HP/yl9ce7HKefK2Oh13+JHoeu5J49Puod11Om5g2sB67knj8sG0D+p8bOagmHrsSeMT86/MOh23cMab9dyTxufu+SPrdNxj//P7eu5J4zN39at1Om7fY+/Vc08an25zB5/X8W5d2Xn55Ze1evVqrVmzRjt27NCKFSv01FNPacWKFS51DofD5bExplrb2X6qZs6cOSoqKrK2I0eOnN9AAABAo+XWlZ37779ff/rTn3TzzTdLkqKjo3Xo0CElJydr3Lhxcjqdkn5YvWnTpo11XEFBgbXa43Q6VV5ersLCQpfVnYKCAg0YMKDG5/Xx8ZGPj8+FGhYAAGhE3Lqyc+rUKTVp4toFDw8P66PnERERcjqd2rBhg7W/vLxcmZmZVpDp06ePvLy8XGry8vK0Z8+eWsMOAAD49XDrys7IkSP12GOPqV27drr00ku1c+dOpaSkaMKECZJ+uHyVkJCgpKQkRUZGKjIyUklJSWratKnGjh0rSQoKCtLEiRM1Y8YMhYSEKDg4WDNnzlR0dLTi4uLcOTwAANAIuDXspKWl6cEHH9SUKVNUUFCgsLAwTZ48WQ899JBVM2vWLJWWlmrKlCkqLCxUv379tH79egUEBFg1CxYskKenp8aMGaPS0lINGTJEy5cvl4eHhzuGBQAAGhG3hp2AgAClpqYqNTW11hqHw6HExEQlJibWWuPr66u0tDSXX0YIAAAg8d1YAADA5gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1twadjp06CCHw1Ftmzp1qiTJGKPExESFhYXJz89PsbGx2rt3r8s5ysrKNG3aNLVs2VLNmjXTqFGjdPToUXcMBwAANEJuDTvZ2dnKy8uztg0bNkiSbrzxRknSvHnzlJKSooULFyo7O1tOp1Px8fE6ceKEdY6EhARlZGQoPT1dW7duVUlJiUaMGKHKykq3jAkAADQubg07rVq1ktPptLa33npLl1xyiWJiYmSMUWpqqubOnavRo0crKipKK1as0KlTp7RmzRpJUlFRkZYuXar58+crLi5OvXv31urVq7V7925t3LjRnUMDAACNRKO5Z6e8vFyrV6/WhAkT5HA4lJubq/z8fA0dOtSq8fHxUUxMjLKysiRJOTk5qqiocKkJCwtTVFSUVVOTsrIyFRcXu2wAAMCeGk3YWbt2rY4fP67x48dLkvLz8yVJoaGhLnWhoaHWvvz8fHl7e6tFixa11tQkOTlZQUFB1hYeHl6PIwEAAI1Jowk7S5cu1fDhwxUWFubS7nA4XB4bY6q1ne3naubMmaOioiJrO3LkSN07DgAAGrVGEXYOHTqkjRs36vbbb7fanE6nJFVboSkoKLBWe5xOp8rLy1VYWFhrTU18fHwUGBjosgEAAHtqFGFn2bJlat26ta699lqrLSIiQk6n0/qElvTDfT2ZmZkaMGCAJKlPnz7y8vJyqcnLy9OePXusGgAA8Ovm6e4OVFVVadmyZRo3bpw8Pf+vOw6HQwkJCUpKSlJkZKQiIyOVlJSkpk2bauzYsZKkoKAgTZw4UTNmzFBISIiCg4M1c+ZMRUdHKy4uzl1DAgAAjYjbw87GjRt1+PBhTZgwodq+WbNmqbS0VFOmTFFhYaH69eun9evXKyAgwKpZsGCBPD09NWbMGJWWlmrIkCFavny5PDw8GnIYAACgkXJ72Bk6dKiMMTXuczgcSkxMVGJiYq3H+/r6Ki0tTWlpaReohwAA4GLWKO7ZAQAAuFAIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNbcHna+/vpr/c///I9CQkLUtGlT9erVSzk5OdZ+Y4wSExMVFhYmPz8/xcbGau/evS7nKCsr07Rp09SyZUs1a9ZMo0aN0tGjRxt6KAAAoBFya9gpLCzUwIED5eXlpXfeeUeffvqp5s+fr+bNm1s18+bNU0pKihYuXKjs7Gw5nU7Fx8frxIkTVk1CQoIyMjKUnp6urVu3qqSkRCNGjFBlZaUbRgUAABoTT3c++RNPPKHw8HAtW7bMauvQoYP1Z2OMUlNTNXfuXI0ePVqStGLFCoWGhmrNmjWaPHmyioqKtHTpUq1atUpxcXGSpNWrVys8PFwbN27UsGHDGnRMAACgcXHrys4bb7yhvn376sYbb1Tr1q3Vu3dvLVmyxNqfm5ur/Px8DR061Grz8fFRTEyMsrKyJEk5OTmqqKhwqQkLC1NUVJRVc7aysjIVFxe7bAAAwJ7cGna