diff --git a/Sugarcane Leaf Disease Detection/Dataset/README.md b/Sugarcane Leaf Disease Detection/Dataset/README.md new file mode 100644 index 000000000..d3d85a55e --- /dev/null +++ b/Sugarcane Leaf Disease Detection/Dataset/README.md @@ -0,0 +1,3 @@ +The dataset used in this project can be found below : + +**Link : https://www.kaggle.com/datasets/nirmalsankalana/sugarcane-leaf-disease-dataset/data** diff --git a/Sugarcane Leaf Disease Detection/Images/Accuracy_graph.png b/Sugarcane Leaf Disease Detection/Images/Accuracy_graph.png new file mode 100644 index 000000000..000215997 Binary files /dev/null and b/Sugarcane Leaf Disease Detection/Images/Accuracy_graph.png differ diff --git a/Sugarcane Leaf Disease Detection/Images/Data_visualization.png b/Sugarcane Leaf Disease Detection/Images/Data_visualization.png new file mode 100644 index 000000000..45cb95872 Binary files /dev/null and b/Sugarcane Leaf Disease Detection/Images/Data_visualization.png differ diff --git a/Sugarcane Leaf Disease Detection/Images/Ensemble_Confusion_Matrix.png b/Sugarcane Leaf Disease Detection/Images/Ensemble_Confusion_Matrix.png new file mode 100644 index 000000000..fd3e24c55 Binary files /dev/null and b/Sugarcane Leaf Disease Detection/Images/Ensemble_Confusion_Matrix.png differ diff --git a/Sugarcane Leaf Disease Detection/Images/bar_graph_distribution.png b/Sugarcane Leaf Disease Detection/Images/bar_graph_distribution.png new file mode 100644 index 000000000..8efd0a316 Binary files /dev/null and b/Sugarcane Leaf Disease Detection/Images/bar_graph_distribution.png differ diff --git a/Sugarcane Leaf Disease Detection/Images/classification_report_ensemble.png b/Sugarcane Leaf Disease Detection/Images/classification_report_ensemble.png new file mode 100644 index 000000000..319add255 Binary files /dev/null and b/Sugarcane Leaf Disease Detection/Images/classification_report_ensemble.png differ diff --git a/Sugarcane Leaf Disease Detection/Images/image.txt b/Sugarcane Leaf Disease Detection/Images/image.txt new file mode 100644 index 000000000..8b1378917 --- /dev/null +++ b/Sugarcane Leaf Disease Detection/Images/image.txt @@ -0,0 +1 @@ + diff --git a/Sugarcane Leaf Disease Detection/Images/pie_chart_distribution.png b/Sugarcane Leaf Disease Detection/Images/pie_chart_distribution.png new file mode 100644 index 000000000..f9c1c9125 Binary files /dev/null and b/Sugarcane Leaf Disease Detection/Images/pie_chart_distribution.png differ diff --git a/Sugarcane Leaf Disease Detection/Model/ensemble_learning_sugarcane_leaf_disease_classification.ipynb b/Sugarcane Leaf Disease Detection/Model/ensemble_learning_sugarcane_leaf_disease_classification.ipynb new file mode 100644 index 000000000..504a8d66b --- /dev/null +++ b/Sugarcane Leaf Disease Detection/Model/ensemble_learning_sugarcane_leaf_disease_classification.ipynb @@ -0,0 +1 @@ +{"metadata":{"kernelspec":{"language":"python","display_name":"Python 3","name":"python3"},"language_info":{"name":"python","version":"3.10.13","mimetype":"text/x-python","codemirror_mode":{"name":"ipython","version":3},"pygments_lexer":"ipython3","nbconvert_exporter":"python","file_extension":".py"},"kaggle":{"accelerator":"nvidiaTeslaT4","dataSources":[{"sourceId":7424766,"sourceType":"datasetVersion","datasetId":4320051},{"sourceId":8685966,"sourceType":"datasetVersion","datasetId":5207707},{"sourceId":8688008,"sourceType":"datasetVersion","datasetId":5209154},{"sourceId":8770920,"sourceType":"datasetVersion","datasetId":5270788}],"isInternetEnabled":true,"language":"python","sourceType":"notebook","isGpuEnabled":true}},"nbformat_minor":4,"nbformat":4,"cells":[{"cell_type":"code","source":"# This Python 3 environment comes with many helpful analytics libraries installed\n# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python\n# For example, here's several helpful packages to load\n\nimport numpy as np # linear algebra\nimport pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)\n\n# Input data files are available in the read-only \"../input/\" directory\n# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory\n\nimport os\nfor dirname, _, filenames in os.walk('/kaggle/input'):\n for filename in filenames:\n print(os.path.join(dirname, filename))\n\n# You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using \"Save & Run All\" \n# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session","metadata":{"_uuid":"8f2839f25d086af736a60e9eeb907d3b93b6e0e5","_cell_guid":"b1076dfc-b9ad-4769-8c92-a6c4dae69d19","scrolled":true,"execution":{"iopub.status.busy":"2024-06-13T16:31:22.356814Z","iopub.execute_input":"2024-06-13T16:31:22.357220Z","iopub.status.idle":"2024-06-13T16:31:22.423068Z","shell.execute_reply.started":"2024-06-13T16:31:22.357191Z","shell.execute_reply":"2024-06-13T16:31:22.422012Z"},"trusted":true},"execution_count":null,"outputs":[]},{"cell_type":"code","source":"pip install split-folders\n","metadata":{"execution":{"iopub.status.busy":"2024-06-24T05:55:26.383491Z","iopub.execute_input":"2024-06-24T05:55:26.384185Z","iopub.status.idle":"2024-06-24T05:55:39.570938Z","shell.execute_reply.started":"2024-06-24T05:55:26.384154Z","shell.execute_reply":"2024-06-24T05:55:39.569863Z"},"trusted":true},"execution_count":1,"outputs":[{"name":"stdout","text":"Collecting split-folders\n Downloading split_folders-0.5.1-py3-none-any.whl.metadata (6.2 kB)\nDownloading split_folders-0.5.1-py3-none-any.whl (8.4 kB)\nInstalling collected packages: split-folders\nSuccessfully installed split-folders-0.5.1\nNote: you may need to restart the kernel to use updated packages.\n","output_type":"stream"}]},{"cell_type":"code","source":"import cv2\nimport pandas as pd\nimport numpy as np\nimport matplotlib.pyplot as plt\nimport os\nfrom PIL import Image\nimport splitfolders\nimport shutil\nimport seaborn as sns\nimport plotly.express as px\nimport keras \nfrom sklearn.metrics import confusion_matrix , classification_report \nfrom sklearn.preprocessing import LabelBinarizer\nfrom sklearn.metrics import roc_curve, auc, roc_auc_score\n\nfrom IPython.display import clear_output\nimport warnings\nwarnings.filterwarnings('ignore')","metadata":{"execution":{"iopub.status.busy":"2024-06-24T05:55:57.549238Z","iopub.execute_input":"2024-06-24T05:55:57.549607Z","iopub.status.idle":"2024-06-24T05:56:10.523818Z","shell.execute_reply.started":"2024-06-24T05:55:57.549577Z","shell.execute_reply":"2024-06-24T05:56:10.523011Z"},"trusted":true},"execution_count":2,"outputs":[{"name":"stderr","text":"2024-06-24 05:56:00.832062: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n2024-06-24 05:56:00.832157: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n2024-06-24 05:56:00.959636: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n","output_type":"stream"}]},{"cell_type":"code","source":"path = \"/kaggle/input/sugarcane-leaf-disease-dataset\"\nprint(os.listdir(path))","metadata":{"execution":{"iopub.status.busy":"2024-06-24T05:56:10.525501Z","iopub.execute_input":"2024-06-24T05:56:10.526473Z","iopub.status.idle":"2024-06-24T05:56:10.534631Z","shell.execute_reply.started":"2024-06-24T05:56:10.526433Z","shell.execute_reply":"2024-06-24T05:56:10.533805Z"},"trusted":true},"execution_count":3,"outputs":[{"name":"stdout","text":"['Yellow', 'Mosaic', 'Healthy', 'RedRot', 'Rust']\n","output_type":"stream"}]},{"cell_type":"code","source":"splitfolders.ratio(path,seed=1337, output=\"Sugarcane-Splitted\", ratio=(0.6, 0.2, 0.2))\n","metadata":{"execution":{"iopub.status.busy":"2024-06-24T05:56:10.535839Z","iopub.execute_input":"2024-06-24T05:56:10.537689Z","iopub.status.idle":"2024-06-24T05:56:22.887281Z","shell.execute_reply.started":"2024-06-24T05:56:10.537659Z","shell.execute_reply":"2024-06-24T05:56:22.886464Z"},"trusted":true},"execution_count":4,"outputs":[{"name":"stderr","text":"Copying files: 2521 files [00:12, 206.67 files/s]\n","output_type":"stream"}]},{"cell_type":"code","source":"import cv2\n\nimg_path = \"/kaggle/working/Sugarcane-Splitted/train/Yellow/yellow (337).jpeg\"\nimage = cv2.imread(img_path)\nif image is not None:\n image_shape = image.shape\n print(\"Image shape:\", image_shape)\nelse:\n print(\"Error: Image not found or could not be loaded.\")\n","metadata":{"execution":{"iopub.status.busy":"2024-06-24T05:56:22.889216Z","iopub.execute_input":"2024-06-24T05:56:22.889496Z","iopub.status.idle":"2024-06-24T05:56:22.914608Z","shell.execute_reply.started":"2024-06-24T05:56:22.889472Z","shell.execute_reply":"2024-06-24T05:56:22.913861Z"},"trusted":true},"execution_count":5,"outputs":[{"name":"stdout","text":"Image shape: (1040, 493, 3)\n","output_type":"stream"}]},{"cell_type":"code","source":"from tensorflow.keras.preprocessing.image import ImageDataGenerator\n\ntrain_datagen = ImageDataGenerator(rescale=1./255)\nval_datagen = ImageDataGenerator(rescale=1./255)\ntest_datagen = ImageDataGenerator(rescale=1./255)\n\n\ninput_shape= (260, 123, 3)\n\ntrain_dir = '/kaggle/working/Sugarcane-Splitted/train'\nval_dir = '/kaggle/working/Sugarcane-Splitted/val'\ntest_dir = '/kaggle/working/Sugarcane-Splitted/test'\n\ntrain_datagen = ImageDataGenerator(\n rescale=1./255,\n rotation_range=20,\n width_shift_range=0.2,\n height_shift_range=0.2,\n shear_range=0.2,\n zoom_range=0.2,\n horizontal_flip=True,\n fill_mode='nearest'\n)\n\nval_datagen = ImageDataGenerator(rescale=1./255)\ntarget_size = (224, 224)\n\ntrain_generator = train_datagen.flow_from_directory(\n train_dir,\n target_size=(224, 224),\n batch_size=32,\n class_mode='categorical'\n)\n\nval_generator = val_datagen.flow_from_directory(\n val_dir,\n target_size=(224, 224),\n batch_size=32,\n class_mode='categorical'\n)\n\n\ntest_datagen = ImageDataGenerator(rescale=1./255)\ntest_generator = test_datagen.flow_from_directory(\n test_dir,\n target_size=(224, 224),\n batch_size=32,\n class_mode='categorical',\n shuffle=False \n)\n\nimg_shape = train_generator.image_shape\nprint(\"Image dimensions:\", img_shape)\n","metadata":{"execution":{"iopub.status.busy":"2024-06-24T06:53:24.067701Z","iopub.execute_input":"2024-06-24T06:53:24.068487Z","iopub.status.idle":"2024-06-24T06:53:24.179033Z","shell.execute_reply.started":"2024-06-24T06:53:24.068455Z","shell.execute_reply":"2024-06-24T06:53:24.178149Z"},"trusted":true},"execution_count":44,"outputs":[{"name":"stdout","text":"Found 1511 images belonging to 5 classes.\nFound 502 images belonging to 5 classes.\nFound 508 images belonging to 5 classes.\nImage dimensions: (224, 224, 3)\n","output_type":"stream"}]},{"cell_type":"code","source":"import matplotlib.pyplot as plt\n\ndef display_images(generator, num_rows=4, num_cols=4):\n \n images, labels = next(generator)\n\n \n class_indices = generator.class_indices\n\n \n CLASS_LABELS = [\"Healthy\", \"Yellow\", \"RedRot\", \"Mosaic\", \"Rust\"]\n\n \n class_names = [CLASS_LABELS[index] for index in range(len(CLASS_LABELS))]\n\n\n\n \n plt.figure(figsize=(10, 10))\n for i in range(num_rows * num_cols):\n plt.subplot(num_rows, num_cols, i + 1)\n plt.imshow(images[i])\n plt.title(f\"Class: {class_names[np.argmax(labels[i])]}\")\n plt.axis('off')\n\n plt.show()\n\n\ndisplay_images(train_generator)\n","metadata":{"execution":{"iopub.status.busy":"2024-06-24T06:52:46.567893Z","iopub.execute_input":"2024-06-24T06:52:46.568225Z","iopub.status.idle":"2024-06-24T06:52:48.473918Z","shell.execute_reply.started":"2024-06-24T06:52:46.568200Z","shell.execute_reply":"2024-06-24T06:52:48.472950Z"},"trusted":true},"execution_count":43,"outputs":[{"output_type":"display_data","data":{"text/plain":"
","image/png":"iVBORw0KGgoAAAANSUhEUgAAAxkAAAMsCAYAAAA4VG/hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9ebwlV3nfC3/XWlW1hzP2rNYMAgkJEWFjZIzE4FxjYuMEJ3Zi/OZeW8Q29msS7AzEziefa8DO5Dhx8DWBF2zfvLzEYzx+HPDFSuLEJGAwHpgnSSCEpJ77jHuoWms97x9rqNq7T7e6NaBG3o90+pxdu4ZVVWt4fr9nUiIiLGQhC1nIQhaykIUsZCELWcjjJPrJbsBCFrKQhSxkIQtZyEIWspCnlixAxkIWspCFLGQhC1nIQhaykMdVFiBjIQtZyEIWspCFLGQhC1nI4yoLkLGQhSxkIQtZyEIWspCFLORxlQXIWMhCFrKQhSxkIQtZyEIW8rjKAmQsZCELWchCFrKQhSxkIQt5XGUBMhaykIUsZCELWchCFrKQhTyusgAZC1nIQhaykIUsZCELWchCHldZgIyFLGQhC1nIQhaykIUsZCGPq/yFBBnXX389d91115PdjIUs5Msui76/t9x1111cf/31T3YzFnKZyl/EcfPGN74RpdTMtr+Iz2EhFy9/EfvHYpxcWJ5SIOPee+/l+7//+3n6059Ov99ndXWVO+64g5/5mZ9hPB4/2c17VHLXXXehlMo/vV6PG2+8kR/7sR9jMpk8Ydd9z3vewxvf+MYn7PwLeXxl0fcff+leWynF6uoqL3nJS3j3u9/9qM43Go144xvfyH//7//98W3oQh61PJXGzcbGBkePHuWOO+5ARM75/o/+6I/QWvP617/+SWjdQr6SZTFOFvJopXiyG/B4ybvf/W7+5t/8m/R6Pb7ru76LW2+9lbqu+Z//83/y+te/nk984hO84x3veLKb+aik1+vx8z//8wBsbm7yO7/zO/zET/wE9957L7/4i7/4hFzzPe95D//+3//7BdD4CpBF33/i5GUvexnf9V3fhYhw//3387a3vY2/+lf/Kr/3e7/Hy1/+8ks612g04k1vehMAL33pS5+A1i7kUuSpNm7W19d585vfzKte9Sp+7ud+jte85jX5O2stP/ADP8B1112X++BCFnIxshgnC3ks8pQAGZ///Od51atexXXXXcd/+2//jaNHj+bvXvva13LPPfc8avbxcpCiKPjf//f/PX/+wR/8QV74whfyy7/8y/z0T/80R44ceRJbt5AnUxZ9/4nt+zfeeOPM9b/t276NW265hZ/5mZ+5ZJCxkMtHnqrj5ju+4zt45zvfyY/+6I/yyle+Mo+Pn/mZn+EjH/kI73nPexgOh09yKxfylSKLcbKQxypPCXepf/2v/zU7Ozv8wi/8wswgSPKMZzyDH/qhHzrv8WfOnOEf/aN/xHOe8xyWl5dZXV3lm77pm/jIRz5yzr4/+7M/y7Of/WyGwyH79u3ja77ma/ilX/ql/P329jY//MM/zPXXX0+v1+Pw4cO87GUv40//9E/zPqPRiE9/+tOcOnXqUd2vUoo777wTEeG+++6b2b6X5WHeP7BpGt70pjfxzGc+k36/z4EDB7jzzju5++67geCm8u///b/P50w/C7n8ZNH3W/m93/s9XvSiF7G0tMTKygqveMUr+MQnPnHOOX77t3+bW2+9lX6/z6233spv/dZvXfT1b775Zg4ePMi99947s/3EiRN8z/d8D0eOHKHf73Pbbbfxzne+M3//hS98gUOHDgHwpje9KY+phaXwyZGn8rh561vfynQ65R/8g38AwAMPPMAb3/hGvuM7voNv+qZvAi5+rFyM3HffffzNv/k32b9/P8PhkBe84AUziqeIcPDgwdweAO896+vrGGPY2NjI23/yJ3+SoijY2dl5VG1ZyOMri3GyGCePVZ4SION3f/d3efrTn84LX/jCR3X8fffdx2//9m/zLd/yLfz0T/80r3/96/nYxz7GS17yEh566KG838/93M/xute9jltuuYU3v/nNvOlNb+K5z30uH/zgB/M+P/ADP8Db3vY2vu3bvo23vvWt/KN/9I8YDAZ86lOfyvt86EMf4uabb+Ytb3nLo77nL3zhCwDs27fvko994xvfyJve9Ca+/uu/nre85S3803/6T7n22mvzYP3+7/9+XvaylwHwrne9K/8s5PKTRd8P8q53vYtXvOIVLC8v85M/+ZP8n//n/8knP/lJ7rzzzrw/wO///u/zbd/2bSil+Jf/8l/yrd/6rbz61a/mwx/+8EVde3Nzk7Nnz85cezwe89KXvpR3vetd/O2//bf5qZ/6KdbW1rjrrrv4mZ/5GQAOHTrE2972NgD++l//63lM/Y2/8Tce9XNYyKOXp/K4uf7663nTm97EL/3SL3H33Xfzute9jqIoePOb3wxc/Fi5GDl+/DgvfOELee9738sP/uAP8s//+T9nMpnw1/7aX8vgXSnFHXfcwR/+4R/m4z760Y+yubkJwP/6X/8rb3/f+97HV33VV7G8vHxJ7VjIEyOLcbIYJ49Z5CtcNjc3BZBXvvKVF33MddddJ9/93d+dP08mE3HOzezz+c9/Xnq9nvz4j/943vbKV75Snv3sZ1/w3Gtra/La1772gvv8wR/8gQDyhje84RHb+t3f/d2ytLQkJ0+elJMnT8o999wj/+bf/BtRSsmtt94q3vu87/nOOX+/t912m7ziFa+44HVf+9rXylOgezylZdH3Q9/f3t6W9fV1+b7v+76Z448dOyZra2sz25/73OfK0aNHZWNjI2/7/d//fQHkuuuumzkekO/5nu+RkydPyokTJ+TDH/6w/JW/8lcEkJ/6qZ/K+735zW8WQP7jf/yPeVtd1/J1X/d1sry8LFtbWyIicvLkyYu+94U8cfJUHzciIk3TyHOf+1zZv3+/APL2t79dRC5trLzhDW84Zw2Yfw4//MM/LIC8733vy9u2t7flaU97mlx//fX5Gf3UT/2UGGPyWPi//q//S6677jq5/fbb5Ud+5EdERMQ5J+vr6/L3//7fv6h7XMgTK4txshgnj4d8xcdkbG1tAbCysvKoz9Hr9fLfzjk2NjZYXl7mpptumjHFra+v86UvfYk//uM/5vnPf/6e51pfX+eDH/wgDz30EFdeeeWe+7z0pS/dM6vB+WR3dze7WiS58847eec73/mo3JjW19f5xCc+wec+9zme+cxnXvLxC7k8ZNH3Q9+/++672djY4Du/8ztnzOTGGL72a7+WP/iDPwDg4Ycf5s///M/50R/9UdbW1vJ+L3vZy7jlllvY3d095/q/8Au/wC/8wi/kz2VZ8o//8T+eMWm/5z3v4YorruA7v/M7Z/Z73etex3d+53fyP/7H/+BbvuVbLvqeF/LEyl+EcVMUBe94xzu4/fbbecELXsD3fd/3ARc/Vi5W3vOe93D77bdz55135m3Ly8u85jWv4Z/8k3/CJz/5SW699VZe9KIX4Zzj/e9/Py9/+ct53/vex4te9CKOHDnC+973PgA+/vGPs7GxwYte9KJLasNCnhhZjJPFOHk85CveXWp1dRUI/nqPVrz3/Lt/9+945jOfSa/X4+DBgxw6dGjGVAXwIz/yIywvL3P77bfzzGc+k9e+9rUzJiwIPowf//jHueaaa7j99tt54xvfeI7v+KVKv9/n7rvv5u677+Y//If/wM0338yJEycYDAaP6nw//uM/zsbGBjfeeCPPec5zeP3rX89HP/rRx9TGhXz5ZdH3g3zuc58D4C//5b/MoUOHZn5+//d/nxMnTgBw//33A+wJrG+66aY9r//KV76Su+++m3e/+905H/poNELrduq8//77eeYznzmzDUL8Rve6C7k85C/CuAGysva85z0vA/KLHSsXK/fff/+eY2e+73/1V381w+EwK0pJeXrxi1/Mhz/8YSaTSf6uq4gt5MmTxThZjJPHQ54SIOPKK6/k4x//+KM+x7/4F/+Cf/AP/gEvfvGL+Y//8T/y3ve+l7vvvptnP/vZeO/zfjfffDOf+cxn+JVf+RXuvPNOfuM3foM777yTN7zhDXmfv/W3/hb33XcfP/uzP8uVV17JT/3UT/HsZz+b3/u933vU7TPG8A3f8A18wzd8A3fddRf/9b/+V44dO8b3f//3X9TxzrmZzy9+8Yu59957+b//7/+bW2+9lZ//+Z/nq7/6q3Oq0IV8Zcii7wdJ7XzXu96VAUn353d+53ce9fWvvvpqvuEbvoFv/uZv5g1veAM//dM/zVve8hZ+8zd/81GfcyFPrvxFGDfnkydyrFxIyrLka7/2a/nDP/xD7rnnHo4dO8aLXvQi7rzzTpqm4YMf/CDve9/7eNaznnWO5XIhT44sxslinDwu8uR6az0+8prXvEYAef/7339R++8Vo/D1X//15+x31VVXyUte8pLznmc6ncorXvEKMcbIeDzec5/jx4/LVVddJXfcccdFtW1ekl/6vCQ/wA984AN52759++SHfuiHzmmjMWbmfudle3tbvuqrvkquuuqqvO3v/t2/u4jJ+AqQRd8X+bVf+zUB5L3vfe8Fz/fQQw8JID/6oz96zne33HLLnjEZ8z7ATdPIDTfcIDfffHOOCfnGb/xGueKKK87xPf6VX/kVAeR3f/d3RUTk1KlTi5iMy0SeyuOmK/N9+GLHisjF+ZrfeOONcvvtt59z7L/6V/9KAPnYxz6Wt/3Yj/2Y9Ho9edvb3iYHDx7M4+fWW2+Vn/iJn5Arr7xSXvOa11zqLS7kCZTFOFmMk8cqX/GWDIB//I//MUtLS3zv934vx48fP+f7e++9N2d52UuMMef48f2n//SfePDBB2e2nT59euZzVVXccsstiAhN0+CcmzEBAhw+fJgrr7yS6XSatz3WNJ4Af+/v/T2GwyH/6l/9q7zthhtumMlMAPCOd7zjHEvG/H0sLy/zjGc8Y6aNS0tLADNp0xZy+cmi78PLX/5yVldX+Rf/4l/QNM05+588eRKAo0eP8tznPpd3vvOdM229++67+eQnP3lR1y6Kgn/4D/8hn/rUpzKb9c3f/M0cO3aMX/3VX837WWv52Z/9WZaXl3nJS14CkPOuL8bUky9/EccNXPxYuVj55m/+Zj70oQ/xgQ98IG/b3d3lHe94B9dffz233HJL3v6iF72I6XTKm9/8Zu68887smvKiF72Id73rXTz00ENfMX7mf1FkMU4W4+Sxyld84DcE5fqXfumX+I7v+A5uvvnmmaqU73//+/lP/+k/zdSJmJdv+ZZv4cd//Md59atfzQtf+EI+9rGP8Yu/+Is8/elPn9nvG7/xG7niiiu44447OHLkCJ/61Kd4y1vewite8QpWVlbY2Njg6quv5tu//du57bbbWF5e5r/8l//CH//xH/Nv/+2/zef50Ic+xNd//dfzhje84VHnyT9w4ACvfvWreetb38qnPvUpbr75Zr73e7+XH/iBH+Dbvu3beNnLXsZHPvIR3vve93Lw4MGZY2+55RZe+tKX8rznPY/9+/fz4Q9/mF//9V/n7/7dv5v3ed7zngfA6173Ol7+8pdjjOFVr3rVo2rrQp44WfT90Pff9ra38X/8H/8HX/3VX82rXvUqDh06xBe/+EXe/e53c8cdd+SUhv/yX/5LXvGKV3DnnXfyd/7O3+HMmTM5P/vF5hy/6667+LEf+zF+8id/km/91m/lNa95DW9/+9u56667+JM/+ROuv/56fv3Xf53/9b/+F29+85tz4ORgMOCWW27hV3/1V7nxxhvZv38/t956K7feeuujeg4LefTyF3HcQHCBudixcjHyoz/6o/zyL/8y3/RN38TrXvc69u/fzzvf+U4+//nP8xu/8RszcUpf93VfR1EUfOYzn5mpsvziF784p3f+SlKe/iLIYpwsxsljlifPiPL4y2c/+1n5vu/7Prn++uulqipZWVmRO+64Q372Z39WJpNJ3m+vNGv/8B/+Qzl69KgMBgO544475AMf+IC85CUvmTHpvf3tb5cXv/jFcuDAAen1enLDDTfI61//etnc3BSRYOJ7/etfL7fddpusrKzI0tKS3HbbbfLWt751pp2PJo3nXnLvvffOuEI55+RHfuRH5ODBgzIcDuXlL3+53HPPPefc7z/7Z/9Mbr/9dllfX5fBYCDPetaz5J//838udV3nfay18vf+3t+TQ4cOiVJq4Tp1mctf9L6fzv3yl79c1tbWpN/vyw033CB33XWXfPjDH5459jd+4zfk5ptvll6vJ7fccov85m/+pnz3d3/3RblLJXnjG98ogPzBH/yBiATT/atf/Wo5ePCgVFUlz3nOc+Q//If/cM5x73//++V5z3ueVFW1cJ26DOSpOG66cr4+fDFj5WLcQETCWPz2b/92WV9fl36/L7fffrv85//8n/dsz/Of/3wB5IMf/GDe9qUvfUkAueaaay7p3hby5ZPFOFmMk0crSuQS8n0tZCELWchCFrKQhSxkIQtZyCPIUyImYyELWchCFrKQhSxkIQtZyOUjC5CxkIUsZCELWchCFrKQhSzkcZUFyFjIQhaykIUsZCELWchCFvK4ygJkLGQhC1nIQhaykIUsZCELeVxlATIWspCFLGQhC1nIQhaykIU8rrIAGQtZyEIWspCFLGQhC1nIQh5XWYCMhSxkIQtZyEIWspCFLGQhj6tcdMXv7/6eH8J7z85oxPb2Jju7mzR2ysH1NY4cWOfgyjIHBoalUlEY0NpT+wlbzYiT9ZipAo/CK4XzYJ3HOosTqBtL4xwojTEFdV3jnEMEVFHgvEcphVIKozUIOOfw3iMiKKAwhrIsw37xPw1oBO8d3lmMLqiqivXVddZW1lld2sdwsMJwuEK/t0RRlBhToJUBFN57nHNMm5rJdEpd14zrCePJCI+ntlNGk112xzuc2TzL7mSXup6ilKAU+XhBACGVJFFKISI457DWxmqP4RijNd66cE9a5X2TiLTn8d5jCoXWGitCYxsE0EajlUaLoVQFPVvQbE7ZOLXBzs4u1jpUPI/Wmqrf44prruX6m26m6PfZPHuW8e4OhbPUu5ucPHGM8fYI64Vhf8DVV17JvtV1VpaXcd7zJx/5M46fOUUjHhGPMYalpWUOHDjINVc/jQP7DrJvfR87W9vc87l7OH3qLNPJFK01SqnHpSP/+af/5HE5z2OVn/vpf8rDDx9nc3OX/fvXQRtq5zl27CQPfulhPve5zzHarVldXWF93zrD4QAUNNZy4w03UVU9rn/60zhw4CBaGbxTuEbw1sV3a1AoxIKta2xd450DFLooQCkUglYFog2iQJQCBYrwrJ1zuEmDQmFMgSkrVGHwSkCDrxuaZkJRanq9ElVqMOH8Wiu8eBBBk96dB7EoJaAUpigoioKiKBFp+6y1NowH7/C+wbuGQVXS75f0+n2KskRrhdIKELz3hHHjqeuayWgXZ2ucaxjv7HLy2Cnu+9znOXvqLIUqWVtd5cD+wwzKNbTp0xusgCi2dnbxHoZra9ArsN4jeDZO309dH+fo9dfh8SigKks2Tp2hEHjGM2/gppufyXOecwu725ssry3xwJ98mHI05sFjZ3jLr7yHP/rIxzmyDN/0l5+P9UJv9Qhf9cIX8LwXfS1Hjl7BqQce4Bd//h1cs3/Et//QazDVAfAjHn54xL/5J29nVW/wgpc+j//8Px7g4x/9CC/62q/iB177nejSMJk2TH3J/+fnf51f+rXfY1Bp7rjzDlZWV/noRz/KiRPH+ctfdxu33vQ09q0NufPFf4mPfu4k933m8xxenXLHC25meXk40z8P3fYDX7axcCF5+9vfQFEaVAGuaJjSMHUNHmI/M3F+MECYM40xeR1IFXLTZ6UUWmkKrfHeh7nUKLTRlKZAa41zjrIsMSacW7xCRAMKpTRatz8okNjPlVLghbIoGVR9lBjKckhR9DCmQGkD4tFK0CqMMu8aps0uo8kGk2YL68dM620at411Y7yvsb7GiyDicK7G+RFOJoQpMfR77118YgrnPNbFNU8pnBc8GucUzhmQEiUVWvXRqqJXDlldOcLq8iH6vSFg8F7wXsCDEkVlCq5YXmel6OGsZzKZMpnU2CasexvbW5ze2ODs5gaNF3q9Hr2qh9Hmy95nvpzyA6/5p092E7L8m3/9w9SuwYmj8RaPYMqCQVmxfmCF6uCI05P7cd4C5D6sdNQ7vEdrTVFovHi8QNAgDIJCqxKjeygKRBQojUJRFj1AY72jNNAve4gonCtQqqIsKsR7nFg0Qq/XBxR13VCWPSbTKUrpMLZUEXQb39DrVSilqGuHbQQRRVlWFKbAmB6KPqvLBygoQAxKGYb9Iasrq5Smoqkd1jZYsVg3ZTQZ0bgpu5MdGjtlMh3jxaGVMJ3u0tgJphC0EbzUjCdjnDjCMHegBK0VtrEIYMXTuClNM8WJxbkp3teINKAtIg5rHWF1UnEMg8JwZO0a1u1V1GcsS2bAoOihlWJ7d4djGxuc2d5hNJngnEUkrEMiHi8W7y3eOZxv8L5B4SkN9IqKlf4S60vrDPvLDPpDqrIHqDBPqjBfzUpc7fdQr/bSuc6nh13Mvnf94E+cv/NyCSAjnVwphdIaFRVj5xzO+9h5TVSn4/4oNAqjVN6qZk8YJ/GwvauEB9mjTqDMtmVeAdcRhOwtQdnx3geAEkGKiOd8NQm7ixiKdnFDkRYnpVVcXFS6pXBP6bjYCfc6d+dTuDmhPSZunb/PvduZ9vPnPCxR7cTTvVS6vnjBNg3OWkriPSrVOc6ECyB48TjrsuKotY7gTkO8dnqmztoA8OJCWRQl2hj04wQsLkcZjUZUVRkU/1AHlMIYtFZUVUlRFChV46Ky4MVTmIKmacLr956macL7Dl0sPvt2DEH8iGr7kMSVQ+W3HoDkXpNEOi4tNhGo5+91WGSIAEGlQS3C3sbP2I8A1QHT4Xd75m5/D1CIPEFLav+e0hmD8TzaaMqyoCgLlNaIT+PaIXiIY1qr8OyDcuXQlPkejelhmzoopVrFSR+KsqTZHdM0lul0iveC1gbnHNVwgNsZsTTsszzsgzKMxiPq2lKUBm8bppMp9XQKStEfDCh7Q7Y2TjId7TKs9gGafr9gZX2NM194kJWlgrIsKcqK3dGI3Z0R6wfWEanp90v2ra+gUFjnGI/GrK6tUVUVWhu2tndQCkbjKQph0A9jzDphWjcsX6alVsUL4gXtFUoCKZLnPe8RpeOcKXn+O3d96JxPJJI56TO5X3WPc87NzYOx186tIwoV5sA0NhRhLhPJxFUCIe2II49BpTVGFxhTom2BUuGz9UVYFaMip5SAxHVEGRCNiIv3OHufWmuU93ktCXtIHBsS5/7Q/wWP9Q2NnWBtja/6YR6ffWo47xjbmuWih9IByGmj0dZjtKEqK6qypCwKmrrG5TVTHjeCaCEXlqXeEgMcSiu8OBrvsOJRGnQhNDLJ635Xd4oaCk4IpKNWuCbN/xovOuylC5Qu8E6hdUEYD+BEICrBRVFSloa69un0EL6dmZdFko402z+CHqECiIHOeGv3KYoCbQxGleEcPu2hIuGgZ9YBHa+nom4yq0NGkkAF0kpQCB4nikSPKQXiHEoFYjbdd1dHJB6Z7kdrjXXtXDM76yi8dwwHFQcOHaT0Fd6H+WxZl1xVDDiwMg3j0Tuct/nH2oa6qbFNTV1PmDYT6maKdTXeukC89x1oEN0+07Is2/mMvefGixZh5m4e835RLhlk6MgYpRdsnQuMikh4gfnaqt0fhUpKE2RQ0U6jCWWEO5h5UF1lWARRe4Kz2UUi4PP8INKEHWu/5w7k42QpnYmTmXam1qkZC4lS7UKgY8e7MCuvQpvSotUBDd1t594Ue9/szH2fZ3trPwngyGi00ZnNTqfOLHPT4GwTB1JgDAVQ2mCMya/Ii2Cdzc/RFEVktjTKxyEpgS1zPlqrfGDhi6IIbGTHQvNUW6h2d0f0+z2cSwykYIzBaENZBmUSRbTU+aBo6aD81M2Uoiyp63oGLLYgnPzMEviMvTMrWfPv99wP5IEnXiKYbRX8dvgmxe5i7zwM4DTGJCtfs+839CsVLS6t8nju/t0+0gHs8VitNaYwVFWwfogXnPM470I7fFS6IlAWLOJ8e3alMUUPxOCahrLfi/qiUFYluxubNE1DXdfUdR2Y8MZRDYfs+JOsDAesLA0wRUFjYXc0Zn19BWdrJuMx9SSAjF6vz8FDhzh1332MtrYYrgsoTa9fsHZgnXv+ZIdBpRgOCnr9Pju7I3a2dzlweD/iPf1exYH9a/T7PZrpiNFohNaaXq+HMYazWzuRFbSMx1MGvQJTljRWmE6ai315X37xBPAmCu0VxmiM0jhJBIYnANq2T3Tnzj3nUcI61N1HJFjetOi57XG/OaDRnZMU4fs0d3vvcd6ijcZ7i3iHaIMS3R6v0ogMoKIwFUaXOCnQukSrEqUKlDiUMijxiFLhbwoUJoBk5ok0IZ05KFASeZ9E0gmifHiw4hDl8d7SNBNqO6HnhmhdtIAkrrdehIltqL2limyzMRqnFUZpqrKkVwWgMYkeBs4HoKZ4as3dl6scOXgkrLlKAnh0ltrWNL6hMJ6Rm8Q+qvNcCXF+j69Ia40xUNfBY0QpgseGFBHcKkC3cyzBU0KrYDk3Wb+J/bAzRlAaE/ukc4Fh9T4p5SZaR4hkdNALApjW8Z7AuWBhMSiMNijpErnhPEbpSHhJXL9CG1s9xmfwrzQ4CVaKBM7EC9Z5UCYTCUoZlAqAWuPCf95lAlXi+CRfg6xXiaTfEkkzobE1egD9fp/SD3A26JrGOKqyz4p3IA7XNDRNsJZMp2Om9YQaRe2FQjkK7alKhdWBSFsaLLE0XKEq+xSmpCiC5SeQHy3xkAmP7ucOmdj9nda7c75LIKL7e4Y4bJ/FxcilWzKiFUMp3ekcofP4dIuZaYkuTnuTsOEf1SpNuf+cM7lenFyI7W8foMSX0v74vKh1OakuA5sIZdUOYmkZgWAO1JGhj8rW+ZT/zhd7MnLxgpJe+kXKDDvdWSgFECUzQGjudRCsDsGSQWSJicqgVmHRmbF6OIeX1lWtqsrgxhafVTqn98GaIV7wzqG1ishbda791AIau7sjVldXopscYVJEMIXBFAFkKNLEkFyCgpI1rWsGA6Gpm9z3W8Wa2ZemVO6PoavK/EtNwwuZe7zBKpdAgXTGa+z5nfGX3vEMIxwn1M4Z4zW77z+akNWFgHTLHOUJXEKbY1eea3NrRUzuM8lF0sf+li0ZpDEtwZyM5AUpiY6uLtZaStXPY64oS5xzNHVD01jqumbQr3CuphwMceJZGvRZWx4y6PWYNjAeT9m/b5XaWerJlOlkGhY7Y1hdW+dLjTDe3klPmH7PsP/QPqaNsL05Ymlg6PX67O6O2dkZYYwOC52CffvWWF4acHo6YjwaoZSiKAq892xs7tA0FmMU49GE4XBIr9fH7sJkUs/Mx5eVCNGaAUoUOv8XrAXk/iYzfSofvkd/SkBbK90ugiKZTNLRlcpH9xGlYt/ugJhzgIZSEJU1AayzlKZCxOEltFWJBMu+D2MtEwFKU+gAMpQzaF2EH2WQuGZ4CaMp7a+VwUkChy2hFT4RALWTdpyKhPtIViCCNUOJRxCsm2KbCc41lGVFcj9DkQHW1DXU3lEVBdpoCm1otA39zBTBklFWGDOhcT7PXQl8LeSJlQP7DmCdxfqgNIt4GjehtlOm5RY7YrPe1FK37djRWmEKjVLheC+C9sTJWoOojiIN3XWn1SLI5KEIoDvAH1DG4AScF4wpIsgw+XzQ6onWuTi+TaKBc19SBKtLnrOSnoWGTmsS2I47EE/TAiEleG9RWjBKYWsbiQKJlm0yAWUKg9Ka8Ej2UlZnn4FECwcKRCJZKOGRTO2IRsJ4K1QVrIOqde0UUXiv8XjwBmyB84q69tSNp3HgdUHZK+gZHXWmgn6vT1X1MKZEoWgaS1NbmsZmr4jcvvjM09rabu8CiPb7Pbd1j++AqXZbSyg+klw0yEgTp44/yXQV4g48LnU+cvfOVgxNco6YpVNbVjG9zT1ARbxuYqhyF9trgdnjhhOzlNslEju7z4qyxAk5tX6mpQFdZMVLda6dtmlUq8CrrjXn0kSiVpqUOs4zgXcZ3nSx80/18c5UsGZ0Fcy8h4/+8tbGhSy8MQ+o7C4VruHFY21ryUCp6Lox60bjo/uKtTYrgIWOSqFuWcWnmox2R5RVGZQZ5zGlARGKwuS4IVSKKWonAGMMdT0FEZqmnn02qQ8yp4Xnd0nUymdQBvNgufspWaqyMpf6WwInceKfd2PKblxyDhTv7tS54qwkt8NkkkzuUlyQUOiMvzi+lE4uU6E/CQ4f47S8eIySoBwWZBdK6YIMifEtqsA1TQuiozKqjKZpGpq6oa4bhsM+bhrcpdJctLY8ZNDvMdpWjMbBl941wV1qOp7QNA2F0ayurzGphcn2NsEHwKA1HDi8TlH22NraZWlQUPV67G6dYWd7lEkL5xxXXnmEo0cPsbm5kZ+BtZbt7W16BezsjlhfX2E8rjmwvo+q12NzUxiNJoiXzpx0+Yy3vHhFK4OWsBi3yjJ5jtvLgnE+8SKB1IIMWiUCDQ15zcrjK8+h5y7K2WUqwZDIGnpxaNJ5HIhpx08eFSnOw1CYCm2Db7lRJVYZiO5REWJ0WNWC4A+RLJmz95rGT7ICKkUEOZLj7IITSwDb1gWXqcbWVH4QWOK5udd5z8TWLJkqgvdkzXAUWrcuU8bQWBcIlELmm/aUkcttXdJKqMqCvqmCRUErnKzgfM1pV+N3fOwzGhGFMsm6pfBi47ix2CbE7gkaT7QKqNalW6l2DRcBYwIAid6nWOeDco7KMTmSjovjynuhKJLb9iyZ6CLRCDCvJ2XLmERLRhpDOlqto8txWH7SGPWROOrqMx3LnniU9hF4exRFB7SH/T2CxkRApHL8YjhPHMuqbW9XV0wkVnDhCIyedVMaO2I02cIrCe6SGWwB0W2tLCqCm2SBKIMp+7gYkwGBXArtiNZ4ldzdFdNJze7OiMl4StN48hI9AxI6n+cJyPOKOv9uj2FIXBLIACLAaH3kkvnLeY8Twc/Qph1Q0t2a3qNK+lK3M7bKe3tvbSeaV5TmJ8z274R4IlcVO07XXWreTaplv8gdq3WRapU5PcOo6pnnMb8AZkBwnueaFr3u/c7e+4WkowjqjjtJPrADvHTrFzmH1QHwzmXlVkdrlaCi77rJbUpMhI/PUSmVAwG7rHmaAKxtopuBozBF9iFUkZF7qsnO7oiiMPR6FU3TYIpgmi1iMHRryZAM1hLImE6niAh1XWd/UBKrtEcHmlG89wTotMd1/j73fLOuVkSrQXA571jl2plyjwvMgpn5hbo7pmlHFSkeKjBk5x4jefyqDE6JJIcxhrJKljHJiRa8d1AIPjLAyUdYvEecxMUqLABKldjGziixaI0pCuomWTKmaL2Os45yaYiOIHLf6jJL/R4nRDEaTcI5nKWeTpiMxzR1TVn1WN+3zqT2jLa2EpMAwPq+Jcp+n63NXZYH+1leXmH77Bk+e+8DPOPm69m3fz+m3+d5z/9L3PF1t/HQQw9zxdHDiAgnT55kMplQFPuZTBuU0kymlqVBSb/f56zXbO9OmDaWougscpeJiPcob/AetAflFUVhgvIe3xU6uUu1z6xLJu3pMiUty991mQr9TGdrxozLVDjbzDUu5DJlvaVnihCo6UtEexLT2rpMQYrDaF2m6uAypUuUr0lW8HDHaS0xKAzJHXdmjVNhjGqlor98bnHkG4LLlIhD4fIc3NgJTTPB++UcUO+TdUYCcNptatZ7gQjSJs75OiQl6VUVvbKiqiomdZNdpow2jwj6vlIkzz3nISufTDl56hjaGKqypOr1KMsCVZQUhUaJDfNcXPslMorBnd3OgkkneK+iDhPAbPJ+SIpssEAQgrC1xtrgxlQ3Du3Ai6E0wYU6uQQnvUN8uwa17o7kfbx3AXQXugX0EpIlJPAbbBbJatECEq3nx39i233mxnRnLvCd+NDUzkR2SiSYlS7BtR4FPphV52JGO3MIhPVI2vVWxbEXLJjBiljLhJ3RJrXzVEWV3c9VcleMj6UoC0wRkp5Idt93eNuEwHZXY20DMYZLfNANdncnbO9MmUymwRKsEijLTzuSkvlTJiNbQr+z69yxs8O5+7lDKc6f5wJySe5SQHaVUpFp8xIY2+z+keIyMljQJO/NoAp00GHqRDO32SLqPLmmteYCMq/YzLKs5KtD29m8dN2mLsy+zv/MAJEIMhIAO8+TIylL3UXxke4qga4L3njnXttn3C7PoiQgaJMyp8yeLw0yWzeId6RMK3GlzHEUqHbQJoCmgKrsWjJUXtxEkiUjHKOq6C6l2oXyqbBAdWUymWCtCz70TUN/0IcMMoIlI/h0SxtA75MlowbAWkfTNCFbRwTHrToRJc/BcwA9fimkgLVuz+9Ih7mfMSJ0QX7cLiKoFj2GBaNz5aCotftHH7HMtM5etgNylYp+tYlJvhDjEvpMO1m27lLGBFYtAF+X2Sbxs8RIMnUH07hEhavA2Wm+7zQ2jTHBktEES0ayVHoRTNXDNZa15SUG/R5OFLvjSQTo0NR1YJnqBjUYsroWLBlbZzZxdoopSkBYW6tYXuthrWOwXLK2f43NM/u454vH+Ny9D/A16+vopkZXNc++6Tr+5+GDDIc9Tpw4zvb2NsvLyxRlRWMdSht2dqf0KsPyUh9lSmob4lRCsoGLmW++fJIBQASXShRKFEYZnLQg4FJdpoBoydIzfTu5TKV33LpMReU8gtk9XaaSNh67uHMOMQLRVaJ1mVKZOQzzdgANRpcdlymDVondTMHeLoMShYkuUx1APucyFcZQa3sP2zqWfpWUrwA4rK1jAHgT3S3CMIr6KCLQeMvU2ZikIlgytNZ4JcFlqiqpypJCa+oE5o3PhNtXqiRF13sPMY7L6Mvrno6dOY21UwTBlJp+r2LYX2bfoRV2OIujxotD6ZBVMHAuFiEo4OF2BE87T0tU7tNPGCfB2hcC/kMyF2trUCF43PtEREXC0XeCzWNnUlnZDpLGUSLNAhkvsQ1hFVEE61kSrdq8hYkwmCeUk06RvFGsC1m3kl6XfhKhB4FIFR/cHLOlMlpkrHUgHhWt4Fr5OA8FkOUE4tMJsU9CIHZRMRY1ZnjUCtEGLyoQt9IgEsjbFN+qjQ4xIDoBw7hOEeJIrKupm0kEGOFpW++YThrG4ymTcY13UOgKZaKnSQZk5L+TXPS8f57d1EXscyF5DJaMNPnZaMkIJmmfCAGIqLR1m7pgwyMcDUTiLJKc+RRm7/M+uHZxCC1I7UhoN+0z6y4lFwQaaYE+x10KNWfZObddrQVkdoFsXZ7O92ZbILP31/NxG7N4NB0rXlJMV7Yg5H7YuU3xwU3HOx+zZUVmjhh0pQ0NTZyQXZtlBEKWH9NmoMrPOAZ+S7QcKRUyLGVG+ikoWimm0yn9QY/trVHYGC0V2oRAZWMMtrHBN5XwrIzRTCbTDNZThqlkNs3zeGJq009H8Q4zNxc1Eag05uJxEhcYCKxM132IyL5nlph2wt8LyGeWKrWpw0jli3fARlexaxW0+XHUkhYKld2lipxhKoDbECMWg+5TCtKYFjcE2vug2HkfYzJKbLOLdy7OZ0GZNEWRYzJChikfghi9YHoVflqztjJk2K/wopjWlrq24Tl5j3cuL5wrwyWqoscX7j3Gc7d3WNm/BAKHDi/z7NtuoOzVrK2vUlVj+pVmd/sMD9z/BZ527SGOHL0KaRqe9czruOmZ17OxPebee++NWcwqGmsZjSdopdncnmCtZXWlT1n1qa0N7KWLliI/O689meKcQxud4zK0TwHgBiU2M8phjpwFCBdimkWCZT09+9QXu31y1mWq6052HhDT7esqujqKwxADwKVsF5ekNMSdkzXDmApti5jtLGTzwce4jAwZkjUjsMx7ZplSbZvSNdvsN+lZpSxTIX268zZnmaqqfnSB1TiXlMEARneaacgypVQGGUp5jArW6qqsKMuCejLNGSW/0kBG9/165xEf4gO0UvSrKirw/SexhefKxFtG9YTt3W0mzYSyKllfXueZ+69kokdIpnwCwNQaTCRmfUyA5n20lmkF0tEB6DyTDvEbtqV0yW2a53Cc5B+lQGmi4u7jHEq4OD7rcyKOqoyKdVLwxaNIaaljG01wXcornAQdy6hg4QjKfLTY4RNtHP6WGH+Vru6Dm1R2GfUOpUH59Gx8yC6lW68MpRSlMdQ23UN8NCposwnsd59dO0+RrSZlVdLTfZTE5EjOQYypCcSCxzkJySMgr111UzOtp9EVPZy/qSdMxjWTSUNjBUSjKGL5ggsR27MinX8vtMf8XntvvXi5dJCRA4iDouhcN40tnRzMQVRGy63KH7bH74leqfk5XSzLf277zrv4pBGVlJhOussENGYABx14Eif5Fk0TGdWkbIWok2DJ0KjzTLpdnX6GJZu/z46SuNfdzLuHpfPp8GXaQPIjljjxEJWy82UF8d6FmgveoYsqx28IwXc9fA6Ncp1YC/E+Mx86Mr2pTSnw20tgvpQK+bATILvczNKPh5jCMJ3U9Ac9Tp/aDEyKhDS2RmuqqqIoCqY0s6mAjcGLp7ENpa9ihimJ/YyoZceLSJrkW2U9vOxsSkg7zrWu+51qMWEGEp1DsnKV+tcjxRrNEgPnG48z/V0lE3Q3LmPvlgMhuDaPGx1zv7fB3yHDlIsgIxEHPrLDOsSNeZ9iFqPpvqKpo9Jb6By3YYqCejSOMRk11lqUCa421XBIvbnF8nCABvq9imuuPYpSmrpR9IZLHLnqKEsrQ/CWrdOnWRsMuP/zJ9g4dYqV/YcAOHLFfu763u/gfe/5f9DFgEp7/vpffT7XXnWA02fP8JlPfpyq6rNvv+YZT7+ev/7XXsbbfuHXOHXqdLCS9fugNLvjCUoHRXFSK9YP7Mf0hozHp9nZGiNDeYR39+WXZMXIREiyZBBiM0I2mJDKltZE1lnQW2VoL8ImuTd1Xaa6WabmXaY6HX92ewS83YBu8SH1qzYG5yxFEeOAUpapDBlSPzU5ANxJsGyELFMmKlkGhQ/WnAgyVFaoWoKrC5KCrtjedzsdSFA6VQAaSEiV2TQTGjvBuWHrvhF0uKBwSYjLsJHJN1pjCo2zgUCryugyVVaMp9Mc//SVUM53xhUqprJWAkaHeMLhoM/SoM9wMGA46DPo957cBs9Jtw6SuIJx4+njmTBm3OwExj6SL6FWC5SlxtUWJx6tFI33QAHR00RUgLZeSaKCIzkfvrfWxj4iHX1PR4t2cs9LLZScpr61DuoM4sN4chQxPjGtOQEEtLEdEq3LHcfdAHhz/ZqOBT2RBhJJ1BmiLZFVkoFHGpXJGu7z3ODbLFVzc0psQW6H5DUwrVvQ9RfwCE4ctdthX+8Ag6KHODDW4rWL9wfJDinRsmK9ZXc8YjweM6knCEFPQkLNkcm4YTKp8V6jTRk9S4Kniccz7xYXnsIsWdJ9xuH/9vdj/f6R5JJARp7QVEpjq2kkpo6ML9PH9xxm2XlLRnod8d+kOEkCG6n/dV6y5MPOkfnJd4892msqlR9Mm4lmvk5GhgHnnCW1rwUWySWlY8nQs45f6brtWWa3n2vJ6DJaCRSdn5hOC15q8bn7tXAJ1Voy5ndMgKBpmpDmswr3mGaSXCsj3nUuMhiPSwG4eq5WRorFsLYhubAUhWndr56CEmIrapZXhuF5pilTkZ9TUUQTrWtBRlJmrA0sbtM05H4YSZ1ZJ4m4bXa2bxWhdkNkPZklROPYEy8z52yNDeGis9ayDhg5R1TaY6YtF5ZwTE4lnRagzvfdcdJaCuMMEvP6F2UoQpjihJKrXnIb0dE0bV0Mxu+geGMqalF46zBlW+fHFIaxtfF9qJzBo7HCvsOHOHnyZOzLiuuvu4qrrjwaQKIvuOLqq1leW6YqCzYePsFnPvpRjLc0jWbr7DaCC8SK9pjSs7y6j9ObG1x7RZ+rr1nnzOYODxzb5PTxTaz7FC/5+jWa8S6HDqxyYG2ZZjzBNS7GZBTsjMY0tqEoCyZTz/K+Zapen+nE01iL89159/IRHy0O3odsN6oTAG5xsT+EWAqlOvP4XtaG7t8iOC8U+vxZptL1c5YpBY/oMkU711pnKUwJ+OhrXoT9dczWQ2uRC8HfyWUqZZgKv72r2yxTiqzwaVXgxOb7nHGZUolZjeuDUp0sU8R+L6RUtiJtALhzNgSdpmfZSWdbO8fI1qyW/RiL19aAKkwgSFImwabjMmXU5VmYL79H72O6bk9hDINeL1gsBgOWhwMGgz6DXkW/F1Kxoy6vkbIyWA5WlqpiedDg8aztX0Ubi62nKIkKsqS1OhCMwUNJkYruddMMJpAZPwWQn9aTjMmEwgSwmSZGL8xYr7pkaUqIkSxk7dwdzAfGmKzM++gmWxSzCXNCWl3iO1ARZLQFkiURU2mchoZGjs3nVShkgAr6SNbRlKCNAjwmWuFUWcTCeKEtbfsCMdElG7prU4jRiEHXnRiN0D4fvDvEhDlHR+3Xu/AACe6cWhscgq0tuzs77I5HWGcxRRliNhvHdNpQTz1edEhUEgGGE4+1NXVMgzsPAM4BBsyCjZnf5znufPs8YSCjey6tVCeNbTBPp7oTyZKRlrUQk6FpVYMgCV/knww42sWke/HZT3svmN2FQfa4/fy4MsJN6cek8zsqUnMXyAMwTfBKkWB1YubbWhlt5o90L/MLY3vexz6hpUX0fKArMOKSMzV0ze0tO+djYTKX7yUBFK1NcD+ITW0DbMPxJmaN0loRyLe06Kfgb5sVwFBApmiLbz3FpDCGejqlf2hfzjAVqnQzF0MQYjJapTj0hcYGN6lsyYiiiGuEb/t/CzCSPXBOSU99UOTconwqnzViB2lPLB2QkSaeGfwtM4CnbWdHEZPuAXsA7A5s7yp1GVbvMcjzuIttVzH9YMgwpfA5w1RwFUn9G0VMa2rj4pNaJpiyCgueC4GsNsZhKKWxLijy07qO7kkhbey+ffvory0jm2OWl1fYd+UV3Pqcp/Oxj3ycRhQHjxxgff8K4Nk8c4YH7r+faV1T9VfBRs5Lhad75uwZTpw8w779ayzvX+fT957hvi+d5diJM9SjmpF/kCuu+QI333QDhw+u8nXPv5V7P3cPH//0PfjGMZ3WbG7uYmuH9IStrR3Wjl6JNiXWaaa1ZTUuzK5z70+2dOfaFJehvQqZpnK8X1fhBzjXZWqvOSQRVe210s/scXtnmdoDxEQlxctslqmg1GicsxhTRoJF5zZkURodA8Bzlild4nyoi5GzTCmZsWY8UmE+lzPrpHU0rQFhPctuJHicq0NefjulqnqcrzDfxDWslP0A4OO872Nhvl5ZUhUlZVHSTKeXXWG+1mIRLPPiUgprxTABi36fpWGyWPTp9SpKEwLYrXNs7ewwqafc+KTeyazsW1rBiYs1ZAIjXi2XWE7hqeNSLpmICinnU8YphSJkM0uEZPddtfoKeb1oyRyoygJjwLugdOPVOX0nAN4ETtrzda2EWhWgDILgPVjvUbqN9Qwg2qB12a5BsfVKoqVFktsXswp/vCoSXWN9+FsrjeveK6BwKOUpCk1RhCHvnAAOVBF0wpiQJZG47X3E+/RJvwlXV5GsC79DfRpf+DgPpSsHS4yO1cWVVjhnqaeO8XTCqA7jSWmDcz4W5bM0jcOLoShCsdbCBLDVNJbxZMTOeIe6nswEuqeHshcAaHGlOndbZ8tew7l7bJoH58Mg9pJLtmQkd6lUQVIxm8Y2LAzdG0j+dCqgSqXm9IfQo+YnqXMU5j2Z/4uXzHZBVuxypgHftWbMLhCtYjMbkxHcohzZsqFC0OJsu9X82eY+t3LOvUXFPxWyuah7nDufJCyRVLfI/M5PMhIXettYnHW5wGCYN1Rwl+pMLKHIXseSURRUZRXzQSdWsLV42Kg4J7/2sqqesgX5TGEYT6Y585G1lqpoQUaq+k18Rs46pAqwXClyLEbOMGU62aUie0kEjeS+qDpd68LMwixASduyFhbGc1yY08SdlfXMdhDbP392FQFKPO8eYDq/6w7DkHKvZ6Wzc47uudO4y5YhpVqQEZmwDIAl+rRGRUxHttfbBqzDxCDdfm/ApoC3NmYEqzPYUUqxubHJxsYGm5tr7N+/jsMzBcq1VR489nGapsFPJxw5epQPfOjPueHmWzh6zRHW963h6oYHPn8/KM1w3z7OnN3l+PENnuXCvGOA/qBkdW0JjOLs1oiPfOYkTvc4vVWDE/7ow59hUo942vXXsrKywtfe8Tz+9MMf4sBqj09+9gG2JjVb22OmtaXXWE6dOMUznnMLvcGQ3XLA5s6YXq/MIP9yEh8ZZqXbwnwqFubTSqOegMJ8LqXM3SvL1BzQmJ2bVOzebSCrdY6qCJmgfC7M1zleJbVkPstUjMtQoRCaigHgs4X5DBoT8ukzvx62Y79tJ62SiOTCfJIK84nLWaacW0Lr6GLTsWSICGNbzxXmM1jtMCpYYZM1Y1JPL4vCfDOMa6zHFOZaTa/f29MVqipLChNY5rppGI3HjCZjamcRraC4vNajfevr2TU5rea+33BCJlhxOGlpJqVDbFmITVAxiFq3ijGE/qUMiEGLgW4NCu/QpiRZyowGca0FjXgW21HEoZOKnE6gdccqEGpThGJ9Ig7xbaKYlpwN7H53XVGqdfPO7zoFd/vg8mVdqJidXLJ9ZLq1UojSCBpUjOCIxHK3DlHSSAVovM+pepVuLTFh+YsxJ0CyCom0c4JWGgN4LJY6tjHsk/XmGBtonWU8mbIz2mU8mQRrYVUiorC1w1qLtSE1blkU9KqSsioCEeYsqrGINCg8ZWEIbmctOOiut7N6a+v2P/t5r332+v7c4x5JLjkmA8iBuzkuo6O0z8ZktA0Pizx7myE6esee5pe0CKR2dBSsmd3m2nmuwtXun7MQzAAMOc9xe7+QtF13g1HzYnDubZwPYux1Hxcj+bgOk9w1d3ZZZelYMnIbOxaiAL4cTT2N1ouw0Et8zybFZJAUuWCdCDEZ55a3D/u1tTKSVcNoQ1mUOWDpkV1qvrKkLEumkyneeXpVibWOKn5nortUWQaXAx+rVCemVimVAVkAZzb4ZrKX0k1kgOb6T5eFRZiB9HNjL40polKdXbvSBVVipDrX7PS1PU7Z2a3rcjLX7C4rRGst6TLNM22cSWMbAT/BklEUBf1Bj36/x9h6GtcwmU4Y9huqXlgY0mJolEKsxdc1ulfhEcqyDxjqyRStQvYzEQnuU0XBdBoK6+3u7gbgIMJkPMX0+zx48gQPfOlLeO344v3P4OrrbuC666/l0NFDIb2nE8qqx7TxOF3SW1pld8cyGTUMVgYoZ1lZWeLKqw5y7333c/21N/EnnzrJaOxRRUHTTNnYGfOhD3+a//pf/yev+Ob/jauO7OPGp19Dc3aTm68/zD0PnqGZTqmbBhHY2d5BENb3r7GzscTueJvd0WjPZ/tkSyYeJAWASy7MZ+i6TEmen/cCsHsRFQkozhfmmwclj6Uwn/MWqDLI8OIvWJjP6BJjqlyYz+gSd97CfEkRvEBhPtWx2Kuuy5SKY9qjCFlzhJTDP2StCYX58qkzwKqdpXaWqixiKludEyeURRHjMoKSXj+Jhfny+/FR+RahNIbBoMeg12Np0GdpGOrYDPo9er0qF0Wb1jU7oxHTpmZqG7wCVWjol6hC4y+zOJP96/tzX5X4Xnc4Tb27G1LSAiiN0mF6trVP1H4I8jfJ7VVlxr2rv7TWh9CXfHQxSnUprEuJFMIYDMHbYX1xNqQ5TuRS0KUcqfp42D9lKzMBjMdsgsYUxEiHAESiqyCqPT+0niKttTtdxweQTEjjm/YP7oY6s/tADhEPZGnyYIlEanYp0yCpEHGaY7rrp8yAqVnruyBiozXE4iW42tq6jUc1xoAG5yyTyZjxZIR1NUorejHZgPdgtWCMRasaRYo7LGLV9fDuBr0CxZClYax9o+eBQmedzfp1q2irtCUP2dY6cTHftX8/slyyJQNm3aUgWjK8tHEZ0irZSgUrhuko5mF750e6nX2eQWotGemk84pNVlbPs4hmtUi199GmsW3ZstmFeBbIqO7fcwgup/S9QIapZM6k00EvTmZZq/PtISJtnIPs8T1kC8Wei4EI3nmaug6gLsZvhNo7wUSqdLDeiMy6yGndicnIp5MILFyslREmybIqQ57vlBL0MmNXH6sUhaGuG5zzVL0AMtLTNjE9ZFVVOY1tsggR2Y66qaObVQAZraiMNObU8KBgJIVD5gZ/HCzzAFflwdfZb2YHWgYnjy3V/Xr2AnNb87dzIGO278WJTJI148KKsIr9MLBaAWAsLy9x6PBBmmnD6ZNn2N0esbO7Q1UOqKoVlHi8WCCUoMJ5fD2lLA2qMGBKeuWA6WQHZy1VWWbgVVYl00nNgw8+xHCpz8GDBzBVyWhnxL6lJdb27aduHGXfMfXCjTffxFXXXUm/qkCE8e6I0ydOhQBhNKY0nDmzy7EHjvP0Zz8d5xRONFdefQRTaB56+GGec+MVfOyek0ynQ+qi5ODhA9jJDr/1m+/huquPcvMtz+AFL/haPv/J+xlNptx289PYGtWIC+B0Mpmys7nJyuoSvf6Q6XSD6bTO7+JykVkLAxkAtIX5DErFLFO0/WgvC8b55MtZmE9ioDo6Xki18XUJIBhdUOgyphk1aBWsGXsX5mtdph5bYb6UZSrFZUyxtsb7wZ4JOJz3jF3DUsoyFRVEZ4M1oypjKtuioLZTrHMUxROfZap1A4nKdnSFMloz6Pfo93pzrlA9elWVLRbWWnbGu0yamsZZnBJUYVDDEmUU3ih8/O/iab4vj/T7/bafqpDJaWtS07hx6I2K3NeUhPjYMGYchYGiIBZtS0Ah1g0S8HkbcX1REUcLJhb3C9cIQdumgMJA04SxaUzI+SSKmOY2Kf+hfxZFkclHEZUS/iHiKQrQJqwB3oXkKN3EOV2COhzfulimuSB8EX5ppXCRiNBah2ROcX1J80wI8o7rpScm/FER0HfJr1ahDpgq6rt5eIf9Ur0ZkGwlnTZTrK4ZT3bZ2gwB3YWGsipACbVtGNc7WJlQmDDOtRQoMZS6ouwVVKagXwT9OqW9VYTshmH+CcUx5/W5LpDIct55fw9FMf+xB1k/97wvVh6VJSOx4ekGk8LZZpgKHT7jSpWqfs/KDOig7RAwq8hntX+PRaU7Sbboc77xsyAGyIN23mUqgZy4TnTa0rapWw8jWTK6BWXOj/EiV9Y5dt7UHx5dMt+r/LrPe8YO+OoCoe7CKV4QLSGnstFtxe3OcxUCe97EqtPJkuGiMmriZKFUSLlmk+97fI5lrAOhaH31Z92lfDatl1V1SanXvpLE6FCkyDlHr1exsz2J38QJWavAqhlDU89lmNIqxroE98OmaeKEKnOAIC0prQ9tKxI7TFKI5sdD25tU1JYyG5OUqbiYpb6cx4PMjq9u38snbDvVeZXa3N58fTpjcHZym593yrLEu+Bu57XGmIJ9B8L3vX6fU8dPsbW5zdZoi8FgFREd6xgEps9Zi51O0MbQWx7iUfSqIePJNt429JeXMUWoJVCWJZOdXTbOnmV3Z5fd3RErZoXaTinW17nqadcxrT1rB/rsP3yQwVKP4cqQ4fIKzjnG2ztsnj7J2lqPRsPW9pjRTsPDXzzOdTddx7EvnWXn9AjVjFjff4CTp8+wWjZ8zc1X8oGP3Me2qVha6lMgqOku991/jKc/4zqOXHEYKStOntnl0KGCm2+4hvWVpcBWW8/m2U2GS+uUvQGTXainKUDx8lGeupaEvQrzmSLE8nmi8j6XZQpmia89XabSOJkBNIr5wnytNSONltlrdImmrnVitjBfylR4/sJ8IQC8h9FFdJkqg9uUN5moagvzpViNx1qYL6azjYRPqP49wXUK86V2SlQSR80UWw0pz1OYL2SaKplM65ksU48E+i5Vuu9WIrBQCozW9Ac9hoNB6wrV7zMYBFcoowOLXdcNO6MRo+mEJrtCaVS/DJniNHglkfFun+Hlti5N6unMZyeWsdth6uvQ36LlLLDlgHJYFzIZ9UuN0kJjQ4aqQNRAsloLSV8JP5qoSJMybobMfBIz+hSFxhjFZBIsp4NqAALWBbeiLmlYFAVVVeG9p67rEGfVSRU7k+1SMUOSJqJHxzm+6944k+ADybFBSit84+M6SgQFof9624AorAfvQjC7T6XMiXESpLiKSEDMgBoVAVBbPyy5D2ULEOBUhPXSMB2d5dSZM+yORxij6PcMXjVM3YQpO4iZIAhGGSrpU8qAHssU9FESYjd15haDLuWsx1qHJz7HxF2fo//PMYYXlHN187037AFgLkIuIfC7Y8nopjRTKgOMBDK6gCggPp19vGcYVZX/6fy9h1otcnGDf24RTWfJfFJHJ0oLXGvJSNaM7tFd6fqgdUxTne2tJWPuyD3aPW+GP6fqd7cZXcTDLLCal+4jTYtRMujNtHGP6wR3qcB6huCk1m8ymeSStGmLwyBMFa0To56uLxLYeuddvseiaAO/LyfF5/EQbTTe+WjJqLBnd0hm11RJvaoqjA5JE9paGT73g64lIzGnyY0ihzulPpF+kkj65yJmAtWZXBIznFgi2n6bmOa9FK/ZK8URLjLbB2eATTtWxIekAaIk5ghvYrrkomWNOqAJVAygLcMCqUO+cfHCytoKWodK64PTZ9nZ3mVnvEXdNBhVUVV9Cl2itCCuoZmMKaqCYtCnKvtMIhbs9XoUvT7TyZSiLNDKU0+mjHZHjEa7LC8PcdZSNw2Hrj1Mf6lkfX0/ZVFiCs3KUh+pQ+D4pz/+cZSd8vyveRYbE8Mf/uGf4qynGdfghaaBs5sNf/bBP+MZTz/CysoA7zZYX1YcPTDg+GfPopVg6wlrgz73fP4YRz95L8+++Qaue+Z1fOzT91I3woMPfBFjhCNXX4tShsnumP1rhzFFj8YKk4lt3+NlIl0yxHuPSi5TkqwZwQ0zZbFLLnVJiU7HJjmfgntuYb42y9Qs+Ogo55eQZSoV5pMYlNu6TKncf8NQTYX5CoyuUG4Ss0y1hfm0MqGoGmndNDHL1PldpsJ+acZN29qA28AMeFABaKTCfM42YRyp7oGhjzTeMfVNZkq7hfmMKWK9jIrCjKnd41+YL4CKuB57j5JgIe5FC0VwhRow6Pfpx4DuxHZPplOmdXCDmtg6AAujUf0qukIJTglCa0HOz1F11/jLR1KcXurvXllGdpfGu+DOTHjnAQSYEDzsQ80ebWJ/6YDvIEk7VZDi3CK4bb06yPOutTa4+Jki9pmkCxpSoT1jdLBwhCvl9ifgEVKLx4BviLFX5Pk9uTamBUgkZJtKekjXRS7FfSitsdbivENUID7TNRMwCGA97CsEHVXHOI2ky0lU4qVDdBndBo5nq2RsbxjXPj1JsqIe+5QowTWhNo2XAPhHvkbUGGcmiBlj9ZhawhpfmoJSl5SqT+UGVGqJwi2hpYeigEggeSsIATgVRZndwuYjnedewdxHdaHdZr5QF9jjYkfJRYOMUEm37aipUqSiG5ORXJHSBBv6S1tMBWYUjvzTosjuLpm5mWtL6ojzk4HA3KIwq9yEWbSti9FW/J51l9pL8c3kawQRuSK2pOehZ37vJTMAa+bcc/tfpI44c4gERTQh7Ewo5+tKWytjXjElLvbOZXepBCSFYFEJqDr5MILzrlUAkiXDFDOYODFj3rkZxr4oCkzRgpbHmwF7MsVok59Nv1+1wa2GnCwhuUsRn3kaO4XROB8mTO98Dq7rkgjn9KLOOMmURnzpSRVS0vptd6UdEnL+fimdMQUt6L2IDrrXWOrG7YhSYBTiNeJCJg2l6wgyyrxwpgk8+51qE5WKAvEWXXpMVTFYgf6wz9r6KmfPbrB1dszu9ph6vE1V9FhZXqNn+qEfe0c9nVL0Kqqyl1Ntl70epqowZYkpQoFJaxtGu7ucPXuWAwf3Ya1lY2MTUZbV5WWuv/pqjl5xGKcMBw+ug/d437B95jSnT59lMpqwvLTG0tISbrKL8Q5xFju1TGuLNwM+9ZmHOHJwhbMbGwx6G1x5aB9//qlTbO7uINaiffB1/sjH7+HQgXX+6itfzvao4YHPf5HlgaHfH4R3pg122jAcVuFeyj51M9lzHn0ypcvKe+8xSbEM8cooryiMoUkuUz7UzHjshfnIbOi5LlPpvO3x3XMlF8M8FtR8Yb42hiTeZTt+UTEtbIjL0K5ASwAdNhbmC8pQqo8x6zJ1ocJ8mTSSZLlMsRlJEQruUoLH+Wa2MJ/qFOaL84dzjp1mykrRJ7DjwQKubSjM169CXEYZXaYeS2G+mfcnEgvkBaW10Jp+PwCLritUv9+jX1U5/XHTNIwmYyZ1TeNdqP1QGhhWqELhtSJwv6F+TtKvk0fCLLi4/EBG3TQx2Dk0XIxlbEchlgQF0nErUkmfaJMAOO8RHwOwjSB4lISMU2E9b/W6lhEPFjKb6tVI8EYJ2Y0SaJ53G0/jJIAFay3GmFygLqWxj0pT6JsRcKS2xDPla5iiuEAF9jDW0rhLemhRmHxPIgH8KAxGKaxvYtyXQtCIijU+VIwlIcwLHtrCfpLaH/tPGls+tjUrWyGGVSuNMoqqV7I0WEIXDl84vJkiusEUBV73UA7E11hxeKARh2VErWt6aszA1FR2jYIBGhPmjX5JKo4MkeC359bJ2FvOBzPOfawzv89zrscfZDjfsp0QffbDDy74cjrxwS9P2vZlv7qMlTvNTIpR1HmTN1xmb7uo4zw3fA7Q2MOa0VXM0rdJ+XO+BRpds2nratKxWuxhycjtyBm3uncqM9fOqLnTxr2YE4mDMLX3fCrdrIuAkCt5dm905qwpEKw1UXb3CzEZ08Cqp7L34UXEDFM6o/Xk1pNYwaIIi45WilRINikQzjmsa+Jk4LPVQ+9x71/pok3wm5xMJiwvL8XYi6DopKJCvV4VrT7JpSwpOSq4Xfjg2pAyTEUdKYOCPdPYZnAZ3/NekHa+I2WwKXlsp67nITJIrbtU93RJ9ffMMb1REUyLV7uAAczGBElka1XhcVbH9LEerYM1LSUbCKnrgyui1iooavE+rG0wBZgypp41mqWVZcp+j8FwlzOnNzh1/DSbZ0/hnWV99QC9Kijkzk5wtkfV64EEVypjQh2XsldlF8GmqTl58iTVoOLa66+kMIbJpEaJcMvNV3PtNfvYOLPB02++ibI0oODk6YeZTncZTRzHjp/laTeuMRz22N7dwo13GW3vsru9i7WWK666huMPPsTZzQnjqeLhh49x9dXC4XXDwf1XYbSmKELKwxNndvjjP/kYz3/B8/nGv/KN/PZv/S7T3V0ar5jWE6pBn7puGPQK+v2KordEM5qE2JTLqOJ3F2Qk5holbZYpUblmRtfa3J0R560M3fmwO68Is6AkFeaTL3dhPoK1ojAVRpU4VaN1iVElXoXA0+Ay5TqpbKPL1ExhPp1Z1Gw5l85zlTS0g0KZCvNll6lmQm0n9OYL88VzeBEmtqERT6F1TmXr9FxhvqotzOe8p7gEjLGXK1TwZtL0h32WYjao4WCQg7ersgzAwnmmdcOknjKahgxL2RWqjMHbCnzMqkV+/m2/6yrJ3bkrZQG6nMQKsfBieKdoT+PGoTCeCv0qkbXOtZmXtElKtJAzSEkiJMPcm1OL5YWhBdrOO+qmxqBbEjVaDoAMIKyN7nz5uUl+lgoV4nkKE9K5x3GU9SQRtIlgINgXMplltKIqihlLRjtWU+XvkKFRobLSr1Swhnsf2pnHkdJo7wiVkmK2TJUSgxDXmjD3KGndLZOi5H07+2itUX7WzV1EQLfxhbosKas+VnucsUih8MaCVjRSYFRJSY32Fu9tS34rG/YzDimnKFmhZJVS9ShUiJXCRZcwASSBqnN1qRkooGY01nMgR/5Xz2455zzdTxehvl2iJSO1NVky2grXzoVFLFgIUsBomlpTHEM6Wwpv6za3q3DuvRjutYB0t+ezd/dJOhQtIEkLh4+ZEC7GkpGuE3XuyKS24EOrVLiodZmSFiuc08ZHFkU+ySOI5H9aUJcWoUTbCCAxR3Ouytk9R7xvZx2usZh+CtgK9zlfQC+lL0zPrczuUp32RwXUOdvWhBCJpr7iKVmQTylFWZWMxxNW11Zi6r6QrjSlsCtihinV8Qlv0/2F9HYioeqqdx6KlkXdAzrECbIDGvMOqRPO4slZgJK2zSpwiQlDKST6mxsJi5J3kn1FFe3kr5SKxayEWVIzuaDMgmoXCQutDaoIC7/zjqZxiNSUZciqEeYGQOK8o01gK5UKbjVFmMybOmSWEq3oD4YUZUXZr9CF5qHmIXbH2yhjWBZPWfbQTrC2pjccYEwRYmScxygoypIiWpzs2DEeTzhx/BQbG1sc3r8fRFGVFc+//VlcdfQgZ8/AYNjHmAJrG5b6JQf2r/KhjS2OnTjNjbdcT7+nmFYF25s7TLZHMbuYY7C0wvqho3z+s59AiWd3VHP29CYrfc39x05w7MQGy0vBQuNqy+fslNX99/OMG29muLrO8eOncSKYfkFvYNndHePqKf1egSl7TKxDrLssLRlJfMxSl6wZWnRMGGKekMJ8KU7tiSnMFxb9vQvzaYqUZcpHlyldoHQBFyzM1+T77DLOaeznMHOl9ijM50FCfYCQPrPGNiHLVFFUeS7oFuZrnGWcC/Ol+d8GrwRjYmxGW5jPX0RhvqyQJUUxukKVhaE3DHUrZl2hKnpVFbNoJVeoKdOmYWobxCgoNaqYc4VKmYZkHli04CLNKSFzopkBF87Z897DkyGprpJoUFrwRYOTKUGxSTECAS84L+B9BhLB0hOLuUXiUCJoSaIRtAogP6RpLaLbUavbdAGAsw6lwJhAfIhXob6FzOpwIZA7rCmF1jGzUiCr2xTpPir8wRW2SzRDC6Lndbc0Hr0EN30yERf20ypWB89ZrqIngSoILF0Aq6aICSYiHVAUsQimb1WvpMeGAZZqdnRcyjq6jlIa6xtq5/DWM7GOxgueAPqUKhDlQu2REBSERmNRUZ8Kd269Y6TGTJkwUbsMGbOEo+89hfRAYrA4oeZOaMWcXvwY+90F5aKsHUEuPvC7w/YQUavSretNDlj1MmPJIHZ2rVSstCvBTTRRC1HmdNPwZ+odXS2a2NHU3g9xZtHhfA9asmKUgFECGns9vXmTqiLev2rvT6mOJSNTzu1AuXhpNcV8hvPfSG5qV6/Mm+Nzincc3S+jJSNB9xkQEwBB0zSYfr8NhuxMxonpSwy892Gx6MZkhHtulU/nHTalvJXkLlW0598DOH6liveh2udkMsHEST37jyowJph/q6rMgXCJnUkLYl3XQEgP6KKPaTqeqFCEVaTlSPNMKjLzTiPny/k6UHajkfS+Yj+Rlp1xzlG4Ivd1GxeZZBFL1ozQy3RnTKRnIigVKleKpGA+k1kuEUGbEm0KtA9VbBtro6+ppiyDL61EUBos6yorbcaYADR6/VBQVQRtDIOqoqwqer0e/X6fjdNbbG+OOL11kn5/ieFgldIOGOglqv6QpglpBwuREPAa+6hzIWf59taI48dOsr6yTK8wmKLiJV9/B5/+xGcp+z1W11bjKxA2z5zGqIaHT55m3/4h490x/Z5G71um0J5mNEWpANZVoVlZX+fA4aMcf+gByqrHqVObXHnNEXx9ko999OOUZY/19WXquubp11/F+oHD6HKFg4ev4P0f+FM++emTfP1Lvoq1dagbSzOdMuhXmLIPOrh9XU5DrDuf5nUlKf8iYfEVHSrjqiegMB+zLlPOuajMkZAzqb+2x0rud49UmK8NAJ9dh2eyTMVCfCEuo1uYTyMqWTNSKtvzFeYL42mvwnxaKXyq/o1nNsvUBOtqRPodBrq995RlaqXshVTRMTYjFOZLWaYqyrKkmUxnXGe7CmH3wc+4QhnDIFopZlyhIrBIKb7rpmY0GTNtmugKRXCF6ldgNKLBxntLC6FiL1eoWJhOJbBnYuajyNo7x2QyDsROZ869HCRVnyamJG6YYmMl4OT1QTRB+0juelGh4JsHF+uwtGDX5L4ZwKxQGIXE/ROIDclZoiUrEUixNxdFgTEhfiMTVTNjJfg9BvAuoIJFLQVwp2skN2GlQi2uZGFIc3tLiu4xealAeCVLZfAYMCjVxoEkckplS0zKyKQzKMjjWYXsWcol619YZ2KSXVLKXCWxgF8GGK3O5lICCA0T75h6j7OC9RblLUoail54n6E9UQ/yGuUarA+aX8jE5bFK8GqCxWLVFOsmDPwBSpbQTqMkEBlKWmAW30C7rqf+0b6cOWyQ5tS5Y+O+7daZEzJ/lvPJo4vJoK2joDL6dwFgpODv3JDYYVLwd075lViGlhlKloIuiu3e3sVK29k7ypW0C1v6tq2V0Q3+jsrSHnpZWmCgtWSkG5mPyThHf38EOUfZDg8udojQmL2sIfPPKLcxJ3mIDjQSTIvdjA6K9v10LRlNPWXASjSlR/5ChSwPSiuUay0UwXIVmIqqSGlsuyxgyjBlsytQUZgZQPJUEucdZRksGSlgMigAYXAWRSeNrVZYO1srQ2tNXU8REZrGZn/W84pq+zXJtDA32bTDIKL7DjOkjQ7zf+wD3llCwGnIF26URuKilIC0uAavVb4/aBkm7wW0RAWpZaK6+0C7iIiO7FlyvxSDAM10QmM9hQqmcIrAhBkTQYxOk7QBA2UpMZA8tCfFi5VVn7LXo+r3WNu/zukTGzz4wENs7W4wqUOO/KJXYIoK75tcvE9pEyq1d5IfWCsce/gUVx09QrG6jLMN62srNI3i4OF1+v2CqtfjzJkN/uyP/4yDy5ozZ7c4vbHDJz79efqDIYcO78OPNhlvblKa5ajxOqpqwL6DR9jZ2cbbKafPbnLi4RM882lXce8XTnLfFx7mzNltxuMdtrY2GU8b9h08wr5DBzl67bV89nNf5PSZHY5c4agbRz2tWVrqU/aWoBygtZtVJp9kmQcZGWjLbGE+bdQTVpgvuUztmWVqDmjMEiEqEpudLFPOzhTm08EHpD0+rXM5y1SFMRVOpiHLVKcwn47B3alGURiPJuf97z632Jq5+49tV5CzTBGsGRJ9z2cL8xXkwnzSArOJrZl6R0+lmhmzhflSzYxJrP6dsgdGfSusOxFYJFeowVLMCNUfMBy2rlBl9L133jGt6+AKNZngErlQaHRVhXSzKrlC2fb+O88lWeBba1mrqCZ3yBAE75hOg5ul9906C5fXutQ0dUgrq0CVnrHdwsXsQuI9bS8Iv9v+oWicxwdbRSR7dQtmVbLiWXRVgI7KraT1IcypPgKZIrr+piLMRF3Je8EUKmYVja1QmqIIoLusQoIOJNbYIOmMYT3yXlOoAqOLeBvp/QXmP6w9AWSBw0uDd6H2VhPJS3yIAal6IUg66W8qE3AJVLV9IRAOMdmPSJhrNLHeSGa6Z47zgVLL38+6cRIzzqUIIKFxgmss08kYP55SrTswAqVESi56A+lEFmqcb/CE+xUJroiiapzZoC4aGpkytIfp+3XEmpzZLjQo/NOFBnK+7TK3z8z2LjRJ97r39keSS4rJmFEQVMveQ/IFTLUy6NyYyp0kJTid1d5bRb3lYbqdNU6m0i4YXekqqvOsVVdm1K6kEMXsFamwy6wJLHWc9vyt0jT3E5FyMrkmR7D5dnafXzeb1PkYuAvJOYAjjYnz7J/uxsTg78SKd6+UgINtgmk+WTwEspm8y1KFNLYtC1lWITWratK7gFRwzjmb3aUqU2YWKT2Lp4p4FywZW5vbkS0zuFzvIjB4OhblCxVFHd61ClSIAQjZRAIwC8xfm8Y2Kjgd7JDN/yQWhE7RMCFXBlPtCIMYhG0kK+2SfEw7aTiNCZO2MSG3P9GvXDlABEVbjdU5R5sLK1wpu0WoFM8T2qJidg9dKEQC0578So0pkLLMGcyUS4GrGqXKdNdBkVPBrSZ1cFPomEs89EkRQWOoBj1UtHg47zh5/DSbZ3doTk3xqqEohNKExOrKaEqKYFnRYZHDC7ownD69xenTG/SrguGgpLHCcGnI/v1rIb2uF770hS/x53/yCV7yglsojGHaOE6f3eX6tX3s27fMqe2TnD1xnJWjfZQC6xqU6bGytsYVV16N2BpXTxltbXLloORb/9pf5td+679w7NgpjCmoG8eDDx7n4WMnodTc8cLbeeDzX+LBh45z5Ir9rK0NmU5qltfW0FUPZXoMBuay8jXXSuOVn5lP9irMZwjWjC9HYb72s+SxlI+fAxqByEljjGxx9Kn6t6S0mnsV5gsuDoUuaTCRXY1ZppIL8nxhPimAvbNMpecZLBVpjwAwVJ7jY0R9DL5tYpYpaxvKYrYwH7GtqTBfryzaLFNGoVwozJdrZsTCfM655OAVwTpUpaHXHzAY7OUKFbPEiTDuZIWqbYMUCiqNKqMrlBKa6Pr1SK5Q7Tuad4UKc2pdTzPpldxT0s3HnDWXlTR1HVzZAGUcIzZxEqzdKpJHbQxEm1lJBFwTALUgoHUEK6F+jKAyqRLAikKkCLEHcbnxAtYRkr94aGwgzEzsV0HZD882ebOoRI4KWfFPbTA6kk86rJUKE4gp07pxk5c6ncmuJEkXbElRmzO6tURXsGoFK3uKRYsAWiRbM0LV77A2oUKRPhd1mkzCQQRfnmTel5lRlluGUimLlsVKjdYVWkJFcvFNaGOt8CWdEJlEBuho0UwZJFWIJxKF4LBA4zy13sVphzMepxqUH+CsOid5S/6k2i35r3OISMK9pa3p+5lptPWKyedT889gb7mEOhmtEg4J2SUzJDlFqY8gI5W1l7RvZPnnZUbXTaxnXARmF4vY8zroaxYAdINwzlW+0z4JxGR3qZxlqmXe03HdK2RFrsuOKIXrfD//cynSWjIiYswL3fknva71I6PruWsnRI9IrPq9RwEXlYIfCalTcxrbaErMlgwT3cTCYhYyq6R81WQf3RYMdq0ZNrpXeVTZFunpKgpPBcuGc56iKJnEnKipVkZSbMycJSMr59EKkAryQazpcE4a21kWIZE02mjEJQUt9mEdlX2dGFGVj0mAOQANolVBRTLBI42NbhIBWJZlFfZRIa1gqGQU52aJfUWbSBYEH1+VlMKYXSvMXaF9wb84nD/17xRQmJ6Pcw5vXSQwwsSpIxOZgHwAOME/WClNY0O/DAAoseJBwSxKw3ClzxVXHaE/HGCKhzl7ZoMzG8dRSlhe7eHrGgOYsqCIaQKVUljnKLVmNJ5y9uwWBw6ssbw8AGN42o03UPWHlFWJeMPZszt8/v4TPOdZz2RtdRVtKsZThxcYDkvEWs6eOkVv3z5QCu0MpdZQVhw6cpRmMgY7odDwwP1f5LqbbuJZN17DeDLl7BmLNprdnRH/+Xd/j7te/Z087aor+LqvvZk/+dAfs7O9E5S1yZQDV4ZMPKiCqtenKC4+Y/kTLSoGTu5lzSAFTnqD8j7WH7IdYOBn5745sLCXeC8kb6jYLTPRpJkNAA8NjDt2lJNwrGR2NLuqxGOdOAyROPAe8wiF+YyuOoX5yhCXISnYW5EiF3PNDElKUWpgkhR/QVbalaITm5GAWVuYr80yNcXLXGG+uPA47xnbOhTmy5ZLg1IOow1VVdGreiwNBlTOhQQF0cOhKkPl7eFgMOcKFdNues90Gl2hbEOT5oRLdoU6N8ZCa92xlIf5dTyeZKIrv8v09DqP8nJcg8bTce49ReWo2SXFkkKYy7WOyXVUSD7SxDTqqQ8FRTy4RIVMURBXFIwqEDTeE39SKv+gvPq4bilV4KyERCRGYkrYVvdJla0TuHbO0TSWXr/KVb514GvQmrgtFOIzZQFE9x9CPzY6JkuJi17SZTySa4gFQBHJYsLYSCAjANKuK3xw9U3kpjFFtF6D6hCqXYt7ohokkVYqEdRzloC0PqkAMho3oiqW6RtFURZUZhjWN+/QtoHCgwHnw/ouiry2BkKiJc58couWsA6OfIPoTVwpFH4FpXrMzAfxzxnigE7fVrP4IM8nexynOjvPnk/N7nsBuYSYDMlxGUBryYiTU66TMeMuFScG1a36neewPDGSVIbc+FkXodiC2fak/eUCACPtN38v8XeOyUjgqBN3kjoVqn05MyACcmat7oQ3a83YSxTz95LOHVjrWI2TTqeQi1DC50+Z0EoMvEpgRRSty5RSs4dFZqCp6zCZxwqcIZZj1pLhJVkyfGYYq1hhdfaUoU+07lIBlpVlmc/f8e26ZLncWCfnHINBDy/CeDym6lW4zd3wpQRLholKdFgIQ7BxyguvjWE6nYRgUh8C8BIo0JCrmCq6RSEVujB4F5SyEOjpQ/YLYqV3kfweVQYLxADA1B80YjTeWsRavFXossjjlrhgGa0RJygXFA8fKkGhTAIZwaxN19ySlK0uKwzRDaPI4za4h4UJrTAah8a7JhQg6rizJHBBHHfGhP4pKo7lmPEkxMSkgPXA2i2vLjMYDlhZW+bsmbOcPn2KzdNnmTYw2t1mabJKr9+njMHfSulsqfVOOHHqLNdccxTrhMm04fDhQyhd4oFxbfmD//4/qRvNgyd2GC4tsbS0gnPCeDzCFGsUhWZje5d6vIXRy+xsbXPPfQ/xtGfcxMrqMgevuILxzialFlwz5cF77uWZ1xzgzJkdtrY3mUwajFHsbu9w36c/w5UHCr7lFV/NgX2wdXZE01i2t3bo90rWVpc5WfWo+gN6/f6XdSxcSHSHdZ6xJPiQNMB70BKtGTHw1JMsftDSL6FnzgONvVym0pzadZlKfz8ehflCdqmiY8mIFsF0TZVINU2o91JhdImTYDHTqiS4siSgkQrzxVS2BLa1S3YlUJDmgwsW5mOPLFPNhL5zzBTmi8PWe8/I1jjxlCqyv4XGuACC1paXGfQqxB8MY5igJHlvUUp1XKGC+6V1jslkyjhmhfJIcIUqDbqsEKNwmuCScgFXqC7hl4iGritUymjYNDXWNu0apVoX4VlWNq61ImHevAh29sspmztbwSW5EFbXSmq/mxVqaJ9NAMwtIZyfkzZ4F/pJWqu7WpGgsE46m7tjK7nyADFNczS0hS06VAX3MDPutI4JDHQJlCH+B8Kx1iExORB4rPPZZS+bkhQ5G6PuZFNL7U7kpncOHUmgpPWHYrixsmfcNz0nH63qEokx5zrrkhccLtauCj0lZYYUF4kFn7LKxWfXBSQxmFFwNHZM6achiUhV4inwjcNKg9girK/GBte/SNDnZ6o0qDKQF9j4rIRsiRRhohqk2GHJGIaqolBFfjyzHEScxVRXU5LOe06PVWb25wL7p38lz6oXlot3l4ovlc7E3VWuiYHALiJfj8rWgKQMmT2Gb8YZc3+na6Tf5xBUe6GH9NUeQCMl9QwdpE1ZK3vUyzif6prbmSa8FEwW/2uroJ9rKZgHCLP3tsf1LnB/F5I8IXdO0Z49gI5UFG62M5LZRGub6EfbaXcn8FvFfbtpbAGqMrpL5Za0CqV1NmekghQ4dv6aIt3HcL5vusvp5SI2lBqlV1WMRmOqssQ7F1+G5OqlZVVSVRVKTUiVS5vGUipFr9djd3eLlZUBS0s9yjKOJQWUhDTRXkJ2rgiCldcBaHgXFhrXcS9RgBiMCq5aKBUcK1RgwFKPVzoACC1C4zziHN5KqI7rwgIeAmXjeBLAS8uk6bZ2TNvxZv1Xu+4xWZuBrCQA0X0sTLbGqFDJlWlOl6i1oUhZgGj7fFiYCozx+AgKUqVlbUqUC2kCU3YzUxj6/ZLVtSU211eZNlOss2xvbuDcati3LFGmCDVkrEWXFRub22zvjDlwYJ2miYtDDCD9yJ/9OZ/99D30+wNG4watY8YS62kay+b2iN7SgHJSUumCQaXZ9GMefOABdkYNd9z5tSwvL3PoyJVsMKVpRhx76DjLssKVh5f5zH2GxoWMPL5p+KMP/BE3Pu0Ad955I6/629/IB9/3Se79wkk2N7ZxjWVleSncgw5WmctFksI4U4Q0zj/Kty5T3cJ8NvXp3Kcu3mUKOhmsElDJjOReLlNROb9QlqmkmBL6oYt+/ecU5ovKnkTGM917SAJRopyJICOADXFNm2WKtH7MZ5madZlq5/1ZZ45ZlykBceTCfC66TLkmWuy6B4Zbs84xcU2o9FwYelJRFUUmvoigLDizB7cS8aGeRlJ8R+MJ06Zm2jTUzob4qp5BFRqiK5SNRQMzMMz3vRewCEAtWStad01LXU9CcbZUm6HtcHu6QmUwJoQkA16Q5vJy3/3iyWN48Swt9eldsUrjp1FpjM9K69i3YhC2lhwz6pN5gjBve5+yOYUVVEX2ykXkpaMy2RK+Ya7vkq/hyj4ThuG8thN4raIC76JiLzMuSMycL+iOAWC0b6f7/sMw66wbkBNEuJSVMbVNWncpkuXBd8ovqEBspXsM2aks2oRUwY0VnEvgiXjNNhVycteC2b4UHl+sfSUKrzy6UFhnA8EX3A1irFmBr2uUMUgZPEPIBKyP62l4Xs4rxJvocRP2UyHKm0Y7RmqHqjIRzLWEcgIB4X+Z2Qqt5eW8+8vcdzK3H+l1PY4gIyG9PIFFljClsfV03Gfig+5ePgd+x4aq/C+QJ44Ew4hoeNaS0V02zrV0nNvednI9dx8h3E/KDJIARmZycodvr9O1YqT2zgKPhLwvzV1qLxAiCCkP6CO9xjzIAiifB7Ht/QKi21Sq7SQyu0DbxoY0fqbISmlgjGIa24joXcoYFSexqiqja0NYoboLd6hg3eRaBL1ehXUh61Q3Q9xsa2buco/P7SR0uUg9rRHvqaqS0WjMwYP72wXPe3QRgr+Xhkusrq6ytbUTDhTFdFIjojhy+DBGw+FD66yuVBQmVCIl+hc7LTRNZKaUir7rJk6kHlE+BEy6AB9EwkKjlcohsymrjtaJwQvuTVopJBbfSm6ERObT+7Yat9JhXHjnSW6zRinQCmeD4qGNmkmq0HWLaVlTn7/LPzqsehJBglEgRYklpGi01oWqscqhI1hKaU2N0VRS5kDAsIjqCO6KHJSbasBoM6A36LG8NAhFr1TI7jU9cyZQB9pgigJrHXXdUOqC7e1dHnr4BEevOEhZlLi6YWtrg6PXXc/993+R2/7SrSgn2OkYhWJ3e0RZLAGaL33pFDLeYanXp1SGfWsDtjfGVIXjj97/QW599k0cOryPw1cewciYqlT0qx5nzpzllhuu4PTpa/nYZx5ktDOiVyiuuuoqjBny2U99gZf8lRdw1XVHuf9LG4wnU8ajEctLQ4qyB7pNN345iOrk3u+y8jOF+SJ5p3wqBtrON4+qMB9titWMcaXNMpVATwYwWpHCHvYGMV2XqU5hvpiK2WTWmHzNvLPSGD1fmK/E+QJHsmSEOItoP+TxKcwXXUgIypWNLlNynsJ81jtOjrbYLSoKHaywEvN7inUhpCt4d+KsjUpq0Atqa6ljvY3kCqUGFVKE+g3BUWRvV6jZLI1tH0kEQX6nzjGd7u0KJcw9og6YzYk4lMYogzQOO57QTBqacZsu+HKQkzu74X76PZwJZEV4zLPrX7LOKdXea0pFG2xqbUB8JnlUa0FMqZfbatkqj4X0bxifKtS98AGwahPmRwhElZKwrrhUtR1pi89Kt9BvIt+C50ceV3ENSNa1sNDNlhgIbXFYb7MLUwL6Thym0HmsSBrLqX6ITvNFcPO23kYiSGisREzWPocEoNL952yR3ZekaCl0pfLaWTc10giiDIUOoFi8w06bYGgZalSlKYzB61hSIVocQ32sMGlYH4lGic9RJVf/CZvWhwQtM0AhHdudglrdqgsQpPNP+31n3uqcZB5YXYxcWgrbrsKQGPuosDoXWA/nBTdTKwNyui7VukylCTexL4l7P6+p8gILSFdBDwTVhfdND7XtNJ42Re98Qb7uwR10Tcpi0UXcrXmvnSBl9tqPwLjNtj2ihgvcz8yNZ0ClaB9y/jICl+gulYK/mQMEXrBNjW0sZVHOZFtRUVlTqgYV3ndT18FVzjn6vT6DwYBiO6SiGwwHrKysUJY9RBSj8ZjBaIzsE5aXVyhMQdM0aFOQog7Ss519rrOfk0ta13XmcpHJZIq1jqqq2NzcYv/+fZmBFSQGhlfALuPxJLjkJLc08dTTGmcbDh09wjVXH2bQU4hvML0+yhia2mMKjdKexifFogCXniA4bUF5PMGPPafSFA8Ea0TYHt1WtEdcYGBDas6QHMAQ3ZgUiAumaWKsQlLQJPpGKgW4UBlWvEeZGJCdwYSc0/fDH2nRZ+ZdpnEc2CaFNiWlLvCuoXECTXLH0pmM0DE2RRVtf8nXFcFJiPNAqVxssNBFWHiGA/oMERSTScPW1nZ4F85RVX3qOsTHaBvYphMnTrO1PWJteT/4kPjivs/dy3hrm2G/YuPMBptnziIibGxssL5/he3tXbbOjhltnOSrbr6GyWjENddfxc72LtdevcJ/+x+n+JVf+jW+69Xfzte84HmcvuogJx+4l81jX8T7Cdunz/CS25/D9vaYT98zoipLrr76Co5edTXD4TJNrej3ChTC7mjCzvY2ywfX8N5higGiz1/D4MmQFNiZAsBn+ok/tzDfbJappEaGOW/eytAFH+FaSemav9ZsYb5zU7FmWm12u5DnxXwtH5RybUwIiC0cXsxFFOYrcCoFf0drhrekwnyty9SFC/OFlLVtk5VSkTgIft2pMJ9klyk7l2WqLXgJMTGEeGofC10qlecSBcTSCiEwP2ZoUp42EYMCKoOuqpAedQ9XqMS4p7l81mLRzvUpgDtZ2pumeVSuUJpggTWiUQLN7pTpuMbXDmmClbNf9B6P7v24SfAUMCwtLyOq6YDMVkKfju6mzkWSKCj1SCiumy0KOpyvBRzQqsxBB0ouRSm7pKjWJSlYkmHqbLQ2G2zdRGOWUJRFALLiop4RQG5rIVO0aXlVyErZic0L9xNSiKdYwqSnzegqSLs+kdoa1zWt8b5BEYu66uApAKHuyLSeZktMKjTsIpAgjQEVSYToFp+ATDBuznWy+J0HdHS583hs3YS6T06F8RutKCIeYz0FIUWwqgxOLM4T42DCaTNhrTROh9pSad4SH4LCRzHlfXx951X+57TZtPt59p3/Q81+vAS5JEuGl1ZRSKAhWTKEWfeZeUuGih1adxTvGS4mbu4yMek6zJ2Hzvd5e2dBSYtBTqfH/MMJFwv3tFfw996PMt1DyyCotDXfWyrKh0pmPmaYhRndf6798+1L7E5qf1LELgSiwrlCq1oDV4tRc62MFDcys44G1xQF9KuKlfX1zG7b0Q4ehSkrdFljmuC7uLm1xaDXpzCG5eVlrj56lOHSkKLfY2V1HWNKdnbG1NOaXjlAPIxHY/q9HstLS/QH/VCYSrULW659YMw5fxeRySqKgqIs8t+Xi0yndagzUhhGuyOmkxqtDHXdBHDgQ00REWFnZzf0UxMmi6pX4GzDkcP7ueVZN7C63MP7KQrD8rCi8cHKRIzdKJTCpgU6eyoJojwQM7c4lyfEoATETCtp8elMHqFfxfgKHVi+BFgDmPDBElXmijd5UlOe4DoVFY8Q3deyYefvt8GCoqJFJWCMaM1IQCb6Extj8IqsXDgb2hv6RlJKJDOe4Z7j4gSUIkCdFZNAOMTFROL1i5LhMFjkdndHTCcT6uUhU1vjpiFtotaGze1d7n/gGPtXB0wmA1DC2Y1NdnbGnD6zwcc/8lGWegNWVgeMRhNOnDhJf1CwNBiwsVWzNOxz7MFjHH7aIZaXDPv3DahKzSc+9Rl+8Rd/lYNX7Oerv+arufLqQxy7bxljHJ/99P3sbG5wzRUHOHFyE/GOZzz9WvbvX6GsSs4cOx0tVCFWZHNriwNXFdjpCKVX91xknkxRca5MAeBJHu/CfN1tXnxINiDRUhKBsuh2/0sqzNchgYRQyE1mCvP5CLoLLlSYT/sJKcuU8rE42bzL1DmF+bpKIjOknaRjRELCj4gKRDxKHKnSsXUN1k5wrqEsK5SOFknis5F2PSH5skevBBHBiuAUUIRaHqQ5w8df0RVKYgrTtOZ3CaO9gEWa79N7tbaJblCX6AoVr1kojfKCNA4/dUxGU1ztwIf76RUVxdB0CMLLR8QHoDgcFIjsEOwSKiu2WgfAlCCpjxn8UsKWME13Rr8Elh8SEdxmXsu7ZD1IzWxTKrkSBYuyLgIw9dFVS6lgqW+aBogkUSfWycfYD+89ITOgDoUslW7LPuXVJQHHaHsTj4vuTV5i3FMcu0QV33cyJEoE2Eq3/UsnEiK69UtuX7JKKpyQf5K+F/aT7uPo0sfx75ABMcU8paDzQGJHS61NxGAco1OFrhQYsu6VLC4h4Dc911QOMTwLJ5H0h5xW9+I6016bLrG/XyLSuCTtrBv4PcPeq6AQzMRkSFeZbpVwQ5j48n2pFmxk0JEV39YEnH3hui959p3PtjVP/InJnQUtSalqi6GdG5/RvUALEtQ5f6f7zJadTiaf1M5WYmfeQ/nqbkttbE/C+W92z+vMfxkVUOI9RsRujEGZ+H6MZjAcMhgMUApWlpdZWV5mfGA/p08cY2fzbPStNMQipOyOdjl15nTICFSWHN5/kMMHD1MOepjeEF1UeC84m/w1NUYF5vfIkSMsLS3T2ODaErKCGAoTAYQJAKIsi6xIZnc0rWc+Xy4ymU6BMNHu7O5w5swmRVFiraMoDd45+v0Bw+GQsqiYTLZZWhqilKff73HwwGFuuul6Dh5cReNpbE1VDvDOMhmPaKY14oWqGiJlxc7UoXUV+pABVehQ5CspUErFAPD4X/YbTxloTDQ3J9eqFMcQxnYC1D65QroGm4ABkUmNtTEySSAJlKjsk97t210LVDL3K8IkG1hbiQF2rcLnJZnw46IEiDisTfyRyaA+jZwcQxTHqClSsaS2qq/WIYgvqz8SxsRweYmyVzEejUPcigj2zGYoTFgUeC988YEvcfXR/azvWwJluefTn+L4w8e5974HOXH6DCtVD5F9WIGNzW0OTw8hXtH4ggMH9vPAg8c5deIkg6UDDHo9VteWObW5w2c/ez//37e/k1tvuZHVA1cwXBkAsLLc51Of/hK1r9jeHnH8+HFuu+0mDh9ZYzCs6PV7rDjo93tMJo6ts2cpsaysLD/C5PDkiEqkTIe06VqeZgrz+TbTTFuYz2cAMHMs55JTSbqPIU3xwmMszJeWaUWseROUwHCeMNeqDhDJd6/awnx1rJORYjMurTBfWjAvtTCfCy5TboJ1E0T6IW6nExA/41kgCSDEuUSl1Syk9wxri81KS6rGlElsda7FIukGiRiYdYWyNE0dA3ldtxnhOXaalqxOYckOc1GhAksstcOOx9iJxY6b6M6jqXRF2SuyG7dIcOu93FKqa20wRtPvGxo7Bhwq9lnogDat8U7FatVB8xGZTUWeDkjz/4yIRNdXicDExzm9HQtFtEzYGDcXrAwhTkAD4i3iNUr5kC4/nhcfiwqS3LLidq0oTIWSCKxJnFhaFGIPlnS8D4lGCDEKSZGHECiu6FgghVAbrKNjdb0eUka4DMLiQpTWHSTEbOjklkk6bZp7fEuERWtiKBobXLZUAQk5KU0Yw+lBJtfVRuFGHqUF1UugRuNpC36mMRweh45zSQKZ5yfF0wA559sLLgWXoktd3L4XDTKUiin+UnrBrOi1mThSXnvfrfodbyiw/BFJdhCy6v4TawHkKTMhySxxot6DperKIzH9oV3hPlKFxr0sGe2/7bWSVSIzMUrF3NPt5xTz8EhWh+53572ftHhe8I7OPacS0KIoA++EQtHThlKXjIzDlCXD5eVwQxL6fGEKBoM+TdNw/z338qUHH6C3NKQ36IOtUYVBor8whco5qrd2d8ICYQwH9u9HnGPj7AZidugvLzMYLlENelRVFYKP480Mh1fiY6o95+KEptXM803POz37sCh1fz/y+/5yyu5oAnHiLYuS48dPUhY9isIwGPbY3d5h/cARer0Bg+GQra3tHJB74OA6z73t2Vx95WEKExh7ow29Xo96MgHb0DMha/ZSX+O0ZlxbRCzeERKBFBrEIGWcrL2PUX0xNWHMZBXy93ucbWL2EB+HYcswpkleEdhN74NVwfkGgVAJNllFnKBi9iYT60qIBZTP7nnpLXWDA7v9PmSJCi4RDheng2BdM7kSbLQUEiZtweGdoAgmfucS6AjSHcuCCjEWSiNRCfTehgwl2qA6wYWFLtA9nd0BiqLEOzh95iwC9AdDTp3Z5JOf+QKHDq5x5VX7OHP6FJ/55KcZTTyj3TF9XTAeT6kGQ0bjKds7U7b8iOWlNSC4Ij70wEPc8pcO451QxCDY02e2+W//7UO8/a3/P/7G/+vbueraq3j6c7+O4VLF8soA/6ef5/CB53Lg0AGOXrHG4SP7UFpRVQHEetvgnGJ3e5cH7ruX4XAQghIvHyye53C1B8jYszBfrJlxrssUdOfoLnGzJ4nDXoX5yC5Tj7Uwn/j5wnyx4nE0CYgk5Rzawnw9Cl3ifKr+Hd1H/PkK8xUzGXNacB3Om7JMZUUykmUKjygX76OJaksRrBmuyVluFCbqf3F8SvuIVUxwEG4/xGek9KGJ6E28bi5QexGuUMaklKdNBBadGIvOHHHRrlAemt1JdIXyiA2pxftFj8IUed5KwMJ1fuQyAxlLVZ+qV9HrCWM/CjoWLbmZ9XWdXJtikFwOdgzVSwQfCdDkPpvsGymBjWB012Mlxst0YrlCivqQnCO9ilAHqV2nU8B3ToRDq8NEXBGt6clKF6q7F6br/SIdCzU5e1ses5CJ0cZGy15CAQSwHwhwiWMysP7amJYMI9TqQLX1vEK8RYzfEAc5o53rgJroUp8fQEf/iADcikV06zasQhpSRMWaUDGNtJt4VAPGg1lWqCrT4ZlMCEApUhmx7QGM6ZaImVGBHiVQeEQ16lxd/GLkokGG1joXrsvbOgpJ6ii59gSJJYqLe7R4aPZ6BFFhzKAiIdE5MJEWh5kbnTW1t7ue+xBSx0x/z1oyuuxYGmStDy3MgotzFODEyJAG1rlpbC/G1an7TBJS7i5Q8StSRq/uouy7YCgj7xBAX5UFg7KiND18LdBAsdbHOo+NgWQioVLw7s4o3EOvpBoOML0SvMeOp0yaBus8pjA40oRs2dzZpjSGYb9Pr99jMhmzMRphTx7H9EoGS0ssDYcsD4asLq3QL3sUuqAoQ9aSHOjZfbtJQexYl3xiDToKaFI6LweZWptZntW1VU6e2GQsTbDGaINtGkoT3HEGw2Hw0VTQ6/e57tqruf7qK+j3DM6GaEpBMa1ryqJENEwnk1hVXIG3VIWwM9plNG4YDocUpkQVgfUMIEOHgnteEBuenfdB4dDJCkE75pIpN/s7dHQprVrfWMn9Pvx467HiMGXM3hGqPeG8YJQP7JZplY294mi6bGdgsCXOO5LBj1IqpM9VCsS1WUackIolRW66M9biuESFGIy4TYTIXAYFX9MG/uZ2FobecEDV6+EFxtPgbtXv99nc3uZz936Rm264lsNH1lhfX6WejtEU9KuSFGPTGy4xGk3Y2RmhteKGa69huLzKcLjMA196gNueLwyX+kynU5QOVpLtccMv/eJvMRlv813f950cueZ6hoeeztrOJjfd2HDPpx/i6BVrDAcGRYPSJaYqMI2mKASZwmTScOLESZxTlL1qRlm7XESrVrHPc7PsVZhPo2Pg9uNfmC+xkbPJCcJnSSOjPX4OaCilHrkwHxLnbM4tzJeyTOXCfAXKBStGsFzYPDZCvYxubE20JnYK84UaJN3CfIJSrqOE6TD+dVqTwvzqvEXZJijsKrgQzrszdUFhjp/qJIaYf+4X6wo1mdic5jy1Mp7gHGAR7omwthFiQnAeGo+bWsajGt84cKF/9YqKoiqyviI+uH3OAousqYTzXUZydHU/vX6PqhB2fZ23t/pM0In8XEE2VEvIBYzc8uKzoDzcu461UJI3ikr7Sfu8wzPSbdFlFwBGURis9TnjV7Dw+VgcNbYh/lZKRZAXFOnkvqsi+RN7TOvSHe6OnLUt1ZVSHsFGMBBGqPdppLZ6oYt6q1YKZQLYSqnhw323cRKtzpFc7lUG39Aq8zPWjNi+EEcRs+aJMLFTdusxdgoGT6ErdFEgHqx31HaKs014ftbQkwKzopCCCDAiABQXXcLia03Ph/RcWwJvJvPsRcnsARdeIR4dmXvplowOg9Sma43FjGSPNLadxocBPKt6q1k9ZmYdzA+uAwwyAGHWxtBlwvLxM0xXe2zqXF1gMZNlqmMxyQxOF0x07idlbOma/rMLzx6LekL43Weazp1yfCd/YO9SoFO4oPPRP4+gYCGtf15Ct8mf1s8wxGEhaGyDUSGYqm5crCSqsLXF1Q3O1uG3s4BQ9Cr6pmLf8hpOacYyQa+VIeiurhlbsDLBWwdSc2rjLP1+j8OHDjMcDGgQNkcjRuMRW5MRelPTq3osD5dYW1phZbDEsDcIrLF0fPAJxYBSPY/ub6NDjQdrQ2Yq61x2fbkcpCgqGusojIqxF556ahmNx0F50DpYKApDr9+j1++zsjLkhqddx9Ovv5a1lSWcDYqsMSYkUvAe7R22nnDq5AmWlpcQb6nHE5QL2Y1OHD/JgUOHWV5aCYHkhcHEBTXkvA0rhZeYOSw+7zaMM9GVPgNmUmKxOKHqOHastOBeUgyWSwpCiaaMMRZhtIQMVD7HKs1LV3Hrzi1eXAveIxOvlc4TrqCQ2EglDnFxodVJUbWkST+5YwQiQAi2bMFFc3pRFOFZRQ5FKbJLHqZAV4r1ffvY3h6xubWFKUt6/T5feuBBPnfvF7n66jWWh0vs37/GmdM7DAd9xEkMULU469nd2UHrgvHYIsqwsjLkxEc2WV4uueLKfSwNejS1ZVo3TCcTHnjgId777rs5eHDAd/+/f4iVg9fy0D2fYrrraaYjvvjFe+kvadb33Yz1nmp5P8oYDh0+xM79ZxhPa8ZTi6r6KBPcaC4/ubA1oy3Mp0OWqaT0dubudMz5LBjz4r2gH6Ew34ylRNGCV+mSH1ElUsmfG1DBQpYK8/lHKMyntcaobmG+IhfmUxLXVlp/8dnCfC4/s3g3ubmpzV4crcuGRjkFuAyesvLmLd4H9hVReNGxinIktOLYd661oHSraVdVEYnGcL5ARpD3TbFz6bla27pCJWCR7kDyTbTHk9hrJAebG23wU4sdj3GThmZsg0u21vRMRVkVeb3ey2IRrDatXmJMMeOydbnIwcEy1aBCqw282Jn+CEQAm+Y8FwzTuZ9GV3HlSXEYYGZ1JwTEU5iSqtB4B9ZnKBpBRgCjzimcaGobdD2NozDngrJ2zlXYqPiLT+6pgRBKVrJkVchWM8geDV0yWGLgetbqUq0M79LQIlm+jFGgYtxCSg+rggU/AEoXCsYSMl85b0nDPbgcJtAFjW1djKUzekWF6uchXoQOSRr6a+MsZ3Z3aLYaSmUY9oaYMsSDWeeo62koBFhoKq0wI9ClQfVDnKbXwYKChOQnKUYMUZgYTB8emXCeqS6sjRfsXZdKPKlLPuSSLBndLEwQLRnZL15HkBFdpiQGf6exoFp3qRafJg0+Ks60SjwQFOxOBicRyWMmfM+eN5w6JufdrQ2KTsyszyb4LjrdQ1ScrHN2rRYwJPcxE1O9mhi4kNN45rNGKwVtoHNCyqnUffgudNzgutKCmGz+1ynHdAQrSSGLgKfLKHkJgVpjO6auhcZaprtTvPW4pkacxdsmni/s76zF9gesX7PMoSNXoDA4a5lOp5w9e5ZTZ89y6tQJJqMdxHlqLMdPncIBBw4eZGkwoOiVeK0YOcvUWaaN5fT2Jqc2z9IzJSvDJfYtr3FgfT9Lw6UwCQF104T0h3VD3TQ0NvzYvEAEkOH87CL1ZMs1114HpkSUwzY1IW6gYTqZMpnWiMB4uktZGZaXlhj2e9zw9Gt57m3P4sD6MioqABD6VFkWTBuLc1NGo23G4x2Wl5exTcN4tI2jDwJfvP/zNN5z6KBnZWmZqldhquByIdaHoGwd3AjEJQUuFQCKAdtdAB0HjJpT/jMLFet9eBvcGqwPAePG06awjc8kBKY1GARTJEtCKzN92quc5Sb4ekNKrajiwplM6BL9eEMwq4lKFYEtzgoZcd8OgAnRrflzacI0aF2dt3kfKttqpZFYTbw37HPw8KGY9QSKomRnPOHPPvZZrrv2AFdccYTbv+55/D+/8wf4xgcA4zTOevr9ASdPnODggQOcOH6S0USzb32dE8c2EVuzfqDkyqP7+eR9JxAJ6R+Los/mTs1v//rdmHKFv/odf4sbnnM7D3/hBNc/7RqGK322NjYAy3Q8wTUHqJb2sf/QVTzwwCbjiWU89awt99FKM7XTx6ubPy6S5qd5a0YGnE9gYb78d+7fbazHYy3Ml9J7h9gdS6qZYfYozBcKYXYL89Uh3bIr8SkuY4/CfIqClGUqA36JyhugYhYpVKqjERfOpHwqT7JYhtiMJjLFPo4/DbY9d6p/lIrWdhMqBACSrBtBHyjLHmUZZoBUM6Gup7FAXuv2kgboPLDovp/kCqUlJAFQTqijK5RrPNhQi2ZY9ili4b8EQpPblY3zVNBfgu5SapOTioS6TTH9+qXqXU+wFAhVIUwZ43wT+r5SwY9fBSgQYi+CpqtNskDo6PAUv0/WM0LWMIlWLYncjzHB4qWIvrdAplNVwjZBj3A+1JMA8CqChwgeRYThcEhK99rYBsHMkL7JAjkvaTi3tcYCYR1cmWa9TDLIkhRTpSHGa4Q2h3TuShNdg12oLK4EpQMJJcqjVMgGl88Z+51WYLQghdDElOo+8nWGWIhWPL6J5INqSXPpgG2bPHumU4omurRFAGiMAQ3eKSYjR6OgAsxQxzTtgaxL7msqJmaBsJ5rBK3D/DUj6rwfZrfv+dUewCQzF5cul2bJ6JSyh8j0qZaJ8iKx8vds2fXIo5BcFubJzPnn0WUuZmtOzMbBJ5Cyl7sUdBeCxIGQFfEuGzUb/N366eZrxgestUbHzCdlWSJA44IPqY/BfqmWRDIlO1JgUTukVMyk0Co0aWDIzMTddduIB+a2pU3GmJmgOK1a3/Uua6QlAKNeVaJ6sK3GoXiUE5wNftzeWVQEGSJBGd06u8HxBx9iZbDE4UNHoNfD9nqsDpa44tARdo5exebWWcajXXZ3t9gdbXPm7Fm0MRw+cph9Bw9SDQfUSjG2DTujHXZ3d6nrGmcto3rC9GzNxu4WpSlybEwbI9O6hKV+2FabVxitKE215/t/MuTgocN4N8XW4R57vYqtrRHGGHZ3d1FaM5lOGQyXqcqSXmV49rOewZGDa5RasM2Uum6yOxISrQQuZDZaWlpmaWmJyWQCOIa9Ao/mxLGHUUWF1gWIsMISg/4QbUwYNeLxJowCE7NEiQ9AQyUnxrg25XU29rfE+qXA2JRBTWuNUyGjiWiFJCuT96ipw5TB6iA6xHIo7dHaB1/7LvXSUQaVS0Uuyf3edNjtJN300d6B0E3rGAZcSF3YYcK6xENH6UzmehHyWFJage5FJkhlcmG4NECUsLOzQwrwPX56k09/9gEOv/DZPOuWG/nPv/5eprXFlAoxIXXioOyxsrbO/vVVptMxx09N6SvF9lbDyeOnWD58iNXVMrrDeYqyYri8wrhxfPHBTX75Xb+OF8c3/bVv5tpbnknV7GDw3H33H7C8VHLzX3oOmyePs3JkmaW1/Vhr6VUDiqJKuuVl52ueZN4NFdp3dk5hPv/4FOZz3lPo2cJ88+Ck/QxKCxLzw57PZSpYNsKzds4hhY8KQru2tO4taR5PLkRlW5hPFRhV4nSB2rMwXwoAT1eLyBoXUwKD8oJS8foE16dUkbh9NjHZibd43+QAbZ/ch6RlmouyDMXq9Ow7CpYkWrewCNImk2nn3nSeQ6CjWqpLdIWaWKajKb4JFkejNIOyh6kMRqsMoFIGqvkYCxWtHEW0WHSzFibwGeaAy2ucOB/88q2fxgrQswp6sHK1fTElpgi8T/uAw7Dw0cc/zPmBlBGKnqEsAWJdiQ6wztYgAKVwTnDR6KtRWBssxipa8dLvlA7aWhcUeaUwihCUocK1A+Ec+3OUkBwmFq4juTu1OkHITCXRip5c/RzGlDFWSRCSKy25T+Y1ILoxppS4Wf9Dsh4XQFjQy7r6FxKeR4qPSOdvHxB5HR1UPdYGy0yaOsR6uDAGtdYUZUFZlhitabxl3NTBzW/i6TWaoa8ol4IrudGBrPCiCHEywboR1uhEdD/xyPh8evYjyaXHZKRAE2iVvfhj3SzizMHfoYkta0Wr8ofG5z3C9taUMduI85mE0hXmFoe5b2kn5KRgEDPuJUaHzJx0UEZO05vTn3WYm9rW6Nrgm8CCGhWyI5nCgJZomgsDp1DJp93loKhuTEgqeZ+QMKgQ3OpbT0WRNte71pJ9XJOkypp5cEVmLaF9UxT0V/rsbE2ZjELAlDgDTWgjKpiVk+LXTGtOHj/BsD+gMIbhYEhRlFRlSVlWLA0GHDiwj/F4l7NnT/PgQ19kc2uLEydP4sRTe4/eLuktL7O8b50DBw4wrWt2d3fY3d1hMh7hmlCkr24muY+YXOixyMG3JlqJktuU0e0CcbnImTNnOXxwP/iGjc1trjh8mK3NXYZLA6zzwbefwM6XheJrnveXuPLoIXqlxjVNSBNcmDB5KMXOzjbr+/YxHW3S61UMl5bRRUFd1xilKQuF7E5RwM7mDqfKUzSTmnr/Ovv3efqDYahtgskTU8ruJjZUJA6APkzIRhVZmQkaB4FK7sRhJEtCGEAKTKg3obUBbfCNRbzFicKU4V2BCvUCHKCT8hOVScWM60VaFNLfXUZ63g0m7eOtwxNS+2qlUD4oVMkq1F1k5pVapXWskB4WLGtrnGvwQFn1yOMOMEXB0tISRmt2Nrfp9Uu2t0d84UvHefbZ6zl65UG2t7f4/zP3Z8+XZdl9H/bZwxnu8Btyzhq7qwc0BjYmk1bQZmgMSi+yn/zmB8sPilD4yf+R/WJbLw5bISlMOmSFSIISCQokQADdAHqurq7Kqpx+0733nLMnP6y1z7m/rKrubAIg8nRUZ+ZvvMPZe6/1Xd8h0uBMQyziELZ1Wx7cv8e7b9/nu9/9C77/4VPO/EA2HU8/fcnddx/y6NGWw+GGlBPeNQzjxDQecN5xcX3Jf/X//Ic8vH+fv/+//U+Yri84PPuYKVj+5A9/xON33mFzes7N8ydyr+VIj05TzW1a5pt2/VLBfNbIuv9LBvNl8lzYlKNioVKmPhfMNxddX9bEHFUZhtlQxBm3uEyVpaGfCxOdTvg6zUieXNRl6guC+eQ79L4uWVHsTKXPGnX0qRPtoh3mTL2SCl6KKCM0RstCK2k0qyNlpJisk2PKbN4iWUlVOwVC23DkrDkjFHKWsyVnS0rLNOjVicWtKZNOVL11QtUZA/EwiCvUUKlQjs51NJ1nftWLAGUppXlicYsKpWdFpWzVvUUABJ3y5yST+5SYwptDvwUkTLRzpDKR1ASg6AvpnLyvYOeawVl3xJ5Y7k25F7y8P/VnGzAkWudofWEKSeBODaI0psxATaVbWmfJRvJtrKtumkvJdHvtSJGVijQ9xdXWBQ3mM/P3CLZ/BGSxFLZJtXO10TCVdlUWCHvR+dUpVsIYASSckx8u2qXMkt0hlMKYl/A7ZwxBBdypIK9JXgBeDCStEeeGryK/hdlW1zvPul/jcy823ZoX531D0zY0TUPOmZvDnkOMDCESUmRMMrc8sz1+bYVC5SxGGw0BDFSUP79G/3b39l/mt712k1F5iq8m+NZDWiYZ0lEKXUrGSvPOYhZ/7VezMuZphH74uHP+HBJV7+Qi/1dH37XYqIX1nKvgJWxLVpWO4I1MU4SXWwVFEVMSztTNqch4luq9ID29s5bshNOYsnTtTjtTEfVlvBbgdRO2ZmkWAOX9Mu+4x4esLHoNVdJxfR3jLgvn84fxcRFRn3MpRTcKKyI/K4vDUDi5c0bXbdlf7tldXDFNE2RI5EXQhzQ0h/2ejz76iOuba1brDWdndzg5PcM6T9d1rNY968bTrFeYxmM+/ojrqyuePn/OGAOr9Zry7DndZ0+5c/8em+2W89WGu5stIYyEaWLYHyQxVh2LalMxO5PMTcfnUc83qXj6+OOP2Ww2rLqO/WHEOc/b77wllrVNg3VOBL4lce/uCX/r179B33q8M6BooHWelDLTFPTeDTgPZ6szYoSXFxdQCvfv3cO1LeXihlXruXr+jGmcmA4DcRpxZPquxXcNxQjdIJtahEB2iRKOrfiY1xC5lhVKL7LcKtLJRRygDDRtS9M21JF8jIkQE67IZA+nCGgxmKTzx1l0KmsyvoIOL0XMspFWWuCtnIv6pxEE0qpNsvVQR+f1sDV1YqGbklA7hLd9TOGIKUKKFHX/sUaKKmYao2G1XnHv/l3unJ9xcXnNz5485Yc/+phHj+9zdn7G9SAWjiEn9ocD5+fQtQ1vP37Id7/zZ3zy/DlD5yh+w9PPRv7Ods1v/+7X8abQuIaUCvvDiDGFOAW8d7y4mPijP/wh73/9j/n2b/1tus7z7nvv8p0/+i5/9Ad/wr/3H/+HXN9csOrPadsW65342CN78zEY8aZcy/v9JZSpIgfJ4jJlvyCYT6xsjWoPXp0yHN8rcFS4fO53qYOaZmZ8LpjPlHnPvvVxRfs/F8yXItY7pUwtGhOOCm4tsTBWgvmsaTDGYV2DTdVlymANpBIoJQAThojVCYZRfnudxh83E7VQyzqtMVVzYoTCCA2lRFKamMYRE6/JAYzxtE2H033DOjGSMK5SFAUIO57C4yoNMWGd8hasE6ero/f8+H2hFBzMVChiJuz2hCGQJxFvN96zbnu887M7Zc55DoFNaRED1/P2F1Gh6lkaUyIEEZ2PU1B3qzcr8RsHtsskVEtnytxY1LA8YKYOx5hkuvvKRBhYtA5aPxmD1kn2iIaadUqg+lHD3GDMQCwLcGGdOE0ajLhUNm5OAMeIIxVJag/5MapLCBnb6JfNph3yWxZ3TtVcGKH2ZgrFyGSnuoLK9ysJX9diznIeOO8WaLnoBKREauaF9+LE5qxMvjFOn6vcSyEmUjazFqToQSlgrqzluofIdGjR9YrjX4fH4jXnop6n3jc45wgxYIxoQEJKcubQkA+WcB3FUW/tsI2fwedcGxtbDXBuofk/57rNBPqlL3Prj9e+fqkmQzbP27SDObfA6JZXhd+5aERIRYDqJGMmZyyPfQZGzbxhHrfGixNFFjG0PtPjg2NGtBWdsM5J84NsUjklUpSGQhIw7eKAlasLiIhXS066OcuvqlH0lR83ax+M0XC4hpijIKm2+rnbxe9c8wJqlzsjC6UKBxUQrje4Pjf7SnNx7MizFNlHRZke1LURcc5Rcm0adOxvxOZ0tWlpfcEViOOetDeksCC/+UhknnNkHPbsDh7Td6yd4TpMXF+8IMZA13Vs1mvWq45us+XB47exvuHy8iVXV9fEKXF29w4mJq6evWB3cclq1bHebtiebDlZrdm0/bxpHTcQr17HU5rPc4P/5q9pmnjx4iX3752Rcma323H3zj05DJwjFxiGgRTXfOX9t7ijOowYkxYIjsP+QMwRg2z+11fP2WzkkN0f9uScWPU9xohv+XrV8N7b9/joo+eSq2ENYdhTcmC1arBey4AaylcstogIvVilTiURiAtF5TYnUyQMOuVS/RIZvbdk83S+xThHChFskKImZWJMKsIzkI2Gry3oi6yArBxf3fz1appmeQzmtuXt8b2y6JHqzqJCWSNUsaQFUTEWY6u9T751nx2vN7kKMU6E0NCo6YAUMXJ4Omc5OzvjnXfe5vmLC26ur/j+D37K6brl3fffJWRL13UMU+Ty6lqKzhDwVnzkP3v+DHP3Ds16zacvIilbPvjG23zt/Xf56JMLQkp0vSPHiZvdgcY3+G7F8xcT/+C/+e95cP9tNicnvP+1D3jx2TM+e3LBz370Y97+4H0+e/ZTNusG0zRY72UfLuWNbDLq9ar4u163g/kKNlex9G2XKbmWJuIXUabq1OJzwXyvNLp/uWC+RPHSCMzBfCVj7BcE8xmLsw3eNcRcQ+F0vzcJbMLkgDEREVa9uuctiJ41BWcgW3HrKUWcH28hr0YyLXJOpDpxLwlbCjkU4nhgCgMhRoYw0m3W2KZRPSL0656+1X87sestUyKSyCXqa9bIz5zPby1ysjj9OCNNBSETh8BwmCiVCmUdXdPjusUmW6g3CxWqaiygTizERv0LqVBa+KUkdqYhRkKI2lREpmlinCamEBjfsCYjmSR7eIozqCpgSQUXnWiXyGQDU9L8GG12xRZ8aUxyddLS+sE5g3VKcafuoFk0CRVcrmvCWploq5hbtpSEMWo5bh2FwhTCMi2ykttkdVKwrB2YbXaNrgd9BM4JY0F+96tU16objThryE7MRYpSm4y1YkaDDhiolEX5/QJmyMTNe9ljnRXQ2VpLDuo8VUDC9XQtFjVFoIITqIZWmhqhWsnTySXjvOH8zoa0l6lQicyOibXpnaqxBaIN9N7TtQ22FMI+433GuYgzrdDBbJ1iCEhQiFJhm9dtIF63Rfj815mf87mfd/3STUblsc2UhiMUymB0LCbJjLcD+TQrQ8pu7BHXrY5/nYqpQ5SioXbNdSIRgiK7RjX9ZSFeVZtLWEZ79ecZFpSH+Uao0fZL4VR57+K2sdzYt9Dzo39bu2xklTI2U3ucU0pMIze03vQz1USvBSXTOizJwYdVLurx1+jfj6c0zhkV1U3zRirNdj3YZIpRO/xpGhkOE2FIxCFQxox1kaZzQJqFs0ZRufqaikOQ5d79+5w9uEfTr9lyTzZ8ddDZZ6Hf+PWK1fkZQ8mkaSIChxBxXU/jG6ZpYhhGrq5u2G4kjG69XtO27bx4ZwOBlG/9KY9JbY+MWTzB35Br1fc8ffqUzbqjacXmtG07njx9wend+6xPzhlj4mTT8/bj+/StU2eXapdXGA4DxmTJNyiBtmtYr9fEkGVCoVqUGAN5ONA2hm987V1Mtnz40aeQR043G+7dOaXrBEnMKWONwzhALTBNdhRfKAOkEplpgppZAlD0dxmj3vNB8RxFpao3uzGGpm0xxjKNk7xHRcR2oSausgR0WWvBmvlQEWQyMU2RuQE35lahACgSZLSwKVTKiJhZyc6CMTqxE1qatRA0H8Q5ATqOueD1npJ1W11yRJ+UY6B4T7GN3Jvz+iq0XcPbbz/m6mbPD773fZ4+e8FPf3LG7/ztv83p+YYQM3/6p9/n3sP7PPnppzTOs1mB95ab6wPb9QmP336L9dkjri8PPHh8zn/6v/n3ubhKnGxbTBm5ubpkCoUpGW72E5ttz8vnF/zRv/xD/tf/4X/E1779dzg/6fizP/1j/uJPf8Tp+Qnj1Qtal7B9CwamGLEG2jfMNef4MnxxMN/nKFNF8n+cef1gvi+7yhEAWHsV4WWXWfZ6K5hPvpLjSYZ8b3V+eiWYr1KmeP1gPgGmBGyztlCQHBxM1EJCjURQQaueSaVIk2ytmBIYqza0MpPHmKwCUe1P6vRFgcBMIeWJxlnWfUeyhV0aScbgrWHcRaZ4IOXMGEachU3fc36yZbVa4Rt1tLMG71tstkJBtyyNBa9QofYDcQjEMWnT4Wh8NxsxGH1tU4xzc/F5KpQ0Ia9SoeZplQKTMUV1tIpMU9AmIzCMI2OYCFGmGgtY8eZcIU1EY8lMknZRKjJfm1v5uoxOyUyZi+vZLo+MNQ3UPZJqESv0IGkM5DURQ5+abwQ5ldvp12VxeSplKfrlsWh+ljbnUr8ZPa6XAN2UpGmvWRi1qJerHN3X5fhD8+dLEVdJ40SEHRWccs7J9CxJKGQxQo0suhatUeDbGHIxQrPVX+GtUqmQhszqZNSarPGH6GtvMMYpk1inKWahUoGh5Agmsd54UrKEILTgar9enURBAIG+aWj8iZgGGRWlR3CTw00NpZGpoOyRlQrngEn3iKMbZp44vFoX/Zx/my/6+i/6Hv3Jv0TJ9dqnTtPIIZt0sUqX6XHO0rQNbWwJWfjmIRdFJjMxLba1RYPhGmPwKTIh7WPJEoaFjnmXgr4cIUlKnzB5dpySZiJR/bxnkbi+As57vJdixHtHRAoZI9+sghkZm5WSmXKgmyPr09whye+W4teqot9kyRmQEe7yeNCxmUWSrb2FmDLF3qaAvGoHLF7q0LYiYk5K36govXVufizCG0/aRNymkESjrlRU94jFWSKlJCBuLMRpIqdM6xta0+JPHeNhoOwghyjJoaWIi4Kx2FKYdjd89tFP+PTJzzBtS7/Z0K7WrNcrNQEAGkvXrnnr3jkPv/r+/JhrgjfAdBiJIUBKmFKYSmHajdh90APS6STKYV2Lbdw8IfJe9C7OL2Nw598chPbkZMtnT59x8fKCs9M7PH/+Ge+825G85+Vh5MAN28axXrc0XlD8rCiLc45pipI43a8wNpFSoF9t6dqeYb8jxiAIYpFiIwWxwQsx0HQtv/4bv8IHX/8avjE0rccauVeG/chqtRHNhYXgJMjIOKubYyEFMFWnMU/UxDDAKarkFNHH6OFgrW7imaZthQ52OMgaVUvZqLQHWjC+YBrxCtfhiI6PLTkIyjiOcW6Yu1ZCHK0xGuJokETUuqsqhdFWxzd1VmNZX8umXg9EIwYJulHK5E/CKEvbEkLDFGRtUbJkm6j+h1vr1bBe93zzm1+jhMDLzz7j40+fsznZcO5achg4v3cHbxsunl/j2pam7+lXHS+HEeMbvE1c7+Gjj15w/njLb/32Bzx7Vrhz0vDo/oq7Z1ugcBgDl9c7XlzuePr8Pi8+u+C7//pf87t/9z9idf6Y/+V/0PDf/bf/I//09/4nfv3Xf4XNysJKKJvjONI2zedcvd6U65gy9WqTMb+HRa1nldvssDhjhaN+q6GYT/rPgTOvUqbKUTN7jK7mnCn2Fwfzvfo79KRefqZO55x3s5XtcTBffaizDlEbAeeMFnXVdtRpE2bEN0cLmePXDBwuS9FdSpDpj89y9hy9NqYWonMgW52MJNElNZGYG4YxgrH0fYtPmXGaoBgiCd86GmvZND0dvWgSJ4hx0NCzgvUG6y2utxgvgELjG8JBGoscZGLqvWfdNjRKhTqeUN8Sb+s98DpUqKxnXYxHjUUI2lwEsYieJkKMpEphNhZvGy12X4t78m/tCiZRnJizQNYQUm7fd8Ciczv+7iV6AAVz5f7Ub1G0nmKYpkCMSaivWRyYjE1QDCkvFKtqHWtsFXpnmQikpACO3OPyO6QZthkwCXFGUxpfkXvC2tvntxgfVLtxKCmTUpB7VemBWbVuAgpoNlsVeiuTRu7zBThIKuo2yBqP6oZagaPqYjhPV6gUTHkd59e87hHIZC0XeY71u2pNaa1lCiM5GmIUg5IKpiQkcLaYQNPA6aYTYCIVUo6kaCnZ4HKLjS1mspANxWWyR7VXDRZHKXGmjc3vekU6XvP6Zb/+l7leu8m4d+cOMUxcXl1z8fwznHf0mx6skVCUxmCSx7QNNI2Yben7Y+vBXzKNdXhrIAvCUwuDmI2KWoQ7XBCOmkncPhhy0ZtZEQtrZSNVUZAgGYpipES2Ve+gQlJrZyRJKBJL0T+P8qjSqEoxOprWFMn/8E4EOII+LVMOaxwGN7tYhHgbFVmey7HDjh4yWQrH+rGik6NcpKkRnYJmAZSaTnmbtw6FUoHo+XfUxBJBi4wHGuEMuyoIdpKL0eVENBNhmrTLL1g9gB0GQmJ3dcVuOND2K5q+p2kbrHeS6N16XNPgfEO7WdN2HV3XkVJLbjvarmdzfibZBHpYGOv0ccvmU4Xd1mlwk6lUuYV/m1MiDqNkNrxBh0LXedrG8fzZMz744Kv0qw0lF6ZhwBaH6Xvunp+wXnlQbmiMUV3ClBJiHb71hPEAJFrfcjiMhBhEI6RNb72Hnnz2nN//V3+CpePf+/f+Ho8e3WMY9xhrCWFgGgPPPnvGvXsPWa+2OOeJSv8Qzmoj1X6ZZqqjHAJlTt2u62Oe4jkHxsnjT5lpGFkFSQKngLcSSCSov0xowhQpSdawL14sB4000NYZSq6WzxJWVKZxPiC7rpOxuz7/OuWsjburLlpafDnjpHk70m9I0SjPz6sNLciZko3F2ELbNqTUk5KaIuRCChPeN/MBUxSgEH5zYbPuef/99zA5c3N5xUcfP+VnP/0IYw33Hj5iOAwchoGXVzfcHDIYR0qB9XZDj+fy8oYf/uCGr33rLqennh/84BmfPRm5uFzxlXcfcNpbmeJOE50JuHTDZ88u2Q/XfPtv/z1OHnyd/bMb/t7f/3f4p//df8/N7oaHD+/xYnBL42UlLOtNub6IwvRawXxFXabQydxfRzDfK83HFwfzfTllqtKCCkswXzkK5pvXEUa8+k0NCxOk1eprUdWAJUtZJjpH6UyqJa20Fx5rlK+el/OrIL8vC6w9o8kUZrtPZ8Ba4bynHDmEA0wwjQmTneT9GEuxDnxDYwUs6toWX00WdKpkvadxmRiD0AP3kfF6YBgPYAqn2xPZ862jb7pZc4e+xuELNBbos61nxQws1cyb+h4h01rRgx3RoEJgCpUKJf+uKLw0Fm5+r7K6UuU36DwBsH1LsmqFugD7RyWh6InkObn5M2a+T8x8X1OKgrpWP7aIyK2z4oCEAH2lKAgknuAKhmnTQsbZZl5ztdawRrVupkjjWuw82RPgVhH8otM755Yphj43Y62AjNogxRiodrgVjE1ZbImNkYaSIvWeNWKZK02QvDZiWiQsFWcb9JWY7Yyd9UIBLkBenAZrw1bXXMX6TVHmC0nWmPpsidGD0XpJGvxhF5huAlEdcoX9YoVRYArFRZou41qpX4kZUsY6gy0O3zi8caQgeujsdF145ueHUYD351yvM9U9GiX90t//867XbzLOzjhZr3h59ZKf/PSHXO1f8ux6JBRhhbmuY73Z0G/XZFcYppHgoLTNTJHA2Jku1RaLUNQKNT+j8v68jpLMnOQoi8Qahy3iul8LiUKRkWwtfrTgqN7Yzki3bKwRe0zn1D2JI+svsyBKJc2jtXrYQN2gq3i9kMwRF/RIpOyN09RdT+M9IfnZUq++WUvTUg8FZkvbmWN6VMyZ+XuWqUrtumumxrFGYwkXVJ6lHmjOyWNtjKM3HYdyIE6ZbAq+azR9utA0Df7gmA4ixsZkXONZbVZ0q47DNDANoziJpcjNVWQaR0XqPE3bSsPS96xWPSdnp2w2W7qul+aj72i6Fuc8OINrGtbrFV3bU3IiDpExiuNUTmlx7Nait/695LzYLb4h192zU3Y3ez69vuH6+obT0zOs9ZxuNnz67JKGyMNvPWKz8sQwUJJkIhjTiaOM8r9jHLEm0bUdne95enlJCIHtyXYeaxrnePrskj/60x/xchdxaSSlCech3EycnJwQUoKUaJzj5voKg2G92QoKlaWoca0D24KOkQlJNBowF0N12lLXmEwVBTgwOROGkWF/EGFoKVjncEa5r1k1FzGRnSXFhM8Znz3WKR5jnSTzekcIQcbcOROmaUYwbdMerXNz5HZl8SwsL+HlihYq3tKQLU1IDfdDEWNrnew/QNP0tG0kKj2zFNSUwMjegTYZ+lOttdy9d5cwTTwBdrsdzz99wo9++BM2J2v6rpO8l3Hixz95hnENw3DDME5885vv8g/+P/9frp4F/ld/7z1Oz064vtnx4598yg9/Evnh9z/i177+HpuNxzg4u3PKr5ye8d77j/nu9z/m9//JP+bv/vt/H796l8484bd/99s8/fg5znl808o00tZC468Hqfo3ub6o6Icvp0wVdRKRP5dgvlcpU3ORfzSd+HlXznnmfle8ouo1joP5lmlGPXC/mDK1VEyAWYL5vBFB9Pw55ZknC1bNOMx8Utr577Ooekar5XUyxpCTUqxsQy6RlAdyjuBGmU4guovKz7e2YGuBVRKlOKqFbSKQjOgKMZlMwur90jQtTdOzKovrGyCTgRCJRKpcUKY3y3QpRoih0Hctne9Ydd28bnIRndKxxuKYCvVqY3FMhSpI0ZtVvB1jlCZiCsQo2UrDKHbgIVUqlAbE1Rye+ftFmzLXD/Y2MPg3fTWrFYlrjQYwzNScI9AnZwEXjXM6ya1gJMqY0ndeGwVpPpXinhM567TaqHuRKTOFt04L0InZ7Nhn5HutYdbKWmuZxkhtD8XS386bc917M0bPu0rf0qbIGPzx+6z3Ua7/08wZaTL0HlcqXi5RQO+cSKXQOCda2VsAhD6XivyXmvdmabwVu119NLcaM/1agJoOf9sOWihcs6WsEbp6mDIxGFJUilmZKGSME52N9QVcwjYyofGl4Iqsf1+cNMEGYipMOWGI4pJgIFV9GBlz9FiWXqF8/kNf+oEv+OAvKKtet+p6fU1GI0jKet3Sblv2Vwcuhx3FNbSrDf12w2azZbzZ8fLZc66bBvv4IesHZzS0NK3DOYN3nr40TNkTSezTRMSSiiMVEfR5k8lWXZxKxDcea4RKkl0RF55ciCUoBag6PDVYK50mmoaKKRRz5M+tScRzAV4HarnmAaTZe3nhGi4vpzHMorVsF/2FmXdZaBTxsco/XQ6+xWfcGCQUzZQZoTNm8f+HJcRoFiAaQ9GWtYq3ZieoVw48+Zo8ozzOOIpJOGPZrNcQCiYWbF/tERHr08GTpkBsHZM3jMOAtSJyPb97zjCOHIYdw7An7TNu1+iBV0fbZd5MrHO0XUu/WrHebGi8eEOvN2tWqzWnp6d0q46maYmtxzcNXsX6MmktlBSZotgLpqR/RuFjBnUDiW+QUG/VtvRdy+nZKZeXl7xz8i6r1ZqH9+6w2+15++4p7z68I5a1MRPGEd+0xBjp+5b1umMc9rNgz/uG/WFgt9/jvaAgzsn06eLmwJ9/76f8+KfPuLo58OBsO49NU0p0XYeLiThlsQpOhfGw5/6DB6xPzziMAymMrNYn2MbPYWHJBHIIiubcvvfnYsdoUJ0F7yGPmeFmh/WeFKOEprWWnC0pRKobDLmQTRbub9PQdM28vKy3klbuiqZ6CyoVp8Bk7DxVcc5hVSMmD0WnFProjgu+SjOsE8FS0b0qZNfDU8TFQh1zztF3ayY7Mo4DIUwwDHNBU0fhzlk9aDO+9Tx66y180/Dk44/xzvLixTWffPYZZ9s1TeO5vtnx9MUVJ+enuKcXXFxe4tuvkULkL/7iY8Yhcv/BBmsLH/3sY7abjs8+fso/+2f/isOw58Gj+7z11lt03YqXlzf8+MNPePcPv8+dh2/xK9/8BoeLax4+fpcH9x/xL/7lj3Gbu7dQfve5ov5v7joW7sOr4MsXu0zVfJXjYD6BrX5+MN/Pp0yx/H3+XZ8P5nt1YvFlv8Nw22VKEGJtHLQHESqfPo5i5vsoZ7UiRadk6spWkpxV9f6V36tuM8VTsifliZgjqUzYnLTIWRpsKxifILO5TjkipTihrZJJVkLDnC00bcPKbtisT2nbbkawc5a1m1ISCrIpxDCxPwwM40BJ8rpYza0wwLpfc3ayYdW2CjjkW3azdfJjMTTOzTkWVWNxiwqVqytUnMXbk54DQomaGKZJQlu/gApVKWw5pXnK5JwTOri1Mh2zbw79FsA3lphGaSDJui+LVq6e/zJpluIUbR6KTqvtPImuiDX6d3EylL8XTMk4wDsnPUEGY7yCrVLIOm8Rxl/CWEcOCd8uWpiUDGMoiDGywVM1sXVdiYuY6Enc3FovkwJza1+oD/pVq//4Kp3cSsOT4mJz66xjitMt4NY5R5qi7PnO3dLlxijUsKWfL/Pku043TF2bxmKKPXo9F3pYzlkyq5xoT1LMlAglQcyS9p1KpJiI7wrtKtO4gm+KUN31nBUNRsDiJVMzByiR5FCasjq3Hbls/XVf/yYDjdduMi53F7y8fsmPPvqQHz/5iDEFXNuxWq85v3OPdb/m5vlLnv30Y/bPX7I/WXPaNdw/XXPStXPj56ylcQ2d84ScCUa43844Mo6cAGPxOEbdzDCBpjE0jbplRNkoShERpdgXIl7f2DkkELh1QNTG4mjOCAhXL+ZIVG5bLonK6c65UNxxJ6yCqZznv3vn1bvdgl044M7oY0OsMGWaoY+VZQw/J36XZVpxvIAqSleMoBElLxMMEd/CbJGoX3/suFSbGmugdYa+8bRdy1m7FjtIqZqYDiO7/Z7hMBCmhtS3DMNAKRnfeW4O1+z2B3KJ+NaRhsQ0jjPK5JwiY8oDTjEy6OIdx3HW9ZinSo0wwsldrVacnZ5wdn5K07RzQxHVWjDGcPT3OCNlxxvPm3I5Cl3T0LUtz66e8/zZU1a9o/WGb37tXf7Wr3yFzgvlIMeId57NekNMhe3mhOkwkMMAjcG1K2KG/c0FxhQ1ERBBaMqWP/rT7/Ov//T7PHuxZwwjv/GNr3Ln/JxSMm3bzlbG0zgSppGb650EJ5XEe5uerjUMw0SKI9b32swLmhwMlJAEEVM0B7SIylKMWLVy9q0EU45jIA8STLnqe9q2JcQgjhrGiCNJzuSoNrFR3keLoaRM03l86wW9UfDdGiM2gknuoXltZbEntLaybGUSmY/WgEw1nPJlZc2Wko4oAnIZY0AF4pmIxdF0i6NUrE1uiOoa4sS5x1XbRJl6Nqueh48fUyhcPvV85YOv8PLqimJEHxNjYH8YuHvvhM12TQyBFxdX9H3H7iYQDpaz85a791ZcXFzh2/s03YZ1t2VrJAD0EFbspsSTp1esNqfEUPiH/81/y9n//n/H4wfvkPcTuBtW2xMG7LxerE3kN6jJ+LI1+0UuU3WtSzCfUZepGszn/lLBfKWULw3my9qY3aZF8YuD+VB3MxaqsNQNGQ2KkUl0XjSI4iAlXcg8IbtlaiHaDLl/5bcUDDEJkpmKnAWAoN1F6Mfyu/THmIIyX3RSLz8HgxYqiZIjjRM78k1zSud7MFaKTrM816RZSlhLyJkpZbJRt7oQGQ8jKSU2q567Zyc03jGFaZ4O1gUo1M/bNKgvokKlmG81FtVqtuorpiBi7ltUKOfUdVjOopQTx+e4NBZubmytXXQAb9LV9IYx34iFMVBriPpaxVhdpqoDGnODK/tovT89FKsaiAXsrAY2pEjN70pJNGfGOJkQUDM5zFxwVxCqaPNvKLONbtHfP08Zj5ocaVjVgCPL86n/XxvO47UvS1JA31rXVFq5TBgBY/W9F6ipaIdbKZHVXctYcXg0OtmZJ9qgXbjCFKWCCLX9FVpjKmUeCC/02aMWSScjdQ+ZppEcLTYZTLZYvADQuZBywCdDk6HJI44AJpJNJBEJJZEwknFjLVnPMYcY3hiaGTCvr+2beL12k/FP//j3uby54vL6moSh6TrW2xPu3X3A/Tv32XYrrpPF7EaunGe77ui3W/Be9PoJDVJqaE2UJqMEohabySJjzZIUbUlKY1iQI+ssLltysdRwFFjQ/1c3/Eqz0lUwFyAi3ZaCIyZdsMHShVGmIzmR5qK96I20HFxU3qEV/3JpnDzReUJa3EWcojJ1jI+Ovz+XnF4XFGXWd0jzYagJllbTmuWQyvPPXDYMdCEtdr5zpoZlRnZDjNzc7PB5D1MWAaVvsNZDUiSxsXjjJWvAF0KMjGEkBEEPNtstp2fn7HYHrq9u5kYJ4HAYCPmoySmaxpllA/feK4Ugk5LoEYZhYHd9xYtnz75QGP/qf/V6dXLzJlweaKzQ9TabDdfXN7x8ecE7D8/56lff5fx8jdMgoUbpYjVd9/rykmG/J04DdrPCIJSElDKNd2o16EjF8Ad/9Of83v/0p3zy9IJxmjjdrui7lu3JyexpLuJJQR6nYSCME+Nw4PLFcx4+vsv25AwaxzQO+GJxTY9r/FwkRcQcoOSESeKKUzfgUsB5g/GOrluJziMkYpDiIjciAm8s5JhIMelY2kmxlQXdiVNkKIUYHDm3kAuusdhGOcLVAEAnBiEGyR/ICZ9kMtbU4sAsB1UtEpc1Unn1t8MbZ4qLkTVWtAAhZ4ortJ2kfodx5LDbye+O0tw0jZeDLGVc04CFpu+49+ABOUQehsy7Ly744Q++z/5ww6O7d7m+uWF7sqJpW85Oz7i8GbHe8+DBfZ787JoPfsuy3sCTTz/jyfMLUs48uH+fr3/wVXFQcZ7Wd7z3/gc457h8+Zzvffd7/IP/+v/Ff/af/xdMrPF2YntywnijPN5crVPfnPLpeC2/+n68rsuUKa9QprIERv4ywXyATrM+H8wnQM7rBPPVBqdq31R3QQWNFDjK1YxD9zI15cjFzLq3uehR5zYxRBHUtzolGpx8b64TES1xnKFktRLEQkn6WgpUUO035bn6eYJdcqQ4Sf3GJKwrlJBkijcljJXsjpxlr54msSd1vgEsvulZWQkIHcYDQx4YU8AWAVyskwTwEEY1Q3FzYfuFGgsFC+rkOsQ0TyqqzmIYRyZ1hUo5M1OhlMtfcibHJHz+kjl2NhKr6mP61RImJxTdN0e7BKLzOxyZYdTk9kINqVts/WsNsTTMxwBkudVAzbWSlshJhdANULsVWXsaAmmWPCFZs6qTVH1aZV7UvKKZUVGq22hRarA06cZ5ShL7V63v58bc1RQYpUblvEzz5HEKta+YQioy2SwarFeD+oqpa02ea9XtJaWPmSLTjmJ0omOiWAFrA15gZp4UrQNrZkeuWrAj0HgBB7RpMlY0QFOmUa2uUXqYswayGJr47HAhYe2AbW/ILut7qWAqQLEyHSpAcZTsNEDcUQX/8qZ+/v55rV2/1K/9+V/96mdf52e/dpPx008/JuaE9Z7tast2e8r5ySl3T885X23Y9CvufXXL3ft3eXl5gaFw5+SEdtNjnHbMztA4MCWRfCvTgxygFIYSMLl2w7IBe2/AeEVk9El9AUJVb8/K7fTeK+8SSs7EEGUDslVIp4vGLqFFlXcYo3L+UiCmQJM9FA9FBdK1mFF0yJrFRs+qo05F9b2TIqiog5DQXAwmm5nCRUVcQbrwemBqJ27McrDVZmd5LY7dqhaR+nGIWW0AjDFkLIcQOexG8i5wuDwQh4hxjqZt6Vc9Jydb2q4hqr//9dWVFrpLoeh9Q9+vZENqGjmE1WK28Q0lL5tfKcyhTSmlGWGvk4qabJBy5nA43Co43qTm4XWv7XaLe3EtCI0x5Jj57NNnfO39B5xuO3KKTDHTde18f4xjIMbM4bAnp0C/7uj7FSFldrs9TdPR+IbVqmWKhZ9+8px/+s/+NT/+8ClTjlgSfXtC37e0TUPM02y7WSd8w+HAcDhwfX1JShMPX9xhu17RNZ7DYSTjMMWy6jps42kRNLAi+CkG4dWqwUJJWUblXQ8bcW9z3uKDo8Sk00BJmPdtI4d3lKmFd57sW4qVSV8YE2GMxGliaj1N62h7mbbZxuMM4lDj5CCJWQvKEOQe8Q2N97OrVL0qInbLAtcsmg50zRtF/IqO+0zJTCGQImAsbdthCoz7HWQ5MEMQrZVQERKtTgOtc5ycnYp1b4h85Svv87OffcyzF8+4e144DIFPnjwjJNk3rq53JBxfefddfviDj/n1l7/CO+895N333+GHP/mEi4tLcobf+I1f59mz53z3z/9CRPbrDU3TcLpZ0XrDP/+9P+DXvvUP+Pbf/nfY71tCkrH8nCNTJHvgTbpyvh0Q+DqUKfLtYD5XPu8yJT9HdtVXpwxfRJmqj+VzlKlcviSYD2S+p5XRLd8uKc4WxyigWlxyhHwenWMVrT1+HYrel7ZSbLMULdFKUyF0VJ2kmQw5Agk0fVueC1TacNEirRQ7NyIFMe+X3JwANpMIxDRQhsRumiBLc5NiZhgODONA36/p+zVtW6hRyjEWYpLmpm97OufZdB3n2xO8sUST6PuermkxCCXnFhWqVFcoaSqiirenSZuLKBMLcYXKM2DoTOWtS2Mh1MxKhRL0vbGtsBusnZuLep5SxEgmxjhbr1aWwJtyNc4K6AlUGL0UCZur54zkax2dnXXmYSqlR2miitTXukd+lkzzQqpuZFpUW0s2ajRoBNFPEjMGqM2qzdLPGvnaVMQYxxopiIsxJNVTFGO1mF9oqbWpr0VQYZlmwmIROwNH2uzP00sjepBkAVPjB8AYafSP9RfG1owQ+V0yrZHnYVBheS7atC4AR5nXVdVHifA9aSYMOhExWD33DLk4vO+xJjKlQCgR70SHqAEO0vTnaopi8ENHuy6YDqFOuUw0iVAiyWRiNoSQIXkcvbi21omv+aKC//Mtw5f/2/yCz//8j/2867WbjFAyXb9itVqz2Wzpfcu02/P0es9+fcHm5IRus8E1DeeP7gsNxnusFZYpKUphkCTYq3UNvW+IsVBKIjsRU+Yob7R1DrwlZjPTporRaYhuUK+6kNS/V966PXo5KlIiHuPM35OzjHmTJn/KYVI3mdvj99plF7MchvOoVfkdFT2dkZkZJzA6dBNhmUwzFNkqdbRenbHM/PGSVRRHnsfu0mGrWMosvMw6uTimSx0/zpL1gNJReoxqm+sb+m6Ftx6L4/75I9xdy/P+OR+OH3K4ecYwBG0cCqUMGHMDLEI5OYgzTdPQti3TNM1i4WPEJedM3/dYaxkOB6KiYhY0p+RLGgsz/98r/3yFv/k3fN1/8IAPP/qMkgphDLRNi3OBB/fv4r2fD/3D/kDbiAV0IRPjgDGREPZ07QqwRNVFWKMNa9vx8uaGP/7Oj8m2ZbXpYRixxXC62bJa9XLvlsJ6vZJE0XHk6vKSmCaMM7R9xzhNvHz+grPTU9arLaVEUhzFthURelrvaGohYwxhpqbl2eEtBznI0zThm1YIHcZQXHWMSZI47ey8CeYsDhxN02IaD8YwTiMhTJQRSiyEIZJCoiRD2xuMF6TMeYttGmwWvnXJhTBp81MKzi/aKGvsfLjAlzUbdcRcYF7HsvpSARMjpjgVNkpDbOWbKTkSw6TrfOHbOyfTupM7ZxyGgekw8JWvvMPusCNlQ4gQb3ZgPLv9Dh8ajBUt2bPnOy5e7Lj34IxV77l8eUGcJq5evuT58xec3TnnrZj45ONP+dnHn5JSYNU1hDDx4O6W//L//v/mwVvv8P77H9CtB/LVBVELB6GDvTnr5LjQ//znXj+Yz1jzOZepum/PE4RXpp9fRJn6omC+WtzUe6VaHUvI2HIvmOrFTJ2EQd2XjN4YcqbI7i33nawnx3ywUK0z5d6t02x7pMVzkIw2KUZpsgWxvs04+asgxeLir2eIcsuBVBQNPSqW1Mx3Oess+K7B08qZkWQiao2ZaZCyxBM5SnHmTKH3nljEYr7fbOjbljhNvLjc0TSOk+0W3zTiwKNg2mw3q+dviKK1q/qKMVRXqIrky/c2qksTWm5YMpS4TYWqk4pjKlQFvMSNKqpdfMZZQ+scfb/5y97ef6VXIRGzWApXZF4mD5BNDUpd7kEJWQSKFaRfRe3MkJ78VJlOZbJxTBFCFFC3UIXcbj7zaw5a0zRizFGWcM9csiSzWz9P6mrXUCnU2g/M93M2C+KPfjVFnSX9EopaJ9L1J9YrF20kjdzFRhvznKUhsKaI/a5mX5S06GtTigJWpYhxEssAmTLJeZaTNFa1kZBmXCmb6og407fKUhtm3X9SyrRNg/MG7w1t57S5z+pyZRR81SeTAGPw2YN1ODpcjWowkWJHpfMXkilgM74YWtMy0744emt/wd30S58C8zeUo/+//befd712k9F2Hev1hu32hLZpRYw5HHDGsmpPsJsef7Km73tBtw3IMLUI9zqL7sEXcY9qS0O0Da2NhBJxZCLgTKFYxYaMhhsZjsaptmaJHV1yCx6Lqufush4ydcN2TjruVFMT1Wc5C60npThrAo676HmaYAxioMi8eTnb0PiWxk+EPJGj6DOc0jyMolvHqZNy3Bx351CKjPKEmisbijNOkIKK5JnaZtwWiR9fnwsvpPIixR7UO4/1hZCTaABipiR5fYbdnrPVKffu3ONkdUrfrMkR4pSXJoM6Yl1ef980OkGySunJTJpQmkumxMI4jlhrWa/XdF2Hd479zU42eVhQLWpnrn9WZOOo8DBWNiPr/BuVk3F+fi7848OBaRh4/PAe3/rVb/Dg/pa751tyTNxcX5JiYCqL/74zYBoLRZq0EBLDIN704tDh2O1Hfv9ffIff/4Pvsjk55+tf/yovX7xkuL7BFAkCBIhRJkZZM2FCmChJXHQePX5M23pS1OZjCjT9CUMKjMOIK4bVGtq2wzUN3rn5cItFiSBRaCkxBlLa4xtPt15RQsCWjLcG790xsCbTC1cIaRKXOO+x3lEMNKWRe6oI9zpPQe0kpbhpWo/PBd+3OG/BgilR0DMd8Q/DINPDrp2DQ711ClYeUSiPHpQUanJoG4ty10VQmVMmNZmkh7dNUZ1bJPMFK3qHcRzpV2uZiurPtdbSdh137t8jjgNvvf2YT548IWleCUYscV88f4FvG7arNUO4YWtW7G4ij7665vGjc37nN79NobC7ueHTTz9ltdlw7/59Qki8vLxgOBRCSNzsBh49us93/uwT/sv/23/F/+n//F/Qb87I+SUFIy5TCrC8SddfjjIltJEvDuZTSsbR1OIXTUWPpwm1V5HCIWvtVoROhJn3o9q0zZSKUpFObaqNuiApMlp/tuzJSxElXv0oQAAyNVcabEUYDYrU6mtkNGCvvkalwRJJRmklSOFfnEzeiinkZOZpOXqU1ImHDIn0ayl4b/GlFfF0NvTdWou9BbwqRSYkxli8itdDmDBFAjKvr6+4uLxgGEdyyVxcXXLn/A5nJ6e0jV9coSahQMnfJ4ZpcYU6pkJ5J69JyUtzIAFrdgYfJZHcyR6je6sMk8piHjLboMsksm0aVt2K7WbDquto3qDzBMBYR0hxGYwhFcTxuYhZqHkVra+J21Dvb11r2gAIninNyjgVcnFYU5hiJmPFxCOpqDgvzVn92fW1XOjqdUq3NNPWWkKQkMNcxI0Qq2YI9vaaV4KhUgSXCUvMMhnPOVJKQsLqBHj1zsrEFqFKWWdAG+yUJaguU4h5wmNJBYqZxHygRLxt50SxMEleW9KGICsDpW4MdXJCnQyZ6rR2BGzMRXxRABVWKzVOSIUShVmTlOZXSzqjLnMpe4geE05wDoyJWHvA2D3GTGADJZtZOG7wuj9Vc6NXW4Av+/9Xv/rV7/2yn/Nl3/3l12s3GScnJ6z69ezCcHrnjJP332O1WkteQtvi20YO7SRBazFEhpDprFjPykEgXaKzjsZ7fLaYKB7h3i7hKWQdr1lDYzULg7ohLgLsSg16dSROEQ3HLKo2Zv4eOTDS8iIV8QhPKRJTIKmnslzm6M9lBGkNs9Vu3ehrCF+dHMyLzYJrZER2zKF8tegBcSfj6PEeH7DzpqkHWv34MToLt51bls+VJWMGaBrPerXGJUMcJy5fXoj7k/d89skntNbhm5aT9YaT9SmmWPaHAyGPYhs7N11yOKYom2AwhsYYurYjl8IYJnlemmIeU+ZwGHAYuk6MA4ZhUOpEqw5hFuMcrvFY73GNx3mPa5zoRxQdN87N/70p1537Z9y9e04aI2F/4N23zvn2r32F1coTxj3DYWIaRwmY08edokz5pmlgtWpwzpJioW0lg2Sz3jCGxHf//Mf8/h98hydPX9Be7fmN3/gW77z1kJfWiqPV9oSu69jtbzgcDoCkPb98cUUpsN6sefj4EYbCxz/9CS+fv2DX3PDuVzaSzD4mRuvxviVj6LtemuhOCu/GesI4kaYgzlfWMQ0jh6tr4jiCHoNFUVZjC5SERTQlGUg5Yqyh7VtwyzTSOAu5EG0gD1JE5P1ADIG2bWm6hnbKNKsG2+g6c2JtNQdvpUQsWRpY7+UeMbUQPM7DWdaerY0IOlGsOQLW07YQnXDRU4oY31DshNMGqY7fZU8TQX6lXhSg7TvO7t7lweOHvP3OYz760U8J40gIB07ONhLUVjzdasV+2mHbM64vI792Z8Ov/sr7rNv7ognBcIiJrJ3QVz7oaVrPj3/4IT/72c8o2bDfBwyWf/yP/gW/+7/4bR698648ZiOTFYDpDXJhu9U4fAFl6tXMjGO6hCvyutuMUKYQV8JU4isNhXIwjn7u8d+PG5xy6+MV9BHE1CloVb39FzrqAmQtFpJCBalOWPIQHKUY/fsy6UA/Lan0mayFCyyTD0F/kcmd0qQoco8alH5bCsYWnI3kEqAEyILMFyxZHf/QIkgWpzQ+1ckGCqkEQg5MeYTQUPaJOBVyKljrj1Dp+jrJI2y8gAZt39H1HSFMvLy85Hp/w5TFjnyYRl5cXfL84oIHd+9x9/zOohcLCxUqpprArI6RM+1Z7W6z6ACqBqCxEji5NBe3qVC308IFkTal0LUNq+0pm9WKVd+Lq2FJjNPI5fXw13HL/xtfiUBI0qjNTpml7mFVL6SC53qfFznz5XYRWqqynKAUvDcKBhtClKwjEABniqJVsLYhJWnysuos6xSjaZq54ai1iTyu8kqdonuuqY1JxtkyN47GVs3cgi+i99VSz6iYvNKT1J7ZmjrfqEBqpdhLAzSFSacUSI2XAjkHnC+SARYCxnQkKh2rNlICjgoILK/13MHpx0yda6s+Rl7aLECAAUyh8z2uLBTGSCGloveqUI9LERMVMTvRAi05SnAU0+ALGNZk01LMnmT2ZKVQXeQLPGo4VBRwPpo6/Lx249WvqBqfn/f1r3z6ta/XbjLOz+6w3W7ZbresVitW67Wg105CrUpJDIfnHHY3TLs9ZgzYBL1tsSenmK6VQjtDMYtQxRrxA3bq4pStaBaqD77HURpDKhMxqnsUCK9fcxSOn/Psp+3EVcM5PUByIiY5oOR1qpCQ/q3IWDFEuTFTjotTQkWoDDPEJWvK4I0hWpk+OB0Bmvq8vNrY6oKrbj+vNkVLM2A06KXcXqDcRvrq1MOqxsRo13/8s24doEd/t87S+Y7NumdjV4ybA8PNgd1uz2G/47AfefrsM2KMbLenTOPEdrOh7Vr89RVX14U8DIJqGaHHVBu8qI4jxjn69YrzzYoxBmJSNyKjXtyNJzcOv12xXa8pBkG1ncM1kmliKyrl1C3MySFi6rTqiI7wJtGlUgmkHDAk7pz3PH54giUQBslJkKBGKdqdQBWUkhmnA96LleLuZod1PV2/pmtbirF8+NHH/KN/+i95/vIGA+yuL/jOH/8xv/bNrwOFzWZDv+rBFNq2pWsbQJJ6P/n0KdMYuIPhZrdjverp+h7vrK4hcZwqOUBOpBAYY6So1qjzkn1itNGLo6eERPaygccYKSmq6La64Eh4ozEy0jdeTB9Klnuk7WVzJxksXhHqpeDMUTI2xsPENAS897SHiX67ol13uNZgG1lTdexe0c2hSNhe0zYS9GeOmw1BAakHyvHuocBCqS4/1lHLX2s9zje4ppmnZ8YY2k5CyCTLISuaG2TdO8vm9IQHb73N13Y3vHjyKSUEht2O87M1d85O2Z6dM44DVzd7DtHw5NMbLJH797f85IcXQEcqsnY22y2+7cAW7t25wwfvvsMf/sl3+fGPPyIXg2s7PnnylP/L//X/wf/xP//PsK4FdDrjJHX6TbluAUJf+Pnbk4xbE4lSlPpZZne8mUo6TzO0SNet4XjP/SLKlOzvdUJb5qDFiswIErsguaDWs7YWHtLQLE2OWFxmjiYZao1rSxWTmtldyWo3UemyzHoPeWjLHn4UtmbqWVCJ8krtQM0/VDwrr03SzxdKpd4YA0QMjXyuSBFX9LUQn/9EjAnvEyn5OcOgUo1yziRn8aueHC37ceTpi2e8vLxgChPFiDtcTIVsHMMUeXlxTbXEra5QRRsLayyNs/NzjikcnfFSwDbtMRXq9sRCtIFpsTtXEYG1ls451que9WrFqmtpvSenSAwjF4cD+8OBKSq98A26UhnIeVymUKaK/WUdLaDi8j3zuah1+LzMjr7Gmnqv1RqhNvK1SUnqoibTgWOd56trclnPef6ZoDTpaqDg5g5CH1udxqB/r1R4bS6U/pRzXBw/kcyM6hR2ayqIUIxiDKrZWFLARUA+YU2gbQQEnkaZLkiPIs20sdqMVKMQ6hqrbcdxjV1nQoofGEvVbwjzxhOj5H5VmpQsrbKYHSCTUO89bdvgrLA0ijHkgByeweNsj3eZ4iUsuZCJJEKZmKdZP+8qn/vL5z//SzYPr3u9dpPx4MEDTk9O2G43Qk8pkXG45Or6JfubKw77Gw7jgeEQiEPGBrGa9bbh8v4DvvLwAc2dcxpfZh6hsx5vJNGw0W5UB8foJE+cAjDEyDIK1gO9LoqKRAGzQE/CwtCGwGCc2IYu3+dJOSyIPNIxxxgIYSSmQFHx6nK4IXqMUptaHQkaDfjRza42FbAUxBT1587imFVzLo4bgOrHDMuhUtG8WcBJdY+CW5vCK9/z6lQDeTQzGnExjgwvdtIIdh0nJ2ekOHF1ecnLi0s+/OhDmqal69b0qxVd33Hqz+TGztLcVQS6aWXiYJ2l7Xr6dc/67JTt6Sk4o3anHu8bmsbTKg2naRswZqbGcUT/qlOSY0RDwveEX1myjhuP7BDfhOv7P/wxu90NZ+c9X/3KI95++y6GTBhFPN00oq3IJRHGgVXXkfOE94W+b0kpM4bEppXQI+ctLy6u+fDjzxhjYRhHWm/Y9Cecnmy5fHmBBfpVx2a7me+zplkT40guhev9wMWLl2zPTrm+uaHrOtq+x8TAYXfD5YsXdNtTusbJdK6ICDDv95K1oTzZxjscQkXKLlO8l6ZhFBEdSlMxBkiJkuKMOBqrmqQiXvnOK2KLmQXJpRSSoqXJOXKKhElQp3GoItBEP0VW245mhVKjLI1vdDQvtIukVEfv/DzVqJcgZnP1Oe8Zru4n6n9eEFRMDlSnQZIrFbmrg02WA8M6T4gRo3uPbwzeevx6xZ0HD2i9Zby65gd/8h2GYeCw20uop4IZ0xQ4jBNT9Bx2A/fun9C0DQU5cHxjSTHgmoYUMyerNe8/vsfDR3f4wY8/5sc/+pCm8xx2ez766ClXV3tOzpvZnMEp1etNub48f6JetylT9ToO5stqZWvyUdZEbULK5ylTAK8WSvV0NdUenKzIo5YPiqLXKyX5+rpV3W6SyvyHAsYsxZmdH7OKOTAUkWKUtAhS0QaLhS5lrDgiQqPPqTrbZDKRkg8YBmAS+pIWecbK76x76C3K7VyUFopJSg9JpBy0KIdu3dF6QUnrPeTEgk3sY8eBkjONtTSN43p3w7MXL3l5dSk6yplqYjTEVoN2S+Hy+kYeg05vfA1EzEXsylNYUHErUw2jrlR1mlTP1pLzl1KhurZh1a3Zrjf0XUvrHeTMNI1c3lxztduL3kNfL9+0ePdmNRkh7AXBt3oflQou3gYij6d21gpgVSnft4M4lepnit7PsufWCVspzPtlqowPK1OvWmpXS9h6z+e8UNBBgMdS9GNzncScU2L1OVidBrsjJH1mSOQya1crACC0KKHRloI6rEkjYbVAr+Cw1Eya5I04jDlbsCZhkGC7Mjexi95wbiW0JqtGPHN2Dgs5iVKbPgWDi5xqzlpIYoIQyZgsE0jRI1ktdyT3qtH8K2vt/HummJmi2DSHQyRhsE1HuyqY1hJdoHGGlCr9snYJy/v8hbu9WT7zuc+/0qR+yTcf9TOvd568dpOxXVlyuub5s+fsd9ccdtfsb26Yxomm6ej7NY0/xa6BtaNrOlrf0VjP2jr8aov1HZmJAjjXzC9qyFFcnch4A62FKckm6p2h8a0+nYkQdVEAApwfLTCFduo0oeQMapM3L8ajLlzE0Hnx/0bG4zFJNkOIgSYGcqNFvk24Iof+cWFrdazrrccbTyDSuJa+WzGMe6YwMHNvy5KNAaKRgOUxzY1GPQioG2p9jGUuFo4PuPr9VbsyfwxZrM6LZ7gtQs+JITLFQNxNDAysV5HTs1MePn6Ldr3h6fPn3NzccIiRtcmsmy3d6Ya7fUN/foJrG/rVimbV02170eL0HU3TyGvi7FIkYGbhXbWcpCATjlIPWhUTqyCvaFJ00dfDaMNh9XC0iI7Bsoxb34Trz7/7PRyJ3/iND3j/3QesuoY4Bd24HM6JsC4E4ZaGMAGFruuw1rDfT7RtLyins+wPgT///k+5vBl49OgRu5uRMAysN2uMMRz2ew18LJydnQjtYBxw7pScDT/5yU/50YcfkVPm/SSI3tXVFY2FaZi4utlxMg70my1n2w2H5AgxYJ2XZiNGDgOUtqFZiybCWkO2GRpHpV+EaaKkNCPQpEQcRqyuwbaVhPdUEmnSNeAszjHfJ0VRLhu8vqfNXIzGKTCNA8NukJThEOmmjhTEbMC16vXuDYRAiIkpR5KTRkAmY0Z+n10Oaac7SwiBmBPEiPNe0CQAY3DOY12kaTuc0xAsUzQ/R9aZ946UM+M4St6Is4AU+KXvSKdbPvjW1/n0o494eXXFOEw4K+/f/fv3Cfs91xeXxPge0wBvvX0P1/yI7/3wJwzjxLd/8zcFIbOOMImVaFg5fuvXP+C3fv0D/uc/vs/q5B5/8Z3vcn35HGf9XFBWek/Ttn9Dq+Lzl7OOZBY08riZ+EWUKWkEWUJMi8EpbcB8ictU/bminwDZc+WxHGv3MkVpGPWgXVjWtSh6dQI9W4XPXy+0pEq7SiXjTbWiVYS0SPGFlel+RW9ro5NLbW7k+cnSkPNAksOrsDuRCTidusxuQgaKBsvO7jpGUNTKM5+tb60+lqzTTBNxDpri8aallGoy4ihYrCl0bYsthTCNxBh4eX3Fi8srrnc7CU/NidZZ+q6bxfoSAliR22Z+VSvwVakq1Z3RqKGKsUd/n9H5L6BCqTtl37X0Jxu2qxWrrhN0uGSGceTl1YHdYeAwib7GeY/xDc5apmnicH2jJi5vznWYLimkGUydwUS0qFVkPBWhbkq2RQ3ZNmBU41CnY/O9Wgt0+bs0GNVRqWhTkTnWYAq6rxO5I+pgfW+dE1G3qWd6zvP3FYR2BwsQesvx7riegXlyeJyFVSrtqVK2kaeUszTcJtYGZDFuWJrygji+RkoJQCKSyUbqslREOyJrRzQZYZ5267rMSWnA9TEtU5sFs5D6zlnL+ekpJltMcZSM1jZLvlfdc0oWA4ZKQ8w5ifHBNDKMI6VA1zqa3OFLS+4i0Y8kP5FKmKfUtwC05ZHN/YBh+Rzm1r/ks680ELXumr/THP3rc9//xdfrW9j+9PsYDH3Tse23bLYPGewZ+2Fksz3h7OyMpuvAVcGzJkPGRJkmki0cYsB6Ky7fxeBtx8oZYklMJZLKiCNpfS0FxzLyylpE26qMXt6knI8mC/JOy/eZW7zBksvshFRvcGHCshxM898Xdw6hTCVA3BNMtZOjuiXIc/aV4qPFsHeetm1pp5aUA9M0zt+zvM/1RtUwnVfE3NWqbxmJFRXbLUjGF1EKqqWumR+nox6BzjZ0vsfnltEeKKkQnWOfM5u25/5777J59IDDOBLJtH1Pv1nTr1fCQ1c/eGedikkXLjNJFlAc84yq2YpEGUMARZ3ELthaow2JHJCuigg11dkevcbWqshT02RzTsKtjG8ODaRxgQf3zrhztmW76TUJPat+SCZJMQglQQ62ka4TtL3SD7p+JUV+Nvzwx0/4x//kf+b8/n3Oz055+9E9bq5vuL65IZdC07TkJGhN17XcXF+LcFHfo2cvL3jy7AUpBh4/ecLpyZqT7ZaYDThPsZa+62m8o2ksuykyhcR605JKIYXAlDM5RTYrT9c6QaOsgWptaC1mdOSYMKmiQRDDhKHQ9J2saWew3imdIVDJSHViUAv2QpF9wjqhYAFdVySLI8qk4uZqz2EY6W4a+lVHv1nRrFq9lzzeyoSsZAnTsxWYNpI3IsXY4invvScFpcPEiNEJSS1AGy9NdQhG9GI6vvdNi/HNTOlz0ZBTIkwTGOZJkDWO07v3ePeDr/LixQVh2PP0kyecPniAtbDZbvnoJx/yyUdPuLl6l/fff8x66/kf/vHv0TUtT5484eT0hG/+6q/ywQcf4K3lZr/n08+e8Tvf/ga/U77Jn/3oCffunfHo/iknpydEhKuPvqbxDVonx/vwl1GmOJpkvMrxNll45reC+Ywjzi5TsEy6a1GzcAJqkXNbwwH1oL1FT6VOA2rxlOZi7FX9W6VE5CIanfoTQG0xqYWbOLDFGKkOSNI5aUGTF1CpIrIyxY+Uaptpi9Y4TjMBhBOec5BsG3M83QbnEdOGlDWZ22JtpnLdTXHkEihECpmQIjlIEnkp4Eyi9UIVLBRCygwxcRgDN4eJhKVbbelKIafIqvH0bUsuhZDEJCEGCSB1xhLCpPql5T1p206nF7cbC1OU3qhUqDjTPGUf7b1fqFBtKxqwFAlh4Gp/YH8YtPkpYmjRdupqtaRHd13PnbMt6/X6r+Ym/yu6prhD7qFjvY7UGdXq3zqIoVA0bC8nXe+mTq/064udpxqGTOMtUd2UtJPVflMa2LqUDMuaKGURXkvTUHQSoGvFiA5IhooF7xs5M8i41mGKm4t5Y6oboNIeETMHk6XJiDlTh3wlLwV61dRWShMoi4U41yR14hhnCl3GmEgyUUEuVMeVNBtDvieXBKYyXqpBkNaDyHqpFPpCbeKrVmNpBKcwMSaHyUry19e9NtUhjMQQiKpZcd6rK5UnpsgwjozTSM5Z9LKupbMdve3ofENejQz2hkO6JuSqIzLzPjOzaepHzNFnj5sFKuPm6Ptf+d6ZkfOFH/v512s3GSZ77p7d5eGdR5ysTnDGMw4HDoc9GLkhpps9MUfGENgddgzjxDgMxDBxtl7z1QePeO/8Hr5vxUWpyE3vsLhiIBewUhxZa0hqkVeKwxR9iqXgqs8wCx2oIvi3x+MLh1e6MHnhrcbCp5RlqR5t5jFG2VxTUjRdkTHyfMjUwqM2N7PbiPKCnbUU42lItL6laRqmoNzRI1SuolPMKJSRoJcq5NImuboc1BvBeWniKoXqVX5z/XelgSx8dDnYGm0yTrb3MHhyUm9rJ91307a4Uuiz8FlnilkUXi86lckYXfhp5tJba/FG6CXWKRc8y+I0BYw1NN7jWjs78tTH5zBzs0bRsfk0EaZB3EemiTCFOTBJmpX4RjUZbz9+SNc3sw98jGLRu1qt2O8Hdjc7Gcm3ohlIQYKAVqsVz5690I1KNtRnL6/5//0P/5y/+MHPeHQzUt5L7G5uuL45EHVqIDaRgQcP7+n9O82ZEdMoHvjGOsZpzzQJHe7O2ZkWO4U7d+6wWq/pmpa2b7G7CVMK3jl1wChM08Sq74gpcrpeE8eoSBNyeKl2JqckWo0QiUnSd02MUFpBL5tG3q8k9nFF4FSxF3R2FqEaK5MwjIy/nXO0nZvda8ZpIqRInBLTsBfdRkhs8gbfNro+RCuWqVSUQjGFEFCtlDlaw4pQ+2a+t1OIeOXNYmTy2vcbMGKb63BC6dDpgjEOazLVGSWlTJmE4uWUR5+t5e0PvspPfvhjnnx4xUc//SnvNR7nDNvtGd57PvnpJzz56AXffvsuv/M738A6x3q75tMnn/Dy4gVPPnvKD77/Q/7Wr/8aDx6c88nTKzY/+JD333ufpy923Fy84L1338Y2DXkaZXpEwZXCML45glYBZm4Hb8Lt4l7Ami+mTP3CYD60EFN/e0kXLloYLSLVW/ujQUsEsbLEVBG4QRyjdKqhvYCI1oVrLjuzFHBSpIB19bFJ8Y/x8x5uavFmjqcjomeiqO2q8ZgkVZ9MNaT4Wb6nAmDVjjxBSYLI1vPCgDGCktoaIpstaabPVIpYolrZphKZaWPW4IxMwZ2zNBqyNsZMKhbrO3rb0PUbAYKMNgNh1Il54HonRhQpRVZdx6prNXlZJh6u0qBebSxQUCYG2e+TuPLklPDO0jcNq74TKlTb0HqnCPDIy+uB692eECW3wDgneqaUGMeJmh3Tth1np+esVivWqxXeWRby9ZtxxTTM980x6Ji1/Heu7mdwG1k36sqkYYTGzlMGU5KwL5xhQCyE5dvFTMCrFlIMd5am/FbzXY7YFAYkyU7WS4oZg1MgTMT7cn84PTduP8c6FLAzmMpcj9WJRK73p1KlsZKvVScIOSN5OYi7GXrfVwC3FMM0JbrOkmWGISY/tRk31VFK738K3kJIVe8kX1NUhG5M/c8sdrSmDg5Fn7EfE41t8ZYZ+HUGccyaCjEGpiQAgtepjUuRqA21tVYMcrqOrhWmyKqXe7XtPMkO7PIVY9rLi2COmoBbDcSyR9WaS8TrtW04mtBqA7tMLo4mGUdNCkcf/XnXazcZf+u9Xxfr1ikzjDJSTCky7nZ89uwpLy5fEkoiOhiLJHcn5c45a4i2cDLsuBO3tMmJZafVsBzX0fueECOJjNf4llQSFKfIhwMcUxEXmZzSrUNIbtRlPOfUR5usUfAV8XciyCwFcjGUStnT7485E3PQoMBFcFZveqsbL7XTU7Szhu855yDI55z1y1tohc8aiaopWJqDOp6tEwKhOlaULc9cQPRNTynP4VMzGseRkHy2VJRDSDiswsu01tC2DV3T4WkwRqgpRa0gyXrjWCNuNiXjGkmorDdU3XAsdbPLs9DOyAtJKVm7dwnOmeJEKgWr6F0MicP+wH5/IIwT0zhRohxCbdMsI8UkOoyck/6ptsKVK3lUoLwJ18l2g28dpkSMKfPovx4Gzov7kfWSj9G0Hu8d19c7EVi6hlIKzy8u+K//4e/zx9/7MQnL5cU1L/qWKSayMdIIOieuS97z6NEjEUqPI64Xe+BhGPjXf/ynYMRN7K2336JtO0FRpolV31Ow/OiHP+Lxo0e81b6Fd5kUJ6ZxAOMhF3Y3O1arnnEKqjvI5ByxrqE4cKYR2kdMFBeJxlCCweoIPat2AbLYv5ZCDhFDwWTZI8DpAWg1BdjLwVELMGtwjVC4euvoDAzjyGG/YxwmoQekTLfu6FcrcbpTK8rjoLZxDNTJyDxRrFQU62jbnmmaxJ6XpQiUA6KlSS0pFRpnKZNM06x1tw5h13ix482J/f7AquulCcNw9/Fj/tbf+R2ePX3Gvfv3yVFoJeTMyfkZ3/3jP+Z//Ccd3/j2W3ztV9/hG9/4Kp998inn255uvebF1Y4/+Jd/wPd/8H1+93d+m/fee4eUItf7zDCMNM7hkX0spcx63RGmkSllpmH8G1kTX3S56ipzNGn+ZYL5cs5YDbKy2YguQyemNVxLO1nRMxxVAcdNBkXchuTdKVL9myyIaCraPKrj3Yx0AsXO+3Mp5uhxq17uKERVtuU6hdBfUX9/rZD0IF8aHyjJkZJ47NdJitO0apA8hJQSKUcoWYvOMus7ZJqCoq0oI6AWByBib2GYW6sNv963xhd84yXtu4gBhJwPhZjEDce3bqH6V9ShyOvYd6dYa9jtDuQnmd1ux6ppOVut8Y0Dq66ARiyyZx2j0k1iCPOZUmnO1hTWbUffn7BdKxXKCNthGAauLw/sDiPDFKBSrpQKNY4jh8Mg05KmY71es1mv6bsO753a4gZ2h4nxDVoncKSrNFQxgLSGOvlNmTl8cGYUUF/P6uC2/Dyp4wvOGrwz+JSEQWINdaIsQfOqsSNjjJvvTXeU5k2BmKI0EtQ0bUHti2oPQpApTDEWgkz0fOfn3CFTf5ARAMh5S7GixYtpkqbdIoCzkeda73axMK6vCDPd0dmqgdWPloTcRuJSGtVBKqWlvpLJyBHAK68WdYXeoqez0C2ZP6dU9gqelIRMzh3r9ZrWtTI9G+tUpqOkQMyizZNzJ6r7lOggV+p+tu5XtOrsKvooj3Mtre3p3Ibkj50Dl4Zg/pf5/Mc/93Xmiz++VMjzgPiXul67yfjRn3yXm90O6zz37t5ne3JC23d442ltC8mQMfi+wXhDUDSnVEGo8wwpchNG1m1D6wyNpmg74+l8z5gnQkk0RpsFK0WGFNrypK01lJhv0YFqEVML7ToJSDlidROrgTJC0akis/p6yU0WUsE4S4iBKU7EtORlFP2ZRQtbZjcTHfVpZob3Dc5OsuiLdO5yQ1i88yQrHXRVDi6iLf1hn7uM0myWRqo2JctNv4z5Kqcv6fRBiiR1LbTibOLI9Naw9R2ueE0srw5RKhSzBozD63QjpyyLPgRCHGTEnDNxmjgcBg4HaRaSOvxYB3fOz1mvV+x2O5589oxxVOeulJlCZBgmhkF+Fsj0atv3nKw38/t6jHTWzeBWk6H/flOuxnsVn2rxbKQpm6ZJ7gOFN8dxT0yBzWrFpBMajJRGKWe+8xc/5i9+8CHDFAVJpGhTZ2kaTylJ80bEflG0MGbehArieX99vccay9npKffv3eN0syLFyMXlJXfv3iWFwCc/+xlhHFmvO/qTe5TLxDQMNN1aAFhgGAZaVzh0jm3XkscoQYJFChfrNSBTkSjr3LwX5SLUOMZpEYI7JzQvarGHBhOa+bmUwlx4ytBEQ7WsuJGhXO8QRigw7AZx84iJru9p+160GpWBaAw5jgzDSEkZ34qY22mIVC5y0DZNQzHilpZSUhRYnp/3La1y6L0Wmb5pFdkWWoK1Ht9oTk3KxCShhM562rbn7a+8z/n9e2xOToRW0rXEnNQpy/KdP/w+n/zkI+5/5Vf4d//dv8vv/96/4OvvnvPZi0v2U4JyycXFBf/sn/8+H330Nl/74D2ur/fcv3+XtusYri8EsMmLM90wHCjxzVknc+NmxEXwy4ACe0RZu42iVld9BZdiotiEdQVjpOASsXHVE5i5WdWfAFSR5+3QvaqPqASOKrSVEYZRwLA2BJDTQjf4nD25Ukjk+d12NpQGanmu9fyqTYq4DErDXYoF02JMIWmuU8lZhbH1NVFcTaWppuT5/C1YMI6ZY1/RW7RIE5ELQgNMWOdoTYu1DSYvomzRjzh1Cloed9HnbbG0jWe9XskRkmGz6jk/OcEb6LsG6xsyFlegbVpNrhbkNt6aTgsVatV61qsV675n1XV4Z8kpMI17LvYHDsMoVKgilBPfVSqUBPwZDF3Xs92cSmOhznogzczuZs8wSBNyGAaGcfplbuW/9isSNKuiTulA9kdpPmMMahYmZXuqjkogdYoyN2qKPHqf1KDVUhLeZaxzgtobd3TPFp3c3aZl55SXtYWi9Aact6QgH60aEqm5nK7zjLceY9yyvo6K4VIUxGUp/KW2WVgpWR+XrH2Z0lR9hjPgXMb7gnOGKaCUuCDfYxehtFOTkzrpxjCvaaPNa9VVZSqdSs43cUer4PMyQahjzqoniRjKNGHLnmBGJOkvCVPEOUzfU3DkYWCcRqYgZil929FpLXSy3dB3q9nyHpjDi63x83+/8PrcFlu+5J96j/0Vgbev3WR8+NHHFAp9t6btDvhuhW06Gtdwfn6XMSZeXl9K59a2BB0vieNDoJTM7nDgZhg4X22kmE2Gogi5N57GelyAxojosgp0ZHxlKUWEZ8bWkbN4dMdYsKU6kRW8W8bJBRWEzZ14noV6Ii7NkoCtaEHOZRaTxRxFqJqrcIh5TFTRTwlq1bRga/FObDPFTaBog+F1mmHnoqlqR6idea7DwHqj336DF2925vNu5hWzfP2M8lnha9bDzRpBD10xGJPprGHrHU12yoNUHn1FRmISn/ICFLUDjAkTAnkYSeM4WwjbGGgTou0YAyVG8AaTEqSMLbBqO8bDSElySDWN2A9WypfwbOUeSXHhEx+/FuXo/+qrI6Lb176N/9qv/X6Pay1dK82EMRraNk00XgrXPGWGYcf5+RkpZYbDSNO1WuC2fPzkOX/xvQ857IXD3HaWs9M1beMYY8A5R9+vlG6Sca6RDWqSDI7VvTvkFPnT736XaRJhuXOWy6sLzk7WSt3ai/6j7bh37z6Hm2uur69598FjvDOUnAhhxBhP4xxhClzlRBz3nH3tPZrGYIjsb66IybBabWnbXjY7a+dpGtYIxUF5qMYa/NH0kaOiDm3WmQ9CA06RPGulSfYOMljn8KWw2qzwk52L+Thlch5JUyEHaNctrpWC1rceXGGYDhziQJM8TVdo20qhNFTtV9O0GBsXAEP59VanHcagDixC8TsMBzWvKBQjUyuMJYwTIWasRzKGjKFfbfjg61/DxcBPP/wx02FHsQ1TmHj48DE5XPH0Zy/4yrcKv/Wbv8L3v/tDXOM5Pz8n/+RTEaXnzOFw4KOf/YwpTExT4PmLF/zat76ONeJkBshky0CYAotC62/+ksmuhl8diSDhGFEDWNz66n/C3RcTgpgDU4oYBzRFHefSnJ0z6xr0T3G1qZMDuea9xBpctdlEqQXGzBMMMErdMPUWlUaggLV191bNmFkmCihCukynFeUFlgA/nabphJyi1CbjsUWmzbkkqLTh6pxFBbiVF8/iujgPSuYGQwoiY1CgxqpTbn2OipiXBEQa54RzHwohZgnmM2bRNIFMLzKKEstzHceRYRjkzN/v2O2uMCWIyNqJre8QJg6HA9MUNHRzcYXy3tF3Deu+Z7ve0CkVKsXANB24OggVqmZnWedwMxVqVPMURGNxfipUqL7HKRUqhMB+kInFYRg5DAP7YWAYA2OI8jzfoCuVKIVtFWqbSmc5AnkwCM3OiV2qqfe9FMW5CPruZ21mbQLUhc8Lej5FpSOl2tgzF5u3kHxTDSU4EuoLGSeWRVu60NOp9bfWafK4jte11O/HTnBVj1tm44Bqa7s8FrH1LVnv/RwwjUwzcv28rl9jhfaUiwYDYsAc6VbmKcZSJ6aU5rWc5zrE6M+o0N8C3lRavTWy5kLKjIc9Ux5oEF+S1nlWbUfjG51MigkBpTBMo+pZypwl13hhOxjrjvZIwQVyzCy217/gep3b+pdoLF73K1+7Onv64kK9fAMhSzjQvVIk0M06TrcnhClwubtmGibcqiVZGdca5epNw8j+MDCsA6ggLGdonKV1DavSEfIgm7YWImNJ2FJAczSwcogjE2LUZ2g+XOrmKoIdM2+0NTiPUkghzsJDMvLzNEQpJfHJFhQzzgu7ouXGVOH27WmCy25xTtJL6DLMomb5mJUDqeT5UChI926NiBnJt/Mx5HHFGU3AVNRXCx/9vlLK3EDxikPGzH8vhXEaebZ7ytPrJ5ip4IrYCc/UL91Auq5js9mIpdokPFbvPW3Tsl6vqMLZxVLQzq9VisJ1rKO9FDM3ux3DMMycyjFErq6ueHnxkv3hwDgNxDipS4g8d+ccbdPSNg1N09C1onFpfHO0AN+cJiPEiWIsq249F8dt12NS5nq/p2S4eXnJetXhnSeWSNu2bE5OiClys5v43vc/oiR5/SOW+3fPuHfnjK5x7EY5jK02L8YYVusVd87PhBKw32Ot1SZRqUlRrGAvXr7gvbcecnb3Ls45Pv30M95+/BZ3797jeUwMh4ntqmO77tiPScbkZEGHNEW7GEPbtgzX1+Sc2V1fcnl9w4OHb5FSwvtOCmzcfGg0Vhx0ovKqjS14s7igFcDoGsdJMTejuuj2qQiXOzIegELjPNZDdgiXNWrCa0gMRdAh1zrWqw5nLK1vKb4whYEQEsWE+b52zs+HnISAilPaNI5zsq3QubTITPIo5nsfpTIm9Vw3lqbtpJCaIk3biiFE6fj6t36F8cULfvbjH3Dx8jPe/+rX2R/2fO3r7/Hko5/wve99wt/5DybuPezxfct3vvdj1uuemxuZTGU92MZx4unT56zXKz7++GMe3dly/pXHhHHAd73elfK6pRD/bS2DX3i52TDDCr1upnV8njJVD1BrDF7pLSkndoc9hzCALTRdS9NajM3UQDspCnTywNHh/MpEpIbcHU+InbVL8VLQIsZgbKNjYS1dtLBegCttjvWTS7ieNs6lkppUZ2EEcS2FW3bPRcEdoWU0GCN6oRiDTMlNbSC0gJqLwWquafTfUo1I9lPG6NlTUVehR4l41ZqIsYFEIJdJtCapEItq9ry8XwbVt8Q65df2yhqmlDgcDgyHA5nCOOwZ9jv5+RRK2RMy7EbRK4n2URwGN12lQq3p21apUInDYc/VIFSocYozFco2su+P40TcH3DO0zRyZm3Wa7quxTsnGVkxstvLFFMaCm0wxlFyPNSS1VqLb98ct0IQdzIxBhCAsLBYHB9bzx4X6EZrn6L3QK2DjLVC10Z1Y1qgVsc9CpRsiLHQ+Lpe9L4qdRXJ++WcIcakdY4YXsRUyNrIi5OfAWcIk7BKpE6BFDNtq3bERhomhzh0znrTSpPORfNPZMo1xZFExM1NVlGrXTUxyJmpJFIUd8ScM84bvBdN1TEtqAIA1ehn+VMmepI7U1kyzIyZ5SrzT6raJ2HRSG2bQ2A8CF3Vl0LnPa7ryY1MH7xvWfsW30lNNU4TQUNTK/PmZnfgMEwzuOK17nEIQCxl7RGg8QX30NI7LJ999eukRnzlmdXJWZ0qFX01Ktj7Gp3Ga1dnIsJJpCToQwyTPPK7Yr/prWOzWjNNgTEFyphJMTCkCWMQrrD37G9GduuRcbWidVaRdREGNcbTYIkFspGJRlTunbO1s0W5n+gkQjbwlKQTNdp1liKHhsPOIlxn7JK4XelW1rC4R9WCAb1RZISby6IFkMvMh9WxeLB27d5ZQrJLngbcmjgkdUcw5tUbtv7sxbK2pmTeOhjVqeH4987frci+dVWroYtEb3zZnCxjDDx/+pLrFzdCPzMW7xtaTQF1znH3zh3ulsQwjjx7/pzdfk/jPdsTcRMrOTMOI2EYsRiaVpwRxJrY0njPulvRd53+vWPTd0Jdq2PXR48Yp4lhlIIwpSTUIaSTr6E1Tl3LxKt9Ed7X6dSbcvWdx1lDngI4yYPZ7XazoP0wiR3dSmlSMUb6vqdrO/aXE08+fcE0Ze4/fMg+FC6u95ysO1pvhAKTJI1enKiSJIdbw/379zEWTk9PZ/eNOAXWfc8U5P4+2W7Zbjc06q7y6WdPuXN+h7OTLRjLYTdgcmLVWXb7Ee8aPdDlvcDJNOD58xd0GK6ub3j5/DmfPn/G6dkZ4xhomxWb7ak2frUJFhoXJgv9qtQabBnJF0Q/5BQ9y0pTguWQMxTJqTHqliNjRIqXZqqt43/DvNbiEBiHTJ4CORa6VS+6ENer7zzEIGnrzjlWq07H6GWexrRtSwyy+Xu9F+V5Va1QUV2GmwGCSueRAM5CmGQ6auTkZXN+zrrxfO29t2n6iDUtKRzAtAwx8snHV5ASp2ctq/Wa3ZB59vIzrPO0nSEdFi3D4XDg0yefcv/8jO//2Z/xwfsPtYD3SjGz5FhI05uT+F3pUjPYw22ktFIjCmJt7azFta3Y/g57boYdIYn2D1tIttCwqvMHigbR1UO/oqYVpUQLlPq7sxYFzizFmTX1yC5zEzAX9NTmVyFFzAwMeecUaSzzFKSUsoTKaQ9i5wKvTt6VS4+dzxdTHJSGgpeix0SlUS1Tn5pNY6wlFStaRub2Yy4MliJU1hp4PdMETMglyn9Jzr6ijli4gkfWGlkbHZ08V3RXgsUcyuCXBkDP0DEESoqkkDE2CJbgG7arXs4N7+m7llXX4oyRQnLYcbM7MExi6pBRvn4r9KoQEzGOMhnsVpyenM0aCyfFAiFM3Ox3QoUalAo1TJpHE8Xi1ehkvXV4LzWK981f/Q3/l7jqXrS8n8sUIFeRcTkCbIwV3YtRcLamzSP6CQrY7JhSwYNObpQWVFQPYC3ei+62WCg5zrpSa8SZydsMVmojbw3ivyKASy5S8huWNWCNVR2JZmMc5SNJgy3mM7WamWujshT4lYY061WpYHI6qgOMWvjmGcyt2qSojVCtqaoxRHWYytUpyiSKyfMEG+paY15DFqnlRMuVFwMHBXynOJHChATdZqZU1LWrUKyjLeB9nnWHbdfRtO3M7KjMmmEYZ3ZK13WsVqvZjatYS8yZkAJLRtARqEzdS5cz8dbfOT6Hv/jv5ejrFxC/3PoZP+967SbDeUeKWekXkq4rYknD6empoICajZCnhCkeWyzpkLi5uabkjPeO/fWBFsed1ZpNs6YUKUidZaEW5QkZ3VqxM6PgtYCnGJItQrfSBVQ5dTOq7urBsbxZkhC7cGZzyVjs3LnOm7qBlKPYi8VxjqIXMeFyGUWS5nGhoiuNb6QYNg5nGxrfadGv2R5VyG3KrTeuXktX/SptgJmSleKCSMrNJ78fq1kYiA1coQhC42BZ8jIFsX3L9uyEOBYOuwNTCIxD5DBKsXV2dka3XjPEyIvrK67DSHCQbMHECfY7SVceBob9QYVzIsovII5VOdNaT992bFY9p+sNm/WGtm3lXFaPMKPJuQ3Qti0n6/XSROQ8h+6FGDkkCUycQiRo4RfeIITWNw3eCN3IzpzrMlvROSeaib7vKTnT9z3WWg6HkZ98+CmfPHkJzvPg7jln9+7yne9+j2kYcN5xeb0j5sL52TmWQtB7e5oCTdOQcmC16mkaz8sX13z66VO2656YErvdnocP7rNZrzDI+nlxccmLlxecnpzQdlJI7w83kCPjcKDgWK07PH7erHIuPH95yVt3zpimiRfPX3B+ckLJmY8//pDt5pSUAud37ql1odrzGREGeZzcv0kb/VIUsdKmGhH5pRBVAyG0o7phOj1snbUUL04lRYXTpkBUIaAxi321SYlhNzLsRvrVis3JBusNTS/rMhKJsRCmiZwTq1U/T26stZjGU4pkYNRix5SMqVot0CDKrlL2BQ1XhLppGlIKDIeRGIWGUqzFr9fY1Yr3H/f8+Yef8v5Xvsp+/5LdELi8Tuwudmw2jl/7ta/zp3/yPZ5/8ok08cay6vsZpZOJ0g2nreews8TpgGtamq4TPQhWGvc3iAZS97L6361gPiBHQbnbtqHrO1KRcKr94cBh3DPGiVgK2glgSiLEQNs6Na+ojoLCw54peUClxAlaKSBXOdrdJYNnHhXo94hAvE4MPg8wydfVBliyf5birhZMpTYeFX3WoqueJfUS4LpAUhprLfznry9U0Tamosny2FKWpGZldenXH7kWzkWbaDrq92HU9SYnUgkkJsgtUxiJYyTHAsXOrnJgFNF2mtRsKUGpHs6RQ6ZkMYZo+35GYbuup9WJVE7CVAhhZBr2XBwGrncHea5GQt181xFj5DAMOuGBvpfGYrUSUay1ZqZC7Q4j4zjNGovDILkYY4hSlBswKlz3XgxbfCMT+ooSv0mXMYVcc7KOWBG14RUquFKjjZ1rE2sRjVxZEHzrrJjdFEuI0mDkAl3TEIOionXqNoMlLE06tfbLGCOURZP0XjW1fpHm+Vi/6mrjjegWrbXzHlsbE0wVHEu1MsVAtco9rotypTTJv8BkSokYpBnNWda0dQVvoJRRwF216hXht2i3tFL8XNHNTDdbgODbgZl6Xh1Nj+q6qla8DYZ72y2ll8mfWKRHyBBSYtofKOVAKjLB9crKqHviYt4jVOOURBwuQZgjbdNSKIwxSCOi+pG5GeDLGoXjJuHLv77eYzq0OGr66rb2eufJa6+mm5v97ONvjJnFusYJYrRareYXZDgMTLtEt+pZr7Y449ntdgzDnqeH59iQubvecGe9ovWWlN3sNtL6hik7Ysk0xlCsx+RIopCt8P2aRuwmYyrEUDlwTt94HbNpx5aLdq1+ERQZa8gmE4s0DmWmX9TCPpNLIGlzUT2UFy6gaDyOX+Q6bvfW43TkJ0ngMhZzzuGbhqC+4FJUJbUIXNxTZp6luqMcB/iVInoRp+4DHFGqxJ5WCrfaAc9IshZrtpR54tC6BjYWzqFtPHmS1y1qwBEFxmmic47t2Smrs1Nwkv3hnfA6SxYHqRQTN1fXvHx5Qbi5UUcQoRBMSdCkq5uGq37H+ekZd0/PARgPO1k0caLocxV6UQsIci9NRFAha1IBGK8snNe9i//6r2EYSGHCW0PXNdhoiSnx9LPnFGN49PBt7tw5p5S4HMylcNjt+d73fsR+hNPzczFYODvh5OQTnh0OYAxd33HnwR1803JzeSUhXQnOTk6lsEgy3TAWhjDw2cVzcWPqOkD5+c5xfXPD8+fPefrsOc5Yzs9OOb9zh5cvnvLixQt2u5GcvDR4KWHVBtVgSAVa29D1K+7du8d2u+Xs7Iwnn3zCy5cXHG52/OyjD/n2t3+Ld95+h2Ck4UQ338rVFVR2EcfGqFTGlDC5uqLVdaaW1lHNDJSWKNQaQcQEoZHTNc+2y0q7dC0pBaZxYtyNpCjot+ss29MT2nVH23qhUBxGUsqsVivavhPzG2NEIK4C1RjFIjSESYo4pTqu+h7rRJ9Ri+aq9fBe0neHceRkvSHo62q2d3j67FM++dnPGGNgdxgoxTNMlj/5o+/zzq99i299613u3z/nJx8idp5Hzaq1VgJRreX+2Slfff8dnDOSB6AOe8MwEEKgxDdrkiF7FnJoabEeY6CkROsd/aqnII9/Pxw4hAMhBVKJwrQ2UlA464ghC0UNoUwVY9QOU3+h/vw6KcOKrW1OdZJWd8uj5qKipVnR18Q8Fa96jaxfI1QbOV/yTEcy80+VouVIP1eEG26NvAYGO09EjE6Cy/x9EWOyGBgoxTxnyDkik2q1ryVSMy5k3cg3yL0o9uNmLhXM8v85UTT1OdlAzBNTOjCmPT449rs9MRYMcpbJdAy8s3RNq8L0wjAMjMNBQAQDh8NIGCPetzhvsN7jfEPKhaura0pOTONIiBMxJsYggnNrrU5CxEEuxYhznq5dsd1sWFU6lbMysQ0T+1GpUIdXqFBJJ/hqzNJ0Wsw5r9RfoeFWKm7ftXRvUGgloEi7Uqi1czQWvDOEUubPG7s4nok2yIHu3AIuCogbciQXwxSE0uRNpXnLHmqM3GYxqzubMzjXaKaJ0KwomaaVvdx5SdIOmgmVs8FYL0AwElzqnJgOGCodsCw609pwA3qiS6OrVq65VLOXGisgOTHy2tTJY6ZSx0IIoq2qWguddOSkLJKyUDOXyUSt/bR8PgKda70xTwZYwIWC1FqGohMhWbkOOF2t2b77EJtlLcacGYeJm92em5s91zd7DodRXsumEfBq3rMkQNY6T8yZaQpMIWAo9PuDGL60LbnAME3sxmEGvH7+VScZ/wb34dH/v/LHz71eu8k4zlywylcdp4lnz54BiN/+agVG7Liur685jAObzZa+FwpC1zTCCzae/RCYEqzVDSFpKq/VAqIplpxFGC5CG9lMramcUGbnDGdFbFooxJix3gnqlA1o/DyU2b1m5p6p1dt8yFkE7bMaJ6/agVl0lJeJByzF/ZLVoYFxtXhMaKMhkw1vxQo2hSLZAPONvPApZ46rPp7KST7mii8OJHVRlFsLpX5dKUp1cUuhhqw5+bxOH7q2w/eeotOHpJz/q6srzPUNKHpsnKVxnrbrZLPvOpx37G52hDGQQ9JC0mOcoXgRAYqIPrMbB8YXkWGa2KxWwk9sdNNLhSkkQp4INzfajB3f4Yp6+op+Gox1OO/eqCTjnMWiliwFf7WP3KxX9OsNJydbDocDzkmQnjR1gjxuNmsud1eCQvuWHDM5weHmhnK65vzklM3ZGbvdXkgVxRDGwJ3zc/q+I0czW/c9u7xgn0aMt7TGkZRy0jQNN7unfPrZZ0xByIjXux3n56f4pmG3E91I4xqhP6aE9y3WN8JZpOCbjpAy2/MzVps1T5+/5GYIkuJr4bNPP+En655H9++Ac4RY6Fo/r5sKszljKJoEj1nSXbMGiYFSTEpR7nA9TKTxto0T/ZCvGTlmFkXHIKF9iSQZCqahM4aSpJEZDiPT1cg0BE7vntOfbmmabm7k9/sDYwj0fUvbtaJRajuhLuSkYnaxPqUYEgnbWMk+yUuSdR2jeycFzX63E71XjGTvefSVr/Hpdy7YXe/pNwOmmiwjrAABAABJREFUabFN5HI38I9+70/4P3zr6/zOb7zPNz94zB/+K8A6hhBm9LjqcjbrNY8eP+LhWw8pRTjPKYnW5HBzAyhV4g25xFL0IAFtCuTkLMhi18rrfRgFhR6niRADsSSZABvBLFNKxJLJI7jGcmpW86FXW1lKEbt0w5yDMTvaVPSVSsVQsXbJFAWt5p9WrOxrZilMzNH+e9SiiOuTng2i04kYNCOjKLhUSSRFJx5oloC9Lbg1JkMJ0gjUs6gUUL64sWCyNNb14RgjdGOh1lix00bOk4IgutaIhaxRagdFuP5Cm5nIZSCVAccKbxtcYzHqYGMweCeiVJmkTgzDgWEYlIZlGKfAfr/nZrfTybM4wHkrk8yoWRei2XN0fY9vZZ8KanFuraXve/qz1aKxULOLECYOu4lhHGW6NUgy8mGcCDGJlaoRUXjrnbhO6ZSiNhVt09A1jVBQ+k4E5k2j0+c356qUIJD3z5DVFICl8DUoqn5bX5RUAyEWslUTYWd0Ghk0aAG+NKCZAlFoeW3r53Uylx0s7pjWKjig9VFBNE3i7KXWtRobUB2kapNxfM20yZznequUOmUQTUYuca5sjycPudRJoDAeMGKUkDW4EmvmyUwFip23kOoaL3OjUs/seUqJPu7aAMFMWSwUzdmQV0TOKksxouk7WW9x+PrKMfSTvl4ymfONw9tOac+WEIIYecRpnhimoo1dLnTdEjvgnJuB5hnLuN0KHL24y+e+uEEwy7/N5z6i7/nRzzZf8nu+4HrtJqNfrxYxMkZRpEzIicM4shoG5TIn2s5jbzK7m2tSilh7Z+bg+0Ys7A4hMcZINit9wAZLS2d7gh3ksEc6YVOyoi1gSpINkgJGBD2lSJEaYhERmd68KWpjdMSlbRvPOE0qEpdkaeesxr0XyULSkbMUgEEt9sqszcAtXa683osriMHgraOxjmQ9piRxdTKGxnrZZK0cWnIzH/Hm0CaDpcFYXEQESc6KgpUsz6kW3NaoP4h+P0Y2oaQTk6IotC1GR9GCwFLE6tGg/vK5sOrFgajvOqx1xCBd9BQCwzhyfbhiuLmhbSSrYRgGbm52jOM4p5F752de+BSCFgmSr3Cxv+EwDpxtNnRNg29aXIPQvWLA5ETbCMfdN55u1et/q6O/97imkbVlX+dW/7dz1TC2OhuuNI3tdkO/2gh61ok/tuhtxOIvJsu777zDy8sBh9CCri4vef70KY1ztBo8lVMkxUknIUKbaLyja1v2YcSrE9TNzQ7XeUFRsmOz2fD248d43ciur69xvhckZBwZxolcDC9fXPLBV77C88uR4bAHJ4ihseIKM44jBwNPX17xwGxZbTb85KMnPLvY0XrDo/tnPLh/jw9/8kN+8zd/g9X2hGHYY42nmYXI8voYdXdzpgGTMakK/sQemVKIYZoPpGqlLALWTOPAOF8rNUCtfMui+QE0+VZ44MYWrP6eEEf2uz3FCCLo+w7nWiiWlAJjGBjHiZPTDV3bIaYIzNOYHIPqSzRV3ES8GhOEEJTXnurTpdX1FGIQs4Zc6Ncr2vMHjEnsi1ddx0effsZnzy/47LPMf/yffMY3f/V97t87F8pqLnOY4LE5BM7x/OKCZy96Hjx6AEUQPWMgx6Q++m/OyO/FyxeKqOVZzOy9E/1LjFxc7WTPqI1nkelEsZK7E3OSRoNEiAVfLKksgV2wFC3o/WNMTZVfioa5iJhBnlSPI/235G/U/ICo9tzyMdDcUJk7ZCkw5tbjFYRVPn5MNDCa1F2vOv3Qf1WnNfRMSpmYxaa3kMURcL7HakNbNC9VBcKlaLaTFE8SNmaouSE1kAvj5q/FJnAJYzNeOKxouDZFqWglyvk9jBP7w4FpGmWNqnnCOI6EEKWGs47VaoMpRe1WG1Z+NTcYOQsNO6lIYrVacXa6ZtX3rFb9jLKHaeJmnHRSMSgdauQwCX1WijJhRPhOaVBeKMxiFuKXiUXb0vcdq77HeyvNS07kFIhvEP0W0OGaoup5KbrRpAl52tJMCLhYJ+SS01AqKJtFyryYKcgekizELNTqXF3PsrA7nBOqU0z1d1bQUx6agC4QiVjncVKqUUXQol+zYr+rmidx8NfQRarwW+oRY63WlpUxojdd7YioQveFwSAUQFlbc0Csc6QpLE2Dkbtfbv1qrFMbi0oRWpqMW+u0LHju4gDHrEfSRyM1mubjCG3Nze9NNdVpm5au7WkbmUZghPnStI1SyBqs8+TJiAW6muA0Vmrn9bqn7zq6rsc5qWWdCfSuOXqg2iAc1aef+5j+/XbD8AUf+wV/zjfCz7leu8kIioT6xtO2rXRexmrXmbi5uZl9kq0VVLaYvXbb4BsRQBoDrnHsxgPPr6/YbDpa32OMx1kwtqPLvbinFBHfdE1DSZCSjvtLwjrxAc8Y4RgaK8WQU1sw/V+lJ81jsFLmQ2C5lklBRSBjktTimKNuzGU+hGRTXxym6mXdUSifBnTZYml8Iyhv3Sh05i3ZHVDdDI4791vvnVlGifUGWPjAir6Z2kwUpUdJAZeD8N1rkZgRXUhUF5zWt+pRAN1qxYN793n4+C36viflzDSOXLy84PmL56TDQRBULyLmqkNZr7d459msV+Kso+L8oid6ykkL2ZGYIlMMc+Ox7lrh5zYN3dkJ52dbzh7d5/T+XXzbUnmRlRuZyxJCVEWtC0f1b/7a7fZsNyss4jDknaBAq80W6zwhBprGQ+NY9T3m4LjZwU8/eso3vvkBIRmevnghE4k40Dh48OihorCZ/WHH4bCX1Fvf0LatOFRaQRTXqw6I3Fwf8N4zmkSYIuen5zx48ICrq5dSKBjLxcUlm9WKD3/6U6yBtx8/ZtzvOD07ZwyX3IwRYxo5fCsyGxOXF1fEvuH68gXjYSKnzDgFYjLsbnbcOTvlh3/xHa4unrM5WTMON+QMZ81dmqaVxtoYdXVz4jZlLTY7OQCSE6FoksyLPKfRGi2EKvqcMUVcRlIWvyWvQnjnLVAd00SoWpKsL+cd22ZLt+oYgyCfh/2AS3Iotq3DuQZvLFMYubnek1aFtq0hSA7fGEpK5DBJM6lI3dL4W7KK86vVo/ci4j4cBrx+fcmZswePuPvwIX3rGaaJDz/+lE+fPudq6/mjP/wR/eYdjPE8fustPvrZJ2y3WzbbDReXl1RXmOv9gR99+DM++OAxNCsRrxrH4XDg2dOneGs4XF/+TS2LL7gWIMc3nq7viFGa30kT42tOkalTLETwG1IkGQkcHGMgpExvGhlCW4fNSULilIohhUEVmaITqMpJrpzjgilybjhFhGuxZpTOKq6AZT7L52mJIpm5FGwuZGdV7yc3alaQSCi0dm5gBAm1M8h0a8uvDkJFyBe5CCIs036hRQgtWE1LTNJzQ4uyYjAkmYTYgLE6PSkGkxGuuxaqZn4Maq9QvCKkSuFV05WSMilq/kSMjDGy0zBVERs3GAIhipWs95Z3Hj9g3XWYApNOF+UMkWYkaZbFNAWMMWKC0bUKKCTiNLJTKtThMHBQKtQwiTV0KkqFco5GKVC3GotGwkqFCtXRdS2rvqPxTgtHMagJU5pd644dzt6YqzAzHIQxYWcHO7l/DRil7mgTsdTA8rnqOFZ1EJXx4KxlilCKl7tOQVHIOFcoOVAT0o0RkNI5cT6S10vAUG8N2RqSKUCk8YW+94RJb8kMRV9ar82oTFLk8R0zOmIMMnk1BWNFDyVTiYRV19JKqa0NSNVS1Ms5K+L+VJYGTV+UXCcjszHO8l9WM4m61ue3wMgE0ZSINUVCnrMwZry1tA1AEjdGDIcp8fzygnW7ovMtxjimkBjHSM5LkHSSBySNRNuK7s5Zgp+otHDBkZyuj04a+WlknGSqfXLa6z5ZG8Dlz3mKcdRAvPqn/PFv9ucvun4p4bdvPM5LgMlhOAiVIQlFJjQtJYsdZ+3eGu8ZQ+Dy+jld382Hry9wExJPdxfcnU7Ydh2RrNy9lsY0JNssIi3jyGQmI0KyJdtUHA2KldA7Yx3OdVLIsEwYouZQVB3JMbVIAv2MIiBHFqxF0LKYa/p4Vr5h9c0/RqWk4DXZCKqui0Y+Z3GuwSqla37z5y8xHAu9hacsB3BFywxIUabc0ro51y58EQnV9imTkqCYxiw3Q1FxbLaRaZIMhs16zapbYY1ls1pxfnZO40VD8+LlS549f86Lly+5vLrkSm1LnRcnsdOTE85OTtluNvRdqwWV8D4tlhgiwzTO2or94cDusGcYJ0rJRAzRWjZnp5w+uMv6/IzuZEOzaom+IVurY0GLV/eeqm1pfEPTNvNh8qZcV5c7nr244f69E1atx3srLlOt+LSPw4j3jjBFXg5XxAi7g2WaWp6/uObRo4c475hiomsb3n78EFMK07AjJS/TNjQnwnt84zjZbpQ+JsXQOAx8/NEnHG4GnG1IMfLZs6dcX19hjGG73XD37l2ev/yQ/UHug/1+YLM9YRwOPPn0Kc41pJRoWtVf5YLRka5QdRpKjhjjaNuOvuuZYmZ/mLhzBmdnp4zDDmcyw+6K58+eQ4nce/BA0SavdA3mg8YrVzcL8AVAabzSkJXW4QR1zHMBl0GTXbMWlVWrYayk23vvNfBwooZZGWfpmg7rPTYGsJ5S4PpmhzOG7XZNv+6kSU5BkulDZLVaYWwrFEjfKKWy6GQQMFad8FA3vkzjmXnAbdsxjpPsNxr82a1WvPPBV0nXF1w+f8Hl9Y5hiry4Snznzz/hm796yaNHb/G7v/PbPH36nHv37rFarXjx8iUpJaHnGTg53XByco5v18QcMVlsjEsu2uC+OQhtCDLJW6/XGGs5DAdu9ntFtGVvywqLlCyC/lwysYizXkiJIYqYVwJPG33/89yAiqBZ9HeuntSwADS2pnjfPjBLqcJQ2U/nxGX5LGAxZTmga5lTshQMHqP0DaXUOSfF2hFqao/25Vwqp16AMYtYe6JmJUv+RaZmP4kTVKUXyr0nj1Y0KaRCKRERhJd5epMAdQdRFWyFgxNGFMGic8iBRCSborpBSMgkOsTAMAX2h5Hd/jA3d1MqRG0YvC3c2ZxyvuppfMthFGtyr4G1VnVMjW3oG8irrFz9TJhG9tM0ayxqQN5hnIRqeEyFOhLMzrbmr2gsVn1P1zYqOJbnnWsRW8p8Rra+mc/SN+rSTAdjRLvaVfcrE2g7R84gw5cFbBPas9yrNZU9FwnjleJS/1fviyTOkwZJy269Tu2KoXHC/U+mTjKEmpVSFHq0t1oXCtvCOSfNn8YC5JnLVHRqCG3b6ITKzEYL3lbaaz7SYIig29hCJlDmJkMa7Poc4LZ7Wp1S1OwLhwEFClJ9PaSyEwpmFU3PInOtE8vy2Ksgqmp4jYJduhFoqKUAtpVC9vGnn7LtN6z7DQZLCIlxnBhGyfeJRTR+Psvaq3pXb8UcRI48O9tmg+ydMSbR9XlheqxWq6N79/ONxvLn0iD8vM/V63j6sXzt/Jm/2knGyekpWUfbIQbhFEcNKymFYRw4TAfatqVrO7CwPxy43u2I2nycnp6y2WxIJRBK4XJ/xfX+mocnJ6BZD6Z4nGlpbCSSlegmo+FGgE/ZUZOO/mbenIjlLEt4kzs6VI4Pilsp23CUiIlsOrZ20xMpjaQ0IQ5TkwjBFQUyRh1onI7OzNKRzwvZmNl61WoTUbl3VeNRO+llrFWoeZjaYZCx86GyuA/UcXyZf19FpJx+3nq5GQTtMoqowenpCfcePGTjTtnfHLi6vCRnuLy85nr3hOcvnvP0xXMuLi8laCwdBeCMEMZJUllzYZrGo81DRnn/f+r+q8u2LLvzw37LbHtsmGvypq2syvJVANiA0KNbJLtJilJraIhPksbQp9Kj9BH0pqEnkRSH1GSTIpsNgGigUC4rK+214Y/bZhk9zLX2iZtVBSRNo5I7R2TcG/dExDn77L3WnPPv2mbOYrVibaQrRylGN7LdH7i6uWLbHajmM9YPzmhXS4pZgylLqqpiMZ+zXq6okyNJWZaURXkUiuWpQzj++etyWGP5y598yP5w4P333uRP/sGPhKLkAv3QY5VJAnuPC1A3C8x+ZH36kM8++5jvfO89zs/P+fyLp2w3W0L0YoCQqBpyzWmZ1CfKzcnJikjAWEsIEvxnTUldNFAAveKzz55yt9lwdnbKbGZYLFeECIdDByiePXvON977Bj5E/uanP+P9b7xPWc7TtC+Kc1NKsK7qGpRiGOSams9anr26pajn3Ny+oCpueOudd4UupyKFUbx8/gWvXj7nH//b/w4By+h6ynqG1YVooBAHORnEJgtMfa/592G6hyMkbVKypHZ+grXzZCIQEq1JiW4nSgHhx2OWhgryM4qiFAepwtJ1Pdvtdppwl5WlKmq8l0ZscIF5hFlbo61FxQI1hUfKICI7hRRFQUhufCEE3Oiw1lLXNRAl5LAfiAoev/UmV5+O3Pzi54zjgLGG3js+/OQl1zc7vvHeE263W/7zpkpOI35yzhNUOfLuu2/x4MEDyrJhGD22ikSVkFSlaZv57+OW+K1HWQqCOQw927tNsrHuxX1lGt4kb/wk1oxA1DJpHJ0gHSHRgoZBOM4rJddTdtK6Px3NRxZXapWzNOSYHFamIgWUiqLFAPJkX4TWehp2pfoAsU1XydQjD47Sz1P31q0YZCqa0AzShi9GB5lTL2cgJnt1sdj0iCNOsj9PiAVRERJ9ljSlJk1os72t2Ldne2XSxFdIHmJrzlRMhRhTkzHiGFAYxnFIeTHyXjjnGMYRH6S77kcn6IWxiSob6QfHzd1W6FDOi/lAOi+atBcqMwlwUSSues+hyzqLkcH5IxXKGIrCTMLt+65QpbVUVUVVClrR1JIObiYq1MA4iHh4SpzXZtpL0yhjajy/LodKVLaY0DAQup4tAkVp6XqPjklHkYYx3numZOx8clODPE1E0pe8h0lQriLWgLH5Z6iEGORrUqh5RW7IIGWvKKGZKXkv/CBNTt85YsoQiyoFAmtFWaR7KjUmuTZSCYGRLK1M8YzT9ZEgnXuoX6ZNyYvJVPGJNp7QYhI6Za0luqQB89JcxTQ4ziYk3DuPcv7lHpval9x0pCeh0qDY+4g2EZ/YKM47NvudhF6qAiL0/cihE5dBnwZj8r3glIQbEyMx58ckCiJa48aRfuynIX49a2jnC5p2RpnQjemauXeGfssF9Ztf+tLf75dU8d4X4uv/46uUXl+5yRiGXgQp4zAJNDPkq5VwS6MTjmxQIr52ONDJdgwYnEP1Hb3rKXpDXZUcBoePCmVLYhiJBKwpiWqEGOii5HHUKgqXz4t9mk8Ca1nkBVoOU/cpKciFtWJ7l5oKmejp1wRHk82lyuK5PEKVALx+6BjGnrp0aRp5DCDSkzA7oRBJnJxFmUodPZ9FLGeTm0gOvwn8tgI5S42OMJfAkZm/mm8scbsS+7Z4L+GWECmMJKbWVUmMXgSnzgmXvSyo2xqjDH0/EJSmbFqG5Mhxu9lweXPN7eZuajByl5wbnNIY0cPgcX5Mri16WuDk+wKmEJvQqqqp2oYnbzzkkf0G27EnGIWpatqmYTmbs1wsWS4WVGVJ9B43OrxzDP2Ozt+JmHf6cLhxwI+Jv/9//D981Uv53+hRF5px6Pn481dc3ezonOIH3/sWJ+sGaxKHfBwl0HC25s23v4Ft7nj62QV1s2ToPPNlQ1kU4rzS99iypCqlWYtKc3W34dXFFSfLNW89eUwa6aOBqix4ttlyOBzwvcPUhq7raduGoqyYz+dst/spLXzfdcSouL274/OnT3n37TcJzgn/c95yeXPAFAFjK2IqyoL3jDHivRTKZ2cnvLjYsHMF3RB49uIVq8U7ckIC1FXFOPRcXF6wvb1isTxhd9jhx5GmXWDLGmWTKYOPKQtDYbWgELHwjMOAG4X66IM0tybdf1PDCZAKfWkwEvSdxH2ZAx779GbJbia/yxSoomC1PgEU3eHA0A80TcVquaSoGpyH7WbPOMqa0TSFoBlRAkWdc4yDI9hIUZijjiRZ3XrnwBqqqsI7l1xbDG50VG2DaRvutjsKbYhVwaHv+Pz5FZ999oLvfe+7PL+Y0TalJBP3fUJGZHhzspqzWi4YgmdEEV2gLGqGw4BW4nilvkbWnKP33F1dstnuGIchbVlhyhAVdxk/ocVKH6mmPrgUlhoSdRL6wXHYj7jRp/wTWY/uO1iJ9aWa8i/CxO++P93LwutUtMQISgxA8r9rREQatEouT6mYmdLEj0OsaQCUnntIOrw8QddJNRqn35XW/qSbmIpedd9qPRc6eWopzlDBC+bhQkhNVEYxpDGaEBOORYVS2XDTEJSSdGlv6IcD3bhFxy3xMLLbdATnURh6F9geJMwSpcVa/HDAaENd1ZTGislEXdA0NaAokw5ss7tjs9ky9MP0GoxJjlVKzmU/CAUuRHnftbEUKcOi+J2uUNWUtWGtNDnijjcyDH6aPhtjMEX12nucz0du8r7KdPbv81DRoFQg+JGIoh+hLEqUD+hRE1x2nToOVWNG2ggozGSYY7Qh5kYjpvsg7R3GJNc+K9+HEvc15wMuQK5MtJZ7whojOiEXGUcgKoqCY5Efs424ltmwUgmtIzmoHYcAx5opO4L6Y52Z9BTBiwprdKMMgl2cXq9STEwppdIgOWajomPDYE1CwQmMo1DH4/2iOTVlAoLGNLeS10vM925q0LyGKM/JKKH/xhQ2W+gCq4qEopUoFIMP9N5zGMZ74Z0ai5UzG1PooHMTQ4Uo9tUkm3fvxYlqsVgwX69p2hlKazE7mLQpfKkpyJTQPEBhOh/x+A/HMxDzwOVIGbv/95h/TjzqYv624yvvOnfbOxEsGk2RBFNlXWGrlL55D0HIH+UwUA2DnCQSb7KuaGpxi1ienVPMVviiImixWI3KYZQhKgvB4YOZLCKZJkbSmIBOfhgCcQQvjYIkpYrVqtUGp6QoyCmzgWOoS24SJqpUQgqmBiYjBanjDJM4KHXY04Qhd+lHz3CtxJ620JbCFEL5yS5JWhOjCHfv95FHbcgEjBybJwQ1m6C8vAErNd2UWqkJPj49OePh6Snb7YbPtgeMShuJ99zeXHMYR07bx5yuHrDfbbnoXjGMI9ZamrZht9/hypIynZ/7qEJZ2PSa5fUWhaAQ+by54Bh6TxgUuippmwJfaIKFaCK2bGjnc87OzlgtVszrhuAc+82W2+cv6Pd74bxPDmJqSgg2WlMojSpKojlSiL4Oh/IDhRLq3xgiH370BT7Aj3/wPqtFTVuXaGNQpuDs7A0WyxO8qugOI0PvePb8OW8VhrPTcz4uPqM79NTWUlpD1IbNwXG12bEdHHq74ZvVezJJCYFx7NHKcHt7x+3tHd5FSmPw0fPN97/BkzefsJi17HYHLi9eyUJmFIdhwAPPX77ivffeoW5nXF/fgC6myY0bBmxVTTaJUhgY6qZgPqtYPbuiux1oZ0tuX30hv//JQ0CclVSMdIcDn3/2Kd///oJCBX794c84PX/C8uScdjZHFzKFjveGAHkgYClRWuyAY3KfCVNIpZogea3T5EqLo1SIJEtlKTCyZeK0oQ1x2jxiRLRI8zmFsYx9T7cfiP6O5XpFVVb0amS/7UCBDzOqwiS6iIRZDsPIOIxkjZVPzXJM602IYfJCl0ld4tY7z2y95uTBQ8bPbwhanuP+0PPJZ8+5vr7gycM5P/rB+/y3/+qX4gpXlKKbGoQT73wEJeLBsm3F2nUQzcy+6zh99ODv+3b4ncfl1ZXoshIqA5C5c0e9mRQfwtmOjMEJ9XJCNtJgxxiqumQ+m6GxhDBOhgsxgkkJ7QRFVKJNI8aUxZgKzUhCxbMe7qjdy+iD1sc9QSmFCqmhzSg4UljltTlv4CFZS2ZUENS9oNZcGcH9gMCYJqWZ1pALNPAToi2HmIiAFE9H5/I4oRU5JyHETL/KzVD6N5VMTcjuRJ7RD7jQ4+KBQklWiRs8/X5gc7dj1/ckMRghRKEpaYMG6qpkPm9pk3lItrd1znG73+IAh4COYr0dpsJOKD7SWLxOhfqSK1SiQtVVdoXKk3FPcD1DCp1TiqQdLI+1Cfn9PVKlQChf6mum8YNplp8uHXGHCsEwjAofwHvhPpAm6vfRu3uXXJrWh3uheLmOSHw78pA2Nc9eruFsUhGjTrUYgE/PJdklT0UqZGG61lYQtgkRyO+FPlo358ZdH3Uwko2Vw/FkLfCkcOTojq9Ry+A46zaMUgQHQpl0GCMue0rJvauSbjW4ITlCJUF8DGRtR4wOY6VBd72cpMlOIh6LbHUfK1DJFS4hIMTctoojXTeMDKM4n/bDmBC9IzVK6sQ84IAi7Q0+GV4kGA8FtLOWdjZnPl9Q1S0+RA7dgf3+MLka5mZictL60t/zujT9fXrfX9eoTdfDb/nMlx73tx1fucmwVcn6jQfMH6xpVwuqpgariYK1Hac7PuCHQV5E9nVGY4uSpmlo64a6qmmqikUzo60aorFgjNhBIo4IFkvUFhu9UCkwNKZAA9YrdJpMaIRK5EPEG+lus5uHMZqqKhmTwHDauLR0/yHIDRd1QmPyTZrWZ0Uk3W1Tl3k/K0OutjhdKCF1zTqFzxht8FE45IUxWC0aAmMNw5gE2+m2fM0pJt2kk7lIgsuPgVJ5cTSvvS59b2KmraKwBq2MZEwQ8AhlwyTxnw4lZV1y2O/58MMPub65QgF1U7OeLymMFceoGDHWTkiKoCWC5ngf2R12DOO1TOySE5EpLM1iyfrRA2bnZ9TzOVXd0C4WrBYr1ssV6/UaazR31zc8//QzDtstfhxotGVRVihd4LWbEA3vBvqU4+HGUYRPXU/fd1/1Mv43frStoakUs6YiJMvA6+std1vRMN3pPQ/OHzJbnGKLFudhtV7y5tueoffc3N5wfdPx8OGSqiymyY42lpvtgV9+/JSu9wlRCJRVyWK5JDuRee/o+pHNdoetWggabQ3r1Yr5bA4EFos5d7d3U+jU7e0d1lo+/+IpF5fv8/j8jJ/95K8Z3Mjy7A1Kaxg9Upglc4OmqTlstiiladqGshKrzLpuuQzw7Pkrvv3+O8mzXKb33f7AX//1T3h49oDz8zOuL56z3ex51A+cP3jEbLnAFiXaGqZqSSkISeRvrVCqtAYc0cm16L2TW3Siz8niXAQR1koApoRsSoMh2jKZbIp3e76mlVKURQk+UmjDOAx0XcfNxQ3z5YyqqIgR9tueYRhp64q6KZnNGiBQFCV9P+BGPwmbRcwu60a2kTVaJxtc+Z3eOZSxPHnnXfRf/ZquHzEq0h06Pv7kc66vb1nMNP/n/9P/jr/48/8LCo21UOiCw+HAs+cv+M4H73H+8Am2rEAZrC1lEpnccsq6/i1X7O/n2O339za9/OHlPeKY7WPSRjwGcbYbwojjOKk12lBZy6qpmJUFOgqZKTvywetoc6qspkGNIoj2LVFlYmo8cgmR/yVrw5Q6bsrRZY66FAExZiOP47Aq/1xiticP074hG3WAmES8BjLKPYlzE5ahUqigbEnZUj0h2mSayLEhisndZ5pd5i0riN4pRNI9kal+UnTl1xFiwPkRZUXXVOuKbtfjhlH24DRksEUp912Q81hVJXUlSMI49oQ0/DocDuz3e3RULGcrYhMZ/ZgGHSK49z7Qj+IyZc2xqcgNRl2WSbgtDjtChVJCYXaD3GP3qFDyfh01FhkVkrnEcaKemwudAuG+TvRbSPq0VEeltCEJW9QaAsT0GiNMFJtsYe9fG8BJA3FEPPJQU4nGNN0TIWqiiwQPaEmRz85SIXUnMSqCl3yjsizTdaSmBiMELzTpnAAewmRxLhN8QwiiwzB5+JqaGedGyQPKGiYVGX0KHk3ZYlortBZEVOqhiLEq1WfyURWWPqjpXhGGWE7pVl/ykDrWYtaAMZFDn877NAdI506LmY20Z1KHhiB2QFYblIbCtNR+hsZLmKXvCZ40NE1rQJBatEia0zyczvtBnwYwObPD2oLZrKVdzLFFRT+O3O12bHbCXMji/PsDjult//Kfp8vi3mN/52X/O/7hK94mX7nJePv732T16BxTCxdvOvep6JZgo4COoGcz4UxqTVPVR9suK5uAzguvc+x3d9z6kWq2wBZagmEwoAqikuKYCF55VExezyoQVbKAVYERaUR0lKmX2GB6jLHUdUU3DAzD8Np0zChJBo8xYhKUqLXC31tgxGXKi8tJyCK7LAx6fQObkIYo4TZWJTTDq6QFF25dYYsEzeYwMcgpmfd1GZH7i4WaGoxjyJf+jcVQCqeUljkM3Nxe0x12bHdbxiC5E8aYVChaSlWx6/e8+OIln3z+a4Z+QCvFfDZj1rYs2hlNWbHZblPa6rEgUEpRFBYfAvvuQD+MRK1o10vO3njEyaOHLM/OKNuWpmlZLlecrNecLFbUZYXrB25fvOTy5Sv8MGCIFEDhAtu7C57e3LDb7Rj6nn7oha6X0i6zw4a8FpNs8r4ehzGe995+yOUm8tnTG5q6pet7ApquH7m6vKadnbM8bdh1DjYH1us5JydL+rcGbm7v+OyzT1ivZ7z9zju8fHFBDB5jS2zhub25AVtiojh8oAQ+nUwNvOcnf/MLDoOj0o6yjxhruLm5Yb/fkz3Wz8/OGYLGR8++27Nertnutnz064957913qNsapRSu7/CmpLA1prDYqkbbJMAvCxFEdxXRdWyuX1I3J8xmS2LYicVe13N6csKjR4/4+c9/wRdPn/P5F8/45nvv8m/94Y/5V3/2lzz77Nf4oePUPWS2WFHVs+neBFJGxjHJttBie4wTM4ehHwTJ8QPBjeI8EqMgdwRJlL8XzJTRMDFCSHa3xqBTIJK3TjjCxmDrFqML9vsdm5s76qamqEpUITS0p1cXnJwuqZsWawuM8Yib1TGhViennIhY3cpmIraQow8URmyPx3FkdXLK+dkpH3/+DIgMg+PzL54zjoEHj9/mnXff4I//+Fv8F//l33AYOozSdPs9AFc3d6AtY4jYAG6U6V+XBO910/z93xC/48gockQoC7k4IB51CSrBuD54urGncwNDcAnp0lhjaOqC89Wa1XzGrCgwKuKiTPXVhChkR7IUVhWPjaU2sg+QCiw9udMkGkVUKJNCHdOMZ5oQItPvGDLyrO/tC5B34exIKCVuommlCbJYh2f79GyzKxQolahQVluGNJKe6LEpK0aaC7nWcjNNCgZUScQaEtUlRCV7Z3pc/lCTy4K85hAdTjl6d0CZkRgGiIJGaqCsCnSyD1eASjRgoQ/DOBxtYGOUvahPeo66FGMWlc6DtUKxsqagH0Y2+wPb/eE1jUVdHS1nC5Mm0sHjXc+Q9mOF8O11YX+TCqXitOdOlDitUUlorBK9Z3SClA1D5lN+XY6knVFgrZEGA5+uScmBqUpNP/oJWQs58yImEwGUmOMok/T+yXFpCjCNqRCXc6ESdVFplcJyhVYnTyc3PCnzRAfcKFo0vFznuR6fSvf0+8SgJDezYWo4sqUtMNVcU2EspyD9nJA7fzLFPRKw2lGYgFcdIXq0hcIIi8VHyW6LBFywgjyT0ByUWKlHyY9RaAqd2StyrZAQwPs0dmnos+4j06qk4VcqNeGJaWOS/iWkWI4YRIdSGHGYrGw10cXyEZKRgejOkkmFzg5uir47cLPdcXl9Td/3OfkH7n2eDvX617/87/pLX73PFlT3vqA4vvz8r1+FWfiVm4yyaQRWTWm5WmuKwmKr6p7QWlNoQ6GM8DKVPqZJBjA+UBcCcSrg7u6Gy+tLOmOpHynmyyV5/qS1EWcDlRbHABaBq/3kCxDwCnyyOEtXTYLbRow1iDD/eCZCyGngx2IZeO3PedHxQYTuvRsYvKPKFIhw1KTkx3+ZzztpP9LUxGjZFPM7lD2Z83PKN2GeS+nE981vYn5Ok/j1S01O+qEC3SE+5Zf+WhbzkOkIaqK7KC2uW68uXnJ7d0tRlUQF4zBwfXvLZrulbWfMZzOUEru6/eFATBOJtm1ompqgNLoR0XazXrB68IDl6Qn1bMZyfcJ6uWS5WFKVJW4cub54xX6zIfYjBYrKB/q+5+bygouXL7m9uWG332KsOM9UVUW7aFiXq5SAKTdaURQUZYktC+zXyF2qrTTvv/uQV7eBTz6/IERP3wsVqmjk/f/Zz39BWS94660Zh0OHsXBysuT8wQlvvf2Y/X7POEbOTs9488kTnn7+GUYp6rLgyeMHaYJoWc6XPHxwPvHXh2GksoquG/ABXr26JBTQtLWk8fYdhRUdzsnJmn3vGIMXj3tjaNqWu+0eH+DJkzdRyjD0PV13Rd3OOXs4EzEzURoWrdjd7tlUmpPFHOUO4Ocslit8JyiCc+LIdHJygi1LDsMNzy8uOIwDy/WCtq24vr4ihJGyKShKoRLZopB7WsvgQBnJFAljChKzoCVQJK0XQiNxgz+6GKo0gZsK1/wuSYEX7xVh1sp1pJOWStKiZemuyhJrNf3hwGF7oHSBom2wusSaisNh5PZ2K2JwrbG2ShNB8WvJSfVTl6SOadHOeylytWRgzOYzfvTj73F1u+Xu9hbnHJdXd9zdbQnRELXin/2zf5tff/yKjz59Nq0dMUaePnvJYXCEwaFszTB69ocOHyL9MPCVdoS/x0NCWB050MvoIq1VuTgPDCEw+JH92DMGTyChzEZRF5ZVXTMzlpkpaGyJUx154cyTWpBpaA6Km4pjVJoEH59TTKLuSEY7lMgKdZgSfSHvFzljAvI0VLIJSOc6U3AdwVti0BNSk6/APB4RGs9r2/c0Zc0e+6KryAnfSZtHstLMNI7p+pIX5lMDpPVRuApM2RMhPccpsylGIg4TRkbfM4YRExzBjXSjIMni/CNnsapqqrLC2BIJyRsnhzBB2UMyhyENG0uMlvfWaCtOd+sVZd1y6AZuNltuNzusMdQpIK9IqGNuLMJ/TyrU641F1mRmcxdxyxrGkaGXIdbXyYVNjlRT6OzcBBCnps4YhTGg3JfrAcjNgFB3chhfRt5eXxLkagAVI8YkBE1L6KuEuB8baMn7CUTyZ6lxUEoGvFro48ErIKBVQMdAac0UGqijmmj2mqO7kct6rBizr0FieggNKkaPc3Gin4boMOropHZ88SHRAKF3ovctlCBmmQwpT1mm+N7LPSW0qkQTuzeomGox0nmOuZzLCE6crr98nnwyx5mMDqJCG7nXs0mS1RLW54Og8t4n/UmiWeZhc1GI1imMI92hY7+9Y+wO6BioyzLtWel6yVfO9P6q155//sff9TiVG8Xp8/Hauv+1r7KnfOUm43BzR/SOsqqp64p61jCrGopSbvDovECmUYm2YuwYfJCQK2OYNzNW8yWLxUI0AZtbtvstgx/QMbAfB8bgMQYsGq0sMRZoRnSI+CBOSdYUjDGg40ihtNhdItkMHj8VEzE4YnBopSkLQ2G1xNxHEUIljGjqHtWXT1bqksUubEx0h9wcxKlByN87bRJKg1aTK0DuznWCbwX6teg+p4ofp52QczjCNK1XSlPXDSR0Ik/y7//u/P3iA31MZg8xpEC+xF2PkdF5lBH60/7uhi8+fsX+7iCi/QmpiVhtOQwjLgTapmU2XzB68T83RUG7mLM6O6WYz9Gzhnoxp13MaecLzk/POTk5YT6b4f3IzfU1Xzz7gu3dHco52qJEu8Bms+XzTz7h+bNnXF5dorTirbff5rvf+gHrszXaCM802wJHxMrSx4iLgUNI0zv/9aFLPXx4xvXNHe++ueQv54GqkIW363rmswVKKa6uXrG5u6PvH9C2NcHDODrquuTx41O2mx2ff/YZTX3CD3/4A64uXuKc0Gcen61xIVJUFXXdcnp6QjtriWHEaEt3ODCbLYjxmkPXc311h9KRP/rxD1GoZE3bsZjPUOol1mgGpeiHgcNhz+3thr/8q7/mh9/5Jq+ev6AoG7RRWCMit5gKPWutCNSUput6losFtY3stlfM1w8Yo6JLwVnOibucUorLmxv+6qc/4zvf/ibf+eB95vMZtzd31FZze/mSotBoEwm+wNqKQtWTNayKGpXCMqc7QClMIdSNMk+s71mC6oSb5qJKFtY4uUxFLwv5OA6YcHQt0WliShQurQKqsiL6wNAPuAheyeQrBsVm29ENjqYqqOuSupkTwohzA2Hok9BRobXQDkaXsmpCFH578NI8Ks13v/sBT59f8Od/8ZcEHzh0Pc+eXfDFp8+5fPEF33rvXd579wm/+vVnmMKyWJym8D9x9NEuUKS1ru8HMIYHj98gqq+P/79zDuflfSqs6OcAcukrTfMgqCyewQtanTc1qxVtUbKsZV+ZtzPKSnNgROxY8xqfi4RER41BUGxk2pjtKrPTn8qNab5e0sRVGtU8uUwtSmoucpES8+OlPAMVk1uaTut8LkZUaoJS4f/anCgk98JMX0jFS8zFnSb4VCiq45RenK1ABOLJ+58jJTdMOkJ5XSYJcH3SYoTpNWULUc/oexyeYDSM0I0j28OBGDRVWTFPw4PZbI4Piu1uz24n6fLBe6qiADIt2aC1RcTAYtbRDT1tUwuCBJIbpPXxa0p+jlCh5Hu0PuYzHRELObOvaSxUog//FiqUcz6Z2IzTnjqOQsvNttNfp0PeX7kO3Cji+6hCumcUEc3oddIKSUNxFOgyncs8dT++z7lhlt8iBX8+l6mpCAGUhegpCntvuCrrF0rE38aapNNDkIQc+BhJE3hphLQGlWgwU2DqvfcxJMp9rotyOJ73DqUSDd5qnB8JwUGyddYpy+Vo6iNNyJhYKDHd2yo326lO0kYMfqQh95Ink0TlomNKiGVCXYnJVyIiqFAkGQvFNP2QItxgIAoKFFycHq9S+LE2QmX3XlxMJfjZM46ZMXM0JLLWUpRCw6pile7VSG0L9KxFK6QRTxbYKjcaX2oWvsrX/84L8d5fvurI6is3GY8ePqSsa6qmoq4roRt4x+Hyiu1uy2G3Y+iHdGKE97xYLHh0/pBHZw9YLVapwLrk8uqSzXYrDitpstD1A/t+xJQSyidFQSkdMF7oDgi1oSlrClUyuAETRkLshbsfNIUpU8auFOzGCIKQi4wYIsocsyXuL1RwFIdGRG/gVRLaKX/kCE7TQ9JkQKZW2VUkQ4DyBkqjILzDDLjpKYGTNGUKMabFbhDLOK2SG05KJx4Hmf4kXYTWetJjZMG6bHiKDEtqnQThqcnQ6YYOMYqd7Lbj5u6WfjeKpibGJB4CxYgCdoc9s9mM1ckJ7XpFA5ycnfL47TdZnJ9Rty1lXafHnLFcrii0Yrfd8vmnv2a7uWE4dKjRUwbodzs+fXXJq5cv2d1t8NFTtjU//OM/4sm7b2ObCk9k2x/o/SDuD8kX/bX3SylUYVDKor/y5f5v/lidnBHiyPe/s6Ab/pQPP9lwuenYHzpimDObtRDhw1/+nPOzB1RlwTA4dtuBxbJluVrwzntvcHd7w37X8+aTBzx6+IiXL59hCuEj96OTSWcKZ6qris3tjtJqPv71cz765At2+w60YbPZMfgDy/WC5XKJ1oqu6ygKy+XFBR7FZrdjtVgCkd2+45cffsj3PnhfJpNDRzOrpBkKjr7viKmBNlas9W42G1bLlvOzFea2F9vdsmIYHNvtlnHo5ZrzgcOh55PPPue//fO/5Pvf/ibf+e53uL3d0iyX+Bj4xS9/zve//z2U0rTNAjs3+KCwhU6TPD297pyLkZSI2JRLkq12dZqapRs1PVQWYrmu3MRrRyncMEJhcSFTmvKmjDjUaEVRlZgIh3GUuVryiucQ6fuefq9p24bFcoaxFYW2REQf4ZwThy4QG3Cxz5GgUyWJrkPfsVjM+Q//V/+Uz794yuXLV8QIH3/0OacnKz755Jf8k3/yT3n04Jz1esnp+QOKsuT29pb5csl2t8NFWCxX4r9elmy3gappp/P0dTj60U0UiWOy9RElEBvVgIsex7FAVkBpC5qiYl7NmDdzqrJBaaFueHXkGMvcRtAiuQxEHIoOqYDI4a4RcYxR0++PiWKUrWPN9BzzkQtaJmpKnhArVJoIC21PxKsidI1BtEFa2YR4HIvidDHLRy4Ag4KYTEKiQZgdGpUDBTWYABLG5xHqlORzyPaikt2zFH8xPW+pT6PQW1QK/iPdKwQiMlDwDEQd6Z1j3/eYoqIuKgqjaZpShhR9TzeMeBcorcU2Nd6Lzf0wCF5jtCQZ+xQCe+h6xlEosH3X8+D8nHY+py4NGsNut2fwyWVHKdnDi+K1IlKmq7+dCqW1mfYMsdB1E8oyNRYu6f18SMYpWePl/6e+3P9HHdI+5dC4Y3Mbgycmut0wiAZDvp6upSjNbkgDF0hfngL7mChSKmpxSZKvJivplMeFnN+iEB2Fc2K1OoyO0hbpucmRGzSVEAMU4qJnRXdwnzGS5uOplz/ee9maOqOaMa2z8lBpOlSq9DWKqKAoNEq5ZLYhyKigHamp92L3m5haE13TqKTZCxIRUKba0PukfYI0pBJqcUYwjRI9CiHtK8noB6R+MspiTAXaJDOSKKHRpKCFmAxJvGj3xtFNSKRWWvZWhGpJDKgoYZNlWVAWNYv5DIC+P0yOm3J9/LbrJ97/y5f+GF971PH77/2seO9nxHvfF1/7cb/z+MpNxsnpCcM4cNhvub16RdcdGPqOzXbD4XBIHv5q8og/WZ3w6PwhD1anNLbk+tUlN7c3XFxdcDjsxaWqLLDGsu17XNcxM5rZ6VkKrYtoU0KEwozgA2Pwwq9GnEFM0j4U2lDowIBMujMn0Sddhk3pnooEvUUPMaVm3qM95QXsvu5AaY33DudGfDxe/FmEFGNanPPirTVGaYw6+j4rJYF8EsonAnBrigTRSSBQfg7WWpSyaSrBMZgqPc/77leQ//0eIqIE6syaDZ+dTZCJgkqPDSagjZapa9GCj4z9wOHQ0409Tngp1G3LYtGyevsNTh89omwamiQ+WswXnKzXnJ+e0dQN4zhwfX3F1cUrtne3uL5DhUAcHdvrG65evGIcB7QxtIuWJ+8+4cGTN1BNxWHsue07wmGQEBpAF4U4luTNI5/TbBWszSTi/bocxjSUVcP+cOD29oYvnr6gnK3TYi2b3mLe8NOffsSnn3zK+mSFMZah9/QHT9Vo1usF3/7OB/yrf/lntNcl3/zWt7i5vcKHQNs26DHSjSOjCxIwl1Oxoyz2l1dXDE6ml2Nw+EPgbrdlNp/jnaOua5o0LfTBi6bDO4G7ge3uwO7Qsz454fmz54DBjadgrBTLyWkHxI2pmhUs13PWJytiuOXybkdR1ngU+8OeSBBL3Zj4vtrw6uKK7e7A2ekptijYuMgwdEQiQ9+jIxwCLJcrdts9VU2ynuTYz2sla4WXxV1ZQTvK7BSX7r3gHK4fUNETc8GiUuARI84HQc0yBEwSiachgDWaWEiBNIZAYSwhudQVqsIFJzasGqIB73eEEGlmldgghiiUElOAUgzjgBsDw+iwWpzZCA5jNPv9jv7Q8eDBI/7df/cf81/+F/8Vh+2Wl5dXEkjWyeTy5HRBU1dsNhv2SfR3en7G4XBgs9vy7e9/D9fLwAIFUR0F4F+Ho67qZKuZJoAJbTAmOdXEgM+pumkny0hwU9byUdQUtkAGSrKOYuQCmehOSkwujCHZ4GZ0Qx4nE91c4yRBrYKgjsVcPmIUxx0g7TFS5OZJ8P3H5qbGJ/ebjExMa7kRRP3Lm/Sx38hNT7qogkquUqPwy6MIWU36AaPzRFxqMsBPOXv3hmhRE6NLxYQ8IE+upSMK6dxJcejjyBD2OHoGF1K8gpZ8jFFErF034pPIt60aonfsd3uGQRD3cXR4D9qMgKIfJJS1OxykWFQhGXdEHqrIfD7DajBanu99xCITvtR0nn4bFepo5T46QSjGcaBPjYUbHePop6ZC9nLZE51zE03663RESBP1hNqoLHyWYlgGnYlZrzJylRELnfQ/kGcyXz5yaniMJBMEGVgWRUGMnsH5ZBISQImOqR8SApau7Zydkn6g/N5UE1l7bHCAyU5XK5nmy2tMzzE/wfQzQ6Y8BQmf9MGnUMhMw1Ppzjuaa6SZkqwB9/JysoYzryfSeGenOo+xEtYXQhKHTxEEeUiVzIa0iN5VGnqnsTETnQyhfioUVVnhcPjRE1XAJClBca9hDiEQC6FyZvG3tXpy1rNGhlS2TAN+Y5mofn0yTBjGqQaU0/e3NQX3/hzvnf3f1oB8aYGKr/3hq7QY/z2ajA9//SEhTUl8ThqNAVdqrG2xQGktdVlxuljxwVvvcTJfcXd1y0/+4i+5uLxi3x2IMWBLQztvpdBRMgFsqpr1csaD5ZLKiKBYG43RFkxFRJI+85wlux1opUQDogO9Ef5dtuMKYQQKytJQlVZcaDiKqF5fqI4f+c2abC7TBe1TEJ98duk5yHOZbvyQEyyzMFmjQ0qu1mbKypi0G1kjEX2iR6Xm4R43GfKCchSfu3u80dfRmHyjJeRH5wIdUDLVs8rggkJpSztvMZQop+i7ARe3DFoxa2tOHz7gybvv8ODxI5brE+q6kbC8xYIHZw9YLuYYrbm7u+X5s6fc3FwxHvbgPNF5dtc3vHj2BXe3N1htmC/mvP3N91g/OCco6NzAje/o7nZEdbQBFbvclqZuKFLQkrU2BTAVyXVGbA1N8k3/uhy6XHD+oODq5iMePn7Ew+vAtjvykyORwhqWyzmffPwx3/r2t6iqihAiwzCmMMOK9cmSB4/OudvcsVq0LNdroVgdOp4/v2TTjSzmC05Pz7BJIDn0OTwpFRNpIrtcrKnbRhw9tKdtW+pkQ91vhN7QdZ2EWDUN/eD48Fcf8Y/++A959sUX7LYbQTCUpqwarBbY3JYls3lLbRXKlpiypihueXA653YfsEWFD326fyRkLQK2KPjsi2f8+X/3r/kP/r1/yqxt2KqSpizYvNpyd3PNcr7g9uaKN996h7vba1ofqWqpBsuimMSDSmkyOTkKN3CaiukM+geJTfNOHKlqhGJVGIMqILhO/M2BwlpGK7QzP4wQxa7XlKU0AwmJsFgpVY0mxIpuMHTDgUPfY4zoqYT+eeRSa20wtkQnBxyZnCpIm3xpCxFq9x3b/YYf/+gHdPsDP/vJT7nb7BjHkT/88b/FW2+cE0LHLz78Jv/iv/nXeB8kg+Dujr47CFIydhOamde0/Wbze7gjfvsxb1siUbRqhZ0QtnEcif44Y8sfWkuoYFNWNEVNbcvE7ZY1OAuPk8H9/dYg0RjCPcRg+nTcmKNoGKLOeUcGYgrbCxGV9BhSFN2bAk/NyP3fl4PRYhpqiVuTihISGcluN/cLwuRQmCuxSCqgcgkl+hUfB3xwqYlJIlikAPIxoStao7LVesxFqAzFhC6ctRpq2guJkcSpuYdmOHzsiGakKBuM0Wz3e1QQEXDXO2DLsm04n6+wVnHb9bLHFxaFQSnRijnvGdxINzi6oWeMOQMEtoeOZy9eAAEVzyjrmrIocCljS4rV3yXefl1jMbpRbKRfayz8REeRPTRO+2jWjuTkdLG2/3o1GTohUiQmBEoQ3XDvOg+JRWFQBJVbsYQUEhJ6wfH6UF/WdYZUiFuUGpKGICFgwaNVkXRThsNhYHQedJGC50hrzNHlUgafMTkBpqm9soIgGJOuDal3FEcHsIwkTQ6e5BiBYz5OVCSkIdEHY8R5ICh8UGkwIcYo2mhGN04IR4gKH+VxyqRhAHLJV4WwZtyocF7yQBRRrHzxqclIWRRB9Cs5zDxquWfy+dQRxv1ehPEJ1VOI1rCpJRvM2iLZ2MajMyJ5GJ5F+Mmti0g/eqJy2CK5T3Udu91e1s3hdRr9/9AjD1vymqbuXXPpn/htOo2/7fjK1VmxbtA2ew0fEyXlAhOe5MPZiserU07bOYf9gb/6yU/45S8+5PpGfN9tVVA1FW3RoIynH7eMzlEUBbaE637HXX+gtTNs5pwajcKisBjlUydtscri8Qx+EBG4ghLPGEIajIV0AUesFhHxMI6MIQoncKJfTad3Qi+mwj+dQEmdTdy+tDgdg/DitOjlDSbqtFlle7z0BuUJfA6WOnayPjlemeMNFmXyJouiNBzHmy+/ucITnrrr1ADFNAWTvSM3QamxyRduOrdVXYG3lG3N7Kxg9dYbFLOW9fkZy5M1s9mcsixZLdc8OHvI6ckJZVGw22x5/vQLLi9fctjvxDoweMIwsLm94cXTZ2y3G5q24e333+Hk/BTb1Aze83x/IwWhSrakZYUtCuqipq5b2nbOenHCYr6gqiqssZMl8JEuxb2L/utzdIPj8YMzUF+AMjx+/JBPP79i7MPkymq04eH5mqfPbvj1hx8x+9H3URiC1bjBUpmStq359ne+xU//5qcc+oH3v/kBP//ZT+lHz8XNHXcHhy0b5ot5gqMN/uD5yd/8TPieCK0P72mqhjceP2J/2AvaZgzOjbRtQzeO7A69GC0Yw2Ixx/vAR7/6iD/84fdZrdYQIlVVSgDa2IMVBAMNpi4hBkbnma9O6e6usUXFi4sXSDhTxTAMWKMlx0C4kNxstvyL/9+/5A//4A/4/ve/z5/91S8Yo8ePI/3hQPvgAZeXl4xdR384EFXBoRvouoHz81PadkY2WFDJNjSGKPeeF5pABAhgy4IYAnvnGNyAu9tiC7HVtYXFFoXwzpOw1hrhJo/jKMVlIZxjZQxFWaTptDjPgXBmy7QWGuPZbbeMbo8LnqatZD2hoyiLNJFTKGMxRUF36Oi7PVYnoSGKMXi6fqBpCr7zve/w/OkzNpevuLm644NvfZunn3/Ce2+f87//3/47/OSnH/Ps+SussXT7AzeXVzx684lYhu52XF5dEoNHAcP29vd1W/zG4YPQpcqqpG0alIp4NzKMnRQHo5qoBEprKlvSJodCExV+dOz9TlCCEKCJlEaLGUCUojREcYu6vw8eN+IvrRr3Ns1jAZb3BBJl875Ue/qJkxnHtF94jzZpvhmFt54b/okHT7KyREOm/wVpRPLzzGh8DGJJi5LvkcYhTui8/G6DipkymwOO89qfKCYq6RyIk4vi625YaWimTEK7PWPoCUVPWWjqsma0QUL4IjjvaErL2WrBcjEjes9YN2Bq+kEK+qI0GFsI+tFF1OCwVu4jojjnjMPI3WY77dXL5ZIiCVlfaywmFPtLVKiUt9Lfo0K93liEqamYBoaJIiXD0uMg8b5z2NfnSBPl7DxGKs4VFAbKpmLfeQZ3DGsElQZOxywhYELt7jtFyhdzUevRKogGMkoDnOsI7wUxd0GaZGvEhlvAEz0Nt++7V4n4OxK8oyo0zml0VZA9Rid0BHltIURcdCkPIxKUaEsdHhcDLiETEw0q/XkY0vvo5XXEKOu3Sxa3xmjGcSTERJFFbmpjRCehiJRWo5BGPCOd0/0WIrkFyKLs6d2ZzmFq7uLRZbQtLEOM+NTw1aUERpbWYK1OpkTSGAqqdmyEMxLonBNU3pS0bctspidrdKsNpbWSs5Hqz6n4/1IjcP/z1DhMddR9jcW9JiP//7U66yvoN+4dX7nJaNdzObFpAS7TE1Aoaluxni94vDzFRri+ueEXv/6Q569eEtYlj958j7KqKEqLLSwoJiGX9UEU88ZwMx647HactC2NLqSzVhGUJWIJbiQgG7vzqWDAobWh0JoyKnrj8ugrCSs9Jk30jTa44PBpmpP9PRRyURqTO/esuVATPcq5QdCLtHBH7m9Y2Y87OYFoNU1YVP4vIxvapAm8SbzA7Pwhlmp5oqDUMZNDLsTjopAbIZCbV2nxMociaSqOLlQ5NTI7OMQ85VUKVVqq1tJUC5anp7TLJbZuUEVBVTbMWwnLOz87o21bYghsNrfcXF9xffmSoe8wRMzQs99txe1gPKC05uyNNe+t35OkZCIHNzIOWwJKHKFMgbUFVVlTpcZitViznC2Yz+bUVS3XyURNc4xDz5hS57N+ZRhHnB/5Z//oH331q/7f4BF9wLnAMARGb3AB+mGgrMrJZSV4z7ytODud8flnn3L+4IRHj5+Q7WW11RSlpZ3VPH7yiF99+BFn6xUnZ2eEqHj08AG7z14yDCM3N9eE8HaiJUWub+8YvUsBmLIxDN3Asplz2B2o2ophGLm8uiZERVO3DIN4cg/OsdltsUoTmoquH1ifnrK/2zD0PaZqKEpLVGB0oChLdoeD6BK0oSwbYoCh37Gal0JJsgVuHHn08BHf/Ob7/Nlf/TW7Q0dUiqvbDT/78CP+8T/8E9oSfvXhZ8Q40DU1o3PMZ3OGvqeuakIIHPoDH338MYWNqOiwRUPVzO5Np5UgC3n+HVWallt0oxM3HsbDgcPhQNd1NG1LUVUp3yU16s6lLSZOhRlRONBKyXTMpgmaD4GoI4UtiUSslftzv99yc3PHMLTUdcOhiygjehVrk/ucLVDWobRh9AOb7R43SjEobmBCYfvDP/5D/j//r/+E65tr9octf/NXf8Os/THvvPOIh+cnXF/d4oNhtViyvbtjvlrw6uUFfTdwe7ulKg1N2+A3N7+/G+NLR0gie9f1dCJQw40D1lpCChU1aXZotKEuRQuQ7YB7NxJVYAgdh2FPM9TMVYPRKXyL46TWaDXtWwKZvo7+HtHr4wAN+NKwKU5ZFrlIy5/v0wZCSOt1TLQjMg5xtCmXhiOCScJwdUSes2g8InSk4xArFwlKrsVElxL0Ia3rGQTJ09VcUapsiJCmkDE3HYnDHwEVJA1aoBsiXvbKMIKSLIRYW4bDOOW7FNayXp/SNHN80DgPQVe40DMkrYNJLlFlVWCsDLrG0UKasIcYGYsR5WtiDLy6uCJGWCwX1HWNsXZqLLIzogigxwm16IdeaFDuKN6eJtdfaiwyHSpnJ2RdozGGsixZLsWc5ut0xNxjxGyII2YuwoxQGB3Qmkk3lItNQnK40zo1vGlsrxWZniSXTaQwCmtEgyTomwxrxMjLSOhfiMmhSgpqo7VQMJOAWZHpVsnRMzl7Rp9YIUaorcaIm9JUqSZqlIr3BtghTPeD5Awdg/nkiUNAhic+3U8hgBs9ttAYo3BeGntt8nU3piYqCcBTYx9j8uBK7lTZke1+Hk2YmENxsn6e6Pb53syFdxQ9SKEtZycnEp/g44ROgqLvBWmzxspQUGeEVJMzQKT2E/lBCFnNEVAxYJVCF4bC1DRVIY5r99ah4+z8NwXaX0Yfflu/8Dvb7Pi3/NvvOL5yk5EL1rzwahSlMpzMF5zO15TasNtsuNzccHF7xZ3qWbx1TjNrKQrRH+SpevQRrUQIme+HGCK7MHLRbXjs1izKQhY8JLk3qgKjB+lqQ0hIhUyLtAJDpLSKypO6z0BMPvrGemwSzQyJtqKTIMdMej4PyiR0RjaOzNd1fsSHMTkafEn8nc993gzyuVLZYUom8CF6NAqbtQTJGzrtGYRk52YT97HrgzjfpGlETHx7k24YrTKKdLxEZGIapy44XxS5GcwOWEojRex8TflwQdOsaGZLcQ5rZqxWa87PHrBaLFPBtOOLzz/j5uaKfrdDjQOlAjuM7LcbdvsN2ijeOD9FzWvGEOhD4DA6NkMnrVxKuS5sQVvNaNs5i3bJcrFmvTxlMV/SNDXESD90XN9dcXV9wXa3mRaHjOq8/nkiH38tjrZqCE5RVS3Oa5bLNWV5QSAwOI+JnhHPvC5YLRp+8tNPcO67xChIWdf1olUqJfDuwcNzNpsd25trHjx4yN3dhsoqZpWhKgr2hz0QGfqBrttR1w1t29D3IzGK4HG/76YJFmnx7PqR65sb5vMldVXjQkiN20hdVgzOc3Vzy+LNx7L5v3zJOx98gNYw+pGh2xGjx1pD2db0XU9VtVRlzd3mmjcenWGUo6pmjKPj4eMT3n37bRaLBYdhQEfN9e2Gf/mv/pzvf/cD3n7vLS5eXHBz9YrGFng3slovhXqhpdgclObl85e8++ScbnPFbH7K4uQcW1aCchlBx1CSOKaVwjuZcGmrKZtaplQhYKzQlQYn+S7GGglFKix916U1Qvj8kk6bhIgm5eykew2fReLirDKMI3XVCM1zb9jcbdnciXc7FpTkjtI2NUVlsUUFDahQ0e+39KOTNUl7jNaMvuft997i3W99g+1+z9XVC5q2RZua9959g3/vn/wJn332jLpuqcuS/XaHG0eGvufmdsN2f0DbGWDFDOBrcizmM9wwMg49u8MW0qqrtSF6LzqjGCealNXyYYwmpHPfO8f+0OO7HcXesvYLHlRLVJkbDKEk5SC75Hw6bapHB5tpFZ+KeZ0m+7K8xolCE6OfKAMiwr1Pe00uM3n+pzU2PTYnZGRXm7xVZw59zq5IELbsL8hziWoAvEyw0/fkQi+L5HMqcS7Yssg7oyfZ2lPrmHQlR23DVD7FzGePxCgceOcGnO9AOdqmAS+DCdDUVcOsnaGNxcVIsAqrA3qMxNiJuyGKurTUVcm2kAK563tG50U4G4W3rqPYdsrQzVCVNUVRSTAnKcfi3mBpeE1jcWwscmGYDU/8RIWS4vHYcAhlsaoq5vM5J+s1y+Vysk3/Oh35ssiWsuIgluxVlca5IMF59yxQph1xgjbUVIPdrxJzA10UBmsVYXRitZwsn32U4lbSsRWjH6fmUZrsIFqz/LOTpuNYKEtDZE0xUYIke+LYNMvry2ieT811as4TmhJjSEF20pRnlC6jDVLnRLQ5Gt4cHUHlnrFWgxIBtk/D7fyctAmoKJQoeTpGrhkXEloaE7qT7jclZL8wPc+ARRr6nMHTDT1N1YomOMrA2btA30ssAsheYJJGQ8TyxwHHFMyXrlefnLeGbjdR0wpj0SYHJuY26Pi/197ue43Slx/32jXz2iWS14YvXY9f/uLfcnx1MnsSDSugtgXLquXBYk1bVPRDz+XNFa821xzCiKs1y8VpEuSqyZXJqJRQmZipppJgOiLilOAjd92ey/2GlRFbQ6O02KPpgoJiSvWMShO1iAR9euMLNLUtAC+LqtLSgbsRo6SIMFoikJQW1wMU0xurVBZe60lzYpKeQezQhok25fw4WfGFIMXWBBFGhVUaMwkL5V0rrBTZOc1WuLme0Q3pJpNNSvi76e4I0jBpkypE0jR8ukl57WIcxyGJxtVxKncPjo9BUBxtDKvTM5bzR1TlgvXqjIcPHnJyckZdNRwOe66uXvHixXO2mzv82KNjQPuATnxAoscUmvWDc2Jh2LmR7d1WpmragDGYUpJam7qlqVtm7YL18oTVYslqvqKuJVug7zpevnrK9fUVd3fX3G3vOHSSCjxB5hw3daUUhTZic2q+PsLv2bxlGDxvPHmC+flLorGcnKzZHvaiM1LgnVD61su5pGRXlr7bQXKg6bpeiuLKspgvePTgjC8+/pjlaoE1lrq0vHG+xlQN3/72+7gwUtcVv/7413z0689pq4Yi2QnuD5KK/vLVJe+9/RZVVaJi5PRkDYiVaFEUlK7ApdRWbQtuN1t++rOfc7pe0LQtnz/7hLeVZrPd4twoVpPzBc1szna7JfrAuDvItDcqrIbTkwWLxQI3HLDGcLJe896773J5fUPX9Yz9yEe//pi72x3f/u77PP/iJXeXV9S6xCpFYS1XlxeMHmbzFQWas/MzDrsd7nDLs8+/4PTxE1TRcH7+kOXJCmvLo4uSVCwJ1dPYqqTwnjA6FJKtMoyD8Hy9o0giQOcc3nlJjw7i7w6R6Jx4yBcGXVpBLrAYW0BM4Z5ImBQKVnaF1pary2surq/pxh5bGYpSYa3m5HTNarVA2woVDLZ0RAz90KNNhfOOu8sb9psN/+gf/0M++tnfcH3xnB//8AOePrvgrXeu+Sf/9I/5f/w//zMCVkJH+x3b7R3Xt3c8ffYSXVgWVhzMFuuvz4TWBAnx3B32HMYxFYkSHDm6kc6NYDR1VaGVFZGoMZRlQSSI00u4Fz5nC0JU9N1IYQ1Bk6yPAyh3nAan5uA384akACE3l1PuWBJtk41AYJr+p0OKrSOVNRc/ebIchX0iaowoRUsWg2cZSf6BmZILCUFTGoM4LrqQvjcNwSRVWX6WSQXdOKHt95BvpO2xRqUgw/yaJndwSD46Ig6XQYRHBnpRSUaBtZZZa2hnBYUtKazwGWJKKbdKo8ZRQizLgvP5mscPTims4W6z5WazJaQ1JniXmgpDURS0peX8ZMXDB2cQER1HCIxDSFSonnEY77lC+dfQidcRi3tfj0xfy0fbtsxnM1arFScnJ9R1TVmWU85D/LoJv/OEKIq1tkmp0iF4sUeOOmlEI1nTqTKl5f51mkro+5NrqR0S0hV8ygiJKKOkeUmBdAFN75JeJUZx+1Ok742pwDfJlS2grRIPBjS9T2PO0dMWFqsqdBRHKylzUrMRQxre5sGrXINyDafBMrl+dAmxlH/TSMSBDqJX6cYRCSJM2txkf/uaSY42aXh7tMAViqI058Tj4FbrrLM6okB5GA0cs5mioDZWF3Rdz37bpWDJSsx+0juRa7Ycwpebikyhl61LUI2ytKDURC08HDr8OOJcoFfikBdCbrzuXTf5zX/90288brrG8mNyg5L+fP/nTK/9XnPydx1fucmIJL5k3XLWLljVLSpEru5uuOt27IaOsdAYU2PTiCSkxU5Ljye+FQmxy2+0Skm+YgEmDt/7YWA/DjSqogqggzQDstyqBO8qUCYvt1jkYnU64owkKxpNgkadWKhZS1WWhGFgTPxLazMHl2mhyo4W8gRlRuSiuGg4HEFl8btPlCZDjDmR+Ij4WCs6Cy3YXmp0CipbUpiCYRhwo0/OIBHiMYQmv5PiAZ24xgRCkNssX4xFUQhfXCkJQZooVvp4Q2UnkUQSk/dCsZyf8s5b3+L05CGr1RqlFLv9js8++4TN3Q373Qbfd1iEHieWiQFnAtSGaCwDgT443CBaEF1UqRioKcuKpmpZzBesV6cs5gtmsznzZkYkMow9ry6ec3V1yXZzx3a3SUWfOPvMi5qmaqiKQuzbbCEhj8kr3WqxxTO5IvgaHGVl2Ww75rMlDx6csx0c65MV3djJ9MHKlLKta2xheOvJQ2LwPH36GWW55L33vsF2u6OsKxQOWxgenJ3xwQff4Cc/+Ql13fL44RsQntMuG07Wy0RXUpRFhXOBbr+R8DurseqaJ0+e0NRt2kwLvHOcnMj7XVUV+/1eFlQlm5D3jrH3fPLJp/zgux/wwTfe5cHDB1hbMAaPNYaoFKMbUV1H13UYNHVVYJT4g7988ZLl+hS9Xgv/W2vm8xnf/da3+OUvfkm/31NaQ9/3PP3iGd/5zjcpqgJlNIfDPjXlhld3FxRViyJSlQXf+ta36LYXbG/E3e7i5VN+9qvPePcb3+R7P/w+Dx88xtoSZY7aI0AyM7Q0GmF0kJDBANhSEauSoBS73ZbQD8RhJCTHjpy0mlHYMDq0thRaROcqO5Yog4sFjAocgKKuG+Zzx91mz8XNLf3VnqoxlJVlGEa6ruf0ZI01hoBBW7GxFbpJBG24vbqhLC2P33qTuP2c8xPLf/LPf07dBN56+31OTio+++KWpm4gRg77PZcvX7LbbFBFgX7yBtc3G3751z/7/dwUv+V49uIl+76nc1JMOucZvQyfXAg4InVVUBTla2hlhAk1ttrSGnHnMkZBcMkQIE/1kaI56MTFTunCeQ+5t9nmiX5ECt+MFmRTj6kwyJPXjA8nKtPkUKhyorygIZNwc0LAI8ScYeSJ2Glim5+T0mBMgfICcyujUT4PmKTREO+0bMucXKLy0DpOLCrJIknNQzasUlqBz9al95yIOPLwxdnH46Og+EWlqbUVLR0Wa0rEBVH22Bg8znV0hz3K9bx5vuZkKXqx5y9f8vTFS/bdiCkrZrMZy+VSXHO0pqkrHpwumbUVMXouL2+42+0YBgkLdc5PdCj/O6lQftKwhCj0Gpf2UqFs1ayWSxbLJavlktlMgkWFOSAn3zmxAu26rw/id//I1CaSo5lCEaIMUiXNPRJxEFOjka9tyOP8ow405qJbaEe5XnY+gpJckzBZ80sp773H6AI/jmgCWkuuGVF0U9YYxtFPlsNS4Cui10RlicGgVUEWequJTi6HoAThdapUzLVixCak2sWEgpHuA5Xc40zWYomuwiezg4wW+ODxIeK8rB8+5t+TzpORhlmYTfmeN0gex7E1ywwbEeNLLWW0wSrQKlDogsrM6Fzg5vYOayxt3WK1NBlu8JMbq7ifjVhbTM1G+i2CmKZGxBpLJFnreqGC9aO4nub6NRs9kM7Ma81F/M2m4X6j8BtNx+9sUI7v1Vc9vromw1actkseLtcY4O7ultvthm10DCow6gRdkegFyGKaA1e897gYZVqbF7PgxZs52b5Kxwz7vmfX96xtQUhBRkqr40RLCW9QKyXT9bwBqUihFQ6DxzM6gYkjR/vDSGRwo7gRkMR2ZK92jtOfiQd7FIUJbcofnQBiRgZIDYHCKEVIArVMq7BGnK1i1EnELIVy5ocqmCwOX38D4zT1mvoqrRL/MDVpOm9y+YYy9zr1/JrSxCLmbj1Q1Q3feO9bvP3W+/TDyBfPP+fVq5fsdztwDk2kMopFXWOSK1XvB3oX6JRnMIHkug7ayE1iC+qyZta2LGaCVCwXK+aLOU3TorWIry4uX/Dy5XNuN7cc9ntGN8pFHsUS7ny25my2YN3MqWxBZppqJaKroR/oDx1d13PXdwx9/5Uv+H/Thw8DQ9/TNkuhhOx6Hj58wGa7wXmPqUrc4FmuWg6HHW+8cUrf7dhtbrkZt5yuT6ibmt3thqZpME1DXdWcPzjj8RsPuHh5y+nJGV988ZQ333jMbruhnbWMTkSU3gvlarvdcnZ6whuPH/Hg7Iz1egWIRqJpGs7Pz6hrSaZ2zk2GAD54xhhZzOY4N3B9fU31ve/w4PwcUFLAR4OyBhcD/dATEVcm3XVUSjGvan79+Queff4Fq9WJTC5jpK0bHpyd8mC9QA8dJ+sVu82Of/6f/qd88K23efzGI14+fMDF8xc8eusNjNGUhaXvDozjgG1aTk5O+PjyGS9fvuT05IRZW/KTn/wlP//lL7m8uuSP//hPePToDdrZQiZrJMet1F1rYyiaiuDdFPbWzhfQNkSj2N1cwzii0n2uEgH3PoKGD/i+xxQlWkXCOAgVQ4mX/PRY77FBLKeLouB8fcqrq5GrywvKShysREsDZycnBAw+Gvoh0ruDPNe6JIw1H/78V/zpP/mHuLjk9KRGq8i+gwcPz/h3/pf/kD//i4+4vLri7nbD9eU1t3c75qsTVNB4F/jX/91P+Yv/+i9+j3fG60fuwwYfREOUps5RKdLSjE+i3kIbBjMIB9yNsr1rxbyepclmxAWZoKuckpQK5xBE35b3JqWOCEZeZmUoFNHJROP+qDcPjo7uN7leu/81KQhMollJOF8ufNVEWZLvlUJK9OmipbjfHGR9nwSbiXWtQpM1HjkvIQdFQqbmKpQP0rLkIV96nhFB+1U87ichFSEuRCmqIogL0TGKTbJterphx6h2QEOlKoyOGC35IaOPqLSPjX1HHA8UxhP8wM3tLdt9x/XtHSFqzs7OmC9XzJpGBMEJtWnbmuVizuGw4+bmhpvbWw5dT9ePUziZOLEdm4vXKCQhpo+joDs3Fov5nJOTExaLBW3bCmKRh4gx4JO+r+s69vu9GCYc9v+mLvv/QUdGMiRPSxgfSgmNMEQ1heKp5KImDYNK7/fxus3XcswD+FQ3aJX3V0H0Ji3RhOBlHahoSYMbpLHVgcLknBjR+WidQoSTCCi7mIEmelK6tTw/OZRc5/JFIBJTfSc3ougxQ3QYk9RNydiD9FzlNXlUHClMoB/l/otpaKCNEaqV0gglXqiHzgehUCUUxfsIiGuXDCeyhW7SZCgm1OUIEsmfpiUjRLSyFKYiFhZ7Tw8yhmREMHrRWhgxP3DOo1RHWVSUZYktCpQ2OBcZvVAWJe9GWDbjGPBOMwZZP73PCNDvLvz/zp5AHf+g1OtffE3Dkf6s7v357zq+cpPxjfUjZrakv9vz8u6au+HAYMFpxeA9pATRHBkfo8BoORhFqDuJ3iPLJqQJvUanAjJw6HuuDo5lUJwVFbNCOt+sXyh0jQqKIQ5EAoXREKS7NQRKo8BICm8/DuCkK7dGUkpdso/U+mj/dtwwjlqGvEllGzeVF+l7yEBMgsUoXmrTgj7dLBHx5Nd6CgHTyca2LEtZJIJjiKLxQAXhG+okPlcZ/0mrwmvPTd7pEDx9f0Q/cshMhuMAQgqNyVQQm7IlNptbPvzlT7i53dL1BzSRwlhms4rSWnRUOD+y7fbcdTu2fQ9aoa1F21KobNpQFiVN1TKfzTldnbJarVksljRNCwq6/sDTF0+5vr7m5vaGw36LGwcJTFOKqiiYVw2nixUn7ZxCG8ZDx+2rSz65uGS/2wlK4/2X3p//fh3138fh4ggEjIL1fMbtfmA+n7NcLgh+nAqOtilZzzWzquLV1TVjd8CHks8/+4wf/8GPuLu5hSDvh7Ul6+Wa87MzfvnzD1nMz1gvT3jw4BFN3aDSFO7p0+cUZcXK1qKDUqLxyVfldrslhIA1irZtIUY2m03SLZkJGlZKsVrMWbY1Y7fn5voaUIz7LbYsub69oWpq2vmcQ9/RNjMqZXFdTxhGLl9dcHpyyicff8LjJ29y9uAM7z1N03K6WvL2owesC83pasF+07I/9Dz77BN++A/+mB/++Af8Zx9/ynDoCKPnyeNHfPr5c8ahBztQlSVRGZ4+fcaThw95dH6G1Yrrmyv+xb/4z7l48ZxvfesDvv3t7/H2e+9RljVGK8ZkAqEIYLQUfyTipoK6rujdIGB4HhzAVJAMwzDRHIkBP4iHYtDQ7XaMMUBRUs4W1GXDIURx1PEubWrixvL44UOsVVzdXHF3JxqMsp6hTEWhFUFXjFgIntIYtC6o53Ne/eRv+PlPf8WPf/xNytkpP/zhB7y86Li9czx5403GQfPs2TP+9b/+JYfB4Q53tHVN287o9geGfiTrur4OxzA4RidrsdUFOoQ0lAIXdXKGggKFiYg72G6P1gprRUxslCRKj86hlaEyBmM1MdmBo7LrnxxKR5QW29eYhmBST8ek0VOT+DQndN8POQVkn9OaiCMndhOTaYg2qSDLAXyR4CFGCfoCSRU+BkDmWWwuAnXS72Ur80QjSY46Og9a8kCMOO21edIbtLqXkZGEtDESlYhhpx0qaoIXaghRJuEq87ozuhECLoyM4UCIHdHvUX4QN58I/eBxPg0MVTJJ8aCM5dCPeD9Its9sjrWWtqkxhSWGkX5w4kioFdvtwM3NFXd3d+x2O7pDR9cPKczNTALbIxUqhw3GqanIx2w2Yz6fCxVqvZ6oUNnFJwYvLmZ9T9/37HY7MYHoO4ZhkDfzKxZPf19HRtW0MhTWMI4uWTXL+2R00juQTQMyfJusfpPzk5jAqLTG54fI++dDlKBRNaKVwWhBRrz3GAXKO2lc/UhZKAlMjgGjIWshlBJnPmNSY0NugIDk8ibZG5m6DZjsFhmn4emkWUpULKGCOVlvg5/2KKVEWxFJdtJ4TNYFqYiJ8fWhbKrPjjNcna4xceIanAxtnZck7ymjJzXsgkBKAyIwkTSqIGWhUj7PMtBR01Qts7lkKLnBEZzYoc9XcxaLFXXdQJTBCSowny2YzxfUdUPUit2+Y7vfcXt7x91mm/KcFCYNdHUo0L5MYXwu1ZAZGcrNgjp+bWoQZN3Ln+8/9vj5XoNx7/uPn+/9jL/j+MpNxtwpbq4uuN5v6Ag4K6hDAKyxk/PDEY7LMJdO/LbMe0tdMQLZ+n5k6HrGrqfb7djf3KL7kf7Nt3lUtyzLQoJLUGhVYLL43AWIvUyxEpoRAROliw1OID2rIQTHOHSSs2CS8DpZUEYiusiuUkckQxa2LPi573KUbO6I00KXrXzzZxK0brRMpKwxOCPuG/eFgsfpqLgw+GRhkIXj2fJfnKrAe0l1zFCaVscwl1yAf9mubHItyRtVek7j2PP0i09o6yXaWJqqoCnrVERFDn3HZrNj13eMBIICVRQU1lKVFVVRUxY183bGarFivVyzWq6YL5ZgNYfDjldXr7i5veb27obb2xv6occ7h0FR24J5u2DdzFg1M2ZFBSGwvd3y4uqKm5sbDilkLJ8vSUA3r3/ca6a+DkfdNizXCh8c87aUiaXSFEbjnBSwLi2Mbz55yH73KXc3V9imZTafcXX5iouLV9RVy+FwEKtYFaiqkjfeeMKP/+CH/OynH7E+WbNcrqjKiv1hS1kUjE6crZwXHrP3jn4YKAqDDwLLOudYr5Ys5gvmizm3dy/w3lNpEd0roLAl1hhW85bSGg6HPavVirHbcXt1iTKadrWUoMSqpibSREevFIvZnP5woJ41HHY7Ll+9Yn2yxo0j5aJk1ra89eYTLlTksN9gLZyczLm9vODZZ58xmy3Zbrcc9nuGoefm5oZx7OBg0MUMrTTrkzPm7YyH5+cQFevFgtvtjqE/8Mtf/owXT7/g+tVLfHA8ePiY5XotbiNONjxlFEZZQixQwSePeZmUGhRuoskIUheDNBU5hVW4x5EwBNy4Z3d7C0WBrltMUWKsUKuMNXR3PfvDQTYHY1DK8OjBE7QpuLy+oOtGNrcSXliVBTpadNESfcoWGD11UfD2N97nVz/9Jacna379/DE9lp//8nMePfyE66sbPvjmY/7X/8Gf8H/9v/3f+euf/ZrRecLY413P3eaa7//wm7zzZPV7vDNeP4w2LGazCfU2SkSt2oiLUFkWlKagKstpUDMFpWkoUrZGntzawqJKR6BjVLnKtmk912lYFCHjr0pEGz6IBeeRshQh+FQ0HeeV06hP5ekuxxTlqazLroT3B0EqwR8pTDXKJJUJuE7ibJ13DmkuZGCX8o2IU6GYm5pcCOQMgWxBapJtrothos4SYxLLSoGUS0ABNo6vcSKpqJhMuGQvHH2PZ0BpJ+niSIFJGrwdXZsApemGns3BMTrZ/4uioLCG7W6XXovsr2WyslVKM4wDu92O3W7PfrdndDljwR8pXJkSdW+/M8bQtu3kCnWfCmVSBkEIUUwGxoFDcpbb7/f0fZ8yFLwUoEqaLe++XpoMYVpErIZCB3RhCGhG54hRtEo+7ZNmyuyWglqsYY+c/awsIKNnCdIIKcxPayis6MuUk0LfFsImcMFjDRIUl28HQro/BflCZX2oE1QkaHFPUnLPFlYClk0avAoFkYRcevohaUrJRKYIOJQO5GA+0W8d807yfaCTJa3x8rwUIelFlJwrbRhGlxqC9B6n7AwXFUpbCBEf1IRewLFmC9nXIb3yPIg+HmI6Iuc1JD1FJflMqXEqioLFYsl6vaKuWpQyxJj0TrM5bTPDliUheorygLYW5zzb/Z5D79AxUtWV6Dx0SRFrgvN4l+o/ecKvNxXHjnJqQF5vMn7LEe+91N/4pzg95qscX7nJ+Pkvf85oQDcVobR4o/BpEpPh58yRzE8g2z2qBEehlHgSO0/oBrY3d2xubtndbeh2e8auRyGpn4cY2HnHEDyVTxOqBImG6MEnTqoKqBDIvEAVI8p7tBsxyhOMQIzjKBw4pS1Wa8Z73drR81iliUf6myIhFrKwOe+SBkOmMDknI/97Fo5lkbJQpYQipbUWbQkcBe0SGYAxyUcdRcqFFkuz1CCo9I4bbUBF2Sanf0s/09opoC8/JxGxK1xWMUWxT81OOVoHmrqkKCsihsMw0G+37A8HBu8nmzZjKwprkjNUKw3FYsVyvmKeFnZbFIzjwMXVSy5vL7i+vma3FwRiGAbcMGC1YVE3nM2XrJsZtS0po8J1A7fXm7TJ7HCjo7IFs7P2HkfxeFHnRSlTD+LXaFOYLebYaLh4caCtC/wgUGfbzjh4J1xh57jb7jg9e4/Vq4Zh2GLKkpOTJReXN7x8+ZLvfOd7jMNI3/fIlLJgMVtwenrKYv4SowfqusYlJ57CWqqm5nazkUU4iY+1kemX92JOYIuCQ9dRNS2r9QmXV7fs9nuUVrRNwzAMlMZA8FSlZTZrBX0rSobNDWpzR9k01ArqqiL6APsNlVKyODYtJ6sT+mHAKM2rly95+913GUcRqHkfZGhQGJrZjG67Q8XAxYvnnD9+wqPHb3D64JzN7S3buxV3uy27XUc1eurZiuhGlsslp6enrNZLdp3j7PSUpxcX9P2I0ordbsOvfvULfPS89c43+N4PfsTp+QMKW0yTWh2liFFGzgkxoqNMv5yXxZxk/Zi5LMcpW2pWlMINg9APrYjzYnAoPN6PRJRMZQ97yQwopOi1SvH40WPKquD27o6hH3j14gJbFlRVSV2U2KKi390Q/YgxBW9/4xvcvLrg5//6Z5ydzilry3sffJeb2zuWi4p/8A++x3xW8Q//9Ad8+vlzrq6uMRZM2xJtSQyBDz744Pd5a7x2NGVNWYhDmtEaY8X9r2lbmqahLAq0NtMeOA0f05+0kWmiZAglZLkY2evAGHvy9i+WsqkIVyKMzanfk0NgyJSP+3PgI6qdM4aOf89rUE78TeLpGKZBk9Rbenpwft5GK5kSAxOukO5TYwykOL6YkrtlaqqTm03eb5mKuixczdcjaJQ+DpXkueWANHk6WmmsSQO0lKERkQIxPdkpDUQpQZWGOOCV/AAd5UwpqxInPw3MjMaHwOYwstkMHLpAWdVU1hJN8v5Ne3UkUeUO/dRABjF+o6xqikozjk6cqEbHfWtTYwxN07BYLDg9OWE+nx+pUPmcJ0vkcRyFlniPCuWdm0pYlJSj3gX60TGM7u+mlvw9H0rJefVBWCLWGEYXJlRrSr7Wglzc13RGlQeX6fGpBskW+MRkVqMk8yL4Aa+l6B6dS804co2GILWM/HCphXxE9MyiF/UxYnVWWihizKF7JN2CFgqgNdJEZ8QNQQ5cNlBIN5GUQQ6lsvOTrL9iriABfcbY9Fi5t6b7G9H1ocB3qZHOvFlkL1JKpXwlBNkIbqJN5aFBKgPTq86n9rg+kOrbkNgoRDFUcX2PS03spD/RGucd+8MByRpJGtOU47GNW0xfgFa45LYGEjK53W1wPtDOFtRNQ5lMc7AarczRsGAadqf36fikf+PfjpdKfO3jy19jWtd+82t/1/GVm4yPXz2jPV3Tzkt0oVL+YfrF4ejn/Rp9JTthKEmijGNg2B7Y39yxubhme3uLd17C3mYLXFVTNSWL5QLT1uwJDNqALVFoNANhyqQAHQROV0XJEDyOQFCBAkWJNEFBB5yS5xCjx+oyWdl6vIuTZ3ZGFnKSeH4TSD11CCKyGf2Q7AGlq56mRTB1ijKFSqnfymC1QSuxMTMpuDALBGU9TPaY6XtjCJN3cpjObR6IhWnBBaaJzbEAOvq756YvXxyQaViB0hjKqsATZaozytRUNh6NLgvqoqQsK9qmZTGbc7o6Yb1YsVisaJoGlObQ7/nixVNevXrJze0Vh04sVXEBfKAwhiWW1cmaVTOjKUqMj4z7ge3+lr7rGfoe545IjE0OGriQLPOOSefTa7p3I3ydjqqsUJWjO1zRNjOC6wlp2jZ2e8I4ECK8eHWFNor333/CR7/6mKhbVouWEEZevnxB07R88K1vs9vtqKqS/W5PWRhOVqcJgXhGWabUaaXY7XZsbu+m0F6f3v+mKDhZLQmjY3Z+itaaoe/Z7fc4J5Mj5xx931OWBbOmQUVPoWExa1kulvz644958eqC9x8/JhIxhw596KlXFqOdWNpublmePGYsK1bLFb/89FcYY9htd2y3W4ahhzTNKosSH2Bz6PEu0lrD7u6GbnfLOPT8h//RP+P/+x//x2xub2kWM7pOwvzc2BOD+MOvT84EPlaKD771Lb549YpnL15SFJYwOvrDjhdPP+Pp06c8e/6M737/h7z59jucnZ5jywIfxcnI1mUqRj04h/IelUL2lJI8i6KuKJWEjykjaeExRkjps0VVCg3AmmltiCFwc33L5u4mZezItF4sWS3aaupHb3B+esb13Q2b3Y7ddkc/DPRFwaxtxXUqOsBQVg3vvPsNfv6Tn/DXf/URf/Qnf0Dd1NT2wH/w7/0ppw9O2N3e8ubjU0oD+8MebTXh5QVvzJZYW4D6+riwdX2Pdwo/DBK2V9Us5kvRJNWSi+KcSw5+cRremGyoYdKUPwaUjhit6OKOnU/DHyT1HkDpckIlxLqU41ofQdymkp151udFIFvFklGGnDdE3tYmJBqU7CXZVhPR8yglbmuZ6X5veDxNamPeZ3JnlCguRtuklxBan9C6EMpW0Lm3Is+o5TzlZiPZa07odnoteY+672TIMXCN19CN5H7oB1x09MFTeY8NanIsjPfsYAtlqbSBuuTJeckyFKiiRiW7dmutIFAq4saBvu/oe9FCbG839H1PDGALCbzs+oH9/gDInjafz1lkKtTJCVVVycAiFcwxhPRzX6dC9X2f1p/c8AnTwjnPmIxXfCqgq7Km/ppZ2ArFSeOCwnu5TgtbAIbBic29UvpogBLBcMwLikr0ldZAP4gY2yg1OYyB6CjAkY1mQoTSplqF5LoUoetHtFZCU1fJKCSAUpJI7QNUKck6BKl7RhfFMCAqlDoGKQLH6TuyBh8HpUnLpKSRQIVUyDsgSD/sc4yAIBbSFOhpYDAhfArRRmjDECUnQ4Tv6bpBEsAHh9j3+nyfq+PgKELOMZN7SVK9s5tWzs/RRAoMhS7ZDSOHw4Zx9CgkG6Z3DrXfMwwjhbVyT2grmUnK4KPQ+4USZRi84+rqisvLC25uNwze0x46mqalbtvEPAE/jiny4DiA5jVUNTcHX/776/VTHmjfu/h+43JUv+Vrf9vxlZsMXZbSORkrBhcarE4Qbrb5+1IH5EdHUALhjoPj7sUlV09f0m13RCfirKquWKyWLFdLtFEpYCXSuZ6LzR1PVqes0zRVa5PeaY1VBqUNIfH5ghZOb9SGaCPoSBxFsOyj9Ds6ddNNXdH1fbpB47QQSyGfHZzSKVbiSKCSo4ck9qZgpeRcFYNYzur02rUSQV+Ymo70n1JoJcmPWc+QqsR0weeJfJx+T8ibQcioS944kq4kP5cEHQOv3cBBSMFTkqxWMlkYQxDhfq9xUdwfrDZJKyKWs5kGdbo+Yb1c0bSisdgfdjx79VyoULfX3G1uGccB7xwaqLVlXrfMioq2rGmMRYVAd5BE4v7Q0Xc94zjem7oc6WP3G6L7DcX/HA6jdSqkBapfLxfcjhFbNhzKisPQY4zh6nrD7e0db719zv/iT3/I559vePb8BVdXl5TVgf2h48kbbxJCYL/fo/Hsd475YsZivqCwF9S1BFhpk3zMfaSpJAzLeU9TN9RFyVtvvcl8PqcqJeHaaM0vf/khX3zxRUJKSKFUgbauqI2lrStmbYuPkU8/+4KyKnlyekZdVrTaUgUw/YjlgPID3dhhoiychbU0dU1d13TDyItnz3nrnbcYx4GqKjh/eM5iteJf/qs/5xe/+hnfePIGswKeffo5T95+n4dvPGF1ckLXdyzPpOhs6ho39LLgm4JmsZSUYG04OzvlyRtv8PnTZ+z3e9q6FkQyOLruwN/8zV/z81/8gjffeod/64//hPfef5/FajWtJ84L3BzcmAL3yLuHIOBGYG8bZOZrrJnsHpXRlEWDKUuisYQY2W533N5sef78KZfX16DEfaSMEV2mEMrG4kPEmIAyS9pZw3bXSSjiMHB7t2XeFNjC4kPgcDiwOjnh4RtPePHsgqvrO85OIt94fIbR0G127Dc7fv2LD+l2B8rSMFusMUUJMVLWNWXT/v5ujC8dlzfXWK1EK1fVPKhqZu1MHLKIBOfw4yhTZ6WmSb8xBqMUhUbuMa3p+gOHQ88h7nHFiCdC0tXoFB4mDkjHyVsGSOUx93nMx0mnIAapYUhFR/bDyXlKgjok1CRPMzPaomUKHZONbp54yvA2Hj/IdBaYfsu9dTAjEUbpFNyXiqwghZU0yVqKOhOTs5Vcx1JXZxvwe1x8hO+erW91DElwr4hxmlUTcLg40PuOHscQRKuXz5jYpss67kaxiQ+mpmkXlLbFYeX9S3TXohDb+nHoZf9D0R16ojJoU+KiZ7eX9ctazenpKbPZjNlsxmq5pGmaL1GhAm7oGYZhEm9nKpQYtaRptZamy41+CgoMISZqXkldVjRtS1kUqeD+Oh0ync/Il1B3UpGYJvPT9XLv+gXkPlCRsiiwSgv1mYTOxaSXiLlmk8JbAdE5uT+t3HPD4ITuGyPgoaoQgp1BaZv0o5JYH4OE0YlYX5ypxCXJAqJx0zqJwyeELmWbZXZIasq9d/jgiPoeU0aplCOTMsNI7moRxtHRDw4fY9J8BdCKQomOZJcYL/h7jT0kRoR8TWqOo6Pd8TgOHKa/3vtLprkbXSDOayM542Mce6nhomLUEjBbJPq51YKCO5+oYPdQk34Y2O937LcbovdYFL470PuROPRC4Y3SYN9/vvdZUCojnRw/vvy4I81e6tX8+PvUq+l785/Vl3/Tbz++cpOx2+xExHN1TVBg64rVek2zmOOT0DVG2XjHrme32bK7vmPYdsTewRjoDx0xeHF9OFnRzlqKusIWJUVVyBudrPoG77jY3HKxueV8PqO1BosR2C8URIpp8S5UlMkVArdl73GtIkQnG4XRIvryTjI3igI9DNynPN3n9r+maYhZcyG2aPlmyE1A/hmvv1nHz5PuIk/itE36kDRZnFCg4/cJ7BamN9Kk1EBBnJPf+r3j6JiS5lrq6FoS049Lv2ritboQsNpS6IKibKiKhuV8yXqx4vzkjJPVKcvVSpq+7sCri5dc3FxweXXBZnM3aSx0hALNoqhYNS3LSgpVnCBXV/sd+92Ww+HAkGxB8w0qE0mBULXK1nYp3Op/Zg0GQPABUxiaWclhH3n86Bx3uUMVhltjJUMBGMfI3aanKgvee+8Jh93n/Nf/7S+4u9vw4GHL7e0tf/3Xf8UPf/RDhqGjNAVaWQ67nocPHvPhhx/LAmUM0Qslr20aTk9WbA/PJxvB7FRhrZ3gVFnkFdvNZvp7VVUs5nOa0tKWlidvPGY+X3B1s+H2bsNiuaBzjlnTsCga5lULw4g73MCwwQRP6HrasuH87CGXd1fs9hvmbSvC/X7Ae4ctLMMwTDbEL6/v2Ow7/sF3v8nmbsvnn33CG2+/zZ/86Z/yl3/xZwA8fvyIvneMLopNqbFUdcv1zQVtOyN6z4Pzc5RGmqbgUXUl1KOmYXtzx92rC15dvOLp86f8wR/9EX/wB3/Ig/MHySI1MrgBxjGPq2UqRMSoiA8OS4UtyyT8hWEQdzUKgbaxgr51vWQGvXx5yfXNNePQy2ZqhTI5X8yoSktRyuZrbERZsKWlblq6fmR/OLDZ7hicE4a18+z8yHohNsRVWfPRR59w8sc/4uMvXtDW8OMffMDnn37Bp598wm6z4VvfeI9YVLSrNSRk05TFb1yvv6/j0Et2yqydsVwseXj2gMVsBiGIWD6FaU1e8oVNwlUJ6xr9SL937MeRwzAQUJhGE2zE48BrCXGMIdEOktZhEoIfKUWT3iEhIDLAlGFQVHkt1dPjo9QKkNB8lSacx7UqNxlpvU7TVrSZ9pFMq1LJVzYkdxsJzYsTkqISKiL7mdCBY8oMIBxfQ+aQJ/MooWUpTUSQG2MlHG3iuqtE7yVRxVJRETPUEjP64Rl9x0iPo8dHmbgaAKUZlWJI2RVCrTKE0lBbTWVLyqIErdN76hhTATeOjmFwdIeRYQgoZSmrAltE6jpS1xXz+Yymqe81FnlSH3GDDKkO96hQh0RLDHlzuUeFGgaXgnhJepCSqqpom4a6rlPh7hmGns3m8D/x1f4/7sj1hzhsyvUppgI6NRm5bohTIy2Ua5WcmHLiu09MDUOm9ygt+SmCVoxpmCrKJZ2GnURPtvIOXuEcKCMNjVhvK3RUGCJFYUGB9xJ+OekatOz1GXnLKAhpAKDvNdW5vhL0wiOUwIALPtnLymBoCumLYHS68DnmkmV0zo8eqwX1j0FQm5Du1zwUCPGI5vmkIU5EdRngociGboJOppYjxjTslftatLjSOCjl5fwrSVNXykCQx7lxkPouQrRMxkZKy7kEWQeNiszbhnlbkxugrEfSCSHMurPf1hz8Zj16v4n40ufXHvvbxOBf/px/2d9+fPUwPjTXl9d0vUxim/mMeBgpoqZsG5x3DPsD25tbdle37O82DLuBMHh01FhbsqxXnJ2fcXJyQlM3GGuxZYlOxbbzI/144G5/Tddvud7c8cXNFW+s1qzqGmUyhKWTSMehotj6FUqLL7jzyG2kMGn7UGTXJitTIWOmAj9Tj+67Mb3GS4OpoJeNwAtFimxd68lBTEdE5Phm3Q9YyRdAvgitkU7WxRyglDe6OImiRNhE0ork5xFfu4Dy7z5qS17vMu/DZDEcb4RZu2C1PKNplpyfPWS1POHs9JRZO6MsCrq+4+mrp1xevuLy6oLt9o6u78TyNEZMVLTGctK0zMuKRgtiMd5ueXF3x831DV13mLzLlVI4dxQgj2lqG0KgqVpWyzVt20pRMYUbij7lKJjPTZue7JG/TodSGlOVFJVlt+lYLxZ8drFBGDjH5+pD5PpmS0SmzMoafv3JZ4zREp1Qdz799GPeee8t1qs1+/2OWTPj0B3Q1tC2Dbvdlrq1BO94/vQ5V68uOVkv2HV7Xr66Yeh76rLixYsXjM5hvKFA7rdHDx8ym4mzU900lGVyqTCKppljrQGt+fzpUw7DSOMct5stj9464bDpmLcyafTDSOwPFErju55QGB6cPeDzF58TcfS9ww0DfdfJ4gh8+smnvPnGm8zrmvVqxfXmlt3gWC81m+sr9rsdy5M1OqVvP378hJvrO4b+QH84UNmSxXLNZx/9gtmsY55NB2Yzua6GkbIoCc4Ty0S7CY7xMPD5px9zc3XJpx/9ih/++Md85zvfpa1nmVSf3NMMLniCH/F9oLUGbSCQMnSMxgRLUddoZ3ApVXgYO25vbnn66edc3tzggqOZ1cwXLcvlgpPTNeuTNSF4+q6n6wecFwpMqQ2LZUsIsNnVzBYztne3jP0OP/agHKul0ENKWxGc4tnzC956tOavfvoRbW14+OABpyfnFCZSKMkbilGsRcfg0rTx63HM2hmnJ2senpzx6Oyc5XyWxPnja4nMZSlUNBcj0TuCH9l1OxFCOil8jJH3R95BhfcjSlm8ErcoPMnxRic6QJjE3mJl6glBMk+MTo9VaboZY6KjJJoqQtwlod55yiwLcpo23yuWlBbRrtQtCXlQeaBimNQPucDQoKNNeo604sfjGqi1uJsJYn605CSmZsb7CVEnejL9xeiYhm5HdyGlpBnRWopBTZRrRGq1XEURYqR3Pb5wKQk64EZHN3o2WxGkYiuCstzsBg7jFfVtz3q1Y7GYUTdNOh9SBDvvGXrHbrcXDZ5zNHVN07a0TSPW3eKrSqa0+XEkOCbE4jUq1DhMBY/s1zCOkq9xnwpVl4Ku1lVFVVVYayTorz8wDj3eO+qq4mQx+/u7Eb7CEVGJCiX6HK1KfIwMabvP+2F2RMsF+2Rzb0Sng/coHaXgTkiIVpqiNBiTuXcqsSWO5z9ENdnSdgkZGkZPphsphBYtqJCd0HXQhDEKLTy/lhDRNn+f1DXGaKHlOakLpAnJDYRkkhFh9GKJi4p47+TaD4gjlvb4cSCaSmiCwWNMpCpL9ofDxLaJCT07zi4nUtmEU4QjwJiGt3paWxRHkDs9YvosVtMyGLCmROusJQpUphR7Wp30VQK24oMjuIQgpTXBGJ1yM5qpdtM6aaHUMetEaF7xGKuQno40Db/NEYqpBsn3y+QOpaY/HR9z78/T99x7zFfdTb5yk9HMWrQ1GCt8ZINi3HdcP39F3dTEEOn2B1w30FCwOnkESxgH0T4QFcYUtNUCq2r8qHD9yLCXjATnnegdlMMxiE2tH7m4uebV+oazWUttypROqtCY5KTgZIKDRseITd7JAYlcr0KidylFcKBipDSGpqzZmh29Olq+ohJFJ08xk31lvmF90mV4n8O8jlMsmfocm4z7CY6yyBtUmqQJ7G8nQbh4hkNQoLMgj+PFkKcOOk34DSZ1snKxiWbBp+dwr6kI9yDG9LUQHKUumLcr3n78Dd5587us12cslyu0tXT9gZevnnO3ueHq+oqrmxsOhz3jOEy0sFpbVmXLvKiY2YKSyHDoudlccnV1xd3tHd3hMHXcznv2B4Gx94cDQ9+TuZh13bBcLlgt19hChO1Ky9RFK0NdyxQL8ib9+vHbeIW/z+PQDaxO5xRtRdfdYOsVYXTs95KSrbRY/I0Orm7uEpRp+eTzF3Qu0s4ajIbSam5vrvnsk49Z//BHaGNk+lsYrm9u00Zs8M6hiFhr2Nxt6fqBk5MT7jbi9V5WJdvtfioMhmHAGMNqteLtt9/i4up2arSHcUAFz3L2BuvlnBevLnj68oKuHwkh8uFHv+KdJ4/xXcfhcKD0ch+SrmVjNH3w4ALzZk5kRKsD+9HjRikeq7KkH0f2hz1vPnmDP/pRz0effcZ8tcCWNdvtjlfPXnLyg1NOHzwgOjFbKIqC4DcEP6JjYLFcsetG7jYv+OZ8yfnJCW88fMTzly9pqorVaoWJkX3fs91spia3sJah7/jp3/yEzz/7jI9/9Svee/d93nzrbc7OzrBGE0sr9JHo6YcOt3H0Q0fdtlRtA05B1JRVCak5G4aB26trnj99yvXVJQCnpysevXHOYtmyWC5YLpcURcluvyOMA330dN2BYRSR/snJkuVqzctXl8RrT2wa9m7A9XuCkvu4bCTbZBw8Xzy75PRkSYnh//3P/xv+o//Nv8+b775H0/5LXH/gMETKxUKKxF6oWF+X40ff+S6rxYKmKqmrUlK6o0tpzsLLFutRPWmGhmGgGw4ypIgRcYeK9OMeF0dmtiSacUJxpUAWCgfJLUypgNaFWObfQ3wzMuARaur9zRyYJuCpDEkNBmJbq/OEM39WoMIUfhcVCT0AH0bZO+KxtIn3ShwVtXzcbz6UJYvPhR4iFCxJ706CaQRlJwr6BscmKm1tZLFmttfN+c/GyGN1lIYpKgg+EsUbDwiM/kAoHEMcuDoE7m52bDvPwUWwFXXZ4KPiZjhwfXOHe3lBWT7ldL1muZhTFoUgBqnIOxx6hk6EsdYo5vOKtknJ2ybi3Ujfd0LTGceJktV1HcPQp1wgyc8iOTO6hFjk7AytDVVZUVcVTdtQWEFDvPf03YG9H4khYK046c3altmsoW2+ZpoMEtoWIuPosUbyTIgK57Il/70pPtz7LAiYTtQkm3JQeudkUh/FjEcrBcZCUAzDmJATcfeyWmOsIQCjG/FaCmSUkXRsPxILCWtOY03R6yaEzpqY6H5WitqgxOpYqZQto3DEFJbnmEiNMTC6nmEcxU55FEtoWxihZaXGHoQWpZOmwQexDZfrWihI2lhGP07ow6SHir9dvCzI1tHIKEShnMeUUp4LeZ3d5lKodIxOAgdVyei2jC4wDg5VSHCwNgZbVonudxw0+BBSXstAiA49anHMU9n1S1NYiQuo6zoFMIv+xHmX3KWS6us3qv8jivHlr+Uj3v//l05I/NLX4/3v+gql11duMu5u7qYJk9ImaR48477D93KzjsOA8gGjLN5Fxt7RdT1u9BAF2tlvtzKBSW+0QKcCt6ICxmqquaaqS6rSsreSlLtZrVnXBdrIzaWiKOpJFmBGRaLShKBlcdSKaBRD8Ay+R2OSiO1AVTXM24auaxmchATGewtzjBGNTm4NKrmPeBF+p498Ifsk/pYiP6WHoqYN4Wi3al9rQKy10q2mgBWlFSq8LojKmooYvUyw7jUe9+lRMek28nRKIZOyyQEgTTgiTNzYB2cP+fYH3+PB+ds4H3h5+ZKrmyuubi7ZbO44dIdjgrj3VMowLyoWRc28qCiiYtgduN5ecXt7ye3NLdvtVjaBMSUlp+e4P+y5vbuj77tJZN9UDfPZjPV6zWKxwBojkHowKGXlRjIWoqLv+0mb8doH8TfviN/zcfHyirqtqNtKQsaGjqosuLq5pagq1icnDIctF/s9Xzx/hTaGcXDc7gZOzh+jEAi6qDV3mzs2t1d8+skn/OjHf8irVy8TJ1smG8vVAh96lIK2rQgxcn19R71YcHJyQnfoCIkzrZXGO8fYD6iy4HDoMFpze3PDMI5Ya2iaioerNbOqYH848OnTF1zf3iVxpeHTz77g4vqaB6pgs93QVpHaRlzfY2carSKlUnR9x2q+5PLmBd455m1D8KJdamczfvDDH3H16oL1as67b75Btz+wWq55dXPJ2B9YP/ycR28/4eTsjI9/9RFaW1aLFeMwUFRDgsYNZbvg9nIHiNOV1eKwUVYVxMhiueTis88mhzuBlmVq1B32jEPPn//ZlpfPX/L+xQXvvfce777zDrP5HGOUONoBfhjZ3R04bG6p20SvsDXFrE2W0ArnBnbbO0IYefLmQ9bnJ5w9OGW+aDBGUVYNtiwZB4cbxUPOWivZBU7Wzm6/4+GDMx49OBVNQt9zQDRtWonbSFmX4hTmoSwW/PLXT/mjH73Pfr/jn/9Xf8Z+O/Lk7bdZz2d8erGhPF3z7NlL7u42HPqvT5Lx+2+/Ja/RO3HiSu/LOLjJCW10I93Q0Q+D7CPOJ6qEwxNxwTGOHd3YYWtL7AaaGnQRyJ5JeRqPSo5UMQf05a3vXqGRPocQk3btuM7mosOYgFJG7Ng5ahymyXEK6wJeW7OksHeJS+7v/d6kX8zU0IzU6qQkVUoQ+CDrf05DVoneEIEwISWSbaCIkw1tXiInIWiIZPq2TIwFzQhprzHKpKbouBeGGBn8gIz/4HrX8+r2QNQ1pqipiopoK4wyzJeSmLzZ3DEMA89fvuT65oamrlksVmKHmoYjOgaKwmK0EvOP1EiEGBiGkXGU4ik3GTqHvAEoeR/94OlHxzgKSiqauIq6LGnblqqqUGl42PcdQ99NVNJF27CYz2ibiqataeqSqii411t+LY6pJI5gTSFp8E4QHqMLQc/8cToN3NsjkWsgOVNJAGIyWcmDzyjXlUvNmfc5js9TGKHwSeZZJHgxosgXTxaPh5CaXhUmloELR9G11CcpziB33sjPeO353tvXQ4yS8u6FNuW9oIpMhX66PQzkfJo4MUsEaQnJCII0ALh/r0WS85IC0IIQTprX18+jEtiF6KVJi8hriEGQaMnYkY/CFOA1233PYfRYZdDGooxFW4stCoqixGiLMYWcRx8Zx54Y4Xa7Z7fvUlignQbVVVnQ1DXzCFVZUpSlXNtIBGlIb/Z9Z7m8rk1//m1/50sD3LxevPb3e9/x5b//HcdXbzJe3SSakEyYVF1h6qTOH6UA77sDYXR0EeqypjCWQqUkYTdiy4qTxYKqqqdiWtwJfOJTit3XOO4Z+gOqshyc4lV5xcvFijdWCwqlEPafdIFaWQwelVIijVKYJDbSHqwyFNrIhZo4rsOwR5sK8UqOk7jIGJtgPkmbjc4J305wDYrocK7D+T65yAiUl7mBme8Ix0YgIxeFFasyH+SCscZS2CSEG5IzSIKGM01KLm5BVIpC3qoQAt4dJ2lHCH66WvDpDpRNKCaKUUr8DghkgmG73XN793Oubm7Ybncc+o5hHHD9gPKRUmuaoqK2hpmylGi0U+hxwFiLiYDz4KAqGsbSs9t1XF3dsNneycaQaGjWGM5Pzzg/O+fk5EQg12GYEJkQjr7nRVEQQmAcDziXXLd+Bzb3daNL/cWf/YSmNixXK4zRbA/D9D438zl2NePm1TOe+xd8/sUrQtRcXV+wOwwUVSm6JeR9H91I3+/51S9/yre+/R1Mobm7u5PN1QeMkdRSrRVlVXF2fsqHnz7larNjNm+pqhKrC956602M0czaNkHTjquLC/zoKIyBIJqqeVXxxvma+WzOq5sNP/3FR3TO88bDueg7ypKL61sePHrC6KDbH2gWLaUticHT7XcUlSWMI6vZknk756LbU2olwurUeNqi4ItnTwnxEW3bslos6PqB7eD49PPn3Hb/Nd/83rc5P13Tzud0Xce8neGdWAD75Hm+Xp9w+eoZs/ksnQfh0d/e3lFqzWI+oxt6nHOUlVAlbm7+/8z9Z5NkWZrfif2OusJFeMhUpataT88MBuBiwV1bIwgsl0bSbD8VPwzf7huCRqPtkgTIxQ4xAGZaq6quqtSZoVxddQRfPOdej6yu7qmBmM7blh2VGREeHu7nnvM8/+cvbgjeY60lhMB+v+Py8jWg+PLzL9D/9H/Dn/zZn2KsmFIUZUG/b+j2e9r1La+vX1M4iy1nuEWNcZaYoO96jlc1D9+5wM0rqllNWRXEGMRBpChJSuOHHEDnHAlFaXf0zZ5EoNmIG9XxySnvProg+YHtzbUAMA66tmO+mBOTp28biqLGVCuevdpyvDzh+fU1r56/YMDw6sVzvvXRx8SjU25utqQgxdrbcpm8XyqkeBn6IaNy4jAzBM9mt6VpO0JKggBqK9Pk4AnJ0/uOdmhIOlKpOe0mYVciHB8LFRFei1vYyF0mxgn5BUE7p6I9BcQGlunf7gI/MBY0spdadZfffQfVRCbJ6PH78sRVZdefUYSdAa6JmqAAJXRWnUW48v+jpfmBQx5SJKrxOYk1b0zqjl5PTT9HfpZoSERbKM+U3BPpkS4I+CTflxPIkNyNnqg91WLJ2cMT6uWA9xCTQSFFk7WO+dxTOkdpDX0nKe1HOT+pzK5NI1g5dB3B9/TDQNf3cnbFIPqJfpichkaarM0UjZEGNfhAjGSjifoNKpTWmmHo6dq9nDMxUJUFJ6slR4s581lNXZVUlcuNjjwv71uatvvPsub/oy6lslnnIS9EQFYYAcYD8+UOCJkpNV3v0SpNpj3jZAMk9HcIUTIkgCFIXkhKicKOtHIp8oWqnQGb6eeNVPNDbsVY9Fsr4vHgR81DnNbcG2D6+Hvladyodw1hQBtFGBsLleckKaGTVFvOquxAdXidjJaogBBjnsAEQsyGCioHVKYEk5WDLPcQRt3O4ckJuDBmZxzqPKVGmuHdIl1TlTOMqfKEUYFxJGUJSdENkaQCMXqsIYcH2sxwkER1EcULFWyIoo0xRFIv4ZYhSd5GURRYa3NjGO7UhF9dPOlrsdi/LwbIN3eXCiLKjkmyFrz3Qq8ohKLUtXvapoXxQCBS1pblvGYxg/1uR9t13Nxc41yRHXFiDtdTFE44zkrBfhtpmh2xDfRpYLdpuN00dL3QLeRNNZAsEKb1apBNPzDeDGIbaY3BkLAkiJFEz+Alrl4b0RbctR9UWme3LBlLKn1AdUIWj4eck8H4ddOiTXe69DcPKqUO1mh2ajyy25TOKcR30K2xXZfFnN1RJrepg4gXEHQi6zeEgiMHhdYZ0WMUW0d86Hn+8gmzX/8UlKXtB9lgfMCiWWnHonTMtKNAkbzw6hMaU5YsFgsp6FD42SxrLjakrRRCfd9DkmZ0PpuxOj7m4vSMi4tzZrMZXdex3e4yQiGNhbVuyvrYbDYTeiifO4wNgcOEJh02nLfl+tFPfsVHH95D+UA/DNyuOxJakAdrsVZNmRFtF3n1+pa+j/gh4Iziptmyt6CR4LGh71ERfvTXf82f/OmfsLcNu9sdKLEpVUrWobOOH/7wB7y63vLjX/2KfdtQFiVaK46Pj7HWUde13F97QZCPljN++P3vst/t6ZodhTMczSp2+4bffvmUIUZCTMxmc/qhJyX47MvHPDq+4Oj4Hq71lEVJHAoSLf3Qgq4YuoiPiaqcAYr1ZsMFMoZfkAje8+mnn9F2Hd/+6GOOV0f8zc9+StSG7a4lhJd8+tlnHB/9GWdnZ1xfXoFWLI6WWGfFbnc24+zslC8f15L3cXnF+dkZz168kPvKGJqmQWfHp9HmGZA8hrpmt9sTE3TDwOMnT7g4O825IKC1lcPKSNZNXRX0pWV9qWj3G/qhxXtHdbTE1XNWJwtcWeGqGlVYiqqkKBwxpxqDYhiEDkSmKQQfCEPH0GwkKGy/pahLSVMvSx49PKfZbnm8vma33ZFUx9HxUg7foSUmWK5O+fLpZ6gHc6qyYna04up6w/56w3/5Xyz57HpNaS0GRdf2f7T74qvX5eVlpqhKUTwET9NKcOG+bdm3HU3f4Ud7cTMKsuXQ1RoiA73vCQpC27GsCnwMmCTpxGmkj0SFDpHRwU5QzQNaedDjjYdxtqFVd/bXcW+HEeZHXKZGt6j8b2Mat/QTjN8wWo5nQ/S8bwX5opQbmYy0jvo8lWSPTWnkU0fGNPGQhFoSGYuLu/tgdjPM5hnq7k+OkhUQ8pOWuky+QqfRklSaEDX1HZFATxd22BJOz08wpwXRJwYPIeWgUWT6VOpAoeQ+L0txmjLOyc8Pcj+Ina1jv9/RDZ7trmHoeynkcop3HKtKcv7BIK+huLIZqrKmyuJtm+/5EAapHfLk1DnLydGc+XzGfCZUqLoqJDPIqOyO1bLtOvZNSz94+rcodwkyNQem+mPwSLOsRjqbLLaRrjcyKeR7JKDVqERdFZnCRP5ckIYjV1DGWtGxZTDSE/FBDHR0VAyDOB9ZZ9AYfBAKl3ZyT8UYCUreK5JQr2zOANPJYhDTgPE+Fuoi0/Rq8L287ypnoZH1sLk5MlpnwXneQwFSzBkTslaMUdN9PVK1p9cuW5OPTm5v1A3qMEk5fE7d2RekljLOMAx5IphGJ7k3gc7azYg5TNJnmn2MIpi3BtzQUxaJqlSUWJSVhr7rA7t2oM9A1GzmpqZjrBtHgyAJJOwwxh9+hb8j4PpGBtnd9fZ7Huc/FND9xk1G9OIv7IyjcHJT66Sw0VCXJeXMUdqZbN75xRj6iFOK2UzSbPu2xXtpUJq9oObkRsBZJ2JTBYSI1VJ0lkUNqaBtYd8EFjOV01jlBlMEUtKoFDBWbpdIIORDxCCCGaeUhAWlQEg9SiVKl5OYYyJNDiOHRTai7GIhOB465A1eRvzEMRiQydlDZUtEnbUWY3MBTCiA1uJGI3a2WTQkecPCs8/oTYQ7rlsHW9cRMZDHPKA9042TPJm9K1a7SaTqgiYE2v2Gm+vXKOWIUeG0ZWEcS1NSJ03a9zT7WxrAuYK6njGfLSjKkpACt7e3NPuG3W7H1fUVN7e3bLZbYoycnJxQlQWnp6ecnpwwn88pMnLcti3b9UZyCrLmZRSqNU0jieB5muGsQ6XsNpdpZ/aulWV29Pl9N8sf42o6z4sXG3zTsN169o3BFBWFK2R6VVg2mw3GKLo+8eTZawpr0ckQfU/lCparY9Y3lywWImTWMfHjv/kxSWu+890Pefr0OcenMilp2g5nFdfXGy7OL/jB97/Lz379a0KK7Js9hXW0bUeR0b3gPdvthrqqCH6gLISPnGpHYTROa3ZNI6nkccAqjTMyZm+6jp/96lMenr/DJ+9+m9VcYaNn3wlIUFVCQ4rJstt0NE1P5wNPX7zg0Xd/INxYpVguj7Jz1S1VVXN2eopKkTgEqqKgbTv+x//x/8V7jx7x8ME9ri4vqeqa+/dLrq5Fx6KVNB0X9x6wODrixfMXvP/++3z6+W+5vb3FR6FLLOZzWh8pioL9fs/R0RFGiYC0cFasNss6I+me1cmKqqzw3mOtoQsD11evmFcVyirmRzVFKRQAWxXYWY0qS7QtScrgakc9n+FKCQaT5HVxONrtd7RtLzaLXcd6fcvTLz/n5bMvxHWumjE7WnJzc01cLKjKggcPzrh59ZxX61dEZRhy+JwfBtpmx7ErqJanXF6+4uH9JauzU9p+4Pn6FqsVNS03r54DkdC/Pa45z1+8yJavgioGYN+2tF3PEAJD9JnXjXDuB0H8rTHMSpmQEyNWaRSRWoOJAzYZUMI3j2nMu4iZU509CNPYZPzulOLuJZ/KU+Is6pagcEUM+TEZM4nGxxWkNg8pAAn9kkZGhOdqCnKNGTUlUzeyLScqnzmG0SVIxxHFzdSrfBipNxqQANx9bFkrcq5lm+uUBeJp/B3HikwTosKHTKfKjcrYQIUU2Pkdm3aDGWpqPctiVnHMClZlurJhUc5ZVY7BD7kQ1nm2JBbzgkonQtB0RjKrmq5n6Ic8aR3FuPIiGq2Y1zXGOsYwvlk9y5ORrCfrGvq+QyuFs4bFfHagQtVChSoKmzWdkb7v2O069k0nWUEh4aMioonp7XFhe+NSI/NDkTjQ+UIY6dKZWZLugpCy7kUzp7KVc26ik8960EOdE0MOgcxTgRAhBHldfAzCHDFGJgE+N8NKmBiRhDK5pExCOzRGEULCabG6VbLYD/ebOjQAMRxsWEfgWBqrDBorncXUMTvNkYd12apfG4qsD/RB8pRSDFJbOkvvB6TJeLOJFFvcQ4MxuiuNv4e8rnJvGaPwwx1AmTwdzZVnigmrC3wvrB95awIWS9Cgo1jVKh/RJorFror0PrDZbrlZb+j6AWMts5y/NGl7875w9wrZgW9ssn9nyfwHNgyHT/++7/+D3/7G9Y2bDGc0SlmccVRlwWJ+RFkUgGz81lrqVkJwhuwYlFKkG3psr1jMZpwdraRYaffcrG+5XQv/VitBFHyQRsZqiZ8vioqqmEGyXF2veXZ5w3LuOJqZHKiiAYtWlpQ8jNQRbUlaIfRBR0gRFSSJF42kFKuENRIq0/nIwMhJlUWlUTllZrQGkwmGjMzSpMNIOm/qd/zR1fRx/J/4tRulpdBPkjFSGJdvCoMJOgu0DFqP3Xcef3E4AGU6mqbUTaNUdueSd30UW6eUcmrsnZs2kW1hRUynh55ZUVDZChcUau/pdlvW+z0kqOqK49UJs3pGUZakFNlsxGFqv9uzXq+5ublhvb5l8ANawdnpitPTM85PT6mqCgA/+Cz63k8ovrOZ/pVH5yPKoJSSvA7rmGW3keVyiXPFYSqEeqNA+NpZ4B/pOru4z2+/vKK7qAhB0/eOuqipqpKoFK4oKaoas5eMhxcvbzld1SiE11+XBSoGlrMKZwM+h/bsd1v+5b/8//Cd733EbF6TYsA6i/U2C8mF8/3nf/qn/Nt//9dcrdfs9i0vX77k/OzFBMJa55jPFzKatZa22eOMprSGeeUginvag4tTjpYzEadnVGm/37FvB17f3mCXM3QfGdY7UjR0fctiNsORGHRJ2PXUMXJ8fEqZJ19D3wOKk/MzPvzkY/7nf/2v2W42zMpKqD0KNtsdZycnzGcLLi+v+eij9zlaSfijnTuubzbToeSs5fzigpvbNf0wcHpywtnpGc9fvmRWV5ycHPPq5gZXFKIv8gMnF2cYrXn+4iV1VeUm+IgXL59zdDSnLC1VXdC1kWHoGbodn//yx7z76BH1vGI+n+FWNdoYeiJDyiJHHcUYozS4SsKoRkAhhEDwnr7v6LuervO0TUOz3/Di+RM+//TXlEWBLWec3L9HeV0Rho7FYs58WfLRJ++yvX1N1zds9w3GGcKuodnKa7E8ueCX/+bnzGeas7MVjz54h9i1vLpt+eD99/jNb5/TbZ5wqt+e4uny5oa27wlptM0AHyJD9EJBVYmYi6qD3gCUHhiCpiwM88JyMqupC0vpLItlhTIDezrGPArhTsuebWT8kP81TfbZY1Emk9NRYB1JaciuY3d1GQmvgkwX1MEUZHKiIv8I6YHQo/g7Oz1JtPDhrACmpmecUo/7vRrPnhQOz1tlECvqQ/GTaTRKCYVEwiAlb2q00RW0OId03nkfZFhuIYe3xdGJMQ++9QiQpcgQWvb9jjTccjNsUCE3bspgtKWuhCdurGU+MyKAnVB4LU1IEupO1w8MKTJzCpY1F0cz0X4MnqYf8INkDMyqSiYVxgonPz/nfuhpmh1D30FKAmodH01UqKoSQ4HCiX4mhMDQtzRtS9t2Mr33MTcVioiRRsP7aer0tlwSjidaIKWtPN8ork3y/o2NqQCvExMCQf+N0tRlhUJcITOHD2MU1maxf4IhiCNXyKGOdmx0tcluXSq7PnqChxBGN7VRbyohciQBbI0xpAjBR4pChMokjUIaz0N1hFD/8nOWiVp2bSO7hQUBFFIS8EAmgVJjhTvTsbH6nWxlY5JFnO+fkSACdwHlONVs4yVaDpnqAXmfEFttcsOjxr0/pex0KTZtCi0Cde3kdU9QmCLb0BtEVxZp2p6uk6DWph/Y7fcSkhsjZVFgTDYNMpJfZkawmwPYLHvCIc/kP8X1JuCSvvZzf5eS6xs3GaenS7oGUs4zmO52DhawkrgpLjImj8lijLRNS2kdxXIlmEbwFMbhjKQVam3RxuUFIAiNK2pWR8esjo4ktCdG1ruOXTtQV4bijpUpOEiemAbZ9JLMBCwQlMKh8HmDE5GcbFbWKJzV0I7TFz2uxUlgpvM/HDyZA973+OCJo/XseBSOizVPc8b+9i5Vijv0qdGiUVAGi4mRkMXfMebCO7sX6JxwG1MQz2t9OODkQP1d2tBY4JCfRxQYC20VBYk6GlwTGNpbtvuOoesptGUxXzCfz6mqiqIoQWnaTIMSy7+W6+tr1utbdrsdKUaW8xnL5ZLF0ZJZVeOsJXovos2mYd82d25YJRzx/NxGMXpdz6hzU1FVElaT00EYm6gJMeHAY/7mZmr/+a9//f/7G95/7120fY/VYsbgPUWMWCvUAJ8ix2f32O/W7Lc7Xr/a8eD0nKosSClKGBSJo+WCZy+vsM4R/QAE2nbgF7/8lLOTUy6vXjH05xit8f3Adt0w+JY/f+dd/tFf/AP+v//LX7LftRRVSdf3bLdb6qqgKkuWy0W2Yk6stzuWdcGsqMUrPVOEFnXF8eqI89NTFLDZbvOmH3n++gUvrl6zOLmHHwLBw3q7R9uSOZYuDFhjKGyBtSXH8xlhGGiaPTF4qmrG6fkFJLi+uWF2/z6l1ay3W85WC7QriT7yV3/17/j2tz9isViAVnSDNArKiG1vDB6jNb/5zadYlXBlxWp1RAyeru0IPmSu+MB+u8NZw4PzMyKJV5ev0Vbx5eMvOT+9YDWv+eH3v8OyLtitb4R2sdsxtA2PLs45OVpQzmvKukZpTZ8C7dAyZDqPRqY+3dCh9nrSYIEcCD74iU88+I7BdwTfScMfAnQ9N7dbrl6+pCgqQj/g+46j5YKTk2M+/PB9njx/St/1QnmIkWa7YfCe+fEpulzyxecvWCznVHXB6aMHPH/5mt1vn/HevQX/+B/+kO/84Ht/zFvjjet6t8/FTEbMlSKkiE8iQJ2I1flKKsmepxRdSiQvRbRzFhsE4QwhMTMFLUYmzWpEGmWPDFH2amX0RN0Z980EWeg/luB6ahiylJoQElZZiAbSaIWppp9xSBHO+1G2tlU5a4P8/oM0HTGFfM9pQZBtmgAkoUhpKc5zQN9d+FCOJXksrTUmZYvTnHYcx3EKeWozfePIgUpTkabUaPYeppLijf0124n2YUfntpT6lN57ul0riG1GswvnKKzFGUNZWIqioDAmp7QX0+R5VmgqW8o5ezwjcUJKgpoPPtBnQ4BRj5dipB+CNAedWD8H7ykKy+lq+QYVSpzKdEbQPX3fSHJ4pkINPuJzgnaIOv9Mj/ddPrd/P43kj3kpxoZY3ufRmCBMymU1BQ/K8O/wO5jJRl+BGh0nRS+hcyDwEKAbxKJZ6qOAw0ESal3nwQeFsUCKIoBOMRvSSDGv9Lgkx4QJGMOC7QgqjgBonv5NBjHx0FxPTdKofRobeU2enqhc+75JEUwpZ+zkOsOPDmTJTD9zXPvy3HI+Wb5/x2nj+PNGTZR825hVBofQsRFIzlbWCCOndDNUVNRFxb3jkzxtlMeOIeX15mn7lrYVY4tuCFJTRpmExjEryAeSCRPFfmwk7jpfjev1bwsu/ltp5emrf/09X/93xHS/cZPx3ocXvHyyZb/LY6gUMjdNxpca4c+XWXillHDPYwg447Dasb3dst9v6cNA2/XEqNBaRlkmNxlKaaxxLJdLjlYrjo+PSTHS7hv6GOm8iJ6USXlhilOI0SUqKiKDcHaTaDQM4LQR54OgGKJnlHIrpXDGYFLKOE5ewOrOKI9DhyoOUz0+C9RH1CDGcHiDM01rLIs1EsBn9J2wOTKFSgvtorCOfujpODQgMkbPlonqcFOM77I4kKgpsE668WnKKQd3thHRmZ+slKRdWm3RIXH17AWhTUKVqpecHB+znC2oq5pxVOmHPveTif1evMm3mw3X19f0fU9ZFPJeHUljMIbDdJ1MtUYvcx/F7UEpDhbB1rJYLFgsFsxnc2bzmWgznPh493mMLS5cBwtHHwJd18vP6GXc/bZct+uWzx+/5L33P6KoLSG1eN9ji4K2aQldw+r4lHazYnd7zfOXN3z/Wx8xn9ecHa84PVqyW28xqWO/uaFaHFFajXMabTT/0//zX/Hf/rN/ynxeQ8p2yyHRd4GkHF98/gUff/gBv/nNZ7x4eYl1jq4XZx4/Tgu1Yd80+BBYbzaUZknljrDGsN53oETU1uexrTWa1dGSjz94n1999gVPnjzm3/71v+P+f/2/JQ4e1QdmR+c8+M632Pz81yiicKWVQTcyZdBdz363FXcSJV7hZVnx7Plzzk9W7HZbQt9xcjTHuIpff/aYm5trnj59zmo5Y7vdsL3dsts3VAnKumZeVTSu4N9++hn375/jipLT42MKV3B8vBKOcIxcXV8Th4Gjk2NOTk7Zt3txrysr2qYnDi0ff/Ax79y/IPY9m12D1YnQdRgVefTROyinCQb2asCTpMnQHUEJBqz8gI6epu/ZN3ucsegcghi8hMf50ONDS9tt2O1u6botzmmK0uXszcD66oqiqJjP5/TtHN82LGYz7j24z+xowbOXL4TKpgxt09LsO5Znlnc/+Q6/+Df/b5r9IELWoqA+PuXZ08d874P7nD/6hP/L//C/8H/+53/sO0SuwWctg5KCNilB2UGmvMZotDUklfAp4ZMIVFFSqAwR8ImwadmYFq0192LkvYslIQcoCopvJMAuCS1LwuzSlCmRsoBTarKx+JEzxliTbTzvop93bCKV3JMiph01b9KIy2MmAatSBofGhoSQmwxPjD5nP43NCtOerbQRWnAihwIa+ZmQG6gD/KLzPZW0OCxKqNphYjIJ09P4DOUSRyxPiNLojF+jtcp6EHnGKkUiAz61cpYaTbIlPmZ3pz4Q9x3EBqflzKudnG9GW6xRFNbhrMG5Eues6DDvuO2gDXVG1cmBsRI+Js3BvnH0XUU/eKHN3aVCOZML0kjft2y3PbumpesHfEyETIUKyU70xSEDotaIvagUcW9fg3FwLMsNedZ8yst0oP1NnIX8eWlCIj4k2m5A65Qbq3EiJJR2rQ1DCFMKunyvvA6D9xTGZuv+kWaVf3puLmMU+2drbKbEatBR1kyKKO2w1uXndmgy7ha9Yw0VM2Aak5fw5PzvKkndII1UmgBUmRSONZdY7Fsrw7/eCxwZgtz7MYpREAxvUKbGui0iNeUh/+MwOSDFzJ7h8BqMQ5KxE0kyvbBUeJ+oCked3aNSdvASXUsSR9VhoG1bYXcoxbwqmc9mVEUp2uM7DJXoPT6liakyIiCjrjfGODXlb66d37Okvkmn8HdsJn7f9Y2bjEfvLjk7PuHF4y3r64a2aeizql0rcYypqxpXOLEv8x4VDwKZpmnZDZ6m3dMHsawNUQR/qj3YupbZA3jX7dg+3fKbLz/DGM2sqtD2Po/aI059Se2sBPKlAMoCEa0CKXoMCqc0MSc0pTzaQjli7EhDJz7rRlOXJbPaE7o2+7OPHX9+nfPNMPH0FMQ04H1PiDI5EVF2EH1GzG90dnOaKD6Z1qSGvAGgchHi5LHHOV4aBc/6jc50/JKxuRhXgHFiBzieGtKYHOxrQUbFJPGxNpl72Q0DTy6f45vIx+98wL3zC+b1XMJi8uY+IQgx0rYtt7cyudjttqSUODs94eTkmKqshKccUw7Y62iadpp8CCohh25RFCyXRxyvVqyOjrJVbR7zKXlNYox0w0DfD+z3DTe3t9xu1vKYXhrXEA/BiOHOhvHHvmL0XL6+wpXz6f4Y+o7ZYklZFdxu11T1BSerI9YLx4tX19ysW8rScf98xXc/+YCf/OgnnJ1UXF4v2HayoS6XM15vrnn5asNf/tW/47/75/8VRWFZ3+4xyXB+do9dN/Ds2XO+991v8Wd/8gN+/stfc3tzQ9cOXN1cc3p+gi0K+nbP61evCN7jnBG+s9a03vP8ag3OoY14cDtrcUY8uu+dnnC0OOLx85c8ffaE7dAxm82gb3CmoLMlgYRTIpBblXNeNxtePP8tj+YzuqYlBI8r5ihjqOqam5tb9vuGk5NjrLZ0fUs7BB49uMeryxuePn7Gh//kHxKC59WzF7Rtm6kTHmMLykKSeyXwSXF2ekaKkdPTU4qypOtE9+UKx4MHD5jN59zeXFOakkI7LlYLPnj/XT758F1ms4LB71FGoVyiKBLJQGN69oPoBRIKtCUpGf8npSQDJwmSpuIgeRQZmVPTbS0ARdM2NM2artvQdTucVdSV2O8arXnx5DFXr19z7959lqfHnJyeMqxWHB0dcXS8oveBz+1jObidE31H27I4OWF5co8vP3/Oh588oCgcxWyGmS/44rLn8n/6CX/zky//2LfHdIWUsm25FAlaibuKcw7rDMZqtBE4aIiRNgYJSMyIqVayJsvCiabPGCKa9a4jLkIGiEbNXnaNSmMIlyQlJ2WAkKcpokVAj0qEsRTP022tJRop0zOUihmdjZMl5sFwI0J28NFaEqcF7pKJdlTZZnM0DzEpF1/Znhb5OfKIY2GTXRVjFmZHz5jOPAarocCozAYY0V6lgJjF4tKwTcUogEqE1BPyJCHGbGvKWEcJLcXoQEo9gQ5cwpRzUtZUOpMwZRLufhAjGGM0UUsieDLQtnuamzVxaFBKURaOsiyoXEFVOlwxgo2GwjmUkuwAZ+XMmpWOxexIAIokh6HLjUUMnq5vaJo2Tzo8QxipUEJRvkuFCjmw0DlLXbhJ+H/3vHubLkmcvpOYnamAOh0aogPHXuMz1UemFoCWgluTGHKhbrShsJYYIj4opERQCJ0pTlOSEAPa5qkdCR9lqhJyI2y0rDmk/2UYPM6WsnpHUXlSMgFMI/XwMEWQ3y/is2vcgRkiH70fcu1istBa3ifRuwa0Dngf5VZVKjfwfmp+rDG0vcf3iZDMBMC++QJLS0HME8T8vO5OXVIKhGGMMB/zckZmytiUJ5wuMZQMPlG6AmXzNDKl7JYmjJq2FTt/5xxF3vPmdc1yvqDOLA4QDaUPkm/l+xHMzoYkzk40qb6Lh33g77S2fvfrf99j/F2+9u71jZsMH1tOju9xurjPzeWWy9c33N5uWd9u5Mb0IY96ZfTVZX0GZKpOtrD0KYnQOguptXGg8oAuBfqhw8eBrRfXKePE6lXZnmfNJfc3C85P5yySw2bEn6hQygERlEwqnJIN3uSbRicRWGMsgwGyGNo5S1U49n0vhxBy6I0bjaj7Rx0AmcY04IcOHwY5LFIWY4dINGniEoLc/KNwfCzwRXuR0ROdhT0mj3iTIYaBFPw0sh4PhZE7Oe4nB6LQAa0ahUB3F4DR0vAU1mG1IXg5pOp6wcnZKe88eMSskkIz3fm+GCNdTlfd70RPYbXm/OyUxXxGVdWTeDuSCL5jt92w3+8IQYrjuqqm6dZ8vmCxmAu/3lpGQ3KdedA+JLZdx83tLa9fv+Z2fctmt2O339N2rbjxZGRjRLliPHA534ZL68RmI05q9+4/YDdxRBNlZfA3nbivuZKjRcn2Zcd63WCNoSotWvXsmg3vv7vi/sUJ1795QqdqERIb6HrP9c1GimylsFqzvtpSl6fYQhGGgf2+5cH9e3zvO9/i9V/+FT54Xrx8wZ/+2Q8FHVGK3W7DdnPLsq5YVA7rNM9e3vDrpy8QVl3EWctqMef0+IiqLFBorNacnaxICXZtw+nRKX63JXQ9votEY9DDIEP3EJnXc37+y1+xOl4xX8zo+4GySJwen/LeO++g/MDZ2TlWa548fkxVzXBV4v2iRGnHL37xS5a14+z8hNPTM3a7x5Kh0EvBb4xmVtd47ymLgqIsOVos2K7XnK+WUvhnxKkuLDp6UtfyYDXj3sUp77x3n4fvPmR2tMAUhuD2eO3ZpZ4+9AxDYFCJISZQBmscIwVSGgOH1gXEjGhjcoaO6LTGnJkUegbfEsKAMYGqNiRvqGtLWVqGzlPXFd31miF19F3L+vqauqpYHR3Rdx3GOZZHR1zcu0+zfYIrazTg+x5rLWcP3uPpb37M1fUtq5M582rOw4cPefLFc54+f045f3uSjLfNHklQ11Q5MG1WVdicri4WmfL6qZgIPmMmShwJl3XN8fKI+6dnLKoarWS/auxr9mqNSMmlVNEjyJPR1xRVJgbFXJiPwAyTxefoKiP22wUpQR+67OqapsyVmEbVSMyTC6b1kZ8Ao814Sh6ShigFGzpI3lQam5Rxbx/tQe/QnJACEPRklTt6kkfG7IzRiUpN0/QRfRoxJ6MkAC3FsYWYviJ/XZy0EzpvqzpPCGIM+NTR02PNCuMUhdYT3UoYBebg7a+0WGQnz+bmkvV6y+26Ee3eyYpVUZNi4tXVLbv9HmPFcXHU8sUYmdcls7qgKJwACkWJceK607U9bXaFEppVJKQs3o5i6OIzNYX8+hqjqaryjcZiLADHP8NbZPUMhzWhGIHHbJZyJ9NhpCXdYdQJKk8ugJU4sqnsICuBr+CVphkUURwWgJwSjyZ4MdPJdnsEn+iGbB+jFFaLptXa3JAET4xgo9BIRkq4NlbC/EZ9BHebosyYmBD6NNksx5T3z3xjjm6UMsnIlVFSeC/vtwxUEhGTBe4CdqkcZIqSKeJdkbf8fKa1MLJIYtalSH6PZH4QDTq3/nd1uEpnf64EVhdYVUAkZ2GIRiVkBoFSORMuvwbOSUCks2ailI2fs1ZLvtqQ8B5MSlircUUhwZLOghbXr37oJX/pK7XQH/r7pK8Yx5vjJPUPfi6DFCNY8Q1Kr2/cZHRDy9ZfEZodw2A4OTnh+PiEzXrHzdU1fddTWjcd9MfHx2y3W7bbraDb2TEJJdZ6Kkpap1Eqx95DVJmXWirKucNVBa6wsmkZRbCJq7Bj4zseMM/cuHRA7ZVC519JqTht0EkpiLIReq0o9ICPkjqtFZTOUhpLqwND8Ny1LxuLdjMePHlcH2LIvs53mowUkKRXM6FRahx1KhlBymg7NxpKY4xDazvxJsfn/EajkF0alLISXJXHjqObgR5/xzuLZ2qS9AH9GOJh1GaM5p2HD7m3vM+yXlBYoauJENvTdz3Nfsd2s6Vp9mitWSwWWSsh74nJk6IYI02zZ7PZ0LUdWmkWyznLoyMW8zllXUnXrbWE0dgCZeQg64On6Toub6757PMveP36kn3byGafN/y+7zO/8s7Ch2nRv02XVYnZvOKzzz7lnXfvUdZ1XpuJrttJ/ovSJFPx4N49Xl895vmr1zy8f0pZCAK037fcrPf4fqB0QhsrSsei1BAGHr3ziKoSFyaNwvceqweOTy4gJV69fsL777/DP/qLP+fHv/gV+6Zls95Is6mFxriYz9AxsqwKnIFd2/Lk5WvWTQ957Kzo2G22xBC5f/8c+oHCOoxWDN5zvbnl44fvYeo5w6bDKEN1fsrw4rkIyL3n/PScfdPxxeNnnJ1f0PYDFbBaLlguFjiV+PSzz/jogw8x1kmhPXQsbMEnn3zMbz79DS+ev2A2r3n48Ix33nmHzXonk9KMfFdVzfX1az76wJK05nvf+y6vX74khpiLKs3xYsb7Dy6oTOA7Hz3g/GzBvXsnLE/nqFrT6j3b1NKrSB8TPshBE9GgDdoUsm6VqL20cmgrh4hSknmRUiIqDTY77oyYXIoQI0pFjBUNmjGKFD31rGA+q3i1vaKsZiwWC45PTpnNZ0IRSpHFYo7LKbHaOD786COafSCZIttFyn41W51SzFY8/vIZxjyk0AUg9q+2KN4qWiFakL55VbOazQS9s0bMKjLo5DN9IyXQCQplKMuak8WSd+7f4+H5PZaLOYlE0+yElseeHmjSIEJv8u03wTEpUy7GCYo+gDa5UlBaTfSpmDw+yPf4FDBpdAWEgyx9TBNXKH1w91HKEPGEFNFwh640akHELx+tSdg3CsRxAk4+K0IaueMJVIBJZ3LHaXAUp6YwIcnj92gNdhrPQ1QH8CopZPKmxmbo4FKo0JNeRkVP51uCFbDJlQUuGrQymfI1NhdyxjtjckCmpihKqqoiLo84Wy25d3GGMZanz19wuW7YNQ2Tk5baYgxYbbh1hsIanJMJhytsZk1UjInvB1cocRUKwTMMwmm3xuCMiGfNHa3FVxuL8c8bVsVvyaW1RpgwOr/XY1L0oUaYasex/2TUTIg7oMRsBQordYS1JiPwB8bEpEXIxAIpurVQbQdPiGQtlMJoSzJJHgfZZ0N+/5QGa+3UyNosACfb0b5pmJAbi7uGNWnMgPEkJfdKTKLTeVOnkQhKobTFB88QI8Mg5j/ey3sv4Zt3X83fh9JPJSQjuGCM0OdjUHLDqJjDcMfJo7wDEmUgminnarR2GCP0scKWuW4LU6iw955ukJpmzBAbdRUhx0OIw6aW+9ZqyrIAxLilqiqUNoSY2O527HZ72rbNIa9Tl/CVZuCO4uWrddPYR3z1tUmHWuurr9Xf5R75xk1G61swEPyWq8uW3UazmB2xXKw4PTul3bfy4rUdfT9QVSWL+Zy6qri+uWW/39P3nfD6JKhbOmqncDNHtayxlUVZUFaDUzmURMbmGkAnrvstT9ZXPFwsWRQ6T0+Q8bQyxGSmREtZLGTqlIxOC2MlgRHxOEBBWcjISnd9DrjJqBKHoXW+bQXdSZEQW3xsCbEnpnJqNlK+YVRuKvKPyKPF0Y89055Q06LmTuMgXXo+MCJ544Yx90I6+sPGMNKx7m4WY3MkkxSksUvi4qCjYlYU3D+5YFUeSyJnkrFzGAaa/U4SW3Mo0epoQVEUuELcaUazBu8H+q6jbTvJU6jmPLj/kMViQenKvOGI1ax1UgD6lGh9ZLve8uWTJ/zoZz/lt198wWa7IcRI4axQPQonzVwIuckyvzOh+Tpu5x/7ms9rwnrPT3/8I9559wHvv/cO+2bHvtsxn5dYC7vtFl2UHNUX3LvY8uTJc85Pl2il6H3iaHlM2yjm8zn3z1dcXrf4YeD+6ZKrmx2F05wcr4jBMww9s3nJ62evKV3FvJrRzlfc3N5y/945//gv/pzffP4lF/fu0w+DTJQWM+5fXHC+OmJeyOF9te+42YjFqbpzYPkY2bctr15fMgyB+XzOarmk63t++rOf8o++9w+oj0+haxjajvL0lP7lM/rdLaa8h7GOdx6+y7NXl3yv63OhmyhcwX675WS15Fe/+hXWGC7Oz3n18iXd0LE6OaWaLfjgww/wQ8fJ8SnL5RLQ3FzdUmfutHOOe/cu2O3WpCSP+7/+J/+En/3kxxgi906OwQ988v4jvvP+fU6PK45Xlvlco4pIo/bs0sA2tmyCp4sSmJmwGC1NhLUF1lQoVYCS8DGjS0lrTTIOj9OGLAVPIjLSA5RCgBQ1ujtpojPEWFJVJfW8RmnYNjuhhIilD7N6QV3XzOdz6npGQjOExOnZOf/4vzrner1nH8cmxlNWFfff/ZBf/+gpN6/X1GVNWZYcn6xQSnF5efX3ei/8oevRxTmzqmZWlNJcIHuaH6kTftz7HPOy5uyoYpkdCo+XC5azmqIUd8PBe7SS5OqZWrDBolPMk18R3GuTaawpEJOINUenF0koHvULiTTRqgSxDGmQf8sIq1EIpY6cKUDK03g9ZRmpETVNOh/wozNObhCUmJCI44+dio+DL/4hJIzRS1DlCQjjvpf3QHKxE5Nw572X83XcGzMdTdtRYCvfIOnfCclnymeSVE3y88biY7LPBR8HlBU3HxdLoe7GRAqRmAaCVihjcKbAZkpL37V0XcusLHh09h6L2YzeB17fbGiHRDU/opovc+E/CAA5nZ8JrwBV4IOijBYXHWkQIW1IKmsshgMVSon+w/weKtQwDFNTMXHcOVBQ/lO59PynuiQ/KuQJ1sFSxocwGdSMR6DWB1Q+pbHuUBidCD6KXieKKY44lDmgn4BIpQ61SAyBGKRI9xGUstPPEb2CNMDRewkXjUjoniJTrsFaoUHKcCObEwBjBpb0t4czXAaFssaFKeIZ82G0zfdokjUbE8KWT0kaIMAnSF6S4q21ObAxTo8rGtpDvTC5VKb0BiNCA6XNbmg+oFMkTRzCOzXHnZ5UKUVpS2KQIEhjpebRSqNzB+ODZ9c2bPY7fAbt6lrYHjY35fL+BcCKdqlwzGY15OiDiBYXtq5jn2MEuq77va5o/zH10X+K2uobNxn90GOUolpUXLx3xPDFjhcvX/D69RXz2Zzl/IiT01NSjNzc3HB7fTMtJJsFvm1rJQshi6ZtZTG1ZnY8o1gUaJdHc+ZAEtJ5IaYkYq3tfseL2yuuT86p3AKn9aSDSHn3lHFXnGaDRqsc1Kcmt4uRv2a0WKNZPQqy8w0aw/SzSYeR+7jIJyeDlAXg4zQj5rEYd5qUvHnrzNMlc3u11pIGfSeU73CT3QmNIWVXKTXdgAetxpuF9+9wStMojlfoNIrGdEZTJSU2BaG2dG1Ls9uzz2ndhXNUZYXN3Fdzd8POIqOqrFgdrSjrmqKs8vgv518Yk8WbirYfuF5vePryFY8fP+Xx06c8efaU9fqWBNmmrcQY+X3brpsOhpR95sff842R353/fxuuoiop2x7fDOw2O45WK0KKNPstKUSOFiW3N1csl0cMynF+74xXl88ycyOyXu8oiorew9G8YLkoaNrAq6st7737iA/eCexuXzF0DXVVEgvL8fEZvn3N6+dPePj+x5yf3ONm+5qh7zleLbl/ccZHH34kazQJwjIrS06Oltg4oJXmxesb9r2XwiaNND0ZSxtraPuBV5fXcHnF0WKBVortuuOLp0/49r0HuKomtT3F/Qvaeka4fYVyA4UxfPdb3+Yvf/I37Nrsha+1JFd70ROcnZ+B0ayOj3n54gViMrDHacPZvQvWl5fs9g3q8rVwvp2l2TdUc0MyUdD/1Qlt0+JD4Gi14P7FKQWJdy9OmJU/5JMPH3J8VIHuUK4l6I5d6rnsdtzGgSYpumTEFls5jKlwrhJjCu0wqkCrAqUcSlm0KuSAjUhgp8w8JpTrgCAdQAZlJAsHFUhoYmkoS0fhCoxztLsNSjUMPrDZ7Ti/d8HDRw8pyyKDEhIM6KPCWMXp+QmzALu2o+89SmlWp6esTu5x+foZi+WC6l5NXVva1jFfvj10qdPjFYUVsCemMOkMei9BqaCpyxmL+ZLFfM5quWBe1dSliIWdVqSQ6S2+R8UgYn2VMJOuIOsttCEr64UWkqRgNyoBNqOlB/RedIRCKdHpABalUXxOIkbRFOokaJnOBfF4Bshg4UDHYWoaMm0kJ3Mr5dEmU57u7GtK60x5EupKlvwyIpEZQiMxIrW5cUmSjKES+fcbH2/8vTlgWkplcEyhxkwR+U2BMSNDbG0FqZUQsG7YU6geTUUMSIMRsnNgBKULrIbQd3RdS9ft0LGnKhwJzfW2oWlbmrYXkK8UXRVKzEpUEjGyJFMLQqyUns61lBKdh5AbC5IUtlYbqup3G4sRHf5qYyHNp1BSrDXT971t11iXjE9Nci3ydC6Nrphq+tz0fZn6E0LE6yA5YT7l0F55fYYhEsIBVTqY1xxAvTEF21gzNcIoWR8jrSmRiEGmj1X+XMqFu1aGGCTvZLof0uG9TXAQfSdhiSQtDWcMAWVycLKSJsHHAEEarcQ4Ic40wjDSvuRxx1DHEQxId8Db8dUdwd4EdzR0SqbZ6dCUq7GpT6M/KXJuG5X1t5rS1cQBht6TfCIkWZchSG7VbrcVK/j9XjI13mho1RtrcLSvlXpKasMQI03b0LbSYLRtO63p/1At0R9a829EBfwHXt88jC9F2qHFWEM5dyxPHetbaLct/drTtD29H1jM5swXc5RS3Nze0G97yplYky4Wgoj74MEkYh2hBjuT0VtUgghpDk5CikPhnLw4cVxt17xY33A6qyisQenR6WmkJBnZNEfcZ4xmVxGLpjAGp4RTq2LCGcWssBiV8OSRXt7kU7b1lERNce0gO3f4MOCD2IvKwj14FzOO3RAUaHKWesP+F0BNiyhPx+XwyVOYGGN2kBoPk9x8fWXMebfpkPG4fsPuTDRTZsrosMbl5xzoB0+73dHu9gx9j0Exqw4pqtZYrBuTtwWZKFw5fV5rjbZOqFBO7IjRmt57bjZbnr56yaeff8GTZ8+53Wzo+z6P+bYkmDQbxmjRu4RhGl1PI9z41QPgG/kj/L1fSVmq2Ywhtmw3G9k0jMWVc0oTuFgU/OKLp2ht8Un4+kppbFESQyOahbJkGBL1TF6Xtom0XaAfAmfHC9Zti+8aBi1rZL484js/PONn//anxL7BVTOO5kcoF3j3nYegDFVZZScZWZp917Gcz/DNhgjsuoEhZAtOPVIzwFnHbFax3e6FS6oVN5s1RmmaXcuXT77k44cPiUrRr7d4fwpVjVKRwoKKkfun5zgjyfISehcoi+wAFXrm87kI3bSm63s++vgjnr98OQlC3aziybNnfFy9z2Kx4JPjj/jVrz4jDAPrtgUSVVlyc3vDYlGzWpScL+c8PF8xry2LmWG+NGB6tsOW7bBmEzpuYuTKR7oIKIdSJUZbClPJFMMUEj6lHVaXaF2gsPmPE/AhN/G5FJMDKgMYiYDSAR2EaqJ1QAsMDkRUWTBfzKjqGYvlET5ACNJwx5S4uV1zfSuGB0WRSEljbIUxNgt4E6WzWDujaTuGIRDQHB2f8erpZ7x6+Zp6VnF+cc5sUdF/nfvIH+nquo6+P9CCkko5TyRgdcmsmlFXNVVZURiLyTz0nGBETAnf97Rdg/cDRpMpIEPOApDiWbQTWfwd84RJHcLepkI9KVI60FUh5X+b/spIgZVCKPPD9ejsEzP+lKZ9fHKBIQI+l+5GEGIj3HCNmfbhkNFfrcdzI1uPZkGuFD96QnFRIzLsJ1v2qLQwO5KAayoXVSlkGXwiT930uFjlYw4bPECzB2pRjLKWkwr4ODCEDq8bHDVi5RtQZPpwjLRDR7fb0md0VYg0oLShbzq89/TZXScEQZwPmhSFNm4C9HwOaBun8yELX8emwlnzBt0EYKRCfXViMWWhWC228V9pLA40t7er0RBajZ7cnfQdXYP6CjvibpMhWgdPQtLhy9KJkDs7eKYYGQYJ7U0cNA8ms0eMVRhzCJPUd36OnL+KwceRtZ7rEzXVIMZkylQ6BEyqsZlX05M81HcctBgpRdquRamUaUsyeez6XkAAJRNHTR78akUfhM0SUppeozg1BCoX6nfu6TtA7kRPvPM5kgBIoyAedafe4rBeYwYvlHI4W2X9WKLLCfZGi4Zwu92y2a5pmj2+7/O9nbV7Q8BkCpzOGVZiD5yBrCSN8r7t2O4a2r6nazuGoT9Q+n/PBO6brOe/i9j7m3zu7vWNm4wUEn0IpLgjVonFccWDd454/vmOmEeX252EiejsYlQWJXUlYx6TUfsURMwTkmyMzlliFr8Rk6Dt6pAxQd5UBNEODBHWfsuTl694UM+pT46QNIWD88CIfIzH//hRKxGqzcqCZiiIQ4fIhBKLsqQywuL1eXQfU8pTB0OMhmQOjgghhiz+FjFnUEOOjx9zKabBdp6ESHaHQcxEJC02h+npQ/K1uKzo3IdrYgzEFNF3BX1K6AXT5AVkdJq/fwy6G++msVmTsb5CGYW2Gh89XbenWW/Z3q7FbthatBUaglJQVSWzWU1ZFjhXoK3cACpFtLEobeSjEQ6cj5H1bsez5y/51aef8uXTp7y8umK732cURIR3ZekwJgtz86bU952gmuGANo28TWNEoHnYUPX0+79N1+dfPmM5nzNbzPnNp5/x7c8+Z3V6DCFSO83p0TFXr1/RdnuSWfLpz7+k27f4oWe+XNA3LSopbtd7Li5OefTOfdaXf8O8tlxf3/DxJ+/x7uo96roghIGI5pe//Iy/+F/9Q9755D1++/Pfcu4eUdqKPuxZzmfsNmturq54970/oapLumbL1dVrNCKW/uJ6yxfPnufD/TARHBt8mUYaseskr90U6WPPs5fP6GKk7wbsvuPqyXPqokQbMMrjh47CaGySYM6uH9jvJVPje9//Hp9/+mu22z2vX7/GGMN8sWC32xF94PbyGu1KPvjoE559/iVN23F+cSboTRwotSIO4pp2NK+Jw5YHp0fcO55TndYcrxymGPC64SZuWPcbrroN++hpo6bF0ikHxmJwGF1gTYHVFUY5wMi/2QKrCzRW6AXJkKKaEGk5jQ5FSgwBYsSohPEB37UE3+OckrAqJS48KtMAy6rk9OSU1eJYwAxtGGKiGwaavme9WXO8OpHwq5BYHJUoa2gHTz+0GGs5mlf4IdJ7z70HD3j59JTrmxvmry/zPW2pyvKPd2N85bq6vobM3R6Ds4KPOFNQLRyFlSZu6HucMbKv5eInJk/bdnRtFtLnOjx4j6dFmYBWnqQVYIhJEYKcUUZr0IIIqqRQaSyA80Q8FyKQ7tA/DvkDMlVPWfQ5XmninwMTEJX/Akq0HaILzIVPClNzEuMgaO8Y8JoBMj0WRYwF2LgfTsMIRtfDEQUeczoOhZU0JkMUcW3I7jg2m20Yo3P4ntBqQk58FqverFdJeSKfPCG2DH6DV2sYHLE34unvA33fE32c0GutM0BlC3EKSzDEYdKRvGEw0nVTwa8UOKuxRlE6sfEdfMAT8uZ0YEhM+Qt3JhZj8+KzwBYkA6XIQNbXNRZ3r7eJfgvjdEIx2ifnd/YNlFnW0t3fSd7nlILsv0aLmUyKWGNRREJCtD75/Z40QBpQgaoSQXJKEd+N2RG5yU5JrG+HiNU6u3fFychGIdkYYQCjDUaZyfxmcm+KEZXB0jg2uyRSBlr7vgMdGQMlx6YgMRoX5DsuHV4n+QNjrswI3o6TlZSAOHrG5akO2a0qqDzpGJueHHiZYr5/ya+PFS1VRh7GxkmhmLsVargz6fERH3t2ux2bzYbtdkvftVgjWUqiG0liGpRBPpms2YOZUBIq5dAPNK04dw4+TI2zNOCjIxd3AOzxP7/6WqXf/e/894Om4853fe1/y4N/kzvlm08yvAjyopbNrnCJ49OK3XXP5UsJVnJ31PHWGmZlxXwmfOKqKEnAq1cv6fZ7OnqKssAmk4PtxOQvKQUhkMamJCVUjMQ+0t02dLsGE2DWOj5cnnOxWOBcRmayK0LeEqcCYLwZDZL6WhhD6Rx9GCbvdI2iKgv6tjugXHnhjJQp6WyjaBfCQEg+U7+YtBqkmA8rlQsGGSFLAyGLWykZT4v4W0mOSObjjbkaaTz8VNZApCyYiqMO4zDKOrgijCI//Qa/cDyMjBKHCpVRod12S9NsaXc7TBJbwaqumdWzN1yhRrcQY4XWoY1MNCKKwQeavqdpW65vb3n56hVfPn7Ks5cvudnuJvRJk9AqEeMgyaGZqvU7oz51QDa8l3AarUW4WpWVNGAjz3G05H2LvM37EHlxeckD6yiKkmfPX3K0OqIqRLh9tij41oMzfvXKc3R+zs+jZlZqNrfXFO4YrRTzeUlROarK8vG3P+Zf/8sfM7xo8ENg6AMX56csFnPatuVmveNHP/oN9fERj+7d5/j8mN1+zWy2Yr9rODs9oyxLou9ZHomN7m57w9D3DG1DUc15+vKVbPZ31tF4EHR9pjjlse1oFzzGBdyur1GFoydhfISmo1gVdM6QUoeKntJa7p8cYxVZzO+pbMntZs2zp0/p2gGlFNvdjj/5wQ94+fQp89mMza7h5bPnvPP+h6zOL/jrv/73nBwfM4QAWrFvdtT1nKow3DuuCPcqLo6XzGuLs5FYNOzTlmt/y82wZRsGdiR6HB5NUg6DQyXRXrhCJhdKFRglIZk2TzPAoLUjBU0cgpB/82swuqCEPM1MMaBjQIWB1O3B9+jMzx/vaUjEIF7wpTMczeekKFOviGLf9xRAVVUM3uOcIyWP9z0pBoqiAKUzrcTIfmcA7Tg+P+fbP/wLfvWzv2G7a1nfrjk6OWaxeHvoUkOIEGAYuqxzsBhlMCSatsUoxayuccZQGCO6MSJD39P3DX3XCPXPGrQVwTU6C+sD6KQYcnCnSZGUp34x9eBz8ZCLECk8yUL7A+oJHNDv3OhMZwEAGdXMDcZoDCKPG3MxqKepRkriJiVsk4hKgZQBI5mekzn2anoOarQpHRtbDhkXSh3sbmOIORF9aoUICA9eXLrEfjRG+b6YXddIoyFnzhGZHlseRaNGWQmJhE89PjZE1eL9lqHRB/t0pTDOYIzN94yeXivJYDiI1J1zovNzMrWwVmTpQ99iVKKqCuZVibWGlKDtenatJjadiJCDTPP7vn+DDiXg1J2JRbb4/Gpj8XVavjEctyyK//gF/p/0Got/DTldezrfM2A52Zql/F6lAzJvNGI0kRJWgwDeiRj1tC5FAxBy85v1btZNzmIibhZht5s0IjDEgCmsODuFhM60JWElRNnTlOFu1gdpNMRh0l2Ougn5BQIRj09iGas8pCD6QJLk3hBk81VIhoRirI1gDHQWgDZTpMZJY3bcOpxxov8ZJx/T640SatnYmIzOozlHLWXXUtKo95Dvc7aEPrNOEgxhYOg72pwXFrIZgc0MkcJJhozNa1VE69Ioq6zPnRo7H3L9OQJZcgYFH+hyJt2bK/qOIcA3XWm/B7T92n8f98O/5frGTYYxhtGvKRKIqUdbOL2oSFGzvhnyTS7oQfDiwTzkBeSM6DIePXxEURZcbq4YtAj8gopgsm5AZzF3UuioCUOg2/fsbjc013tC2+OU4Xl/yW+PXvHe+SmzVcG4eFMuvrWSzUne65APB2kSDCIG1/nzgpJZKluwpcsdpSA7Ex83RJIORBRJq1wsHwrkpHI3OobHqNyBI5QKGSJIUaAz2qSUweSfW9qS3rTi9x61TC+0RkeVi4nD26m1niYkd8Xf4zV2t4fmSk3jSjISNgw96+EW11nqouDs+JjlfEE1qykLESGNLiHGOIwrMK4ApeiHge12z3qz4erqipeXr9lut1zd3nB5dcXtdkcfIiq7jYyL1FqD0jZPLfo73Fj1xsh09McOXgSGZVFwdnLC8dFKfPRNFpNnfc3bJNRTxuHbjs4HbKFo2p5ZPWfmHLMqUtnIo9NTXq2vcU7x4ccfcqwbrl89p6oss6rCWcVHH7/Pfn2Dq2ecPTjm2fNroi55/fqWb0UR5TVty/OXl3z629+y6Vr++//+/8SH3/8Wv/rRz+naLSYpYh/55OOP2O93aKWZzeYs5nNmdYXWisubDa9u1oy5Lnd5zyBrLXgRGGotXvp3BaLXl6/YtzuoKnQI0Hu0qbBGUpdD14H3PDg7wxeWwQ+kJAj2Zrvliy+/ZF7NOT+/wBpDWVUkZIKWkuJXX3zJq1ev+M53v8/m9galHSeLBTEEri+vWFSK06OamUuoEChdRBnRXNz6W678hquwZecjXVJ4ZYEir02HURZNIQ10Hk8bU+BMRWEKQeaUFdvTIdE3HcO+hyFIgWQ0IQV88kSiCI5DwIQe3+wJXYd1Blc7lBFdGEqmckEpCgNH85JSVXStxyfwSuEoBHCwQiMrqyKjtQPRd2IVrES0r01BArok95S2lnfe+wBrNM8ff0o7eOrBY93bY81ZWhENF8ZQFQUuizSHYcBpnfNZjASphiDp5p0gq953QgNREJUBB7buKJaBwg24nYKNkaIjT0lM1i3o7BolAwCxPBd3P4VnpMuIZk8sBTV3G4jREiTl4iQh6G68M8kQygMHZHZ0yNKCnMYUpAVIoHL4GKTsoDNgtJtQayGCC+1JYxmhWJkzSAEY8t+naifl9O4k+oyJFZWRXq0F9VUZ9NI6F6rjfERJEajJUxnURLWMOjCknqA91iaMZpypCwshil7PpwOFQ2MwVhLAR8qtNQbr3DSJSCmJbfNNSxgGdDI4A1VhQWmxQAVQmq7t6fthcuwZwajxjDF3aLxfR4V6Q/uSG57ZCK7Napx1vF1XRt2TaEUhg5a/c+4daoC7CLbSElAXQu4oiQwBhijUOwWMZlWxDxCz0Y6P9CkQfJ5ypISzUDqpyxSawQ8UhcvuZ7KvxxAZ22Gd84SkU9W5Dhrbg9zcxjedpYDs1Jk1NR7A5imf1FHSDElTHXJOhmgvIjb35U5LEN8IzI7F+qhV0bkhD0FoY9KgZB1oijk7JGW6kpx/TIDBgTJlkLozhoRWljBIIxBCIAUxxxGnQ03pBLyS+0n2A++H/NiJwffEIPdpYa0wSOyBFhitw5oBH8JUa46TvbuUwzdWxR/4+91JmHw8rKOvfu5rv/5r1+ub1zduMmazOT700sXFhDKOsnDUxjKvjvhtuOTmai9vSoj4QWxQh2HAdwPNrmG5XPLgwX0+eP8DTtpTntw84Xa4hRTRVhOGniFIZncMELqAbz2+GyCATZpFuaIuKypb8PzlLc9fr7k4vi/Tg5RISrrpMR5+auXUiMREdCIXqJYmU3SsK5gXFRvT0me6DkljxxULjLxQrTTRyJjY+w4fe4IJmKkrF/E35AkEB1qUtWaaYIzBL8YceKUTWpbnKenu5s+hA5ex+4Gr+lVdhtY6u1zp6YDQefYdotA55osZDy4uWM1nzOuZ8FRHPqAxaC28wIRiCIHbmxteX11xeXnJ1dU1zb6h6Vr2rXAEd23Dvu1Aa6zShJAmzqDOY+pxND7yCMdJCZBtakP2jS7FM70oOT0+4eGD+6yWy2mqotShi36bGFOCnBUMfaDVPbfrDVVV46ylrCy2CJydwAd7+Hy/4fzsAtc85Tbs2d5uqZ2jT57jk5q+uWXoWh48OOa3swJlFD//1WOG7geEfmB9s+Xycs3NesO+9/z4Jz/l//Df/e/51g++xS/+5hdUxYx213L//D77MLDbbTg9P6FwjuOTU+rFkp98/hvaQZJRxfOfaRqWUmI+m2OdY9fspgZExOFSZPVDx7Nnj3lndYGJER07UlVLMJdvUKqjzJNDGfn29H0vTi5Fyb5pURiG4BnWa37+85+jSTTbLU+fvkC5gna3o64KPvr2t3j96hmWFXMLs/MVs7pkUSa0aki6waueLg3sfcNLf8N1bNnGxBAdCYsYeRZonf8oky0HR/2FpbQ1hS3F8xyLxtB1HdvrLc2mQQ0B+gHqEqwhIMibNgqrQPme2O3w2y2gqJYnuPowlZ0KBOdIZYFdKHYpMbSDHJaAMpZMvEdbQzkv5GeogIoDod+TTIEtLShxV9HWZjd9meg+fPcDTs7O2G1e0+1vuV1v/1i3xe9cp0cr6qqgck6mqm2Hs4rj1YqqqiQTwVqZboeeEL2kBtcBozq6fUO7D9SlY7a0lKsILhC6DgFADSENEGXKEXOlnUKaKCFaS9OQkiUlAynDaEmAGLENz/tvBq9iJAu7RwBK9HIQpyIFELE5I5VB3kcRjI6UqAiYaUIw+B6jDM46YjyYXOSDixRBK5en4NPAZAKbpuM+G3uMR19CjsbRDljApgMtCaZSlIlcn8Zmaiyo8uQygY+ePjQo5zFENl3DbjdgtaWwFkIS+t7RisViSelKAdeMzU9Y9I5jIwDyevphwA8Cvg1DT7OPlNYwq0oBlKw0JIsh0A2B9XpH1/d4P5DQlNa9oUMcn/vXUaFGqtWsrpnPF2K7XxSMomPv355mXC6pueTMTBlMHbUF8n7nWhOjLCkGFAcDAu8TziaGYXQsMuSSgJgCMQ1YI8F2kYDVWujMWtB8oTLJGe1stm+eKDqZYhfBaLG1n4iFiekcGacHcFdMLdOGu/VLygBACvI7oCWD425xL+9pBALWBJzWDL7P7A9FYaTZdTpJGORIJZxCjLPrqJV9oG0jg4eUdU9jIxqCZHJMQOhUT96ZJ95xEIxJoXHS9CSZaE/3nRrZGwqdG4uhHwREQJrasfHwXiZzVs8AeQ2tk5DrmMTGtszTv1GCE1Kkz/kuKr+248fDhwPtbOwlFGr8ht/5t7GNUIdPvPnYqG9Ue33jJmM1X9APLUpDiAkVxFasKCzFcc1771+gucQP4PuQ7WoTBNgPDV3T0jQNWmvu33/A8eKYm90tl9eXhCSiOKstWmkG7+nbnm7fiuhIWQpX4IqSsqjRxtJ0nmf9NV88fcFHD46oa5PDgySkBq3zpq644z0mUxIUhTZUrqD3UojrpKhsyays6GOgC56UuXBjUStICFMHGbNgLwZPtGG6YWI8dOXSZBymNMZkV6eQHaeUwmbOpFE6i7wFrTDZjcb7NzfLg30teQGpqVOXz8vvOR6Y4/g4pDBRhaui5P75OQ9W96isxdqc15F1FiFC3w9sd7esNxtevHzB1fUVu92ewQ/0g4j3Nrst692ebvAoI+PmeVWgtEw8ur6nHwbhFcbA0PeTX7TWwgm2OYzGWS12bZV4qrvc8CznM47mM0pn8+8aswPM14+9/5iX2CdagvfE4Lm9veVmvebk6IioS4wrcCawWpS0z14Q56dcrVu++533+PTzHTH0WGMYfMNuf8t+u2ExK1gdVfhbz8OHxzx4eMZsJnzOLx8/Y73ZM0fzb/7Nv+Mf/IO/4MP3HnH28Jzb57fM6hknFxfUp0cyI8ouMIv5nAHN1b6lj2++fiPaOAwDIryTEbggVKPLDTJ1cZrHjz/nw/vvUYTEsG1x9YIeUCGgksfqikIbbncb9pstbdMQo6Ryn11ccHN1zb5pKFzB86fP+Mf/5T/m6Ref0zZ7fN+xW99we/Wa5WKJms1QQ0ftFNV8hnMKbXp8auljQ5u2rP2edey4DgNNgAFLUgUoJ4elKtCmQqgsortwo9BbW6wtKWyFVhYdDbEPNLcNm9c3hC5QoqDvGIYOrEJZMDrJxMJqUuwJYcCVDleWlLMy24fKvWtGS2rrwDmU6ehjIAyBkEBZJ2YVWnjtVTVDWU01q7BaM3QDPg5oo7EmCfCDInoZlytliMljjKWsj6jritSf8urFk7/fm+EPXA/uXZBIYr/YD1hrKUu577XWkhysNUontINiYShWETsbGNpOnMwqy3JeMasNVkV82+O3mtQ6TDKQBkbKgA+DBLMqM+kDpHIRuq5w2ke6xThdlWRviMSkMXpM3jhYcaYUJwCLdHD3GWlJIhzNIlUt1IoYU6aQBkByMqQAiodqnjwxvNMwkOmu8gNygFkWaBwKilHLIU1Tyvv+pBVUb6L75CnMOMk4sKxlvnKQlujpd49pYF4VXMzP6DevuHx1zaysCKmABHVdsZjPOFoucK6UxiwjwqhsyZ5FrzFkY5MQcMawXB5hVCL4nqbrqLqOmVJYY6mckVycqHBFyWa7xTqhTE3OYF/5OF46a0QlFHZOVVUTsCdC9D5/ncIV37gs+nu5RqH0iMCbO7a1E0MP8sTgME0bX4MugB4U3oMrhB7o/YAPaWqQNeCMIoqcQKZuuelOGVCSmkJLwrbSxBBxLjcWSeX8mOx0lTQkCSuNmS493ScZ+U9KJm1+0ueIPuJuaJ5WWsx11Pj7yhqXol1lGqWE5Y31rpgJ6DyxG6Y1PQrKx3Uek8foMBktjC5U43RgLKBVBoRHHdXd1358ucfBkUqWfvBAECAjT9eY3EeFIt73PSQoylLyx4pKphFRKMV+8DkjzqCtJcRElw0TZPom9rZKGXGxU8hjfk0D8LvTit+dTPzH/vcfur7x3XQ2O8eHgSH0MqXoexgUKgu0zk6WhA42tx0pZjFPLlTbpsk8ykTbDoDG4KCD9rrHxyAUnbJAofBdT+gSDLJ4rXNUrqIsK0AQci+7OK9u91yv9zg3wxmFRuLnVRY+qYwwjXunQhxyrdI4Y7Hayg2sNU7n8KAkVoB3X8IJxTXjhhkPIrPoc+EvDhspeFI+kJLS+UaWN38Ud483r4YcxJf/XYkTVZwaiXELgTGIZnoud248rTVptPPLz/nuZOPw9zwFURFbOKrZnMqVxJDoe89+vWbfdGy3W9brNZvNhv1+z26X9RUpMnjPutlzu9my3u/pfZDizOg8hjRUrsJYiysLuq4TBHvoiVoJD9Ea6qqmrsSeUwomEaeajH6EEEjDQNu2NE44u5ObVUatJordW3IVVhOtElMAZ9huN/z4Jz/h+9/9Dqd1gTpewDBQ6ITfvsDMz3n8fMt//Ref8OTZb3NhYxl6T9PsaPcNy9Wcb33nA9b//rd873sf8/DBKSl6lrMKqy29D7h+YLfd86/+1f/M8v/4v+Peew/YbfY0tw3q8orjhxe4wtEPnTRAJDZtz+vbDSElDKJviSllW0dD9J7oReBmnZOCQ+BftIJ5XTH4gZ/+9Mf82Xf+jKPFknat2F5vcasV6eYK71tsWecmGva7nVDlvBchpivY7Xds1rc8evAIVzguLi4Ymj0ffvghT16/ZOhbbi9fczybsawcRexYVRWmgkE1NHHDLm24jWs2Yc8mdDQxECiISoLzkiogOVCS0K1NgUajlc1TsxKjHUY5ClNSmBKiwg+B5mbH9mpN2PcYqRJRfUfoBtDCH3elwdqExuIVmNJRFQ5XlJJoj+wxJI1VFqUSygwkrQn9QNfISD1kdDvGKAXR0RG2qukHsTu0ZSHFZe9JQaHxKGXAOjovNFF0Lm5jyKYbFbPZgsJVf9yb48718NFDcUvZ7WkacS7r+57NZiP3fYRhUTOvC+bLEluBtpLDNHTiwDZbVczmFWVhcFbReIVOA5WuKKKjoRvLC9Fx2VwoaIMiifWqUkLLVCMiqSe0NEbQRkAlnQwjH17241wxw/T3xCi4VUJDUenOHj4WiyLklKJfoZTw4CWHI1OwxkJomizmn5Gn4dIARMi0Xq2Fpz4VOohGUOvD8wJ1ONNCROvD2SDn3UjaGo9KqaKUyn1PbngAuqFh213x3vl3+PCddzHJ0Oz3hADWFMzqGm0MPibi4Cf6rrVOAlxTIg7DBH7BwQ2xLEtCqGkbQWa3ux1aKWaVwhRizKAQHZIYhMgZ/FWa5/i7FUVxoELV9eRklVLKIIrY2ErR5iYNx9t1xazNGQHTcR2ojPxLgX+YbAB5LWqjGIIitqLBqWqb81QSKWTheJJUbNEIjY5V8hoI4Jkb09zseh+mxrdwDms1oQ9TgKXQDaXpsdZJTWQOTZIeHdnSwWL44MSWQEnhb0wmXfmQtbYHjUR+OvjgMSpNU7uJIp5TzkcznKRG7ZSafhehY48Nx2FS8ib9fMysiNNjy70ttYfSQrlUgNWggiIMPSlEjJEpdMzxCELxE2pWiJHSFdQzCWCtS2GSyB4Sc57NQSPZdd3EALlrbWtskZsMNemb7l7f3Bjnd4HalL7+3//Q93zd9Y2bjJP6TGwDg5cu2Hv8MOCsw5qS4DT7uufyxRU3t3tSUhRFRV3PODs/RyEo/tnJGcerUwY/0DYDeJkorBbCtx+GAT9EjA5gDyOkEAJN08jG4dyEwrxYb/ni8obZwjGvKykcos8J3RGFyam4WaCjRgu8hDWCyvZDj9WOqp5RlyV6pxgna+MilRf90FxoFIPuGXyP9z1EL6hXjAfHAjU2AIiXfj4QjLGCKKWx5xRLOWvFVSUGEZSPns5AHseNaZ+Hm/Suw4B4jKep8L4rBk9JrNQgoZIikFCuoE+wvr7l+bPnPP7iMftdIzzvLEASzush1dwjHfWuaem8bErF6OOvoA89/bZn22ypq4qqrDiazzHLpeAHGekzRvjk02Ga5DAfhoGm6+j7jpTgaLlkMZ+xOj5mdbQUi9ysUdEZAfzmN9J//mu1WgCRq+sdqZEx5r//93/D+ekJtYIP7p1SFjVHyyOWRY+uKrSp2DQDsxn43hNLy+Z2R9vsafcd2gROTuY4K+FzZWnQGi7O5yxqJ0LFvDb/8i//itlixT/7b/8bPvr+t/niZ5+zvtmw2245PaqFwxoij5+94MnzV2iQtHeBG7PbR5jsiWOMRC+OJM45Qv45zhpKZ9k3Ddc3a37zm19y/x/8Q9puoP3iOaWLWAXJdxRzccsoCkez39O1bRa2KUKUYqLtxC2ocI7ry0uub25YHs35/uojLi7OOJ9bXL9mNXcy4dM9W7VhHa64Dmu2sWMXBtqQ8EnC9LR2KKSxIFpQ4g6lrUNrh8XgjEwtClPgbDVpMAiavu3YXt+yv1zjtw2VNvIahQEVPMQOkuQcmLKWwwxQ1lAYjcsmCYeMF5BMglFsqyEqhj6y27Xsm8g+KVRRYOuKxXzO6dkZVT3n9ctrZrOCqiokb0MlhqFls77GmApdzIUOpmUiStL4vpVg05iIyVDWiz/infHmNZ8vSCRmdc31ZWKz29JmGkFCE1LkZrulD46BFq81qhvyYdtjTcm2Gjg3iqKcCV1DOebFESYVXPv1hJxqldA6otRwp0nIzUQKhJD3EoQKEnMxE1PMFqqRlGTP1mh8CEjqtsqcc/mdhO4RRb8TdNYFHow6AJIKKCUiW4VlTP4O8eAQNTYU48cxlG60NZeclZAR56zfy+isPJ6cfyJvPGTeTNMVlQ6aDGWkwYl3Q8oyrQqBpOR5HYYsPnZc71/x6vYx78y/xcfvvct+37Dfd4SosEWNUpau64lR9vLBewz6QAvW+f7QI+Ke9YyjS6K2eAJN0+GswWghlSgD1hYU1lCVpRhYdC1NLlRHrccsh1iWRUlRFFMxK5owmc6WdYFzsjeNtq1j0OzbdCklwn7JVkkYmJyI8lLm0IBkHV0AeR813kuCtrNZO2REEzMEPdU4xkhDLU5JOk/gxFL7LiXIGE3fe+AA8Gmt8YSJGhVTxNqClGRqoqKZ6OPkNTy+7zHf8zGGA1Uq5ftLBaGH4kWnZDLVO9+7KQqgqYyAKkTQFjEPSl5qjRg5dM9JaGZRApy1yYGO4QDajo0QCNh7YErEN0YXhwJcKFUKaahAMeT6eCSvCogqr8FYJxktwY/T+nNWjEemML6EH4acM9My+AGrEQqpsVP9k8ydnBHGm/RQ/r/RKByGXHc/vLnWvua/v668+rvcI9/cXaoNaGuodIWu6jtFrCL6xNY31M4xr0pur7cMPpFSK12Xs8yqGbN6zur4mFk94/XlK/rsFex9ZL3ZofICdU5E4jFKYzEW9jZzKcdkzz4lXl5d8ZsnFfcvVtTzGToHB6WIIFZaus0YB0H5czFulKLQCmcU3RAJviN1ihh7rBIXqphHz2+88GOBD/kQ8tkdKzElfqc4bfmjc0fKNC2jzSTYGvmxo2+12LsdrBZ9HJ0esvAuP5ERtdFZjBvjAf0an9/d5zteMtKXz3dDx+Nnj/nsF5/z+uUV11fXhM6zXCxZzOaQN+W7f3yKBGAICYxBWYNJ40F64CSPbh8acbRyxmBH0V9+JoIQRIZ+yMnhPW3XMniZCpVlycXZGQ/uP+D09ITlfEZZORHN50nQXV3G23JpozhaLdg3DV3b46zD+0BZVuzbjnbwHB/VHB2f8sGHFwyrI9557z2awbNYOF6/2lEUhtcvr9htW/a7nov7Rwydop45zk5PqEpH3w4UNrBbv0AjIvuUJDTzX/yL/ztn56f80//mn/DBd9/jb/7Nj7m+vmJ174whe2uPSaEhJkFqlTiyaaXwMeKHAW0MlRMaXbvfiItIJ/dHXZZEErumZbtvJEQteLqupzaOEAYpfOJA8kHWttbEwdO0DcMwMJvPuHdxj/ms5tNf/Zrt5pZZXfDkt5+xWM6ZreYcHy04PjniaFFRlnIvd6llHa649Tdsw4Zt6mlCoovg88Yu+QMOcBKcp+WjbNAFmoLClMzKOc4WOFPiTEHKCcLRB0LvIUTJaShLko9430EYUL4H32B0wiQHKmbaZ8JYh3OjrmnUhyGThczRTUl0a94D0dF1gfWmYZcUixPLopIJSLff07cDzXbLcjXj/N4ps7JAoem6lt1uA6rFFB5vZqhSZ8RYeO8ooSQKn/jtmfhJ2q8Is42GmJOqUYIqFyYBHms9MURev2pp+oamE0/6k6OSe2cLzLCg3SQ2vqXZd6y3HclGQp1zH1Sc9hyldc5tjePcIYNIgaSkGUtK+CJKyz4T4wE1jvleScnLc09j42imBkCKeCkCJ6Qq/3zx2Q8kJLtgBFhS5niHGKZCXzHywWMeV8vzVkrsNnUg74G5EBt/T5UwOoe3aiZhL4w1UpoaD4UU7fI5lcPODl+r1Nh8xOyWI0VpiJ593PN0/ZgyLjgpT1ktZiyrmiFA6yNN3+KDTEiatqPvxf1GoyYb2aIoMqWE6T4RWkzWLClD23Uo3ciZMHhcWQMK5wpmZUEMNSkGWfPWCRWqLKcpdwiBru8AOS+LQu7Ngw5SQEB153d+izArQAr7GA76zLFpVeM6ZQQs9QS+ju+xsxqDZuhjBlWldogwndsKL8Vpyk1nhF4ivsktTUbqlThT+gi5udajjkdJcR+VNDtjHLFSBpWNNpTKk/KUprXovc/J3mMnIJPFkCTbQ5s0rRF5X0Z9BFPXGwL5vpbXZxgGnDvQ5uQlGffAw9fJXp9IcTR30G9MwsavHJ3oGB9rbPiR+12J567kXESND5Fm6HF58qnSSL2Uxr9wloRQxEP07LtGXjsizpVTTdw2e4auI0ZPVToql4ObrZ7WaIiSJeO97Enwdc3BQZ9x+JyavubrNRh36qvf+Zo3P/e3Xd+4ybi5ukFnm9X5YkFZ1Sht8X2g2bfsN1uS7zldzek6z/XthqSyNaAfaLsWawuMEgpUDJHlfMkQE1e3N3TdgFEKVzjKsqIoHMPQT17X3nvIm8Y4MrLWEolsh0CDJaoxofsQtkROM83sVmkwRr9pZaisZa8ghB7fBfzQ5jGbdMqjhepEyYnjG6Nzpx+mThwjB9foTpDbC2lu8usoN/84iRhRhNENY3SeGq3d/PQnxoTSh1HeeIOOrkzxzhgNmCLmJ6FUkgLYGYNB0fctn335KVdPt6yvdxTW8eD0gtmsFvqXl5FdnycLTdfmyBDLEALb3Z5910yjzpHG5LQ4BJVlmcO0BEmaxOpRNo8+06B22x1D3zPmMZRlyepoxfHqmPOzM1bLBaW1EiCYJxh326a37DxgFE1fnJ/z4sWrvIYL1ustDz76kKg0tqwJfss7H7xPVyy4fv8dQnzJ2dmS3372ObN5TT94jK5p9j3L5RnazDg5WXJ+fsxsVqNV5NnT57z38JzHz/c8u26YzWfUpePXv33C/+3/+v/gkw/e4713HvDuR+/y/PUlfd/RNmKR/O6jR3z0wft8+eKK0A0yeXQOFAx9TzsMFK5AVyUxJTbbLTF5CqWY1yXzumSIkX3bEVHcbNe0bUuIEZc0KuXE2OQh9ZAybSIGmv2Otm1YLBc8evSQ2+2cX/zsp3jfYgjMnOK9e2ccLWfUdUk1K9Eu0LOnTTs2fs1t2LIJOzoGcWQKeeyvFSgtyDMFErBXYLQkdo+UKKtLZuWMWTUXNDrpTImPRO+lwfBBbKWLghASfStibtXtwbeZz5vXpFFEq1BOYwtxuBFRuRRmQuEca0Vx4AmDWDJqXTKExH7fMJQ1VSUho+vbG3abPVo5rLE0WrO2W8zJUgrxsiTESNd59vs1LT267ZnN5szrOk8kjbiDKTLv/+24qqLADz0x+pwH0qFN4vSkZHHkmC3EdrJZd7x+vePF6x3WFpydnHN2eszp0RGaxPp6y3a/4XZ/Sz8ErCsp54roJPhwtK8UHYQUFnLwCzopwE7Kxb8UDNpYQi6Qk7x5hCiIahwLdD2eA4hDVJLUcJWbgZjtnkbXmJSnAwklgvQUScrntZGFozFIw5EFrHn+xaQrvIOwyjkRcqElzw2kiJkOv1xUaSU03ZDpWCNdRB47ZGcajUmJmJ8/5IZJHpXJRCXbAgffsQ8bnl8/IZQDy3JFXc2YFyW1ssx8pOl6trsGqzXKOXrADz0pKYw1tJ1oRRRkIbgUZX0v7lF+EPvPfjD4IbCYJ2rkjHNOU5UOa2cs5hUhivPdCPINwyCJ4UZTWJnCThSTr20sRjozE1r9tlzSTChSyNqBKI0kuR4gSWZVLjWmKYE1ispF0TwYMEYCicW8YJxT5aY3aXwEMSNQ+CDTj74b8mOCNYoYPaNGRCtp4kfdkVDZs8tSkrDElEUeSk1dwh3gc2zaMzibm+7eDwzRy+RNC1g8agIFPBa2CEqoR6iIT6BMDktOAaX1oQbMNHMVk+Ti5EDkMRNmpOyJViWMT43RMU7lanrMJpPP58dM8irK2lEMHjofaPqOLoPoLpt4jDVO4WZTYw3Q7fcM3ZDvASe3WUw4LbSvqiio64qysDLVMyN1LIrraUr4YPLedGgeDs0FU5MxranD4npzrb35f/zul6mv+/AHr2/cZNxe3uYfZmi2vXB8i5IYoyR79kKrqKuCTz54xMvLG548f8V2tyHutijl6PvEw/OBrhC3KRIcr1Yoa7i6vCJ4QbX3+0TXtRNaTSKH+tjMG4+40rI6Oebi/hkffvAIvTymU44yCWoh47QkG3wi2wyCyuNGAJsSZaYX+Mxftna0/5NgpruhQSZTSXwSUab44/cMviOknpgGYjS5KRg9wQ+C7RE9Gjd9xuc4OTPozD0kC8Cn0+JOkX7gsZKnI0rnHNyUpuc7ujdNN3SmSxljIMgEJvYNt5tbbm62nB+forU6iOiyAKkfBrrgaYOn6yVXxIcgTUfwGGOyG0wphY91U8MhSJVMvMaU16bds9tt2TeNoOVKUVc1JycnnCyPmFU1VVVSlCWF0cRhAGdQMWDVOO05iOa/Orn5Y1+np6fc3t5SLWtijFxdXhOD5+c//yX3Tk/pQsJj8IPi7P57vFp36Njw8qbh/MGCpml4/eKGo9WSsnJcXu65vu5R2qH0jNura9rdFh88n/7mMSfHp3z0fuBq82ucVpweLTk7XvLLn/+Mf/tX/47zk3/GbDmj2q0hDvgeDJG6dHzy4Xu8uLzhRz/7lbiqBLDGUbgCvPCc+34g1IHSWaIPnC2XHC8X+MHzfLOlj0Kl+umvf8kn9x5yrygxzkGwKF3iCgWphegZ2pau79lvd3RNx9nZPVZHR2g8//yf/jeE7YaH989558F9zs5XVHWJdopoBjZsufE37MKWfdzRhJ4uRsm7QJMyoieGABqtHMZUWFNhTInGoJAGw5mKWblgXs/lfogQfcL3gaEbGPoefCL1HuXFGlf7jrC9Ybh6jcNjCo2rSlTpiJWF0qALg3HZA127w9rM9/hY9KkkBS9BpsC9F2qkto6qriic4frqik8//QxrHA8fvIuzlnZbs359zeVyzsP37jNbzqjnR2jb0d5s2G3XVDNFqxRGJebz2cQ1D70Evr0tV9vu2Wy3XN/csNntqWdzyjIyOwqUVaCooO8iu6ZDpZpvv/uAxXzGbFYy9APXry65vr3lZrsFrXFlQTWbUVqLDpHKHOF1S0w9I0VqDPISTUJ2WUqZ7z450GgiAyFPfeVKmABDiqhc5Jqs61DZQWqcNI/UpqnRUGqaSsQ0YDN1VzQZ0hgoFEaNboUDwbrcKDOCxLmZQaYtidzUBFSUiYhSd2koCpV1kfLsdf68/N2ME5bMzJIvynSpdCfTSYkzV8hFyoE6kuhDi3ctN80V3W1kbjYcL1YcH5+xOjpmPpvT9hWFtbwartn10lBqLa441jl8kAC/PlNyY4wMOcyPhDgyqkQYPL73AhhqQ+kMsdAop5jPKhKafdOz2QnIYa2mmhVTWN84OdFqRJ8PjYXO748AgemtazAA0ZyEbFGaNaMZp5/ox2QWgSD7o2gajBVd2YhSSxMQiaNuNkmj2vZjwS2UauccfhjofcQag0L2edAYLfeR1QglNj+PlBR+gKGPFHOVC2aFMcXE0JhMmSYKVtb9qOwXFaP8SaKTYKqjsiNWOjSSo4Yw5eZc67y2rdDyxFr8UCMExt/vAL5K/pfBh0PieX5luYPby3/m5/6mY1m2d1caawuGQZgtu6ZBpYS1ltqVEiOgYD4TA5vgfQaKxYrex27an6SpMyzqmsJZwOGcH+WQ2CTW0SPqoLWmMObwPP8zXV9nsPNN7pZv3mTcbARBMZbgZWQmnEo90ZmUkuLYFoqHD++hnePxsxdsG+noZvWcsqwZhsCuaej6nqIuWcxm+L5nu9nQtQ2+HyYR1ih+G/36k0ssVwsefPAO9x894OjkCOMsG61ZJMUsJWxGXfK2QVQJZUSAPboXjAiUVeJdv/cS8HUIP5HfJYQ4FcpS6I9TCDkoQhjwvhWRrPHENBB8hx+cdPLmzgga4WMrPUbAHzp7k51kxp8lOQNebs4scktjoaLkcGPsXL9CuRtfr+lQyMjDwXkDQcy0COPOjk84Oz4R/2agHwb2TUvTdoSUEY1BXKJGpH4xm4lY22axnJYO22Xvc6FxJdqhpe1advs9u6bJJgADhXMs5nNOjo5YLY+Yz2ZYpfHB0/YdiYTViqpwVEXBrCqZVSVFdph6A4F6e3oMnCtYrVbstltmdUHx4JzNZs/Ll694fXnFdt+xb3sqK1kkTfsYk1rWu4a/+tFrFqtjvvjsBTx+iXaak5NjHj/bUM1rXj6/4oc/WOF9YrtrabrEZhs4Xp3wX/zDP6fOr9FyueDV5SXPnz7hJz/9Gd/+7re4//A+iiiUiBQJwfPw3jnf/ehdPv/yS643+zwFHEM1E0MunLquwajE2fGKByfHBBKD94RBChy04ounj/n1p7/i0Q//lBgGZlWNs4au2TCkSGENhbVU6ZDxYcYcmeD5+N2H1OYdVkczZouKolYE27NTLbuw5TZuWfstQwwEFfDETDgR/UVMWoSmSQEWpUV3oY1jzBjQyuJMSVXMKYoarZxs7CESh4BvBoZ9i+97lE+kfoC+R7V70m5DXF+juh2qMKiqhrogVQXMClRhUVZPVs0jTihMmIgeLbaTHPLBB4IPtO1A23lmiwXvzY8w8xk+el6+3LDb7qnrOZ9+9huOlkvunZ1hbUnXC6L+4N37HJ2s0MZRVCW2CfTtTsbthcX7cR+t0IWibfZ/vBvjK9fPf/lrNtsdMQQWi7lo0XxHu9aEVtM7i1El5/Mz7FK4+/tmz6uXr9judvRDwDjLyfEZtnAUhUNbBSmgrUbbIInepJz/MobxxTfQvoQETKaRBps8ZCtLstV4JDEkj4miszBooSNlpF9nkamAO5k2ipneb6FJZeps3o9D9DBytnWc0NYYfU7MHosclYcSKVNIEj4gLmSkKYNNGqmRBCZ+QTHv3SEdihEFkvbNnfTw3GCILjafUUrlwjChVWSay2fHxiH0dGZHigXb28Tl0LBvvfzZt5yfXog2ojCcLhdoFJsm0bYtfdbedX1P13f0nZcw36KgLCsJnozCOpCpjjQe631DUgmrhUKjtMG5AmsNZWnxqQSlDo2FujuxOFCJdX7vSQl1x81r0i/Gb1I6/f1dxujpOYn8Ik+54kh3soczXUnI5whGx5jXJClTFGU8YAzoIHTQkfEhxbzsqiFoQkyEpHDK5AZsZGLkyYaWFeyjNOQKLTlKI2VVG2mSD706h8ZCfl6IYxCf/H4jc0VKFp2D5xjZSm9e+Z5JcaQRiu20jtIkD0HOh5gghXwvpjtGB/nPuB9Mjp1Trzlqs6Rpe+N34UBZS0l0Ts6WhN6jUsJZyWFzzmG10Mess8xKoTwFZwk+EGMr7Uwy0lDln+nDwCaMJiyam+2OwmqJjch1kFD+mLLCxqn577vu1n+HNT/+NmnCHcZ/HP97esj0la8jfaOe/Bs3GetNi1iOKvpObEiLQoJFUhJLPu8zVWjXMFsc8d6773B+fsFPf/EpQ684P7lguVyxWV/TDR1t31HUpYSsWUfpHNfXV+x2O7z34o/trLzQpeH04oR77z3k9P45s+VCOlCtiRpaYBthlVOzFTpvxHLpaCAL7ogerYRDVxglASmDx2dFvzUWrcRJaSy8UhQnkom7nseHckN6Bt8TbEDrkb4Uc6ccxx1t2gTurFNAipFRyGMnP3Hh8uX+IGsR0uRsdZhyHG6Q6WFHZI07m8KoLVGI9UiMOOO4d36B6oUG1wXRRuyzc1TbSZFSZNeCqiyk0bRmElxLo2GxTsbd1siEZ9sIUrlpd7R9m3NHEtZoHp6cc7JasZgvKJ2IlsMgFB2lFHU5Y1aWLBczVsslR8sldSU315hb8jZNL+5eTTswqwvcyTG7zZq+HzB6we3NnpubK169vmRpE++dzEkdpL6nMJ53Hj7kX/wPf81RpVjf7qgrS/KGfX/Ls6uGej6jdCWr0xOU0mw2LbsGdo0gSPPSURaG0lrefXiPi/MTIppnT59yfu+ConJoIHiPTomycDirOVnUfP9bH/HjX/6W+WxG4QqKsuD29pbr9S2LuqB2llW14mQ5x2jFZtfQ9D6nIGuIkSFEbrdrhqGj6Xucyo5SrsCHxKyuqArHkGTyuduu2a6vRbge59y/t2JeW2yp8GZgw4429azDnl3oaFNPHzwxBoxO+RCT6YWPmphMRuI0ymQdhrKZKinBdc6UVNWCqlzgtAgTg/eEPuCbDr/vCLuW1PUweOg7aBp8syUMLVoFinmJrgwcVbCopOGoHa506Ixwjzk4KmnRmcVcuARxBIqDZ2gHht4LTbSseHB8Rr06pvEDj588o6oqvD+Ejb169Yr17S3vvfs+yjhub7ZEFNo6irpE24Ki8DRdj0qyv6XgCX5AaSdUVPf2JBlfXt1S1zUnx6cslzNM1mbYyc5VZ6MKRfCDOJJFQFnmyxWrjFIrY6ZDMMZANAbjNNFrjFXZzlUOyhTfnPGP55aCTMUcA9vkntJaTSV7QpKz5UySYihpDvTWCd2USiTF0Y0mybmTxkKMDFBJCKCkLBtGV5l4h2Yr328ZcVUfxQZ8suLMfPiRIx5SgqiIKQdE5pTk0YLUZetklYvDkMbp94FSO76YYyjh3UtqRCXC9hiJSdDVqCLbpgW1oe0ju31H2wycnZ0xm804PV4xq2dsm4ab2xuub9cE75mVFUfzhQABRqYbIMh9sxdAqm07mrah6zs0iRCOKKzBFQXGtBTWSK5D4dCuwPvwtVSou40FpEyXe7OxSDFMIWpv02WNZejFKGN0pjxMXUyeesnvlbi7DsdQuSD1WYDCZbt8FDEkmXIYNY3LUgrZWIVsa3ygksWUiEFATucUZpoQxkwtF7aI1g5xXzKk3GzcZdvcdbuMWaM2XkN2Poy5mU1JmsmUm2ChG2bNaxrNC0QHJbVabjjIblnJkPLzSmNgppIGJhFzdggTvVH26kMhLs6hAaXHanxsOEQUJfRE0QFXphSXrRhZzhfURTmZqgQ/UBgtzpraYKKmT31mfJSQxCY+MNbSHj9EcSpNCZoWoySnpCyL7OplKSy4bO1c3Nnfv9o0jEBFutsofPXfU1YST1Oxr37uzv0yNWHfYP1+s2UOVtesN9fE2EtIWllR17U8kRgJMTEEceOIaMz1lvO25/TsnL/4sz/ldt1zfvqQqq65vnpB1+64vLqk9z31Ys7x6TGzxYz5csbtzTX7Zo+xhuPzU07unXL64JzZyQIKScANShG1mgSlvYJtTOyUwWBwebeU40rnCURJTJ7RrE+RsFpTu4Kd7RmGHqMVdVHR9GJbFnJBfzc9dEqnjglMytOMXvilerzZD2+OmhqCwy4+CcjjKMRTTEng45t6h6olnf/hTdUj5zDyxtfc/TgtuLx4xrC/ECMEOcRdKdz6puu5ub0VoX0+fLU1oBUx0wAUkmyexsmQFl/twUb62BFDK3SqYaAbenz06MJwXK9YzRcsqxm1KyjtncMkW80sSDkAAQAASURBVOOO9KrlcsnZyRmroyVVWVIWLgf26Tfeg+l6y3qNH//0F3z84Ts8uDjnaLViu95SzBwGCZl6/PgJC6t4/+KY1HVUhSWGlm+9/xEXDx7w5Le/pXSO5bJm24gWptCafdPlTciz3e94/OQFT5+9xHuDMln71Hc0Zg/aYY3cJ0+fPCXExJ/86Q84WS6JfiDFyHyxoJ4vODo64off/hazoqIdeuG9AuerJTE+IAaPQWGAZuh5td5wu91jXMnR6pii6tjtRFdDodl1ewiJwiScq4kqSaaDAkIgeY/2PcN2zdWzLzidF9RnDyhmQovapz271LJNLU1KNMnTx4Af9RLDAEajrCEhSbMhKZISgbrSBrRG41BYjCoozYzKzamrJc6KlkwlSYr1nUwwQtOTuoHU9KRtQ2y2+GYP3Z4UB5TVuFmFqRyp1Oi5w9QF2mmsK2Sqq0RwbtCokEhRLIBVjKiscxJBeU/fBYYQMK7k/OyY+fEKZTT+8prtVgIcu66jadqJT77dbfnVb37N/fuPODs7o20b+qHj/qNHLI6PmC1mBAXd0GL2Jk+uBFX3Saajb8v18cefMJvN5L5GCVpIBnOyCHWkL4RMJ7NFhS0qVHbHEW6ynoCXmDxRRZRVDKokBRFTJp0RR97cK++aeDAW+VE0CkqLredobWtMtj43AKPmToLHhE+eMzDu6B2EDjUWaKKrC8pilEebrAEh9x8pEFOY9mqUeN9rLdP8lCJGmTwhO4jM828lPzsx5QfFKOLY0RREpuWZqgsZxCJbZcopqfK0O6aYbWu1IL/5seWFGylTCoxMfhIaHxW7RqOSpmtk3e67lvPTM46PTzhaionDxfERu7Zj8PK77tuOputo+8B+t6XvOtqux4dI27TsGwl89cEzn5W0fWDTDpTdgDKihVJaU5RKuO/mb6dCjUh2msDAQAgy3R1CmNyG3pZr8JGUDuCaMTl7AehzgOEEs+dpgRTgUlDH3Eh670muwGgjyRjZHc1oTcAj2Rgijk/jZAOZhmgrU4KUgkSaZn1XJNH7RBc12ksWkHUjG0QaEqWl2Ygo9J0CXuhxo/2wfP3ge7CigdJKMYwJ9bkmGYvmmMRJ0yrR3cToGXrPgKe0ki82gsMk8zsI/wGYyPdPGu/Dw3+Pa32aWDCGBgZxKZWKSNgwRuFMie96CmOZLaqsiyvEpbNt0VmTOOaChCDaK6cNoFGFwcdI1w8CYJSHJz2GPA8hMuxbtO4nc4Mxy6ospMm420wcGoavNgZ/+8c3Jxd/4OPfcn3jJuMH3/9zvvjyNzx//pimbeh9ZNd2wmnTWjrMCENuMugTzfCKzc7zzjsf8N67H3ByfI++69k1O3a7Lf3Q0XSWzXaNthrnDPfvX3B8dsyQBoq65OTRBeWsBmtIWom4R+diXEmXi9JEpfHaEUsJ0DJDSwodI91KOusCGEj8/5n7j1/btiy9E/tNs9x2x17//IuIzIhIZtIURapQJVNgNQRBAgSpUQ1BLTXV0r+knhoCBAgQoCJZLFYlSTGZZGZEZkaGe/HM9fceu/debjo1xlxrnxsm85EiM956uO+Yfc4+26w15xjf+IwnJi+dqBJxTWksg5e5XFMYmjIw3qEXJHIEUx45T+PcFAMxOkIQ8fdBsD0J1O9ccIkZFcjEq3emGSYL+g5CIi2jTyWNTQjSxMw8xikRWOtZgD2N7+Q5H8aSk/DKWEsShZxwGvtE1/dsdy39MEgDkg7hNJOovSxLirKgKEtsWZAUtEPL7XbHEBxJCfKnlMJqQ2kLNssVm7phWdY0ZYVOgqT7/A+Q0L1C7reuxXZwtVgJUjU5KWRhLSa/CXeokl+jkf4bPW53LZ998YyjzRHrVU1VS6jk6ekpSsHVzQ0vXteE730LkzQFhvv3T3jv4Sl/+299h9vLKyoLy4UlJsXgu4zEJU5PVhhTcH3bs933jKOE5amkSUkCuCSQLRJwoAtcjPzlj37EgwenPH5wilYJlxNtn7z3Pq9evCL6kUf3Tvnsiy8yAmuoakvdbPCjuH7tdnte39xytWtp24HCOo6OLctFI2JO77i4uuB2aCltwTD2lN6iC/HwdmOPyq5Uq82ao0XFsrQslwVUgU63dLGnpadlpEuRMSl8VPiY6S4AWhMxpFgSKUkYGc8rC9qIj76W5NVCV9TFgkWxpCoXWFOhsIL2+khwnjA44ugwIRFHT2x7ws0Wv78lDns0AVMVmKYiNiVxWZBK0KWhrESQbY2VnJGMVOsEBNF3+NFRaplCStUnVFMBYwyro2OOzu7hCYyuQ8WAG0ZGLwWmMYqqqlBK+Mpj1/KLzz/jzdtXLJqGh+1jun7kyYcfcHz/HGUMt7db2m6PVom6KIh+nAM2vynHZr2WTSqkPKESxNDYbI1pFJOznjFFRmPDXLhERAgbozjTOD8y+oFI1ioselSjc+VwWCfuNheztm3+PkzOXyqBSmme3lujCT7mzf6A6ElBGiS3ArH8nHIxZAsW6ojoHSRVOZk03446FMAxyfkxgVf5Ec+b/myBSQ5eVSpv8mkals9o7UShkimHypMiJRoUlffqGHFxygRQUlQxnaYiKp0e+1SwTBSrmITO2ywWHKkzzpclJkmj771MBG7alsEHbve3HG+OOV4fUdcV5ycblDa0Q4/ZitPhOLSSgeIlYNA7J1MbpIAy2lIVJcoYBu/Yth0TzSslxSJCWUrujqDLv4kKdWAZhBDwwRNCxIeAD1Oz8c3aVaYJXAhJqHU6Yoi55gooJQ23Ukoa61xkugDKKWI0Ylucm0OtYMznsTaGiM9gqiD8wWcJmZLxQAwJUxm0AUKksDZfK5mOFeWMiylI82/FHUyASaFyaa3uBDseJiDBHxrrye3KGo1yzFMKrTUuN+DA/LOC0McZjJ0a74k9EuZC4Q6om4v7NH9v0t1OX0/ToIN7lIQJwmTlOzV1kzmD0Me07C9JLHGr0uTadNoThMYWxlFqQiP2/QKs5IyRBCmIHbXOAatKH5rLlPTcKE/PxfmQqfSBznTMqAWHKcZ8Hs2v/3+sM/PrHV8/jO/0HlVVsV4f8/TFlwxjJ0VrHoU570Er6qIBbel9wPnI7a7Dvrmkqo84PnnI4B3d0AnalgPYnHPsuz2rzZKj02NONwuSVeIBXBiSMajczEgitXD1hOdqaKol5ycnPDg65UFdoK9eMrz+iuiHHJkkF55KioTYhyXEqjIQsUBjS1xM9CmgTMGyaeicY/TukKqa/2mlJOwvTSnbMs0I0WffdY33I8EWGKMgi7VIU6HB7EqQ10Mp+o2ZnaYko8Dg/TS2hGnBnJy1UrL0fT83F9OEZRr3TsFD8ps5aVLpuVkKKdCPgevbW9q2ZxyFmpFyQWeLgrKsaJqG5XIhzUVK+Bjoh4Hdfs+23TF6h9aaqihZLhZsmiUnyzXLeoFVQvsKo8fnRa4oK+pmKWihUSgjF2NQim50QCub+aKiKCrhHZs8VdGH7nlq3L5ON/03daSk2LU9X3z1go8+fERdN6QQadsd4zhSFCXD/fvss71to2uevLdi2dQ8vH+CNYaqqbntbgkRVqsVZV1jioKz0zO0aXj5+g2nZ/ep66/wPmKsXBdFWYlzl/fi3DMGHFLYH29WED1JKbx34tRzfsaT999j6AdAcXN7w67dE7wgp1obhpC42O64urll14/4IKhlGB1cX9HcO2fV1KybBuc9zy5eszg9wxCxQ0Ghhf6XtGK5XHC+WrI6WnN8esTqeIHTA1tuaWPHoAIDgT4lhhgJScbcPshibJRFF2UucCyJAqUlN0WsEg2FFa/xQlc05YqmaKhsg9UFKUmQZ/BBGgwnWozkPDpE0jiQuj1hv8X3LVonTF2hjxtYVaTaYGuDLfTsGlIYK9aFYYLCpMlLPuKHgbEfMFUl9pFRNpHoZbxeVA3NaoOPitdv3lCWiao0LJqa5794SlVVjOOIc46yLKmqkv2+Y3u74023Zb1ac7vdcu/mCjf0fOg96/NTjo423G639EPHbmdYrDSmrL/WaPtv6pjpOYAUyYKmBz9RhmTKK9kGPiOe4uTnvENpxWqxYNHUxOhp2y1vri9ox46qshw/0qQmzn9ioo3CVLyA0eSmWss6rSC5rAFU5EmQaOVCdFJ6xBxyl4QSlZTO96cz5SIrIiYzwqmAIB2mAXkzmcTbMVOmtApSWMdASlYK/hzax7RfzPZREx32zvNT0+sot6sYJh6IPN68/RATIUmTEZISNFgfpuqytQmdBqSInE/vdIeqkwJlpVmxYIwFfetwoyPEJO5QviUG0WOtV5c8vP+Qe2enbNYb6qaitJaTzZq6rNislmz3PTe3W95eXhGyrqAqDFUhWr/VaklZlUBi3wei7xlGn2nasFgmGgWmOIh7Z0ZAEFZCzM2EWM/HWfAbQvyV/fObcgiFZ2oexHbV6QkNlyR5acozF05KaIJPeD2Xy9mZ8U6hnQFY5xwhxUxzms6TqenIPCRtiEnW4sJqQowi7M7NgtUF1khquM7OnESdcynIxW/EaKFUz8BpnHREeTqRBeuSDxbuTOomiiBMblS5JZYpYGaRiB5U9LUxTa+ZNF3GmIPrZp7USfBvnH/msEjGuYHNsz+hJ04oP2TaldSVBkNpKmmQB8n18QpUEGMRaxRaFyQj60VUmhAk6DamIHRNgBTyv5S1WWq2I9eZnj6xOUIItG1L70ZSjGhVHgCD+VBzV/Efv7n4enf4tZuMdt9S1ys+/PA7nN57yOdf/Jy3b18JB1KJo0VhK5arDRFD7MWytm7WJGXYdj1vry64vbmgHfYoA1oL4moazcnjM47unVAtapLJVCDN7DVvclcoF4uhKirWqzX3z+/z8PwBx5s1NsH+8i1XLs6i7pQmRm3M1CJBfBNeFh+inCRKYRIkHwhhRMVIoTQBMXkDZoR/6qBloc082+CJYSQlD8oSghP6lbHzmzF16tPFTR7zJyaEQZxpCm3xebxojJFuNYr4Tc2+5XeCm5i+l7LYbRJMhbkIDyGCTkjeuiBu47Dl1Ystb55fEqJgbtYYmrpmuViwWq7mFMkQI912Sz+ODG7EeUcIngLNolmzahasl0vWzYK6rLBZeB7DFDxTCK3HGKICnyLDOLDf9+y7Fu8ci6rmZLXh/tkZm/WSuq6omgZblZjCggYfHZNd5L/Hef43eIgw8xdfPiMEz7c++YDV5oiYIvvtjqvrKwKK3eBYFSV10VBuGm62e+7fP+X0ZE1AUzT3uL25oS4txoItLCElXr25xI89Z5sj7p2fkDBC1ykrbGEy0g/DMLDfDXz59DkpQWGga7fyCJNisVxzu9vz/ocfMPQ9F6/f8jvf+hZ//Kd/Sj+MjL6nGxPKWmy14OHjIy4vr9m2Hf04EoJnGEdubm5YL1fUZYGxmsvba/y9c0bv6YcBF0ZMI03l4mTD5nSNrQtUbejKnit3yz51dGnEI0WQi4oxqFxwAQnhbWsjmxqGpORrrSziYSCaoLKQtO7KLlhUK2xO8E5BQtSiC8TREUZH8hHV9aTdFj960n6P2+/xoScVYI+WmE1DWlhCpVFW0uqLQmgrVhusEirZhEJPH4kJFQM6iYl7ykVoCFKYmqKiWR3TjZ5/+0f/imdffs7vff9DPv7Wp9RNxevXr6XhTx5rS7wbKArL8fGxUBp7qMqSqGAcOn78Fz/ki1/8nPe/9Ql/8J/9Z9w7P+Xmesttu6cbA81yRWGr395l8UtHzFk6U7DrVNyNTvIyQgizk90wjoxuJEVB7VbLBY8e3Of+qTjiffXyK168fUnbdyQSTWGpVU1IljE3uBMQIRaXCnF4ShPCI1q6bEULE6lfaE4po61aGfGzj9IkiuhVgu+MNiSdxLBfTTxyoUSJqFqmAiF5xHrWgzKIQFycphLC955oS2nWeej5sRst1Mh0Z2IidBhmisfspDg1HemwV6UoPz/GSIgHkbfOOpigZY9JyAQypQMyLo+BubhCRdqwZdy/pb+w4C112WC1yX4HkjNlTEGIirdXt+zagaa+ZLVesVktaaqSuipYLE453jhOj1YsFxVX17dClep7lFas12ua1RptDC5Exm6kdSM+jlnAS36PFEqVMonPe2CYG4u704rsYnSnufB++tlv0MiPGe9GKQFHU5omZuSmQqYN0/RqamgjUs+oTJHT+fXRRlOkhLcSqJzws7WvUmLo03YSuAeSi9KPnsIambBacYtsrNQ2KQk4UhaiVZ20GpPIemJs5OHb/LXP13ma/ks+P50o56ya7GOzdkoppqwZaaom3ZO8BtKAR5wTg5OQxd4xiXkPU+4Mk9ZV5UnDBBYrfBKKo7xicp0LLTM7joKsH3cYKQklYbWqloykZaQsDIXNOSKZgaGwqEJK7uCEKhVjFMfFTiZzPgBarLe1sZTZ7bG0FmMNpijmmsx7P0cWzIL533QCTR9+DdL0znfuTj5+0/n474lWfe0m4+XL55ye3ef45JSz4wcYXbCsV7x4+ZQYPcYqrK2omiVVs+DEFihlcQ5QlpOTU0xpGONIuaw4e3SP0/I+m7NTTh7cY3m8RmV3I1LWQOgDsSglCYpZNkuOj094/OAR98/OqcuKbuh4/uI511dv2V5eUgwt99CssvBSRmo5tEZbNKXwX5HO1CiNyWFGKoLW2dmosLjgJfFaIa5QGSiKGWULcULapPASLuFh8ZKm4o6v8Z1GJWaHqpSRLq0mRw+5CA+CtDw1YaJCiUPPYYw9uZqkw4mUskiLd0+uSewYYiJF4dAnrVgvltJc1Avx11eyuex2O/phkGIgcyKN0dRlSb3aUFclTVVRlZUI6Gee4EF9p60lpEjvHcPYcdPuJOF36OnHAa0UR8sVJ8cbCWFb1JSVpGHKhWUxRYFwIhVJaf76S+G3cxSFIUTFMAw8e/Gauiz5+MP3ODo6IXnhnZuipB0dqlhhfEnykS+//JJPvvMJf+f3PuHP/uIXLDZH1MuGupQgvLpeslzWGKM5Oj3l7fMXrFcLxB0n0XUtx9WGotREXbHbDVxfb2nqBffvnbKoDVYHWYBtxcnpKcvVGlLk8uKSvu1Iu5aj41N++vmfMYSINVuWy4akFLYoZ17s+x+8z5tXL0kx0g+eyo4YFTE6MqZEKApxavIOXZTYqqQ5XlGuLXah8TawNz270LOLHY7IGCMup9yHJBavEhSYJGjLWCnKggAFaKFHaSWTDHE3KyhNQ102MsHQtRRVXpLUvfPEMRD6gdiJwDvsW3y/w8RI7AdCdKjaUjY15mQhzlFFojBCmyltngQijiE6IRSUTIAXTwX5urQGSyUFj/eSvZApjmUt1I6fffY5P/yzv8CPA7vtPYL31HVJU1ekFDk+PqaqSt68ectut2W/l5H4+f371HXF1fUN+33L/XvHPHx4n+h63jz9gg++9W3OT095e3XD7e2efdezWW1+uxfHnWO7vZ2bC5TCO8++a2k7SYOPKeJ8Lgyj2JKuFzUPzs94//EjNusl7X7PZ59/yeur12irOD85gRgF/bYV+2REozFTCHSmRUign8qovKD2gZQ57D7Iem8ygKl1DsxToJDmgZTEtVALSk7maJPX7DwKmelLWkuRJyxu0ftlT1qmnIIYEz54nHNobbMgO0GmQ8KBAiWHNBchMhfZicM0QyswBgHCFNkCM4dNBkGbI8LMEsqHmjUbYik6BaxKw5IyoDY1YD56kvI0jWV9dEQYFFqXoBSVKQiVvLdFUZCUoh8d+25AG8Vit+NovWK9WrJoKtaLCqUUq0XJcvGY9x/eZxwGbnY7WichjQEt5isGjDK4UROCo3cR1fa5OYsQxPnQe5kMhZAbiDtNxfTRh0NjESYwL36zmoyQkpjSqKxdUobopWmdAuTyZYSZc+OyNkdFSquw2lJYqat8lPNfCndoqmI+V6XG0dwVSU+ThellUUplloQ0NyQJWJwa3Im+jQFrixl5J9N/1HRtzKAreZaRsgXzRHPLJgj5oTBRnlBoLetoDOKwJk5LWgBiJhrX1FAElLaI4cJUC8pxAGzJPyuTTWsN3rt8pU3gQwYAREU2P6ekEoUpqfQCW1ZMWTww6W0Fe0gx5KYn0Q+OrnfsupHbdsR7J46cuXFU2lBPdY6S51eWFWVdCX1Wa5lA5XN4v98zjCPwq83Er6uQfuV76Ze/l379z/2G7/1Vx9duMi4uXtP1EpJzcnrGyfqUpqghwldPv2AMjn0cud4PlHXN8ckpVVVjbMPm+Ij18QY0rM421PdqnHoApUEVBcYaglGQk+5MpkeRQBlNVdasl2seP3jM/fN7rFZrANr9jqfPvuTlm1fs9zticOgQqGKgMYlaGezd0ZOJUqRSkOKAJrt6JGF2m6z1SHmsV5UVw4R+pCgdL3LRxWwD6r1DG80YRkY/UgYnolOliSk3HXl2/q5AW1bvlJFPlZudQhtMHnne1UeISC/mseGhYYgpzWj+QS9yWCjvisFjFK4xKWGVoaxr3nvvMe3aU5tSnHB8YBh6xnGUoiyK5WNVFBzlDIuiKCisvG/WGuGk64NYIibZgMbgGdxIO3Zsuz3dOOC8Y3RjpkTIcygL0XtUdUVZ2tnf/JCWLJtvJOBTnmRMLizTa/ANOqxW2EXDOAw8ffYCreDTTz7k6OSY/b7nxYvnnG+WvHd2jDUFahj46V/+kA8+fo/f/Z0P2N5cc70PKF0zjo7L65bNpuDsniJFx82V5Ew0Vcl2J5vr9ZvnxGHPo8cn/OBPf8Avvrzgdtux2Sz5+3/3d/nWpw/pu47t7YCta1IK1E3Dm9evaLuWs7Nzrq5+znvvvce/+ZM/Y3t7S7VoGMYO7wOrzYZ2cNxc3QDwwfvv07Utz5+9oB0GFrXFO083OL56+ZLf++A9FsdrlkdLmqMGvTCEwnOtWjoV2CdHH13m0MtG6kLEZ+eQqcmWptuCLjgkVsu5ptEYZWUDNSVl0VBXK+pC0rwZNa4bJX/Aieha+cC4bxm3W1LXop2DJJz6IQykSlHWC/SyhIVFlxpjxX998oUXXrvBZO6+wLaTRmsCBaSA1TpPR30Q+oKLuKgxheLy+pqfffYl+7anLAzj6On3LU1t2RwtZQpkDLe3e6GD6UTfjyTEZrpuGhbLNbvtLe/93e+zXtaC0PYt7fUl9fqce+f3QGlePn/N0A6/levh1x1jDuDs+oFd29KPI/0wzvQGSLhMJyit5fG9cz588pgH986oq5KLi7f85Oc/5c3lFXVTcXq0pi5LuqHHBcfNbkuyHkpZ97QGbciUoJDpsxqjZL0K0ZOU2HYmQm5AxHVKUsPlPmZqRebCy2YuDYieaLHzMSGxzMV5jDlgVUd0CigVEGFqykWvx4WRIhZyHSihX01Fg4iZTZ7QCxo/OUil/Fi0nvRxIlbPwLHsfYnsBDTpTyAa2YsOe0V+9PGXHIZ0BpgRZD1mbV9ViOONCzLBMaYiFeTrWiZU3eAIXsxEtFH4ELjdbhlGWcfaRc2yrqjLmqquWayWmKMN9+7fYwyRfvS0+VzZtz2mUGhV4kbwwdGNHujIPB2sLeamImQHo2laNjUVU4NxmGbcEf1+o45M+clga8q1wDShmGYdh8wHPwNCiogHkhLQw4eAHz1udoLKIXtJqONGWYzOlKkYRa9aGAorj8GYyRo/v5ZOQZr2aUWIcr3GmCmsyhyQ/2xzq6ZmfJ5gSMM9FfsyXTnUSj4L31MEtCH4EV1KZlmInqoSB6tpKlKVNjcBaepNMFoeG0x1WDZsiAeqlJrrqKm2mqYXGWRgevET6Ez3ysBzZStUkOZvmpJM51v04rw62VvHlBi9BB12g8N7aYKYwJAEKYQMNmiJhTCGSlWzvjd4qa1G7xi8zyBdml+3Xz2F/zrKxy/f/ksL1/8fx9duMmIIbLMlZ9e2nJ+e0zQN7z/6gKqoefHmBS54eh/Y9z0vX7zEliWbszOae0f0pSMkz9BEolZEXeaOVtyLZJHLpYMxWFvQNAtOjk95dP8h907PqYqStmt58fIZb9++5fb2hrZrGcaeGL2g+85RpEjVlKwqTZMUNqlD2m3uFLWyhOTmE84oRYFBo0kxoIkUCLFq4sipOF2yUyc+OVMEnB9xThD/Qk/5GSPBF/OE4u4GpHLWRQqRpA82szqHPVlr0U7P8+lfthnL7Wq2WWQu8rVSyABjEkMJ8pUy3UobQSqskeC86mRBpQPDvieMDh+8NCHZWq0sxS6tqipsKQnCKEVhrVh2WuEsgxQ++77lttux7zt2Q0vvBsbgDjSS6UJVzLa9VVWwWDQsFgua5ZKqqTGFFavcTJ0LITD4jjF0wo9Ov+li+u0eCUn13GyOePPqNSEEfvbZ5yTg29/6gKqpubm94t/+6Q/49oePOb63xG1vqUnstns++Oh9ttsLfvBnn3N160BpFstjluuG07MNRiUur27od3vqBvb7PetlzZPHx7x4dkE4q7h/2rDfn9B1I2EcWNSR401BX4gQuBsVfbfHFo7TsxP+wT/8B/zkz/6C480RnXP8o//F/4xffPEFry7eIP7pidtdi1FQlobb62tUiiyXS0lWTYnCWBprWJYFEc/myQnH50foShOqRKdbegZuk2dMkTFJcSSnch7vJ5U93aM4wuVNStBjTUhyfWhtsNoKv9cW1LamLhdU5YLKLkQDNHiG7UB326KCTEGDcyTv8P2AH3rS2EMvbmqmNFAbbF1iGosqDaa0MsHQwm83MZFCYOgHqnoBRSUUqRAy1z0XsWGaaHjRYARpNPzgGIZAG+DqauCLpy94c3EtWhrvuLqRkMXNeklZGtp9i3MB58AWNe3uNiNaJc4HXr2+4MmTJ2zWa2JMlFWFdw5jNBevX/HyRz/no+98nwfvPUEry+Xri9/25TEfL99eSAhV3niNlVBPo7WsPVXBoi5ZNDVHqzWnx8eslg0pjly8fc2zly8ZnWe9WlPXJd5H3nY3hOCxhWZdNQTb0cWIMuQiJvOxyY5/E/ikVbbMTES8nFu/UsCpA1JO3k9UnOmuBn3n2U1WuMyOeDEJdUeRZgF7jEkoIXlZjJPDVEZv1fRoZztPQVQT8nMh5dLnDtAyUWaMyo8xAUnJz8aQmVOHCUVKQuHz+ZGHTJWaaCoiOj7sPSrJHI/8d10a8WmgMoq6rvM0R7IJQg7b27WtaO20pkgFOmi8UgxK0fYjl0gzdLJZcbRa0JSlBLzWBVVVUtUNddWwaEqaqqC2hn3X0jOioiFFRwiRdpAOKCRFUx1CEkOMYjiSGw4fwoxgx0xxlKI6046/YZqMSVsyZSao3AyDnsoAMSjQmsJavJNmN4aI0eTpTGDMQK7CEvMbbookeqQIY5CmQuQKmuQkOduoCDGI/tZmBD1E6tqSUBhtiUHs6VXWx5lsET6ZFSADj7zey3QheJ/1R3Luil4i5cw1DcrkQOCApIpnRzREBD0F+oGAFhApy4TWSXQ6mbKllRL6dvTMKfb5McnrewCA5e8LiBkyV3cexGSnNVTI9xNy020pdIkbPDhNoQuZ2JBI0eHx9M5l586IVpKM7pzPUxObQYB0mLbMYMvUaIWcbj6w7zrGcWTftmzbPX0/ynV7N2xV/con7xzv3qx+/W2/4YvffPuvP752kzEMTkZUMXHhA8TE/fv3WSwWPH74iKap6LoOlwK3/Y4+ekxTsbp3hDmK3MS3BJIgHCmhlMmFhJrWQay1LOsl56fnHB+fcn4mU4sUI7e7La9fveDy6pK2a+VEzy5FoxskZTt4QRxtgUuKMSpqkNED5BFgRvlVhcKRkkewISiMRaMJfpAEYaMpjZ3RLCkmhKeulJZBdwyYEEg2iiYjjjLSjHIxWutRyjK5R75z8sC8SU2uU5I9MJ0sIsaLUZovspMQ0zhRZd5pmlylYubR3pl05InGJOoLBNE2KNnkzNTBZ01GXZSYSmztiixCny0BjcGURZ7MyBx1TJF239L3PcM4SPCea8WW0A0Zpz64nDAN+5UsFkVRsVqtWa/WLBYLqqrKoUwyFhT+YcJHL8hdDpdK/Nrr47d+nJ1u2O1aylKEcBJKqPjyq6ecnR7z8MF9GZeOI9uuJ+gNISQen53jx5FyueSTT97DjT3/47/6gqgKzk+Pef+DU1bLhuuLG7puZLdtsWXDvu9o6pJFY1ivF7Rtz4N7R3z21VtCGKmWG9bLEpKnqS2WQN/d0g2B7a7n0ZMPsEWBtobvfPtbvL64ZLVes9ks2W5vKcsan+D1m7e0g+Or5895/uIVl5eXtPtuFsgu65JvffSEb336EQ8enXJ8f4OqFR0DPY4hORF1x4BPMhyfCsxIEnvbBMJ1N7PBw9RkkKkBCi2p5LbCmoLCVtRFTV02FKaGqBhbR3/T0t92jO2ASWLv58YePwzoKBkYfugYux26LFg0a8zSokuFLhTGGrn2NeiY8OPI5HziYkSHgNJhnhoKgCpiYIKXjSv47HmuCD6ItfPgcark86ev+OyLZznwUIrFbgx4HygbLUVWtZopmYXSnJ6dgVJsb7eCMhrD7XbL6ckR3gWMKQAlLnQJLl6/ZNs66rrm5OTkG5WTcbtvMcbQLBYs6oqmbiitmek6i6ZmtWhYLZcsl0vKsmQYe758+pzPvvyCm7bDmoLKGsZxJKVA1VSsjo8pi4KyitymS7HcJtPZUHPRr/J5C4BSubiOQoObG4qEDwkLsq7CTGedKDcyqZ7WtEORMCHLaqKvZJNbPSGkMRCVFxpHRpxj1pzMotyJUsIUIJhdqtBINsJUDE+fp4NFrZoaDqQIRWVK1SRenSsnMVeQH7tDibnb5BymICqj6krJWuydJ1iPMgm8njUQMWYdjFK4EBhGMWHxwaOUmSckQvmFssjvvdICZDpHPRaUVUnd99R1hbGWhYX6aMVqWbPvOm5vt2gV6fsRF+T6SmmYzUsmDcYvNxaTwH1uLHIjEr2wD75JhxTcsg7ElMP5MvgYMwtCqzgDHJPbUiLNOTEohfOeqiyp60ostN3IpMqWyUQk2YRzfp6KTcJvwYPl/B5dyufDRC/KjXCmCXqfsk39oQmYPkzFdExRHNmUTFlATA6kQgkzQ2NimkxaqJSE0hWT1D1GGfSk3UgJq2SSPLjI6CAmjVUysQwqUpRaaH7p8FjkNZZHdwhanqIL8tdpyqNhrj201pm2BYVdYfQSUxeUVizHU0pY7zCjQxlL0oq+FzqoH0OmAltSKkSfFjM7JniZSiFuUsKmj4xDj/OOYRjo5389PiaUttjszDc9obulkcrF0uG6noCEO2yXX/q5X75NToU7tzHf2V95fO0mY0LipwX25uaGo6MjHjx4gC0sx8dHvHnziq5vOT5eESqItcXXBmcTg+uJClHJaxE4oxTWasqi4mh5xOnxKQ/OH3J2dk5ZFnR9z/NnT3n1+iXb3S1t1xJjQKuMbGetgAKsMdiiotSWRhlUSHTtSFMmimJaXA8jOjmnLEShNSUlm0ttC7pxoA8iaK+0xiCyvDz1m1dgWZTTzKX1QUSMqcyoWEYQBDnKS3YSUZOapgz6sEGITaeai/jJKUAhdBJZK2SzuRu68+6E5NBkzCha1lJM2pbZdYPEzdU1u8sekwxNUbGoa+qqwuaJhffZ6lcboobBy0XgZnGmXIAJ8auu6oqBUZx6pgbmzij+cMbK42uqitWiYVFVlFrEZ8ZIkaetOljWpnSwhFH68F5OUM435LDJkVzL9vqSKVVXKcU4Or744ivOTk+FYrBYM7iIiwqwPDi7jwecCxyfnvHkvTdEv8NUp7z/+JSPP3jA1eUtz569IYWE84myKtnuWqwxrFYbjk/XvHzxms3mAY0V15qT8xM++vg94YMqCAQWC0OlSq6vb3nz6hXvf/Ahp+dn/PTPfsTz5y9I1vLg4QN2tzcYEmVZ8MF7j/EJHjy4x6snb7i+2bLf7fjy8895eHbC73zrA/7W9z/lweNzqk2JLwPb5GhDz0jCJbmGfJSAsEnTFPP7KMwLhdY2i7hlQjYhoyiZwE0OUtJUVJRZf1Gakuhhd92yv9rjtz1pCOAiSck56vueMHaMw56x3dLut5jSsFkvMesSVRtKK+JFrTVWTZoLETPKtDFRl4XwlKegpKyylEYjksJ4oGf4hHeJcQz0Y6RzkcEqugBOLiy6vpVU19tWmisljYLRltEFCVqqyjmQarVak4h0bQsKtrs9Xz0befzkPtZa8J6qKllWJdvtln/+T/4pJw8f8r3v/95v9+K4c9w7PaOuK5qqxOopnVlRVSV1WbJaLVkvl9R1jVKKruto93uurm/xMbGsG5qqoch0jqossIWmLG0+n1oRMKtE1IjLnVLzHgYCckiRk8kViXf42dIEy+8UTNz0SAiIaFpNwtIs7lYT+JMy0BRR2ojdbkpzE0KUSYRWWZuR6RiKOE977wpmp+V9ckWUlVzPU2uhbymUnsgSwtfXWkM0hDzVjklQ/sjkqDMhpvodymma/+bdv5+1K2lajmVfccnjtMOpARMLxlHSu60pRQSr9czR9ymitJoDVUOeAFZVxdFmxWLRoKxlDIFh19H2jqr2lEa0GmXOi9HGQvA0habcLFlWBfuuZ9u2bHd7xmwmYLW+01hEJhH73cYihkBw7h2L5Mk29JtyTA1vyHWCqKN1Hg0g7Asyso7KNQeyb5ts8xvEx0xYDyozKchUbQm7EzNwg0t5moHoU40SC+eIIgbJ7TC6kJ82KV8H0pgZUxKDQhc5mDQ34NPur6dr7y4TYarciSQVSElqDKMy9c+IXfVkVyvro0wljA5o5SlMkLRvnScjeZKTEjlLJWZtlUwgZy+EuXa4a2tNzrCYAHF1KK7ni3GaQEqjV9s1VjeYUlg4Ok/4tbayX2XQtOtaurbj1u3xfiQlseAGoU5ao4SKns9zq63Q873DkySlPXq0EpvcolgIEJejHabC/51m4A4N8jfdrvIPqLs//87vHvRYv+4+/qrjazcZxlqqaoExFu8jbT9ws92xa3vO791jVVagFJdvX9H1O4qoSCEyBEnkxhqwGmUMRlvKoqauG85Ozrh/dp97p/doqpoQAq9eveTV61dcXl3QDx0+ia1qyBaG08mqlaIpKyot0Vu4QOoG4hhoo/hC1cc1lbEZcVXZeSPmQYBB54VHigpLbRN1UZKiI00nilL5hBXBtNImo6wqNxMBH8VtKSUPKZLSKPQPF4jGz1a3aUK5kKJJkjejgFP5hDZaLtC5OM9ddpoL+jSf/Il3uYW/HFj3ji98/vqQSCwWunVZsSgXlJmmpbQmKHm9A+LwkryTJUpnOltdYnJzEWJkHAfGcWQYR4aJdjUtL3paTGQDnWgEVVWwXi04Wa9Z1Q3LRZMRKzO/riHIhh2iw0eHC2IrfFfT8c1pMeCkgOP7R7y8dhiVgw+VyqiHputaCbE0itu2ZYyKZbXi8aMPuagiz798xsnJkkRivalJqeC4Sajhir/80U+5uR5YLhqi1sSk2O0d7XDJ8fESS6Bt96QIn370mJeXDugYhxbSCc57rm971g/vsXv6Fd/7zvv86CfPeP38KeujDYtVw/HRhicff8xt2/H5ZwVt26KNEQWpNlTW8OnHH2K1pttu+a/+p3+Pzari7HjByb0VeqnZsmfnPW0KuEzpCCR8jLjg8lh8KvTyup3EV13nUD1xJpmabZOvCYvVBXXR0JRLKltTVQsKXcIY2b654fnnz/BdoDIFtTmknHsViG5k7Pa02yvGfkdSkeXRmuqowTYabSdRqTQX5GZcpURhcvBa8EJNTOmAGGZjBgngCxAc0UdiUASXGEbPEBR90lAvaJZHqOISWxYoBYvVgr5r2XYjbTdQNzXHmzVfpNccbTb0bshUmsQ4eoqyou9HfPDs9y3LxQKlJG+mrkr6fqAsSpZNzdurS27bntcXl9xe3cD/9f/yW7oy3j3unx7L9e09213HMDogsWgaHty/z2Z9xNnZKSF43rx5xeXFWxSRT95/j0/ff58UJTlenO4CvZMAtzg6IpFC58olZYpQnkCobAEb83oq7+lh8ktKMzIasxuTGLfEzNGOgBY7yjwZmFKilRI6KlGaRJ8rtbuavDkBnDBPKsQac9KYZcCJ+M5EQoAxk6dlso7eBVfmZtfO24XY6iK5TWMQ29rExKk/UDGm5muiDMmwQ+fptzzfqdk6PCDZN310jGnAqZ7gS5yPhBRmQbnoamC5WlIvlmij6boeN0o+hTWaJotZtVY45xgHhw+J0e0IcaQuLOcnGzbr5WxlL086YLVmsyhZN5ajZckzEm+uhda9rKp5fZHGIk9ZQsgOZj6Hjya0MZRVRV3XLJfL/yTn/H/oYZQ0FipGikLnJjbmxtBO8DPGarTJjScJrSS3wiVptnXG57wfCcFhjBSJYqU6Gc5k8CfKeyMNoRTL3kXJ0IgCBEpwpVC4tDLz1G4YPYsq05uUmRsLrfShbprBzjxZUwlxXYv5uYXsbRWlFpuyZ1IWX8cIKqCtTNVidBhbgFLEZAj4fI1PV0qenGWh+jT9m6YqWpmcOcJszqEmgCtlMEkxv0YKodKrDE4vyzVqBB8DKmhMEgql0Qad6emFLanKirKoIBpub2/p+35mm5RFSbUq5+gB7wMqh6gKVU7+ljYWWxph/xgrNv/yogDvNgYwTSHu1IS/PIF4Z+pxuE39ytfv3HD3O3/l8fUnGUXDyb1HLJoF+7bj9vqaMSRu9y2Yq1nH0DQLVHIEP4jSPySKpcEbDbqkWm1Yr0+4f3qP8/MHrJYrtFbc3l7z7NlXXFy85frmhtEPEh+fQnZhOrgnWW2ojKVMYEJkvLlle7Nle3XD2I+smiWnR0csjtb4ZPExSVesDuNRpdRMo9JK7PoMUFlDZS396GZerdEK5XN3jJLuP7/2KiaiCrMIyXmHD058+Ynz+FtPhX5e9VRuMgiR6H0ubqBAUyg7n5wxhvnx6lzchPy9udFI07lyOKnuBgDOt+XXbwpasqbgbLMmlJEUyGiOZ3TTiS8ZFsZYbFmStMKnxOAdbdsxOIcL8pzHcZwX7DE6fIqitbl7Ft6ZOiigqWo2K7G/bRpJ9bbTomWyFW+MjL6XBiM6xugYo78zxfhmHd//9mP2bce2v2LfjYQYsdYSY+Ts/JSYHM5ZRu/48tkzPnpwxifHDYQBmpoXP/opdfURwRtsEfnFzz/j73yyoL0KPHv6FdXiHru2RaHouoHdbse2G3n/yWPONiXvv/eYrvXcOz/j4w/2/N7vfZdH988xyvCLr57zL/7Hf8N//r/9X/PoyRP6my0PHxxxdbHjNnk+/fYnVGXF2zdv2A0jH370IT/58Y9pdzuKqqZaNLLIkSg0nD0+4/79U6oGTJnwNrBTI7fR0SvFmKbU4Sgj8EwxmdvCJMisQixqtbIoJZRFyMu8NmgtiE5VVFS2oSkXLKojKlvLrjlEhtue3Zsb+qs9hakwhckbqKPrWkwfhR7V7hiHHoyiWS2pjxcUywJb5hwexRzEpjLqLMBBFgDGJJNIhLao5kYjc7mDXFsxJlxQ9F5xM0RUsaBLnmKx4OjePUzxBUVZ4tzI9fU1fd+yXDZcXL/l5HjFw3v3+En9lISiaRopGrTG2pGPPv6Uz37xC15tt3jnMdowjvXcyHovFNCiEHClKisePXnCzz/7xW/tuvjlY3t7wzCOmf8sDmJV1XB+7z4ffvQx9++d49zAy5cv+eyzn2FS4vTkmEJlXnoylErRDz2vLi/YDQNFVVAWUhgtjIbqkE8kTkp3tQaZhqQlAHVKCpMtIW/WQMz4r88BXloJJSEe4H6UIoNfhrKwTIBQyiinynqQlJLY6eZptnC8p/s5TNzC5E+qVJ7mTXSU6U8G1GQAMjUnMUpQ6wSaZb0HKWWR8wGAOgBX6pcKvgndPRQPE5o7w8350o1JkN4QPS4NBBXQJk8MfcSHEa0iylo2x0ckBd4HhtGTopondkLx8QQ3ElQBIOdFyPtUEvesbTugjKEoCim6crCgx6EMLOoGrTUnmxW3+46uHyVZXak7TUWY6VwJUFpRNTVVNWVBCS3P2q9dFv2NHEJsOGgDJkMMeUskIyRqQ4yKcYwSXpoiRieMSrh8jkhTkXJzIO/xMIzYwsjrocj0TtFFVKXJeS95ChZliiep45LzoLSlNGK/HwMEyC56yP5PJkoroXiJlknK/sPUUB6vj54xOkKYCn35baMEoJop40zi7DiDAeS/D4ZhDHRDIkQ9uzXFqCQE1Qt9ec7FYAIqD5ot+XCYahwa7MMxNx1AaSoW5Qo6CLkxSFNBN00elWRdlMqQkmIcxALeeQ/Bz/VciIkwjDNgbAuLNlqE5imKWYURwx35WOawVpUtz9OvNBWHxyzv5a///vzVr34/3f2Qpl7m197Xrzu+9tW0XJ+yPsqOUdWCerWhqSu0Lei7Ea2gaUoWVcmiKuj3t/T9LW5wOOcplw2b5RHvffxdzh48pK4X7PuOl29e8PbiDZdXF+z3O7EvzG4ZE1qtrUJbjU7i9lEmhfWB7nrLm5cvuXz1hugTRSE0ir73XKU9pSlYlpp1o7MrzAHBmcalKJs74YRKgeBHUhjxfsRrwGhpMvICG2LAp8MbOImXY0yM3tGPA3Xp8u95ghZetglxRmBS9hwU15uRoW8xVihCKjEXC9pMbld5ZKfEOm0ac4KcS3parDNiEd/5HWbQS9whBFnQSUPIzVKKMmIO4sNe1w1FISO/qDRj8Gz3O673O/Zjj4uBwXtpAjNlYHJjmZCBpAXFmDfROzNTpRWltWwWC44WS+qqorSGurA5fMlkP3gjrgwZ2YhJONA+RuJ8yn/tc/1v5Dg/P4ILqMqdBHmpKWRRZ4vjSFlX+OD58tlTvrh/xgcn30H1I7r13FxfEeNHLJYnfOvTJ/zs5xdoU9LuLui7ltWxZegHjtZrQnCUlaK/jXz58prTk/c5OV3ws5/8DFsafufTx3z60QMssNsN/OP/9g/ZXu351//Dv+a//K//C05PT6iDwuqKly/fsD4+4sn7j3n67BkPHzxGW8vTr76i27dE53Ad1IuGzbLkaNNwfFpTLcHbgVFLiF4bI52KeDQ+X2/hHTGblHBqCjnK8JdSFq0tKickT9dAYQqhRRV1bjAaqnJBaVeooIguMLaOcT+AiyzrmqqqKcqKsW1pt7f0XQvR4YY93g+oAhZHS5ZHDc2ypigOeRcqyuRDpwTJo6Ik1jAhbtl7faq5VMz8+pjddvLHEGDwkRun6XVNiIbbbs+Ds3usjk84Wm/48fVPiCFQLyTjROuOz7/8BSerNUebY87PTrne9uhC0/UdAGVZcnxywurtWy7evGWxXKGV4vXrN/NrLOsanBwfc3zT8/LnX1HVFcXkyfoNOHb7Fq0Ni8WK1WrF8fEJxycnPHr4gKPNim6/5fPPfs6L58/BRVbrFYU2qJSwSsLAdm3L87dvuW5blDGomFBexKuogpQkS0Uln+v4RB5RzY1uShEfk1DjtM6UQiCvNbNrk8p0g1lMLdM4lV1mxGgjzoWxfE/PDcQsOk96fgxzASa3zMVOCBOlSx0WuGmqprJ/P1MuQpJQwRwKlaLYnWLypBcJJUuHyoB3abPkn7uLB2Uk9w59RKUk1qbT64gg1c6LI1Y0EVUqGIAgtp66EJMCbS0mW56absD7mIW6gEoYBdZI4F7wPtNlNWVRY63Oe4ESquXgUXjKwmKNvA9+tyeGxHq14uz4iKgML169pd3uBBj8JSpUUZU0TTYaaRoxNbF2phZ/08L4jDWQRLieQCild6gxE5gYw2RlL+eC1REyzT2kRMjuTiGSQ+h8DsIVByilNSk3tSGOWFtidEAloYMLd1RlYx6L0Rl4jVK4KwpC0oiKwORpn8qPebK0zzVU1tNO11aIOX09hjkTYzpnhbExnb8Z/MxggDYm91oCgFo1NQzSHGhFdp5K+DA5TB2KotkuN08pJmME+cNAEuBVGpqJ9hjnayURqIsFRWoYU7yzroiJAnmiOmVxJKXwCGUYoynrin6AMAxinJPzMrTWNHUtgn6jM81PHpcpS4qyxNoCa0R+MGvE7py771DSps/T4fGlGTR4t+HK3zlgChmcPny8e/tfX3x97SajWR6DLkEXLFYNVfAS+Z5j2UkJ7xOORFXULNeSRNm1Oxh7ohu47Vu2R8dYAp/vW56+fcl2v5WgpfzCTgIkmSBoyqqU0KsIxgVC27O7uuHtqzfi79+NrFYbTk9PsNpClKIOrdl1PVd7zXq5pGok9OjuYkuSsL+AFp6b1pSFpYoFZmwZvQTSyEKnhFOqsgtIJD9edZhiRIfzI6PrJQU4KbweiKEgqulk44BMZTes7fUVtjQsFguSMbODjnj/G0ywB8eFOxvAVLzPSa15+jBbsGW9yDyWRKggVhuST8TgwDQUdclyvaayggb148C+77jt9ry5ueF6v5XAvJTACl1KxpLx0LxMi16anqXOnb7KDYKXLVXJa17VFctmwaKqxE2kLKltSaEtVkmz5fNUKCGoSFSKqE32+b67LX6dod3fzPHl65aL656rXY8HdFGyOlrTlIqmFjFcjAk3dIz9wMXNDS5BqSzuzQUGQR1PT+/zyYcf4YY/5tmbPTo6tC4wRmMLw2LZEF3Pxx9+yL/54f/AxfWWs6MF9vEJxlq63vGdD5/wO9/5gME5/u//z/+Wz7645PGDU/78T/6E4/sP+K/+0T+kv3rD5nSBrR/jtGFVbzg73fDsFz+jWK749re/Tb8V/uhmWXL/wQmnZ2ualSXVgU7taZVnTIohasnJgNm/W9CZu7bL06BZ6E9q0h/pTJfSRqiExlBk56iyWFAVSxrbUNoKYwppMHqP6waGmz3jrsUkWNY1piwwpaHbjmxvrnB9hyYStaNYGhZHDevTNWVTUpeGQgkfmZALkn7AWNDJA14sa6eCLzcZ2moJuIyOmJGo4GWK4YKiDZbdCPtoULbk8uKKMXjWm2O++OJLfviDH7Lf7ej7nkfL+xyfbPBhBG3Ybvfce/yEDz56n5s//zk+BLQWi9uUEvvtlqZp8CFQIstAP4y0bU9TV8QogVrr5ZrbvePPfvwZz589o67r39Zl8SvHkycfsDnacHJywvHREavlgqoq0Qpuri/4/Oc/5fXz56yWaxZHxyzqikKqSrZty/PXb3h1dYlDsVhtKEtLYS2LumLRlFRVwU3acxUkvHFuLGJAaTX7+SfI52ecKQchSijevE7PSGZA5VDFaf2RGiWiTciNsRHaVgw5lyIJ0koGshDLWFmTZfoBhokmInzxSMz7kaymZjbmAyC76ky0J6MVytpZ5JyS9AFp3t3FrnTSI7o82ZiKOQGv1NzITB3HBIbmlKf5vhKHaYcPQYTdqkeFnjEgtMqqoq4XIujPjX9EmktbWJmED4PYcxYifm/blqHvKYqCppGsmDIbjSit8SFlZyNP1w9AFIDAaFLbYa1lvVrxXnOfo82Gp09f8PrVKyKJqq5nKtTUWExBZikdKELwa0Hg3+rRd2MebInzJUqRokzzgAzKGBHwZ2ckrRJVqUmEbJaicUExOinQC2tyGN7kNCbZF1PmilaGoshmMlGaF1NYtE7oKM2t1gpyMnzwUFcVMYgxR4rkDCPDu+3robDNxQtJ5cyxFGYROCo7ZKWEC9LITFk0CtGnpBQEwU+RIWR73ahwQYAtlRO9SYlhdKRJu5I8aW68J03JwcBj1m3dhfLV4Rm8838FTb2EZAmZdilOdfl1mScycozjQNt17PqO3o+gFUVVkpDGY7/fE7ynsFYabyvvsQCVBpTOdKl6Xmv6vsN5R98Pc5Nx1/xnfuT/ib731x1fu8nQtmQMCYsWXlsUoa/KISFig5aFwChMUVM3x4jZyojGE/qOn/3rfwmbDalp2Gmxs4XcrQUpLqqiwOqcGZEU9B6/77i9uuXi7SUXF1e07TgnRpaVJ6JYLlckLwmxMlkIXO9aVhUsTY0xOfAOJchGlPHyVNxEUvY8thRK08UISWdOnWG48wbe5bWG4AlG4/yAMz0hjMSUQ1n8iPOj2L+pyaps4vfKBRdckJTMmHISus4olYzLp81mmhKQDp7sdxeJaSx3aEbSO4+XlAg+EFXAJAOloqgKEds5z+32in3fsx062qGndyNd1ll4FUV/m+9Xa41KB36vD3LBa3JSrFZ55BnnK2zKI6lswaZZsWwW1FVDaUtKI2NwmxPeY0b/XHS46PFEfAq4hAgX79DEvknHv/zhl8QE+95n9E440TGZOW217zu0NlxeX7Fcb/AJCm2poua9Bw/knNRLLt5s6fcd/+7P/pKPHp/QVA0qyQZhjWIYgjTagyMo+OrZKx7dO+X84SPGoWe1PqKwhh/+4Cf88z/8AVVziil2PH3+Gv75v+LJ+/f55OOHKAXHx8cUixO62573P/2Q26srok68//4jLt685vXr5zx4eMK9e2vsQhHKkV55Whz7lHBJ4aM07NKEZzeXdNeLPMkiqW3m6k4OUpIRo7P2wipNaUuasqIuFtJklGtq08i16yOhG3D7nmHbMmxbwugotMFW4GJgf73j+s1rtpcXKBVZHC9YHa1YbCoW65pyUWGMpgBMjFlMp0ghYJJHxYjOtBQ1ObBMLm8pkbwnuoBKHrKnuXMBFzTBLnm9D/RRoQvLzcU1X3zxFd/+3e+wOTrm//tHf8rV5XUGAgJvXr8hpIGTU0PXB9q+pywLjo43ImAtC9pWbAuttbRdl7OEJjvpgvVqTYiJxWIhjjuzZixS1yUocnLtN+P4gz/4fRaLhqauMsc60Ldbrq8ueP70S26vrthsjlgs1tR1xfF6hXcjby8v+ez5C15eX6ON4fj4iJOjI47WK6qyRCuFMbLuDOMS7SxBdeiowAhdVcWItZmOms9JONQUMcaDS5MGSRZOgM4NAITZyjXT6vKUYULCVQ7qE76zaODE8jJreXQkBAEOVPKyphOJOXlcgLYpdi8XPCpCEqe12Q0IhTIKHwPOZwQ3PzKd1ewpCdKbIFOysrZPtjehCDIBQkLj+uV8pUmXIXW42K/HJNRJnzwjA5aRqlmzqtcsFkuUkkRomycZkGgWDSC6QGLMmsASW8gkobCWqipn63RbFPk9keJwmvCElF29kkxqfIxc326JSrPeHHNytBGarzUMw8hyuZR8p6I47FlTGCTSWFirf0XT+E04xOFxymsg76fS/E5p10pNQZOiIUAJPcplal4CfND0Y6Qq7DzdmtK5J1cxaV5j1lkgzWhIhKCYRr1iMx2xWpGSUKp89EK3SqJfk+nFBBzlOoHslqkyNTsbZ0wgqA9hzk2Sc1EaYZcNArSWa+nufhJTzKGLWfuXTVFIBzZIzPWJ1nau2aKk40nNkrWTAgJMr6e68zeYKZITAWoCVwHqYolzGufEnYw4ZAtnuUamnw0h4rKVbTt0AqIXcq6bssJWFUobxr6TyYc+6KWAQ9PlPHrwoANhdLNjVd/3v9Jk3P38P9bH3/S933R87SbDVhUhifWmUkrcOhA/7mhSfnHFQSJ5TWE1hS4piwVO74lZF+H9SH/5lljVlMsFsShI1mKNeN4XRgROavTEoWN7s+P68pqL1xfsbncMLhBR2V5VxnG7XYtSFyzKhpP1Bq0Ut7c3dF1kGAoWNnK+0FSNhLRMox+tDkjRrP1IAZVE5a+IMkEoZDwZs2BVnETUPH05jFk9Poz4OOaNKuTR4EiYA+uYUTNjLM1iwfHpKZGEKqyI5KO46DA3DrKYTMUbTGE5hxF6Sgcx7d1DONpCQdNaEXKTEmJiP3Rs96/p2kjvPKP3uCDJy2HSVBRKnELIaE+YhMwyrZj0MiE7Zt3t3EVojwjJkyyCRWFZNQuO1xtWzYKqKCiNlfczU2QUstG74KXBSAGXPENwuGnUDzPi9k063l5tgeyclX3ey9Kw3iypahE3lmVJSpJx4UNg1w3omChNxYcPn9AXC5xPXF23fPDeA663O169vkbZkqos8B6aukAHy/FmwdG6wVYVzjtubvecn9Q8eHiP999/xMsXb/jDf/UDfvL5Kz78cIE28NXzC7wp+H//v/4x/6f/83/D+elCCiAC9WrBvceP+OhbN1xfXrPfX/PJ73zIyYOK1aqirAy9GdkrR5cSA4ohgUiWsu4iTq458j5670Wwacu8KUqhhDpsQkZJCGVhLJWxNEVNZScNxpLCNhAN0QVi7xhvO/rbvUxZnKcsCkLydO2Om8tLLt+8ZXd9gyKyOl6wPF+yOl7QNAVlJUI6Nc0VU4QwZqQ7Yk3EkMW5CSQAUwSPOimhSCEuHyl4gg+4MTA4Q68aFkeP6G7fEBQk53n67AXD6Pno408JMfH82UvqusIHAyrx4UcfYusBH67ZblX2Uw9UVcnoBvZ9mzcoT9/3vHj+nJDAFpZmuYQYKSs9N4s3N7cinteSY3N0tKbtWrqu+y1dFb96PLh3ivcjY79je3vDfnvD/vaG3e0NwzCyaJYslusMYFn6YeDV2zf87OlT3u72VFXF/bNT7p2esqzrubCJMdKNI2gROoeYSCYCVhqBGSAha8hy8ZJpJ1rloiBmowwt/O8J2DwU6Cn/bsrWtGpOqPdeJt4TlUmRG4Z83yFEnPYSJKkCYv+RUd13XJ/IlJjDIpeJu5kOQi4epRj0Ic10LQ3oIKYFMSFZTEqeq00Kr5RsL3m6IvkLSBPFHZE3ZA52BKawwSROi9IW4aIjKI83jlXOuJgb2kzXGceBEBNDP+BGh1FwtF5R2gwqVrU0FmXB5GRpspOgd55hdOgQ8V7WVmOrXHRONGHLmBKvLm64vG25f36O1obT0zOcc/Mefbex0JpZuHwwSMkaiG/Q4ULe+zPlRoZn0vipXPgabdG6RKuECw6Y7JAPbpYxKUYfMQrcEDFGYgOmglhQfqF/iu9MmqdWISRUCNJkGJd1IhqTdTQTZTzESFXoGXl/x50oazJiTrV33uemVpp4reT3JYoAJgridKLL9EH2FnUYLBOApIzojpRQEGV9lzyKRMwTGgnFU2hUnjZYI/EEYQy5SVPz9TddSxO9aqobJ264NPOayq7o9p7b3Y5h7PHjKI1ZvKNzytOgkM0HtDYoIydbUdWUSlFWFYWxjENDdA6jmUOJIbuxxUGMLkbRpQbn6dpWohzGEZ/1XPNjnR557gWm799pF+6AtQc61N3fS4ffzD975ztfA+j92k3GarXCOXfo7kgMYyAlIyhE/jmlDS5Gko9gFLpYsNicEt2e4HuMUVTR03sHoyNkFxlrEvgR5xy73Y7L15e8efmW26stwyDha0YbGXs2FUbLuG+/3zOOI+MwUtuSZVGyXiwoDFxfvWV/u+dKO64WikotWFR27hCt0sRZiCfJoZOVnzUmbwgebRSFlsZpHL2MwTKlY6IphRAyChWI0cvFqgwheJzzFEXMmRRiIRjRKGvRRYGtG3E2sDo7KUzc21wGpex2kukn8ziPw0Uh6Z7qcBLFyetaZ8Rn4jYyu2u1caAbBnZdyMiGnDNRJWkkpp1VZRQ6W0KiIgE1n/xaGVSQxzehDCKOVxnJk2ditWFVLzharVkvV9RlRVWUVEVBURwyOdLk5ILQ0EISl6uYNwHDhNp83bP3b+6YbBaXiwXLZUMIjtF1pCDuP6Nz1BXc3NyCgq+ePeXbj+9T1xYVE3VUdDd7xqQ4vXfOJ588YtcHri+ucV6QkPWq5pOPHvDyaWB0Ax9/cD87ehiuby85PXnMd77zETFEfvrTL2Zns8vbHSdHK05Oz1FR84//P3/Ip9/5kP/9f/O/QYWR5Du0KTk6O+Xb3/8uP/2Lv+CL51+xOVtzfK/BK8+t8uxVoI2RIQnWH/KCHIOTxpdEUlMzG3MKcIFRMsGYZLVicXhoLgptqG3BQlUUzhDaQCjFwtU4jWtH3L5juN3R3ewYug7vHLoqCCHR7ne8efGCty9fMgw95bJic3bM5mzD5nRJ01iKbCqAUlmgLaCCQcTdBikOyXx8MV2QC0MLVJavr0D0A85HUjRESloP64ePeX65JyhL2+25vrzi8uqas3v3ePTe+/z5j37Eze2Oru/56KMPefXqFfv9llo7lssFb7uefe8Y+4HVquHhwwd8+fQ5MUTKssR7zXa3Y7Va88EHH7DvWra3NxglWULGGrx3guJmV72isDw6fjjrAr4Jx8tnn7O9vaHd3tLuttKIJkVZVpyfnQiqpwyjD7Rdx9vrK56+ecN+GNlsjnh4fsrZZkNVCDo5DAO98wxuQBvNcl1jKLC6YkzDvCGKu6Gs/z5mC+WkZnou+lBga6NlMhtzQKRW2a1JzXurCGHJgm0piCbEU8qz7IaT708MNkTDMBVyU8FCzvSYptbTNDpbI8gkTeV1ODuaAflviJ5kAp6IStZxhDoyHQqw1lCEhIpeCiUlQW4zWOYn21eh38SQWQtKmouYsjNhItNZHGMY0W7kprtlaB2b5YaqajDZnUiCCFWewhr0QoIXtRItQFnWLBYLrBXgcKIvxRSxhdCliqLIE1LZY6e9NaSE9+Lss9/tGPqei7dXnJycUJblYU9C9sBpYqHzFHVqLIxRWJ0Lz2/Q4VyYKaeiZ2N+3wRoUzPwJ/2TvJej83NY6sQqSEmsXK2NAiylKHSkiSkRxOjCKEMMXjTaUSh5hck1B+IkH7OpyThKsR+DF4BUHYDRqQpVSoICtVaMLjD4cdZWaiJKBcoCkk8SvpemSYM0m5PjkzT8oisRqZwiBgVJbJIxCXQGv6cpTJyyUSZr32keIee5OGVF2ZvuUM8P1yDz84bcNKSJFK5RwXJ1dc3V5SX9MCDVjspTjGybnO9qem2M1pLyLX7pMz3eLhSFMbhxIHoJPfR+WqcEsFU6opw0y24c6bo+58UdzHd+7ZF+4y13fobf/Pvv3NXX6C7y8fXdpbS4lQzDQAyB9dEGpWC/u4WupSoswTusEQGvLOJi1WrLJdZq3KhJDnRyaO/o+w7l5WQa+47dds+r1xd89fwl+32PVkaSPhcrbGGpqkp0CylxeXnJbrebo9cVsL255qIsMOenrBcNdr3k9maEoaVvC8aFpbQaq21e+BPRg9IlCj+/tCpbjhltSD4wOoefgmnSHe7qnUNGcn4OCBQ7NEn79Uq+V9g0I2bTyauN0LF8kt+VoeLBoncal8W5K57Gi3cdDybHECkm49SIzCfE1Ixw519CWZOL+ek+5OeIUyMit8wbFwdEj9zoaG2wFlIwwmdXcvLHEA9BgQgdpigKVosly2ZJaS1VUbAoSpqypCpKEZsbEQ1yR3A5ISQiKGdGxyYHim/ScXx0xKJpQEHXbRmGlqIUH3+TRVy3t7fZcUzz0599xvunxzQfPeG80qTR8/r5Kyp/TlFV2NKwsgtOzh5w8faCl69es1wUrFcN5sk9Lq9uOF0t0abgyXuPODle8gd/8Lucn5/ygz/5Ia9eveX8dMMn75/z+cstw3jG8ckp7X7P7bbnhz/4Af/l//zv8uDRE3zXUkQBDHrXkapEdaTpuWU0kRbPPiXGKIWGTwe0eBZWKuEBz6fPxCE1hdDrMnVEKUNhSqEiak1pCxa2ZllU1N7ibjq6247iuEIttVgY37aMuxa37yBki0Mj9ID25pb9zQ37q0u8dyyOlxzdX7M+O6JaVdS1xWrh3+qUXdq8Q8cRS8QoyS4gJXGMm12jAnNibVB4N0qRlxI+Klwq8LHgcjuSyiWpqPCxZRg6nj19RrtrefjwIb/7e9/jdr/j88+fynO3lqKwKJVwvqPRiVfP94Rg2O46+n5kdbLm5OSE12+uuGzf0tgFxhopOkJgGHr2ux3eeVxwvH71lhQTq8WCvh+IVkKettstVdPwyScf/VavjbvH5z/9S9w4opWmKCqWmw1NvRCNXIy0w8C27bi82XJ5c8t+HCjrkg/fe8Sj+ydYYyGS9QWRbhjZtx260KyaBmsqSgoKVaKTcLH1FKSX16Qs+czHtM7KVynb4CYlVBwlFT6RHCSn4mFSi0wMiNP6nFFhEe7JfUexP09h+ssHp8EM0xJVyNPAjKqSixhl7kzd5LHK/+Xj/BjUuzQnAXhkDw7Tmq2FmS4s5fxapMxhz3N+aTB0bmQmMCcXorkjSkruUyUEkcbj4si4vSGVis3qCFNIo0sGhe7uQ5NduzYWa21uLjQ+yL4cYpptZkGQ8qIUylWOl8MHT9u1XF1vubi6Yrfb4t2I0YoUA9Ya1utVvn8zsw6myZXSIji3WhwkzfQ68s1pxuHuOZrmjykmMJPWUqb+IWaWxbRvJyhybZRiQmmhf5Y2YW1idEksh7PhiwT3if60KjSKMNODjAZrROA9nZkxBFRpshWNyo5jOfMmT6kP1DOZYohGL+DjHX2skvcyETPNUBqig03vYcqotSKEMQdWkqlcCaXMYeKYnddCdvm762I13dfd+u1QL4nb22zrHKfXPN3hSOXHmL9vtMgHrq4v6IYe5zx1KUGxoOfpZozpTmMrFFc7A0ECBJscUhmcuAN6L03EtBcZa1G2wKiEivGdaZAP/p0p3V95LqV3vvorzre/8se+VjMC/x5NBnlRMsZglKJtW0mMjJ7kA2EQD9+i0jPXU/QCAQqD1hW6AqsT0UtxakIg5ETKUoNPET0O6BCpbUlVNVRVjbUFZV1TViUxRG63N3RtRwiRqpCgk0VVkbxje31Jozx2aLBq5P5Ks15ULMsiTysi2qTZAs2HCFqhtJVQmnTI4RA3jcjoIn2UREay9/MvOwTHGAlKLp6QURatbL4tZIQgoJS9c5If0JXJUnFKd7VGxIqKO4iVkunBhPIc+HppnlaQJwwxNxIx5g0nix8nRADERWd0Du8TMgrnzqIw/f7BsebgyJUbrZjDcVBZtyKFpHMuL0PIxoZ07rUtWRQVlSkotKHUJgucLDaLMaeTN+ZFJgFjDIxRxsUxQMTPj+/ux2/CoYjsd1sSkUVTUNdLur5ls1mhlHhhKwLOBa6urnn7+i3ffvKQ3//2R6hCQ+xx7Z7xpuCTb33I2O/57/7ZH1Nvznjy8DHKWHa3t/yzf/pHtPsbbm5aTo6O+PTTD3nw4B5HJzVnpytevrrk2fPXBOc4Oz/jf/mf/23+b/+Pf8Z+t6OsCrrRs+8dXz39iuuL5yyX56yXNTcvv8J7+OrZM17dvmQ0I6Py9Cj6lOhiymFe4ljip0V0EkcjPGnmZkJhtJUdPWk0UxinTDaMMlRFSVNVLO2CRVFTiP4ZGktlK2LnCWNguNlJYjdQViVKQRh6uttbLl6/pt3tSClw/OCIxdmKzVl2j7KKUiV0CqgYIHlSDJjoMMllalSawYM0JXeDxJ9FaeolQDCLJbHoYoX3mt0Yudy3rJuKdnAQE5dvL3nx7AX37j/ggw8/4Hvf/x7/5k/+hB//5Gdst1uxZ33+lLHvWWwqILG/Hen7yHWtafctJ/fuMQwdm82G7e1tXi40RaHxPrDbXxFSFBErNa9fv6XvesqiEEQrBIwxYh06OK6urn87F8WvOYyyklGS1/cQAvu+5/XlJVfbLe0w0PYjLk/CHt0754PHDzg/OyGRaLsB0RhblA+YqFkdVRRViTWG0fcMeAlwTDm8NAlYMRnd5PEBEw97Al+kmFezI06SEYHkaehMx0gJreNMh5LQMPA+NxfSEzDp7iZNXAK5L+5Qo1QuDKKse3fBI/m/WD3LQ9MZJ83GI/O5G98Bv1JiFprLPUxT51xgMz3XXC7dXUMndN8aVJ5syOs1FZjT6EXumSTXS1NVVMenbKpjmsWSwlZM68HEyxeeehSNopaAN58geo8L8njmiXvIrj6To1eejqvs1mdLyUXonKNsK6qhZ91UrFY169WSOtvayvTGztQ3oxWF1RilpGAj3XkPs6XxN+iYXvWJni3fVHPxbNSk1QwCPsZA8A5T5S4wv+dFIcYhWmt8CAxjpB9k2iGheYdzd5rVvYPjZ01OitnRLIk9cAwKo8VG1Wbdi9IH0HJqNsTVLLsg+VzDZAM270eZrDDRuuXKTDE7KyWhqsYY0Yh1yJgSYxCL5oliBxIsOIGTAgpLHafU1KjnbJRcz0pxfsehMz/pmAX0EqAp68Lc3k+sCmOJQfJdZl2q1tlcIuviNBAnC3JpqmXSbLDGUtkiO4kymzGEJA5sQz/Me6tNUGQr4JBBbee9aFJ8EPexGO+8Z9OR5g+/9rZf+304gBq/5pb/JJMMpUWUnARhGMdRknCRi1LKiizKVOKLr5LQa0wQlb+KFmWW8jtxpC4VyirGFInKsLjfsFkf8ehRy/Vty+12j9Iltijp+o7LNxf0fS+ZDCTqomDV1KzrksooCpVYN7AuRxqjqJuCsqrRStMNDm0GtLVYG/Niq7FG5Te2wGBxaQBlxNHK2mwJmCk7IYCyueOPc6Evegc9n8QhOLzvhXcHYp/pB7yvBfW/g3Yd3rSYnRXkQleT+C5N4u+YHRYkyv7A2502lYNtbQwHYfoklJP6fd75xCEqppniNDtTZQFZzLacKYteYwiz6FwZyffwPuCdnOQmp7jLuD0jwol5rK+NQRUVBZqFtix1SYWVlNFcjE6uXT55mewQcSnIv+z2Iqggdzr2A3r3TTis0ZRNRd3UVI3l+vat0AmGgcKWOD/iXOTt22uub3aM3chN22FKm4MPE0fLmsthpK4XfOe73+Vf/es/51/8qz/l0w/f4/vf/ZSTzTE3F6+JNPjQ8vHHD3nvg3vUTUlZN/zbH/yc66sdtV1Q6oFhGHl4uuDBxlJZWfivtjvawfH2Ysuf/skf8ad//CX/u//D/4pXb59yeXPLm+0NuzjgDAwoxhAzNUplpDGnds+81fz+5AbDZNGfbBSKEBVWW6yt0Eo0GIWpqExFXdUs64ZFuaDSJYVO6JWitE4SZrctYzcy7DtBYk3OTxlatheXXL16za7bYpqCo/NjNvfXVEsrydwkaSKc+JFrffDmNwbMlDkwO4tMhVNeSPNGHoMgSyFokq6w9RGUa65fXbJrHeuze4wB/uk/+ed8+Mkn7LYtXTdiCsv5w3NCjFy8vsT1g/DTveP6+hqtE4/fe8LN7i1gOT5eUtVFnnRBWVpub7f5+Y4s12uWqxXjONK2LTEGdl3POIw8vH9C13ZUVUnf9xijWa+WkKkTu93+t3tx3DnOzu4zOse27bi4ecmbazGd8CGKs1hRsFg0VFXJo4cP+eSD96jKkl3bMY4eWyyxJaRADh0rUUac72KKOBdJschaIQCVtUJSsAiNhHnNZsZesq13dpFCiSFnynW8yusaOmQ0PFdJ6iBgnR15osWmiS6VSAgXO0RPjA5l63kfEpqD0ETJhRZKz6DVgR8vU8QolWDGXmN2eszWpHnyEgPz+s80EU+5oUJorqSpyZD3JUV1mF5Mk22tCfHdNXbeTmIiRMfoe5pFyenyhEV5QlFUct8JmTwrcfIiZ1xElAh6Y0A52T+18tnKthTufhJjBJ0pv6RJAzk1gtI8HK/X1NYynm1ET6DTTM2JMeKDY7EoKa04Uek8DVHqEAyrTQ4cjOK+9U06Zkp2picd9DJ3m9FJIyT7KEqa6ZjtV+c1OkViEgpWNwR8ENo4aHyIOD9pIxTkbCOUAJSD85KFkRLoRGEKUggURlMU+W+kKOwVVWTQ8A61OU+EJ0OQKZtGIRa2KbuxhRBxMWF0BhXDHe0pgaJU6KAYuuk2uWtpWtTc0P8q++MA7qYUULle8ZNhQjxkj8U4/dzho5p8+ifgNyWsLoke+q7DB6mDBjdgstBcwGupf20h2tPC2mzNbjHZgGICbb33OXtMYgIm51WZoubn6kSnKiHIDjdKwv0U//BNO752kyGblpn9pI0xMkL2TkQ0uUhNKeG8gxQzPSSnHicIPrsLFbUU61ps/hZGEZUiKIMtKppmyemRox89b69uePbiFVc3twyjy10dlFZTF5p1kTipE+vKsqor1uuGoiox1hDRtD7hvSOkxKgLigVUSQsSlbvZNDncmAKd01pTjNJomAIdAlYpQu6OY/LICjx1/geqEgRiyIF8MWCUlQs7c0lDyGh9yuLB+SLICMIcNqPRyubQIrlQxRI0MtXUd5H8dy8imBagu9/TWuVNKGEw87hbpTxSzQuAIE7hnd8N8dAlqxhnZCWGQPIBF7z4RMcpBVNsaEMIEBN1bbKgt2RR1jRllZNea4qyyIu8uED4FHB4fIqMOel4nvOkKPSHlG0k06/r3H97x+NHD+jHkcGPbNst275juVhQlpI+q40hOXke4n4SCUnRu5FFoSi0YVlXfPX8Ncknqrri4cMzmvo5L168QcWBDz54wO//wbf44ou3fO/7n3K77/jv/sUfcXG55WY3MHr45KOP+P4nDynUSNsOLE6X/Bf/8G/z06+uuB0So5fNwPWes7MVv/jJc374gz/iprvhareji4FBkSlBEJKQCPydidbEIJdGTzM5nImPu83I1aHB1TlYT6sJwaloqgVNtWBRN1SmwsRsJ00e/Y+O4MX1qawKUoz07Z7tzRXXb19zfXmJS57mbMX6fMXyuKFZlViTsCmgQiSFkegGMQtVFoW4mOi88cZ83iYJSEBgMDm3pgTkGA1jKom2QhULVHOMS4bb9jWvX1/w/icf85d/8VN++osvuNrtKW1BjB5bGO7du8+XX3zFqxdvmKxCxd0OFkvLrrvAaEsMYuMpVtKC1p6cbNjttpRlKc4tZSlhpf1IDImqqjjabLh485YUI86PnJ6cMPQdRhcsGskPGH1gu2t/G5fErz1++uWX3OwkeyfEyRe+YbVYsFw0FNYSY+Bos+Hhg/sUheXy+oauG6nqmsJII5C0xsTs7Z9yfo4GYy3W1RhV5sIdyfSZwBQO6/AhoE69sw5CynsYeb4sVCfpPUR0q/NaqWPCWp3X+rxexSBIbBbFvlO4pKlxyD+HkJWmPKDJne0wcpFGKJIF5NJuZFpuFrSDnLrzPiW5ENPgIZLy2j1NHDO1JlNDlD5QreJUXCnFZHxAfigTJYakCAhNx4cRlGRViZh4EromUtIStqmNTIJynoPLt2sSOklitVJIppWSfXgcB/neHSvPGc2H+b2rqhpjLOPYE/xI34/5NRETFxNHKtOgCVlfMv2TRsS5XOB5zzCM/+lO/P+AYwrfne2V7zYYSaYxQuMJ0jzjKG2g0IneZXMDI+cuKYiBj4Pey32UWrQOAYULjsrkEOA00Xyk8Rf6kdDgTYjUhSGlmGtCqWG0uTvBmB6nmqlCkrI+sToAEpFAjI44hVHGvB5ryeQgBFJu/id2jNjQxpz/EYlZV1IoNWd33S0MpjrmwABR+Ny8hDBNCw9rgVy7nkTI14VMYSJBXAeVTFpKW6KTEcpiEmvo0Xt5X0xBWdZYXc6TChDgVZnD54MXCYJzo0wvhoGu7xnGgRjdLKIvCgsJnBsZvBOb+AzyTvXaO3TJ+VC8++VdHs4EVhw+z78x3zx/rQ6/o+58/tcdX7vJEO5XmsePUyFpjCTfRu8Z3UByY7Y4M2BN5oPGufGI+c0x1mK0xfsBE6OgUCpgkqYqDUVZsEpQVhbvetq+pct+98vSsmkM60XBUVNyvKxYLSS50xQFQ0hsW083RlxUogVYrUlFw5hKxqgxZhoBazSC2quk0UlLAFcuxEtTY3UiJQ/GMCQZi02ivZApCSnlRUo5RjNSx1EuBFVAtmP1wTFdcFN4CmkaheYCXU9aBz2L8aYjxQOaT0bWErLZ5grp8LMTepDfK9m0pDHSadI0CBIQg6B700U20ZTyNpM5i3H+eLehJ2XBJMLXDNm7mpgblSDN2rJuOF5t2DRLVs2S9XLFcrGkKktppGZP+DvITQr46PNGmC+cJAK/Of/j653nf2PHzz//kl23IxLYnCyBSFOJ6NuHgClK+mHPzc0to3Og4O3VDVe7PfVCslIWiwX760uur24IseZovcDokW6IXF7donD8T/7+7/Djn/yMf/Rf/wM+f/qU//4P/4w31y0+BjZHK/bdwEfvv8fpyTFxK6Lx956c8/qq5e1ux3Z7zclRyXtPztFFyfpBzWevPqdXMKJwWmw6Q5ImI0UpzX3w74rLFJAD9OSfQZzRck6K0vP5LL7pgubURc2yXrJsVtRFQ2EKVFTEwRHagbEdGdoOQsKaCl2WQKDfbdlevuX102fs2htUYdicH7O8f0SzLmgWknuho0eLGhEVHUpFCmswKpF8QJPpL5kXnHKzTbZ2nISAWpeMydC6yNu94+h4gaHEKsMvfvEFL5+/YHN0xOjh5z//AucDL168YNHUVLXhW9/+GGMMP/rRj/nss89w3mGspqCAFKkWJS4NXL7as9/3JBQnR8t5A2nqiqIo2O12lHXNg8eP+OlPfso4OrQ23L9/n67dU9cl3jnC2PHx+98mDS2dM+wHx9FqyevL7QxwfBOOnz1/Jo1mVbNZLlkuGhZ1TVUWc3FireQt7LuW2zd7drsOhebEZJqllbDOlIIsiTNwM9FONToZmUaZ6VTNLkppPoNnmqZCCu1M1gFSRiElPd55oaPIPmghKTG8iBFjD7qDKUTWx4ALssn63KwaNdmR50ZdTzSXHLKnxKUwZTtNo0qy2AMUc3M0Pz7k2owxMonMQdDmEKX5sCbPO/JUTmxA59mjaIz0wbpzyguR5lvN+0weo8jjnaitKeEJjNHRh54xjqjRZccrKf6MLbAJjEnz33beZ8AiEJXoIVIQKlMIHu8T/dgzDD0p+MOemKdcE+B50FkYEW7bADGgEWp2ZQyFVRgVKQud0XA1u/1IYyG2923XM4yO0X2zmowZw8xp2bMWMbMXCjVNZabzVkwFBCAPiCGkuEAJNSkwjgJy2NJQljKp8M4JZSwHyDkfiCFJFklhsApcpisp8oTLBZRRxHy/RS25GMYYmQjPTIPJEvaOfT/S+MfkCcnNz81HaSrIuRNeugBC8lmvlA5NcH6NUgafVQZqU56iTw5PE7V8aipTSpIVFslg2HQ/d/a1uX6a34kZGJjquMLWRK8IWZwf8yQshoQxYjNMMRkrZNrYVP8hzUHfd3IejtJkTE5RITi0giqHR1pb4EOi6xJ+6BnGUc4BpVDaUBblTPG80ybcGTve/fTO1+8+yXzzb/5avvz6e8nXbjKur68pikJQ2UJ4r8JPJXvdW1T0WVWQcDEQfQJrIMhCSor4JDy6MljQVpwelHSyzvWMMWDrGm2kCXlw75Tjow2PHt3nz//8z0lDz1GhOF5VLJuKpqkoK/GB3w4DV1c7blrP7X6g6z1FWXJyfIIu1tjS0HrLIhmq5DFqsiiQk0tj0VSSV6lC9oDS6KTEFSRNzhsZUdeHhkEpRTJk/mAOlsmj85hk7KX1QCoOrlRwuEziNOLLS3+KibsZGTFOzUx2UchXwWSLG9Xkzy5vvvisp/niIk9t1LzJedyg2G73DENAmzJ3zMXBy30aH+bHOlMFULPDxXSqKiMXj7UiHI4+iB1oFns/fviIx/fvcbY54mizpmlqbHEoKKbNOaXD350SvmOSJnR6XPKuqV858b8Jx+XNFhcGFpuSZKDQhs1qhVZanouTTIXXb94QApSF5fMvv+Llm0ve+50nRKNYrBd8/P5j3r55S9JnLOqKyo68HUaMqeleDPz08xsubh1JGc7PTymMEcQ1Oza1bcsf/cmfc/Kffw9rLDc3t9x/eM6H79/jund8+5NTvvvdJ3zn+0/YugHWBbuYaCP4CElNTjtqnhrNVJA7izspL57Zklb4rzq/NTlcb6YflpS2ZlE0LCtpMktbYVWB8pHUO8K+x+1axn1P9ImqLKmqikTi5u01Fy9e8Pb1S7qxpVzVLO6J/qJelpRFpMBhQgDvBWnm4EgigXth3qhISVCyNNVwQqVwwROVQZslvbM8e3PDs5dvef76LX/n7/xdHtxb8fbtFd4HVusVD957Qh+LWTRcFAX375/z9/7e3+Hv/b2/y+X1DVVhee/JA54/f0HXtlKIKvBJo01NSobjow0+wvm9+4QA7X7P8fGaDz54n7/40V9S54nY2fl99sUtt7e3dG1PXRaslyX7XcdRDX/wO+csi5GffLnldt/RdS0XF284e3D/t3NR/JrjyYOHrBYNdSWBa0YffOlBPPO7oedmt8f5wBg8pa2oiqlYSnm9k3wDlJZUejcQkpdJR4w5sMxCpsXZ7BDlQkb65ymGfG2YXHuS+MSaPEHIYEdKUmLFFDFJLFxTlPVZqTsWr0hx7pPo+EIU7npSCq0y0p8CJoml6MG+lnnNmzzvlTLS/ATRj6gYxZxgfpiTSDbOsomp0YE81Yjk81OakcmzSixQ1WGNn7jzkblAQ4mb1HTVp5TnOQmmVHMXIkNq6V3H4AvcKPdblhXlNH1IAjgOw8jgRuQOhG6tVcLqApsLXO9FG2ltAUbP4YnvWKMmyX3y0QtQZUQXqG2E5KkKASLLssgsAim6fTZzGZ2n7Xv6fsA5oamkcFcT8804Jiox2YpVQBxmIMTksEJpOj1lETE6kfCSSJ9i1k6AqQuxqfeeGBOFSSglt6WQKI3BWjk/4pBIGGI0eD+5bqV5z44pgjHS6iZpHifmxUE8nTIlSGhBLk3NbhZ+K/k8Jj+HmorjkxGqnJ4miClPF+OsP1EkUgizw1wISaYP+fqZaoiU8jl9B8QUNo6SZitNwOad8UeaCumpxsgNXEZYpwlgWVTEIdF3bdb7yPMPWmqVse8hyJSxtqWsC0T8ZP0cPX3f4sZRmqLMVikKg1Y1KsacTL/AFlY0kClRjAOjFzqxMRZTHpru+byRk+fOecSd5/Pu17/SfNwprd6dYvzq13/d8e9lYTsVrMM44JWkY9d1KRQcHdBqIYtVimLBFSP9OEqBrHLEuxIVvY+KbghUpcLUFdZoQnCkoaMbB0xVY8tK6FRNxXuPztjUv8/u6oLQ7qisjFBdTFy2A/t+5Ho/8Pqm42rbMYwOhWa5XKFsyXLVzYKxZVlTKTBWRFNCulUZaSpkoqISVWGoCoMZJleEjPCnCTWQV1p8u+2dEeEUNhNQ5IImOmLhmS6WyT4P0tysxZh92jNiP72P8wU7X6B33G/u0JlCCFnENV3kh45z3iwySgUi/A6DI7hAClKgBuUP11mamqCDAGjahDJ0ODdoKCX2oNPtpkAVksB8dnzC2cmpFJVFKVMsazNvVtCOEOWi8yHzDYmzxeTdM14rQU3ySwTfsA2BXJyrLLDTJNbLJVpr6rqm7UYur65JMHMqn794yT/57/8F//D3/48MY48hcXZ+zC8uthzfO+Hew0d88MF9Xlw8w0cF2vLP/vCH9L3jZz//kuN1gy0kTFIbSf5NquJHP/4x3/vWYz59vEaNA2MIPHh0zO+Ygb/19x9wcm+JXRr20dNHzZDARaF2KD01F8LhlemWcH3T3XNAGTSWpAwoQa/k3DNYJQtuYQtKU1FXC1b1ilW9oi4WWJ2DsVwkDZ7Yjvjbln63I6WEtYJYxuDodlvePnvK9dUFUUVW94+pjhvqo4qy0ZTaY5Oj8J7kHVNTbVTmYCvRYUgDm0leOcgrZhcSpRF7aVXhKNnvEi/fXvDv/vwnvL64pmtbPvz425yc3icmxe1+jw+Je4/e5yefPeNb3/mEP/7jf4e45ASWOcX64u0bNpsVv/u73+bTTz/ixz/+MU+/eoYxmpACo/ckn+h2HfcfPaZuGkKCYRzRqsBaQ0Jji4JhcByfnrJcrnA+8PbiiscPjlg1ltvbRD8GCguffvKEbfeKp8+vMFZ4wovFNyfx+9G980M2Qy6oQ8gfM6UpAoNzjM5hikLcijInfXJSkQZBCi43DogNcZI8lSC2uFJZTCYEoi+btG6Q16+8pkjRnYuNzNmfwvFSjHlqLKGtE902kHWh8WBWIfsF6AAxFxwhAEaalJBk85VCSCYXOnMoQqaIigA6YXSZGwEl0zYy4BXj7F4zGWpOE/EJdSWKlmqaBEw0x/zE54Ihgbwu6m4BcWfvmCeX0x6Sl//ciAST3aXiQBw6UhBnyLqqqOsKrQzBJ4ZOnNdCpnJppSmLgsWioq4k+yJ4P9OyJ22SzXRaKZYnKq88V20kb8YoodiFKM87WqHEMHpcppc45+mHgX4Ys+nJZIkrT+gu5eSbciiliYjzpJynUyEpa/AUeCpZYxm9j1N+CqSUU7eVmq+flMFCyZWQfV7rhDXT/WcKndLEKA5KUR1eH6UU3gessTgfqQpDYUtJ+/4lAPVQgxy+LxOBTP3Ok8eYGzxjsnA6TwvklJymzml2/DNK3DmLYrKezZM6rdHTfoWsL1OdMjXW1kBRatyYKb93qF2H6YshxYmqNd1fmC8RraBQBaUqaMoClRJV2aCMlSyLwTM6T0wOrwxOD2AjUXkiMZuIeAFGfMiTnzTvR2By0yYObZM4HSUZa2VZkiJ5imcoi4OA/C7dSb37yTvTi7tn+jtNyDt9xC/Rre68p1/n+PrC7zuuCykKYqKtRWlDSPFggeZFr2Dt5GmdRcUy8sghPbKBxKTwQeOCxhQVRQ1LpXM2QiSMPS6JFazSmtVywbKucGPP7faaZxcX3Gw7dr1n3w3cth37biDmTt8WliEErtod5dUlIQYMilWhWVqLV2CKnEaZ6Uuy8BlSGCAJz9ZaiwkOq4ygnFmTANNFkZEVpURTkMXU3kuiK6mQ5xOkiJZud7KUPXTOaeq6Vcr2yYfh+LRJ/GbeHXCnEZnuEw7p4MZoVJT3QaM5XW5YPznB+cC+7cQyLcgUxXl5D3xG2OY/lRuPeOexay2Wv4W1OfNAOPdGaZZ1w9F6w3qxZNUIFaiua3GVKayIePWE3iURe8fAiIzTfYwknTfX3KiSDnSpb9qGkIhUVZlpYJqz5YqmKtFFQQqC6rSdINllUVAWBQn44Y9+wm3bc16Jc0dZGXY31wzjQx48OOd7v/spf/7TC/ZtAKPo9i1GJV69uOL06AhrAXRu6iOLpmbfj/zi2Rvef3zM0f0T+qFltV7w8KMN1IpkLG1MdCnhomxjMSlCRglTEM7r3Q14cvow1uZFMYfrKSPhb9N/VmNVASjqckFTLljUK1b1mtpWGJUtbZ0jjZ7UDozbHf31NUPXUjcNymj6bkd3u+X69Stubi6hNizWK+p1ja4VZeGpdcQkJ9opIkonjLaElNAZSU4ZiZrc21TelKL3ObCpAFMTo8ZUDW0b+Hd/+RN+8KOf8uLVW8go69vLaz75VGacXdfxve/+PrfXA1dXt7Jh58J3v2/5/PMvSErz4uUrFosl2+0Nu92O5bLhe9/7Hm9eveYmiU5DRvfy2v7i8y9ZVpqjo4blZkFZFgTnuHz9mqauWWyOuNntKRZLnhyfsq4DT+49Yrf/Oc9fX/L2aktVHhGTpWgaPvjkI6rNEZ98+slv8cp497BWKJzj6A8+9kiBEJXY2Hrv6foBHwMmChqbqvgOWicAR5o3bJCCJGYkvFAVVltckttiEioF6k4hnifHSiGTgFwEkddo7w8i6qw/lqnzpE1KgcwDnpFKWdsnClXMt4lGA52d9wh5hCb/5PekqBlcR2mLWScxTbqlwCvy3ikWnvM6qGRa4ROzgFt0Uiknl/+Sxa3RM7gVYhAzhsLk27NrFYdJ87RfqWTm9SDNKHPCpYBnpDSKslqwWa1Zrda5Foi0+w6jE2VhZbKCTCqWqyXr1VJe/+Bn4GjSfhqt0Ebh3bT3qjtIuOSOeOdISjQFBLnuRxfpuhZNZHAua0SmQL48Fb8jlJ2mJLb4+qabfxPHFEh3l7aTbxHWQKbeFFYcNEcndrA+eEZv8nk46Q/knBNta5pf35QydU/lAESfm2StZGoQNcnLOSGmBGI7q8iFbmXRukKsbXMYJVk/lEE3oUPJnn4oYieg9OByNhkhKK3pBwlJ1UrlOiQxyRu0yk3yzOcTBocxuWCe8r04gKVyQzb+yVfrZFAzUakAmqbBjR0uwmGGJ0W5IZssqEShSkpKTlYbSJGiqFDGMo6eQg04I0BqaQ3JD4x+EF0mSqIOvBdQMIjlMtl8wDsvS0NZMPpAGsb58XkX5D4LcVi0sw30gT74646/qlb6D73t60w0vr4mI+c+WGPR2XM6xEjvRll4XRA9QwrSYWqFxkgzEm0OapEYdJBF1lpNTEUef1kKW1JUGhMGUhRuWgie2PdZnG0oygpT1IypQN8Edl3Hi4trumEUB5wQcpGuGceRruu43d9yfXXF+ekJ7b37RH9GZY4wS/Gq17kj1lEuRovJzPKENZqmKhiDZxy8+CIbI9eimsZswp/WWuzFnLI46wg2uywhm6h3jsL6jJhNb5JQTYyRDUkrKYXkJBIU00zuXfqwWMwTD6axqc4XYrqTLH6YQqQk+ovCmHyhWM5Xpzz58Ik0VTHhXZQx8jjSu5HRO252t+y6nn4YcSHQjyP9ODCOkqKqjIywtRL9jUKoUs5HsBaVEsuq5mRzxPFmTVNXMv2aET1Z+Fx0uOgY4kgfHDl/maBU3hAm21rweSGCKXzom3Ocnx0TtMeUChUjq6qkKixeGZnwOc9mvZE060oW5WEYCCHw1YsL7n3nHiHcUtcRN3Tsdls+eO8hH3/8AR+8/wv+9M+fSaZEU1EVEgz22c+/orSyYcRxxMUwN7s//NGPeO+9hu999xFRKXaqZyw1oxYqmgPGlIhRoXLKakxSAIbMP08Z8RTAV95rNaV2JyXggZJcGbGltRijKXSJ0ZZlvWZZr2mqBbWtMcmAg+gc0TlC1+F2e8ZtS3ADKXpct2d/fUm729L3HYFI/fgIuymxhaYwEcJAEXoKEip5WXdUtg4kSnhemtCayV1fQsQIihA9PmmSbSiac3wsub3ds73u2fcDb2927DtJWNXGUhQl2lour655+tVXnJ+fc+/+A/7iR19yc3nJs6cvWC5WOO94+fIVMQS+/Oo5q/WG87Mz9tuW589e0CwqXGwZguf4QU1JjY4Dm6MjqqqmH3qePnvNw/vHrI9OqKqCoe8hlTR1IxaRCiCgdOR73/s+r5/+lBAdn335ih/++AXHp5q3bWJxeo8/OLmPC4mqLH4r18SvO/b7LhcVSDGf6YRuGCUVN097TWExySLuWg5Ci3eeuhadkwiCEz44gvMZnBHEtrAVe7dEOUDFXLhMRXOmaSATLXHsk4mEVjJllNFWJmtEJBRuTvvNJhw6F7x5VSUXIFGFjNBOwNBU5OtsJ3un6c20DCnOYqZmHXQlgqRK2J5Go1UJyea/e+cxB6FFhSBNRuIwzRYX2CnRAAprcBms8ZOJQ96UJJzPiCVmOkzs1R3ayaH5kAmPTGNkb1uvNhytz1g0Qu+LQSa2VinqohRTBCRnpyhrqrrOFuwxP59JlyiVqLWWoiioG+mixn5gGHqmVs25QCAQcxii0mnqBBlGT993EpKWyBrSd5sYa604/xQFNofCfpOOOIu94W7TF2NEmQxOkGQqo8B5jZQAhhizhijvlc5LHVealK1uBzwZIccKgKQLnB/l3M2C7pjHXZIGXsh0O4BRCmus1PlK45yn1CLyl+mIyaJvA1lT4b3LDaJcAyF6yBYizof8OOXaci5grZZLMUqTkZCmICaPVmJx6/O5P2lHZ4B7fhWnJm1q6BMpg0+JaZ+b9HmR3f4GUrawzb8PCaOEWphIGGUwscAmw6qRJlnrPFVRAV2W2EWZNRU1aEPfj7Rdy34vyeDeT2Y+gl7EybUzi7lDkM+Lws/gSojh3XqQKUemONgv/0pD+kvHr7ld/TW3/4ce/x45GVLA+uDfLXqj+BRrRNVPFL6ZilEaicJgrMnjpZQzJAI+SUcm49sKMwbAUJZltn61KD2gg89iGkdUYgFobMlqueSTjz9hdXRM/PGP+er5C5LzeeEQnvj0BgYX2XtPvEiE0ZP8yKpM1HpNUyqKQs2/J9H0BqsUJoGJ4og1idldDNmffNqo0mF0myAhDgrOjyJUCi5vUhJWl7JgTxAF5hObadFQarayVVE4/VMyaszjb4UskFMBCIdu8+7HdzYIpTJvM/+xFPEp0LpeUIogHb01lmqx4KQ4AqDrTvHBMXhPOwxc7/Zs93subm8YvZsTcp3zs5OUioIULOoGuzliuaipS4vVEvQzISlJSePjk8clh4+eMQZcjAwxiuNYSoeFIk0idHkOd0MCvylHUWqKsibg0SnRlFBaI0VBCcMw0rWduEoMI9P7E1H85BfP+NZ7R5xUCWO2aG4YupG28wQqPv30A/7dnz/FhRFbGE5PN7S7LXVR8fD8mJfXntaNedoQ2RxVnD1YYhaKXvewgMFEOqUZYm7w0uScI6JUsWaWwkU2qPzEclMr130W9WU9htHigmaMtOdGFRSmoCoq6nLBcrFhUS0oTSXc7pCIg8PvOnzX4duWOIykEFA6EcPAm9eXtLsdGEXRVBSbhmJZYGqF1gGbRjSjZF9kXrvWd8ZtWTgL05Q9E0oSeO9QQeGiJhVHVOv7FM0ZX/38K/7Fv/xjdu3AMLac3Tvj/SePGfqRdhBR5G634+bmhq7r+N3v/kNI4EdHe7vlxfMX+BAoKstqvWK372i7lxTlJa9fvSEB4+g5u3dO1498fvULHp7WDHvJ1AkxUdY12lqury5o9x1udPTdnhgDdVOzXq9I2rCsS+LYUleGly9fsl6d8Dvf/S6b4zV/+dkl+umA4//H3p/H2prmdd3w5xruYU17OPuMdWo4VV09VPVACy3yNFNjQhyQOSgBX2hiIqQx4h+giUbpxhgiAoqAnThETT9AfN6oGISOEgUjj3kRW8aeax7PuOe11j1cw/vH77rutc6pU1Wnm6ru07h/lVPn7L3XXuN9Xddv+A4F9WSCLuygznO3RMjTbCJ93w+TTCAlfUUi53q6VIQrpUQbvu9p25aiFLy9VmDTgeuyglMhuG6riwFemTbolKelPUinZk3MnJCkohYFSqLJkwKSKIfcRpGavkqgFAPMgigOwsPUOcGTsoIfUQqehJOPJOnOVHFFhMsWkh+LVDS555vNybQ0AqKgAWJU+MS58F4ckBMrZOjgSqdWYF45oVGpqzso70RPCCspdlk4AtMiwWtWfd2YfibPhxCJscdYGE9GWKslmQwB34tYhNaKqiikiwuoEAd+YogRmxABPgSCF5i1NJ9VKqwF6mZMn5S8UnEWBEHQ9z2ojGc3+F64F8vOE6Ih9D3ESFkWty0sVl3gu2s6vuKNyhmeCf3A8BkqJcVISMWzSyaVIZhUFKerMwpKoiwUwUXhpabcRRyqHSjx1okpMddKYdMkSQjWSfkvSOGibEHTBuoy4pPCFSS4VZJo1YI7TNMjmbSgQGlRJpMyCdouuZQTE6pbrnMTMx8z0HbZnFfcwstCPL6cz6iQDCFMSxuG6wjS+aUklxXOYeZlrBXO8oZLw1elSX5izKJCKigKymKUVCItspZkTRTGUGhLWY4YjSsmkxFVPcL5yGK55Nr16+zt9XjnicGDltzTuyAGiWtTNmNNHtSkT1ETose5NO0wBoxBmeRH9bKX7ytf1y/NpF6bdXDHRUbXd9KFyZivqFDBU2gzJLykLrrWhr5taPqOKgokpKjlQ8BrQi+4aRm3Ab1gqIOCaIQMa7RBo/FxgSGitKFPF6jsUJq6KrnvngtMx2POnN7h4489RvCR8WiUCgZH72Qzr6uKuiqZ1jWb05HIjTlH53yCOzEoFmht0MGiYoJMKU2pU+EBgo5MRLvh40ij6EgySek7MWjRMoaOKFzo6dP7uF65rsvGgkKYgPlyEmM+a+3A5WCtQs/FRDaSWY22VphjWTg+ycJp8nG3d7TPcy9cp29Fco1IekTFKHkX1EVBYS1lWVGUBZsbM6KKHPYLfOsTF8RJ505HlJEJljWGyXTMeDoa5GmHrS7BEPJB7xPuX+BRCbqTO+msLv51KFjMZ+BddiDE1EWJOjCbTXnjg5dYLDzLpicEGX8lyDBNu6TrRUkCFJ98/Fm+7Ise5uwDO1x+6tOMR0ua5Zy9gyVX91p2Tm9TWE09qtjfv8F0MqYoSu69737syPL0tYa9+RIfHdvbIy5d2uTSmy5w9t5N+gJ6FelQtEEhtEuVZIlzfzLjyXPywrBpKaUTiZY0KdCoLPFsZHqhlMFqS6FLqnLEpJ4yHk0ZVRMKVaDRQljtOtr9Q5a7+4S2TZKV4FxLe3zI3o1rHB8fYYqCenNMMakoxgXGRnTsMKHDRodRTnDEOpmMxTy9A1IX17vI/LiBGJlOamLMMogGp2qqyVl0ucXxoufoeM7vf+zj9Gmqc213jwvnzjKbzTheXKVtllRFydHRIZubm2xsbLI4bKmMFilDpWm7Y6abpzl16hSXX7xK2zQorbl2/QZaayaTCTd2D7hxfZfJbERVlxg9Isx7DucLjudzxpMJi+WSru/RSrExHTMe1xijuH71MpPJjItnd9h84yXKuqRdLonOc7qeUk/HHDYG7QLa9tjCYaKsS1vdPZyMxolbbYYlGWOoC4HVuM7Rdg1N06TDXOOco6wKRqMxbdPStAu63tC2sjeWtsAmlb9IFhrx6FImW6KJIw0aa4wo1sSAEmbE0J0PIef0OYGVbutgLJomISDTjKGznH6e/y3dZ1lHmVQdIqjo6WKPVo5Ch5TAZEif3Ksmiix8DIAlK7fFSNLKj0NDSimNJ5Ncs5pO6tSmpp/QtJNx4BpkyiTDNNL+CyS1RMuKd7f6zHKxRX4vQBLCoKRp5XuUDqB8ggb3A7FcJ08ApcT60gSGx5DJifhjZAha5x0kPqNzjqZpyJ9KVALH1lpkVbt+Qde29H3LqC7QGlwvEOr58YKm6ykLCyEyrmpms4lAoO3NhYU0UZNB710U1mpo8z4thZ/s1WpodALJF8OjlXAHXAxJZUlCm+SD5TowPdYIzD0EL5Ml30N2nU6wakWktEkQI3pyuZuT9945FB7vNNbI4+oymxUnRUGdMw6GCSIwHN1Z4ECaChGrs4xsSGgRmdgpLRO6gDiV69TgFN6dSJLLlCMktEdqZgyN3NXaCVlyPecl6QWtFLACWWVOau20Rwx/g9EFpZ5ilEDFRY0tFStWpclZMhmO8l4UFuoKpuMp7bIlOJ+YI0pI8TEOXKuokilzmtbkZoHzjq7t6J3DFgXaFBhbgso4sdvH5wta/hlwMlYkuaBWWsY+EWGMRq5yZExbjkbYsiB4J7JnaTSmjKY0FXiT1IrkQ+28ByeKBiGIbJrRJcXIgHd432OLpK/dN2JMU46wRcX2xph3vPlhHnnoEqU1bG5uMqpqyrKgKKxcFGnzUhFRUNAQfEsz38PHfqUqkpJ2hSRNhA7iytk1+1isKzmt8I5S6RtbIRenE3m2ECEaoiGNBhkIV8M4W5uh2EEptEp4yWQ7ryIrUnVaKLcm3wq1diGtOrnZhCofYgEFWjHvllw/OKRpela4zfR5R4bN3xghakelkldHHBaupKaBaFNRpBSltUxGY7Zm20wmEyKR5XJBVYoUmx4KUzncfCos+ghd1k+PWYwPsma9kClXGM58MNxNswwfJUlRSjEbFWzUFV3TUBaabtlzeDDn+Lih60UPOw6JseLxp5/jk489zRvuP8Opex/hyed2efqZJ+mYcrhccnq7RCXS26JZcjxv2N6oaVxge/sU29tTzvuGi/dv8fCbz3PPvZuMtiZ4o5n7SBc1DiGd+tznjHG4MrSXa9InQnRMSUy+PlUiECoUVptBB1z2aIvVBVU5YlyNmYw2GNczCl2gMeio0EGBc/SLhu7gCL9YEL0nWAXBc7R3g4P9XZbNMao2VNsTqs0JtlAY7dGxlQJD9VgdsAlaL5MMMxTew/URwXWeg91DyrJkXNfy7ajx1NjRNqPpKZ5/8Tof++jHKW3BmZ1TPH/lBgHFsut54fI1ZtMp587ssDg+ZmM6JgKPvvUReidQjMIa3v72t7JoD/nI73yErum4duWaEFxDoO00XdujkI7s4VymIRNrMcWYgoqihK9457v5n//79zieLxhPxsznC7zvOXvmFPffdw+2MKjYUynH3pXnaY5HTGYzbCGGpaNRRVUWFLagGtXi2EzEastoNPq8HTK3i957tDHJ+VnRtx3Hi6NkKOUpy5KNzRmFtXjvxKneFlRVLVPApkXgDJboPK3zNFE4dEVpk3oOeByWgj40BJugqMkwUpH2Fq2SdG1OgrIqX8pBUkIVQkzXz2r6PDS+U3MB1vbjtH5kHa3uQ6k0wcDjQk9BkQr7gFE+SXzK1DsmSFMIepjgSoKTJtU6TzFWZNpVC0omKXIir2KlWqVTU1AQCYK7gnwIaEVS9VPpnM9nROoIpzcgKnnunWs4bneZm31MVQucxFhsUYIWeGVUGh0S5CQikOjgcU4NnD6rLdGK9HuW83ROrhedVAa7phPhkr4luJbKwqSuRJVs2XI0b9jdPWCxXFLXNdsbU7Y2plR1MfBCQRqL0j0Wkm6bmoN3U4SuFW6ZUkQ8KnlvycUoOY3wagR6pHNh7kVohrSf51BIwVEYLZO25BSOEpUq7zP8WhStBMrtKWwqFZQTHySVFb8sRDMIC8h0CnIxAokLlRqS+cxLpTe966XJ6LMHk09TDkFWONcO+ZWCQezAGkNRqHQ9i5+HjyIMoIGqkL1DHnAlrhNCxKtIjIaIIwZFWRSE6GnbbkjoFSTqVu5oJsGQ9DZUtqZSE3w0lFU98HqDjoOogwgldYLGcR6lDV26pq0x1FWFc4mD1vdJoVOmUz4KNDw4R9O7VAT30rx2gtqZJi5GlnV+OTO+dZGg9e/d7nav9r31r+8ESXLHRYaMg1ZDYRn1ikGdjkkYT0VM1KliTQmqLpOHhozER6MKLRIGYnQEgg30XTpgFL7XVFVBXQuBVmsPqiO6FqMgREfbLAm9I5Q9yhhKa6mKinFZc3pzk/F4PECPQghEH5KqSC4SHH2XCgBEWUZUnhS9k7GXSe7eCo/VUOiVhj5JtWQFS5IQZ06fknGfFr1KHWyHcx3O9xhth9/XKle7ikAY+BrZwCbjzIlSpYfkrxHWuhjDh8MKdiW66bkQSlOBpKKTR4PGGmwB2Zkzd8vy50wEryJ9WNt49XrVH4fXoRB8ZlVUjEdiqjUdj9mczJiMxlR1JQQwLZ+/yp4EyPXjo1xPXumhr56Xe0xFh0uFhmwad1fHCVKSokQ29S0P3sO0tuxrwUSXZcHR0RExilmY6vsEIzAorbmyu8tv/8HH+WNvf4A3vOEiZ+99My8ePsdjTz1NGw3HRz3RLbixD7Ut2N0/wBaKx596hkffcpF3/LF7eXNxlvvfcJayEq38XimaAH3U9NkpGCkOfd7o0yW0ep9zAZzE1lNXKvthWGMpk8+NTX4BWheMqymT0ZRROaGqRlhdiFFRVBjEidg3Hf3xEu0Dpdb0vqedN3TdksOjfXp6io0xdmypNkqKyqOjx4QGGzsKFbEmpoNUEXqHdx5TmiGRGoZmUaYudVVLko1KXamSotpktHmaejxhd+8xnnv+BbZmM+67cJbeCR+jaRsOD46Yz5fcf/89fOmXfAlKa+67717Onj/H0dEhPsjUcro55d57L/KxT36c+fyIsig4tb3N0VygTkpFRlVNVYpxlZ+MiLojApPJBn66ZD6fUxhDPao5f2aL+WLOYrFga3PG2Z0tcoJZFhYzrphuzNjc3GI0nlDUtawtwBbVSqFFaVzf8ewzN7h27Rp/6f/zXZ+bhfAqYY3Fe898fjwcmMYoJpORwFnMCibadYEmdTe9E7ju6Z0dppOJEDT7PsGqmoTd9ri+QRuFsWNMV8h2nTqFQiBODZVh/82wJ0lCsrO05Biy1/gkU5thXQQ1FBzWCCwkk4rz1DYX5bJ3x1VhEmUq7+kwqkzKmJYYncCWiImXItj13PUXT5A43IdMehjOBGDotgp0K3P1QurkJshViOL1hE4JpSSxKkEiUStun4trRUsy4luVLas5aOtajpbXmXGNSm1RVxO0sXhtMAm2JuZhq/tzTiZKhkiXpgrOuUFwYoCOEHG+pW0a+rYhNEuMDkxGBZO6RFlROTqetxwcN+wdzmmbJdNJzbkzpzmzNcOmRNI5KbJ67+m6TqbJfYdLkN8Y1s7UuyAiTjxGlPhUCIGa4fNeV550iZxtFRRGeKXOBVwArcNwVeZpgvfC/1Eqw5o0AWnyClxPrjfvXNpP5He1iChiTYEUE6nIjmLGKgPK1fWvYiroMs8n5Q8eR+d6ohElMGOtCDQaUcYKUZoAIS2cEJ0U2cZgjSiAhuCkmNZuyNEUmY8k61xe8yrRzu/Tap3G4b3MxURuHtz0WaSvVdRMyhkWi8v5Vrp+o155ceS/+97RuzmgkhGrmBiO6lqmdM5jreTS1iqMDfTe43o5XzrXi7t339En/m+2btBr62a9QB5I77cpCu7kZ3d6+1eLOy4yBkWPKKTjkES6gw8DUQssfehEbUiLdKUiv9HSDfUBcDnVyYZ+RjrlSePYB5+kvzzESg4cW0t13i1RSlFZK+SYdilYtFCCUhw3HcE5JtMpWhuadsmyEWxzrgD7tqPthCi+szXhvjMzVJmKJ+TDjYh0XtZo1gkXqvsWEvYRH4cPeJ3cF0OSJ3WiWS1JfE7Mk7tlFOUdWeyShAimT0ZuQSUcLStVqUF+MCX5eaEO8oS3KzrU6nZaybhaxBjk66KwAuNJxjm5yJBfX0mX+bhysr1p4rEOz0JgI+PRmOlozMZoysZkxmQyYTqeUFeVkGdFGF5w2CRuBoE+ODwkl9lIdhjPXZZMDMzds0E55S4K7zt0tCgitfGMaukwVIVm0bWCIU/KEH3f4107QBAPD455+sVdnnr6RbY3Zzz4xrfTqVP8l//+Udqg+eTzlxnXGtfDsu0IHLO5OSXSce7eHcw52HPHxFLRILjyNkT6oFfTiSyTB0khjLQJp89xKCqksIhR1EYGwndQieQtpG4dpVtZFWOmo01G9ZjajjDaJmsc6TZrILhA6IWrYq2hjZ62a2j7BS702GmFLWrMyKCLSGk8RWww0WHpMdpjlV6prkWBa6yInjrl4alTrQzWKra2NjBG1pr3imA3GG+ewVY11lr2Dw54+tnnWO7scOHcDg/dd5HjxeMcHB1hbUXTtzjXU5Qly8WC+x94gNF4zO7eLr3vOTw84Mr+LspCXdfE2FPXBUbDbDbl4sWL9G3Hqa0tqrKSKVSz4Jh9iiry6FvezvPVZZ566klKC2d3NjmzvcGVK0ccHx1z6tRp9nd32dzc4MyZM1R1jbGW2cYG9bjG2hJtC1nTpkiHnWCtiYGrl6/ykf/9eywWd4/j9/7urqyDsmQyGQ0k7gyVUEDf9yw7Sf4KU4gfQAicPXOanZ3TVGWdupNy6Lq+J3iXun0NTbtkd345nU8yY89wRrn2E6k6eoE1GOGIkQvwEAeuT4xJuSklLVKcy95lkoGZRkjHuUs/JFlK4bOpRUz7PC79yWeNHRzoSXt97sBqrcVJ2SuILsEChawblbBb5HhO8t7pfowWYq5Rsu4jkT7DMaLAS4JfS5wybAg1TG20EoijihnuFRF+iSRjMXXYVQTvW3qWBO0wNnExtXS5vY90XcdisaDvXZqQRoJ3wqfxBU3i3vhhUi2eNctlw9HREfsHhwJZ1Iqd2ZhyLFOJtvP0S8fxsuXgeMFi2eC95+K5He6/eJ7ZdErvHPPlkvmioXcdikDf94lLmL2ZPrdr4E7DWoUtLJ0LdH7F/1Q3wWMSATx4TJqUWStnbJsMFYlC9o4qorRcuz7k+9JCak5mlME7AU4nuJX3wrU0pU3NGj94EPng0YjMamFLUdREiRiM1rllJQ3YpLyZp2593+Fcj7HCxZFcSoqVAR6tpHEgRHJRtUJJDpkRMlp5jBY4Y/DJQiAo8T0J3ARtT2/XcI2Dx3speGNCu5Dh7EQMkWz2l5dwBGozJfYKwirvUqyKjbD2fWngpc8urW2tFMraxEP26AyTSuu4dw5nNMsm0LSetlnKVCTGlEutphdt29K2bYJef/ZFxGfzvVe9fu/oVoDKGtoxCp41PUhM+EVjTFIukAtdRndBight10hzAilRCvFnMEG6okqjbYEmGzMFvG9ZtB1lGgeVRYmtDaoXuI02jug8ru/ougYPWFMTQmDZdoxGU9qu44lnnuWpZ5/hqGlYNC1Nl6QDteXBi+cpioe47/QMqxRKW4wpZIQXhE0nuDnp7+r0x6g4jOmUFrgHg6qT4L5778hjwYSCIpOphI9i0kUbhp/FKNp+UeVJhlmNqQFSwXEr9i6ENUduMnlcrY2G0yJXKknoGkyh0Nahgx+whKtB8ipiHjdmBz7yw6exeXrdBs24qtmazDg12WY2nTEaj6lGI6qqks+vKMAIyTACwcVBKrdzvfBu4mpKE6J0HYwxSYUsDkpcWSrvbgpbyuurKoPxC5pmgTKasR2xezAXcqNWqQPraJbt0GFpmoZre8d86smrhD5w5vQ59o7m7N24wal7LnGoJ5w/fw6123Jjb07QDjuF7bMbtKWnjZ6gDV1UxGBwEfoozt0hXT/DRsc6iT5fb6IOJZuoIhO7dfLCMNlpWYtzt1EFpSkZjcaM6xnjaoq1pfAzHNB76AMutHil0AFMkGJy2czZ3btK71vsuMSUJcYUoCPGeDQd1i8oYo9VISVymQ+WqOoZzmdlCiijOisY8ZCncZHCalyI+FgRyzGHc0flFTZGjo4OeeKJxxHSsKfpeipruXB2h653OKCwBTs7OxwfHXHm7FlG47EUiDFKF05HnnvmGWxl8K7nwoULnDmzw40bN9BFRdu2LI7nzI+POX36NL3znLvnPHUo2T26wpUrV7ly7Sqz2ZSd7U2MVuzu7rKYNxwfzdnc2qQe12hbYqsabSuCUuwfzQmHx2Su3GKxoO09y8WCd77jzZw7e5a6HjE/OmbvxvW7ivy9ubWZuGZGkhtFmtJ62ral7/qBJ6CVFCNlWbIxk+mNwtD1GSYhSUX21CmSF48L4rMRCSgdMFYNsI0wkLfjQODOiU2uYGVykZtI0k23OfEB6RtFgZMYnbgUaBGtSOuM5HBNFDUcYiD6iNOG0mRIq/wR0ihEldRjMlxxKPpT3zUlWMKx86LqlBI+kwpLIEGPNNmHIDeIfGpeZdfrrOSVOYV5QpJVhaQhkXh/Q7NMUket1uRzo8dHhzLirl1WNSFaulbgIU3T0LTNSgFSiWeWtpa263FBFAyzJLxScHR0zNVr19jb26ftOnEEr0rM8YJFZ9g7XIISyJhPyduZrQ12Tm2ws7PDbDolRFjsH3BwuOTweE7TLChsgkevnWd321mSQyHrQkU9mCKuT5IEZpfatqnb76OjsFHgNllhShfS5ERku1GKthUODj5QlivPoN55rBHoTozrohqixEmU4iImBSZZvxFlpcBY4QiR/ChGeidu6l6c/0BHvO/wQSCNJB6Ec15ylLRutM7cKIdRKk0O/BoHK8oUBpEkF2EtS3RyDWs07pbkWMRN4mpqZ5IXSIZLItW61nnaIVB5eVJQ2oqRmdLO3VCc6DTNyApPeU357MOUCo/hHEtfl2WJsQHrPS4R1kMUb5heDTNMCFn8wlOVFaOyojAW5xxt27JcLodJxksKgJw/3snXcfjf2j/Xvr79P142PiO41HrXWhJjTdCpMkuj1kwUlUNbkkUxihFIk2y8IsmnrWwkeQNTOZHIxFIrG1fvk6V8TA7hdkRpLNH3EHpcl/Dtrse5RngPXSvSX1XNqe3TvHj1Bk+/eJV50xCSYZgL8Pizz7OzNeb0xphJLRuy0QavNcqBQckoOU0ctJJFpQ1JMi2NtYPPfG1cEGm17Ith1zgp2XzFmDweT52xocMWEkGOAYak84WbF8XLjfDIsBbpyAkCa9UZFBKdJxpx77xJU1mtOg754lnnO+ShQTb+0Uon4uDqT2kLxpMx4/EkGZGJm29ZlpRVJdeQ1kQVkrKROMN33tE6RxfSFCnptmdRkxCj6NRr4Qk4J5jLvFjvpgZU33eU44piVPO2Nz/Mi88vMKbgaN6wnC9YLuY4Ed0fplADvM0Y+gBHneLZy4dcvnLMbHNK180pCphsbXBm9BBBvcDCd5y5d4PTl6ZsnK55+vAKLR5vlKjVKPBBrdagikM3ZfgcAVK3SifStjiTp2tJ6TRGF8laq6XQl0mGpbIV42rCeDylLkZYVaKDEeiHC8R5Szdf4nuZAtRFiW+XLA73WRwf4PGYUYEdF6gyopXoheMXmNBi6bHapwIjX98qeVGspi8xKlSQEXYIhr5JHglGoWJIRo8W7Ig+1OzvX8EWu0w3HyB6Jd0031OMKhxgleL01iYxKK4fHjKbbfCGBx9kPp9z/6UHaJuWqDumkwnReZRRPHDpfp54+nGaZsnBgSTPR0dz2m5fMOXeUxQle4dHtG3LlevXOPWAPMZyueD8udN0TYNrWw4ODtk7OIDgWSwbULC5vc3RvONg4ZK8pOzJ09mET33yU1y7eoVRXaO14fjogHvObHDh3GlicIzHFZPxiK5rPz+L4jYxqas0Efe4PGFOcBWVIDzWaIqioCoL6rpmOp1S12NAlANVggWFdKYYk/c+T+8ch/NDjhbHqDHSjdcQk1pmNjRLYI40ffYDdl0SaNI0KE/xJWGQRF/Jz1JyRcykcIEp+hBF0XYo5sXMS4iqNikUqqHplJ+JPE5MXd+AMdlzI98mJTCClxq4c6LWY3I+JOWOgkgS1kiFjw+R4NUwnZH+UTp30/uIVugoJOiITrx0lc71/FakomztM40BXN9ztNxnV+0ydRYfDc2yo20anHfCq9Aao6V4t8aijaXvJfk1yVdAK5UmUz2zcc2kOiuwkV6Ukzrf0zYuTeygLAyFUZw5tcXpU5vMZjPq8QSlDe1iyWK+pGlaFsuWtu2h1Am6uHr+SonE7d0nYSucER8UUKQkmCHPCjm/SNeELQJaBZExDjpB6jJ6oIfQ0aGwMRXbUa6rGKFzDjCUhSZ4R4x2gBZqY+idozI2NZElz7AGCiuFqzVFQmAw5HPC+UlmmyFLO4c0BXFpotWv+dyQCllWxXSaRmotMs+56MlQywFFElPzVyfNA7mrWzrw+bsSkssYvI4rxI7sLGn6mSd2IPAxQ2ErLBXtYkHo4ypvTetEmsoKjEGrpJiWnk82G5U8WCUzSSVNai8TKRVBGY0qV9zY0limY/HVsEaUWI2Crm1pGoESvhwn42WzpJdNnl76g1XZ+JnFHRcZ9WicBxmYQl6oc0KqyW+ZT517eW8NVpu04Xpxb8aQTVA0kcLYJBGWn76id36QaNNatIh9JFWZniLIZiJjOQMBSpU4C8vIsu1woScoTde2WFtRFBXveMtbmIzGPPb00+weHeAj9H3L8VHPk89d5i33naMwNSrI2M1EKJRhXFY0QRxCve9l3BiTK/aAjQw4n7XdAUxyZE2a0EUAkxLn2NNpgw0rzoTzTuTIQjLJScZOWimsUknGNju2MhR0g6LVsIDWv5emTXm1kjp26eKG1ZmytipIvzRcTnkz01EPj6PSWJUo/84mRmVVMRqPqUc1ZVVTlSVVIR1IW9jBFd0n2TgfA11wtN7Ruh7nw4DZjDGNcolEJVMM7+IKmpeMSsJdpgSCEVigc47peAMfWkkM0ibYpI0gw+/WybhaKY6XDYeNA9dTElEmMhoZlPKUo5Jz95+m2ijQlxXnHzzFeHsKheJYIZ4PKYFSRjq9AgNfYVGzMoYPEaWkmNVKY4yotWiVP2cFqcAQ5SiL0QVaWepyxLieMirH1OWY0laSGHrAB3HSbnv6+ZJ+Pse7DnwNbcPi6JD50YEQXkelbKIFoJIcbehQbkmpPYVBcOEq7QcxwfeSwIRa6/7KSWIgKElWncOOhYzX+0BUI4KzPH/5Cm3bUpUlk/GEpveiYZ6u/8eefIaHH7jIqKw4tTHFRc/9D9wLIfAlX/IlbO5s88SnH+e+++8TfXgfeeKpx7nv/vsZjWt8dOzu7bF/cEBZCiQuRnElbrsOlKLrOp5//gXm5oiz9+xQlTV0cHh0TPCB3kPnEbltpVkuG4wt2DvYg3IDFyLXrl3DaLj34kWu7x6gTcX58/fy4gvPc3Q456knn+JdX/JO+l4IhtvbWzz/4pXP9Wp42ZDpcz84fcvbr7FGIAB1VTEa1dRVRVXVUtxaCwlKIE1O+eAl6SftHz3e9SzbhsOjIykQgkwHQkiwJ6UBufYTcjMZ7sVMtRMlnsTLyBFSgb5KRFTO0oUcHePqfoIo+4jMpiTlw59kJKdiQCepuYjIaUozaA1mkeU0kWKaKFpTuaOqlEo8ReQszk3kKMWOTFCyJGaCOZMSmZSk6nT/8rrSv5UGhIQbsudGTjFUps3nHmuegCj6EJi7I67sPsu164d4b2iWLSGIO3RVj6jLWtyKY4KsZJO95EUjcBJZ/+d2thjXI7QVWdXlYilu3V3L8fGC48WCrm0oC5F1LqvsBROJAebLuRT7bcdivqBZLomIelKeXohErqUsBH613rW/G0Ibg/ae3qcplVJyXafiURS9Eqk5EcGJKXkNCJ/CZuNFaeTo0oqylAcVk+xyXHFkysIO78MAb4rQdQFbKLyPCf7usUZMFaV4FclctdaAzCT0Vf6g0xrwwqfQWZwmvV5tBmiVSpOEEAU9ok3A2DCsk65zFGUh0sxaeGghQnTinZH3CHlcddPXJE5oJOIzH2f4eSqUwlp+FRmQHqUp0EH4bsHFxDPVAxxtnU9L+ndWLYswNCtyARTT9Edp2S9I5jeWFWS+sJbKSZ6ZYVkhBHzb0jdLgnOpOfg6XYi83kXGZDwkRK4X+cG+6+h1j3Ky2WqtBkfJLCcpXABFUCJRKtdtGJLW0ppseCoig2Gl7uFDJNrcv1QoHwk4wZanN93oCSG2YKCsa7z3NG0jdnpRge/wSYXk4Yv3cvHsOZ549mlevH6dg+M5y2bJ3o1dnnnhMlvjeyjwRJukwxCiWKkVRkWidwkK5pPEZxzwd8N7kzpsDpvwjnmBJEJiiBhTYFOXSxQ+CrRyKDQhaUZrK0ZQOd+XBFCl0eEaBlBl7esVb2OlHiIHSv5PpVkFQwc9uaamnDInl7mYHC4sJf2zMHRE1NCJD0qUfaqyYDIaU5eVJAhlSVVUsnFrKQh8gir46EXmN3hBJCsZ60YiymhRhiHDe5LiEWp4P5WCgBdFsPVpzF0Qtq5wCqah54XLN4bERsxySlGyUYqmbcQIctDTlzd9uViy7APjsmBjUqGLyPapETF2TDZrumLB+TfOMA9cJFqdCN06waJk49JRuBN+DdqhtZEEZ40fqlW+dlcSmZGkJJW2U5OLC22xpqS0NZPxBrPxBqWpMFh00IReRtVp7CjusGmU3vUdfdcSvafvlqKlXig8AaM9RIfuj7HRUwDGysGls71yXD3f9e4WKFQsBEcfpLiRfUTROZeSq0jrNG3fczS/wac/+RiT2YS3v/PRpL6iqKqaEODU6VN84lNP8Nt/8Ane/OADTOqSe8+d5cLZM/gA9z/4IP/3h36O+y5eILh7CCi2trZ49JE3s3Vqh8vXL2OMYTSqeeihh1gulzz//PO0rUwQ+l6gVJPJhBcvX8Y7z+HRnI88/bvUdkxVj6jqiu2zFyhnW+xdu0JUhr53zDY26f0Vrt/Y5f77H+DZZ57l1KktnHdMp1MO9vY42D8QA09jeOrpFzg8PqKshAR+zz0XePzJpz+na+GV4vh4MRQWZVFiraEoCsajEaO6piwFXin+BdLpE5nrKF11EkQ0JB5b9PSupW9bvPO0fYt3EasqCj1mHi2uc9KcwAz7WwgC+dUG8sYX0oQgh5jurZJ3FUXSVqk1WFEUDLvLUCkUMU0+lFklXKiAwaOjQ9FLJx5pPsUIIWoUBSGIrDuQoCARHXvZwVMnOyb/BKUSJCrhxo1ZGenpqNFIow7WeINrr08n3L1Aw4LwYjR0vfiODGTvVW0znO0SkvSKX0fA+Y69o8sc33gR7wsqW1OWNcZYuq5hriwmTTHy2TWZTKjqmrZdoGKgLgrGdU1dV1R1TVWUWGuJW3K+LZqG4/mctmvRWgtczjlCEE8n03b04WjIS4iigFkXkgRXlRjx1pVce/LZpvPT3U2zcVi2jhh1EurIhaPIHAc8Kia1sij5l09WwlrpYUq+ajZKAVBYTUwmeALJFvhxjAbXOYoBubLKM4IPiKey5ADWFiL8kY/fGLHp7FCsny2ZX7FK4mNSa3Jeplcu9qsGKZ4+eXIQIQYvnipaxIJKIwUwCqKy9A68kRGeDxGtLS7xAWNYIQYYnmZ6HzP8O+Tmtl+NUVRME8/1TyJ75yixNPARrSy9cjL1UQqCoGAyLGo9P9FKD544N/Fsh/P/9p9/buTGGJEh223ynTyWVLmRfPfEHRcZi6PDwWlwNp1Sj2v6shC93q4bFD7yQl2RoVXSHZdEUjbnhI31CaOazPpcJ+r9dSUOoChL5wSHR0hEbG0IUdH30vW2VqYaRitipyiDYGSbpTgHGyMu5H3X4wMYU/LoQ2/k4vmLPHv5Mi9euUwzP+a5565w6ew229NSOgI6XYxhpdAhpjQG5fvU7mJI2OX1iiyrjirhFvNInKEgyarVK+k3acwaq4QQ7XN9K7fLNbXWIi+HD8NFu/73+qafIThyB6vPQ0biOXlnMFlaJyjKY8ah8478hExYGi7fmCXexEG5MDL1mVUjpuWI2hZU1g6dceelgxKQCUYfeyF6p41HG3HCDTGk8epKgSQ/hxU8agUxGzaMuyRMYfAEHrp4gRAUbd/jvPAtYur6aa3o+56qqm9aJ0opXNdx/fp1Tm3eSzSG0aTgwugUrbX4MtLahn0HQRdyoMckx5fYQpC6JHkitHYdZRxqngKsJweBFVcnTzSIJNK2oTQVo3rMeDRjOplRJufu6COh99A6XNPQLRfEEKjKEVVR4toGFz3eCRnXu47OtXgdcGHOqIoUSgjepYYqrbW1K5GbNtWYp3MKpQzeWfq+p9B6WGdFUQgs0Qd6pzlcRJZNw4svXKNrG86cO8NoPKLvO8bTbU6d3uHUmR2uXd+ThkRRUW9ucfH8aYFtdD333P8AH/nt3+aTn/oU586eHp6OLQynTp+iHo0wxnD//ffhXGA2m6G1HvT9ffKE8N6ztbXF7t4+PinjNe2Sdum4d+sUmStjbMHF++9nNBrjnGNzcxNbVFy7fp3jo2P6rmO5bBJhWpK1qq4IIXUMo2a57CjLCq01p0+fZjQavd6X/x1HYUVevCxLaUrUI6qypChLgdDkwoJkGukZ9i1SMyqrOMUYBi+FpmlERQpJNgpd01Ig3IgoWXK6j0heD0myM3kGZDJsjCTIR9LaSEm8Rg3/rd+PEDYzJZqhUx+USnLteS8HrQRXLhKaPaCIKQMJMbt++5unGqI5JY0KybCSMtBqB1QITMpqlaaVmTuRYFUh4hW4yHC/YgUi74PVMU0xMnQkyYkmsrFMQtJUZe0xswmZKEE50K0o4izBjk9hRmNsIXwvFxy+C3RRSKpaQ9/LtVxozaQeYYsNoap7Dz4QdcAFmQo2fceyERhhXdcDvMknfyoFKFNIM09pjPKoTairQgpILQIvrl2K2Excn6DfPWdJjrZbcWCHAVIYOoPExHHIiXwfBdZtrKL3Dh8DBi3FsYqD/HHvOoR3kIqAlHooJdAfKQAEShtjpO88IAWdVpa+i2AjutCEILArow3WSIEymKFGErHarTwxyAJCIfF5+5SQy7WlFBSFxcc+8X49KGlcgZgyy+sPSQVLCoK+F7iXiirxTCFjvfPnq9LUh9R4XU1FXxq3fjfDoSDtA1rhlVxPeW9SrLiOt8YAp7qLGqOvd9x5kbH3AsLijyzDlPFkk7IcU4xK+qKg73u6vk+KOe6mNzGQNs4Y1/SaA6WSUV3IF7OxsgFocTTNY1yfR4Dpw5OzQqpk56UaLU1JUYsUqNNCpOu6juAFt2mswSpL5zy+7zg1m3Fqa5P7zp0VGELo6Z0iYkR2NuREHGwUPFx2rLYqXZhKJblDNbizxlV9sJohxMQ3QcuoP3h8EAdhgdLkg04woaIcKoWYCsjCtWJQ2DuRxPVrV3HWp84VL0jXdOhExIjSWVlKbmcx7Ew3uXezpu0cTdel+1gZLmYvBxnLRXovmu3OO3rvZcyqDXVZMRtN2Kw22CjHTMsR47KmNCtZ0QETHJ2YyYSe3ousseA05b6CKNaJMWO6ZkTWXjrsIkOskghSLmDvngiAwTMrNbPpjL3DYxQFu4ciR9q1Hd7LRVyV9dBlct5TlAXBe65fvcql+8/TeEW0NWfPnuUodux3RzjVi1qUpBvJnTgmzgXD5CylX6CSqtug2sLqAIgalEkdTJP+yKFidCoysBSmYjKaMpnMGI1mVEU9uMTTBuKywy0WtMfHLI6PBK+9uY0ej1l0DW3oUdrRxZbj5QFtu2A0MhS2p9aRCgTXa5JuPwxdr/zxrnhFgPRWiR76NuL6iK0MGd5B4gy1TaTxmut7x/gIe4f7GK2YTceU1qC1wpiCS5cu0QfFR37798QAz1oee+IJZqOSNz78Bp555nnOX7iHX/31/8bxYgmoZFqm8cFx+uxpXnzxKpcvX05kRMXBwQF7e3tYK8Q8rRQeUdjZ3d3FB09djTHJQ8lqmWptbW+lJKjFWC046F7+fThf0HZ98grqqeqK3b2eF557jlFV8djjj1EYjS0Lmr7n+eevMJtNUUpTWJNgqXdHnN45RVVV1KUozlmbTLuUJpC4RCF1PG953jlRybyCrnMsFws6l+FoPW3fEpWGbBQZDURNiG4w6FIKMQ/VicCs4yDclzuLKnWMZWq26gTLj2UyK2tFi/T5kNgwqCR5FVKRErOG3+olRSfwCpUJvXIHPvihYIwxTxn0yuwryvoMiWsiCdd68qKG7wGDHG0gpC6rGRJL7wXybE0kapO8iVYwNC160TgSFCwyGBbqlPAKUTYQQ4fWPagaq6GJnuPmmD7CqJ5QFlV6PSo1MVQy8FRMSktdllRlgUmdaa2kI911nWhyhTA4xBtjBoUdgK6Xd1cDRlkI0uRTUaTVx+OxcAK1Yj6f07QdmhVM524tMnxq7kkZq8lGfEarRAvK6ANR52xCS10q2t4NCTi5PpGPcvAesTapByb4nFaAEZigoDJ08prQqakrcDTngnC3lSJaRd97xmWJ1qlBkD5j4R5FvPNrcKRcMK01ooezKRcZ6Yz3KQmTXyJzmJTKruMrgYVc1CuVm2svl+z/4fdBkaqPL9mbbr7N63EtqZd8dbcXLHdcZJyauqQUZVDGEd0BWnWMxhtQVzRO43xF0wjJ0TvRoBbVD+EsZBmxDL9xWqVNWqXOk4IghjKFXdPoj+KcGJVoW4foZbLgpfvvtIyZrQFb1phCDtqiFcJZ13WysWtDWVh651kuj5mMJzx433088sY3Yo0m+AV9e4jrj1E6DlV8iWVkChbWYn2PNQK/kAo4uccO/S2psH309L6X92JQLEhQj3grmSgOrzOE3C3LizTxTfIhlLveMEwpIE9GckfHD+M4UAOZTpEmSGhqVfLGCw9w8dQFgpdNYLXQTSII+tTRE/Kgj+LREZOUbbemYlJYK0S+oqRICYMRzMswWXHe0UeHCz2t72hDTxt6SSjIizIOUJhMOPPeiWqFypMduU3GO95NS0wpxanphEceuIDygS5EvO9Zth3HiwVt1+ECYIrB5NDl7rNWqGg4Pl7Q9g22LmGkWNKwCAuc7gdXUBdF/DIiUKmoMkQxv0errm9RWClsiENiJo7dejW9SBMMub5MgkhoqnLMdLzJeDSjricYW0M0cufO0R3O6Q4OaY4OWBwf0ruecjzCtgt87Dha7uPcEmsinoYYl1SlZ1zBtFaUBoyKqfslz9vHOEz8hlMi5q5zXmeWEMC7gFJWxs7BEbwXLC4lTpUczJcsu0DbNrRdx7gSH4bpZIIuC55+7lk2NzY5e/YsVVVSFgVd23IcA23veO7FK7zzS97F7t4+H//4x2nblvliSVmWbG5ucrxc4Hzg8OiYsigZTydcvX6DT37yk4xGI06d2mZvb5+madje2iaEwOXLl0Ep6ijcJef3sabm2rUrNG3D+XsuMNvYYHF8yOHBEcGfZzyu2drapO97JqMx+/v77O/vs7W9ycZsg+l0hOtamoVIfC+XS/77b/wPLl48T12PaJuW0V3k+H1m54zsS2ZIu0UBLABkWU01HOIZGrXa76Sx07ZLmuVC9P4JLJYNbSMcllKLS31PgY6Jx5O69CvVqFWHU6MS6VmRXYOJJK7cqguKimgjuPRsFOq8TpOMlKhGwUzLfoaQSpUiGWIQk26TwKXkj0jEOmISGvFBjAlR4r2TCwutpJkmayJx+FIjLwnpyv4dJfHPZ846Rl7OH2njeS8KfyqAiUb8CZLyFGS4Rrqt8wh8PnfTEk+KkM4XmVZvTMZ0456macWVu2vwLmBtQ/RgrWFzY8b2dMrmbMZ4PBrOCZXUfqwV873saJ73fm00o3I0iNEIr8fLrmBM6tmJcZkoWcp7ro0FpWjbjt3dPY6ODtmarabJOe6+QiPBnYbEWVpZQ2de37xGvI8oVSDc0dXpKGgEKV7xcm3pdB3FKM0OYzXKq0GUASyDYmWuVNKaiKtDRs5steLtrAQNXialH0Zvt/vpai73au/L6rUxFB/rP1dr9/ZK93KntUi+NLJhn9zubspA7r644yLj/M5pMuHXJIUI0KJqYD2TqsBFS1NZlq2j7RzWivNq5zpCH6T7yaqSdcETlMIHjSFiSGSzGKSQSIRno4XTQeoGOSewLWs0FkNEC4EudbaNLtGFwQRDkbhSzgluDhUxShECzOfHkliFyHg8oqrGKDzH7RztQ+pYaUmi0RTKJGdwQMWEYRQSrXhQRJSyeCI6BFzwtK6j8kJsM1k3WuXxZBgKCG0SxKpDDqg04dBakcmHIVfypA6CUoM0W/DidKm0Xm0+69OkNMEgFS5lYdnZOs2p7TNSsEVu+r2AXh3q+TFSd8t5N+hdo1TC9q+ulYh0+9DSvZVjOOCVyPq2vqfxUmB0vk8kPJ28L9ZG/1qvxvTeD92crDaBMWmsdfcscq01dVXxxkv38vxTe0Q0y7Ynas1i2aZukUq8noSpzmTOoMVMTPVgW6oNjaoDx37BMva0KByaNDwWAj0iHBAUaf2sigyQj67PLEcAksweJqnciMQ0CcOLaK9R2pq6nDAezxjXG5TlGKMLQH7HaoVbHrOYz/FdKwd6EJlPDATlWCwXLBYH2EISqtJ26IngWesCShsp1ApzPqiI5OeZO87pmghB1q5GSWIVFNqsSIDisRNxscCMNjjanXNt75DlsuPatasEF5juTNg/2AckifqD3/99zpy/SAyBZ599TgqDjRnj0rI5nXH+wj2cPnee//4bvwFRHKVl3xAyvzGWuh7hnUcbS9O2OOeGDmvbtRhr2Dq1zXg8YbFYyl5gbSqmNbYsaRYNi8WSvb19Dg4OmG5usDmbMq0muN5jC8W9997D8XzBYr6Qor0XknldlBRFydkzOzzz1NOi4mMNL7xwhcViiTGWtm0py/JztApePYqyIkSVJDYh3nTMp6R5SJpW2voqnQdtkkR1fYf3gaZrmS8WosikNRovBqxROG4icxxuSn5yEU4qDoITWU2idENtoalKQ/Ri4JYbLgknO0CZYlQJ5Zrve60rjKx1FaOIQhARHwBPCB0xVkTt8fgkqelRiImr931qqK3WhKztsOJNDf2pXOCISW4gJi6iTkTgVZdemnkM3BavI/iIwoi4RlLm8T5DQ+IgHx6R35O8PR3KacQYgsIR8K5jMpngN+HocDdp9zuMKgjOY7RmYzrm/M4ptjY2qZLmf/Dim6C0okqE/2x+mGkSuZlmk8wtIHC01PnWUadEOgq0GJE41kaaKgFou46j+YJl01KVmlFVDhOjELj7zPhivO0Rl58zfIYTmPjqiffa2Pimb738XQ7tv7Uc79ZfXisKhm+rV38u6VdfrhBYPY56yc9eq7j1MQbo2usUn2lKs84LvtvijouM2WwmG5aW0WP2KkgtApQuQBV0TjFvHfO2o209jXe0rqDsS7ouu3onwh6KPgaUF/3f0hbSxdCiwRm8x0fR17daYXTuecmlKbJuHhs0MWi8EdnDspAOSLQBHSOl0hjX4/qermsxpqAuCrwPLOaHONcRgkObGcpUNF1MCgGKrC5WGE1pRHdcJ+MaibS4chceLzyE9D0hOct4V5ts/pQnCgzmN3mWqXKxko+V1HmSKUUmUiVYU3qvcmKeHc1zty/rja93sVQaH9fViHE9xiozYDTXR5kqSGcvu5WDEHVDCOInojRYnZ7zqpNCuiTQiXgcAz0ioRpiIGg5MAS7LEVbdmXPEnchuZNniE92Lo5RJi6ZVBVhgC3cLRFj5OBwzuHBnBevH7BwlraTCVDfdYzHY3oXWS4bmmYh0qxKYGVVqTl1dsKlN53h3AMjyg2Pnii6YGmbji4KAT6k98+nwjCbjYUE65Cp10p5LI+90weTphQWrUWKNkvUKiU+GHVVMx7NmI23qaoxWpdoVcrvGItGTNHQBluVWB2JocO4TiBUJuD8kqP5Ic3ygM2yQtNjVMdoFCm1wmowykgSAKLKkTtruQMVGYzHQKABGT/sXE8IWQlGEV2eehnMeJNQTNg9us6iaemd4/kXLvPgpfuYbMwwRnFjd4+yHrOYL7lx/Qbn77lIDKKY9+D993Hu1CamrLlw4R4icObsOd7w0INc/83rSaZ2n9F4RFWVNG3HweEh8+WSqODK1aucPn2Grus4Pj6kLCvuueee5NjqGI/HzOfztIspbFlyvLsvMDVjUcBivoAY2JzUzBcNG/UIrcEWBcfHxwJ5tJaqLtne3GQyrplOJ5RlyWJ/QVFY9pcN/7//+b/4orc/inPdXVVkiFXRS6FQ64VFhkUBa1Amz2LZ0nVyjjSNGLw550S9qBJOB7Gn71uCd4I1T47JDBOSSFbqEa6MqPRkEnTmNVgtTsQhekKQibr4AuS9UhSbQmpKibcFZP6NrMEwNKaUEvhniAGlDZDgKjGlaNGhSaIF3iUdzgzZyh1UEXLwJCPc3OQmqfapLLlLgsHkxGj1PiuV+uOp6SEma4K3jz4OZ3t6eKKK9E7gSgojhUZ+jJhrHUkYey/y4+PxlLpesFh0xBgxVlOVJbPJhM3JlFFVUZUlo1r4TIJ8MNjCiqJYWQoHxHuZz6QGmUnvc+ZA5siiMgIbkvF4jCIdqpHpa9P17O7vi3+KEohbYQTm5n1SKLvLioz1uClvV+pVzj619v/bTwdevjjJlfgtj39Lcr02zLjt7fO3bn7Uted1SzHzWg2R1Po/7mSUcWu8yu+srBhe5ndfMd+//Q/vzhLhDx93XGRMxhP5R9pcViRh6aJoHSB2VEZjR4ZRVdN0gXnnaVxP23vpPqVOX9/39F0zKK8A9N4J58EYjNLCT0CwsH1cOZhanUZ50VMYQ4wmeSvEJGMoqlXWVJLGKiM4w6QV7ZxDGuEG7xzL5TEhOqIOVKXFliN6t6AvpHgxUdShSq0pMjdDGYyKazCfREpKhw5FnTaAJMOapAoUJNWDJGc2jNfjcEARIpiY4DOrEbe1Fu89LrphXJm71hnjmIuJAZqmheyXR/4qCgG9UAW+7VlyNGxWGR4ACCkiRU5kXfBJ5i4RuJRCGSOfk1q5xCpjIEHgPB4XhYzWeUcXPS0eFwR+FVWWw02vZ0icV522AKKkEePAzYgx3qTydbeE9w5vDL/zyReYHzkoahaLFpSocWxtbvHC5atkOduqqkSauY48/Mhp3vy2ezl3/xajsahWzGOLI9LFpFyjY+L1gFeQDYVkw86FRIaFkFRxtBR0SQ9cJ96FigaFRUWNNZaiqBiPpkzGM0b1lNJO0XnKYSqsKRMp34n0obWU4xrXBlRr0L3GeA0m0PsFXXuIUR02QhkdhXEUJlJkkyKn6JqewiqsFcnFrHwTXIb9JeUXZG0IjC/Q9wKTUiF3czVej9HTGeVkk/3jBUppqrri6PiY6dY2k80d2t7z8AP3CwxRa7a3TrF7cMBb3vo2qrqi6x1d34nyzHTCmXPn+YOPfoy263n4TW/hiSefEnJl36JUpCzEB+bg4IDrN25gClGV29vfT0p3LWVZ07bi25OJ4OL9EiEq6nHNZDLGu8h4NKauKpZty8H+AfPNmSTACpzr2Njc4MaVK4xGY0IInD13hgvnztEsF/R9T1kUzGZTTp3aYm9vl9/+7d9jYzbhzOnTjMd3vN2/7iE57Kq5kacVWS1K9rJUZd401RDZSucCrvfMj5fEGJmOxoxGI4pCSPC9a0B78BptJhySPZrCWic37Y2Z/Jqkw4U/J61TkYSUpleMHqVtUp/KXkZyBvgosufDbh8EEJWlPsSMFtDyMx9kYt+HDhN7tJKCI0YptkWlQRJmhUnQUYFyeXlY+X5qCK0GlQkWG2KCzWQUQG4FryRrZRIjZN2My/dBIDaryQj0YdXlz2TePLnQyS+DVLjFqOh8z9LPGZdbTGdTFouOxbLheH6cJJ2zBKcloOidSw0xncRVVqp7II2FEpWm+nJWBOdkL0gTJRNJE08hrIeoElRZuDYhKtplx97BIQeHR6JkVtUQAk2TJH7j3dSuWsUrNajXp9Z39Av5Jrf7vZvu9ZV+/tL7H/KHYXHd+sxu6bSnInZ9krGuZvUKT+u2jy+//2rP8pXilW790p9lruir1Ri3Iko+o2d0y/Tn9u/P3TvByHHHp858Pl91mIJIZeYRdlAMnXYZfYvSjYvQeU1AU+gCW5fUZSHyt87h3Yhls0xOhR0uuFQkiEKBiRodU2cJMW9TQWTSjBIVjN5LIk/yIcrEOxmbx8HFW+ZqCuWDdM/TaFmpCMHTd4HFAryrpGuuLJ0LqKR2A7KxF4n4XRpxlO2DJ6bJC0m2bSjvczGRlZnSaC8GIajG4BMkaMXRkFGvT121rOWusUm1odeiwuCDT0jem0eUqEy0l+/4IMorkdSxigoTNbEPHOzuseQAFAkyw03XcEyrJQQpMHyQTlbXd2LaoxXGJn1xa4cDwpYFphC8bNCRLjo672gyTEr5JI6hBgiWmPMF6c4jY/fVhOZmRa11DO0fZhG/HqFCZGu2wcHcUxYVo8mUrkHcmNsW50OSIVY456hHlnP3TLjv4R3e+a43sbEzItg4TCr2lgsiOinDSjc/DHhrNWxEeagonVqBMkI27ZLphTWlTA8SxE2SXCHcV8WI8XjKZLxJXU8pbIWiIEaDMQVGF3K/UQr84HuB6CFqMVF5lHEQ++QN0DOuPSUwMh2lydNIna6pwNHBksXxgu2tCUUhfAHhViRHVi8JkBr8A2LiD0H00l1VAaIyRFujR1uYeoOjo2Oef+4FNqczuq5jPJ1yTz0VsmJt2NraxBYGWxTM58dcu3YF17ec3tlmf2+fUVUybzre9q5HCDHyS7/0y1y6dIl3fem7ePf/9X/x/DNPDfDE4D1bm5s88shb+G//729Qj2rRRHc9dT3CWIstCg72DwaPl77vKaxlcTyn9GPKUUUkMpmM2Zhtsre3x/7hIVVd0/ci56gVnD2zw+FxT11X9F2Dc44nH3uc2PWcOXuG3b3rzJdzRnXFk08+iVKKrnccHBxx7sxpdrYmn/sF8TKxDoMaJLlVJnXKnh6CEI2998n7JODSJNM5x3IpBcaorqlHdVLZkp8FFyhtgak0pVXoppSuvIqJz5CmAKnxlPsUPgiZGwMxmBXeXxlQkrjHZBYYyYImMCRXaY/PU0a0cI5k8qTRKgzXjfcOpRzgiCRBizTNWLlPZUToejIRV0qHLiX3SiaiVqmV+3lMngEqwxBjUmiU7Mgn4mz2XPA+DhLXqVUhe3AeUMc8Wcy3SMqFqamR2x1SPM1B9RRp2t2HgPctbe85WjYcHC2Y7B8yqmrGVcn21ibbW9sYFIdHR1hrmYynoh6lDWVRUBiBGHrvRSKbNI3ymT+Tz4Lk96GSYTCRru04Pl6wXCyw2iRVNnGnbpfH+Liamn3hxut1DqrV3y8ZW9y2zHnV+8ock6x+drvb3G76Aati4tWKrzuJV73d7W4QIYPA7+QXXuscRd36MdzlccdFxhPPPsuAyUwJTnb6HshsUQ3d1EHCLyrQBm0KbFlT1RNKa7GmwBuB/mgdaTtN27Y0rcCarDHJol0JkVjJZk2EoETX3Kg0no4B50SarbAGC3ilMSEQlEoEbosutChDuQ6SHK92jj6h3KN3eGcTJjVJc0bxbog6GZNFRYGhUAGb/B0CK6HQvNmqLDmbpgrZ+TxPJrzvcU4OFe88wYm7adc2BN8TQ0Gla8GSKo3SZoA/KaNFOSPmcfxKplaxmmZkaFZWn1j/eWEsJkGQhLPSDaTFmA5MMb0SF+7eO7res+xaur6n8w5tNGVZieGeMVRVxXQ8wmDwvh8wsM6LolRAClKfChY5kOR66oNPBaq8d2GtuwmrQ3ZFXFyXDr57Vpw1hlE5wtgR3jkO9o9Yti3EyNHRMUHLhE7gGZ5Tpy2PvP1+HnjLec7fe4bWNfTeEdA4JSo7xDCQvEVuVt7HYadRadOOMXUaNYPPRZajRYvKDsL3EX+WiNUFdTVhPNpgMt5gVE+xtpIpAWK+Z0wBSicIRyC4Hte1hK7B9Q2da+lii4sNIbboGFCxY2wdpQ5SmCeIVIaSNMueg4NjdGSASOXuKAkeJbzZ3GGNeCe658SVxji6AjvBjDax400icOPGdV68fBXX9Zy/cIEHH3yI/f1DPvbRj9MuK1CadtliRxs89dRTdH3D8f4eW7MZygc2N2a84U1voRyP+H/+v/+WFy9f5uDwkNnGlIceuJfZuGY8GiUxBSis5erVq9RVhSJKI6XrwLvkBRBQWtM2DVrbQZjBRFFt25xtcMW9iNOOw6MjZtMNtLKiGKbBk7DqRG5cvzZMAIqiwPc9y+WcqrwHn8xRBWaSGkAB5scNruuI/u5x/M4THSBBoVYTAJEU9Wli4UWf36+I31J0CHG1LEvKqkQhinrO94nzYtjY2GZjNmHeH1Jeq1DJx0GnM0qmBmK8l6d/MQRcnkAHhfdpH4wi3yoFdJDJRHr+MaQGmNaYwiSunk99plTIZKnoNBX2UfY2rzxG9WTbLZkieLJZWUxkbpUgjVI7SGtJDFoFlqpiFshWqBAGQWuX9/QYEzwSmaZ4gRFl9Et+rnHwZlqH0CZoVIaCkYnyrOV+uSiSKY2PvewFpNevBHJGTEiEGGhacd/uq5LTp3dQwI29Pa7f2EVrzXQ8YTqZsLGxwfbmVvKuyuqtWv7hY4J35VGLGk5jY2TS07Yti8UCn7ichbXpbBOItrOlGAvflXOMW2O9T772LW7ufAt3M3+4+Ybqlr9fGjf/JJUCa/fxkncovvT2t+NkDM/tZVr/6mWfk1q/2WcWd5zY5xf4KpOUtecxEL9f5iW9/G/e2TN5LW51t8QdFxkBBuM5kxWPYEhmw1o3SG4fV4lA7kz1PUvXAJaiqlHGYkuoTIG2Bl1YTGHo2g7XO/Aeo3J3RzZSawzRRHSMRK3RCnxQWJPMgJzDRnGwLJTI1fmw4jAUphTcbXDCs4iBZrlcUwlppNOPdM1kelFglKM0BZUpqYtAHwMtCkIkkNSlcoWZHKp77+i9SzCjZI6kRfozeIeLEbfIj62IfY/yjn7Z4NtW8Kd1NRDRsga18x5rh6UMETw+JZAKqw1RC87fey8KXjaRS1JiXlUFaDEt65yXv5PXSed6mVh4T+t7ll1L03csmoama3HeUWjLbDRha7rBpB5DVVNVFdoYjE2kvFRQKBJhT4EOGh1VKjYCWWFPDt7kRBvNYFqX5XkHHsZw8K2R2e+imIxGlLaksDUudBijwfZUhSTqXdcTCWxsl+yc3eKdX3qJey+dw44KgZWFiI9C/3RBDCyHIkqtFVeRoTM+vAcx6dUnucsBZqcLYiAVGatJRlEWjOoJ08kmo2qDqhyhVIHWpYgnGCuHeZTn4b3Du47Q9rhuiW/ndO0xXT/HuwX4BSr22NBRqEBloTBJtz+tY506qACntjYoi5KqEjiIGEhJkqMS10JMtpLvR1iZiEUMURWoYpN68zzB1iijWB7uceXFy1y/doPlYsF8vuCRRx/l7OnTXD19mhs3rtP1DpdEEvJ62d+9wcMPPEC8D7ZPn+KRt72djz/2aS5fvULf9xzPj/nkJz5BXcADF++VBouPHB4esl2UXLhwnnNnzrK/f4ML587Sdz3Xrl2j6ztUXYO21HVNCFIEWGvoekcIjtnGjNFoTLvs8BGZXnQ9m9ubNE2L857Dw0NiKLnv3nt5/tnnuN5cZblcsrm5CcCnPvUpLl99kQvnzzAejxiNRsznc5xzXL1ymfaB02xu3D3qUreFQjkhWPe9HyYW+QzJE4U88bXWMpmIF4nzjr4PROR2ZVly5uwZNjc3IAaO2yMMJSokg1Wf5SchT9+NSclZTJKwSuOiRvwas1BDHBJy2Xxt+iK3+nMjBGQ6Iq7fspaSGpAXSBG6IETh9mWvDvFsUChE+CQkR2SvRNI55AlH6trHZAqYv6cyn0Qrok+KgCGbtSZ59OSgnCcbAtFKHgnDEH49GZX0L3PzVIxiWaDI/xum+Fm4I8RA03c421KUIzZmMkFbLloUmrKoMFo8doiejemY2XRK2/fsHR1ztFhSFkWawkaUDiK1qvUwfcj7XyRNMoMnJtPALEzjY6DvW+bLJRqo64oIdF2P80nuWpXYoqDr1F1H+H7liGt/3zxNUPmDVLe5+dqtAFbk8Zu+/bKP9srfWXse+a/hzlOj86aHWMHfbv+4t/vmy8030tcqnxHxZX722nzGryfx+zOaVNxd6c9t446LDFsWqYMhBQTJrG4dQ5uvIplg5E0upFFuwomGpVjXLzVRW4KyWFtR1zNsVVKPStplQ7MUOIBKUKM8CXDRob3CKCW8iyyRGiPeiFspJJUIpQhGUxiBHcWkqmF1idKWSEAbxWhi6JJCTn4tRhvyQRFCwCIqPKUpKIOjNJbSWLTqIEN+fAClMQbiGm/AeYdL7prZaEaTFZ0Qf05tCEphlRROKp1miV+EUZayqOido+16BP5SpIlxHHT2AbJplLrp0MuJvnTx5q7jyd3LLJYNi65j2fW0fUc/FBnytx9I+nH42yjhhxgr05WyLBiPx9QjkRXM4YIXCFzwMh1KPga5oAP53koOOD3RNNVYLyCGTkfMXfukSpSNqe6S2D61xWK5ZLFYUtiCEKEsS65cvk7TdWBh58yEB9+0wwMPn+b0hVNgLT1KtMtDEOgYIXkFIIc7eYNcm1aljXRF6k4TgMH3QgrvtTmbEL21SeTuKdPxJlU5RusKVAnKok0pSlJKE6IQQXvncK7Fdx2+a/HtnL45puvmhP6Y6OcUYY7BU6pAbeVaNsJrRceQ9PQVVmsmowpVm/S6wlBog07yoQgSwkF0cThH83Q0YmWCUU3R1ZiITOP2dm/w7FPPcvXKVc6eOcPm5ibPPvMMp8+c4cGHLvHww5eYTaeMJ2PKsua+Sw/w3DPPcDw/5uyZ0ywWLfdcvBdTlDz++JNcvnJF1kAfePqZZ7B0XH3+Od766Fs5f+4Cvu/pu457L17kngvnuHBuh/vvu5fjoyNOn9qgaVtu7O6xd7ggGktRFozHI8bjMYeHRygUXd/Ip5M+567r6Lseoshtdr2jaVpa5zk6OhR4ojGMRmIo2HeNqK8pxXgyRojxbijKjw73cd2cUXkXwaWiI3hp5DjnU4GxmlasFxYh+HS8aMqyGPaYGAPH8zl9Lx4/fd8znU7Z2dlhNBpxcHjA4f4u+8fX6UI3NMSkWPep975KjPKk2HtRSeudJOaZv7My8NJpCrByCIypg6/8mgAG+YyU/UxgkqCiSU0W4XHESHICjsN9hSjk78i6GlbMPSWkD09SJ4QY5e+V7K80KUS6Ojci4iDNG7xMBzNsRe40q2bJI2gtvjXZpyH7OuUJUO5Oh9VbOPDFXOxpY0MMJUVhGFUVrnO4ztG3LRQlRimKomC6MaP3gWu7e1zf25MiIGTujEJbg7ELgrKMqpEYOVorkwolKoweEYaxxmIL+RwXzZIuCc3kBqk1hl45tFaDrH4WwHChe52u9j9s3DJKuIPjLt9MrX19Z7+V/xlv+0u3S9Lj+nN6uYkHcPMTX0F9bx+3GRG87It49QnNS37jM0nkbxMxrc3XKu6eDOa1jzsuMj79/NMCk0mJZ7ZMh1QNI13rCGJ8Z1ISai0YNVTXooYk14s2QspWGHrfMpnMKKqCohhTFJrloqVvW4zRicjmk6unIyiZInilxUMjO2xrlXCwImknaQuIHrnASIJSkkRpEv8hUpQlsRMXTDHaktcQvMMFjQkyqSi0wgKF1hRWUxhNF3ryg+VRcp5aSGKUORcMSX+MPl1Yga5r8VqD94NLeVHLVECuY+nOGCNeFGVRCmQmjXjXXWHXF25OMrQRAx3ptGmUsey1c9rmkM4FMb8CehVwKhALMa4qy/Lm/kiaSFllmJUVs3rMpB4zGtWMJyNGdY010o0OKoqranR0weEjdNEnyVonfJIofIvhgApeuDTJ0CzIxbW6CBPB8CYPhaiwxd1DaD08OqRWBceLOZPJjKZtiCFyffcGGzsF975hh0uPnGfn3Cb1pCSi8QmG4RO2Ost6Zt6KUjdPcNTQQUyHSVxxMIzWiSxt022zmpRc/YUtqKsxs+km49EGhanRuiAqIxMMW63e/6SV73tP2y3wrsN3Ha6d47tjfHtM6A/BHWHDMaXpKVWkNIrSqCExAck8NCKYEIlJkECEDSLZUBKi9wkaI4lT9MkHIJDgJhqHxpoaZWpClKS8qCvQik9+7GMcHBxgrOXw6IjTZ05z7tw5bFFweHDAYnHAF3/Rm+id7FVf/KV/nHoypm+WPPvcs4wnmzz08Jv4/T/4KL/927/LfL4gEKnKirIqpePaNBzs7+F8T1WVxODpmgUXzp8R8rG16BipS4vzjq3NTZ6/fI3Dpfg3NE3D1taWvDcusmiWRCWwDrqe0XgskCDv2J7u0DtP20YOjufEEKlr8RQ4e/Ys+/u7SRZVeASZD+K9YzQaEYNnZ2vGbDJiPLl7HL8X80aKC//yhUWMEWuliVGUBVrJa2vaJV3b0rseYPidoiiYTqdYazg6OmJ3d5fjwz2iaimrEk06EJJ6X4zSkhclKSitwiWFITF8TZy9oesbbjrzQuImyjfkNiJ1u+JTyJwhy2+bZNAXMQjnykewaaJDOhdC7AmhJwQ33IfWAvmVKaYaJhlDtp94Fy5kw1s1GEDGtE/mxo1I7mbenhqko4NPk+ScAKbOvl5LcnMNMyhkkTrHMZBV8mKMsu/Hlr6Zc3zkiD5SGo22RgqidI+z2YyN2QbH8zm7+wc0nUgSO9fTLkUYJkRYND3F/iGb0xlbm5tszGaURTlAanMhqI0W/yGjKbxL+6FMw4kxmT52qTCSnKKwBaYocO5uLTJujtWnsfr/H65Bf/tfvjmJXs8Ebr3NemWxXpys/f4tNcNQFqjs23TLhEKt33b1xWf0Oj+DzP32N10r7m6J8IqTjDusBO8gVvwTddPXN93mNXmk1y/uODt7ZvcqCun2WCsOndZIZyAXHEVRSHGhNSqpORlrh86KMeIkLGQzWfBRmSQJW6BUwKhIUZWM64qNmaNdtPStYHBdchQP2g2kaq+EHOhU8s3QhmBFwSZkJ+4CCmMH1KhPm3pEoZVobmtbojy0x3O899Qjjy1MsrTXCaqkKbShNgVd9JTBypSk73HeQTI000pB9GS+iShP+VRY2MHRmiibad93wkGBRAj0xDYpEtWGQovcq9eK3iqqyiZcbhCFj3TwSTd0rfCLMeFSM8xAoADT6Qbnd+7DmpEcqi7hkNNUQAiXSTIx+HS/JNKfTCFGxlJqS60LSm1Ffhg9EJI94mLtgzy2kLpF/90lsqAPok0fQ1JoSR1ASTziChq0xr3I3cYc2XfkbommWbC9c26ARxAV88Wc8YbmwQcv8sCbz1FvjMEUOOT60sjm6RGFJa3Bd30+1gHp6EWSP8owipafx6iTOo0SLkVWkEKyAY1IINfVlNl4i/FoOnAviCJlq02BMZUovkQxYvR9msJ1LV23lAlGM6dvD3D9Aao9wvR7VHRUKlAWOqm/ZYnnPH4g6fqblOyI2pkkZunvqIhevA3wpKIiwUsCEDQhapQuqWxFVU3pYmS+nFOaktG4Zt4uGY/GkpimSeKVq1eYTqdcf+45qvGIEB17e7vYombcO4qy4ov+2B/jd/7Xb7Fz+gz3Pfxm5m3PU08/y3y+GKAXvXMYa3jowQfZ2dpmuTym7xtciFy7sUvTtNR1xeb2ZnKGFsgLwObGBvV4wo39A+ZNR9N2HB4ecnR8hC0rvNE476mqkqKsOHX6DPv7BxRFgfPS4fcm0vcdZ89e4Pd+53cxxrC7u0tRGLzrODo8FCWtoyNc18iEsVCc2tzhy975Ri6cP83OhQufu4XwKrFYNGvFRS4s5H0zxlBVZWqsCBxquZjT9Z2QulOTK0MtbHJ+rqsaouLg4IjFYs58fgwxUlY2QWQFZhN1IEQnKyom1SYl7hJKBUornCmyR09YQRJX0/ucfKy3cPPa1KsXmibN8tIiqLwGwPlIYdJdqIBSTh4LQ4wO8dFwxCgE9Gy/mfcVmeolfhaJ75HXVn7s1NHzIQgCwKSpRVpfSRAwiZGE9NzVsCxJ8Cd5/SHJqSdidTLs9EHU4CAhGILs/ZSeslIUWsaZo2qEc575fMmyWbAxm3JmZ4tCK27Mj3HOMRqN5fn7wLiqqEYjmq5j7+iYECLXqxtszmac2tpmNp5Q1zVlUSTSf7zJhLYoCsqqwjSNmPiGIHBebRI3J8GrrcXakk4t0/n2hRpr5+Adwnlubk6ufZ+XJv6pgnzJQ+Wv1+RnbvPMcpVxSzFxm6f+ss/1VX6+eg3xpc/9NY5XlLB9lRD0wWuoCvVa3tfrEHdcZLztTY+I43fq8FtbpMVdJHhG+mAT3ttYk+QEpdMUcjcm+Uxos+Y0qQQ3rrQUMKWpJFmO0DQtx0cLdnd3WczndFrhvMY7cfeNKSGFKF1QHN4agjZYu/KA8NoLcUyBtdLRDTZ13WP6XjWiGs9olwucF15HBJZNi4owri3GCjej8I7SBGpbsrSSkMXUZVdksluq9HOrIUYy8VXG6wJkCc7Rp+lJ8I6+aUS5SSuKqkBH6bYZmQynAsujYh5j65fwEzIeX6RChXCnjaaqKi5dfAPvevQrmVQz0VtPHZ2wtuGYJNPrgktQMicwrDxnDJG+aWmbOb7vhMie/w6OzvX0vsP5nh5PG0TGNiDwAdEjFzSzi4EQcyFBKi4gtz/k7UuFydC50kMCeDctsKIwON+hRoq2bel9x3TLcvrSWU7dN6KaCizJB+EKGa0ZlSURxZETyUWUcFZyj0ij1oxb8yRQDxASnSQoSRONGBJEKXEzSlNR1+LcPZ1sU5UjtCpQWJQpsEbgg0qJFLRzTv50La4X/kXbHOG7OaE9xHd7RHeMdQ11WFKnyYVJBbZRogYX1xIRhUwugpeJRN4rMibY99LVxssRQVSJ1ClJXoxSCBXVmKKq0crimxaCTAyi67BK8YY3PMQnPvkploslOzs7LI6PiTGyfeoUy7bl4Tc8jC0KisIK5M9orl++CtHw0MNv5OKlh/jUY4/zWx/5CFevXRPJ6CBQJOccTdvQNku6tsG7nt5Hrl65wulz5yRZMYrFvOHa1Wvs7++zXCw4c/YsO2fPcObcOW7sH/Lpx5/k+eeflyaMK1g0C+bzOdpp7n/gEm3vaJqGECOzjemwfYxHIxbNYjiQ9/f3mc2mGKMxtmA624DoWCwbxpMRpY5cPD3l4rnTTKZTynr8eVgRtw/xRHBp35I9rKoKbJKgjTHIxKJrXyIAYdN1JlNTUQ9yQUzo+t7Rti1d30qxWVRYE2go0CEXtasmTG5WuiQTHBHIbZoFD8nruppdjiFRUHmanOGbpOIlT9IVwUdpDMWMQxeluOS5KhxDQpK89RByYyoM+3KqDGS9hLwuIJldkCFbufGQhGhlj1DSoNAoYhZgSFMLbVeNG+dk3eaJeyaqKyIE8aLIUqXJrF08c5B1PUxJgnAE61FJX6UJiTL0vXhYWA07W1vMJhOatmU+X9B1PUppRlXFZGOEVoplJ41FreQ1LtuOtr3OYr5gZ2ubM6dPD3mFQLJXamVGG6qyFFPgvsfHgMFiraH3CTKVjPu0sRhjv2CmGcDtJwYAqSF1c6L9SiXAy8TtaozbP4GhFbZ6nFu4Hre7w3QGvKQoULe/9W3v5xWO/tez0MhqeK/6JG56Pnd4o7j+xWtwn5/nuHOfjErkIJtFR9vNCclcLvs3qKiSvK0fhnjW6IEEnNUfvPcorajriqIoAVGRKmxBWVdM6gl1NZIOSvCC4+w9Snco7SisQusCrxQORYjiIOpdj3c+6eh7vNYUXjphvVMyqk2fYFWVhCrL3GqiMRBNIhNuMxpN8b5H6qBAs4Ded/hQUChPaQKVKehioDSWylo6nzSmgmip5/GzsoJjNUokXlfGe2maYxSVTZ2q4BKGXQ4cH3r6vgFjkpOqI/penMuDH7rFucDQWg8GVusTAKES5oWsqcoJVTXFlrVsxjFIgqjNwNsIIeAJGApGo3HqfqWDOASZKpUtXVnQtQ1Nu6BRgXbR0rk+EcR7fPR0OsjzjyFBoFTqzEuhlYmDQ7GYpo0+ShWi0sH9csStu0pdyhZ0zuGjZzKrmRSwc8+Yehu8cTgs3gVIZoJaKUxRYIzmeNnhmhYfRbVs0LyP+fOUriFRraYVKsEBUkUipG5RQrNKkqxRLdyL8XiDopigdIHSJVoXaG1F4jk1A5xzwg3pO1y3xHUdXTunb4/w/TGq30P1+9Sho8YxMshEU8uUUq43kM9RoRHeBTEmw6s4wBFzshd8oOsd0UMu07OqlHBKNMpWlNWYsqpRSiBSSsHpM6cxZcnlyy9SJzjTGx9+A//9Nz/CaDxif/cGL7z4IpceuA9tRGK5rkZUoxHaaOZHR1y/do0rV3d58M1vpe97PvmJT/LMM88IJ0ypgQOgjeHg4IDdy5fZ3tpAKcVsNqFtW1GSA1547nmuvHiZy1eusVy27Jze4Z77H6CsCra2tzl1ukdpy3K5ZG9/j3bZUm6WRCXclN0bN+icY76YCwwwRKIPHBwe0fRw9bDnwr330C8bylJ8S8bjEc8v5hwdHTMeieGexXNqVvKWBy+ws32K6ZmzFLONz8OKuH30fTtMLIqiQCnoXU/TJKln54bbxhhT8SrT5OyjANA7J0mikuupbVuZGOtIWRiEL6ywqkA5ubqC8ombFkXedfDbEdWorOgXI9jESfC5AcPNk8QkeASAUWANZGUqlBkaJkplM8CIRhzudVZlxKNzg4A0+VYCm/LBY9KGKMpPaQyBPI4nJpl0hffJPT0qKULShFDpW7vHokqFJ5nbGUJMzZ4QUCoOp8XguxSSvItSCZqUvJhimrKmCQ/RpEaSKDbaQmNL6Nuc/IO1lo3ZlNOnThGAG/sHXNvdo2k6ppMxVTkhS+rqEKgKK4IAPiS1Qs9iuWRUVrRtS13XxIGns5o06eQcLhApPfBHzQDpzedngkzZL6wi4/U69eKtX7y0uvisnsRNV2GG/6ytp8/siX2mD3gHt73N/eeXP3ydbvPaMjL+aMcdFxn/7Tf+35SErEbbRWkYjwXn2yUok4webRrLSifGWElAjM7ksTh0GmxhKUuLtQkjS6SwJaUpKVSR3LMVwStiMCgKjK0RgyJJQkOSPMymc33foWJy60jjXa3EM0OcRXvKtscWgvetylK6yqkoMabEmhKIeNcSVIH3js4pCjuiUJpKOxo6SmOoC0vT9/jUQSAKmdtqjUmKF8SVl0i+mhUerRRlofBG1DkCBdHU+AjaSvKno3hj6+gRSIzAY4IiTZfS2B+Gbk7+e1B3UtJR613kdz75B3z0iWeoqzGFlu5178TfQPDnNbYsKIoyTZpk4lIXBbNyxLgoqYyVoi0kU7zgUlHU0nctnevEkVYFOsT5PaKISjgxWgs2X0dPUlpHNvw4LHYZy69cnk3q82mTzeMKkRd+LVbCaxRBKaKBYHvG2zWnL2xTbxkW7hgXxFslaqFt+hhp2g4fBDq47FxyF1bE5Gch11NWjcoJl4gQpNbrgGlV2mBNQWEKClNRFxXT8YzxaEZVzbB2NBQYxpYJYpWkOb2j71uZWvUdrmvo2yV9u6Brj4juENUfYtw+o7hkrAUGUSb4gU7Jxwpfm227klGmGKAQQqTvxfBLoZOUZkj6/AJn8cGnxMkSsZiipKwnVNWIiMK7Dud6Iop2ueTTH/8kN/b2uO/Cec6fP8eb3/wmPvn4k2xsTNH3XeTp515kPK7Y3NxgfnwkvIW+59qVKzz1xJM888xzbO6c4+J99/PpT3+Kvu9Txzhp8itZV94LfEzFQHDCG5iMJ1R1xd7+HpcvX2ExP2I8nlDUC5Yucm1/n9/76Ed5+zvezqJpKcuKBx64Hx8cn/70YyxDSywswfdYpbn64vMYW1AUBYU1LOYLXDfj6OgQTMl0POF4MWf3ylVGdUVVVbz44vNUZYmxhoPDI3zXcc/5KW956AJnzp5idvoMdrZBq6vP27q4NSaTceKPOOaLIzFn7fsB8pIPdqMNRZqgm5TRr9TWSMWrT9e+dO/FzT512mMgeoFG6SiO21oFlInYZGzpvbQ8OidwqSJKM8UoPUygbTJGjRHcWgfZOfF10TKOYEhJEtRKa/GHKSwyofRSFChUmqJ7YuzREQxGZHMpBquH3BsGL4VPyE0l4SGoKLyOQMQ7hfN5GpzhTwychVXyvfLQUUTwbig8MtwW8npWg3+GGJCFYWKRN94shSuT1DQR8R4Xe1zoiViycIjVmmoy5cyZM4ynG+wfHnNwPEcbw8bmjLooWS6bQUnRpHNMnlHyG1AK5x1N17JcLplOpwJ/ShPulRqhpbCWqqpYLpdC9A5hQGSEIFBV5xzWFrIn6jZBhL+AIi8Hdcv3Phsoz01DgtvcwUsqglumfDf9fO3fmcyjbrlntfp7KMi59Ye3e45x7Vpd/9nNjcjPvtN/m7nN+uQoJ3p/yFHC3SbB/3rEHRcZu7v7N73J0uEo6TohGS6XouRQFIaysIJx1VBVBZNyLButUYxKgVlprShKQ12VjOqasigxxkry4YVL0bYdy2VD2/UEH2kah3OR4KFte8BQVxPZWLxPibxOY2FpkEv3JflVpG5/2wihzFgtvgZ1LYd6cu/NhZLWmkgBuqDvlrStp7aaojAUupApRiwYE+kKT+MC3iiUkqJKK1BJwlO03/vUFRUStUgcAjoSvUNbi7GaMhZEo0VCVIuMaMgTCpK0a0owFUJy98iEQR4MQnCpwEqdKJ8VWgzHyznzG3vJGM4Mn6tWGox0jrOELEoURgyK2hbMyppZWTMpKmpbDJATbdRQQApozdHjcQR6n9SCVDZwVEl7PqTPKJtaZd6IdBXjoMiiEnxLryB71lKWJVlZ7G6J0+fHjOqCC2dnbG5VlDONV5E+FRhBqcQ/Ib0PinnbQ5cPNjmo1zcfnbqqmZSpkwiAIBjCMLnQ2lKYklE5ZjLaZDaZUddTMdLTBUpXIqdpC1Tq/PrgcZ0XblC7xLmOvmvp0/TCdUf47ggTDqn8nDI2jHWkWkv89FpGtDozshdBBowwTG6kQQCEZEwWItnIUpKwVFShscWIoh5hy4qoDd5HqsmE/f0bHB/OOWx7/sdH/oDjpuH46JjJqGI0GvNVX/lu9vYPmE0mfPrJZ3j+yjW2NmeE4OlbMf6Mpmb32jWqeswXfckX07mezc0t/sSf+FL+23//DRbXrw2KavVohPeOpu3YGY8pipr5fM7mtqOqSuZNw8HhAUdHh+weHPHC1evU4wnH8wUHn/w0vfN82Zd9GXU9xvmeixfvoWmWfOqpx/EuYKxmYmsKI67jS+coi5LFYk7vHFVd07Q93ne4PlLXFXt7e9S1uIlrDVdfvMJ4VDEqLdsbY86dOcXWmbMUsxnOllzbnX8ul8IrxmK5oO+7l0ChTJrMifnoCg6ZIUsCrVIJaaGgMMToqeuSsjSQlfU0yXtDimjyXhMDKgasjthK03bisZTPtJXbhKjjKZ3PlOTXEsVnQw3JbDKFy2t2UMWLoMIgwyq8jgwhke957zDJf1tl+dWoxWQywaeid0Qj0rXD+0AYIK050RKDzlwArPhssCrKQlKTsslLR6sVZCxPLfRQV2XH8AzDzPchRVUWn4gxIbuiNANj4tU4H2h7T4VLilNioluMR2xsbLK9vS2w5wCT8ZTJZEbbtswPj3G9G/ibVVmJ9K7KU5XkYh4DXd/TNM3gdB8TtO0myJQx1FWFNclYMQaMsqIy5VzyGZHbG2vRxnzhFRkviTzxuiXiTTeRbw1np3rpbW9XYwy3jWtf3/Lzlzy0WjsXXjpVu933b7nRXRBr1dBQ1aW/Ps/P7654e14h7lyWR0ufXhtFUWjhMJSBqu7RGrZOj1BqLDyC0qIRZZCqLKjLkrIoKY2l0OK0K50TgXwUtqQqa4yyMplwMRG9xRn1+OCQw8NjQlTUoynGWPp2ztHhESoqpqOxjDuVImidvDQMpqwwWIFsZMUcn2BeCqIXfwjXi0pJWZaUZUlVVckR1GKtprA10fYsF7vU1lBYTWkso1gO3frGWHzoyXhImUVHlFEi3ZqVQNYiu8W6vsc5h9FyyBa2IChNiCp1rDU6isO50Uk2Nz2SdMQ0IbhVUpo8BozRiRcT6fPBg0APpChIXidotDFkJKdMRBg24BiCKHaIVDliFuUAA/iEiZWDPcNltDUQxftC1JPkOYUQkzmfyESKV8aqEIwxisv7mtcDJMWUtdWccbhxkGG6O+KhN52hLA2jUYU20EVH6AW6oEyCP/nkcSGZ0uAYrJIpXSZx+yyRqdYMCNGQOp7ZryYXGcaUjKoxG+MtppMtqmqSFGkMWlcYW6PT9RSTcpTzjq5N04t+Sd8tpdhoj3DdPrrfp3ZHVKqlVp7CiNu9VTatI53EEZTgRdKWF2K+3PPriQO+fAWfBEKS5wWEEKuAFf+irKcYWwqsTilCdPShp6wjlz/xJLGe0fcdi2XD7/z+H/DAxXOcPnOa+++9QNs0fOxjn+D69RscL1oevnQ/D50+zdHxIZPJlN39A0ajCac2ttnc2uLg4ICmWbK5ucV3fsd38H//ws9z/fp1bGHZ2Nhgf3+Pw/mCS+fPEr2hbVq8d0zGY+ZNh7Ely9bR+45TOzv4ELh+vcP3jqeffBbnIm9/x9s5d+4MMXje8NAb8CrwQrfHYVUwG0+59MCDHOwf8djTTzM/PkRrw3yx4J4LW1y7foNKWY7mDZsbGyzmRzz77NNJPrpiPBlh8JzfmfDwgxfZOrVDPdsilgXHbc8Tjz33uV4OLxvL5QJYQaEEbifNA33LqR2JqcueT3WkoaQUZV0zqkqB7FmNSx4oGmmO9DHQR4iqRo47labjnr7zkiAHhYomNTcEziSTANmrLCZRhPyaqowCQpqMqKGZExOTerVv5eJb9khYbWNKRUyCGyZZBDwBHbNvSI/3LYQi7bkh3ZfcQZ7wCqwwNYp1ENjh2nu4+qc8v6BikubVQ4GXeRZ5WiowRnkNkrin9DKunL0TAhqps5LaVXp2PkRc6NEljMc1uhZZ7NFowmSyQcRweHBA2zmU1sznc+bzOcGHJG6RHjeGAQ2wMpPVBLzA69p2BZkKgZj2Se/9cC2VZfLCSHK2K8iUFsPLpFpZ2gJjiiEfuHvjpevjM8MSvUxa+pJmXSoA8kT9DmO9wLl5qnCbx5UL7lYs1W3u9VVS6bi6Tby5Bvgs4tYpxu3uKb/nn8246A4f9g97f3dJ3HGR8cZHN9NGnzsKssmJZJx0Ws1AxjVJbcrKwYGhLiqB4diCwlZCHtdSAFhtUYhJne8d0QSKsgQUi8VybREpmmYJyqCMpa4KVN9TuAYbuyERa5KzUGOLRPIsKaoKbUQCUBszQG6MSXjrhIleLOYs5kcDFns8qplNJxhr8VqzWDQUtqSoFJXW9NrgokCmhEMQcEnOL6aDIlpJsnzaOHWC/aC1KOoklSWFSPHKuSQOrSqqxOvTA4wgd2mkUBMcr1UWFTN0KWFt00EiWGOERBuDOHUXVgzSMmkY2QTWu4oosCkFLLWhLA220FIMWY0yiF+KjsR0koUQcSCcmSh/PMlsLz1vT+6erTYFMbta23OUSh2sFRncR59gOauDhITpv1tic0u8CJRa8wVJn3U+mOU8T7RobcDI609zquEQJyaHX1IhofNUQPwvspu3Qgrh0WjCbLLJZLQl0ChlBRplRJpW6yLBQwLROXrXCURquaTrlml6cYjvjontAXR71DSMlKc0It+sFanLmB9bEfXKwyOr3sSMB1eGkNR0vBPX7myTEn1ER4F8yHWtURTYUsjdthyhTZGSDUnW5suG+e4ub3jDGU6/MKWhJCQn66IoefaFK0xmU8ZT4S4tF3OUilzfP+ATn36CL/3SLya4ltnmFkctXN3b5z3v+hNcv3qNa9euoJSm7x333nuRr/7qr+bXfu3X0iYe6bue+dEicWMCy/mCZrmkrEbs7j6FMQVHxw1RwZlz55nP52xvb3Gwt8+yWfL0s8/S9h2z6YSv/uqv4vSZM5TjCl74NIeX9ymQ4nQ8HnN9f48bN/bRRnN8fERVnWM8GtH0sqZ3d3c5e/YsXddR1xXaCC9N+4Y3XzrLubNbTE+dQk1n7DXwux/5NL/zkY99ztfDy4WCYVqRp5NwMxRKq5v5BNJQAWtF1MNqSe6LIv1bRbzTHB0fc9zMxYfJFKBLFBXCEVKJc+ZB60EqNya0UwhRfJxUTE2P3BAIqwnBQKZW4vKdiNREgacK5DZNUFhJmud9WalI9ALJCy6tHZuMMqNGK49XjhA7nGsIZSlTjeBFxjcrTXknSmYxyHNPZ3L2wvB+JaWuhzXK8D6vw1xuKlYSL0qmI6sJhnwG0owK6bZZyCFPaHJzKASZjuqRYmO2gXeaECyj6RbKWK5fvcH+/qE0wPqerutWzwPSNF5UDqOJw/WQuRRKaVzwtF1L0zRMJhN89s5Yk0TWWmC1eeLXB2n4iYCNwQc5U4L3UJTYoqTrlq/rtf/axe2LAhSrz+Mlv/PS7wx79y33+9IOveL26lur6+hls+RV/+mmbwwNpjuO22fUtxme3P52cTWF++wy+rXHe8lretln84eIFarh5QVu7u4q446LjPFEvBZWer0rYnEuLIqiHOBGxohHhkawrAToY8T1AR8cmoBBnKO16ok+0LUty8VCnEDR9F3PctngnR+6GDEKobwqC6Z2hu47SmS83DvHcinj0xAFmqK0TkRzccGtRyOMLiEIOS4GK1AtW2CIaL1yVMX1tPMW3JKy0FglHgZt69BGCGylcjilGZXiJop3dEG6PUZpbFz5OkTWlTuSKtCaUZB0qtRwQGijk6RpGqqnCy0XG4O0a4jJkVU6SDEEtE2FoNQ3AhFQmtJarB0xrjSJtQJKDUsuhJXpXu5Uqyj45NJYKmOpTUFVlBTWyARkkNAVqcQ+BDoiLgpeWJRQwvAeqJjHqukATInvuvfKulJI/jrq1fU3FBlpdH63xPpQRTpuiNpKeoN9Mthb6YOLgVTGNYco16A4cxuyAdb6ppxJ+ipIwVzamulkm8lkg1E9xdix/L4uMKZMPikGH4Tc3fUtPvEuXNfQLo+lwOgWhO4Q5Q6x/SGFP2JcqASNSgo1WmFMmkTmzyId/kJSF4JqSgnxToQYghfDNfFFyclMmm4lRRqwlNWEsh6jizIVGHkyIj4S8/kcFyLWFOxszbjw6Nv4rd/9FAfLI2azTT7x2BPosuTRsqZ3nje98SH25wv+4MkXeOHGLtdv7HN6e0bnAvsHRzz8pjcz2dzghY99kqsvPM/m1hbL5YJ6NOWhBx/k8uXLvPjii1y5egUQMFtZ1bTLY+bzBdev77J3KM7irnfUdUWf1Ki01sw2ZlIcG8Mfe9cXs7WxxfkzZzk8PGQ0Gsn7qRT33HsPF8an6BP8VIaRsuYXywVVWTKbTji+csCVyy/iOoG1bZ3aZtk0eNdRqp4HLp7ivnvPsXn2PHq6gbMVzz15lSc/9Sxu2XxuFsEdxKQeD93pdXjPTVCotD5MMoUTeKuWzr9RQ1OrsELwNsoTjKNZepatw1QVZVUR8VhfUFLRkKA9MfGRYhj2Xh+yf0SWyFg1TsRnKRcJMrSLa1Au50VyWl6HCBao3NlJQ9gMcUobMgqBsErhI/5DPsEpYxBonA8tPnQJ1hqGyS8qJjdxjSXSh5DEbuJLkkaVSe5rBcPt4FRyAKhBJjxGl9a4TG1ys0eRCwvhtEQiKL32iCEpCHa0/ZK9ZpduqdneOkddjWhbOdezSuD6H+/D0B+O6fOJIQ6wYzX8kfOh7XuaNkGmynJVqMQVATyrTBljRGUqCEzYGIPq1aAy5bPErbl7fJc+81h9Xq+cfL5yYhpv+hRuua1a3epW6NCt9/KyjzdM8+Rmr6wQufpZntjlv1/u2X8u4vbU79tPcV7vuJsUNm+NO3f8ti9/U+c9OnU2eucSCTusvAISUkgrI9AoU2KiobIldVExrmvBTaqK6B3zwzmLxYL58VyKjN5TaEPbCWHUh5Zlu6BQinFRUFqLdw6SDGsMgaIs2NiaMZ6MmE2nTMZj4X4kHL/cT2DZtjjnBXqic5eZQcpTK4MOPaHTxEJhCyGJe6cpSk1tBEbWD5jdmOQKM49AxuBmDfqTscURUayxxkCRHNXJvWpEepZ+IGerKC7h1lh8EVDeiyzoWueGGITkrg3GGkZlJYRV1UsnL0rRUBYFCpENlsbyyslbJjAr+FUuMKw2WKWpEg8jw5ny5e2iqJ2E5Gzrepdc3/2qeAi5ayaHZUAOQaONuF0n0rpJI9oBDZwKEmvtsKBCCANZ/W6J3O8DpKiIgYBOHAz5mdIyRQMSLMKvcM65+MhnRX5/owLExdsomYVZbaiKEdPJNrPpDmU5Fhd4VQqR0VSQoVchqbX1XZJfbQdid98I74L2EN0fYsMxNS21DdRWD/A7ObYMmaZPeq1qaOtk/Lasd3EVDgTvUqERk2ymFBhGWVxMSja6wNoaW47RRYVKhoLi9ixra7ls8D5QlDV9B+PxlHsvnsOFlv39PUZlTeMcv/k7H+Xhh9/E4fGcey+c5p3veCvPXj8Y1m5RFDRty7PPP8+f/nPfwjMvvMCNa9e4/Nyz1FYxO7XD9auXcWgeffQtPPHEYyyXoqE/mc7YPHWKw6MFLkSuXL7Ksy9cZbq1Jb4wzuOjZz6fUxQFi+WCBx96kLe/4x3Mtje58sJV9vYP+L3f+10WiwVf/pXvZjIeo89Yduptrl29znx+TFUVnD69w3w+xyjNYjGnrAoODvZwbcep0zui/NW1KKU5OjjkwfM1b3rDebZPbTGabeInm+wfOZ751NPsXr5B1989nIyhQE0Q3Fu7rkaJyaYxCqsFCrUqLCQhFd6bFLiFVUTXc3x0zOHhkqhKKfJdTtYdOmiBdGpNDFrgqiEmd2lpwoSAeNeoiLICsXUuDFyAzKuwNg6qTCGCjyJcIqpLqUmkYkqM1TBh8F72WWkKRawSY1erdCoyIj41hdJMGNlVMlcrF0dxSPqHiURK+pRWab8IoLJp3kriNcY47KO5n5Zl1VcQVW76ef5dmcCKvPxQYGSTw7hKcZUSuFTrFiznCtcU7OxcABTWGuq6ZpmK3vUiIyedObUNQVQJi2huambkR+p9kizuOkaj0VC4rPMytNYDFLrruuF1WGvS54VMlZLKlLXl63XZf07i5dLN25QLw7WT85GXv5+VOtpNt4/Dt7ip6Ljl3lYrXN1y37c+ozuZMLz8b78uMTylW59X/Fw/ky/IUPGPOrX9JE7iJE7iJE7iJE7iJE7iJD6n8VINsJM4iZM4iZM4iZM4iZM4iZM4iT9EnBQZJ3ESJ3ESJ3ESJ3ESJ3ESJ/GaxkmRcRIncRIncRIncRIncRIncRKvaZwUGSdxEidxEidxEidxEidxEifxmsZJkXESJ3ESJ3ESJ3ESJ3ESJ3ESr2mcFBkncRIncRIncRIncRIncRIn8ZrGSZFxEidxEidxEidxEidxEidxEq9pnBQZJ3ESJ3ESJ3ESJ3ESJ3ESJ/GaxkmRcRIncRIncRIncRIncRIncRKvaZwUGSdxEidxEidxEidxEidxEifxmsZJkXESJ3ESJ3ESJ3ESJ3ESJ3ESr2n8kSkyLl26xHvf+97P99O46+K9730vly5d+nw/jZP4AoyTNXUS/yfHyfX/+sSv//qvo5Ti13/91z/fT+UkPss4WRufWbznPe/hPe95zx3f9m1ve9vr+4Q+h3HXFxmPP/443/u938tDDz1EXddsbGzw5V/+5fzUT/0Uy+Xy8/30Pqt473vfi1Jq+FNVFW9605v4O3/n79A0zev++OuPrZRiY2ODr/7qr+aXf/mXP6v7WywWvP/97z85NL5A4mRNvXbxK7/yK7z//e9/3e7/JF77+KN8/W9sbNz2NXz6058e1saP//iPfx6e4Ul8IcQf1bUxnU5f9udKKf7KX/krn8NnBC+88ALvf//7+Z3f+Z3P6eN+PsJ+vp/AK8Uv//Iv823f9m1UVcV3fdd38ba3vY2u6/iN3/gNfuiHfoiPfvSj/NN/+k8/30/zs4qqqvjn//yfA3BwcMB/+A//gb/7d/8ujz/+OD/3cz/3uj/+137t1/Jd3/VdxBh5+umn+eAHP8jXf/3X8+EPf5g/9af+1Gd0X4vFgg984AMAd1ytn8TnJ07W1Gsbv/Irv8LP/uzPnhQaXyDxR/n6t9ayWCz4pV/6Jf78n//zN/3s537u56jr+nPSxHq1+Kqv+iqWyyVlWX6+n8pJrMUf5bVxt8ULL7zABz7wAS5dusQ73/nOz/fTeV3jri0ynnzySb7927+dBx54gP/6X/8rFy5cGH72/d///Tz22GOfdef9bghrLX/xL/7F4ev3ve99vPvd7+YXfuEX+Mmf/EnOnTv3uj7+m970ppse/1u/9Vt59NFH+amf+qnPuMg4iS+MOFlTr++aOom7O/6oX/9VVfHlX/7l/MIv/MJLioyf//mf5+u+7uv4t//2336ent0qtNbUdf35fhonsRZ/1NfGSXz+4q6FS/3Yj/0Yx8fH/It/8S9uuuBzPPzww/zAD/zAy/7+7u4uP/iDP8jb3/52ptMpGxsb/Jk/82f43d/93Zfc9qd/+qd561vfyng8Znt7m3e96138/M///PDzo6Mj/tpf+2tcunSJqqo4e/YsX/u1X8v//t//e7jNYrHgE5/4BNevX/+sXq9Siq/4iq8gxsgTTzxx088+/OEP85Vf+ZVMJhNmsxlf93Vfx0c/+tGX3Mcv/uIv8ra3vY26rnnb297Gv//3//6OH/+RRx7h9OnTPP744zd9/+rVq/ylv/SXOHfuHHVd80Vf9EX863/9r4efP/XUU5w5cwaAD3zgA8NI/qSze/fFyZpaff921+etOOO+7/nABz7AG9/4Ruq6Zmdnh6/4iq/gV3/1VwEZw//sz/7scJ/5z0ncnfF/wvX/Hd/xHXz4wx9mf39/+N5v/dZv8elPf5rv+I7vuO3vPPHEE3zbt30bp06dYjwe82Vf9mW3TShf7TU9/fTTvO997+PNb34zo9GInZ0dvu3bvo2nnnrqpvt5OU7Gb/7mb/Jn/+yfZXt7m8lkwjve8Q5+6qd+6o5f+0l89vF/wtr4TKJtW374h3+Yhx9+mKqquO+++/jrf/2v07btTbf7l//yX/In/+Sf5OzZs1RVxaOPPsoHP/jBV7zvX//1X+eP//E/DsD3fM/3DOfGv/pX/+qm233sYx/ja77maxiPx1y8eJEf+7EfG352fHzMZDK57Wfy3HPPYYzhR3/0Rz/LV//axl1bZPzSL/0SDz30EO9+97s/q99/4okn+MVf/EX+3J/7c/zkT/4kP/RDP8Tv//7v89Vf/dW88MILw+3+2T/7Z/zVv/pXefTRR/lH/+gf8YEPfIB3vvOd/OZv/uZwm+/7vu/jgx/8IN/6rd/KP/kn/4Qf/MEfZDQa8fGPf3y4zf/8n/+TRx55hJ/5mZ/5rF9z3oy3t7eH733oQx/i677u65hOp/z9v//3+dt/+2/zsY99jK/4iq+4afP+z//5P/Ot3/qtKKX40R/9Ub7pm76J7/me7+F//a//dUePfXBwwN7e3k2PvVwuec973sOHPvQhvvM7v5N/8A/+AZubm7z3ve8dNv8zZ84Mi+qbv/mb+dCHPsSHPvQhvuVbvuWzfh9O4vWJkzX1mcX73/9+PvCBD/A1X/M1/MzP/Ax/62/9Le6///7hsPve7/1evvZrvxZguO4/9KEPfdbP9SRe3/g/4fr/lm/5FpRS/Lt/9++G7/38z/88b3nLW/jiL/7il9z+ypUrvPvd7+Y//af/xPve9z7+3t/7ezRNwzd8wzfc1KS6k9f0W7/1W/yP//E/+PZv/3b+8T/+x3zf930f/+W//Bfe8573sFgsXvF5/+qv/ipf9VVfxcc+9jF+4Ad+gJ/4iZ/ga77ma/iP//E/3vFrP4nPPv5PWBvXr1+/7Z9bI4TAN3zDN/DjP/7jfP3Xfz0//dM/zTd90zfxD//hP+Qv/IW/cNNtP/jBD/LAAw/wN//m3+QnfuInuO+++3jf+943NJ9uF4888gg/8iM/AsBf/st/eTg3vuqrvmq4zd7eHn/6T/9pvuiLvoif+Imf4C1veQt/42/8DT784Q8DMJ1O+eZv/mb+zb/5N3jvb7r/X/iFXyDGyHd+53fe8Xvzuka8C+Pg4CAC8Ru/8Rvv+HceeOCB+N3f/d3D103TRO/9Tbd58sknY1VV8Ud+5EeG733jN35jfOtb3/qK9725uRm///u//xVv82u/9msRiD/8wz/8qs/1u7/7u+NkMonXrl2L165di4899lj88R//8aiUiv9/9v482Na0rO/GP/f0TGvYa+995u6GbpqpGxSFiJVAiUYUBa0MDlFTJJA4JQ5JtBxipZzyajRWhLewnIciDlHUqDGYgjbFzyRIRXEIgoDQND2dcZ89rOkZ7un3x/2stfc+59A0BOX4sq+u3WfvtZ71TOt+7vsavt/v9dznPjeGEGKMMc5msziZTOJXfdVXHfv85cuX48bGxrHXP+VTPiWeP38+7u/vr19785vfHIH41Kc+9djngfhP/+k/jdeuXYtXr16Nb3/72+Pnfd7nRSD+0A/90Hq71772tRGIv/ALv7B+reu6+Df/5t+Mw+EwTqfTGGOM165de9LXfmIfHzt5psJ62w+1zxuv93nPe158xSte8YTH/bqv+7p4m06jJ3bEPlHGf4wxfvEXf3H87M/+7BhjjN77eO7cufg93/M98aGHHrppjv+X//JfRiD+z//5P9evzWazeM8998S77757fb1P5pqWy+VNr73tbW+LQPyP//E/3nRdb3nLW2KMMTrn4j333BOf+tSnxr29vWOfP/rcnthfjn0iPBvAE/4cPd7P//zPRynlsWcixhh//Md/PALxrW996/q1W435l73sZfFpT3vasdde8pKXxJe85CXrv//wD/8wAvHnfu7nbvr8S17ykpuembZt47lz5+IXfdEXrV9705veFIH43/7bfzv2+U/+5E8+dqyPt905jbe0AAEAAElEQVSWnIzpdArAaDT6qPeR5/n6d+89+/v7DIdDnvWsZx0ru00mEx577DH+8A//cF3CutEmkwn/+3//by5evMiFCxduuc1nfuZnEmN80ue3WCzWMKOVvfjFL+b1r3/9GnLxwAMPsL+/z5d/+Zcfi7iVUnz6p386b3nLWwC4dOkSf/qnf8q3f/u3s7Gxsd7ucz7nc7j//vtZLBY3Hf9nfuZn+Jmf+Zn138YYvvVbv5Vv+qZvWr/2O7/zO5w7d44v//IvP7bdN37jN/LlX/7l/N7v/R5f8AVf8KSv+cQ+fnbyTH3kMKbJZMK73vUu3ve+9/GMZzzjI/78id0+9okw/lf2FV/xFXzJl3wJly9f5p3vfCeXL1/+kFCp3/md3+GFL3whL37xi9evDYdDvvqrv5p//a//NX/+53/Oc5/73Cd1TWVZrn+31jKdTnn605/OZDLhj//4j3nlK195y8/9yZ/8CQ899BCvec1rmEwmx947gR/+5dsnwrNRFAW//du/fcv3VtXolf3qr/4q9913H89+9rOP+V1/+2//bQDe8pa3rCs+R8f8wcEB1lpe8pKX8KY3vYmDg4Nj/thHYsPh8Bi/MMsyXvjCFx6D/b70pS/lwoUL/OIv/iKf93mfB8A73/lO3vGOd/BTP/VTH9Vx/zLstoRLjcdjIGHzPloLIfCa17yGZzzjGeR5zqlTpzh9+jTveMc7ODg4WG/3bd/2bQyHQ174whfyjGc8g6/7uq/jrW9967F9/ft//+955zvfyV133cULX/hCvvu7v/sm3sRHakVR8MADD/DAAw/wcz/3c9x3331cvXr12KB93/veB6TBffr06WM/b37zm7l69SqQsLDALR2hZz3rWbc8/t/5O3+HBx54gDe+8Y1893d/N0IIlsslUh4OiYcffphnPOMZx16DVO47etwTu/3t5Jn6yO17v/d72d/f55nPfCaf9EmfxLd8y7fwjne84//qHE/s42OfCON/ZS9/+csZjUb8yq/8Cr/4i7/Ip33ap/H0pz/9lts+/PDDt1wjbpzjn8w11XXNd37nd3LXXXcduz/7+/vH7s+NtuIB/n+pN8BfJ/tEeDaUUrz0pS+95c+N9r73vY93vetdN/lcz3zmMwHWfhfAW9/6Vl760pcyGAyYTCacPn2a7/iO7wB4wjH/4ezOO++8KcDe3Nxkb29v/beUkn/4D/8hv/mbv7mGI65U5L7kS77koz72x9pu2yDjwoULvPOd7/yo9/H93//9fNM3fROf8RmfwS/8wi/wpje9iQceeIDnPOc5hBDW29133328973v5Zd/+Zd58YtfzK//+q/z4he/mO/6ru9ab/OlX/qlfOADH+B1r3sdFy5c4Id+6Id4znOes8bHfTR2dNC/6lWv4r//9//O5cuX+Zqv+Zr1Nqvz/Pmf//m183T057d+67c+6uPfeeedvPSlL+XlL3853/Vd38UP//AP8yM/8iPHsLwn9v8dO3mmPrzdiG39jM/4DB588EF+9md/luc+97n89E//NM9//vPXMrkn9tfHPhHG/8ryPOfv//2/z+tf/3p+4zd+40NWMT4SezLX9A3f8A183/d9H1/6pV/KG97wBt785jfzwAMPsL29fez+nNjtZZ9Iz8aTsRACn/RJn3RLn+uBBx7gn//zfw6k4PizP/uz2dnZ4Yd/+Id54xvfyAMPPMC/+lf/ar2fj9aUUrd8/cbqzT/6R/+I+XzOb/7mbxJj5Jd+6Zf4gi/4go+6gvKXYh9PrNYT2Vd/9VdHIP7+7//+k9r+Vnjqz/qsz7ppuzvuuOMJ8Wpt28ZXvOIVUSkV67q+5TZXrlyJd9xxR3zRi170pM7tRjuKnz1q3/Vd3xWB+La3vS3GGOMb3vCGCMQ3velNT7i/ixcvRiB++7d/+03v3X///bfkZNyIebTWxnvvvTfed999axzs537u58Zz587dhLX85V/+5QjE3/7t344xxrizs3PCyfhrYCfPVLLNzc34L/7Fv7jpHJVSx673RpvNZvFTP/VT4x133LF+7eu//utPOBl/TewTafz/7u/+bgSilDJeunQpxhhvycl45jOfGV/4whfetL8f+IEfiED8sz/7syd9TRsbG/HVr371se3qur7pubqRk7HCp7/mNa/5aC79xD4G9on0bNxoN/pDL3/5y+Mdd9zxYflAr3nNayIQH3744WOvf8d3fEcE4kMPPbR+7UZOxtvf/vYn5GTcirfyj//xP77Jl4sxxk/91E+NL3/5y+Pv/d7vRSD+1m/91hOe91+13ZaVDIBv/dZvZTAY8JVf+ZVcuXLlpvcffPDBJ5S3U0rdFPX96q/+Ko8//vix165fv37s7yzLuP/++4kxYq3Fe39T2evMmTNcuHDhmJzZx0JS7Ru+4Ruoqoof+IEfAOBlL3sZ4/GY7//+78dae9P2165dA+D8+fN8yqd8Cq9//euPnesDDzzAn//5nz+pY2ut+eZv/mbe/e53ryskL3/5y7l8+TK/8iu/st7OOcfrXvc6hsMhL3nJSwCoqgrgmGziid1+dvJMJbv33nv5H//jfxzb7id/8idvqmTceB3D4ZCnP/3px85xMBgAJ2P/r4N9Io3/z/qsz+Lf/tt/y4/8yI9w7ty5D7ndy1/+cv7gD/6At73tbevXFosFP/mTP8ndd9/N/fff/6SuCW59f173utfd9FzdaM9//vO55557eO1rX3vTc3Tj/k7sL8c+kZ6ND2df+qVfyuOPP35LXkNd12uO66racPS6Dw4O+Lmf+7kPe4yP5brxyle+kje/+c289rWvZXt7m8///M//v97nx9JuS+I3JEfgl37pl/gH/+AfcN999x3rQPn7v//7/Oqv/uoxTfsb7Qu+4Av43u/9Xl796lfzt/7W3+LP/uzP+MVf/EWe9rSnHdvucz/3czl37hwvetGLOHv2LO9+97v5kR/5EV7xilcwGo3Y39/nzjvv5Iu/+It53vOex3A45Hd/93f5wz/8Q/7Df/gP6/38wR/8AZ/1WZ/Fd33Xd33UPSK2t7d59atfzY/+6I/y7ne/m/vuu48f+7Ef45WvfCXPf/7z+bIv+zJOnz7NI488whvf+EZe9KIXrSXc/t2/+3e84hWv4MUvfjH/5J/8E3Z3d9d61PP5/Ekd/1WvehXf+Z3fyQ/+4A/yd//u3+Wrv/qr+Ymf+Ale9apX8Ud/9Efcfffd/Nqv/Rpvfetbee1rX7smipVlyf3338+v/Mqv8MxnPpOtrS2e+9znnmBsbzM7eabSM/WVX/mVfO3Xfi1f9EVfxOd8zufwf/7P/+FNb3oTp06dOvbZ+++/n8/8zM/kBS94AVtbW7z97W/n137t1/j6r//69TYveMELAPjGb/xGXvayl6GU4su+7Ms+qnM9sb9c+0Qa/1JK/s2/+Tcfdrtv//Zv5z/9p//E53/+5/ON3/iNbG1t8frXv56HHnqIX//1X1/z8T7cNa3uz8///M+zsbHB/fffz9ve9jZ+93d/l+3t7Q97rj/2Yz/GF37hF/Ipn/IpvPrVr+b8+fO85z3v4V3vehdvetObPqJrP7GP3D6Rno0PZ6985St5wxvewNd+7dfylre8hRe96EV473nPe97DG97wBt70pjfxN/7G3+BzP/dzybKML/zCL+RrvuZrmM/n/NRP/RRnzpzh0qVLT3iMe++9l8lkwo//+I8zGo0YDAZ8+qd/Ovfcc89HfL5f8RVfwbd+67fyG7/xG/yzf/bPMMZ8tJf+l2MfnwLKk7e/+Iu/iF/1VV8V77777phlWRyNRvFFL3pRfN3rXhebpllvdytJtW/+5m+O58+fj2VZxhe96EXxbW97201lq5/4iZ+In/EZnxG3t7djnufx3nvvjd/yLd8SDw4OYoypnPct3/It8XnPe14cjUZxMBjE5z3vefFHf/RHj53nRys3eKM9+OCDtywvv+xlL4sbGxuxKIp47733xle96lXx7W9/+7HP/vqv/3q87777Yp7n8f7774//+T//51uW2LgFXGpl3/3d332slH3lypX46le/Op46dSpmWRY/6ZM+6ZYlvt///d+PL3jBC2KWZSfQqdvcPtGfKe99/LZv+7Z46tSpWFVVfNnLXhbf//7333S9/8//8//EF77whXEymcSyLOOzn/3s+H3f932x67r1Ns65+A3f8A3x9OnTUQhxAp36a2CfaON/ZbeCS8WYno8v/uIvjpPJJBZFEV/4whfG//pf/+uxbT7cNcUY497e3nqtGA6H8WUve1l8z3vec9N9vBEutbL/9b/+V/ycz/mc9T355E/+5Pi6173uw177iX3s7BPx2biVP9R1XfzBH/zB+JznPCfmeR43NzfjC17wgvg93/M9x8b8f/kv/yV+8id/ciyKIt59993xB3/wB+PP/uzPfli4VIwx/tZv/Va8//77o9b6GHTqI4VLxZggXnwEcLe/ShMxntQjT+zETuzETuzETuzETuzE/rrZ3/t7f48/+7M/4/3vf//H+1RustuWk3FiJ3ZiJ3ZiJ3ZiJ3ZiJ3Zit7ZLly7xxje+8UP2ofl4223LyTixEzuxEzuxEzuxEzuxEzux4/bQQw/x1re+lZ/+6Z/GGPOkpdr/qu2kknFiJ3ZiJ3ZiJ3ZiJ3ZiJ/bXxH7v936PV77ylTz00EO8/vWvf0IVuY+nnXAyTuzETuzETuzETuzETuzETuxjaieVjBM7sRM7sRM7sRM7sRM7sRP7mNpJkHFiJ3ZiJ3ZiJ3ZiJ3ZiJ3ZiH1M7CTJO7MRO7MRO7MRO7MRO7MRO7GNqT1pd6u9/xR3k0bBzpeUD790jOEVZSrJMIpTBCYkqCy6cfwrjagPlJdF7BKl1vNaarutYLpfsHeyzt7tHDAGtFDKCsxZXt0gkSgpiDAgZ1x1HRQRtNA6Pj47J1ibnz5+iGGgiEIUkCkHdtNSzBtt6ZssFO3vX8W3H0+56Cs95+jM4PSjYm875wMUrPPj4Ja7uz3ARlASjFEpqbNMRXEBpjdfghSMSMZmhGOR0zrFsWqTWbG5ucOrUNsvljN3dXRbLFutC32peAoo8zykGBda1dE2DlvCUs2cZVCVGanRUiBAQIRCdRQFKQwQmW9uMRhsslzWz2RzvPLau6RpHQCKEQcoMUxTIqkIbDSLivKPrGqYH+8yvTwneYX1DNcrYPrPJYJBhbcvOzj6Xr+xjLSAlUkoEEoIgxEgXXLq/ACKNhRgjKypPjJF0dyJSCCQCJSRaKYwyiAid6wjCI5UACSFGAh5i2qUWEiXTDzKAYL3/EAIhRqIy5GVJjIKuten9KMBFQue5enn/Y/A4/N/br/z20xmakip/CkLcyfX5Elfcw/j083ChpbFzum6BDI4z5RZ3D+4lY8BituDy4xd5/PGHeHjnj6jLx3jaHZ/C6exuDvYanv70T+GOC3dhshyjJa5d8P4H/5Ariz9HD4fYpiBzG2TSs+P/D38xfRu1d1TmNOcnz6fKJsx3L2F3O05Xz+LU+bsQGzkzOmKIqM7C3JPFgmFZUeQGOYzEsQUs9ePXWezMWMpr7BdXmPqWGCVa5ShZ9P/m5DpDRUF3PbB4XPL4B65Qz2vuvPMuTp8+i3WB3b1diJ4zp7fZHI/JMs38YJ/dnR1s50AoMAaP5AOPPMqD738/m9WA5zz7WZy5cJ7h5ha7e7u89z3vZm/3KptbG5RljhCR5bLGtTUZNUYp8nKTvBwTYyCGQDkcI3XG3v6UK1eu8ZR7nsEd99xLFzre9d4/4erlyzR1y/RgSlYUnLpwluAEbt6xORwzqQYMqjHnnvJMBhub7Fy7xHv//E+4fu0x7nn6M/jUT3sRRVny0IPv49q1a2yfPsOFCxcQQrK7s8Ojj3yApq3TYHkCNlz8UG/Go//Em9675evAinn3wz/xH5/sUP5Ltd9+x+uZDCec37yTC+OnUcghTazZqR/n8v7jXN/foelqoo8QIxGBFpIsguosdjrj+qVLXL14kdlsicpyys0x5eYGW5NtyizDAJkP2IMp1x+/xKMffISLj19mNp0zqCpObW2DEOwd7FO3DZtbm2QmY3ow5fHHL5LnFecuXKAoMwZlzsbGmLqueegDH2R3dx8fIlIrTm9vc2r7FGVRprkyepyzLJcLOmfReYYucxrb4YhUVUGR50QlcVLiQ0jzoJK4GJi2NYuuJYZALjW5NmghMVEilEQICSESbSS6QNt2NE1D2yyRwWMEaAFts2Q82eD+T7qP4akNrueeS27JxUvXmO97lMzZW1zhsasP4WzLmclp7rnrHp71zGdx7uwFfJDs7c+5ujvjg48+xKOX389stoORijMbpxjmA0zbcV6XDLKKS84zr0qKcckgy1g+dpXluz+IWjaIEDFaUVUVPgSu7884qBuGFzY5/Yyn8KwX/A3KwZAHH3k/b/+z/83G5oTxaAPwdL6h62p81+GmLdMHD5g+UiOcoFBw7vSQM2cn2DLwvu4qU9viJQgVkUYhZUTrtMa7GHEBQhTEfv1ZrWtH7b3/eflX+Tg8of3C//tv0VqhlAadXDYhBForijyjLCu0NsQIzkfq1mGdx4eIICIFZEaTaYVREiHAdi3OeZz3xAAhREIMQESKiNGSLDNorZD9mt1ZT9u1BCnYfuop3GTOxflfYDKFUskPiV7gnKdzls4FnJWU5QgpAiE4QnRIGVHKE2KDswtCrKnKijzLcW4PH/ZQEpSUCNnhvSPGSJ6NEDIQ4hLrOnwIyWcR/TMBeO+JMSKFRsiIoMDocwg16p+xAZmeEELvw8SIcw5jcobVBpvVGTaLuxmre9FisJ44BRCwXFz8GVeXD+KiwzrXHy99T6v9rSyEcOx7jDH5szF6YnSE6HtfSqCUQgpJjAoRC4LPISpCtHS+xsUlSsv+eA7nIgLF9ug81bxi/8GrNMsahERrjVKSpl5ivQMhyLIcnecUZYmQgks7O/z3xx/hfYs5LoKMEEUkADEK8AIRJUKkh2M8MLzg3m3uv/s0w0GGEIFBPuDZF57HnaNnP+H4fdJBhhIQPLSNIwaQUiAECAFRiOSEmzzdLCT9bIuQ6URXjmkIAeccIXiUVAjSghpDWiFXF3V0oRSrX6Ug+ICQ6QGQSvT7Xjmm4H0gxvTQuODxziGFoCwKMq0IIdA5R9tZOusI/b4F/cVAOoYg/d0fXAiBkOl4IQQiIGX6QmOMOO+PDbg0LAUCgZSqP79AjIFMZ70zn/5bOdvEuJ70IquJxCCEwHlHjBBDulcx9udHOi+kTP+uA4FAiB7vkjO/ctqllmidzsf7gLWeEOL6fNPTJPpv4GZX59Y6AXH9vYmj//XfTSSuTvVDOkHp/h9/fR3IcOTe+1WAI9ZjTMnbpyBnlELLCi23WTaBLih0tonUBh1A+RYpDSF4Ft2Spd7Hh8DB/gFNXeNdwDWRojrFuDjDYrmHyQZUZdVPRCJNVIB3gVKfpsxO0QWJtR7rDrjWvY/WN2hRUGRbGD0khki7XGLCGCK4aIleEGREIdBBEaOgyAt0rvHa4qWF4AnLhmZ/iYsdrVmyDA0RiZKGNIWkST4lDAR2bpld6th9bMl874DReJPhcIzJCzyW4XCMVIK8qJAmAylBGpAmjdsQkCrigqNrW4wyTDY2MNpgrSUET1HmjCdjQqwZDjPKKkOIiNKK5UzQLWpsUzNbePKyoygK8swQQsBbR9dZTF4w3Jigs5zFYk5rG4QSadFWhnIwYGvzFFpkdFWLiUAIZCqjyEqEkNRNQ9c1VIOSwXCM0oa2a2nbDmMMw9EQk2V0XVoUW2tZ1vXHd5DeBmYtHMynLJr3sju/zp1bd3OquoML1T1Msm0uV4/y+M4jTBez5GSEiIueGAUmM+jtCaeHJdXGBruXrvD4Bz/IH73j/1AMhtx511M4ffoUm1sbbI5GaCkIwdPUDSEEsjzrz8FiMoNSijzLGA+HDKqK4AMg2bm2izQZGxsjuramaWq6rqOua4RQSCVou5bZYslo1FGWFXmWEWNASrDOYJ0l+oBdNrSLBQiBkZpSZikBIyK1tfgYIDfkuWFUDSA3LLuWLkaQ4EnrmxYRGT2EgFIaY3KKsmBgK9puQLAWgkNGj9SSpm2YTg8oRgUueoSKaCMJsUWRY3SR5hMRkEqwXC5p6xrvHFlRUZQZZZFTFRVFXjKbS0IINF1NpgwhOFpvGUTItaFVGu89+/sHHFy7Tr1zgOkcVabJRgNijDRNR91ayDTFxoDh5iYewXw2Z/fxK8z3DlBaMRlPGA838KKisw2u7eiKFt9E5nuWbs+Bj7TWEWJM94g+QF8tJf2aKqUEcbh2CpLjLImI21z7pqg2+vU1EkVc+1JdZ/u1HYwxvZ8hkSIFCs67FMDGiLeWTgq0khgtkTIlMqVSCBQRiY/pM846rI9EF/ExIGUKVoJt8bbDbFQwDOy3O8nnIJ1PWsMl4HHB41xEKo2QHonAeYvSAqUkUilkCESVxqFWEik7IgtCXJKrIUpJ2q7FOoeSCnBA8s3SPYCV73HUL5FCIY+cV4wBESR5voVSRTpPfP850DpLjn7UVGZCITdQZP3e1h4qAcfSHuCDJ/S+3MoXWSde483no5RKPpx1BB+QUqT73n93h35OGp9CpPEafDoqwgOBECLe27WvFfBkUiJ9IDMKpzVh5UPHdM6rwAaR/KeV/9o4RxdC8n8/zPAXgJKCwii0kusPaGV6H+CJ7SMIMgS+DzJCAKNF7zhKIGW98yxDyX6XqwhQiPVNDyHgvO+DjIBZpevjKuq7MaVw+PfqxsYYUFJhMoOUoneDxXpb7wOxj8qdS19qpjVVWa6DjLazNF1H59LklAKh5OjG/q4LZO/H9icoJFLJ9XXECEpJjNHEGHDO4vvX105w72hLJdMgDWlQGm1QanVMWN+E9T1Lrylt0H3mwju/fmBi6J3/VZAhZAoy1vfoMKDz1pEetoBUYIxGabneZ2ddf1ixjjFWFtaD/0PbaoyuQozVP8fPJazit8P9rYO71Rg5/MqPPqCr6xT9OIsxHN9RgDzLuF0sE5pMbQAlrbOgNpFmQowRJQ1KZkjVEaKjjZb9bg+zbJgdLPE+OSRYwyQ/Q5blXNp5P3dtPZ88TwF8CiTT82SdIFNnGJhzqHZJ6y8xCx/koL1GjBJjhlT5aZRU+NYhXIbwJZ6IUxaHJESJQZKRIbWkyDOECtTs4e0Ss2/orrcEJwhlx0Ie0FmP7K9FiAwpFVJqpJC085a9D8zZfXDJ/rUp3kc27tpksnWavCjx1EQhgUBEEoUkCEPUGQHFvGkIMTA0yUGztmNjOGR7a4sQPAd7ewidKoobGyOUbikLUkUVgbPQdp79aUczn+GCQOk549GA06e2MXmF9R3LxZIsryiqIVob2q6j6RqGgwGTwTZSa6QUZEVJ9BLjDaFrCfUSIw0Khe0ci/kc5yzDakA5GCCkop0v6BYL8jxnMtkkz3O8j5g8o6wqnLf9QseRR+bo3+JIhlUcPpO3eO/w16O/3/q928pCwNmIdY7Hu4tcn+1xz9kZd4zuptQb3DUpGRYbPL73KHvT6yyXC4J3+Jgqm1aALnNGd5ylGo8Yb25QlBV//qfv5E//59s4c+oUZ86f4cId59kejZjP5njv2RhvEEKkbVqc9+AlSIExhtwYiiwjzzLKomA+r1nM55RljlGCJrbMF0tmizolPoTEOsdysWS5WFIVFbnJyPMcraBtaqL3+BgxWiOcBQQ5ilzo5MQ5i+46grWYKlIKjVKReWuxtsXGQChLMiWx3pFLjaZPzoUAwZFijpCcKyOIXiLw5ELibMPVnes4JWgGCjcyKCEIwhNxFFlJbgZ0XUP0oDzU85quacnykjLP2BhVbG5ssbu/yZ66hrPLFGRoTR4ky9ixGQOVzumkog2C6aJm59qU6W6NtoHzE8HGWBBCZNFYZq1jsLlBubVJNtzgYDpn7/GrvO9/v5u2q9kPewyqis3xkPHGBGKksw1N0xKFZHa9oZ5PsbVn3lpmTYvPwAef1nBJqnT3q5NYZUR7Jz357BGtQInbJ0l1KxuONwCBtZbOtsTgU15GQp6ldcG5kDLkCBAqrelSQUzZ/RACgYAlUBNTQkZGjJIolQJtAcgoUFoREfgoCQEIgeAstuvogufM5pAlM2xcprlfSKRQEMW6OmK7AEKhlAAcUUiUlkgViHhiUPjQIYVEqxFaRQJXQc5RgFTJXxFSYkyWqimiQaWsdvIJJKyCgBA8kHwHISNSSbxPDkJkDoyQ0qwdcEh+h9QKrTKctZRmSKk2ycQYgTryDaT5sws1S7efAr2w8udS0ltw6MMqKde+3uo4q38FIiF1AILvK00rHxpSwk4TgyAEByIgZECRgoOVbxijQyDIgiQnUpye4LYCznqsdTibAjrnPSGC0hplkt/prafxjvaGSku6gat/j/jeUpAZSZ5ptF49KwKjDUZ9eN/rSQcZWaXwIjKeGBYzh+tWa5fo4UpgsixVJ454kUejpxAC3qcS0yrTTe8Qx75kvLqJRwoL6wuNMa4rCJlJlYyj9yOEmLJQ64pJym3keU6ZFxilCJ2ntY7OOvw6gx8RIjkpKRrtjycOs/lyFV3GmAITkYIMrXW6LpcqAjfm/oUQKRjqgwNBKl2qvpKxdhr64GT1FcYY0VojZSqRraskIfbO/2EQk6ossr9hh5kO749WMgJCirTPvsLgvMfZfr/rAONo2HPkWo4GCU+Q+VkFa0eDDA6vcrWH459Z/V/catDHfkKR6+/46H5ijGS3U5ChCjK9TRegdR5VbqJknjIY2mB0jg1tKnn6luv2ANMsiJ0g+gS1KMyYUxt3sLe4xDJOyYuSPM/SGBUSKQQ+eFrrKdWATA7oYs2yu8hV3kNtW4QsyPSYwgyBSPCRUm0SRYHKBF5HbEgQtgyZHOdMIbWgk0sWfopYWGgDYRlQuaHLlzRdA6sqhsj6YENjRIawsLhac/DogmZmsc4jtWEwHlGUBQiJUgqtFLa1LL1FGU1Z6AS5RHCwWBKiJxsMiDGgVSQf5AxGI6J3TOdzTFGgsg0yI6kGhjzzyOgJVtA1DdPZkp29mr39KUppctMQY2A4GlLYjq71tF1HOdoiN3m6r1IyHFaMsorNwTYugosdIPAhYkxGXddoISjzEq0Ms3rBfDala5ZQbSCFJkaBbVpE1zHZPsVoMEYIgVGOPM/Y2tqkKosbgoIP8Xv/99Hfj2530zYf9v2P5Uj/v7OmadHGpJlASTpb8+6H38n1yXXuPP1UzgwucKa4i9HZTa6MLvLotQ8ym+3jrIUAIULrI15Jqs0JZ4cjxlub3HnXHfzJ2/6IRx98GDtb4qcLltubeGdRUmK0YTVvhhAS5CFGsswQo8D3UNeyKqgGZZq7Q8T7SFMv2T+YsqhbTGbIMonRms5alsslzbChygsw+rDCnjJo0MP1QgiEfl5OzlgL3qNcIPOC3IPvLExn1O2COhOoqiArDE3T0LgGI3p4rfXoIIgukjBAAREi0XmUSJApKSUuwHS2JASN1ymzmRBXHiU0mckIEbquoVCC2LVE24F3ZNpQFjmjQcVwMCTLCtpuQessnbVImVEHT+sdeQ6ZgC6Cax3L2rJoA8YFmtaxWNbMaLg+rWmVYDQZYSYTgtLMd6Y8/J6H2b8yx4UAouFqfoXxcMDG5G7KQYmPOZ21RCHYu/OAg6tL2s7SWsvefI7MJFHFPlHVr+zr3F36PvpvZI0UUEqh5eF6dTua94frohAKYvJtpIA2OLJsFUSR1gdlkEoitcA6h8VCSBUuAQmyHALeCZwLQAsx4L1Pc4VSmKzAZFmf3JMIqUBnDDdKRhcqLs4fxfoWpRIkHKHxIRBiQqk468lyg1ZqXXlACCT0MCFwbk5mMoyRCOnwfoXkCFi3wLpI0zRkWZngWH0y0ge7ntOE6P3PeARNIY7+HYl0IEAJfWQ8REKIKCWQMlAVOeNys69iVKzpyn2cGnA0fhcfW4g+BXTBrROqEbFyVdY+GXDzuBIr/y2sE6aJEiBSZQMFUfWVoXQvCC75m/JokjuS6RzhBXvXroOPaGMYj8eUlUEwwPuQfFwhkVKlsS9gOptTx0DrAwKB7Esqh57V8XOWQpBrRabV+p6mNS372FYyxMBRDiPPPjfg1NmMv3jHActZqmBgIjLTGJOCjHXy/0iJZuX4rmBFN978GEKCWcFNjjqkfYXYY1fNCit4mP5OSAbfw4lSFt55BxGKPCfPMiRgQ6BzaWLyIRwLZoQ44sQKcTSYWwcLIaTBmaBMug8yXIIzrWBM/TmtgwAlCdH2VZi0MMm+8rAOyOJh3UqI9JvWJi0SzvcDMwVjqdqSBia9g3RYyei3iwHfV3JWoZKSAmN02n+IKep17hB6tTrw6hNPoop849BMAQbra1tB2dY/N35mNUae6Bg9RGgViPU7Wf/cTpUMpYcgC9q6IThNFgeIIPA+oHVEa4PxGdFbvLDY6IjKoZTBtxAQjDdOoVXg0d0PILSm6jG3KcBI37NzFts5qjwDlxyEhbvILO4QYiSTOZmqEhQigAqGqtikcxaVG7xKVUAB6CgRUSKlwImWjhnet+hW4pcJux2yOUv28TGiVI6UOUJoJJpM5ihpaPYW7D2yoNn3CCEpypJiMGQ4GqO1wfuACI56vs/VK5fJ8pRBk8rgIwQhWDY1nW3Z3E54eaUE4+GYjdNnWdY1drmgtQ1dlxHpyHOFiJboPbaNzOc1B7MF1w9mzJcdRgdiUMmh845lvaTrPCAZVEPyPGFUhYSqLChMlqq03mNtx7Ju6OoIQdHNZmxmJWU5RBlDvV9zffcas9kBk40hWiucc9TLOblRbG1tkec51iYOkVaSU9vbHAbZqwrekUresd8P7UNVJMQt/xC3fP12cqOuX7xKVpUoY4iZRiqJVoKme5T92T4Xtne46/RTGWdb3Dl4GpUecrm8yLX9S9SLRZoHI9gYmUdPpjWDM2cphwP0oOL8U+/i8oMfZHEwxWiJNiq5G12LlGne7qxNcCYiSEHdNbR1zXK5xGjNxsYGxIjtOurFkvliSWcdLoDJFWVZErLAYj6n6zpsZ3HO0bYtLnQ45/p1Q6Vssvd0Xcf0YIrtLMA6QaSUIvhAs1jStDV2d8rBwT52u+T0HRfIByXWO/ZmU7SWyBDBWqIN+NYRrSdaB51HuICOgkJrBlVFqRTROmIToVXogUYpQeg8RmfkpkAojbcdQyQjIcl8QHiPUCZVM8YjJqMNirxkfxqx0dFai9SKOgpa1zKIFTqC9Cmwij4kB9l7FrVld7/GIVjiMacqilNjssGY4GD34lUuf+BRumULgN2x1MMlFx9/nNOntxiPRwyLAusdEcHm+S2un91FNhYTwHYNKmii4li2Gg7HfXJGD8dgcgolQh3NWt9+ljLYaZ00WiMA51KQ3AWPX8HXif1YIlWIe8c3cRskOvY+DOAchChTYO0j3jnapkHKgFR9Jj64PmhJQakqDefvPc9SXKYNBwgRkMIAqYrhffJxuq5FKYXRCiWPoDP6yoOSmuAdwTtUXqBURIqEuAANscP5lhjTh1KAkbg1MfpjVQLoK3qsnPVDKD+s/M4EWZJSpkrXOtQEZzskMByMqbIttBggSI5zSv4mb8WFJUu7Swgu+TTRI+i/F0If1Aak0KySn957dP99IQQhetLcHBAiENcJ+B4xElMScYUgERKi6OEaMQUISql1AJWbEuElXdMSrEPpdM/LqqLIc4SU+AhSaoSQeJF810XbMncBF0WCkvZQLEEaN4IVciSZUoIqV+RGHVunjDLoj2WQkQ8NSjjy3PG8O7Z4zrPv5K3/v4f5wENTQieYbGyT6ZzgLVH0cCM4FmD4EPrsuusJMAnrl8q+/amvshDi+FIppCTGFDlmWZYgP+sIeUX66asYMfaYwDRwy6KkyAzExMdoWkvb2b6ScTTzLtZknRSdHlYmZP+gBmdTJUMpjEk32HmXHPoVLq/fK9A/oCnbFEMqT+oeo3fIyejPIx53BFKQoXCuJQb6ICYcC2QEYh1grCfT2MPFrFtXMSAilUL3QYb3ns7avqTY7yuNsrUz/yHJp0ePswqMODz31bVBD7k6WgW5ISiRT+ABrSpXonesUyB5HC4lpSDP8ic8z79K03Ib56BpamgvIEyJ8D6R3oLCGI1RGV62gEkTXhaRhcctoSwHbG1vcn3/vVy68jB33v1sqnKANmaduQFo25Zm2TIsPV3b0tgDZvFROt9gdE5mKnIzQAWFRjMoNin0BnNxAAW4EIkypoUnKPABR+J0dHJO1hlkrchUjioU1+RFlu4AhELLDNX/ZDLHSI2dWa6974Cdh+e4OjAaDRhVFZOtUwwHI4QQzKf7fPDB93L10uO0Xc258xdoFxPyLCeKlGU2JsN5m6qGwZNlOefueipn77mXed1SiwDdAU1XE+iQwdE1DcLDYm65dn2fK1evM53XaaIUMlUyq4ogBXvTAxaLluFwk2o4JMtzPAEpA0aDcy3Tbpema5guDzjYn9EtBVU+xrhAOdqmHG6AEjTtgtlsn/l8hrUdCT5jaZuWwXjMxtYWWmvatqXrWrq2oSozMvOkp13gMPP2kX3mI9v+r9ryWUMMkd2uwRmDzBRKKbIs50DP2Z3uce3gKnefu4dzo7s4lZ9hcHrIqBhycecR5ot0z30IOCIuWGxQlFXJ9j1PpRiN2Tpzisf+4v3Md/eI1iJFyuyGYMmzYj2nJ8IlTGdTmnmNVBqTZWxVQ7q2ZTqdMp/PabpEpnUxUgqJyXIk4K3r16fEg7Mu0rmWznZ0tkPrDNnPrfNZTdvuMB4NyTOD6UVRtFI0bU1YehbLJdcvT7l0ZZ8seMrnZ2xsjGnbFhssMUiEj7Tdkq6xBOsJzuNai68dsXPkHjZ0RpZlDKRGmIxgUqImU4Yikyw6R8CRZQXG5OAsE6E4LQzGulRhAVRm2BiOOL15mvFgg6u7l7GuZWmXSAFKZCy6mokfYIJJa7+DaD3ElAxbeonsRFrkBorhmU22z5xlkJfYRcv84jXcdIkREh8DsQkUu4E4WnLx4cfYmIwYDM6SZTkgOX32NNcuXCMua8w0oDIFRhGFTwkLKSFG1MqZAFg5TyKsKxlRaqK4vYMMdSQIWhGbV452gsAkf8J7j7cpyFwnccVqhfX0iCYgJpcp+DXh2wdH8C3BeYqqROCINuJj8m5lYai2J3Rqyc70Ij5ajDaIHiqbkrohzXXW92uyx/vk/K6SziEGYvDE2KBViZYFWoXEPHYzvFuC8GvHW2vdI0sSPMz3qPoQ/BGf7ZAHcdSPS1ULQSZHFOYMoBAiJpiSTB6KdYHgIZMjMjaRlBx1RpKH6mnDAbXdRyIT3IuA1HINB/f9iQmx8gF7n6v30VZ8jVS0WAVe6XXnXJojpCKGvloRPeB7ZE7arw8BH3yfoBDksqKgYHtzk9gnS5QSZEqjtEJpTWkyQOJ8IFrLdHbA3v4+O/MZQSbRnQi46PqAKqbgVPaJfyEYFopzk5zJ0KBlurZMawb5ECM/hnApoxUhBurOsVRTxiPP8/7GCJTk0cc7BtUGRhVIEZDSEUPWO8URa+0a8pN+T6pSq3UzrKFSR3IOK6/1yFoZYgCR8LNKHU4cqzHhQ+iVEkKfOXIoIdeVjIRj97TWYr1LA3lVdqN3rkMqIaUoJ6XKV6TvVYktxlRC0rp32J1f8zHW59T/P00QcU0UUipDa3UYYKxsVcnoX5IyDZKUtfbrQXqU9L0KjkS/WKbdHJKdElQqrh19bVRP+u6hAkdJ30fTPUdu+1FX5UM5LrcifdNXSxJx6ehOju90fe9vcKJuRfpejSchDoUFtNLHJuGPtwkxZNlabJMR6zFRBaQN+GyV2TBonaNcm0rL0hOzgB5GWEoG5RAlI2/5X39KUy2oZEVuiuQI0WeloqetG7qmw1lL19bU9hqt2EEKQWYqMj1AygyiotITTlUXkD7HC8cya7AxohFoBMKD6zqisFixTJNhrRHekFUDbLbL3F7FBYcUVf8phRKJ+BU7WFxsmD7a0C0s1lqKImM4HjMejzFK0TVLLl96jEcffojoLINhhVGKpp4jZESrHG8tWiuqskwVPO/Ii4qNzVNsbp2iaFvq+T7LaQoKvIe2tdRNJDqoG0fXOpqmI3i3dt7KsqKqKqSSTGcLmsayuZVTlBVaa3xoiD0+djafMt2dp2s1Eh8cQhiUVGQCyqIkqwosnmU9o22XdG3KWstemAIpKTaG5NUAhEjVjbrm2rWrTCYDhsMBcHPwEI/8n3hzRTfe8HAef7//K9609eGeb6O446mTTbyONPMp16YzpDEEGRFSkRlDmeVc393nys417jxzkWddeBabw9PcMX4qZT7gyt4lru9dZdEuiT4lfprg6FwkN4rq7GnysqLaGHPpfQ+yf/kStl4SZSLMZnnJeLhB5S02OLquYzafs6hrBoMRVVFSFAVLKVJFq2loHf36Ygk+oEXKHLbG9JVpEhw4JkU95x1N26Jccro6F9ibLQl+gXORzckI+gDH+0Dwjs5a5rMFu3sLlgtHt1ezXNZMeqixEIIsz/Cdo2465tdnRCLSpKRbyERSWrSBHEcQiehuBhUMDbIUyKJgUNYsFnNCDGQ6JzMZXdtQ13PCcoFfDGBUoTKDyXJGw4rtzS02x9sYnbHomqRgpDxeR5a+wwaHih4VAtJ7RGANc+68Z9pEqqFmcmqDrTNnGG9sYISknS8J+1NyKTFaJNXEGDiVVYzVBHvQcPHhR9kYjhiOR1RlyfbmhMnpCfPre7iuxWQaL0SPYgAfRJ/sPPqc9c55CEREgg2HgP/4Pgof1rquA+iRIA5rHcF7lNFpbVQpkBBRJNWxyBopsfqcDxBQ4FdOcaq4WdshYp9djw4lJbJ33GufjiuFojA5m2eHLOMerU9KR6IXVDBKJHEGwPlAZzuyPOsDEJkqLCJClGipezRLqupLHQnB4v0C7+tUPZG9zyUStFZpUAqk0EnMpxf3WSFPjkOlRA+7SigPpYZotYUQOrk5UZHwAil5KWXok2VjNCMkSUAkWZ8oxdH6PWxYAn1AFnwfvK74ry75ISIFIBHSufcVlND7lbKv5sQYoa8eGK1ID8vRgDgcSXKLtM/oe2RIOr/cFAz1gM1zGdE5bNcSRUTpHJ0XiZMj9eG87wSt7didz5nZGoRF9w9IFJEQVgniFec3Jck3BoYz44pBkaFlgoaNigHjYoJ6EiHEkw4ydEgD1fvIUgZUbCgGnud88ojBEJpGY2SGVgkrmCqmgaZp8N4jpcR2HW3dEL3vFalWzuOtSN+HdvRhkUr0SgpHHGMEIaQof8VZcD5BhYrMUOYFmdYQEhej7SzWh/UifIgUSo68EId8jD4EX8N1/Lo0l6BHINbHinHlHB/ig2Rf3oohlbx0j0k/jKd6dYs1dwEgopQ+5Hv4Q9J34n0c7n9F+u5LP2vnZFUxWhOvJT3How+WfEiT1Y1BBof3+sP5JMffP6xIrCoZIXpWd6OP4W5ynNak7yfAcqz4MuFGLymSpP1uI3WpiKbtFng7QYQKYSPKHhLxQ4gonWF0hvcdUbiUxckEw/GAUg957OGHefjBS5x5lqGUA4w0h7dXSKK32LbDu+SYWNfg2EMonyoLpkDrxDVQ0jAstpmMTtE2HdoagmhXhUOiD3R1jWs6hGqJwqK9RjiNyQpQgoXbo/GLNGlLg0BDlCihIQiWuw37j85pF25d11ouGzY2U8YjektdL/C2paoqRPCUVYUxGd511HNPllV4G6iKkkCegqoARTlgPDnFxsYGWdOyPxyBnaJ0xLoMFwI+LLHW0XaRpk1jXkpJVVWMhhXVoKCoEg/CeY8yhqoaUBZFyiC7QPAWERMheLaYYgpDIfOkoFEMyLQhi4LBaIQucub1nOnsOta1uOhBa3SeI4hkRc5wY5Msz2k7j/WRRdPw+KUP0ooxNj/dj5XDUfNEv63/ulF97RbbPeHrtxFe6s4zW8wXM969t898uiQfjyFTBAl1bJjJJVrNuLazx8XLl7l85Qr33HEvd525i3Iw5vS2ACkQezvM51MCjhhTpaEJkSAV5XjIdllg8ozRZIP9y5fYvXyN4BNMYHM0oChyOme5en2H/d3dPquoyfqklJQyVc6VorULXEgV1bbpWCyXlL1SlVSKKEhwHhfw0a85dU3TIKWiCxGPoHOeg8WSvCxQmcF2Ld4F2rqlrpuk8NSlyku3dFy9fI2sGjCdzYFIkedYIYk2Mrtc0zYOXWp0IclyTZZphAYfIl0SfScTkBdFQiSUGa2z7B80OBvQypCbgv14wHuvPI6vLadDYDIqEHmGKSqqcsTW5jZnT12gerhisZxhfZIqzVXGPFhaZymcx0QQtkP4gIKV0jjRe8gM+UbFYDzBKEOoW9qd64impVACafQaxrw5GjEQJft1zaVHHmd7e4ssS1Lmo8GQzc0Nrm4UzGfLRA7WgthyOPSDOAzIj8BsV/wAYA1pu60tup5zKVGoHmKjkFqT5zlSCNquw9qO0PMqZC9Hv7KV8mSMKb8eosQHQfACEZMwgSkTXykiiVGitFnfp3xYIivPvL5KlD1kVqR8fYiu59omzos2GqVICqBS4vuE7ioxnPwRnZAgwuHCks5dJwS79hFCz2HSJkfIft1D41yN6+H2aQ1bJVBWyVUQKKQskDKnyC9QmDsRojzC50zqcUppdKEZmA1G+RkUAw5bxx1mXX2saf0BPnSJb+IdIYY1dHmleCXEkfMJIYmhHFFXFT2Ma0UYl1Ks4U9hLTiUCOChV5mKRIJICfZVohrSvJQUDjNClqFzgSp9QtqExPWKCKTJkdoQpcDLSBM9+7ZlETqkCGt/UfQJ7rj2DJJvWRYZZ0YFm8O0VkIaK5PBFoNs40kN3ycdZEgvGZYj2q5hUdfMlh3DLGewGbnnWZLFvuVgd4H3WSpBkqIuH0LP/I/YriVYi0IQbcr4BCA435N60he2clRXX7VYq0hFtM6SQpI6PjGElerSCi7lPCF48mxAWRZJgjcEWudoui5VB1b7X8F7Ysq+J0m/Iw6xOKIQtaqm9HwMSAohPtzaKVdKpii0VwbIjOmle2+oZKyPlY4r+wz9ShkiVeDiGn/IisvQVzHWJKcVNM15gusHUa/uZLKU+YghYHtlqdDzO47C024KBo4VXI66Qce1vdY/fXUo3lCdOXadx3YruBXpO8aYcIt9EHVYIl2fZFLquo2CjM5Z2q4heo2IhugF0oJcSSqvMuy6QNqWiENG0LlmtDFicX3On/7xHxOshq6iVBsYnaXbKEHKSNcmVaPQV+2Cd1jRgIgUeow0JYhU2M1kwbCcUA02CG4foeNaoEBET+g89dRh24aiMhSqAA9aJahFwxUO/MPYEEEWCDKk0Ghl0FIRDwTt457lXuI4SZlwv4kzYiEErO/ouobMKM6cOrVe2E3POYpACA5BJM8MLiQOUlYMOLN9msnWaYqyJISe52Mb8mJAbpIkbTd0zOKM1ifMvBSCMisYFCUboyGj8RCTZ1gfyEzJcLDBZDKh7Csm3nucbRAiYDLFcDxAmYQtECJQlCUZmkJpBpsbSCOZ70zZ3b2GczYJKmQ5WV708L2CPCtS4NMmgux0NuXS7kWKpygyM3jiQdQvVk+q8HCTf/QhHKbbzI+668IpZouST14+DffuDxCjIOqChYRFL8zRtYkTsz+dceXaPh947FHuvfNunnb30xltjCiyijIfsVw0yckJEQgEkZJOTkbKzDC4cB5VlZSbG+iiYu/SDiZKBoOSzc0NOtvR2pYrV02SNe3HxCrBI4To+/4k3kQQiTA7m85xRbbmufkQaNoW7yxZYdYZzK7r1go5VVUgRJc0b+pFyiB6T1N3NHWbIK5CkGWarHM4F3Bth3MdgsMklxAQfKSdeZYHniTfHMkrxXCUMRxlyFLRuTT2Oi0YDST5aEyZZQx7uV3btmipKUyB0Ib3zabsXlvylKXl2Vsj9HBA5jrGmWZ7s+L82Qtsbpxib7pL29Z03uNCoFGCpusoM49BoL1Fh4CSKeGohCQrJOWpIeXpLfJqmCqxO/vMruywXCwwfeKus44gVuRSjW5hsZzznj9/D9oY7rjrTsoy59SpTa5tj1NlNK/AWaa2RbgE1k49m5JnHUJaS4C1cygQfVb8Nirx3cKKPBGvhUhJTd8nq/IyY1AOUFLRNA37+/ssFovkAwm5FqtZC8P0tsL+a2VweVL6lBxyGlJSdBWQpLVp4/yEmb9G42eIaAk+gkxqh9ZarHPMZguatmM8HvTqmStObpI9Tb5ZCkiMMuS6IDMWT4aLISkq4Y75cANpQMSEPIkOHw9VpIisfaSjpG/ZI09ilEg5AlGk4/eOu6AXc7COcTVkUp5imJ3pZWuP+xIRT+v3WdopLri1o38j1/gwTk2BTggerUzag0++8Ao2tVKJOuSOpBOXQhGFQgjVVy08LjqETMGwD259H6VQlKpEBUM+KNFKQ0zBRbNY0jaz1AvFztI8JuBgseD9O1f5i+tX6IJNQUx/H6Xqc1h9K4kYE09xs1Ccn1SMhwVapx4fg6Jie3iWXA1pXI3Jyiccv08eLhVHdI0lRoURmtZ3NG2LUZAPoSiSNvPiYAtvwXubuAo+rLF4tmuJziHXTvCRQuURXKTog4w0GdAz41NQkBy0JDvYb02kx+CF2Dtevo+eA7nJKPMCQaTroVJd53CrXhcrN1kI4pEeDPGIL6tWg5aUHRICDpWfXJIJ8zfCpVI2IZG+EyxJCoHRag3/WXMwIqmiwaqiQsLUKd33BUiVjhUfI51hX8mQqSx4E+nbu756Evqg5bCSEULEWndEtaIPD47AMD5sFeNWE/N6Ukn7C716wtFg6jgnY6WKcRhg3bzLw7LvOhNx5H6ZHqpwu9iym1K3B0i/SUFARsB6tDVYHbDBY2KqZiidEZxHoSmzAoXn8ccfZPfaVcpsQCm3KNQWxqRs6WpC6mzHdHoAQoNQRBHxBKLIMaYkKkMMAhkFOioKU6asoQg00eJWE56ztPOO+c4UrTV5oYg+BRB5XuJkzX74IPNwFciRvXimEhpDhuoM9iDQ7rW41qKlQpgsBRbOrwPN5WJJU9dopamq6shE20/2BKytiSH1Lgh9QuDU2bOcvuMuRqNRn/GBtl4yO9glU5KiqihNjh0O8TEwnS0wuSEzGu88SoHREqUENlicTwmMsigoizIlCQQJz++SNKRWkjwzKSvdObz1yFwm2GVZUo5H+OCYzQ7YP9ijsy2IxAsyq/43SuJCpG4arEsyrct2SSwj+eaAkN9qoK/+eRLRwJMMGFawxdvROrtEho7nP+tpPO3cGVrriXnFBw8OuDSfsV8vubY/ZVa3WCdwtqXtrjKdTnnk8kUunD3P2VOnE2TDCmwd6LwnYJGib2xnkm58JiV6c5NxXpDlJaPxJovre6hMobSgVBmDQUlRldhrOyzrBTEGjEmSl3meMRwMsDYwX3Ysm5QtrJuWED1DNURojYuBZtlD75TAaLlOXnVtSwiRIsv6xmlpLl/UNbbt6DoHCLQxKWhxnqJzOBHIM0NZZhBLZvO9lFiIvm9S1k+fPuItBBeIziGCQAuFMDBfLFhGx0J2WOnIy4pcZRitcWFBrjR5X12dhzmXZzXRXWP73utsnjtL5TskgWpYcWbrFGe2z3Px6qO0TYsNERcCVkgamxoIZlEyUZrlKEc2jrZ1SAHlpGBybovx1hZKaKbXp1x/3yNc/+Bl6mVLVZTImMRZQgjMpguklOxN95jaGcvQUY2HVOMBW1un2BiPGW9uMp/N0Ubi25SIWq0NyVlNlW4fE7Z9Jfi1SoaFXjnsdrbTW9t9Jjvh91dtACSeMpNkmWZYDtHS412DcwGtklTq2hmWhw5xiKkxHpF1xUP2ic8IEJNjnBqiwWAypNzM2ZlfB3HIsVj5AN4nuLiPgTzLKLIsweu9JQZBjCIlVoXAB9v7P6GHUBmkLFDC4EhJWR8DWqemwFKalFizizUiQ6GOczN7W18rAe9bhNB43+DkDCU1UpaAQgqDiAnNIaOhUBMMAw5n36NoDkvj9ml9m/wu0Vcf+vdXiQjZX1+Ca4VegfQ4hH3loolewn313vq4Ufb3a8W9SZwppXpyeC/dKyUYmeObjtl8B7W5iS4G6MwgyLDWoX2F0BmqJ/Q3yyVXr+/z7ksXuVzPCaQoMoaIj+CiJIQkW7zyS7UQbFaajaHBmFQA0FoyHkwYZqdQwlDbXUbZ1hOO3ycdZHRzhakUQXiCgCxTBNsAGh8k1s4YbCXM//XLZe/EJja9lCppLLd1GlzEXn0iOc9Sir7TcypjCtKgVKpn5ssEfypKw2RzTJ7rFTLosDIaDisZzqceGbJfIIo8RxKx3qcmfC41qUlwrXiY1egz5cfhUqx1kP1K1UBKtElBxopvciO+GlIJPQ2kvjzWV0DkqnJCX2ojpiYqq4dFyrWy1GElI66vb6UsJVIEdkMTvhQieOcPG9eJmKT6jEpQtpBI4Suy0vpUjkZWTyK7s9riVlUM4urYh2/eDJU6/Px6nysuxgqu1Zd+Y1+RObzQdKzM6FshQz5uNq93mbV7ZKGklPcCFdEFpItJjS54vLNpXOoCvKdQgtLkNMvrdCQoUJFVDPJNinwjdXo9YtY6ZvM6ZT2UIoiAix1KlAiZHCuJQKGRQaGFJDhH29W0ocPjUzXRRZr5knqxYGNjAy0TxyLLCqSELu6wDJew0SLFEInuv4+MjIK8K3DzhsXBAmctWmdopQjOrwPYrmuTk7OYUebZITeqV1zy3hNEoG0T1rhuGlSWsbF5mq0z5zl15izj8RgpJV3XcH3nMtevXkMHiR2lbsqr3gTVoGBza4RrW+pFTa5VL5kYWDY1bevAS7RKcBitdQrQgqVzLdY2KAllmdFay7xucTZlU402DDbG5IOK1rUcHOxRLxOmXStNWZYYY9b4YOcD88USoTStbVl0S8487QzVxnAdNK7G8nr83/DLzfHBYbbuVq/f/JnDeeF2izUe93NyPCMi43FG1zqMEpzfOIczdzJrLe9/9DEe2z2gQXHQduweHLCYL5gvanauX+f09mm2J5tkyuBdxDtJ6yPW1wgZMJnunR5DYTLyqmBw/hymKik3R6h5Tesc0TmcD6g8Y7AxZtGkZomZ0VRVyhLm2qCEJMYD6qbDuYAlQSBc6Ht3WEdTt/1aZ1OlzaemVdGnoNV1HXlRoE2RZHOJLOQSZEeeJan1zOhUbQdUU5MrwWiQk2nFtZ1UGXc9h6hUiqgSGV0KKJSmlJrMKrJWkA8MKkqCh93dPQ66OVFITp+/o5euTVnWTBkybdBaEqRif79m58oudz19ibUjrGuZ5IZT21tcOHMn73/4vUxnB2kt8Z4gNQvb4W1HkRWcGQ4o79ji9LBgNm+STPCkYuPcNsPBCNs5rjx2hUsPPU69P0ci0AGiDzQuqfd0TctyLhEdyGXE7rZcfOQip85ssTHeYFil/jnXr13DOos/wv+LIa17aydOHIfbrorszvXSrbexGQ2iT8LGXONdSFC1zjI/2AOScqRScHZrQAgKF5Poivd9YjTx4JNwgXPEPvm76nMhpE7Jxb5LuDEgkOjCMDkzpAm7uJCU2YRUOOt7SdXEOZvN54QQKcs8OairxsddC1FiTI4QqZmcBIoyR6pIxBPCEucWxGj7ZJIkhIgxJVqXQLtOHK/4l0erCKuKYer1IdYVfqMygo84psisQsiKGEmQXwHQoinI5AQwt5wkXaxp/AE+pgZ8vleIOgrTCiH2VYnVOa0qFZEYXV+VSMlyRECElVMEsPpMInynKlX/XUWf1iefGmWuritGAUGxd/U6XJti94aU1QAzHCOzgoBG5gZdZAgEpitpEVzpWh5ZTGn7YC2KQCDiosBGgVtVg2LyS41SbA8zyjwFhQCDYsT24Cyl2iDGyLzd58zgriccv09ewjZLGGpJRtN4bKxBZHR1199giVEzzMQxWDYsZpYYcpQqUEpSO0sMlpXiQOiZ6ytMWJQBoVXf+bHPXnuP1Iq8yrnr3FmUEX20luTViBKkSji53qle9eJwzmG0pixKyjxHxJ703a6a8B31f/tMed+/A3EIzwJ6/kcidUYS+XbVur2uXWqUx1G/PO1vTfrugwStFVnfwVus8gZ9RiDVY9JHpZB9tiseytf2vI5VR8fVea4b8XEYMYc+0xHXUm+xx0muoCkhSTGug4zDkCeuvo8nMSYih4SrwytPe7qlOtWRSX51358ID7sKMg5J30feiOk+GW0OIWS3gc3aloN2QSGuMNZ7mDgieoP0AeUFVnmct+Qho1AZWnoGWuGCZU5DuV0y3Kqol4FBOaYsB+uu7yv8pu069g6m5IMJIjME3WFDi1IlQiici2RCoILBUCIcNIsls+UBS1snmUepCJ2lmS8xSjIoSzJtyLMSrSVd3GHGgyzdlEiOkjmSpCSSi4Kyq5C1oZkdMJvNcJ1LUphCHMo0K0Xbdszncw72dskzzebWFpnJelWf5AS7zjGbzajrmulsxvbZs5w+f4FzF+7k1OnTVEVB03Xs7V5j5+pF9ncPmB8syIucU2fOMBgPwQWKXDGZVCi/Sbsc4LxDiETU8wTqtmWUjyirkjzPU6ZaClx0uNCCCOkZzTKk1NSZTVKgecF4sMGp82cRSjLf2+PKlYt0tkFJyXBQUA2GSKWScp5KpHUR01wxXcxo5YIzTz1HVQ3J5dFp90OFErcw8SS2+ZDv3EaROHCQK7JScd15ZHBoBRvSkds5edBMEHzaHaf5tPNnkVnBbmv54M51dpuOx3b3uLp3wNXLl5ge7DEZTRhUI3RWoZHUrWO+3MOLjtxoBmVOVRYMspJRVpJtbTCucvzejO76LvNrcw6WNTLLmJw5xXz/gOCTEuFISYosNbBr24bpXCHFSqIyyYC3TUfTtDglUxA0XyQop1TkucF7h+1S4ksbSVFElEyETyklsa+EI1Kz1MGgoihN3+C1hUULfZPZ1RwQY0RHmBhNnsFBSM25cqMSDypAW1twkUFe4nJNKzrmTcsjl65QjLdSg65e0EVJTaYN0ihiHrALz961A+azOZvbW7TtkhAdk40RF87cwfbmaXb2LuGsTR2QiSyjp+1aqrygGg0Y55rtySgFZRFimSOHYyRwMJ1y8Ngl5tPknBqlqDubOhFbz6jUDAY5o1FJVeVoI9mZT2kuzXn0A4+yvXWKM2fOcubUaa5cucyVSxdp6uWa2J14iodrokQcWQ8P0QCh55muXrsd7aEPvJ8sM2RZhslzsrxCqYw8y7G2o6mXeNeR5SrxzHSaX9NaL9brpg+k78J2JCR13/Fcp+x4jAlVkLLyEqRnsFliNh3XmsdZqXJ5F1mphlnnsS6wmHVkRU5mUgPh4FPmPvlhVfJ2oid4m6rmRqCUJYQFbX0JH5Zp+1XzOGko8kEKBEN32F+tRzasAgtI3/FKYSslqlNDPq0lRuVEFImqkqozUiTyt9GGQXGKQk1IsrWHzv/Kd+n8nMbtE2KX1pGe8B1XkBPEGtWyrpCROmSvyNurviCRHsrVBw5i/Xsf5Ma+j04kQaOj6OHiKfh2rsV2jhAlZTFChshsekA330/wfZMj8iHF5DT5cJS6rQuYLua878ol/vTKY9QxpL4YIu0zRAgxBeCxR8Gsno3CKDYrQ54JhPAoJRmXE8b5KSSSOtTMmv0PO36ffCVDKVSAQo84PxmxM73MrN1D5RmOgHUdWjgqvWRyh8R6ze5lD0HgnUPgqIqM2LU4EownNXlJjoZUEpMlaIM2EiUEuVRsbIwphiVZqREqYoPFtgkTaPI8OQnOY5s26ZC7ltZ1WGfJZGL3K5EyG2tlKXekAZ0QR3B6icwTZRpmwDqTnjC36bVVEz4Q68HfxwHrgSronUKxIn1Hsj4wkUd4BausP6uP9tmxRPqOh6pVK1xpqtmlY4gjfIw+uI7ENOkfacKH6AnSSrJqumNtCsqOZjtXlYxbBRmryfrWdkRXah0UpLq0WFcxjk/iYnUZ6+s+fqz1fvsGdCss5pGNkP19iuFDnddfvQVxhk7WuDCnY4eSM0SfE1uPKBPW0gcPPlKYHJlB45dMuzneCKrtEWefcorrV5dU1YAiryD2E6tIz9JikVRwiskZ0IooA1FGjCpxMUEotMjIGDDINlBC4a1lvpzRxQ4pdGrm5SO5zBlsFQyGA4q8IDMZ1i+Zi8fYDxexGKQaI0SGEEkO17QaszTERrJcLtaQPmu7NceirCoGZVKQyoyhGgwJ3rFY1KixIS/yfkwIQkzQy+nBlNlyzh1PezoX7ryH7e1tBlWFkpJuNmN/7yrLek6Qit3pAfZaS9M0bGxvEo0gKk9RFQgHLnPUbYMXHm0kIgpKU2CMwejkUKle4c4HRxdTw6bCZKmZlSxhIyM6TTUcUw1G5EVJ8I7ZfJ96vgc+NUkaDYdkRZEGQAStNAJBlhkcgdYvKLf6rDh9H4F+2zXE8UMNqA/xxo1KU7f82G2MNY9IgtR4HRJ5XwimWuOVI9iWPARKke5VXrcU5NxZlJw1OU+vBizPn8cazc58xqNXd7GARGOynPFgG1DsTq9wfTZlT3jKImNUDtgYDhmWBZU2ZOMBOkZE1+GnC0xRMSxKpFG4OmnP17ZFKoVa62v0TfV8RAiFD6mxoJonQY9m2dK1qVLeCUlrHdZ5mtoihGRjlK+TSsSV7GWaC23XsBSCIjdkffOrTEncfs3e7gFRqtSHKkB0AYOiyA1llRJgba+W2PmU6fYh0jQtmzqHLEMGMAqkVgQkWVYkKGHbYVRGpnO0UvjcEnXkYH/Kwd4+5y+cpemWdF3NeHSac6dPcWb7DA8/nrPoiaYheloES9uyET1Cpmc8yzIGw0AQkpjn2Lykcx69mJPZhsIomn4ZcjEQXILFZkYyHpUMB8W6T1JrO+Yzy/VHd7h49hG2xhPGgxFbk02uX73ar2crwmzqNyBjXGPNxQpG1Y/BEMHHuF7Xb1ebTmuU7tCmQ+mOjUnGYJBTFDkmL0AoFos5y7qm6zxZlhIdUore10g/LvS8WN/18v70fZQCQqV+GEqptRCP0ApZCaZhhzbMiXiUSA00hZRJJt8FlrXF5EOKXKOUwRiDDx3O2SScoXrlMx8Sp1YlWFvK9LdYv2DVfC5xHiRRKKTIEjdArJoeJ/UqKVMyepWYDbBGNhBTB23RX78PS5QaI0XeBzrgfGrMWVYVw3wTI1MQ1HvXR8zTuH2sbxDEviLR8zoi+JiCjgQ366tncZWsjb0aXN+qQWpWwj3eWw6ptaEPcsUhyqevzsSYgpKUNE/oAOdjQqHICB6q8YjobUpGO4+kQ1tHhsIhaeuWBy9e5o8f+QA79Zwo0v0SPa8nIHv/sr/+Hr5slKI0gmEJWifp3SIr2Ci3yeWQECPLbsqym37Y8fukgwwnBJ1MhCrhBaNyhA9LmmDxUtDZkDLjKpDlLVsXCkBxcM3ircAowXhjlKAbfkqwLZGEBYwypCi8ylAahsOSQVWi+4xowNO0bcLaBUcIAiUNwYdEXnWO4DzWNdR2Se0aOlKX0QcfeZRuWXN6PKL1kfmyoXOuH0+pn8eKkBNDBHVcWSo58n2lox8ZWqm+HOjXvJOj+ZE0eA7J4rHnVGTGrFvIr7HXq7oth063lGqN2w3er6sYK5IO8oYqxtpbX2XYPN6F9d9CHQYZkVQdcatAa3W+6wj+0Dc58vYxW0GZVle7jv9XQRskrfNVkHH4yWNO0U3U9xvL2T0XZlXJOLobYuJjaKUJ1t58kh8ny4q7ydoli+UHWbhrDM0MFceELqA6lapxKHIhKLWmti1TW9NEh5KKYlhy6s5NinddZlCVGNWTvmMaqZ1zLJfztPDqnsiPw8gMoTNa1yGEJpMVpZhQZRO0znDBrolrIkYIEY2kGAypsuR8Z5lB4Og4YB6v03oQcoyUA2RUKCTYSLtvKVwkOk+9XCYybIjU9TIpaugkG5uCDI3WisFwcGT8Skye+hR0qsN6T1lWLBc1WQg85anPZGvrNIPBAN1nbpt6wf7+9bRA5BlxLul8KtMv24Y6dAwnAzY3JwxGFU5aEDEFD/0CkCmNUTrhg490+Q29/jjBg0zqGbkpyNWQ6DVlMSArCoTUNE3HfLoHvqbMJCYr2dqakOfZuk+Okoc9H0LXIHLLqCrRElzdEP2Kf3b8eVi9dPSPm+KEeIsNb/z1xg/dhj5UXg6wXYuSCbImYqTxgcY5PEkAoBaCNrYI31FGjzIe6RyFE5w1JXlV8azJmOn2NnWMPHT1ACsULq/I1GkEcD1K9g+uMZvvs6unjAcl4+GAcVkxLiqqXGMmY4bLBjVrkmqMglZrfGsTYbaXCKXv/r2qnPoQkyxkcAS/RGqF9EkGVPc9lIIPST40ksajSzCXpLzYkq3UqWRa5K3tWC6W+MzQtl1yBhYtBzv7yKog+IhXHucs0QcKozEF1J3Dtw7bk0yVSBX0RdvROo+KIvXSCA7vLCGKXikOQrQIMrRKKloYiIWg61qW8zld12JtS2eXZEaxOR5xenObsixYLhf46PExQS9q31G3XQ/XtWRap+SFNugsI0hNGy1OwtmtISLA/sGCuk3IBB9T08rMJK5BURaAIPjIqCpppp7mWsfFhy5x9sw5zt9xgcl4TFVWLA/mrPpCxNCTnlmJpvTrTUz5ZQQ9VCTi/spH/0dmWZYjtUZnGVpnIGSCPfmUaAtI2s6ymNc9pMisk3sJen7Y58v1c7UyGm0yiqJaK2CG4HFdkv9OXIwKvRHZa3fwpN5moUcQQBIesJ1nMa+pBqPUubt3kmPfp0zJLJGSRRJFKLIRmZFILN51WD/HhwYAqSWhl7bVOkdpiXMLfOgAhVIJVp6ZnBh9ejZD6DmzKXmb5PoNUmyi1FMwusToEihSpYawTpgqUVDoDeQtCN9E8LGhtqkBbYhiHQilQDUhZqztkkqWWvVq82sIrRSrz4j+3JLEdYgeRC9ru/K1ouifW9knVpOfhvB9JdRiXcBaQWtBVyVbky0oB6mFQi9rHFHkZYUyBRjDrOn44P4ujxzs0fXNrFcKVT4mSF0g+V6rFoWxHzPjUlDkIiXGZWSQDxjl2yhh6ELLrN2ntfWHHb9POsiwSXyauuvQAsZlwdbmXVy6/iidXSb1A1InyjmOKttj606DMhm7jyuM0mS5ZqxH1F2aiFyX8G1FrhmPSyabA4SMlEWBVCkq7XrZWed9L10GuTGpK2VMnSqbrqPtWrx3FGWGlbBwjiZ07FpHfeU673nsEiKk5iuN9USZ+AlS96oKfclKcAPpW646fYde2UOgtEr6+sea8K3uVBqG6aHu1X/6rH7WS++uJrvVgA0xrvp3py+lz7J671MTlR7nF/tM1bpykOQjekf+iLKUT1FtCgZCqrz0XXVjdLg+u7aGSt0QCIQn4ZXclHtdBxh9sNKX3+SRh/d4JaNP3wlY34wbHCyEZNW08UbSNzGum/DFNYH9429KbjHI72JRX2QWrjKO19BhC3yOdopC5AyyikIbondYAVEpQhQJd2s0g+0Bpy9sUZaDXuZvVflJDZfapiXLC7Qx/bdlKbOSWrfELqCFIZcFlR5TmAqj8577kCpjIkZkTE17ilKTqSw14xKCNhwwj5eZhRrPaJ0FkjEiPNj9iJgKKBVd19C2ds1DWI1TrXOGwyFFUSRYh0kciDTODpt0FkWx5kZIqaiGI4Ybp3j2fc9jY2OTrHfU6uWCnSuXuPz4o7joE7QyU2Q+Jwo4mM3Yn83Ymx7QdjWDvEQFhVCgosBGn+IHJLnOyXWqZkgpSLp3/Y9ITd2MD5Rlhc4KhMgxZoAUEus8y8WcZnGNQe5ho2CyeZaNyYQsy1I5H/r2OjERwKNHVJ5soHBdzXKnpYwrNY54WMw4ZseDj8O44hbPZfwQdZAbgpFbH+fjZ03dIgToXNG27RoCoY1BhIANARsjmAxhBPvOghSYTFN0EXt9l3DtClsbYzYGA2JXc/9WxWA8ZG5hp47MqrMcbG7wgYsZV/Z3OFhOuVLvsTc9oMxzBkXBKCsYIdHDkjxCt6zRWRp3McvIZIK4BuuIWiGMIisMqIjziWjtQqSzLULCqNCMhgPyssBaS1036+q18wHvIvN5s56zizKnLAuyLEcbQ7Cepqlp6pr5fIm3kbC0THcO0JsBYURqBRaT5G0VFFWRsdFXMg5aRx1AK0GWCxYxsLecoULDzC7pioAuK/Z3D9C5QfTOTiSSaZPEC/IOuZF4ZM1yQds0ONuxXE5BeLY2J5w/c57xcJO9vYOkgOUj3kiWztK61JDt2u4O1ntObW5xeus0Q63RnaAIjlPjCnPnWYZlye4o59runPncgQ2YXv40dVHvMDpL0DOlMVGy3LVce/8e7x8/SFHkFFnGoCzZpe+T0WPaZZ+cWcm7RO9ZKSlCChiDZ51Vvl2tGg7wrsXbms41eFvTLvPUSDREmqbBdkm7dw3dEUk4h35e9kD0ghAkQmlGozFlNaQoh2ht+k71HfP5jGY5B+Wptis6fT0p78neEQ0B1ftDzgUWiwZjMoaDkjwDYyQhOpx3pHutUj8o7yAmjqzWLd7VBGpau0cIrke3CQgRqcEogZIBLy2CQLChh+QrpFD4mJx1HwJKJu5d4tgalBoixFmU3ELJDCkTN4qYFAyFACU1hRxhxJBVh+9DSyuCDUs6vySSFByT7Kxc+ypKCHKT9w0DE/w9kcDTXKZk4pYkuLtH4vChY7UMJvhWUg2LSERccW1T35yu62jcnKbtaDtPZz22C8SgMZOc7Y1T+K7Fu8TPigiC1ERTYFXOrO64eLDHuy4+zMw2az8vQbhWLQUTXMr3n19VaoyIbOQiBY5CkGnDRnWaymwhMDR2yqzexbruw47fJ8/JUAobfHLupcSJnFIbtkdnkNMrtGGBLjTRe1z0tC4itKeaQD2TdDMPQoMUqYmMTsRTk2vGGyO2tkYMxznEgNKG6BP2vLMdLgSE0inrFRL/obOWGAUekQjd3mGMYntrgl7OWbgWLyRK5rgucjBfJr+1F02gLxdZ6zHKo0Vqny7UCj60qi70igE9Vm0F0dFa03UNbk36Pm6rBz2RvlMJLzMr3eTVOO4hSMfgUklhZOVQhr6/xiEn4SgsSa6rGqsgI6mOrDpF9kGG7ntzkEjftq9kHPl2IYo1bvDJSPodDxgOAVMI1rwOcfgmh7WPQ6jU6nO38n7SpYq+G288vk3/a55lh/fwNjHrBYP8LKPyLmaLh5j6S1ThKRh9hkE2ZFSOQAUOumUijmYZKhYQUhbVSoMaV5y79zSVHqxVlVY8Je9SVc/kBVIrIg5Cg0Kkil4MlKIiDyNyNUTJ1BQpCPD0WRQfMUJRypzMKDKTZDhtbJiFS0zZwYoslZhF3meuHM2+p70oGQ0HaCXZmc5ZLpZr4pvsBQuKomA4HCClTJr/zRKtVd98KVur9gDkeU5RlBRFxfZZxdm77uX0uXMURdJ/t9Yyne5z6bFHmO5dx2iTlGK0whQFwXus67vPRsWyXmJtg44GLVKWfFE3tEuLiobCVMi+0rDuv9MLKLSuIzoPXpPrpE6V5RmZKZJSinN0zQJCzbBSGFMwKA1VUSTYXoxJTjmkxT4ScdKiigAKZvv72N0G1FGv5uZxHT/0C4fvPFHUcPs8Dh/SRIyJ07ZYIlXKsiZuWyQ/UgXoi8AJOywjNnq8CYhqAyM0i4WndjVOtBTR00z3KIXi3rJCZjmLTnCnPM/B+TO85/FHef+Vi7TBsX8wYzpbsqMUhZJMdE4pIp23tD71ltBaIYwhGgNGoUcDiq0xA+cRswZlA7ZNGPXg0wyX5TmTyYiizGmbFqNT1rlrHcu66WU0+2xvWlFQSlMUJVqrdS+ppk69MwSS0AW6gyXFqCLL84SZD4kPqJaObFglNZ4InQu0LqAzicwzQmE4aGqavRnTZsngrgGF9zgXEDqs55cQVuTvRBYNMhKMZL6saZY1wTq6dol1LVU14NTWNlsb21y8cpHWtbgQ8UJiiVhvyZXChsil3V122wUz4Zl0DRuiJBegRYIPSikpyoyqKphNG6aLhrZp8LZlvoDOesq8IIZIU7eJl+IEbs9x8aHLVOOSsxfOJoiiEH2AcSg+ItYZBHp4SExUTiGRUSACyHCLcv1tZFleYgUIaYnBQ3BEHwldEqopTVISS6CHRPLuRSfR2iScH4mknVAXMil82o5WLHEqNchr2o7ZfEbX1Zw6v4UZwTzMkSpBSmMIqSO2oBfp6AgC8rJACshyg5I+IU1UhhS9ZG1IwUmeFyAsQjQI6TDas6jrde+uo9wEpSCEJjXa9AkxIqVCsoItiTWXJsn4K7Qao+QYRIWSk+SHhIiIiQ9CDKlaZwRGFFRmgqJKN+qm4q+nCzNsrBOXpOdVKK3WQQCIXqpXrpwetJQ9RH+VTEtVgBXyRPad6ENMstM+hPRd0ftzgA+eznY0rWXZOura0VhP1wW6zqdWuEFjm5rgLFob8qxAZiVRG1oUddNybbrHX1x6lN3FlLhK5IZVkz9BQCW577hWrk2JdQFFJhkNDMYkv3VYjBkXp9CyIkbBvDtg3k57Wd0nticdZGQmp7NNIqOJyNx14MHIku2Nc0zn11g2U4bjihgEXVvT+kCINVSGWAdcyHBWQ1BIaShKzZkzpzh39jRSOYRIMKbYBwArTfAsyxOpMqYW8L5rcJ1LpG+hEu41OlyMDLVnsFExaga0bk7XdXRtl0pEPZEGIdLAjzGphDhLYSSjQUlmVJqcglwrdogeT7giGB2Vrz3kY6xGqTgc+KLPsseA0X33xzXpu3euj5TgVlyixPdg3el71cwvlQL7mkdfIlwpX8FhpsFbt3a+k3ytSrJz4rAJn7uxkhEP9/FkbEX6Pjo9i76akbqOhkP8F9z0EN8IlTq276OcDCnXmt19tLK6bWS3YZCxbCwb1SaTwTNZLq/Q4lCFZDLZYLixCUJytb7KblgijWFEko401qRyqNDIYsjmhZZhO2AlTbyq6FhnWdY1Ji/IihypUok7+oANdXJ0REUmhmjyNSbXx4ANaZEySEphMGi00hijCdHRhh1m8SJLGpAVWlbrDrB24Tl4rEYclGSbBcEL5vMFi8Vy7awncrpMvIcsI4TAdHrA3v51lFRoY8iLiqIoKIdp3wlWZBiNx5TjTc6cv4PReJhUbnxguVwwm+6zXMwYVgOEEniRMjDNdMpy1qKUZqMaoXNDyBpau6TtOgqVE2LgYDrn4PqCTOeMR5MUvEoFpCSAD71yiPc0XYeKOa1uCUoiVUmWBcQKS2stWgjKPEuQDiPQR5pMJVlcgcmyJM0ra3zs8L5leu067Efy6pC/8aTtr288cUsbVAOUhCrPU+dhn2pKvle+MToperkQ8D4lSkQIKARam9SXyDrcRoHWFaaX7d6pF2A7hl3H9fddQ9jIcDTiTFmwdfoML7rjAmJU8QfveQ/vu3KFhbNM25o5NZmQ5DJ19HZdhwRakVNqMJlBbgwo8Yy1xOwtWB4sINYJghgESgnKsmA8GjIcVCyzmiLPEFLTtZaD2QzrXOIjxZCeY52aXhqTpUZzWUamNcFFBA2R5Bg285bMR5Q0GGlw0eCDYH9pyUSH6YN8H5KUrycyHmjMMMd2nt0rU+bOos8UqULuPNppMpmRCKcWJRPiQEpB65Nc7/VrB+zvH7B99gyt7Wjqmu3JhM3RBqe2zlKWD6aO9zFiETRS0fjQS+IWBG3Ytw4xPWCx7Li6jIykYWuyQZ7nKG0YjUYYbRgNOzaWSxaLBfP5kt15S9slcQWjFL4LdC7J1PsmsNhf8Ohjj4NM0C5Pn7FPaW0gBbOiRxqEfp1e4e+Di4gg+mr7CjZ8+1nT1FjbEYNDy9SzRYRAcF2f1IupStMnIr1fzccSbwMotU6s6P53RCR0NU2zoHOWuq7prKXpLPmwYPN8RaOuJ5SKSPwj5zza9EFpFNSNJc+H5Fnec0AgErCuxVqfqnMIQrSpWpFlCGGBmNYtf0DE9XyLhFKRvSiG9xbvI61NTeVWflKyHi0iNCAxaoCUOXl2N1puYp1HqxxBL8ubouj0OZHuQ6GGDLNTCDJWUIGjkPEQO5Z2h6Zb4KIjEeJ7ny6m4CkS+nEm+yB21cOmB1SFyIpPuYJXhZB8Otn38fAhgPIQEzInhsSXbVpL23naNjBfWrrO01qPs5FxUdEeHPDI/gFFnrGxMUFPTiFlRVQKF2BvNuP9Fx/hvRc/iOuJ8PSy2UkNt6/wRVh7oFH0VR7BuNBMBhmZURQmY2NwikG2BVHiYsusvk7TLdZtCp7InnSQEYJACJ2aZgmBV4raOmSuMapiUG4zmzVcapcMygG+S6o/7TJy/fKcWEsqHTGxYjQu2ZgM0UozHhWUpabrAiFITJbhrEulUusQUpDneQKFtC5JxrrQZ70CVnRM28TBCD4Qru9w+sxpNrc2qFuL7RapwYvyEHoyjdSHGY4gCB7a4FC2QWtJqRS5MVgkbXB4bxNuWIKQqwGSnJPjQcZqohK9U7+SHIuHTfhWkKLIkSHN2n9eZYOFSNJwfdR1WMnoywPH+BgruBSrIONG0rdEm4QD986nTt83eifx8GxuqBvc0ok/vNpVFC7W1xaP8jHWccFxCIhYlzOO7/tQ/aMPooTsyWBHjhhjT97VPUb69nG1mqZlUkwYmTu4c/JiJtkZzp1+OsNqhHWWRd0wlw1OB5RL8sdGGzKVp6aOUSBUTjUZMWqqPstDP1FFuq5hsVgglUlNJnVDW1u8c1g6QJDJEiNKwKQJRCSSWggOFQUlmjxmaKnR2hD6hkMLcYmlqImUGFmiZFLVwUWmVzoOHptzZjzCmBznSU2zEGiTiM6xX+SVNkitcdbStCnb4qOlbVsO9vcRUjCoBow3NhhtTBiNx5y58FTOnL+L7e1TFEWRFNDamsX0Oov9awxKw1PuvAMfUjJhMKrYLwuuxUhhHcPBEERkz7d0wiKFByXpWsdsUXMwrRmVKQOspe61ziOttTTdkratU/PAzpLh6VpP4+coUzEoRxgUXVPT1jU+gs4rjHB9gOH6vjR99ltKdF5gqenUHGuXzA6us/v4LkVTspHdOGo+WtfmQzhGt6OndIO1Xc35yQQlBC7PiD4wyBSzpmVv0SS4VJdEOlzwvZO0mg9WohopyRKlpHGpkpHnBXNl2ckC4pnbFF6ggmDn0h6hDpw/fYaJk7z49Gk+775n8d6r1/jThz4IRc7ebMr+3gyhc6yL0NW0S8usa/pKg0aMK0qjUGWFKjKEkjBvoHHJyUMgVQqoixh7oQGDtQ6pBC54BqMhCDg42KdrHFIbAknARIpUBavKkuWy5WBWs2w9Cxz5smO8qclVTlQFmc643jVgawbG0LoE5zBGUGzkbJ3dZLwxYn51hm0CPka6zq/7LHhnEPQyz8GipUw9DoymFS3N3LLbTNm5dJ0Ld99F13XM5gec2b7A5mTChTMXGI9GzGczUnExwT6W3jGMgaqsmGxusdNMOZjPWdQLwk5HrB2jquDChbMMhgPKPEHGqsGAyeaEpmlYLhv2pwsuX93n8s6MReNQKApjUDISRMDbyHS64OFHH0kQniNStOtgYlWlD7CCasaQnGHnklzoKoN8+Nm/qqfgyVlT13S2I3pHkRmEoW/+m9Z723VEIXu1MIPSOo3LFTrBx9TMsfcdlExCO6JHWkBq+FfkBRUFm3ecQm445t0uztu+N5hEqxylErzRWs901nHmtEYJSW4yiEnwIDVCTjdRitSlOwaPliCi75sXL6i7a6nCgO5hOocN/FIPmNSOQClFnvfQ6BhwPvWcEUKhZYEgR8ScrqvR5SStd95htEJL0/tRDiUNrrXkQjIoJxR6E4G+Od0Zk3Rt7Q966MvK9zpUL+1sh7OOPC/XazMcIg5W1+9d4oumik6CtK0rbmsURwpIgg94Z2k7R9N01LVjXlvqxlE3tg+wJZuFxM5mNBKMHNFZR+M8LkSc98zqloevXOLPH32Ia7P9w2PEiA+keVPIxM2MghAP/VEhIBOeoRFsVJo8UwzLEZvVeTI5JOJYdAccNNexvn1SD8uTDjI8EqRBqpRR90pSe4f0ApNXKBTezXj0g48hZYMxGmcjtgkEG5FB0MoZ5zYHbA4HlFlOphMe22iNtRlt26aBRao6rBrr0bQpyHAW13eoDkJhfaCNSVe78xYfPW3XkecFm1ubbG0OaJY1UhScOrVN2zmmB3OUMki9asMnca3FNi2t90yXLd5oqsKQZen2tKnVGSuKWMQhZHIokrxtr2ixgjOJxONInb5Tpt1o3XemXou8rrPwqy+XGFE9FGvFrVgR0sPKyV5xMnqIxxryEVeVDI93fWdIegUmszp22qc9SvoWhz7JRwOVOryeo5mAuMb23epTh/CqwxeOk75TxWbVZC8cDSL6CCjPUgYiBr+eKG8Hi0GQ64KtwYinTJ6CRhPigis7S4QYocsckR3yF5xPUJ9MFzTdgogkioguB+S67BsfxV4pJbCs58zrJXq8TVZotNAgJV5EYhSpfwUDjCiJfd08xD4jFCNDXTBWFblQGJ34Ho0/YBYfYY8dOpG6kSuZJ7K5E9ipp7kSqOSAyXhMbgzzriEKgcnzXpavV3nzHmT6bp13WGd7/lSSUBQqdcVuOk995Sqz6ZTzT30az9g+w2TrFINB6oY9X8w52L3GzqXHqecHDMqMMk/a6y5GRmHAuKrYGAwJ1qWst3OIhSbWgaae0nrLvGuZL1tc6Btcat13kGd9X+bLKYvlPr5rUA6iTtmeziUxCylUksBuGurFDOc9WV4m/LFPzqPsJwChek14I/HBUXczrF3SzRa0B5ZSj5HSPEEd7xYmnnjbD7+n2y/quHJ9n929PYrMUErNwBhUkXGqGrG9tUkdPdN6wXS5oPaRKJIT6UNACLXmcMjY91wRkWn8/3P330+WZdt9J/bZ7phr0lZVWzwDgAA4QwcaSRwpGBPzk35ShCL0vypCIU5IEZQYDFJDEgBB2IeH165M2muO2VY/rH1uZvXrxmtwQKKk09FdnZU3M2/eu8/ea62vq2nOTUNjNMF7jjEyFLC/8YK2GB6OE29vH+AYiOGOnzaO3/nv/h7rFy/4g5//Bbd+4g9+8QVv3t0zlUSYR/I0MI6ebrWiaRqa1QpjG7Qz6M7R7o4MjwPH3cjsPdPscXYk50LbtrSNCKpDCMScuNhupHAyluM4S2GoNSl44dbniLWarm/ZHyTocoyJae9RRYkZRNvSr3uS2vEwR8aYZd+wmmbluPr8ks8++ZgezTEfTiF0KUpCd0yxWr5XpDNFihEjDVddEDEaf0zcfHPPeByIF55x3FFKZLNa8eLqmsvtJe+ad4RRaBtGadFwpEzbtpzbC7wz3N89MBwn1iVjnWE8eL78+Vs2257NdsXF5RmrzYr1es3FxQXbbWK92dL3PX3f8PbuwG434ZMX5MGAMgWihwlcpZJCneyzWLfKcCulJxcpKQqrGP/0uA/3cpXJUVIUClLORB+YQyDFhI+JggxoV2sHGrq2isRP45/Mktel1DO70gKQZc/Wop3bXDkO+S2JEesM2YvZjrOOmAIxZg6HCV2RL2PEgaiQam5YrudBQFnEedQYrC0oPRP9yBzE5llre6IDL9o+kPcwZjE4WPLWQJ0GvHIVUpnq6yLIWUkKTUtMEWNKRSAKIfraYmqs2rBqzrGq5/29cRlwJqa8Y47HZzXRwpjIlEVjgq7IS40j4Ck1ffkdyil0L5/YLxJEqyuLZAnfyxL+mmCavRiMHEcOw8Q4B8Y5EKvTVtf0rNuO3ija1ZZmcwWrc4Jt8KnweDjyZ998yZcPNwTk/RZrZ6oGQ/6TC6c8lVNVVqBzivO1ZtNZetdw0V+zdS/QOHye2E2C8PzQ6IC/hvA7yKbeOHSIdMZg2oZpGHjIM13jWK+u+Oza8OVXXzMG8TvWWuO0phgRce/GRzarhnPXsHIKVe1gzUIHCQHxsBLRkLONTK+ieI1rFNo4CQCME2NI+FTwoTrEkLi/e2S1koLosD8yHmf+D//DP+Pq6gV/8Ysv+c9/8ieMfsQ1ls1miymGu3f33L27J0yRwywIwsYYNqseUzz74Ov7IAtNG4W1CmM1ugpMQVdOqHS7JPmdtFIn+9pfmj0uHaQs44piSAhfWlLEF9F3/dpFj7FQspYboBRBeNIz+1ptkElzddiJ1b5W1tUi+lbPns5zuOHZ03zeBHyrYXje+KgiNnQs1KmnX/PZ1zxhIKjvXqjy9J5oKM8/U0qpTkjSgHxISMZPP/o7/PqrX2PTtYzDnm9u/jPf3P1bev0Zn1z8M2zfYlICnchK4eMs007XYLQVq96iME2DNU60Szoy5wemcMsDf0D/2RfYzSNH/Q6rDWm1wzSwyhus6mmsoTCR9ANeOVTyxHxk07c02rGyLU6Jl7qPO6b8hiO3eMDoFqureDBkGArxTtGxYn214erqEucMiz1A07aSDVELvhwTRksiqiBmGuU6Gms5W2/oN9cyyUmRYb+jsYqPf+3XufroE9abLdZapmlit3vkqy/+kse3X588z1UpGFXJDaaw7lbYS+G4WmOkGd1p9Jh5OMDhfsccAgVwTQ2RytUJp1IJfQwM84HZHyBELH2F4S1aV8tF11DmmelwYPdwh+4yum9xriWrIEMLZU+gnG0d2WmZSuWRME3ER08ZQJ9paVp+RePw/+9XyEoOU5/YA+RM7xxXq4m+ZrV01mK7FV4VgobJR6Z5Imbx31+CuFJKJHINvYvYxhJCxgcR4rvKSx9jwGxbzLZDpcTee2IqvOhWHKZHLhvHJ5szPm87Xl8/sL665j/80R/xx3/xc/bDkWma6Pue7dkZbd/JQKi19JuOdt1h3CPHxz1fvfmGq/NzLi7O6atItuSM0dJ46wKtbVAr2Ky2NE1HobA/7Ng/RsZ5RGfR/7nGoEZFnmHez2JdqxWma9lse1xrOE6ZGBKN0fRrx+qTFZ98/oJXV1eE3UScE95HAokYhH6WkuRbLCnCJyROa1x1iMtOtBuPtwemw4APnnE6Ms0Dreu4Orvg6vKK7puWMIbq2qYJGnyObNqW3vW0IaHiQJwmtDKse0vQhWlM3N3s2O0GHh8PXF6fcXV9zsXlFX3XcX3V0XUNq85wcdZx+zBy/ziwm2ZiB7EVowZ8YW3ceynQ71FrxIHlZJyia2H3dKx82PeitVYaAyUS9pLSaZCXlUJpgzYOV+lnSltyUiRy1QFIZpdYc6tTcBwACkY/yRhVQ3/WEeyeMdwQ4oBSz2xtlSIGXwXIkfPtFmMKTWNQWjLGxEZYGg+tlYTvaUvXtJQSMCqjTcYUg1ErFspqIZIragFy9us6cV/sYOVzVupBUXJLZg0elMHqFZQGVcT9E3Kl82Qk50FhjKNzZ/T2vFKl6lWWPwqpjAzhHaM/UFQmJl8duOQRSoFrGij2xN7IdS+S19fU+k2eo6qoUUpQ0KBKPR+96CFyIqcGHzSznzkeB/bHgcfjwDDNzCEyx0TOGmsNK9fjlCGpgllt0Nsz6HpSKRyHgS9v3vInX/+coz/Kujk1F0r+VNS2U5FOw3Ep46yCTaM46w1Nq1l1Ky5WH9GYLQBzHNiNt/g0n3Qqv3L9/uCVrhJKi7DRKCeQ19JlliLNQOv40a9/jtLw5RdfM8weVIO2lpACsSR20wHeJeI08eriitWqTnXaDte0+Dmg2IvHsrNkhQi/tZZo+LoeEhFfQ7aUVqdFEJNAqM3bWz76+CXnFyvm6ZGU9/zox7+NW8P9cAPF8KPPP2V71vPu3Q1nZxbrIjffHIhDZvSRfBjY6BU0tYjWWgS0ZfmZCmUAlXGNCEGn0RNCws8TDQ6rNLYmudoqCNILTFaeEZMqrcg6Sfr2Xlx7eK7HeJb0rfRz+9pF9J1rCF85ddFKa5yzJ11J8FWP8Yx6tXgkLxvXr7q+/QhBYhTPpxDvffJbX7VoN76rznpK+pYmivIMyXjG5To5S+X8Hkz+t3397k/+ASXN3D++4+3jWx7mG95Mf855G7lKv00XzymZqjUTdCxFj1UGZxRhnillYiqBx/LIEP6C6I88vH7N4/glQ3jD3O1JEdTeoDBQZHNTRuHRhPIOq1p0cZh9hxt6VHbkbQHVsNcrZr1F5wZcYk5HSmnp1FkN8LGQNTkW4mDRyXF+ucZpzfZiW22eiyjErKZkMXNgORi0UP18KvTnV5xfXNL2K9bbM7rVWZ3eJOZx5uxsy49/+utcXl3T9T0lZ6Zx5Osvv+Q//d5/oEx71pstzllAUAVttDwHLS40utpWqgJXZ+ew8vRrzaNqsWmkZWIeqs2v0cIMrNPMWBI+joQ4CjVWtRgtwUaohHMNXdPhdWCeRu7u37E6a1lvVmhlBCV08v8KMVbQThN1ZIj3DMdHDu92jO9m8gScSZGjnk28/mtcH3oTY41GZaF25JQIWfbN435PyY8YXei0pmtasQ82Gm2d6HK0ZvaeEIWe0RjDFGfxeM+Z7H0dwhgpEmqAVl7oGEWhWkNqOkIuHE0mq0T3ak3y8LgvnF1e83K14X/6nd/hX/y9v8//54//M3/y85+DMvhxYooZ7RzNak3TNujGkq3BbVvKNHNMM+tYaXRJhk4pBPw0s3t4gLNC0zT0qxV9v67nGxz3Ox4eDqhKY4ipkIoixsK0GwjTBDnTdQ1n5ytWG8e4l+lyQeM6w/mLLVdXF6z7Fcd9IPpY3eXEpafkfDIyydWKKadKS1sGYlYRrOzR48PE7uYR/+nENA/sjw9cnX/C5dk5r65ecbZZczwcmeOEtpKbdYwzfWmx2qB9Iu0D8ZiJTqOdonMyasrFEnPh7e2Ou8cDd7sdn8fE5cUFq74XGlX/KdfX13y033G/23Nz3PFV3rNvEplECJK1QtGUHFgMSFC57mVFhvXZ1DMOKPpkK/WB3yqklMlJnZqimDNFW9quwZWFouewzlVb90ZOlpjJ2VcSq2QuGCMI2WrV4ZzQRjebFVmBJ9FcOx7Ml/gg6IPSIijXRrSRMRRiKPT9hqZxWAfGVIMahH1itSPn+VRsW9vS9RajZ1ISzZzWmRAnXGPp3Uu06hjnL0FNJx3qQpWPdYglDUmpyIep9HN9QgtCPNK0QSxtKzuiZI8qmZJAN4ICbLornDoHHIue4ukqhLxjinegBDlNuZDJpz01VmRFmqCnIajQOQulxNrIJxGBG6HOx5hY9A+CoodqeSs65cl7hjHyeDhyGEf248RQBzGSTA9nq5ZN09GtemzbULZborNkMnMIvHu450+/+gVvd3dICsaSB7OYZzzxTsS6FiSLRCFScNi2LRfrjlXXc75+xaq5RuGIJbKbH9lN98Qo7KK/0SbDWU0pCeccJckBPU+TLC6tOE6j2M3phs8//zWMavjTn/2cmGGaJ1IRmDaVQpqyqOfDSN/2rLs1l2fXtE2H0oZ+3aGM2OIdBvHcXkLp5piYomc/jxznUWy4VK76gyVlMnN7+yBd39rROMf/8r/8W4bpwObinBevLrm8/JRXL17ipyO37/6Er774hujFRSCSJPjFZ+bHPd22ozS1oK/UlSwrvR5kqlJEJLREa1Alk0NAA6vNhnXb0WhJTNZFo1WpRUk6QW1KPaVHnqhSz/UYVBRgoUrp96G+UkQ4Sf06WfiqTkJkohZCfCrav0P0/avWzCImX0TfJ0xiQS4qgvI+WPN9VKnv/2mqChm/rXchcxIXKwSdyT8Qtvtvcd3dfcHXt18xxAnTWWx3Sdd9yhR2HPMNPdekPJPzEaUjIRRSNAzKE9Ig6aLxwC7fcZOOZCZ8HPFhIpdAIZCqQYLVTiDPnFBJkaOspxMfWVWPr6Kp2a5oVXDaYk2HNlbgahRatTS6w9CilRHLP20w25Zm3cl0SPfkfiTHSFkn1i9X0L1gGgeM0nL/xIRpFUVrLl59zOfbM7bnL3BNQ9f39E0nfuwxoK3l6voFL1+8YL3ZYKob1f7xgZ//2R/zn/7g9+it4qNXH1OKiMBjjChtaLqOzfmas4s1q/UaXddJaw1nzYqmK3SlY2sj80VkGgMxZM42Z1CdWDIS8pjyLBkZksKJc5IGDvqEMnmlmWMgeE+OhhIjqojXuFG2IiNy72eVCXlmnG4JhwfGtwfC49P9Zer9+HS9X+X8lxc9H3i19OxqnQUr4V3eS4ij0AhkbytKZM/jPMM8oygYrWiblraRQDDjHJtVhzOGEDtJ3Y6SQhzhJPptrSGkRK50AGsUbdMwTZO4WhWIWhNbODpIPzrDFMUQCo1p6ebAP/3Jj/gnP/kNVNPxh3/2ZzyGwF++fc3oI23b4DaKjXVsXmxxKJgj+uglrEsVSpKGYx4n5nEipcjV1RUreoyGtnHk9Zr7XsLqbm+PGOsY5swhJHws2EMgzTOUXB3cVqy3HY83IykDDlSnadc9jWvIIRL2R9QcWTlLTgEVCypXUeoy0S+qUqgCzkpiuDhrQTEwDYG7N/eiDfAzh+MjVxcfs12teXlxzfn2nNv7e3z0NMZQtGZMiRBFMIuPEBIqFcacGAyc9Y7LzZp2tWYOmfv9keN+YHc/8Iv4BYfrPS9eXHN2tmHd96zXQptan61Rd4q73cihCOPAVHcgOSWeYRhKnQrWXFkBQgyQgdz7Qt0P9+o2W1KMxFn2XpJkJ1hrRBOmDNZJWKpW5pR7sLjmnU5qrchI2vQ0ebz32BqU57qezfWG0B+Yp6NQrNLT0PHkbDhFpilzfn6FazXWyPoGBDWulB6jKg3KWFZ9hzGiCZz9RAwRbQIpQtessbpl3V9jzJFhfiNoQq1/gIpgLM/liVIlUhpxYNO6B1bSHFlBOHRtAGKYMaYlxUTb9azcFUb1lTHz7SszxwdiGUXvlQra2DrblOflgyCAXSPotehuEymJZ9PSvC9ZaVBEYxyFabMERcYkGol59qSgmabC4RjYDwOHYWKo7lKHSRDXnIXGtG4s/XZLc3aO25yjrCXnzDDOfHnzhp+//ZpUcv39BbEoUMXe9bfMSy7GE8UdVbC6sG4V65Vj02847z+iMRsAfBrZT7dMfs+StfFDrh/cZBhkMWoAI0WwaRxx9riuQ/j+gZhmbLH8vd/+O0zHgV98/Q0+Bjk4cwKD5FiUjJ0h28R8GDkcd6zbNat+i2laQuUazj4ITD55pnEg5UQomTkmirbiN1wSqgTEBUFetBAiD/c7SlihadiNe/7zH/8ZP/6Nn/Lj3/otLi6vWPUdYR65f7fnq5+9RWuLD0n8pEt9Y1LC5YgxLSqLw9XpNTEGaxuUmiRBO3pZlIXaFGWs0qy6jlXX4ox03hSNKUVsdOv3Kiz83RZqsyD31OJSwDNa0vtJ36eNNAtdiipsQwtVylhZ6DkLhUC4qc+7gPdL/udL51chG++Lvp83IZzQmdPuvnxNnSR/uyZ6T/Stnk8uyqmBEWqMcJhLXpqwD6fJ+J9////KnAub9QXX7pquabi8/E2Ow5dM3Y69/YrCkZju8NNj5YwqYpzIeSbkPSWPxLRH4aXprQE/SsnmFXNCaUVWMj0qRSgB5SRAE2g714CsUjRGb8jF48PIhELpg0wzyzLZkwm7VgZjRBPUGIMxrtq9OpxZc5/XNPYMc7Xm/GLNRVnhZ0ucA2VWJJ8wdFxuX3Bx+Tmr/ozN+qzC9uL2MU8DNhsur15I6F6/kqThkvDe83B3w+PdO9FBJMTAIQTevn3H/nAgFwnE7NYNH392zccfv5IEby15MKotOGfp+x41RRoiTktibNetJJQqizhxCS5rrRVROA3Odbjqfd42DdpoIpkpiAtSzpl5nmmbhozGdAW9QOZGE3JgSA8E/0CfDBfumqENhFYaGGub97i7T3v/dzUbf3N/9yFdXdfWvUMsIUNQ7+1jWksCcQiSHKyV6C2mGOSY1po0e+Z5YtV3qCLe7hfbFQnFYZpJdeCRc4IY6wQfIhkTVc1uUczzLD/TWWzr8ENhJBMbzWqzwviIGh0uG/pi+Qc//SlZO37y4iXKKXYh8B//+E9IttBuztiuGlxRxPs96hgwvtLzFISc8PN8CoOM1Yhjs95QcqKpoamPYyYw4VNhimLlq0KGEFFkGifF23bV0lpNjArTaOzGYZzBe8/9/ZHDm3c0KXHRNmQv7sklSbZHKZqClWZ7aTKMojGGxhgGBzQQD5mHmz3Hw8DFlWiYYvSsup6rs0suzi9YdS1hkhA351pi8fiUaLTGoDCtozSBcQrs58TFtuXqeku33tCttxwnz5dffMPdu0fGIXGTH5kmz4sXF7y8vmSz3dJ1LVtn2MQDdtKUWSa1p2jL5awqpQ7QngXVPqOFUGk9OQuV5UO/Vus1YZ4k+LhkSjZ1WJjEKtbaE83odFXUYnl1nhwAqzZNGyAxT4HH/SOqbfitH/02u3jLFI6ENONsWx25MqAZp4mHw5HgNVfXCqPrUNWInWzORZxAlcY2Gu9nOafTLKniSuEaTUgTKQ1cbD/DOct++IopvJb7EUshSHOwBAdWu/FFE7HUBbC4LkrapWsuMHotzbSS4bfVlmIC69WWMEf6Zktrz1G0T/vuM6JEYmbMEjInydzl5Nq2hLYqVG3qFtqd/G7GaFIqpzNVhrqBOUyglCCvKdamXpqMcQ4MQyQF8HPmOAaGYeIwTBxDYgqRwaeqKZKsp841NOs1zWqDsjIMSynzeDzw87ff8HZ3dxpci9g7k4o0nLqIpjFkTX6fVIgGGpPZrjVn657z9RWb9gVGCZ1zjAcO/p6YfC3FJKTwV10/nC5V4asUxd9XkWkb4QqiiqQ1NvLioRTtxvAP/uFv4uPIN2/v8SEK17k6PQQy+3kiq8Sma0nFMz4csA93KLchZUVIhcknyckrilCQxiMEphjFmq1xlFhIUWhMcnjLgjgcB1IMtH2H0g33u4H13Z6/u96yWrdohSRchoTFEqaCxqDry6JJqFzEHlBJZxiyEieHCigYLdODWIU0y+8nNLJ8cs94ohOp6otcSCWRc8IaTbfpuTi7oG87og/gEypmik+UWPk1z8RCpyaj3h6LDiSFyCIWVwacszVNViDxJyRDmsbnk5/vQzLe12M8v54v0gUGTE9Nxnd8zftIxvf9LFUPYarQ8/1vJiJ6U7nOz4L6PoDr68PX9M0ZKxqUatG6kQT77WekcmSf/jOKAyE9EvMBVISoSFGs/zJzJdNJk5oqVU7eAkVBnzi1Czp1CouMYk8gYn9HoZwoJanMlJJOqcU5SQOScz41GVkplMrELMFDIT01n7kIMqJQuEr7c6bHmhXWtbi2pTUtGkPnLjFth+lajEtkM1OSTJiDnxiOE6v2Bf3mE9peo6zoJHwIPO7uebj/BqcjV5cbSlY0XUtWioQhZCU5ClqxPw6Y24wyEWdlqmRbhzov6JWhJLPMlTAK2q6n6QR+D5WOaLVi0zbEzTkqGFp1zXp1hnMNEOXg04pQPGOaCSTG6DH7PSVl+vUZqWgaJa9PUokp7dlPX6P8wKW+4MVHG8qVZZwnbNdyfnFxSs399j2Iem6IoJaHLA/k+d/8lV/Lczri86/9cK7ZzzjrqqZN6LDwpLcoVWtjrRGHmErDQ2U610AKHOeJh90jWinOGktXVnRdD60hYlDKMEyjHLJR9nNVhzixBnmpDJvVilQKIYlNZ6znz0EndGcpVqELNKnQtz0uGn7cf0YXI7f3d/za7/5jvGv5V3/wB3z68UtS8uysxas9Zow4CtY3WOuYxgkfAsfjgA+RYRjZbrf0bUtKUVzzKPiYGVMS0wJtMElBiKdmpG8b1l1L31hCKtiVwW0atDEMh4Hx9T3T7aPcFyfr0xqklhKplDoOlum3j5JvYZDHaqehzZhBc3wY2D3sefmJZxyOzPNA355zfnbG1fklm82aR/+ItZZWt6RSmHOm04puvaJ7UZi0wT8M+BwJZFabjo8/fcX1y494e/vA/jjw5esd05gwk+f+MHMcZqZp5vJy4ur6gqQzD/7ILgVyKTglWRfL7VQlzmien2uIiUVFbbJSYiUKJ43Ch3yFeYScaKymKEMwcraLS7xYaBujWMLUUo4smQzONTWxWe6rnGOlqcmZmdAk7cAp9uWRx/mWRBK0N+uK9ggNe7cfGcfI9dUrcdlUsWZo5BqGLAGoRWVKjuTkWbU9jQtYXUjFUEqgcKTgyWVi8olcJlJWzH6GohHHJ0EiYgpiDuQcfp5rIriRLBCtai2qad2WxrUY3VQEzVKKIsTANM2sO0Vje9bNNY26QL2X8r3QOTJz2nH0dwzTUGuZys4gV/rdExK9DFYX7cVCjQpBDIJiSqgsf6ZcmL3Hx0hKinmWQOTZJ8YRUsjMc2acPKMPTCEw+sicIBWFT5kQCp3t2W7OsKstyvXkyjqYvOebu1t+/u4bxjBz0uxUqpRQmUsd+IpuZGE5CBFHiR6jbThfdVxuzrk++4yVu0ShCXlmP94wzo+nbIz3GCZ/xfWDm4yYRbCmtRGhSp0eW2PwfiaMAW2EJjFmz5c3X7PtV/zv/vk/41/9q3/HV9+8FbvLU6CeYg6FnGdSiGz6Hqsswc+kYcaHAran6bfYxpFSIaqCn+rGM0tIX1aq8s4SxRS6VYuxViiXJeMT6FhQGIhwfDxwuH/kfHOGT3Dz7pGH+yOlKEloRKFqOE9JoHKhUQmjFJ5Eqg3CguoYpYQDyFJMi6uUUhI2tV6tKm9cnd4YVRuUkgXIslbRd2Ljp3Mh+UiZI2qOMGeIsigyFqUtyliJsa8hNgIUFLH1zQuwlyWMpzYZuWRCqM5SJ5eNp/e3+k08/cX3rJ3lUeq9f59uuO/2TX5Ol1Kn//te0bd6QjJ+Oembk1FAiuHEKf5Qrh993rLuYLs54uxOfKtLFHQiDmQmcjpWrmyQ16BYKBZNJGdPLE9rJVau9MkEgHKCw62Vo7RtW1m7pSbvJlBaXtvl5cklQKnuF3XolUsma5mCSBbJ8+Tuyv0tlXbwBEsBkUhijiOUR0BgYaMs2irMaLGqp7Ur1s2aRreSbxPB6gbLBS+73+HNbmTMH9E35ygMx+ORr2/+jEP8OZtXgY+ahhQbtGpQR9hOa4pNdK4jUziM4HNiNx4gFxkY6IwawW1b4qTwjxHrLY1qONtoXJM5Ho+styMXgNWGbdtjNteU6Gi4ZLVaY3SDMZa+68k5cZwOjHEg6cKUImU8Erxnk6G7+AzbWHSr8Hri4B/ZD69pQmHjLmnbLcZ25Do9atrqzf7sep+x8as37r8OUvEh0kHGUSyDZzWLvbcxVSRqKh2qSLOBqsGnIlRuGqFODMNITgXtNNqInXWcJu4eb+j7jrjuyUpXwamYb6zbjk3bESttw/iMv58oIcNWzElwBW0tViWykp2uFEWsCEvQirnTmJJxK1gHw8ZtaUNmnBK/+8lnfP6jn/Dm7jXp8gVfta9598U3pGjRbYPrWzoKjbGkAof7R+7LI2dnRy4vL8g50DSGlxcN98fEPCh05YMrhJKiVKFrHWw3rPqe1hm6knHnLe22w2jDdJh48/qBxzc7tpVaGnLBRbH3ZPHrVxpddV0pBbKNoISSqo2iuAI6c3wcebx5xM8B7yfG8cB2c8V2s+Hy7IrN5ozDbk/jhGYxa008HsgKuvWarW5JbcfY7tDTQHGZSKLrW7quYbte44yla0RXkHPE+8Dj44hKhf1u4P6wh63hq/mBQzV00Ajy4tASNAr1UHp/zS+0W5kwC+1F2ETqW7TjD/DKEaMUXddglSXnEe8V0xyrk2SGkoiJGrZXUMoKNdbWrIiUKSmSY6jUmIqklYLrW65+7Zwh3TD6PTEHjHZCz82SCeF9YZwSTbOmbR1aL4FyinEamEaP0StC9lijyDksrG6MNcTkOQ47Qn4ELVEEx/FOApC1IJoUQ99dMvsDuoBVGtU6eQy6opsKrVwNO/WkFDCqx5orGrcm5yR5HRU1zDGSoiAOnd3SqGu0WrPoW+E5gyPj85GkRJtUTniAFOcxhPr9JWJAa01JuVKjIIQAKIZpIsYkJggxMs0zPgRCjMwhEWJhGCPTFIlRESPkqEhJ4WNkCp4xREIpMrzOS9K65bzt2J5doNsVRRsZDsbE/jDwxds33D7en2rzUhuMUpZSMVd5kuxpaqlVEfq+M7BtLeernsvtC877j6oDF0xhz268wYeBQqSU2sb/gLPlhzcZMWKMOqXZjiGitK65DmLjhZIisGhFKHIYX60c//Tv/zbWWX7x1RuhelTOeEwKMgwpoUukr2LemBM+BnKacP0G6ywxB6Zh5rAbGMappkjKxpGQgiiTyAn6TYe2llIyPmbyMNNYQ2sa9nc7/vgP/hirHGD42Z//jN3hKM2Ks0J1qonZOadTr9sYQ2cLKVZ344JsTqrUDle4dkJdiWgV6dteAv6seElrVXnxWqGS2MzqRYjVd1itmUbPMIzCL56joBhZUZQBbVC2RbcdxcqUdnmeKUbp9JcAP4roMVzVY6Rc4bollKa2CN+q4f+q6zuRjqrrWFCaE4fzVAD9cvOi6tR3+fjbSMlyA8vPfNaIyN5I4xxKK0p1bfmQwviurn4hNoMojlOo4nxNKbEK+HOFTCudzlTnkBJqYyhNa4qlUhhE1JhrWuvSZGglH1ujCSEIXQ9OAZY+hJMtoPAyn9bsyV1EPSWWLlOxpckQWpY0rKI3kIIPVS1dMSz2y0XJ/eeZ0VmhyozmyBF40ApnrXCigcY0tHbFYf8zvjis6Ltr1u4CqztC8BwPd+TVBDbRn0ngp8oGOxWal2fs7yw6WuYxoO8DPs2yV8RI9JEpTeAynV0xz4XDcSY9RjpaYizkaLGmJV29OL02BkNne1AttvSSeqyEUtC4hpgzwzSKw54zxJIoQWiJdp4FlncG7RRTGXic3zIMD9hJJtdd02CbBq1bYhGTiu+7/ms0BB8idSqlJCnzQYLAdA1mXK1WlT4oB702BmssWJEx6nrfW+uYfaTUIY2mUMbCl396T2MNZ59cwbnj0BzxKAoGp41s10aDabCtJppM4zPqMaOsQm8VgxetRtM0xCD7qdEOrUTMGYGsNMkoJhVpL1rWGUpInHeKyR+4WvVcr9e8KIo3/Ypmfc7v/97vMwNumDEF/DRxHGbuHwfah5HPQ+Z823K2WfHZq0RzPzKkiePsQUMy4k5ltGbdr2iSo297yAXtoNt2dH1HIbPb77m5P7I7egaXaZ0lkgUdz1ByQpWMlG9APfdikuwXp8AZ8AYihd3DkZvX98zTjI+ew7DnI61Y9Wsuzq+4OD/n4fYdbeO4vLggrlYckpxLxiq6tmWrLG3bkKcBEyaGENgfDqy3Z1KAjQMvrzYoC/McuH8YmAfP/hAYQuK13+P3MDSJqApGKRqlOW9XYs0b4qnmWf58Ohqezohc0WGpXwzafFj3xrevp1K4WoFHKf51ScQsOog4DWJlW539lDKQAyXP2IWauezXyCmSS2EKifX1FWYdufPvyIgYOUXE7TAFYkoMo9QOq3WDMRnyDCYRo2KefU3kLmiVBS1Kma5zaJ1RRCChTUJV9kbjLMbkSnHXGNXT2BU5J4ZpxOietrsi50DOAylNomfVlovNbxNCZE5fUfK+1i6WJPnMOGdIueB9RBVkYKQcvb3AqS2Ub7v7LdSigM97SpHabEkZX845SmaeR/rOyNmK5E+FLGhLTmKqcxxGYhJd6jQnhnFmGCdCCkL/nSLHIRD8QmU2gEYVS0rC1JljJBaIudKeC6ybhk8ur+jXWzBO2Ck5McwT73b3vL5/S4xB/h5BQFIuJ6CmoEhFkVGLsW79hGhMnNJsO83VdsXV5iM6cwmIk+QxPjCERxlW8kTJ/k7qy7euH9xk6CwvtHWKTz76iK/fvBErwVzEL9mKk4DS0HQd4zjwOM3YeMcnF9f8w1+3pDHz5u6WkL08waxIlTwzzAVjNX2/AZsZ0oHhOFB2B/peFszxcc88zPL7lUUULPzKRcw1l4TRiW7VYKwmJV8pIQK751D4sz/8c25e32Os4+b2QTi+rSMugUp1VF8ETSJmjbVrmjJLEaMKMWcau2xQeZkvs7g9WSv2t6u+xWh1csVauHslSyHtrGHV9zTWkUJiGI4cDgdiEPF5LpLOUbTGNC2u71FNQzaFREKXQomJcX9g2O1IsXI1LfSrjrZ1Jy6/91EW/7J5LRUiSwPxw4v195AMVQlQpQrOn33y21SpZzK0X7pOzcJS7J6oUMuJIbxsZ528T/lJvPehXNHvKUVWdaw37+KkleoELZel0AelCzkJJ9wYK01IKYQgyFOsuRCySVD/LBRdw3SMIhcEoVJqMQqDLGvjySUdhEYoeiOthC4n4j5Ok6L6IkvRl57oVLE6WGlkwvReA1MQdKxkEuJAl4pk3YjIulo6UxhjZA4jD+MdJ5Gg1tjqFKKVFqpGZ6AFqzpMPsflFT0t64/Azx4/etoj+NEyHSLJW1JsKYdMsBNFyzo0ThNMYpxH9sMBNWs2TY8pPwaVmdPI4AfCNKKjDBIU9hSKqbVinsRVRxmFdgYfJQshu8I6ZQwFY6HoyDE98Hh8jd/v6OZLZjugk6aNCdsWlG1Fh/B8Svbe9R0fl+/+zPd+zS89/sNpwpcrzoGIIHVt29I0DaUUjkcR9y9mFSg479asQmGOAdVaVpsVKRd25UgGnG0p0cP1lsvSUnaB/c0I0dN9vCYCMQSGNLE7DmgjQ7HGGNrGsto4VHSonLENuCSUm+ADIcj5ZoCmaXC9A1TNA5BcmOIMh+hRva4TRkuT4XGY2F6uubo4p+nWfHxxxmEY+f3/+Pscd0d2D4+8u93xMB0IhwONs3TtNWebNdZYUlS82UV8iCQNxSps67DO4JqG0spAL+aMWmm6bUPftBSfGQ8jw0EEoyNZzgojDoMqC0Ifo8doJ8ObIkh4jHL/Oo1kjTSKqBPJF27e3LPb7bh6dcVx3BOjp+9WnK3O2K42EqrXNVxenKGTQo0T4fYGNY802ZG1pd9sYN1igmdKgdf7A1P5hvvbHaMf6VatuDgWDcozx4kxSGPlVSZUHrjSQlHslVhyT3l+OovUklfwhP5+ew6loNrQ6//qTm//a680DSQlqC0kaR5KzVYIqYbVikZUaUtIWRzNEOMZ5Qxi/SFpznJlQo7kUrj6+IrRvmUajqSUZOqtpK6JKTL7xOPjiLUrurbBKNFiWFOIIaNKA8UQQ8K0jpSjnIHKkYrHR48i07VirZtxtG1HEdseGSbUvIw57itbZkXJL1BlQGOYw4yxCkrDPAVKcVDOyHnGVNF3SnLWamvRCpwVjWG/7unsmrP+FU6vv/XqPi2MWEYO0zum+cgpV0TpSkeWhrVte7RRgu7MEe8nlDaEmAWx8BL+GkMmxMQwJQ5H0RT7mBjmSIhwHEcoQksUOn054QohCW0zFiXndRLb6b5puX7xEt32iJlLJqTI7rjnq5tvuNndnIa3KWfiQpOqBjq5lKrDeGpbFUqs4Qv0Bq43llcXL7lYf4xRHQChTOzmW0Z/qPWW/s7X7/uuH9xktEYWj8pw2O3RVZeQpRIGpU4hctM4iTuc0dwXTz4+sOlW/PTVJ1AKv3j7tUxRtXjb+1jIJlHGAet6zi6v0c2azJ1MVGPET8LNzDkLIlC5mKkUkioIw8lAhukYoWhW55KyXeqk32qLsw4/zrx58xaljfzsxcVMlZq1oTBKywIrEVLBakNjHXqeOAnLjMMYVwVm+iRGUlooLKvVSji/ZWkwNFZLURWLFMnGOWlWEN9kP/s6sdYUlSVMxTW06x7TrtCuoWhN0VnCKFPCTwPDfkcJ4lRVSmSzlVT1pjGkHJhmz3GYRZjEk55jQWV+aBmyOEvV5Vm/h6qNTG1UnnqCX4JHThDbt7qMJ9E3p9fzu0L4lJLJ+Mmm9wPSYwAntEIQVhGaUp6E6yWLxqhUYas4mS0NakWbqijMBwmfLEo/fQ9VdSrV1S1P4dRYKDhx/U+We88aCqrD1BJWdXI1q889Z3FoW2gUtd+Q0L3Kcl4O8OdNhqpFiq4NjUybOX1eAqDUe+/xYrlMSaQMvj4jc5owqdp0KIy+wekOp1vKWqHXhp6GVnLLCJOhREeJlt0+4otC2YZ5LIy94dgopvtAKVFcuqzDOLm/jtOBd/sb5t0eOyfOV47z80CjhbYRo6SWx+gxViZgqWSOfiL4xHW3xeQJrQOzHtiHdxyHO8bbHV1c0a8ngo80zUi3Cth2jev6Z0jf8or8FWvqV/7lh3UP/JDLGUNMEaWUOK+EUAcw9TVOSfb5khnCAbufGG4fMJuO/u98hlKK3lmSVmxWK0rumPxE27f0rqHMkf084VWln5pcechAkbFQrM4z++lA06ywSuGSPglYnXPiLV/PoODl31Ky7EG1CCloYhbnKoUiq0JuNKrfMPoAsdDEifMXPeeho1N/j7bf8Ob1G7YXlwT7x/z5n/+CaZ6JIVByh1Fih9locFqoTtoa+s0Kbe3J4TCURFAFt+no+h6nLdN4ZN5HYpBptY/ynLUpuKjEYSom8jxjO2nwnWoIeST6QKMNtr5HxkaCgVw0u5uB+9sHPvnxzHF8ZJxGGrNi3a5YtesqNM6s247Wthy2Wx4fHsjjiJpHCflcn6NsR7INU068jZH72x12jqgaJpZ84WE3szvOTLGALhSVyBawYhuvVUFlRYmZPOc67S2nHa1Uo4xlUg5yViymOForbNUqKPXDnXL+Nq4Y6nT6RLUWK16lNa6peryUa7CiFuTPAIggW2upSXLJYr6jFnfITL9pSf3E3fE1wzQw+5HGdZgKb4WQGaeID3B2tqXrGpT2QKlajMg8g9atYGLF1ecoQzOtloHZBGpkmg/iptaaamaiUNpibIsPIzEXuvYF1rzgOO5wNlEQIXcIEWzGq0dyyWjl0OoFffcZ5DXWtWhViH4+UZhI0G9X6NLSuSu0+vbeu1yZyEAoYi6E0jjbQGWBxJTqcKimrZcgjcMcKCUQU2acJ+Ypcf84iNZiDhzHwjjL6+SjoEJKW0KQQaQxjlRNV2CpoVQ9DWUkm3OmKMO2W9G6RgwLlJyf0zTxsN/x+uYtx2mgKGmoUzW5UGoJTCg1J0PseKmUdFF5FqwqrB28OF/x4vxjVs0Fgg9nRv/IMD8QUjjRr+CXSrvvvX54k6F7pjgxT4EQ7jHOobXFKn3SBDxFqudTwaMU7JPHp4zb9vzU/Yjdfs/98SCTQW1ks6YQkmd3eMC4Du1WbC9fkebAfDwwHI/1IBLKR0kC76ZTGvYT1aBk8JOnaRSu1SSVSSWdRKPOOcIkG3oqRl5wFu/6dEJFyNK8eF8oPklnjDQHUvSVKhzTJ956LhmrNV3X0TWtlGa12Hr+7izFstG6bpaFefSEOaGKBIdlIKdZHGnaTkTupnp95wg5EvzIcNwR/IhRhpCEYnB+uaXpDYlADJGH/ZHdMBOLrrHyixvUcyTj/a12KRJPH3/HunguaC8lnYrd9xqN5bHyBd9L3DiVvEpuuvRtlKKIzkWajKc09Q/p6vuOGKsvfc6oSj0Sf37RBkkAT6VNkSXVG0jJyzepEwhjrdgV1jCdZX3L1L9mDQjj8KlbRAAEg+Y5MqRrk0FFVCo/6oR0qBP/vK5vUwWRSwN6akr1ew3DgtzVc1z0SVq2LuoBr7Rsl8vbuXy9ynzr/XuaOIozVr3PAKOnk/+5NhZnGszKoDG0GwtZwpH0ZSRHhdaQgiaMmuFFw/yYiY+F9BDp+pama0Er5hTYjUeG/RF7tNi8xs8BayIlJqZx5Hjckar//mITXRDrTIfCMBHVjkMeGeZ7/O6R47s9b0aNfSXDBu9ncoFeGbT5vjC+71jLf+Xy/m4s5Psf+uHcK9M0gtaYxsrUtXrh51JIdd9x1mKNYYqRdtvQNBegDTePO3xMGNtQyMQQ6bqG8/UZfpxQBtrLjjJbDkMg5kl44vXXTyk/3aMlobUmxoBPEZssGsU0z7RNi3WN6B4axzxNp9dxmkZJNtYVla6ObCgltpT1vi6tY0L0iocU6ZWm++wCHTI/WX/Kb/7Gj/mt3/h1/vTPv2C3f+DuzdcM08Q4jBwHL9oPrTAFtNX0qxWNa2Xf1grdGprzlqtPrrk4v0TFzHyYmA4ziy3loq86NfA5U0KkxIjO0NmWYFqiMpToyQEwCmcsTZNIPfiHjD9EHm4eOAxHnH3g9v6G6/NP0BhUMYSYeHh8YH/c01y0GOdISmFKwUTPdJzIc6Q5O4PGMmNRriHYSGs84zBwc3vP7m5mniLBS6Cv2yj0SkMjgmelhC6aY2Y4TtxHYKWflnilIjzRBFXd354NY7SgGCL6/rDQ8G9fvvL+S0b2Dm3q9B+UURizaO7qgNRYcfKrQXwnxL/UfTULgoBWuG7FId5ws3+NT2PN4shQJhSFYZzYHz3GrmuCOHWgChpL9JmSNcY2uIogxJTp+laswZMnxshxHInpiDUtRjvmWdP2a6b5EUdEpyNaOwgrpinQr0a0nolpxIcdhYR1axp3RrtoL9QaY67QaouyGmMRi/EMWllSOkqWkWpxakOjtzx5kcm1EMgynjHekYqELpfqKiWucIqQMt6HE0WoUBhmGQrPs2ecJeNiHAu3j7OYNsyB0WcmH6vusWbKOQltNkaGhrnWlAolZkAg9V/IJ/aDUQ0vLy65vLioZ7holvaHA+/u73j7cFftsnNtKKiNCqcGNRV1crkTA3eF1QqnFY1KXPSOjy6veHH+KY1ZA4pcPIf5nmEW29qn0eTyAv5NIhl9I2LqSQqSVddxcXnJcRgYJlHNL9dSRKRUUNaQNQwqcvFiwws6Qoz8+z/8Q0KKWCcTIRGtRsZ8ID+8Yb2+ZtWd4+PMOBwYh1GKFWXqpDfVf+VFXX7usrmUWJhGjzItprHiXpMi2kSsM9hkiHPN10DQBW1MzSAoPKeC5FQgRIzOGC1wpU4ZowtKpcpFLBQlzVXrGrb9is64OlBQQiPJddOvb79zFoXwT4MvHPaj8PSyIRdNVhrXN7i+p1gnQSqqUHIgxZkwTxwf75mGPdZKYI91itV2Q7/uKDoRcmIMiYfDxByENlYqCrFMoJem6lTwfYcQ7j2k4dv/nhqWBW547yvfq21On5Kx3/tFpogGBOpW3y36bpsWow0p+pMm40O6+rbD66egMKJA/QA5iShNP5/wa1XdKTihA7mm8FpjaJxjDkHoULU5VVr+NLq+7jnL4YO8VKfvk3NtHOtcRCM2dpXXrpbXWD+juvGEVHD6WrlEDPd0b4C8f/J4AP0EUpknrtwJm1Dv2x0n9WShe+K91o1RqyfEBWQjXrqUEhNee0E5lEJbLanbGNQaHApLxODIUbO5LGjvSHtIj4aN69i+aDBtwTaZptWMNXPEe9EImCzozTyNPD4+nBpC7z0lF6yxOAxd63B9YbaP7NOe4fhAfvTooyP6zMPDgWGYxLEoAcaKO8nze+wH1P4/tJH4q0cCH87lrINqfRkql15VpFIrRaY6IMWIQhGMgt5hjSPEiDKOUjTDNHEcR4zWvFa3rLseZQy2bXDWAIKYKyOTyZwFIbTWEmOoTlb5pBEppaCdJeXE4CfyMHA8HjHG4Izl+vycVdtzHA6oUogpcz8eTwfwolGU5l8xe3+iFGenCUrxkCK2UZwpwzZlfvef/ib/4n/4h9zcPfKXX33Nv/s3/45f/OwLbNOh9YQzGlXzNhprsVqoZNZa+m3Py8+v+Pwnn7FabXh4d8+0nwhjxADaGkqR+9Y1hvWmE7euLMJpYxsyBWccjXZ4P5FiwqBxStMYDb1ifW4xyjDfHXi4uyfFzNevv0SXTjSE48zoZ8I489Xrb9DK4WNgzoFWZVorNtfH2wemhwNps0afbbBtR9Sa0rWkiy0qBFRWuCFQDmIZnTooq0KxslUZwBaFilDmwqwTpi2kSlle6LaCDnNqNtRpEFNDhU0t1Bdrqg/0KkVc0rStIVzUBOcsRjygUM6idXpGV34StBe10H00qFZQoRzl/tOem8evOYx7UOLsJJqVGT+P3O9HDmPh1dU52mTm2aMbS1CFGCX8OBdxXiqEqh8M5JIYxh1dK6ZBRWeST6zXl5ytPmXyt/hwL8HAVc+ac+Q4zqJLSPe0bg3FnRAPsqYkRzaWlD1FKRq7JqaCUWJokEqW8zZ7NAWjLFb3bJoXaHrep/rAQpGIeeQ4vSPEmZSiBHiiJDIhZ8ZpEkvdIqjROEaOw8jxOBBC5DBG9kf5c54TylqmEJmjoBjCDhA9bI4Ro8