+/PJLLVq0SJGRkXr33Xd15513avr06Vq5cqUkKT8/X5IUGhrqclxoaKi1Lz8/X97e3mrRokWtNWdLTk5WUFCQtYWHh9f30AAAQCPh1rBTVVWlyy67TElJSerdu7cmT56sSZMmadGiRS51DofD5bExplrb2X6qZs6cOSoqKrK2I0eOnN9AAABAo+XWsNOmTRt1797dpa1bt246fPiwJMnpdEpStRWagoICa7XH6XSqvLxchYWFtdaczcfHR4GBgS4bAACwJ7eGnYEDB2r//v0ubQcOHFD79u0lSREREXI6ndqwYYO1v7y8XJmZmRowYIAkqU+fPvLy8nKpycvL0549e6waAADw6+XWT2Pde++9GjBggJKSkjRmzBh99NFHWrx4sRYvXizph8tXCQkJSkpKUmRkpCIjI5WUlKSmTZtq7NixkqSgoCBNnDhRM2bMUEhIiIKDgzVz5kxFR0dbn84CAAC/Xm4NO5dffrkyMjI0Z84cPfLII4qIiFBqaqpuueUWq2bWrFkqLS3VlClTVFhYqH79+mn9+vUKCAiwahYsWCBPT0+NGTNGpaWlGjJkiJYvXy4PDw93DAsAADQibg07kjRixAiNGDGi1v0Oh0OJiYlKTEystcbX11dpaWlKS0u7AD0EAAAXM7d/XQQAAMCFRNgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC25tawk5iYKIfD4bI5nU5rvzFGiYmJCgsLk5+fn2JjY7V3716Xc5SVlWnatGlq2bKlmjVrplGjRuno0aMNPRQAANBIuX1l59JLL1VeXp617d6929o3b948paSkaOHChcrOzpbT6VR8fLxOnDhh1SQkJCgjI0Pp6enaunWrSkpKNGLECFVWVrpjOAAAoJHxdHsHPD1dVnPOMMYoNTVVc+fO1ejRoyVJK1asUGhoqNasWaPJkyerqKhIS5cu1apVqxQXFydJWr16tcLDw7Vx40YNGzasQccCAAAaH7ev7Bw8eFBhYWGKiIjQzTffrC+//FKSlJubq/z8fA0dOtSq9fHxUUxMjLKysiRJOTk5qqiocKkJCwtTVFSUVVOTsrIyFRcXu2wAAMCe3Bp2+vXrp5UrV+rdd9/VkiVLlJ+frwEDBujYsWPKz8+XJIWGhrocExoaau3Lz8+Xt7e3WrRoUWtNTZKTkxUUFGRt4eHh9TwyAADQWLg17AwfPlw33HCDoqOjFRcXp3/+85+SfrhcdYbD4XA5xhhTre1sP1czZ84cFRUVWduRI0fOYxQAAKAxc/tlrB9r1qyZoqOjdfDgQes+nrNXaAoKCqzVHqfTqfLychUWFtZaUxMfHx8FBga6bAAAwJ4aVdgpKyvTvn371KZNG0VERMjpdGrDhg3W/vLycmVmZmrAgAGSpD59+sjLy8ulJi8vT3v27LFqAADAr5tbP401c+ZMjRw5Uu3atVNBQYEeffRRFRcXa9y4cXI4HEpISFBSUpIiIyMVGRmppKQkNW3aVGPHjpUkBQUFaeLEiZoxY4ZCQkIUHBysmTNnWpfFAAAA3Bp2jh49qj/84Q/67rvv1KpVK1155ZXatm2b2rdvL0maNWuWSktLNWXKFBUWFqpfv35av369AgICrHMsWLBAnp6eGjNmjEpLSzVkyBAtX75cHh4e7hoWAABoRNwadtLT039yv8PhUGJiohITE2ut8fX1VVpamtLS0uq5dwAAwA4a1T07AAAA9Y2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbI2wAwAAbK1OYWfw4ME6fvx4tfbi4mINHjz4fPsEAABQb+oUdjZv3qzy8vJq7d9//722bNly3p0CAACoL+f0reeffPKJ9edPP/1U+fn51uPKykqtW7dOv/nNb+qvdwAAAOfpnMJOr1695HA45HA4arxc5efnp7S0tHrrHAAAwPk6p7CTm5srY4w6duyojz76SK1atbL2eXt7q3Xr1vLw8Kj3TgIAANTVOYWd9u3bS5KqqqouSGcAAADq2zmFnR87cOCANm/erIKCgmrh56GHHjrvjgEAANSHOoWdJUuW6K677lLLli3ldDrlcDisfQ6Hg7ADAAAajTqFnUcffVSPPfaYZs+eXd/9AQAAqFd1+j07hYWFuvHGG+u7LwAAAPWuTmHnxhtv1Pr16+u7LwAAAPWuTpexOnXqpAcffFDbtm1TdHS0vLy8XPZPnz69XjoHAABwvuoUdhYvXix/f39lZmYqMzPTZZ/D4SDsAACARqNOYSc3N7e++wEAAHBB1OmeHQAAgItFnVZ2JkyY8JP7X3zxxTp1BgAAoL7VKewUFha6PK6oqNCePXt0/PjxGr8gFAAAwF3qFHYyMjKqtVVVVWnKlCnq2LHjeXcKAACgvtTbPTtNmjTRvffeqwULFtTXKQEAAM5bvd6g/MUXX+j06dP1eUoAAIDzUqfLWPfdd5/LY2OM8vLy9M9//lPjxo2rl44BAADUhzqFnZ07d7o8btKkiVq1aqX58+f/7Ce1AAAAGlKdLmO9//77LtumTZuUnp6uO+64Q56edcpPSk5OlsPhUEJCgtVmjFFiYqLCwsLk5+en2NhY7d271+W4srIyTZs2TS1btlSzZs00atQoHT16tE59AAAA9nNe9+x8++232rp1qz744AN9++23dT5Pdna2Fi9erB49eri0z5s3TykpKVq4cKGys7PldDoVHx+vEydOWDUJCQnKyMhQenq6tm7dqpKSEo0YMUKVlZV17g8AALCPOoWdkydPasKECWrTpo0GDRqkq6++WmFhYZo4caJOnTp1TucqKSnRLbfcoiVLlqhFixZWuzFGqampmjt3rkaPHq2oqCitWLFCp06d0po1ayRJRUVFWrp0qebPn6+4uDj17t1bq1ev1u7du7Vx48a6DA0AANhMncLOfffdp8zMTL355ps6fvy4jh8/rn/84x/KzMzUjBkzzulcU6dO1bXXXqu4uDiX9tzcXOXn52vo0KFWm4+Pj2JiYpSVlSVJysnJUUVFhUtNWFiYoqKirJqalJWVqbi42GUDAAD2VKcbbF577TW9+uqrio2NtdquueYa+fn5acyYMVq0aNEvOk96erp27Nih7Ozsavvy8/MlSaGhoS7toaGhOnTokFXj7e3tsiJ0pubM8TVJTk7WX/7yl1/URwAAcHGr08rOqVOnqoUQSWrduvUvvox15MgR3XPPPVq9erV8fX1rrXM4HC6PjTHV2s72czVz5sxRUVGRtR05cuQX9RkAAFx86hR2+vfvr4cffljff/+91VZaWqq//OUv6t+//y86R05OjgoKCtSnTx95enrK09NTmZmZeuaZZ+Tp6WmFqbNXaAoKCqx9TqdT5eXl1b6r68c1NfHx8VFgYKDLBgAA7KlOYSc1NVVZWVlq27athgwZori4OIWHh+uDDz7Q008//YvOMWTIEO3evVu7du2ytr59++qWW27Rrl271LFjRzmdTm3YsME6pry8XJmZmRowYIAkqU+fPvLy8nKpycvL0549e6waAADw61ane3aio6N18OBBrV69Wp999pmMMbr55pt1yy23yM/P7xedIyAgQFFRUS5tzZo1U0hIiNWekJCgpKQkRUZGKjIyUklJSWratKnGjh0rSQoKCtLEiRM1Y8YMhYSEKDg4WDNnzlR0dHS1G54BAMCvU53CTnJyskJDQzVp0iSX9hdffFHffvutZs+eXS+dmzVrlkpLSzVlyhQVFhaqX79+Wr9+vQICAqyaBQsWyNPTU2PGjFFpaamGDBmi5cuXy8PDo176AAAALm51uoz1wgsvqGvXrtXaL730Uj3//PN17szmzZuVmppqPXY4HEpMTFReXp6+//57ZWZmVlsN8vX1VVpamo4dO6ZTp07pzTffVHh4eJ37AAAA7KVOYSc/P19t2rSp1t6qVSvl5eWdd6cAAADqS53Czpmbkc/2wQcfKCws7Lw7BQAAUF/qdM/O7bffroSEBFVUVGjw4MGSpE2bNmnWrFnn/BuUAQAALqQ6hZ1Zs2bpv//9r6ZMmaLy8nJJP9w7M3v2bM2ZM6deOwgAAHA+6hR2HA6HnnjiCT344IPat2+f/Pz8FBkZKR8fn/ruHwAAwHmpU9g5w9/fX5dffnl99QUAAKDe1ekGZQAAgIsFYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANiaW8POokWL1KNHDwUGBiowMFD9+/fXO++8Y+03xigxMVFhYWHy8/NTbGys9u7d63KOsrIyTZs2TS1btlSzZs00atQoHT16tKGHAgAAGim3hp22bdvq8ccf1/bt27V9+3YNHjxY1113nRVo5s2bp5SUFC1cuFDZ2dlyOp2Kj4/XiRMnrHMkJCQoIyND6enp2rp1q0pKSjRixAhVVla6a1gAAKARcWvYGTlypK655hp17txZnTt31mOPPSZ/f39t27ZNxhilpqZq7ty5Gj16tKKiorRixQqdOnVKa9askSQVFRVp6dKlmj9/vuLi4tS7d2+tXr1au3fv1saNG905NAAA0Eg0mnt2KisrlZ6erpMnT6p///7Kzc1Vfn6+hg4datX4+PgoJiZGWVlZkqScnBxVVFS41ISFhSkqKsqqqUlZWZmKi4tdNgAAYE9uDzu7d++Wv7+/fHx8dOeddyojI0Pdu3dXfn6+JCk0NNSlPjQ01NqXn58vb29vtWjRotaamiQnJysoKMjawsPD63lUAACgsXB72OnSpYt27dqlbdu26a677tK4ceP06aefWvsdDodLvTGmWtvZfq5mzpw5KioqsrYjR46c3yAAAECj5faw4+3trU6dOqlv375KTk5Wz5499fTTT8vpdEpStRWagoICa7XH6XSqvLxchYWFtdbUxMfHx/oE2JkNAADYk9vDztmMMSorK1NERIScTqc2bNhg7SsvL1dmZqYGDBggSerTp4+8vLxcavLy8rRnzx6rBgAA/Lp5uvPJ//znP2v48OEKDw/XiRMnlJ6ers2bN2vdunVyOBxKSEhQUlKSIiMjFRkZqaSkJDVt2lRjx46VJAUFBWnixImaMWOGQkJCFBwcrJkzZyo6OlpxcXHuHBoAAGgk3Bp2/vOf/+jWW29VXl6egoKC1KNHD61bt07x8fGSpFmzZqm0tFRTpkxRYWGh+vXrp/Xr1ysgIMA6x4IFC+Tp6akxY8aotLRUQ4YM0fLly+Xh4eGuYQEAgEbErWFn6dKlP7nf4XAoMTFRiYmJtdb4+voqLS1NaWlp9dw7AABgB43unh0AAID6RNgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC25tawk5ycrMsvv1wBAQFq3bq1rr/+eu3fv9+lxhijxMREhYWFyc/PT7Gxsdq7d69LTVlZmaZNm6aWLVuqWbNmGjVqlI4ePdqQQwEAAI2UW8NOZmampk6dqm3btmnDhg06ffq0hg4dqpMnT1o18+bNU0pKihYuXKjs7Gw5nU7Fx8frxIkTVk1CQoIyMjKUnp6urVu3qqSkRCNGjFBlZaU7hgUAABoRT3c++bp161weL1u2TK1bt1ZOTo4GDRokY4xSU1M1d+5cjR49WpK0YsUKhYaGas2aNZo8ebKKioq0dOlSrVq1SnFxcZKk1atXKzw8XBs3btSwYcMafFwAAKDxaFT37BQVFUmSgoODJUm5ubnKz8/X0KFDrRofHx/FxMQoKytLkpSTk6OKigqXmrCwMEVFRVk1ZysrK1NxcbHLBgAA7KnRhB1jjO677z5dddVVioqKkiTl5+dLkkJDQ11qQ0NDrX35+fny9vZWixYtaq05W3JysoKCgqwtPDy8vocDAAAaiUYTdu6++2598skn+tvf/lZtn8PhcHlsjKnWdrafqpkzZ46Kioqs7ciRI3XvOAAAaNQaRdiZNm2a3njjDb3//vtq27at1e50OiWp2gpNQUGBtdrjdDpVXl6uwsLCWmvO5uPjo8DAQJcNAADYk1vDjjFGd999t15//XW99957ioiIcNkfEREhp9OpDRs2WG3l5eXKzMzUgAEDJEl9+vSRl5eXS01eXp727Nlj1QAAgF8vt34aa+rUqVqzZo3+8Y9/KCAgwFrBCQoKkp+fnxwOhxISEpSUlKTIyEhFRkYqKSlJTZs21dixY63aiRMnasaMGQoJCVFwcLBmzpyp6Oho69NZAADg18utYWfRokWSpNjYWJf2ZcuWafz48ZKkWbNmqbS0VFOmTFFhYaH69eun9evXKyAgwKpfsGCBPD09NWbMGJWWlmrIkCFavny5PDw8GmooAACgkXJr2DHG/GyNw+FQYmKiEhMTa63x9fVVWlqa0tLS6rF3AADADhrFDcoAAAAXCmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYGmEHAADYmlvDzr/+9S+NHDlSYWFhcjgcWrt2rct+Y4wSExMVFhYmPz8/xcbGau/evS41ZWVlmjZtmlq2bKlmzZpp1KhROnr0aAOOAgAANGZuDTsnT55Uz549tXDhwhr3z5s3TykpKVq4cKGys7PldDoVHx+vEydOWDUJCQnKyMhQenq6tm7dqpKSEo0YMUKVlZUNNQwAANCIebrzyYcPH67hw4fXuM8Yo9TUVM2dO1ejR4+WJK1YsUKhoaFas2aNJk+erKKiIi1dulSrVq1SXFycJGn16tUKDw/Xxo0bNWzYsAYbCwAAaJwa7T07ubm5ys/P19ChQ602Hx8fxcTEKCsrS5KUk5OjiooKl5qwsDBFRUVZNTUpKytTcXGxywYAAOyp0Yad/Px8SVJoaKhLe2hoqLUvPz9f3t7eatGiRa01NUlOTlZQUJC1hYeH13PvAQBAY9Fow84ZDofD5bExplrb2X6uZs6cOSoqKrK2I0eO1EtfAQBA49Now47T6ZSkais0BQUF1mqP0+lUeXm5CgsLa62piY+PjwIDA102AABgT4027ERERMjpdGrDhg1WW3l5uTIzMzVgwABJUp8+feTl5eVSk5eXpz179lg1AADg182tn8YqKSnR559/bj3Ozc3Vrl27FBwcrHbt2ikhIUFJSUmKjIxUZGSkkpKS1LRpU40dO1aSFBQUpIkTJ2rGjBkKCQlRcHCwZs6cqejoaOvTWQAA4NfNrWFn+/bt+u1vf2s9vu+++yRJ48aN0/LlyzVr1iyVlpZqypQpKiwsVL9+/bR+/XoFBARYxyxYsECenp4aM2aMSktLNWTIEC1fvlweHh4NPh4AAND4uDXsxMbGyhhT636Hw6HExEQlJibWWuPr66u0tDSlpaVdgB4CAICLXaO9ZwcAAKA+EHYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICt2SbsPPfcc4qIiJCvr6/69OmjLVu2uLtLAACgEbBF2Hn55ZeVkJCguXPnaufOnbr66qs1fPhwHT582N1dAwAAbmaLsJOSkqKJEyfq9ttvV7du3ZSamqrw8HAtWrTI3V0DAABu5unuDpyv8vJy5eTk6E9/+pNL+9ChQ5WVlVXjMWVlZSorK7MeFxUVSZKKi4trrK8sK62n3jZetY3955z4vrKee9L41HVuTpeerueeNC51nRdJOnmaualJadmpeu5J41PXufm+oqKee9L41HVuSr4/Wc89aXxqm5sz7caYnz6Buch9/fXXRpL54IMPXNofe+wx07lz5xqPefjhh40kNjY2NjY2NhtsR44c+cmscNGv7JzhcDhcHhtjqrWdMWfOHN13333W46qqKv33v/9VSEhIrcc0lOLiYoWHh+vIkSMKDAx0a18aG+amdsxN7Zib2jE3tWNuatbY5sUYoxMnTigsLOwn6y76sNOyZUt5eHgoPz/fpb2goEChoaE1HuPj4yMfHx+XtubNm1+oLtZJYGBgo/hBaoyYm9oxN7VjbmrH3NSOualZY5qXoKCgn6256G9Q9vb2Vp8+fbRhwwaX9g0bNmjAgAFu6hUAAGgsLvqVHUm67777dOutt6pv377q37+/Fi9erMOHD+vOO+90d9cAAICb2SLs3HTTTTp27JgeeeQR5eXlKSoqSm+//bbat2/v7q6dMx8fHz388MPVLrOBufkpzE3tmJvaMTe1Y25qdrHOi8OYn/u8FgAAwMXror9nBwAA4KcQdgAAgK0RdgAAgK0Rdi5iDodDa9eudXc3zosxRnfccYeCg4PlcDi0a9cud3cJjUhsbKwSEhIkSR06dFBqaqpb+4PG68c/K7g4XcjXOGEHbrVu3TotX75cb731lvVJOqAm2dnZuuOOO9zdDUnSV199RTjHr97FFDBt8dFzXLy++OILtWnT5oL+Asjy8nJ5e3tfsPNfjCoqKuTl5eXubpyTVq1aubsLAM6RMUaVlZXy9HRv3GBlpwG9+uqrio6Olp+fn0JCQhQXF6eTJ08qOztb8fHxatmypYKCghQTE6MdO3a4HHvw4EENGjRIvr6+6t69e7XfGH0xGj9+vKZNm6bDhw/L4XCoQ4cOMsZo3rx56tixo/z8/NSzZ0+9+uqr1jGVlZWaOHGiIiIi5Ofnpy5duujpp5+udt7rr79eycnJCgsLU+fOnRt6aOdk3bp1uuqqq9S8eXOFhIRoxIgR+uKLLyT93wrC66+/rt/+9rdq2rSpevbsqX//+98u51iyZInCw8PVtGlT/e53v1NKSorLV6AkJiaqV69eevHFF9WxY0f5+PhoxYoVCgkJUVlZmcu5brjhBt12220XfNxnO3nypG677Tb5+/urTZs2mj9/vsv+s5e4ExMT1a5dO/n4+CgsLEzTp0+39uXl5enaa6+Vn5+fIiIitGbNGpfja1qZOX78uBwOhzZv3ixJKiws1C233KJWrVrJz89PkZGRWrZsmSQpIiJCktS7d285HA7FxsbW+3zUp9jYWN199926++67rZ+zBx54wPqm6Oeee06RkZHy9fVVaGiofv/737u5x3VTVVWlWbNmKTg4WE6nU4mJida+lJQURUdHq1mzZgoPD9eUKVNUUlJi7V++fLmaN2+utWvXqnPnzvL19VV8fLyOHDli1Zx5Hb3wwgvW6+3GG2/U8ePHJUn/+te/5OXlVe3ri2bMmKFBgwZd0LGfLTY2VtOnT691PoqKinTHHXeodevWCgwM1ODBg/Xxxx9b+8+8j/5YQkKC9bM+fvx4ZWZm6umnn5bD4ZDD4dBXX32lzZs3y+Fw6N1331Xfvn3l4+OjLVu26IsvvtB1112n0NBQ+fv76/LLL9fGjRsbYCb+13l/7Th+kW+++cZ4enqalJQUk5ubaz755BPz7LPPmhMnTphNmzaZVatWmU8//dR8+umnZuLEiSY0NNQUFxcbY4yprKw0UVFRJjY21uzcudNkZmaa3r17G0kmIyPDvQM7D8ePHzePPPKIadu2rcnLyzMFBQXmz3/+s+natatZt26d+eKLL8yyZcuMj4+P2bx5szHGmPLycvPQQw+Zjz76yHz55Zdm9erVpmnTpubll1+2zjtu3Djj7+9vbr31VrNnzx6ze/dudw3xF3n11VfNa6+9Zg4cOGB27txpRo4caaKjo01lZaXJzc01kkzXrl3NW2+9Zfbv329+//vfm/bt25uKigpjjDFbt241TZo0MU8++aTZv3+/efbZZ01wcLAJCgqynuPhhx82zZo1M8OGDTM7duwwH3/8sTl16pQJCgoyr7zyilX37bffGm9vb/Pee+819DSYu+66y7Rt29asX7/efPLJJ2bEiBHG39/f3HPPPcYYY9q3b28WLFhgjDHm73//uwkMDDRvv/22OXTokPnwww/N4sWLrXPFxcWZXr16mW3btpmcnBwTExNj/Pz8rOPPzOvOnTutYwoLC40k8/777xtjjJk6darp1auXyc7ONrm5uWbDhg3mjTfeMMYY89FHHxlJZuPGjSYvL88cO3bsQk/PeYmJibHm8rPPPrNeN4sXLzbZ2dnGw8PDrFmzxnz11Vdmx44d5umnn3Z3l89ZTEyMCQwMNImJiebAgQNmxYoVxuFwmPXr1xtjjFmwYIF57733zJdffmk2bdpkunTpYu666y7r+GXLlhkvLy/Tt29fk5WVZbZv326uuOIKM2DAAKvmzOto8ODB1ntxp06dzNixY62azp07m3nz5lmPKyoqTOvWrc2LL77YALPwf35qPqqqqszAgQPNyJEjTXZ2tjlw4ICZMWOGCQkJsX6Wx40bZ6677jqXc95zzz0mJibGGPPD+3f//v3NpEmTTF5ensnLyzOnT58277//vpFkevToYdavX28+//xz891335ldu3aZ559/3nzyySfmwIEDZu7cucbX19ccOnTIOv+PX+P1jbDTQHJycowk89VXX/1s7enTp01AQIB58803jTHGvPvuu8bDw8PlK+zfeeediz7sGPPDG1D79u2NMcaUlJQYX19fk5WV5VIzceJE84c//KHWc0yZMsXccMMN1uNx48aZ0NBQU1ZWdkH6fKEVFBQYSWb37t3WX8r/7//9P2v/3r17jSSzb98+Y4wxN910k7n22mtdznHLLbdUCzteXl6moKDApe6uu+4yw4cPtx6npqaajh07mqqqqgswstqdOHHCeHt7m/T0dKvt2LFjxs/Pr8awM3/+fNO5c2dTXl5e7Vz79u0zkkx2drbVdvDgQSPpnMLOyJEjzR//+Mca+1vT8Y1ZTEyM6datm8v/19mzZ5tu3bqZ1157zQQGBlr/uLpYxcTEmKuuusql7fLLLzezZ8+usf6VV14xISEh1uNly5YZSWbbtm1W25mfpQ8//NAY88PrqKb34iZNmpi8vDxjjDFPPPGE6datm7V/7dq1xt/f35SUlJz/IM/BT83Hpk2bTGBgoPn+++9d9l9yySXmhRdeMMb8fNg58xxnXp9nnAk7a9eu/dk+du/e3aSlpVmPL2TY4TJWA+nZs6eGDBmi6Oho3XjjjVqyZIkKCwsl/fAN7Xfeeac6d+6soKAgBQUFqaSkRIcPH5Yk7du3T+3atVPbtm2t8/Xv398t47iQPv30U33//feKj4+Xv7+/ta1cudK6rCNJzz//vPr27atWrVrJ399fS5YssebqjOjo6IvmPp0vvvhCY8eOVceOHRUYGGhdIvnxmHr06GH9uU2bNpJ++LmRpP379+uKK65wOefZjyWpffv21e57mTRpktavX6+vv/5akrRs2TKNHz9eDoejHkb2y33xxRcqLy93+bkODg5Wly5daqy/8cYbVVpaqo4dO2rSpEnKyMjQ6dOnJf0wH56enrrsssus+k6dOqlFixbn1Ke77rpL6enp6tWrl2bNmqWsrKw6jKzxuPLKK13+v/bv318HDx7UkCFD1L59e3Xs2FG33nqrXnrpJZ06dcqNPa27H79OpB9eK2deJ++//77i4+P1m9/8RgEBAbrtttt07NgxnTx50qr39PRU3759rcddu3ZV8+bNtW/fPqutpvfiqqoq7d+/X9IPl3c+//xzbdu2TZL04osvasyYMWrWrFn9D/hn1DYfOTk5KikpUUhIiMt7bW5urst77fn48TxKP1ymnjVrlrp3767mzZvL399fn332WbX37guFsNNAPDw8tGHDBr3zzjvq3r270tLS1KVLF+Xm5mr8+PHKyclRamqqsrKytGvXLoWEhKi8vFySrOvqP9bQfxk1hKqqKknSP//5T+3atcvaPv30U+u+nVdeeUX33nuvJkyYoPXr12vXrl364x//aM3VGe54Y6mrkSNH6tixY1qyZIk+/PBDffjhh5LkMqYf30x85v/9mfkyxlT7eajpZ6amOendu7d69uyplStXaseOHdq9e7fGjx9/3mM6VzX196eEh4dr//79evbZZ+Xn56cpU6Zo0KBBqqioqPVcP25v0qRJtbaKigqX+uHDh+vQoUNKSEjQN998oyFDhmjmzJnn1M+Lgb+/v3bs2KG//e1vatOmjR566CH17NnTug/lYnL2TfcOh0NVVVU6dOiQrrnmGkVFRem1115TTk6Onn32WUnV/7/X9N76U++3Z/ad+W/r1q01cuRILVu2TAUFBXr77bc1YcKE8xpXXdU2H1VVVWrTpo3L++yuXbu0f/9+3X///ZJ+eI2c/Vo6e65+ytnvN/fff79ee+01PfbYY9qyZYt27dql6Ojoau/dFwqfxmpADodDAwcO1MCBA/XQQw+pffv2ysjI0JYtW/Tcc8/pmmuukSQdOXJE3333nXVc9+7ddfjwYX3zzTcKCwuTpGo3qNpB9+7d5ePjo8OHDysmJqbGmi1btmjAgAGaMmWK1VZf/xJxh2PHjmnfvn164YUXdPXVV0uStm7dek7n6Nq1qz766COXtu3bt//i42+//XYtWLBAX3/9teLi4hQeHn5Oz18fOnXqJC8vL23btk3t2rWT9MMNwgcOHKj1Z8HPz0+jRo3SqFGjNHXqVHXt2lW7d+9W165ddfr0ae3cuVN9+vSRJH3++ecuf3mfWeHKy8tT7969JanGj5G3atVK48eP1/jx43X11Vfr/vvv11NPPWWtGlZWVtbXFFxwZ1Yafvw4MjJSHh4ekqS4uDjFxcXp4YcfVvPmzfXee+9p9OjR7uhqvdu+fbtOnz6t+fPnW0H3lVdeqVZ3+vRpbd++3VoZ3b9/v44fP66uXbtaNTW9Fzdp0sTlgxC33367br75ZrVt21aXXHKJBg4ceCGHd84uu+wy5efny9PTUx06dKixplWrVtqzZ49L265du1wClLe39y9+DWzZskXjx4/X7373O0lSSUmJvvrqqzr1vy4IOw3kww8/1KZNmzR06FC1bt1aH374ob799lt169ZNnTp10qpVq9S3b18VFxfr/vvvl5+fn3VsXFycunTpottuu03z589XcXGx5s6d68bRXBgBAQGaOXOm7r33XlVVVemqq65ScXGxsrKy5O/vr3HjxqlTp05auXKl3n33XUVERGjVqlXKzs62Lv1cbFq0aKGQkBAtXrxYbdq00eHDh/WnP/3pnM4xbdo0DRo0SCkpKRo5cqTee+89vfPOO7949e+WW27RzJkztWTJEq1cubIuwzhv/v7+mjhxou6//36FhIQoNDRUc+fOtf5iOtvy5ctVWVmpfv36qWnTplq1apX8/PzUvn1765OOd9xxhxYtWiQvLy/NmDFDfn5+1pz4+fnpyiuv1OOPP64OHTrou+++0wMPPODyHA899JD69OmjSy+9VGVlZXrrrbfUrVs3ST/8693Pz0/r1q1T27Zt5evrq6CgoAs7SefpyJEjuu+++zR58mTt2LFDaWlpmj9/vt566y19+eWXGjRokFq0aKG3335bVVVVtV5CvBhdcsklOn36tNLS0jRy5Eh98MEHev7556vVeXl5adq0aXrmmWfk5eWlu+++W1deeaXLZWFfX1+NGzdOTz31lIqLizV9+nSNGTNGTqfTqhk2bJiCgoL06KOP6pFHHmmQMZ6LuLg49e/fX9dff72eeOIJdenSRd98843efvttXX/99erbt68GDx6sJ598UitXrlT//v21evVq7dmzx/rHgfTDJyQ//PBDffXVV/L391dwcHCtz9mpUye9/vrrGjlypBwOhx588EFrdbohcBmrgQQGBupf//qXrrnmGnXu3FkPPPCA5s+fr+HDh+vFF19UYWGhevfurVtvvVXTp09X69atrWObNGmijIwMlZWV6YorrtDtt9+uxx57zI2juXD++te/6qGHHlJycrK6deumYcOG6c0337TCzJ133qnRo0frpptuUr9+/XTs2DGXVZ6LTZMmTZSenq6cnBxFRUXp3nvv1ZNPPnlO5xg4cKCef/55paSkqGfPnlq3bp3uvfde+fr6/qLjAwMDdcMNN8jf37/aR00b0pNPPqlBgwZp1KhRiouL01VXXWWtzJytefPmWrJkiQYOHKgePXpo06ZNevPNNxUSEiJJWrlypUJDQzVo0CD97ne/06RJkxQQEOAyJy+++KIqKirUt29f3XPPPXr00UddnsPb21tz5sxRjx49NGjQIHl4eCg9PV3SD/d2PPPMM3rhhRcUFham66677gLNSv257bbbVFpaqiuuuEJTp07VtGnTdMcdd6h58+Z6/fXXNXjwYHXr1k3PP/+8/va3v+nSSy91d5frTa9evZSSkqInnnhCUVFReumll5ScnFytrmnTppo9e7bGjh2r/v37y8/Pz/p/fkanTp00evRoXXPNNRo6dKiioqL03HPPudQ0adJE48ePV2VlpVt+jcPPcTgcevvttzVo0CBNmDBBnTt31s0336yvvvpKoaGhkn4IbA8++KBmzZqlyy+/XCdOnKg2lpkzZ8rDw0Pdu3dXq1atfvL+mwULFqhFixYaMGCARo4cqWHDhrncV3ehOcy5XiwH0OhNmjRJn332mbZs2fKL6uPj49WtWzc988wzF7hn7nH06FGFh4dr48aNGjJkiLu70+BiY2PVq1cvvm7jJyxfvlwJCQk/ea9SYmKi1q5d+4t+c/akSZP0n//8R2+88Ub9dRJ1xmUswAaeeuopxcfHq1mzZnrnnXe0YsWKav/arMl///tfrV+/Xu+9954WLlzYAD1tGO+9955KSkoUHR2tvLw8zZo1Sx06dGjwX+yGX5+ioiJlZ2frpZde0j/+8Q93dwf/i7AD2MBHH32kefPm6cSJE+rYsaOeeeYZ3X777T973GWXXabCwkLrur1dVFRU6M9//rO+/PJLBQQEaMCAAXrppZcuuq/IwMXnuuuu00cffaTJkycrPj7e3d3B/+IyFgAAsDVuUAYAALZG2AEAALZG2AEAALZG2AEAALZG2AEAALZG2AHQ6MXGxiohIeEX1W7evFkOh+O8v8iyQ4cO/BI+wCYIOwAAwNYIOwAAwNYIOwAuKqtXr1bfvn0VEBAgp9OpsWPHqqCgoFrdBx98oJ49e8rX11f9+vXT7t27XfZnZWVp0KBB8vPzU3h4uKZPn66TJ0821DAANCDCDoCLSnl5uf7617/q448/1tq1a5Wbm6vx48dXq7v//vv11FNPKTs7W61bt9aoUaNUUVEhSdq9e7eGDRum0aNH65NPPtHLL7+srVu36u67727g0QBoCHw3FoCLyoQJE6w/n/kesCuuuEIlJSXy9/e39j388MPWdxOtWLFCbdu2VUZGhsaMGaMnn3xSY8eOtW56joyM1DPPPKOYmBgtWrRIvr6+DTomABcWKzsALio7d+7Uddddp/bt2ysgIECxsbGSpMOHD7vU9e/f3/pzcHCwunTpon379kmScnJytHz5cvn7+1vbsGHDVFVVpdzc3AYbC4CGwcoOgIvGyZMnNXToUA0dOlSrV69Wq1atdPjwYQ0bNkzl5eU/e7zD4ZAkVVVVafLkyZo+fXq1mnbt2tV7vwG4F2EHwEXjs88+03fffafHH39c4eHhkqTt27fXWLtt2zYruBQWFurAgQPq2rWrJOmyyy7T3r171alTp4bpOAC34jIWgItGu3bt5O3trbS0NH355Zd644039Ne//rXG2kceeUSbNm3Snj17NH78eLVs2VLXX3+9JGn27Nn697//ralTp2rXrl06ePCg3njjDU2bNq0BRwOgoRB2AFw0WrVqpeXLl+vvf/+7unfvrscff1xPPfVUjbWPP/647rnnHvXp00d5eXl644035O3tLUnq0aOHMjMzdfDgQV199dXq3bu3HnzwQbVp06YhhwOggTiMMcbdnQAAALhQWNkBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC2RtgBAAC29v8Bn+Ryf7KLAOMAAAAASUVORK5CYII=",
+ "text/plain": [
+ "