BpXddmJmeZ0qVqO6+UepalIVSzT65fsl73ogOJicMw8Ob+li9uXnN/fJT9LMtQEioLQAqEisjWBqGoU8YIWRruVWt4dXnORy8+42z9MVq1gGIKB3bjOyY/PA0WWazyfxjF/gc3GVOcaLoO4wzTPOCDZxyPnJ+dgTqSjvIkjDFYY6As/HPZ6GxjOYwD2sJPfvPXOE4Hfv6Lr5hT1QkoEaQEEnk+YkwDKbG7e5ANXYG1rgq+0wkZEHpQRhlF1wufM/pITol5DhRd6HWLNoacxdWg7xxN4wgpEXysyIJGVaF0zHHhnmCUWHZqAdhBV11BKVXMXQudSiuxRrFqWjrbyPQpFSkKc0HIsOoZEKYoKRHmRIyRcfDEqCSngwKNpmlbOSiWtzQnip9J88xxv+e4P2C1PP9CpFu1rLcOdKqCXNgdPcfJV8Snho5lmfwssfYp50WeIcXKsyLy6XZ8KjhltT0VjVR6UKE82XM+W4IngtWzA+Db1zIxV6cMjPL+J0uhqc4zuSJYHxqSUarz2rI+tXoSU6PF5cLWgj9ndfKq/nazlesml3OSJqLyKpUSXq2uxZhSoAsnESf1tVm4yYXqo3Eq7sUaEGvqNErQIaV5ek1PT2OBHqiZGvUTSp3C05Z7ECrkq8qTpl+fzvR67i20reVa+NPq5IqmTr8FdU09TS5NbYqe56aknIk+AWLNqLQWhMcEVC0um7bgSoPaKsq1YmMPtBcjNBPnV4pPPt3SW0NYt3SlI6dAHAd8gSHN7Mc9WYOPM97PaGUlCTxLVkfewKAnhnHP4WEHO4UNLaZoYgrs73ZM08TLlxPatTTd9r+IB/5XL/VffR98SLdKN2pik2g6R9c6rLNMw8Q8eXRF9qiIn0JMDrTWDPMo9D3Xcnl5RbxJFMRMJAKDD+Q8ocaJi/MzSk6E4DHFoZUMwkwV/D4ZHVRBdwyYihRL4ZlALRaUCR88IQahF2nDR+sNm+2WpnEoqxmHmaFSNQoKX4RmpI1Yv+d6TuRUUNay15rJFHY2cxsPdFvD3/n7v0mi8C/+9/+cn/35F/zrf/N7/NHPfsHu/iCNV0j4yRNDxChDt+r4+NOP+PFnn+FsQ9yNpCmSfKS3qgpsLYlCu3VcXa1xriGUqm9QipALWWla12GSh+zJszQprVacX/Rcna1QoeCnwLuv3rDbH0jekEPD437gcBiZ5sg0Tby7u6VzPSklppwoMbDBYlUhHA+8uZ3YJcX6oys+/smnrM43EsK7ucQ0K9zqnvFxx/iomeeZ0CdKU05aMa1Be3BBYUtzQkuXgYVSBfTTHqgUVQe5CI3BmBqa+32w+gd0Wevep5o++9yyP8prgJzt1HwkSVSVx6ln9FY0SWk2l2fM2wN3hxvmFElZ0B3wpBg4HEYeDjPK9Ah6N2BdRiO26fM84/2EsRabMikVnHM0rUXrLA2qiuz2d1IfZUv0MKh70AdyCTjXk/IsbJEsoW8hjri4IuDQOqJNI+BKsfg4UohYs0XrC+YgSEmrVihtxHQTyUFyzqKzxdCxbl+iVMtTkfPsNSQyxjsejjcc5j0xRxJyJsckQvSYpKGa55lpChyOnsNxYpwiMSl2x8BxFEeonAuWQsrqiYUggSLkOlC0NVBYV9MVObczqTYxKQuim0smKcW663lxfk7jqjh8ntkd9nx985bX9zdM0Qv9syx28xWzyammfVeqdD1zVRHKIUr2w4uu4fOXr3h18Rmd3UBtJI5+x2F+kGyMZzXAKSj6B5wpP7jJCBRKjFCzKIL37HY7tmdnUmLUQqppGnLOklytwAdPUQXdOKIrPMwPdKsL/sF/91u0zvJHf/YzxjmijCVXekUpmXHcE8aReRrJ0aNVVzvndILTUbJRlKJwjWWzXdF0LdM4Mh9mZj8SZo82hXYl2okYIzEIgiIBNoJcCNQkjYayoNITKiINh0CTRav3imVTUzbFBizTmIbNakPTNPL9akNh0GiUCOhLEZpZzsQ5EChibeZFFJRzwrpOfM2VPhXfC6Upp8g4DOwfH8kx0nRi09j2ju1Fj+uhqEhMcDyMPD7sxXnjVOoXVBJqkzhzpdqA1B35tHLehyCeu0prpbB14r10toVn+RinQfbT9/irNvT3qD3P+P5PD5Cn1bpG/r8Kvz+0K9fGQtfTTcKeROwfoxRN2soaF/6l/F5LY1IAncEU6lyuVFShQqu5YHSd+C62MMt/FagihXimHsr1PV1g06WooqIlSstUQ6Y/Is5e1hqKOg2TJmB53xf3r4hMdsR+W9X37okOJwPEJVVYENAnvEIanKeuY0Ejn5AxVb+uID7wjTE1lOjpfS954chWx5gFJap2o0opacJNxK0MtlegbwndFygTaNcTrz7aslk5/MFg5oYuF/rkMKUwjUcKMiELQXi4TdtgtKQim60hdJExBYbxwLgbUDuLrvexmb2gNjHy5s1r+tWG1fYSY75/6/1hjfMvi1n/yx7zt3PFux3uumN1uSIpMRBx1qI6+X8fwul9VIi147I3oBQpTfjocc6I+DXn03oV4Sjc3NzJe1C1BVpzEpjnJLbkCTHp0BqsA6Ut0Yu2TVOnwSWjMCit8Cky+Yg1Gh8Cq/2BqDIvX77ixfUZkx+Z/cg8zWRlOc4R1ziKTKHkXi+KEDNZJZQxBK0oFlprcCVy9js/4iLBP3yx5Z/8b/4R//f/2/+D3/vZV3x5vCP5yDRMHA8DrZPgs8vLc15dv8BheGzfoQuYUli1jrO1Y7Xuyc5iz1rctiG2mhFB9mVopwg5iZ1zsyVlaZhLnGmM4nKz5pXZEqbAzTxx8+YW9jseHw+o1GLMGj8nctHMMTL6Ce+n6hjmiEphrWHdK3aNkZyAQ2Q4viUdJn7tp6+4+vxTtO1oVy1d07LfrLnv35EO9xRTiPbJeU9lsEmxygajFamBYgpiClSntOppOCHXgmoUjAFTqVIf6O3x3vUcmYY6/KmonzhbPlHW6zFRiQIFyCd6dNGVsZChWEPpFUPZ4WOgVBpRypEYAyFEdmPmMCauLgw5B4Yx0SRIVn7eME5QIm1rMFruGaVbTG5Y2qFxGpnnAWMQS/PudwjphlTeEdPEqj8X0Tea4C3zlDGmoW3OJXyZAaMVzmoyE1opQs507oK27YRKZGUvTSlILVYbrrY/QwdHo9e0+gyFrUyS59N4EXzv5zcM4chxnvBB4hFSFo3kbr9nnDMFR/CRsaIV+8PI5CXHZpgjPinRBhdhF8T8pBOSrBIxKVrqg5LLqefJWYbC0pTULBfEVUorxdlqzbbvxOo7Jg7HkXePj3x5+477446QAjlDSJnEgpAIMrJ8z0VvWQpSGxSFygqlM2eN5pOLl1ytP8Kotg5XZvbzDWPYk8viiFnZPcv3+ZsM48tGkzA47dBGissQZl5/8xrX9tiaMZGTFKyiVbA1tTUwHg/yi/WG27DjonT81t/5dULM/Kc/+xlzVe/rAoWMj56sE7Y3KNUxHTIhFdIpjXsRwgqk27SuCmEGmfIUEasXkyFmEUUb4dgN40hbulOhHFIm1nRubQ06ZybvWUSzo89MIdC1Fp01WUGqntyLja/A/GJ52TY9WjkW1yVTNLpo5B+5+VUpYmKcCjEF5skTfMInUEbsEqn0lJQC2hRK0WJZNgzc3d0xHgcuzjYy5TWas/M17cqgXSSpwvEwcne/Yxw8KusnSspSvNVOOde1UmrRqp6Vgs8bA60lsMVojTNOBGYgqFvOtQGVQrPIyO69NaTen1OfrqcpjTrRpXJamgx1Gt8oJYJ6lqLyA2wyYi2OKkK/gFe1vSsV8RKep1TR9TOmukhkmUIZrWridTrxQ2VSXw+XIiLGms94Qo9Kke9/anLghGicEIBnhb2gY6om1Esnt2y+z1Nkbe0wzbIyVMEaDUYk4Uuj9LR26nQNat5A3eBqq/qEgH13Ify+5uPpEn3HEwpQ6kEroMpizwyJcgpyTEmsgJ01OGWJ3JH8f8Q1XxCdoTtPNJ0hbDUmaVzKrLxG+YapaVCxEA8jWcmkqDEWVTRqo8lXMLiJg594fHzkeOvRewOzJ4XAGdB2IiIOKeDDRIrh9Bb8jQ9Sv/UNl7X3oV2bH59TLGSVMMaJjsiCNlqQvmcC8BACJWWWgLGYEil5bm9v2GxWTFOUJF6tSRlSKnUzU1grTUUIid3jXjRzRhyiVqsV69WKlCNr23LROeZYeDiMxByJRVxXwt3I4xd3XFy84PzVhtF5fIrMKuOTZ55nHsZf0LYtwU9crXou12tW2wuOqzWTD9w+PJBLwVhL4xpUSdgS0bkwJ9E0zRomMqWBRzJN23FBy//p//J/5P+cM//m9/6AP715xzFOTIcJb2VgtlmvOV9taIvmqu9ZG83KarZtw+W25fLlOc1mzVEXJlfwOj0TSpf6uskQ8cKtMKUlj57j8SB03ZXkxaSgGA57BjsRZ8X+eKS1P+fF5a+hisHWED6fAmiZ1raNZdTyMzZNx0N3RGsxhikZdm8euZlnztH0n36K6ltMt0I5R7KRwR4JXlBKaxQGKD7CoGljQ7tyzH1mVgFdNEotJhNU5PhJDL40ocZqoR59kHfGd11Lpkcdsob4lDxtjTgNPkfM61XnW/Wsrw2V0qTWUGzidn7LLr0lV9tZQFDcODP7gveF1vas2xVFJVKJpKxJc2LyhVIcqswURoIf6Ps1KgAqElNA64QPM1oXQhjpO8e7298Xg4KmJ6Ydk98BQsMKAbQ5o23PAQtKYVVLro2PhPA5YrC4fktKEvCsjaOUTIyJxjkKkeNhYN1esenOaO0ZmpZnk09ObjwkxnDH3fE1u2HP43Ffcy3E1W2YIvuD53BM5GKJITF7cRcEGQTOqRBTrX9zpqSEUlJXURBdZkxSN+aEVoaSl/X3bGhXnSVzHaimvCBzisvthrP1ipIz0+S52e35y5tb3uzuGaMX5KPSo5eJbMqZOT+lfS8DOEDG3qWgibgCry5f8enLz1j311D1nHM6cJzv8HGQJmP557TGFs/Uv/r6wU3GUpCmWiArLWmS4i6VcAqUNWjnGPxMqhQP5xo0iui9TO8UGJsZpglHw9//7d9ht5/5i2/eUFQ83fdFZYJKIvRqFWlKBDJoK7a+LLac9WAyRlJcU0DFgs7gjDQ5SWVyeCpacskE7zHG0GhFTjI9y0a+l3YOZSI+CPVjoRItVptelRNvTqunJsMYQ9+uaZw4LWj0KR9jmQYnqnjGIPkXGYIX96yUwSiHQkNGuMdkiqUmCmf8PHB/d8cwDKxXPV3XUlKi65tTSA5ovE8c9oHhGCRU8ORtuhR7ddotK042qKc3u8IOpzuyNmRChbNGY/XTdLxI644zoJ2j6RwZOM4TJeUTMnKqb5/Xuc8vRRXiPdNjPHtOjWvELSzlk4Xth3aZur5ORm8LVF+kvM4IpaqCY5XaJA9c6mmtnlAfZzRFP63dk0C/PsZoWful1CAmVXDaUlTVMRTJYkEt6eBPzmKlQrS50hVPSNlJr/HMFepbOp2FSmWtrO8QUn3vntGndG0gThv60+/xvPlRCJz/9L2f3vsTppbFsrnUhubkjqYW2oOiFMmpkbUsDUdBMg0UkmgcyOgYJLXb32KNE+pMa7Cux5RzLBEdA8wXrNcJEwvsCkNylGaDtRIuuP1kRbk2DMVzOA6M94H4qMlzIk6B4Xgkq8yL1mGcJauMsRpjhVb5161xPsRQvf/Sa+M6/Kq6oORyQsKUUlhlKE4et/zOxjyhXgtynnNmv9sRQpB9u/6dNLsyBUypGnNomW6WmKuBiGa325FLom0bztYr+r5hs2pojcPnwhAicfasXrQ0umG695SpsOp6EgMhCkphnTzZpUi42e+5O+zpdju6fkVjJQepacQUYvCTNFJZ4+8O+DGwfblGbcRpJhJJRTFby+sY8J2GGPm1f/TbfDr8mMfbe6xr+eb+lulxR9/39NrRZlhby7oxrBpbLUs1q1VLf7Yh58ghDXiSONNRQGmhFSrNHALFZPq256Ba4pQp2XNgz8NseLgd2N3t0V1LsYZZeR4Oj2zWr7CmoXUd2limMDP7iaZbCT2MzCGMuEaDgUQW/aIWfeXDMXD3xWuaktm8eok+Oxf3PQ3KKWKU00prg8lC99Ee/OgxjZYBmdzodX2I5uI0KONpnzGLoUXdHxYa6od8abUItwuKjNb5hGaQBIlaco9AYazBWCt2tTK1FQRY2H/YRrH96Ix35YHD4yM+JaHx2pZSxExn8oWiDKtVV4v7JPeYUYQgluBaO1qbCdETlabJq/paZlKcSDrh/UiIE9pIppPrz7m++CnGwO3hXxPSgZyTDJBL4Xi8x7k1Qc2M/har8ylgsGka+r6lbc7EgbN4tM6yl7LQtIXWNU0Tfgz0mzO65hyF+9arKoOvUA48jF/z+vY1t4dH9sc90xyY58g4eY5jZj8VjmMi54kQco0D8Dgn+jqfsiCtRSj0IDS/xQUuJUFTFwZMyTLUzs6d7N8LFeFM4qIVUz7Z3Rc0Z/2GvmmYvef+eOD1wz2v7285+pGYEyFFqRdVdUatKEZZIgBKOZ2JWktdalWm0XDZaT5/8YpXl5+KDgbIJXKY7zjOD6QcvvXKLYNBqTV/1fWDmwx5qKqLXqyvMAZtLDlHtqs1H794xRgDX7x9DcqSgnDMrDYoY9FZsVp32MZQVpk4JpyBTz99weubt+x9EttYgFyLWF0oGmxvYM5kX8VdBcQruBB8QqmAcxpdlqJoEa/K36UgvtCurTBpotqgVa63kklypqCNw7aZmCM5FbkJkamxM3X4XMVIxlislal+q1u27YpGS/ie01YCoJTceKqI7Z5CINBUIjnLYpBqSZocgSx9pbE4jBJBYoiR+7s79oe9hBttN2glFIDNeYfrELF3UoxjYp4hJUOViT0rUqXByKo8CVDL4rPwrMJl4bQqrLF0jThIKIAUKZVfKM4FIrhyTpqQTBF0K2uhBdTuvGR5P7+9sws9R6NOE/lnDURFMpqaXLtQi36pEfkArr51pCT2fCElTgbbaqE9If7XtWlfgqCWzcaogrbSvKYsm4zR9okDiaqTjvqi5PzE71e5flwLtvo6GWVEiE1d8yzIW6VLKU2N5BIRutLV/Sqdpiwlp4qsybX0oaY6mERVTn+nn6ElqnqqSyGw4BxVU1InI7lObb7zWm51VU7uQO8vnYUisFAY9en1XEqLU+lRTD2XEwnQOaCY0RqcbrBmAn1A6Xvmdo1ur9C9pcsNpcukRrO6XqNoSAU2Ly8wa4ePiTQW0gHwTbW49TwejqxWrdAVrFAmrbM45zC1MP2r24Yf0FSo7/3gr/ud/pte7RjRF2umlIg+UpSgFyUXjDUieowimLSVDqGUoBshxroHZPw8nZqIxdFt+RpB5pawSUEFjTZ1zVdzkiA6vdv7e2xKrLqWKSZW6zM27QpsA/PExWeXxE8VWMfgR+xk0dWGlzp0i1FGC7EewiVEDvMjSimcNmxSoe86Prp8QcmZ3eGRskmoYpjnyPbMQM7SFJdITAmD4WAtkypYU9j2K64venoML6/P+fHLj3h7v6PTmjLPzMNRUBKjSTHjfcY5R9e1DKGieqU8DSHq666tpVDE2MAJBz4GcdQxAZIOjI+iH+yj6EpyzozTUXQqpqN1PdY4pjBx+3CLOUuCZqfMMM/YAoGItgWjJUgWFHPI3D4ObLo7HBmXIqXVhCDUlUw+DeqMNvSdw/bgSpEBzClMr1ImM8ISMLIf5Ip6L5NhZwu6nE47fsg09m/zaq0Vm+cU0JUt4ExNnMp1CFoLVaVkQKmzDJ+sM1LvFFkPc0pEC6oJpHAQym2UwWcukTlM+Fh4PExY6+hXa4wrUKJQU5NGa0fOM1onMl72eGOk2I0zxiV8eM08z8xhAhKd6xjMiHNfcnu4FfcnZryXEFqUJcRAiIFp3pNLYJoHYvBSb9YsipSFmj7rG/r+HFU6mhacNRhjJcQ4Bdp2Tc4GcotRHQrHc2ekUiDmkd34htcPX/P2/ob9OHC3G5imxHHwzLHweJjZTwm0kToxVXRcsABKhhgTMcm6M62TYUcRoxdp8ERD7KwVvaJaaNILMrA8p/zEZqj7WKqf27Y91lpm73n3sOPr+3vujwdiTrXJSKehoNZPw5vTYKaaDknDIWekUYXWwMuzDa8uPmLTXwlVCghpYDe8ZQz70zD3fQr7Mjj81SfLD24yeutIMUkx7RpSCFxfXnKYHrl59w3EwPX5GU5rrjcb9sNMqRxYazQ5RazWrNcrulXLOI6sbEeZE//44nc4O1vz//53/4HHw+H0yxRAJVC60LSa88uWYReZjxmDQxlJNCwkgk/V9UWhMWILWidbUpCm+sJnmtZViHh5UwyGLOK8LFaBrjGQEjGC6XqK0WgtXuN1sHwS2C5ptX3T0bcdVhspvlgmcaUiCbmGxBhMpWnJwtC0XVe5yFHCdJRGYzFOo50VjuTjI/fv7jDasN1uq+OJZrtZi12tmkg5sz8cebg7Mg3pRI16fp0Wy/P1UQerUh/Khq6kvUbVbA9jQBm5MWKR0D+FiJdjPbhTKuTjKJkqVt4HlUTgTinkksSKTz+lep+m5c8g3287S5VSaJum3jBPk50P7VosXFOVPWCWfAktlKicxbIYyFmLwAwEmdFKaDjVOnZxU1s4uWCkmEm1gREo6USDssjPJeeTF7bwya08rrpx5cXC+Bll50QqWHjPz6B3paoFLYVUNUXLexVjquiZvKfSvMj3zcLdqofcgobKc17ChyiLQLOc3k+tRfy/FAZq6acQbKI8W9NPdKDabOj6elTq1IISUZbhANJElcX6Wu6RmD0mBpwNGDPj1A6tb1BNi1Y9Whe2baK7bNClx9oW3UiCt1MtyRmCS4wrz1gy5TgSEvisMG2LVpFYxjpldCc7yB92ffdG/tcHNj6cVkM5i1EWYzTWaUKutFaKJNnXML7FvazUw1oaW8RcBAMlnw7ryBN/XRzbxN5Tm6WhqDq0GkiqlBKUrzYi7/YD+jASY8I9HmVfdo7zvuOqbRnGkeQDZ1q0b3s/cpxGUA4/R4yGgpYwMBQoCbzTxmJdw2EaeDjsIUvjvVn1vPr0Y7ZNx+6w42E4UgxkjWQAWAmyHEMApQmqcDSK2WTGXHAXLe3a8etXG1yABz/SNZYXL654/XbPOEXmEDCuoWs7mpJwxlJqkGDKSab+xuCMozQN/jixTxXtKVASTNXjfx4UGIMqcraVDNN8wIeZbbOhdyucaTjMR0E4GseFbemsZRxG5uTBQbuy2H2uzVidPofC43HCuR0uzOzXcNATIYqmySiFKgprHVu3xWRIZibbILSo9GwwVespxdO+s5wpKRdMVmjz5LD4oV/KGpSHkhIScregtQtWA6hyQmqMzmJyUDIqa7F9bwy2UwxRE3rLId8zhgeMLdKsFU0uitnD7BXHYeLVy562UWgdK9UmE6LkXjRNg6IOAVyLNY4YPUNJJFVQyrIfbpnmkb5raIxG6w5lMsfpUe5jo0jZkBLM3uNcR9s2+JgY50dmH8gp07YtVlt8KPgYcCag+kjYH3BWM86h1gYSbhzTzKq7IAXNPEHulRjh1LVWEL3B7viWb+7/ki9ff8n97sDN45HHQ8CHzO3DEetaDpO4c8rrqjFF1f2jNhIxiU5S6dNQX8yd9Ik5sDAZYgroevYYa6T+TOl0FqcYxVo7izQgZ1C5sGpbPru+orWG+92Bv3h9w1e3Dwx+qha3MpCByqRYclOAhTK9lEraqLqHFozOrKur1IvLj2hcta3Fcwy3PIyviXGkVGnAqS7Pz3jaP+D++cFNxsuzrUw5lGRATNOM1pqu7bm6eoGisJ/2XF+c81sf/4jjGNntDmhtaBvHOMim3ThH3/c4ZejbhtmMqFj4p//k7xFC5F//23/P0YsrlEw5q5iTjHWWbmUJU5ZAs+r+sYhRQTp2bcRGcOHsLxB6ypkcRBHvOicK2yLIzGKbKKqoiLEad9mx3pxzcbbizM7otINoSLVIXJAMYwzOOhHiLULo6g6glUz4dX2TtFFoAyXHKlRSOGukqcgi/NElkbX8HspIM3TY7Xm8uccUxdX5Ba0Tj/j1Zo1tHYVMTnAYRm5vH3h4GIU/mSU87LQZPe1Kp4+fqCfLa8gpmTsXaaqMVmSSuCdRyDpRGiAXLGLvqLSuHPmeoop4eItRN8f9gTh7aTRiopgnHuly2OdSSMFLY1Mt2ArqdIe0TVtvmGUK9uFdZjEGWMRXzyb0SmliFaieGGnPXLIE4aqp3aVmzejqMJurA1udnOqST4MEbSptzxqykaDHVAQ2zykJdSQVTJHiRmmqoFaeU8pF3tv6nGy1d8zUjVLVx1VIaUHicilPE5v6veBbvd/p3qwNBM+K//rXqpST00X9EnmeVOvFOnEVShcsjdWzH4I6bXjyHBcTgpONYz4te07hXO9pOyRLIMeAioFZaYyaMWbEmT04ob2ZtsWZjDMbIoGmrDjrXtEz0ycYzyd2dxOuzVibaFuLrl+rE5jGom2DNt+G7/+6DcCvQC1+6dMfToMB0H16QXRGGgsTIWaMzk97dZTDd9nHnbNQkkwFT+5pQlEttWF0C1JYaQOLA1pKEvTXtg0x1uFIRb1SzBVtk0FRKkXyHUoh+IlhGpnmmcNhjyoZWwwuKV599JJkDKlp0NqwalpchvQ4sMsJWifL0TpyKYzjWOkmBp8DqhQejgdmP/HT6ws+2W7Y9A27caBkw8MwM/qJQqHt2mq9mxh9QZMxQNe0ZAOlN1ibsJcb/u4/+fucX73g8x/9mD/647/g/uFG3K+UotGG1hjUlEinXAXRfwki3wCeeZwoJdGvLCkrGqdJc2Y8FjFMcRa06MtCCkzzge3qkta2NFa474GMtoZ116H6lvFxzxwTtjG0K4N1WrQzdbcMWbE/eqxWNDlwKJmhEe2S0aZ6+juadkPTnaNMIep9RWPS09ChbiO61g0yhxFa8pKcnLOVxrKcFGL/jVf/X++apkksZ+t+efpdv0WJN9bQNO3TYIoiIXAh4VyWdPPW8uKzC97d/zkhj7SN0EVDgJgdRhWG44G+PedsvUaXAEnVpt/go6SMiz20OFWWbChaEVJEE9BBmkFjO8o0U4pC24aQE2H2okvQSu6xMDPPhePg2W5XWNeKg5qPQo1XmjkqYtGEEAXRalr2Q6akQNfOhOBpmhaKpm0NMUQae42PBT9lptljypGFEh5i4DDcc/PwJX/59i/5i29ec3sYeXt/ICQBwUJWhJCZg6CTpShSFBbNQn/KpVTUARbaeKwZSotmVM4yfUIzlK5MIPXtAasWPUYd3EqAriBMF92K81XP8Xjk6/sHfnF7x2H0pzpUhoxCxl40E7ksH9XhcV0jGrBaGBONVmwby4vzSy7PrqtWDUKaOEx3jH6HZIQ/6TSfZPP1+gG3zg9uMhoF3apnmCdS8jStwacZpSzb7QWKRCkBn2Zmf+Tq7AJH5jiMqJzom0Y6KGsJQThexmi0VRinaUzhn/2j38Eq+Jf/r3/LXGk1S4EhDUDC9Q3NWgR3OS3TTOkW1TLW1Ook/EwpiRg911FmpU5ZVxNgS643pTk1NSVFjLG8+uQFv/E7v8312QZ/9zWvvxgoU3w2SV1EO4amaXBuucEtRkkXqrWkfFOyvF3iHotShaY3EAshlBNdxBiNU4aoLNrK5HqeJh7uHpinibN1T9+KjWvTtazPtpKbkRMhFB4fBg5HL05GRW5kWKC5ZWGo04a1fLyI1EsGlQrGKhqrsb2VAtaZ6rAlaFvR1bRcQYNFY9BGEKJMIUZp5nKFcjVVm7L83CITRUmJpd5YRTihMaNNUx+viPXzfp4Z0ZDSk43xB3aV/ORV/uRTX6lOpdrH1mJZbI2RRiOXk4ZDVVpRoaByrp7WFYmoMKXRnIorikbrQmMMaMUUY7VYhlIbkFQQuPaEUizFvmIOkYWwqxAPerToGrJanEykaSr6ac1bBTHFijrVLA6lTqV7qtAwLFN34d4/t5aUzz2hKk8OKgtCU1+Uej1ftu//zVMzsxSYp0copOk9jf7rc/r2DqmftECxyKpzJZNyPOk+MB5lZjCPlGJozEu68oLST3DtafuEXRfac8fZ9TlxAtdHjFUELKZp0LpBqW83Gd9zfccm/oNLog+4dsqNZMC4VsEYMDqdKDgKEUh6H6CiGnILyHrIVorilCIGTawZMrpODI0xp/d/OdyBmuAeT6niCx3LOUGVltTx0+Bj+R65sJ89uURU0diiGd+9ZdaF1XrNdt3TWUtrLTtjsGQCULJimGdm78mkipyDtoLglBSZYuYXD3veHcfTObFdr/jsoysejgMNCZ8CN7uD7Aslk6uD1tFLHo91Ftc28n1jx6rR/O5PXvHf/+5v8Pj6LWjH29tHxiCWtARPIeG0lpwX1zEOFq81UUH0M0VHNpuOXCJtp5inwHCUxtw4C7aglNwb03wQL3/X07m+Nmu5+u87UtWMzT7Ia9UbnDOMg2fR4qSiOAbIQ6RpMlNb8E6KMoUUR61tWXcXmO4cXMToQomFlMcnFJR6vIgFzhNlvFSL7qUOoDYkMi38r7/g/1dcWhuUE0Q4pfg0lZaKRQaxWouVrKvaGG0EEZgmUspMQaFbOL/u8c3ArB6wjWEYA8Z0qMYQx0jOGh8L19eXvDhfkdKEQuGcEbF5BOcMurpaoVzdX2PVKBiKiswxMXsY54A2DTH3+FQoBIQoKzT7mLTQ7p3m9mFgvbZi6x8iuUQZbKlFe9hgdMvdbqCkjLNrWj+QU6INElB4+3AHaFr3klXpGVeJ3WFgMJLFk1Jmmmce9ne8u3/NX7z5mi/ePrCfI/eHWajHSlOMY5o9IYuJUcpCfS5aNJdGGXLViiy0Pxn6ieMiLHOxpcSXvzNVO2Yk3uSkKy51aJhSRClX90BpsD++vmbdr3kYJr64u+fuODwhFDmf0C2esUAWy50lb4rFFKXIkMIqTW8Nl+s1Ly9ecra+Elo+mTHs2U93hDRTluyZZ9dyJiv4QZT1H9xkJC0zSNc0p0JeG4fVLeJ+kCjZ0ljLfndkHgKNE8GbDG+N8GRP/ZXj7GwLJdM1DSpGXn1yxt8df40//MM/4subB3FaKlKQFyCWhNWRpte4WcOca9GiWQLElJIOTnzPxbs5JyDViY0ylFQIU8IVhTKyaJxzNaAp1g0rA5F1l+lXgf3NkYwkKTsjh5CzjhiE/6tag9FOBKzVh11Xa1CnxPUillq0NSLMWl+16JyY9jPzMaMm+dElKRQOlCHME3e3N9zf33KxXnN2tsE6jXGG1aYHlYjJ4/3E/nBktx/xAdLCYSyySJalfhIfKeHqPwNcRWAVZEpmlUYVSeI1zqBpq1UvFe43VQsgWhNKIc0zYU6EmEQEeZqWyxRAZVMRNnHJyjkTs4g2jdFPBwQFUqiPU6f37/b2loeicEoE+OaZs9eHcnnvxSYQajPwFGx3mszWz5dS0ElgS1PKaWovU/gn2kdOYj9ckCmIBA9JtoqxpmZqyD2iAacVutTTuVKjSLVJqfeH0aZ6xWu0MphYKVfGQE2EjblUsbIRa1wyEWSvysKjN7UYE/tCdcrwAOq6qDQnpUQTsdBbSu00WZoM817TKDRH+WEnpE0efPr+T03I80bll9sQKO/Z/davqMjN09p5LnBX1cEulQxJnL6WZkZolx5jJD9kJhHdjN5Emlax7jXtuWL7wuGHDHmkFMOmdfQbh2vUSYtz+r2+7/oBS1t97wcf7rVeOXKWtG3VOyZvCSGdJoBaN0LL7cS2UU2e+dYTtMFeWTAK72FMYqJhrQSuphixRvQFi5U6yGEcQhAL24qWaPc8d4kTTTEEX5tqofFlkujjjFgXTz5wGI4orZh9wI8Tq9axXq+YbUFrS5MhRuFhp4pCxmqnK4ikHPrGOnaj5zBFnBUt17vdwHozotB8frbhxWpFg+Y4B7Eb1YDS5FTpQAkCCJVSJfK2IzSg3JZ+o0l3Oz6yZ1zMG9I3kWPT4xvDi6srXl6/wLmO4Ef2uxuGcYTDwHoraIMpCmcVpbW0bSYkUEajah6O5AgcCXHGOUffrHC2wQehksXVGmIh+8ycC6tVoestbR/gUaiPGYil4JMihoQqkilCHWzokrFJs3ENl80W158RcsQ0DdOQmQ6zDDeKwqIrj71Ue+vFsaeeJVWzuTQYz6e8H+olQ1RDUYKQp5qddLJBrzo8MUQRZyMqfcdYS4mJOSaatqW96nlz/BPm6NHK4Kz89iF65smTkqJpGs5WrbAlrEGrgjGK43HC0NC0lpRm0IumL0vadpwoKuL9geOwJ/iZUhw5bWjsBXN4xzSPkl+hA6WGKmeV8TEzhUw6Dqy6noBmnCPeR5QpOGvEdCeMpGBrzkPGGS+DUTWgFPgwoZTB5iMfrS/ZdxDjI4tjUoyyXu930mR8+bDjYU7shwGfc933pZGbQxBWx0JXLhK+qReUNFVhtZJ1JgYrgpgtg0VhFj1VNosNgdZGhiILSlAHskpbQoJQNTatc3x0cUVWmTe7Pa/vH+nIrBrLw5Q5pihNj641cq7nthy6ku9WFuZNrlphzcoVzjvLRxdXvLh4xWZ1iVYGnyb24w3H+Z5UPLks7YrcKYUFYZFadX8M316uv3T94CbDOXeytFw44Npa6WaLwrqGeRSnA6PdyVJTNnkjAURKpqqlThvv7x9xVjySm76l7TquP7rgf/of/zn/8v/5b/ni3QNFJekO8/IGZWyj6TeWXDzRPys06nMVOk15yh44MTEEFSkoUpCpedNZipElYIwRuL5kckk8PjzyzVdvCPOWh4cDJRVajUDqWp2CB511EryX6wa2vCFlcdepxZe2klraNriuoz0/h+LR2z32cETvBso+oGZNyAlP5nA4cDjc0zWKi/Nzum6F1tCtGozV+DDi/cw8T9WTOohDQRbRUD4VcpUCVYsxo4XKZRHYmCy2n7m6X6mK1KRUmHPCxkBRXuA2U3UlVktWgG0krGaOhFE8trPJKKfYbtd0Xc9+NzAeJE1WaSWGAcjrHKPwp5V+ohmV2ugZRJiYcqGERCmKrGWiJ0LL9wvFv+1rSdlWJ8TiCV6VNSGfPwX2Ue1ni5x69WWvjSCIcYHAqbpCDUsjkYxGVcGd0UrsZSu9bdm4St3YrBJopVCFgikBpoJa4jIhDj2cxOCSEpolZ0BJ0T0nGROEEPHPbEVPRRk82edWpKVUiphSClWlNM+bDCn287P75okKd7K6hVNgnzQey+Zfhxbf22A8TV6ef8/3aFey4J4eq4DyxNfOqtQmT36XlAO5aFyBkh8J6ii/X6Mx1tA1lhwdaWNJHoIvRG8w6Yx+Y7EtJx3LX+v6nmX+4az+H35tnCBkub7gKckgxGpDZx25KB4PiaTEcCQrhes7CImmWDCabMHWCZ1GkLPSNKAVIUpA30JVyLXQt8bQty3h8UApMGmNLxIwJsnIpR7aT5S+slBtiwan6DtxDyxF9tnHYWQ/TfC4R1sJg+ybHtc05JRwzuGcUJZyLoQYTvqRRe8mNDH5GKM4DCOlwM/8wFW/4mK1ojWGlB3KGHyGOUZJqA++3udaCmdtMK4hFtjHxHQZiBbi/Y6Pr7Z8fn7GPgTM9owX2w2lWzMOO17fOPY+wDCx2qxx1pFDgpRwWrFuFHOScy8rUFkoM+M8MM0HVv05netwpmWajzzsH7lRmnIYiWMi1CKvbQ39WgwjFspUzpmAvBaq0ShX9yHEKdL6TFcizXGm7aBp1kxK4W1zGugsJi7iZyVU30yphbg0HfLY8j07xYd5hZpQb6uBRymaXIMlZQ8UI4RQ7dNTSqd8ppJlH9amsD7v8GbP/f4dk/eVSlhQyjHNkTkqxilyfXHO5VpslmWffbICL9ng2g5rZaSljSGXmRirhidPzH4PZIyxdL3kfd09/oKiBkqhnocyiD2OEyEV2u5CMtYKHIZITIWYDSEXKI6QIMdA9C0lNzKILRFlRPyYkyR1U2tMnScapXCHGTdlcaUshRgDw3Tk7nHP3X7P4zwzhsR+GDHOUqp2d6FDlbzou55QL1lilTqVMz4EUoHWNLV+LKcmsJDEMXRBHooU+kuRvtQ6Sw5Kfua0B9A3LVcbkSrcPOzwk+fzvqXTBT8l7nNCV6rWMrgVvbe8/yfkriL5ViucKvTGcL5acX3+govtCzq3BgxTPHCYb/Bxj1YylDyJ01U9E4uiKEWMml98s/uV6/eHC79bR0y52tDKC2CcfLnwtg1n2wsaY+hbw+PjHVpr2ral7zYcjwMpZbrOndwenHOUnLHWEeLM3nvKyvHf/+O/y9WLS/7l//yv+b0/+QsyGmv1Ey1DFbqVJifLMXp0saewu4y8USnl05umULiTLoJaxEgjktJyEGWMs2gyKYiz1DBM/Omf/JyvftFg08yrbS8FVK7Fb6nuOtVyVmOxtcFafAwWCokU1hVqVhalOrS5IpZEaTbo7RFrHmjcDjVE0hCYx5H9/o6UPJdnF2zWG6xxNJ3FNZaECPh8SAyDZxjE3zlW6zOWn614SmGWrQeVxeFD+Hmy0I0qFCdTE2st1lkKVnIUUhVeanFVUBlUFFTBAGEOpNkLEqLAusLLj675jd/8DcDwx3/8M3aPB+IcccZiG3tqWhOcmg9r7WlyIAWgODBpBD5U1VOek0UhH9RpEWM8uTstLkvLxF1X3/aT20mqDV19DFkG6fK6VJF1pYCUqmbI9YBUSlVoF9BSPFmBiTCInWbM0pQpnrQi0rhUCpsSyN3UYsoKB+tEaWJppnWpsCtoK0J/qywuPWseKNWaV1U0UVWnlyKbYLWdLlm0Q4vDj1xPrmenFXr6OD97f58+vyzqRTC+0LGeX++J27/ViC59xRLcdUJRlsPg1LhwatYKggAuzYl4DyQEydUYqtWj9minsZ0hB4sLiuAVJq/RTSKZcLIl/u6r/IolXZ7997s/99f5bn8b13B8QFFY9xsuuhVWw3EWF7qcxK1ls+5R2hFCZNIFvV5xaTXzOJKVpFVHsjTAOaIi2EptUFqMFaIPVQeniQXGccS6hundjrSbSc5gL7ewFpOKqAsFUzV8CWstxgm9ynuP9x7TG1IKGCvU2FIkPBCAGCglM1nP2dkZwzCj6366Xq1JMVK0EYfFIiGw1hhyXaviTFNO4vQpad4dRx6mCaUKrTE01tG2HZu+JzQNZraEGEkhiOhWK8ABml5p5pyZIxxLJjmNiYkmOLZK0775hhATP3GWzatP+fev73i7G8QMxTpSmCkp0zjHiwuHUh1HY0mqiN9/gjnOjP7IenVO23Q01dRgDDOH4YCeAsnLcM7PkfWmo21Fn4hfhLiQVSaZgnXCMNBITolNis5DM3uUesSohu76BUUVjiWfzlrg6aB7dvtCdeRDPUO+/3+nzVCVF6/N09koI0O5FrQOZB8LQWz8QYpBikI5i2oTN4cv8GlEKSP7MIZpCjweJmbfcrd/4EefXdO1hlJSPYcT0+SxtkFh0CpIqrfqRYdZWmZ/JGYPxtE0DhBqUdM4mqYhppGUtNSPdYA4+Zlx8mjbkXODNR/hvcGHN8QkagClWlIxzOOEUh05OeZRzpqcE0khRXm9t51rRbt5TJyPBXeIOAdGy/0UUmScIvfTyNtxz93xwBw9MWWhgkNthBaasDpROJ+oxpwyKVJtKhbmQS5LsLOqltqlfl85N3INk5YhxtMgXBA3GaaIIYOoYvu25ePrFxx95Ga/pyuJj9oWHwZIIzlOqCyUn5yFIl+U/LlkcEnNvDQ4mdaKxfXZasPF9gWb/rzqXyOjf2AIN6Q8nrSSC/foxNOrf9zeDvzhn3/xK9fvD24yXr244u7uAWVkSiLrXGBfWxdO33WcbbbM45HVSny5lYKYJs4vNljbELzHNQ3H40GKVhRd47i+esXueOQ+7pkmz8efvuR//Bf/WwZf+KM/+UtM0yKgcBT4GkW3ksyMOBXptmvH9YRgVOqDUvRNQ+McPkbGeRJuI4nsi0xlFBQjYrWSI1kpSlEMYyBMnut1gzWNQLhxlKlxzKgEOilIUvDYWnRTF5o1FmVAm4U6ZQg+kcKRWd+TtUD/qawwfUfvrtDtkSG/4/abLxmOR1bdisvzS9q2o3HSZKAzIUpQ1f4wcHu/4zgMhCpUkkXzDBKuC8MurlcI5chaUyfOEYiiCXH2VOznXPC+Jk9qXa3ihLIjKdGaYc4cx4D//7L3p022bGl+J/Rbkw97iOEMd76ZN29m1phVRU1Sq00t0RjIMLA2WnQDBh+CT8VrwDBoQXdLSEjQGEJCJVVXVWZVDnc+c0Tsyd3XyItnue84WUPe6u7KOqLxtJPnnogdO/b27b7W8zz/KUUwivW64cOPH/OLv/gLbLaX/NEf/ZDbF6/IXlLVTbWqzDmhrMJiRGScxHHE2rIUiMVICikKdKNRqRa0qnIM7130b8KRMxW2jjLlr8myMYrV7PxSlRKrX2BxnIgpLhONpcmq6A41nG8WM2qQDQShFVDhVamqCwaF0kbyOrTCGo0uAt022HvuO5oU00J9AkUss+6ouq9VjGFuOuZGRlXaoKoUKVtAJWkaJ1XtoJU4Ac1WzaVSUBaN0L3av26LS2Nw/qr8dUY/9LLoz4jE67QnXnuOs77jHvVKSYr48v36QhYq1r2fnV/jvL7I90s9//Ux1RBhhtKFPpZQLsjvsRqVdwT9hEGv0apZfsufbhmW3/5T33v973nj+tNfm//9U89T7v+Ov97jy2cnGqc4DoHLjdCP9kfP24/fxpq22tRGIOMaxbqxxCIImut7VMmYMdObTOocPgfyaCg3IzFmTAvHmyN+n7h865K0UpKhpDVeK9T7D2gfZnZfvOD4yZdsH27ZfPgWoyn4UhZBuVKKECIgPv3ee4ZhWHRSOYsYXWtBdVVdaHPK7PcHfIhLuruf/ILAtU3LarVCG83k/SJW994vroXi5KKYlFCNjIYhREoeMfq4sAsa61ivVjhrOQ5HjsOINdCuOw7HY6UPWYoy7IriMI0kkxhQ3KUJFyaaE2xC5O9+5zuYX/4Vnr58zovDDcE6vL/F6cKDqzWtXfFMOXzwaIRG6YPneNrz8CLR2o6uWVVLU7F/tzHhx8gQE83KstkaVmtH0wbGIciQQCtpvFsFrs4QgJLABOiDRudMGU5wd0MuCb3WlDBwZrYjg4d5PdAaM68ZSmGtElRymSoLkmbu6bfenDvkfFgjf7QudQ3Oov1b3IvssocUpECW+gYpNLXm6q0HuMvM86efgSs0jSMXQ4yZk08cT5lhHGlsT9c4rFEiviaTS+Q0DijV4IwipQmtW6xu8OGIawx93xCS5W43MJxGQoyArnTeWPUXkgqvVUvOgVI0TauZfOJ42NO1HaVckuKGEBUhByiCdsXQkZMlhIz38jxzsT+jYcfThG0MV21LoOOUHDufaIpG167Th8DhdOLlccfL/S13p6NQhq2rNU4Nxqs22Wcnr2r/nqURCKWgi1jYwpy9AnWjknrl3vPkkuo2IglquYCaXTIr8p/nML7ZfjYrHlxcsOl7fvT0KYfTkXcai8oTN6cdL497TlVHRimVvTKnv79+KKRM0DrSGcWm67hcX3G5uaJrV2QyIZ0k4dvfkVJYGAgy9DtvH0prpknx/Z98wadPv/rZ1+/XvdBb1/Dw4SPuDvuqN5CJQK5QmnwIhf3hUMV6HTGOhBAwVlOIlGzwPjBOvm7GFqUEDrzb7bFti20aMqKn+PgXvsV/L8CLFy958WpfK3VIVXRkDHQrx5SD8NaVTNlRmshsXStFwBj8ssBoZzCqdo9BbtamOKH+aEWjNVNQAk0acWcax4nTMNE2DidjMnJKlFQgZVRSGC2GVSoXgvdYY1DWMRNAtQFKJk0Tw+EVx1cvUK5FtS26X9NfXGBMg7KRkMFPkdY2PLx8yMV6S+NarJPci5QjPkzsDwde7XbsjgdikiJuSc6uF59CrM2sEu9sXeZiTtqNVCTJuOSCcTKt1obaHUtxqLTBaVtDjuSKCzExeM/kpQsvxmJc4fK6561H15SY+PRHn/KH/+b7DPuBxjhM5UvHHIlJ3CJMzd4opTYaJS3+3lCLSXnRdUpXqSulWgO/QYeu06OiHErl6jIGVPRoMSe4P39TMitYMinKuWieC1nqjxljUFn4nuKIVovcGRVlXlCEB5qzCGpr0gtWCa3KKOGGayQYLlVPbznXQsGSF1AWiBet65QkL42OXAvy340yGA2hyJS51AfZCj3HLMhJrhBsrouh0BrU0mDM5fK8KJdyr6Au82f/usXu68eMxswL4/lx87m933TUj+O15zqX7Opc6i8euDBnWypmq17k3lZKnG2Yn7v+t1Gg7wj6Ew5lhGKX13r++89rHv78r5efesyf/vpPf//NOH70+R197+gbxdUmkHLkFAJT/AqjNX3X07UiPG5s4cHFFRjHGMTgIobM+lFPiuBLIWTLMWROOaETXDUr1u+uue2OxODpVEexDd6kqoE05E5z+QvvkXzAlEI0MhBQ0S95Gmkp+Kl0C9lnmkacqrQxdVjjSCFUvZOmtVYcXsoZKQ8xLNeXFFzV1UqL62IuhdVqRUqJcZgI0S8uQWKgIeV0UWJjPaahui5pjsOAs5a2baR5oQ4nWAsCWmmOaIU+OXa7PbuU2KuCXlvaolmXlrcyqFPgcbflstnQrnpujy/IemJVoPjMPhZsSmjEYjtkz2mSUMTGNHR2JTkIccJHoXPEWBgHTeMTsdqSNv0Id8IoUKZapLeiV9IZlJJcKR0UbW6w2lByxg8nnM74CEGP1Szi/jWuzmDnPIhQqtJIquvcvIdkyYt6kw+x54eiPWR/z8xAQZYMo1R03XdE36a0DIJTEXh8YsTnI75M5EkTYkTrnhgzISoKDu8HvveL32azcvgwUKj3Q3Hk7IBE4xKNs+SooSmEOBBSJpWJGPbc7Q8Mk8dYMLrh4YPvcLc/4P2XDEMSF85mBboBDcPpObu7gb7Z4nSDawylSBE7eijU7JukOZ08ISYKnWhflSGGvIiPi7JkDEVZlGkpWHxkqb8KmSkEDtPAaTowhlE0uOpMlZ+zoaZpWhznoKKrcR7COkEflkHZeX2QXuasG4Q5e0qwcKOEpXCfHpVLIoPY1pazq6NVhut+zf544vnNDZ3RPFz1DMdbnp6O7IKkjlNq1lSZIx1ed3lcSogiQ/C+abnsL7hcX7FZbcUQo0w1fO8lMfu6d6vaMykodUVRGrA8fXbH9z95xlitc/+i42s3GTFEjBXoKxUWB4/7Yk1JNZSpayajHZQsgSxKZ4oVa7N58jMjGdvLDTFGpinQdyuSTcQpsF13/M3f+TWG48R/+o/+73z+5DkJRTYaU0RvYJ1Br1umUyD5XCfdop7XTlXqVBUiBw9FXHZmjl7J1Z4sCZRlrMUogylC65BPSBNzYgwBZy3OWGKKjNNACZbiFSUWsAVKpsRC9gGaupSVs0I/pYCfJlIIhCkQ4y1ZaexmjT9cUpqGkw+8eP4MBVxfXnN9eUXjGrQRRw8fPSFPDMOJm90dd8eToAjVjanUsDVVqrC3CILRWocpNYtcSe7BEANTDKQUaernY4ypMGjld5ZZwCwLc05lgWVjyiQ0xRiKEVee/Wnis0+f8cPxK148v+V0nGiMuGVlBaH64as6NRAuZl7cXgq5Ttpnnv9cPdecDUSgNX/vTWo0DOJSJhbManmtMzp/Xysx3zvz1bEEI9475mJ4trnVWlJXqQ1JylJ5aD1P5+rz5vN0TzJFqM5fLDDurJ2AMxSslMIURVaaMk8I1b2GqIhDjjV6cVyaf1+pSEWFExchvyoZp+Q1JpOZtSd15khaFuxzJkJe/hSK0gsqOU+OREB+nh69pt2o08tSeO1rs3PVfecpGXbIc9a3yrx/z83sOfzwXuYH50YDdS5xZshcmr1ZZYKgWsoT1StC2f85Jf+f9dX/Ol/7i77+13vErLk7eO5KZBgTKgTC5DmtPd2q5243QUlcXvQ8vFqxu7slKg1aJveb3okdK4YxRKYEWvV061aoDrlglOLRdsUYE5Mf0N7jiqVoEVxP00TIkawKxRrJ7jCGlbV0rmF32OODoHpi4XmmpiyFXsnkmKAI3zkDJUWkDa+0xwU1PGsaU0rsD3t51Dy0M0IvbpqG7XpDSpIBkXImeC9uW4iYN6tUqcByvfkYGMPEYRrQSrFdbWhcg3WOi82W1rWsupZXdxZdNHGK+OiJScK8hHomRao1Dts16CFQsqZVlzKZtZmmN3yjdUwvn3C68RziIO5bw5FxGtj0La1tcaYhBI9PkaaIXuY0BNQeDleeTePYdJo7B8eYhL7bGVQHSguVylZb9zIUcsx0l2uslfUmhkCygDujvsvAAHEEQlHXTJkfy5S47hlzHhD3iUdv5nE8DrIu6wKl5oYYLTWMnvePQuURYxtL23QUFKEkaBXNheXp6QnKGFSCGcX2gzTtSmkutisuLy3aJPIU0dqhdCb4sgyEnSs4Z8hJQvRyCcTkKcWTlQQt2jJnHAVOxyP+VECtmeJAUQZ/GmRtVy2HoyGmDbF07E8DnDzjoJiiYgpGBPspEmJmmhQhgtKZTECpsjQFAK7pMG6NUi3WrlHViCdWfV0qMIXEcTxxmPbV0OGcpTajDiAIialujGcE+LyWpiruns99rpvWLPjWRe51Y2zVNWoR6KuzA1Sem40i9MgYMymrOtiT87xpOl7c3jJOI+9t1qxby4td4vl4YopheU0pVxZF1XPcN1dRStgSTgvdctWsWHcXbPoL+m6FMooxndhPLzmF24ognxt0hWQSSWivYThmfvCTZ7zY3S7n6y86vnaTYT0kBZt+wzAFaSKqc84iYNUiAp9pHBKCpMh5YoyJlAPWKOGZA13fi2uAM+JqUTtAhca2LbsysVGJv/Pv/DZON/xv/rf/R26GE2RVrTUjaCVe9MVwCOJslHLiPNsoUpDdm1qa6loB+izqTBIVbxsR7iWjiSJEkFwBhNM7d4M5JsbDgE4NOmnZVJQSF5Ms+ReSETFzZCuVK0pHHOqm6seJrA2hFPbHE8cYOQ4Dp+HExXrLVW0wjBXbs1wipRbkh+OR3eHEGBJK2YVCMhffTmlx/ymyYDuq01FdgFMMpOBJyVNUwdkWZ1tZvGqhn2LEYHFa18leDXorgnBkBdpqslak2k3f3Jy4e3kgJlDK4lwrvuhZRN5Zuh9p5hqH7Vq5scah2sJJERlCWqYJM31hvtbkxq7C7zeoybDmG2QOlDKRy4BazOQQPr+C2mVUFKLCpfX6uI9i1EcCLMWIMWLVV3JVUCuFshK2N9Oazosf5CXNVYL4YoXYqT+hVZ3Ez9O98jodS9V7Z2k0iug7KmazbODzRyA9gMJkdRbBl1pkKRGXq9l+t77IosR0YG46oJBVDSosRRbQUpsiI81JztKMztV9qef3DPycGyhpVs+Fv77f9CXhDot/+Rn5m+8lEIqFbArnbJIFkOL+eZvRk7KcrzPKUbMZUkIp/7Wvpz/dIpS/6Jt/ief56z0ePX7ENI3EECla3FSmcaLEANHg+oacCsMucFCBKdximo6YMuvVmq7RbNeOddOwblo2umHT1oYjJsYhyHQva1zStFoxuQ5MFUMqSQjOVYSac8J7zzRWVGUchUJobe2UzwLc2f7WOSduPiFz+uIJ3bpDX6zQjTgB+cUz/0y/mnM/UkqLoNRXwe5Ml3LOYZVhs17Rr1ZS/DQtMURGP9V08SBuheVe4VIkhLIUxd1hB1ktGR5Wq0qpcnSupaA4no54H5gmT0yRoBSvtCKagjGwbhwXOHRnCHcDJRSmlOiL5nuPvsEvvP0BP3z+BZ/unhN1EW54gc71NLZjUkemGOmL0GFDVByOid1+ZP3Qsu0N684xTBllFaoH00HrDNaCKZoUMuEUGTPYB5b1uiPmhM+RGD3Z/mnLa0GTqcOMszmFTmm5ceVeFdrKm0Qj/LOO4A8UiujurKk6ISdU7NpYyJ6pAIvSDtu0uKYFp9BbxQ2f8uTVl2RLzZlxTFNktx8YJkNOivffeoTJEL1Qe5wVR7TD4YR1Xa1nZnFx4jQEnJOmf5oG9kdPVoZULN5PdF3D7vgcabQVIRgmnwlpEuOQaUeIons6DTtAE4KB3FG0rXSuRIhKMiFKI1q/JAi9NlJc2zr4MbalaVY4u2bVbiu9XS0DoBgTU/CcwoHTdMTHAEotQ++5dhKXJ70kbyuoQ7SyfH9GiZavpUSqQ61CdZuqeRhFBIlYLcYMYjmMIBD3NRlJaOk5S53ZGkdnHM9ub9lYy3sXW4Zp4IvjjpenvbhKClNaKHJFU5S5l/5U60Et+3TrZC3Y9Fs2/RWb/pK27cnAaTxwGF/hw1HqqupIVYqlFI0EGWpy0nz25Q0//uorMvHPYBH86ePr06V8JGx7sA6NlZwKJYunmqsPJRe6ooqcrQjkcnaUksRCDoGT50lg03ek5IWTWfMBcs40XUvMirtppE+Rf+93f50vv/yS/+fv/wFPX7wSkYsSgbbR4p6gjCKqTJoLnntWorkstTUeoZoYa9ElY6wmlUCcPINK9Os1drYGLQlVNClpfMjkLqK0RaVKGyliByqherIBpZxxxoi2wYC1UlyVnJnGQBgDySdiiMzJwzkJUnIYTpyGka5tud5e0TVyc5vZnrfIBXw8jdzdHpnGWKHl81RGIQVZYySbwhmL05UmpTRZF1KOAovlgFNgG0fXtGhjamOoiKGgsDjjsFqLdkUXSv2sVL3LpZGrnXwqkLRQr4zGukY+l5LOCIaaJ8QV2KtC56wFltPlrKcRfnI55xT8Wceb02Ow2vwWOR1I6Y6YXkDek8tAzgMKCf4q1e1BVwi/Jlaw8Onv0YAWpIBzA1Jr30p/qJQlYPbCrg6XMpWsS07G1IAqeahYGwtaNzcIc0CfoBGzKH2ekFTNgUbogvW5dJqF0kstJhYMimqXW0VzuSxOOooqmKvaDMqsy4FEFZgDOpeKvBSKZnGmSwWioj7z/FsrcsECQpzPZz3ke/Xczv+qUyU9oxI/VXAoPTclpQ5QamN376JTCuo84bWvzcf8ZVm8y+vf/G/pYZ1Gmx6lNDFErGtxqzVhHDgEj61TuBfP9rx8cuDqumN9nTkcTpyOE85qTtuOzarFKsPl9gKtNJ1RNMZiVRI7x5jpYsHojru7A65voHEcfcLqDh9zpUzU0DkjgtIQxS7WyGSHXDJN42jbFu/9kqnhU6Jfd2zff4vDfkdn5wa+rvnLLT0bkszBledrQM+BgrXYCSEwhJGYJedA6Fiik1v3K5q2YRwGSmkJfmQMAT8n/poZaYliSqIyZLHiPI4jdcGg71tQBWMnMmCzZBzFlMgIl3yvMoMOmFWhaTtMiKBFh+HQdMXwvat3+N6jD2iu1tyEzITDqcSXtuOAYQyeUxSkUpVC8jAOkRASXWvZrixHH1EbQ/fA0m8b2tZijYJY8Mnjg+IYIlOIPGhbbM5YnTmRQEdQ+XUEUnG2olZKDC6MxudCUbGiwvcMJd7wJqNt5L1oLeiDtaY2HG5pMnKZBzRy/cUgVL6iFDFMvMpPGeME2UggpB85HAPHoTANmUJkvTKUIiHB4owkhW8M8n3TWlKMaCU6i1QifjqBl3vm+ctX+KRwbivZG9oScuZ4OjGOkhY+hYkYNcEbUjRMk6Rp69kIpAhtMBUPShNTrJa9ld5GddcqMowMMYITbXCLRZuWxvY0pkVpQ1kasEJIGR8mJn9i8p5xmgDZV2MS847zvnFPN1io+6Ecs4NTutd4zPuPMUaYM0moVYKgJVQ2ovcFUGLMMhMF5iZjNn8pRXKCTF1fdocdH19cYEriyf6GL++eC3qkqLWpUJHnQmihktcBoVGVkqklHHPTb+i6nrZtJVAzTIzxjmG6q6gUUCrDp5ybqlJgt/N8/5MvuT3s6iDvfkvzZx9fu8nYHD3TKhC2FtdaDIYpeCmAKwIhNIwZRShVmNSglSPnQC5+mThoLaFtp3Ek5wBa46xEw5dcqn+5JjUNd2niON3yd/72b7Ne9fyf/uE/49XhQNSKWBsbZxymAe1HtDLYpsE5RwiB0zARQ5CFH6R5UDJZbVvDZrtGW8PxuGMKE7nC4/O0aZ66+pDxWeGMlQ6PRrj32mCV+B5TRJQlv19coFyjRUsyBvwYKFNCeYVeciMghMiUZKqklGKzWgt07pzwdXMmVm79FBM3+wO7YSQXmXADqFQA8WtutaF3raSf63n6XZaaLNVN3GqFcYa2bXGNTEfuQ4daGZQS+1Vd7XsVGWMdmg58IPhATlm83ytVQaEqDYD62tMSGiQNlyBO4qJSg/60eMqb+XapzUZOhaTO04bZ4vRNrNW61duU9JgYB1J8jxIPxHRHzC+h7EENFJ0oxaNKqo5o0jAsjYZiabJ0bUJLbTZijDWLov5CfRZlzyviHJwX54auCH1AI8iWFDTn11xyRkoLVRGMuaGRljWnmvKO8D11qgJn1LJRL1SFMjdHkhCeyr3Pi6rjUCKeW+hUtUAoRbaEPD9OLp7FpUtrVZ3QFD6fg/NKDZ3MlHPBMBcbpYq11fm11pe5/HtuNGa9z/2iQ9X3I/bBwplVswXhDKGouQjQy/t4XS9yFoy/kRftX8NRiqzBrnES4JUlpyiENeMoCIf3HrMxjCHx9PZIPx6xpVBOA7oopu2W512D7TTbyxNaaayxOGvoWnBW07SO4hQ6KuJU6DrFZKTBdVahdMswamJUONfgY+A0DRhv0HUtDClUF0GFn4KgA31P7fEx1nIKJ9rrDdq6xSpVnOKExxyClwllnZyWXHCuDqUqVcI5uwi/nRNx9TSNiwkHyCCr9Q2b1YqLriH5juM4cnc6EHOmGLH8VUrRU7A5E7QWBMYLPUomDZlUJKOgbZ3kfYRA6xqsswzDANXRLunMpKq7kYIRRU+mo4rOVUMX4OPVivXFNTfXl3xw2fPJqy/50Sc/4uBvScbTNBatEjpKs9W2ltVKc1kc6nHD6vGKft3SOMlm8LuB6AMECElxGgO5FNbrFSORJgdUngScmKfQ1aKv3AsBNcagJNSGOSo0z85+5t5w5w09Li8uiVFyJUpBpuqpUsqslWI6l3mcg4xSEiGOYAwv91/xLH9FMY7hdJLCXBv2Q2KYDCFGttsGZ2GKI8GfsFZQB2GtQJxGVt0KSMQoqO7pdAKTCEkCJ8dYOJ5GjMp0K0tCLW5OMVppLoIiRvBjkRyTaCjZLGuv0pL1kKork9ISfxBjohBRyoLSzEEBWilSjCQ0aIfWLV2zwZhmOX+lyLAypkBIIyENxCxDCCrK6FPCGinuSxEt5eyAmItQfxcdcpbv51iRsXsD0LNxi+xipQ6W5s+umvXLkLVSvRZqMGdadCoFpzXDcWADPLSau8OOHz7/irvhuGg1UyrixDXPrsps4DyjGELj7LVi6xzrfk3fb2ibDtdYMpEx7Dn6F4zxIANFJFYiQ7XULRQSMRSePLnls+evhJ6P6GJ+1vH1kYwnt2xcy9iv2PfnjkxrTfJBJuZWpuBFzYFV9ebVWibU1gHyIcw0K+HhKySsT5oMXxfDGBOuaTBbR/IBpTN/7+/9bd59+y3+D//g/8LN8URIoBHx3aOto6hC07ZcX1/RtC2nk+f5s5diXahnu9WJmCXAxlmLMYpUElY7pgCqEf1A22hSCDVpWdFohVYWhUVlmN18danTM6Nrpw/WKJzTNI3DOJk+pyIWiCmkShORjjzkxBQjkx/JcWKzvWCzWUsirmswxhBDkrCpkjkcD+yr0HvuJHU5L7ROWzrX0hgRaku6rFirLWKlnHHaYJxDG4VxdklNzzkLjSEXTHVHEqqUBEMXhCJVMEQyU5wosUKsWqYsutqrxpQI1enCKFVtV9WyIGqlcFWEHE0jsB9SfKPF/jTlSA6xIiP23DyX14vFN+FQqqCdw7iWnC8oKZGTJ6aBkg7kcoAykNINKd9R8g6Fx6jEnGoiKJ8sTHGuTmevfq3BaLSrtItyj7ZYp+lWaTIyoZ3FpbP988zXVJUypV577bVYnv99b/Y/W8qmWDU6Si9ZOAu0UgtstDQ3zlicOk9qYKYksTQYc9FdKmohoFipj5UvqIWeJK5Z8w/H+uLngYWI1euip+fTlpdFfJ5SlXmLmiEPeQWyUN9vMGr3o89vT76+TK/Uck7Pk+myvGaYmye5LhYc5f+PZuCcJhehYDqtKFnotTFK0Q4K2zSwFfez4CdCHLEa0mkk7APh1Q0hRpqrnuP1gF31KGcZ40jr4MHlmoeXFxjrMC6xeWtDzBEVPQ+2LSAFvtn2QANGAsBu9prT2FQ78ExwgRjEClcmlZGSak6B1WhdeLBaY53j6EeGaUJpi7Fy/eQk6dqNcxQFx0Hc3Mpc6CDT6aa1pDjn/wgqmcs9L/4k1JLjcOLusOOlNmz7juvtlnXboLRh5yP7YZBsoRjQxjDFxOADxlpcHb75FJliwAfPMB7ZHU+UDHZ9gTZGHmclfdkqKDkwhUxMmb0qnHTBqkDjFBe6sE0BGyGPe95fb/mFt3+N3fSLvPiF3+IHn3zCH/yrP+bV8wP+tEO3SaiyVtNvLddrjXq8YfVgK8Murcjek4InnyBL8DuvdgMPdkdW6zVKG7S1MKnXmvp7dbYUodVGNUoSijykUlrUUtT9fK/9v+whA1xDIp6L1yy1k9ZGLOUBXek7aIPSYtaSbOLl4RlPj7eothFErRimU+ZwjEy+0LUd63XHGEfG4YgPI87JZnI4eSYvdveDl1C8XCmmoUAYR46nA2MApdaUkhimQCoFO2mO48gUQFDjTEqG5C0URwiJmMQsx+gqXM9LiUxKwhLJyMCKDEpL5kVjjBj7ajkPru3RuqO1a1q3EuOGe4V/ioEQJo7DHYfhrtLOlwmZ3NeLEFts3asTvaAmpYB5fc2e61hVznT8FBPOGJL4zVea7zwcrbXvTP2uzzPvEfM+lbKsFx0WmzPfefiQlCJ/9OQrfvLiqaCWdeuJKRMzQss6m80u710hSEZrNOtO4iS6dkPTNFirSXki+gOn6RVTHOr98LoWcaZiPntx4Pd++Bkv93fELEPkon52C/G1m4yVtuyfvEA3jvatS7Gaq9BurlwynzN934iQs+ZfoE0tcEydKhZm/2WQzWX2GB4HuWlACv8YxfnJOYfpDEFBsfBrv/EtLH+X//L3v8/N7R5lGvl9TrHerFFGiZ2gVujrDd9660IC30qhESiDKQR8iVjnaJ0jxcAwnAjJV39mWyephRx8LVZk0qOVIYRMUQalHCL3rSVEthi1FReqTmObUhc8tSRnRi0OWbmKtkLM+JSIudC5jqvtBRfrDf1qgzWWFD0SuCPIz26/Z/JeFpwkK6qxtgbcaBor6IcxtgrgCqjzxTfbLsoiVSFXJcVhLgnvJ9l8taVxkvuRU6mWubOTQSSWgJ+8uGuhsNrQWofGQL05c5I0Xa2lEUMp2VgrYmGUpiQRR8+OKBlISmFIKFXq9L26rKQoiBH3pudvUME2+T1KOZR2Uvw7h2sucOWKkiIpRsiBlHbEdEuKz4j5FXALamBO0xTHpSqmLoXZ2CjnTKpFbKpNxhyYN0MCSouxgUXuw3mavpioqJphoVgshc1s2JDPsPDsJiFWxQkfQxWpScK40aXSn+41IqXUBFot9XcV94O8fl2pcmcdTa3+tRLJfF6UDwtIoABVzloSgYFlGgtzVo08uNTvzw2FMXoG1xah3dkKd24xzPIyFnSivp9lPDQ3O2cwUNb5eTH/M6/B6pClqw5/fqo36Hr96zpSkmIi+YnW2WoEEiWjp7DkRIAgtf32AsWaTmWM6zi4iXE3kU97VLHEfSQPJ4LVTLYwOc3kj9ztAt2qxTaGvjH0ztI0bW30ckXWCsOww7UtWhU6BwpNY624/AVNMAbJYJLrsHUrQe2jokmF5pWnjCO+T+jLHp8zpUgGxjzU8Tc74mFErTvcdkUsgggrpWsGx4hzrVBx79lnKnXOD5onqzEmDkSO08TN8cDVes319oK+64Q6sl4zDaNw40smhFj9+wXVaNuWNvjanEd8TkxT4NX+DlWLLqMFBd92DavGYayuZh+zW04mqMKr4pmMIWnFXT6wmgKPHazsml/+4Fv80nsf8bd+4Te43R/54x98n2evnvBi95xpOtFfdOL2+PCS1WaDswZKZhgD0zEyHAOhAuSv9iNfPHmFbRq6Bx1en51tZl2ZfKDzYELcJp11FOFboouuroWl7lHltcHCm3iEEBBdmVkQrVwgxAQqYnK1Pa3GKdrKvm21Ysqe22nHfvDkyWOMoiTF/uAZhoIPBuscMUV2xwN+GghxQnuZkh+OAZDss+MwYrSuiICYG/gwsj+cOJ6iNKEx42wP2rDbj6A6vBdBs9ENYIlRcrdiFLpNLqLlFdMgXdfIOc/kbCVdZsOQkklJ6GGiL9H03QZnW/q2p7Ptop2a1/uYBdk5TXechv2Cri+HcJRkqMSZvrU0Bqqg1Ou60HPmyuvoNbC4S80DqTPCMe9ByOeIDGJjknOUswzcNl3He5dXvL9dc9n3/PFXn/OTVy8YvNAbS661QJpTxe8bmiztC1oVnCm0jaHtVvTthsZ1oufRGZ8GYrxjDAdS8lXnWqUL+dxgxVD40efP+fzZM2IUTWEqBco9SsSfc3ztJuPy8QP08cTp+R2N1uh3LvBaU6wlKqHyGCX8MCqFSc+0iSKTC9mqizhmxIQio5VlVhLIm2NZ5Nq2JaVUbzJwbUfUkJ3nm7/wTfIU+MEf/olAevVDzacTxmqyQQrSrFGqEU2CVjKVKRGtEltr0DaT8wRacbHdiJtCEO6quGVBySIgwpoqfpJzkpMI+DJgjJOpggJyRqFRVlN0ru9V0V44tqvHJA+H/cDheOLkAyuEPjJOA+TMat3RNprGFnIWhMOHkSlEdocj+91eBIqpYJVkILTWSbGlRYMxd89zsV/IFC00mVncK4JqsWRzvaOgmMaJGCIKmUTLxZQISTQVMWeBL6v4iyRhWEYLVcFoS04yectF6F2qukTVy1cK4XKeansvmhxBteTmu//np52DZl4z8Nr33oRDm0iKmZw8CoPRDms7rO3QrsG4jpLBpC02PSbFd4jpBvIrct6RyitK2aEJNfslyY1fUcMYAimn6hVe77W5eK6vwRZVE1/P50erOYyyWudV1ysJ25PU90wWmfq9xXI2TrDGkCmL1W0uWXjAtegudWoz60R0SrW4og4O7iEEckWIxkPJPVYl4pgZ4pinKPVVzJawGlWRFHns7PAzu3rM8G3dgmQt0arSA6Ggqx7ljILNC6mq72d55yUj/F+5Dmcfeu6d658+FPemSBV9yVm0JjNb8Q2vaX4uR9/3+IrOliJ0ypTBVXpoSlIQO9fgtGPVtsRpx6NWEfcjfpdRoeXtR2vixrKfxG3vdDqSOoO3hmnSHE+ebgxMDrFEpwABAABJREFUURxwGmPYbC/oGkfbtZLvYh0U6FKmaSx9p2mswcfCGIT75LSTcLoUST6SY6JtO6I1NFOA4Bme3ECbMTnRX/TQOsiFgLjzECfiixPxxYHxYc/q3ceC6BbEFjQVpmkkxSSi1VJkeFUy1jhpymoei7EWk+RGiTHz7OaW2+OAbVuM0owxsd1uUVpz1Xfs9wfGcRKihtFsVitSScv1nEshliM+SjMSvGfWHZ1GxWrVcbm+xGqNM4KOxxwYvRe6l4ZTSrQ50k2efcxcbTxDDnzw6G2+9fH7kDK/+u0PmcLI73//j3h++4rb057PdzcMrcU2jdA8x4E4RsZdYhoSIQp9OoRCfnEklCc80ltOq0jRuVI8kEgIpSmqkKtj3OykKG5jejF4mE0j9Bu0d/x5h/cBlNQe2tRxZpE/Mc3Td0n8zjmjUyCXhDGFz/xXvBzvCLmITkNBSobDITBOmZgU63XLOCkmH4lpIkWPsYZxKpz2E8ZoUA0+CpU7psgUAjFrjsOeaQpMU2IYpW7ousTkhe7eti0pCgWw1PU6pkKI4vRlZyob54HNAjDUWkvo4LJf5Dw3GrFO2jPadFjX4WwjNCDnFgq5PJ9kUI3xxOD3tc7ICwJdyr0B3IxS1zU+JdGbiHGn0IbEROUsFJ+L+7PTUll+72xGgOLc2BShiokdPMQqD0ipGoykzKOLK77z+DEfXm7w0fNkf8fL016obrOGq7IbKNUIBqk7Z6rAvAdqDW3b0PcbmnaFNTIwKCUxhoFQdvg0VHRHGvCFJqWkoXn+8sQPP/2K43hicZGcu52fcXztJmM3ZLarC1yYuHm5o79YM/SWaAxJa+Ge5gJYjNI0WmDurCIxiiuHMVY6z2IgR6KPNBaUpITV36RRWvhoVhui1tV9A8ZpYtLi5GRWHd/9rV/j0eO3+Wf/8J8wnAaUqYmJY1mgUmssVntxPgKyFqeZHCMJRds2dQBciCVLwBgyhcoxCR89JVCaYjTWOSnQKy/bULAaFBM5ZUKddFllUKmhhAwpoLXCOUvREI1ivV7xthbnkCn6yids0NpSkO621A1k3Vom33IYYJwKXaPIOKIvoAzONlgjBZhRZzcglHD3ixLnp4IixrBoUhrX0LaOpm3QxonLiE9SfBq7UKdyyXVqHuW/KZCk45+nXbYufsFLeqYUodJk6NqsUe45KEEtfAslRwr37JDnGz7LbaK1eW2iPJNeeG0y/WYc1hW00WJMkBI5e7w/EWOHNh3GdFjTYk1LyS2uWZPTA0r+kJJPxLQj5ltK2lHyHZo9Me0pyoOOqKZBVyFnTgj6lMVHPVbrubGAzkoCsUoGo7EVbcgKsgZV5H5LFQ3Q1R2szGtHpQml6oxBhV21lUVMFbUkjKf5sy6zm5R+rVnR9+lBs56hkkjPEuqyPP7+tj/TkqRZMBXVmNGMqpuqyITQq0RQNxMiZCIl/54zZBY3rAJFFXRG7hWtK52gvu66LsxNxrJpMAMS58aXe/++32TIa5INUi3r8de/Xt/8Eui/2pHzLPCfQ8QUzlUDiGq4gRKaQymJ7XpFyQ2uUWAs1w+vcdnQ+SOvnhw4TZFu3bB665rQKI7TKJqDEjkcJ4ZxoKiMs5b96QZjDP2qXz6j7XrNxbanCTVRu2lp2obGZi462UdSKkyDbO5ffvEU029Ybzr8PqGS5uL9t0mXmmASymmS1fiYiEX0Q+6658Hlh6hUOKSJhFArfPC0bctYIq12ZG3RWhqtjbOsNNz5SAJxP6xpvlkXNJV+mhVTivgh1/Obubm9oWkaVl1H27Ss+55t57DF4yfFwSk+N4Zd01CqGYtBcZpGUkT275yJWROPI4fDiC6ZVdfSNg1t07BZrWX9KRJaGFImnEZOuxOTTsSV4jR+yVVe8f6Dx7z14CHJJ956/IgQIy9ubnh5OvLDF0/49MVTDtPAfvDEU2a49fgpEXJaCs/bAfLNiek60DYtxunXZlLzxBvqsHLW8d0T6RaZLEihNGva3uBDMpFmNFhMdeZXPdu9SLNcNQUqklWmtPDjp5+yz0dSKcRUHZamwGnKeJ/R2hCjZ3fw4pCUEoWEdYXTkAkjKGR/ntGfMQyEmGXomCLjlPBTIkbRQcWoajSA5jBNzBq9vr8ghExKEzGMSAstRi/GCL0ppVx/l5iWlKrpE9t8XkcnQkBpsK3D6J6+2bJyWxrbvIYy5JIJ0TNMB1KJta7hNbTidfpSWWjGs17PzOj/PPwqM9J472fyveGVkj1OK1XrAbmXpNmoyBsiL6Cug7MZjlGahxeXtDkx7m758d1LfvDiK45+JCsxXpDAxTPVT6s5hK8sa5rUWNBYR9esaJo1zvXoyvKJZSDFA4FBKOlL/VVJxVK0sT8l/vX3n/DFq5fEEoSmVoS/IEGIf/HxtZuM0TkaFOvNhnj3kuHzJ3TvvUO+WFFURFsjYURZuPlSpFSuuK2BN0qsu0ou2EaK5JwSTfUgF4hY3mSuwXIKmTSFlM+QqBH+Hs7y7scf8Jt3v8G/+uf/ilc3N6DFkUDVCVUyGVsFmQJLJVDUxkBxPA7VscEy+y43raVtLDF6/CT2gkZpEpmoDU3TYpxbagVlDKWK2UKKoIoE59UiTNBZ8SMviM2rMgldNKpEdPZoIlpnqQBr42KMwa4aVHIVMdnw8ftXJL7FFAvDaWK3PzJNickH4UImadgymhCiOKcsEF2WSVhOtK2jbRu6rsE2cn59bTKMMriaYxKrniJlgehDdWEwSgLdjNaSgaEUk/dMUSYMsiDNsHWdRNev6yzn3mgjrzWlGmEvaLfAcGIvmFPEWlUXIXnOudBbmo03qMmY/A5tthjtMAaZhOdCSb6iQRPGrDDaoZShsQ3OdEBHKRtMfohNgZJOlHhHyjd49YzMHSnfEfNJMmeKzC0Kcp2UWoizTM+l4J+FZKh5gsdiTXsWmYseQpzOZl7PfdBVzrGe7XNLQeWzTe7yuPo9yjmDY/49Z9pXWShH86IodLhci82zM8Z9lOrMMZVDz9efUsRSqrXyuYklz9joPbE58+Jes0vmFkfP6Ol5IrW4m1FdoeqZmBEVYHmd83/Px2uOI3O/j2L2f3njq5qfw7E/HJYp4Nk+UihTOaeF7iJTxMLhuMMaeHqcaDYO1XWsmp41a+LTW/zTHc+evaRNieb9a5oH1xTgcDoSYqBoyzQOHI8Dq74nxkhKAzknutZBKhwPB6yxdF3LaiXJx62zXK57OjSn4ch61VL6hhIeYJKi0xr34dvcbU7EktG9IZ5OZO9R2jIGiGPEa41qLMZmjNas9VoovCnRnALp1qOdxm1XJCvDJTFCSDxuOxoNr4KgpGE/MY2B5mKF61qiqjlGSvbFmZYRYiT7wuQ9TeN459EjcvaQJi6t4nrTs+k6nu0GXtHQJrFyDylCLminF03TvLbEDPtx4OhHuqajb1uMhlXX09leCr+mgZw5pYQ67YmqkJ0lTjv2JbLSltZqUois1iu++eGHfOPxW3zy1VcUa/jsq6/4vfEPiY8z0/AcvztwHkKIaD85wJ6ts+/TUO4HZaqZD/9Tjb3o0qrl9F+i6f/rOFrXUBBEeK6pRPxcaZiwUKlMcUCGRrHXI7fhBl+CDAdjwvvMWBuMlFiMNGIseJ+q01qhjIlhEF2sYjaKMXVQKZrKlKWmCb6Qk8NqJwY8yuCnqSLwYkJitK6ubEkCd33ENlJ+3v/sZuqPuLFJ8yrGCEIXn1EDXS31tbE0boU1DX2zonHN8plDpYbHxOQnxnAi5YRShlwDneeluOS8uLvN6/y8ppu6RlEqmp1nPUZl7GiWvUvBosMo9Spc3CGRja/k2U9y/uW1gUL+uMbxcLPFnwb+5OVzfv/uBU9PexkYAhRBk3IVGs5D8rkJpA7T5iFz6xyrbkvjNmjd1F8Z6gBxIBUv1GxV4RU1v6ZCipFPPrvhB598KbVgqY6R2lQEOvzM6/drNxk8vmT/8o5OaR5sr/jyxXOm9JT1dz9iMuBVQBvplHOqHsHzPFHphctax5DkkjHOEcbCFDOX2xVhmlBK0IJEYZwCWouuwKDEoSjFuilpIoXQWb79W99jjJn//D/7J+zuTlAU/WqFLZYwJHL0wuGuFy4lQs2AkAW0Qmt16t+3DatVgzEwTqPAh6rBGEtrLX1XsDZWDqRA/HneHLUUxNlNaBMoOYm42ekKtymUaWTyG4IU2Fm0KTFNNRysFlrWokk422CcqQE8La6xWOcoWROiwKWFQgiZw2lkjAkfM9OU8CGyP47c7Q68ePmKpALKGbquOTu7IJSlWGldzgoaJdewUNtCjMQk7kLGGBF4W7M4DIUYmbwn1ZtfCtvqaqRrYYeuAYGyOChjiPo8BSj6bL8LmqKV2OeFjNa26g7m+/KMZJyxzr/+I+WBXAypNDXjQxZZ7TQqi7VkygMxjrKA2pbGtWhtJPVWO3G1yY5sV+j0EGXeIuc7cn5JTDfEfAuMhHSgVN8nmdo7ZvrQLJ9LpVCS2DrPibAsf7M4wanCIhsTFFAmhLMQDgSZUdWCliLFh64Nwyzoh4IutcC/V4AvArJ5oS0zFgWl+odTv3+fjw7n6VWuokCjzlMqrTRWl1osUKe6ko6siroXUlgROKpjRv28RNcjjY7VStYCo8Xdrp4T0cYIolHyWTA/bx3z8acRtbKEB/LTj/2ZV9L/b3ci1opz00x9NMYQwtkaVkI63TKUysUz+YS1cCwerRKTSeybhvGdluliQ/Nei7UtE5lxv8e1DdpoNt1WHGTGiWmaMFoz3O447QZs63CtRaXE5BOTiuyOA83hhHOWVeM4rnr6kImvBt59/12Uinzzw7eJKtMow+ATR9vix0j2keIz6pSxoVB8Jj07iY7tukVvFV3nSCERb47k3YAdMq8+f8U7H3+bYX9EPe7IVqO05pgSX0wRyBQFzjpMLgxfHkjPI8cO3LsXlM7IPQ60bSuN1b3p6jhlvnjyJdYpeqvpta5rs+VygvQ807trLt5d8Xx/y+fPnnMaRlkHUqLvWoyxHI4HjHaEGNmNA6fJSwhhjKzalqbpcdYyjSNFie37aZgwxpGUFvaAc3RW4VYKmw0vwh2bi45f33xMnALfuLjiN775HT77Gzf8o3/2L/js86fc3N7x1ZdPGYdBMqMaJy5SnHnuc7uw5BGVcg7PrLSVe7jpva/NlfrP+Sb4mkff9XUNnkcm8zBmfoQMnXSlhBcMo/Z8cvsJU5mIMcmkOiu8j5JVEeQcKSsuoTopYTKEiFKF4KUhiVl0dyhTC2+h+BSVyLPTVNZQJHfGGFXvaymClVE4JwO1cfLLBB6luby8IObCMI6LAF8Gyyz7i1ip5qojjYCpzYZBaYNzK/r+is6t6JoV1lgWaUIdbqUU8XHiNO45DadKUap0KS0W1ff3qLnRKNVF6r6rFNyvPViaVAkJnum0M9Je0Yk68Ft0yEUQJLkuZ93lbBVf6E3DBkOYTny63/PZ6cSUxAFS5tWl0riEpj9fB6oiD8uFrBTWCmWt7S6wbiWWxnV47OMJhTQZqcxNy7xfy2t7dTvyw0+esh+O87RMnM10HQDln72Tfe0mY+g0jx4/5HSzx61XPLy44snzp+SVo3nvAaE1hCyi3Dw7ECldLVBrkxDnSZ5eeG/WOQqFfrWiazv2+x2j92SlxebSCC9PxHaOFGVqaYwRHm/0XHQdv/rbv86Pnrzg//pP/wWnk+dar7hq1oxxYJqE7hOSCPcoBQsMp8DxeCJFuehjzkwUbGN5dH3Jqrd4fyKECW0bdNH0tqd3ic412KrxMMpTkIlb2zqsTjDI9GQWWEMWS0WjcdZinWVO0J5tOq02NK2jXXU4ZzFabtC2kQanpITWYImoII1cY4WnaRsnFsDqUs5dRR7kXhK/6P1p4MXNjsNpYj9M3O0leXOaAnkaSUajrKW14vKUFdVmVhYHpQzOWKwxtFb8tkMI0qCEsNy483xbqdpQaOHFO7QEBFpL0dIkxnqx6JrDAZWmkmURtMZRciDHAjqfFxBF7dZ/tk/zz/MwDORsQFkp0HPAWic5H5VjqskULdPyXAreh7pJaLQ2WONQymKMfO7GtuR0TU5vYcuJlPaUcsSkZ5RyJJUDJY+UImYARYkNH4DSorPIJS0IQ55haVVqDoS8dtFL6arTmDVUgrjNFnzzlFQVmfbMWoc5g+XsunQ+pMWUYxbrnwlv84LIAouUyjGeU5CZF796TWRV0BV61kqaWubNqRaoKHF9k2FH4Ry6JQipOHlU2JtarGRNNTqT5qSU2kTJOZuHRVLI3EeJZgTkp9GMSsmoLcX5Lf43c82+Oa31X/4QQbTYuOYsRYRYvsp+IdbjA9YZLi42BD+x0pZmF4hPPI1rOa4n7lYTSUPpW5S1hKKFBlpkgj+djhQFNktu0Wa9pjGG0vS8fPqcYizHr+5QncJsWw5xZPJBgmKd4VgyO3NHXxSdbpmePcHlyLsrR7teoaxi3ViKM7Ab8NZQOkeeEikXmgzX6xU6RDIZ3SpMb1nngrpL3Dx/RTaG7Tcf0151hNs71BSx6zVoS0qZIUViyKSaCeUuHJfffgh7Txwn9E7WHL1uSRiiF+68cxY1T3NTRGmDnyLDyQt9t2mAgEqJstVEH1g5y9Wqxz+4Zrc/Mo6emKoOLFbbyiT7QEiRUIQd8GJ/oDkOGL2HkjDWcn15jXYQvceVhIqR4zASCozFSEFoMncq0+hEHwqNTlw+3PBQNzx8cMUvfeebaNfyo598yu/93h/wgx9+xqdffYLeJJxV+DBBmfVXcP9es7pqv0quFuE1CbwostJVw5G5R99/I4+CDC7nYnfeJ2KaXccqkpsVRWmwlts88uMXXzAlsfQNCYIveA9+ksGktdI4eB8pFPwUJEROKyYvFKiCQjVakqjrfaoMlJKIOUruly8YU2iUFM4xzvQjtVCGlNYkHwVdS4gT2/FISNXp0MzIQxEKmxJH0nNoZa5NhtRUrmlQaIxZ0TRb+nZD53rZO7U+T+JzIkSPjyemeMQHj1ISqKy550y2FOozMiB0wVIy1gh9C84DUZC1qn7xPFRTZ4RiQeXnvDYQ9KzUQXSWgl/21jNSf7VaoyM8O418ejqy81N1mRQdRU4z9e9s5XtG7kSVIUi/omk62v4a3WxBt4QIpzLR2QEzHdExUIhVEyeBvbMRZU6aH32y57Nn+8Xl7v4gb64Fftbx9ZsMmzhoy/pize7ujkdX13zLWj57+QK9bei7K5SxxFSWRN+YErrMXuEimtHGYIyTjT0nKSxL5ng4cHlxweXFBTf7fdVB1NyNXDDW4ZSjaM3kJ0oprLYbKIVVu2J95fgP/6P/MQnN/+2f/nN8COLUgSXEwmk8sj+dCClJSJ4GnxRTlsAYqRVmigu82p04hgalNQUnWhIK2jb06wtCEResUgqpUp3azrK5vlg2zuAnscs9HDkeTuQYgMo3rhCcNlpSM5sWozPkE227p+sausbinMYauaGchlVrWPeNaEO0xrUSXuRag20kETpmsyBnpaSaOaC4vrrgg3cvMLbBmIb9cWJ3GDgdRm5u7rjZ7Rkq7Wp/HDkMI7f7o0wlikIZJ/aGlTYzB1ZNKQi3X9fPuRTRiFS3K+s0bWNpdUNrGqxrGaIn+gliWW5SrWapkojEcso1KVfEX+J2II8QKlbhHtH9jTisOZKKRXFFUaJRmRPjlbI0riVnT4wVZqwUQgWEcKLEjMZWRMPgbI+upgLFNphySU4PyXnA5MeoMhDSjpxvyekFMR8oeAoREAcQ0RboCl/Xz0gp0RrMtKcyl/ylCrJ/atqvpSGqHCfJO6lc5zlQUtWAgCxxfFCkeVaIUHsW9lV3v6V4n1MnFiFdYaFj5crJkilapVWRF/oGKqOzXhoOEXTOi77Iy4WaN6Ml8rVFQ3JvjZy1SvMmM99DC6xeB4m5FAmmrI3uEhQ1oyn1/xbbYO6hOstXfv7Hm6Rdck4ydLRSTMGT5/gGLTxsU+ltpRRCiOx2e2gd4TCy++QlDInVxYbuW9f4x25p+FwjrnrD8UCKkc3FhYjIUaQQCH4klsy2M3zwwVuEXeL2WcBRUI825GbEEPDHkYBQZ7XRqFSY1MBotyhnePXZF1xfbnmw3rDeiO/81YVjCsK9DiGQVWGaAt1Vx9pZpnEixLSgi93bDZfGMZ0G1g83BGfQF5eUCgqmGJYiQmtZ261S5NEz6YB7q6FRHUplXOsIJaOKJuYzxa+oskwzcxKkWhLDMz5EmUga8F1i0p40BGKUPaMxFtsbUm7qNDhSrMCfISWy0pV2WCg54VXBkmmsA6N5evOSbm9472rL0RlKilxoS6fEknWe3noEaQ2NQTvNMXlcGuk6w6qxlOj5lW+/z/e++xHPXrzik8++YGomPnn+GX/0J9/nSX4q1DMRY1UUt9QBoAw3c5qNUWXdkNsxV6T5vIe8iWDG6TSgja6W9m75+pJ7VddLyGirOcXAD2+/4rPnO6Yc0FY0YTFFQSdipQNliPGcGB+jlKoxFUIQIwalSi34EYpOSbLOKwnsm01tcgpV7N1QsgJMpXBBykG0V/IKRStVzWXmwECW4dSy69TroyxOc67mhcmAWmG0pe/WON3QO0mzX6xrK/02pMgYR3w+kXOEEokx0TRNtXafMy1mxFyatcVMZh7A3UM6fvoQR8VKv4NK/Renr6XlKGfb+LLsDbLRFJB9NIPRlrcuH2Bdw5Pgeelr3EI9O2LMWZsSdTZKUlDPo5xnjWgWm2ZL016hzIpQNNFnhjyiuKWYAfH2ycQs2uMFeS8wnBp+/OXIfvDiGFvfi55NevLZ8fEvOr52k5FaxV2K6KRp7xSvdgcuu57OtPhPn7PpVrDtmEwhxBmKOotR4DylkqlD7ViLIRfYDwOH4UBboTVdqi9RAecskClJ3CJa1zKNk/hDaxH5aZdxLfx3/87vcvvqhj/50Ve8vLmhFBGMi1ZCPM1TyZQEIeUzZ7pA5xyb7QZ04XA8UHyg6VqKdiSVxemka0FLgEypkfG5aIyx9Ks1q34rtpkUjHMYa/GxkPaeEDSQGePEFAO5KFy/4uJiy1V7gXYNIY4cphNMgRz3HHc7QhA72evWsO4sum3oVyu2q5Z171j1oq9Yb3o2axGBG9PStStBNzLEHLA6oxtH01mc0Wz6FW8/6CkRcnpPbH1TYgqBwzBysz/x7OUdL28OHE6B3dFzOE0Mw8jpeCLFWJ0aai5C44TXnrNMw+u5bayhbxucbnG2w5qGpCyjT5AmmRib2YmsVJtFzZRHXGt5+4P3eeedd/nd3/ldbm5u+OTTT/nk00949uypLBBfw+Hg53bkEWc2GNcg4TqeVBIxHmmMrlPsSClJ4E+tKdqgtcHpSruLUfiPKROmAeN6jJWGwyiHNY6UW2xeU1JA25GST+R0Qyw3pPiKnAdSOmDKBCpSdEJmHFXbUqIkIudZN6CWDSunLMnbtcqe+a/UhXD+mq7e5uT7lAXZKOI8wdGz+HqeLsl6kHKioGvGxTzIEuWCMWexdpphc+ZCvTYq+SzQFttfhTaFQq76HrmpZ2qV0lX0XSeBCgShqRSts8XgjAqfRelzyjcLRas2OPX5iq6p4dSGLc82gCy5NOfNqfqZ/xzq/Tepqfjpw3tP21iU0Tij0Ani3cTNy0C/bVldGrIpaCtFuEbhc0Ff9ax+5T3UncfGhCJhadCtxXWOmArRn1Aq0fUWnwIxRHrrWPcdyoh3/z5nyZjvM/rDHqUU3bbnbdXx6vlT/EHhHl0yusxpGjgGj3UOvTugrKEUzWnyvHB7CoqLyys61/Hg6gHrdoXbWkIcONkTicC6czy6XlGS4sXdkdPk0TZhV49Isci0dQo0TYcnMduMZ9RCNdZaiVB8DJQUMe26GiwkxskDBW2cDPEyUKlEWovmsW0tzlmGccT7mh+TBSEpGtAaH8UaVazHE957GuNYtT3NtsFPJ6yBU0jsp0Cow8CUMyEKmq1VwmlVdZSZL3YHbieP7Tsej5GQEo+ur+jaVoZIRvSPKRSKMhx1AQOmJNoQRfyORgfPh+884Fvvv8sQJo7jL7H79b/Bv/iD3+Nf/eAPuB2P7Kcjt6dbQgpYrbEYUi3EjBFNg9AsDJqIq/vOm3yMU0KpSIwZM4VlHZLGSfQZohWT4duNP/GHn/+Y/eTJpGr8IoXknH8lBbUjJY91wq/3PtQJuwx2SwZjjWRVlEzMgVyi0J+LuH6mmARx12J1bq0Te9lSMKZlvd6iTeJ4OizsFXnujLNij5+Uqi5G9+lIM4UoLX9mIfbs+mltj3MrOtvTNYJinLUTYkgSY2QKJ4ZpRykRpQvJR0pxy5416/RmsbRaXsNCgDo3HZzX1debDmk00HUOV87C8YWGxTy8mnOr8muvoRTQGDbNihd3O7447jmGUPPmSt0379Pk7mMYmsWSpBpNWNvQtBcYuwXV4FNhCp7i96i0I5eINVBUpVzP2ymKkgzPXgZ+9OQFvvglt2vJUYvxazuzff0mQxVoC8+myIPLC04vblFj5OHj94nPv8J/9or1B48wFyvGThFyBiSJsiR/74QglA7mLkxTskxU0IUxnHjr0busV1tevnzJNE2oWtyUrCWER2lWqxV+FL/enDOn04DThv5qxf/07/+P+Ef/6L/gn/6z/w/7w0CoXO7ZTYKqNyjKoIwUJakUNs6ycZZiFOSeXBJWGQnrI9GYls44SpovvCIFbilChXIacsS4tk5dBWKKIZKzeL+nXAhZMyWNsYa27VmvL2m7zb3CxRGi58XdC549C0zes24t1996h+7Blh8/ecnuq5fkCKpkNq2hazTr1nCxdmzWhlXv6PuG7aZn3a3p2462sfR9i+pXZCeuUtZYlFUoq1l1DqUaUCuKupKwQDSjz+wPE3cHQT5uXtzx5bPnPH11w9NXd7y42+FTDcszpjZtcl6t0fRtQ+taCoaiYEoScpWTJJdaKxa8RYG2FmsU15cXvPfe+3z3u9/m3/1bf5Nf+eVfwhiL9xHvJcX9J598wk8++ZRPPvnk617GP4cjU8qJUl6CuqTvLskpEOJIIeDjIAuZLpAVIUaUA7KVYlkHrFMoHApN8BPe7yCANyeaZiufmbIYu6ZYhSmRnD05P8SUgWJ35HwSoXi8JZUTMd9BvmPuJGxt0MV3vy6lagYqSnUZqfSkexqJ1/QVy0Tl7AymFJLWek9HoWszAbO4XIEysqnUxbUqEKuwTuBso3QNwjwfptKfUkU5U7X3pS6xiowusmkllbGqNgVJdpBZKCqc2blxmCHw++9DVftQcaWbLQ8lqGg+pBmySlG0JpGkITKCEhUFZMS1697GtISU/rf4EFMKT+McXdOgSuZ4e2R8lUn7QDnB+nFXi1BNKUY85YvCtJYDBx6+tWHz6JL93QFeeLSF0oHuDOtOQkwZPX3f8nC9xWjLeDvCQWzXUw+qgdU7V/iYOASPLoX2coVWEzFmHr33iGPw5BwJ+yPT0zucNuRNw8uQwYxobXixn+jbhhc3L+mankfXj7naXrDuLykEmkaRwoS2hu12TTGKrlqQxhg5nSLqpMj7iWwy5qojWUeqtK+SMiUrfAH6hqaVtTTFjNOatu0WHUaKM60k4FxDToUUM8nkKtgVJJLaBFhrcdbRuKq7yIrgEuF4ZPATe38ip0zXNLQaLtctW+fQRfaytu05ecnsKIi5yJSTMKtKYfCeafJ0kwTbRlVIyfOL3/qIvu+FUrPqxPnIh1rACJ1pcBmvMrs8sjWGawrRj5zGQOcsj996l48ePOZ/9ff+A4bg+f0f/YB//oPf44df/oSb2x3TIKnmpuoDs0LOZZF1QZqMM1XlTTxyxXpjrgPbQrX2FyMACRWWgaZpep7nE8+PO2KlcOc6qRZNq9jua62JUS/i5RjDIibOqSzORQvKkUK9vpIMc4roPeuqKRQqavaWkuyXUiKTP+HDqdrU2xrmKjRwcTIsFQmpDXHVMZQ8m82I3WxOgZykhur7HhR0q4c4t6Hv1rRNh7V2QZFnLYSPE6M/sj/cEMI0j6hINW07JaFEKanwlwauzNTve/vYWavA0kBAPUeUOvBUr523ecB0/284C90FxRCkTSnNetVzvb3g+59+xrPhKEPAIs9dypmi9HpjLDufQvarnJPQ09sVfX+NsysKihAzh+ORMN1S/IEYCkqJ4DtXa2yJmdGktOYPf/Kcwe8w6hzMB3Ltqfq+v058wNduMoqoTAjOsG/hrbff4vjiDo3m0YcfcfPllxw+eU755mPy9QrXtmSfRcGOBSVOUmWGJpXYpFpt0VXMrY0lKtjv9ozDhNYWa5vaUWtSxdSNtlA0jTYMw4BPAesck5IJCG3hb/07v87x7sTv/d4f8Op2TyiFbC2ubXHNSpwEqBd5inSN5le/+20uri95ddzzyZMvmSYvWhBj0VoyDnSlbIhWfKaPVApPzjUJtiUXueFCXWBlyKtIOS72tG3XcbHdsOk7uelTEn5lKpxOE69e3TGGiaLg4eMrPvjme6SQGMMNIWsJWstwd8rsTglVPFZPuEZhdZGJkoXWajZdw7p1bLcrVqueVd+yXjesVz1NY2m7hr5vcW0r1DTX0HYtrXU0nWLbrnj34ZZSNJMP7I/fYncaebk/8MXzl3z17AVfPXnOi5tbQhArVVWoVLAGrQ0pi2DfGAtxJOeA1uCMYd11vPf+ezx4+JDvfPtb/PIv/zLf/u4v8e5773FxeSEhhmEixUBOshG9+85Dfve3f50QfnYgzM/rkPDDCcpzoMPZi0p/EM5jTIOgGOkA9JS8IagBrTQxH1B4GtOgtVDktIZGNSQKIR2Ip0locrajay8wZo0xHdBW8daGkq7J2WPzEWuP5DIS43PG8Ak576FMFCKaVNPBy1J8nx2mOFOSuDcVrw1GjLGSq84uUAq10FZmHq6qjcrMT51TTe+X2csCfH+qMy+aC3fpfKhKAVNaozOil6jf0cq89sSpzHSw2oyoMy2LuXH6U59ipagojVb3qCdlhrlZzo9Co0zNBDJmeWOpnJ2spNFYthf++ghTb84xUyGG5EU3VjL27Q1vPbborFCmQKsoxpJSwNqGXBJ+8LStw717wckaVEkMJ8/w2Z1s1G+3uHc2qFaRQ8KqQuscJQaizoRxYPhqz/HVDvdIs313he2Afk3bdozhRHyQKVvH2jlsa+kNJBoubEd+kUgvjrw67smPtkwqkUvANYkYgkz69Y67/S1d27HdXnC1vcRZg9XQdWLs0Hc9Smtx2omBi82KcT1xerEjpkxZdSTBvBisZZzCUmCkeh+JTg7ariHEjFGWrKRILEAuCh8iLA448zU5b1tnGoYI7YWGq7Vk4rTtQEiZ07Aj+MgwCZ/9FEauNyvWXcPGOVLJmFbjMIwRRgUUg60ONLZ69qMLx3FAHwyKgvniczarNau2Y7VaySCss+gQgDrdLgVdCipljikz6oDpFbkxlZo2sVIanRWt7fnd7/0uv/trv8Ozm2d8/yc/5N/80R/xL//oD/GnOzximhqVIlWKidUISvvGthhgXCuhqNZgtJJg0hRQSjOViRBr/aQtN/7Ij199RaqOs1Js12yHefVR3AtJFTtXcTNTJLI0pLUIF5cyTwi+5gvJ9SMW7ZCLBbPGOIXKZaGOzqczpUApCmc7CpqsArGkav6iKwU3n0dEJZ/X/JQoNd1azQV6EYTNNhva/gpjHKt2TesaGUrNZXzOxCABlz4OTNOJKQjaNxv9zM3DTNIm12tBsRhQwBnFmBsDKt/uvBecGzKxq612KqXIAK4O2OXhQhorRS+IxyL+zpmrfo1G8+S4Y0zx3ACVUufZs/FItZG9d9kuug5lcE3Pqr+ga7YY05ALjCGwO+0ZhxuCOXA6KajxBCEI5d0Are3IWfPs9iW5TMyo/P1zdt8i+GcdX7vJmIKnZGibNdkpnh88D9+65OWzG95bvcWDh4/Zf/IT9NMdfdOA7SjGEDKMNcBriT4vpUJTpWZkiHDUpoy1DVPMHP2R9XrDql8zTYGQ45nWoYT2oY3B2IwtYJtGtBpa0ax73lpt+F/+z/8DpsMdP/rhZzzbD4xKoa3BGKRbLxlFxpB4sNny/juPefuD99hNA57Al19+hUpgUTjbolwrvLR6Y6gy0zvERSinSEoGH0SnELxnHCfGcRL+YxIL2JQSTeO42GzYrDfiWZx8Fd9EhmHg5cuXhBBxrqFQaPot2W44HQ8ErylYikpiJabUQhFJBUIsMtHVGhVStWbzaDXh9IGZdO4MOAuNgrYxrDrH9fWGy6sNl9tLri4uWG9X9CvZBFarFUprugb6tuPxg56PygO+990POI6Rw8Hz2VdP+erZc548f85XT58xRREBzsiOD4FUAsPxCCnQNZaPv/1tfuO/81v8h3//73N1/YDrh9f0qzWuld+nVIAScWaFw4iWJ0dKiuQcq9blzTiE1w8Q0XYk5129QRNGG5qmR+yMB1IOZMRDGz0R0x0wEmOSRoyMLQ3OXlGKxeqOkj0pR6Z4IuWBxl3RNiuMacU2VzdEk9C5o+QOnS/IJWL0NVpviem20qpuiXmPKhNLWoaahzlmaQwWBJZzEzBjkuL2JPe0VrPgWi3+2kadaVJyKM581Hk9kCU+VdrWvDYIhCuL6BzQC/Pfct/JlqKqx/gMGr9eLsxNy2wxWIPNmdmxC1fy/r/ra1VKdByL9SxUvq00HXMwoCo1JXbWcwBWSaMxJ5vPPuaSlf5fv8n485f3N7dYun8YY2r4VMIHyRHCymSZglBSjWGMmRDTmY9tQDUabRU+gw8jaaMpH23RMWPb2SVMM1+dhUKpLjppBZuPtpiHDm1Et3QcTxStWDeONka0tYwm43PCDyNTjKRcMAWadzdstx3vbXqGvuFuGDgOA8MwEHwhOkPjLDEUjseJ2/2Rr9xzVl3Pw8stV+s12/UWVQyrZkUuQmEIfuSdd95iuNxwdzye7cdjobUdQzaMKZK0ODj66JeJtDOONJ7QJRONJeWIUhqLWJ9bKxSYdA8VnCmuxlSL7ZJlTc1ZsjX6npgvUUoTQ+LIiWkKxAS3J89ximxXLa0TtoIzhnXT0DQWlyEroc2GEHBWsW5adIFJwTQGDmqkaU7EpAgRxlhwztPYasVqDBfbrVgN+0irFePtjsNpz+U714TOMOjMsWQaMpflRI+lUw2dbfj4G9/how8/5m9873f4j497vv/FJ/yf/x//hD/85MfsxoFInTmojLWvh4W+aUfJSJBd/VtpjdUOaw2ucTJsVIrSWL64/ZKfPP+8rrSKmHPNnih1JpprUym5VlBNQGZEujaygl5XzUIUemsu1cVvmdZbFJamXbFaNYzHIyF6jJU13zi7sDNSKbXhyFh7zoSYHSypDYIqgpIAFb0IS7MDYKpwv3GXON2x7S9Zt6tFi3FG2zMheIbpSEgjKKq245zJsSD0sGgHoVIIU6pi+3ODIX9nWZvKjMLUDwjq+ZL3q9R5KDUjH3M+x8wmmLUcgugL26ZfddyOJ27HU0U5qmZkhlDqzrcgF3Pmk5qF9rK2dt2aVX+Jc50gSClxHAbujjum0x1endhVNkCIUTQZRWFRfOPthzx9dUOIp3NyubxB0XV9zeZiPr52k/Gjn/yEy4sLNqs1/XpLMBnVWK42a7764invvfc2H3zjW3zx5CuKvkG3HcdWExdfmdlt6HxDzzBcMQqPIymHKolZzHs6DZSs0cZBdpRsSLVrpGScslxfP+S4vyPmhElaBNV14VxvNX//7/8P+U//wT/mX/7eD7gbI8fdgaCP4sRQCsTIpml4/PCaWAIxeR4+uOKDd97hxZMn4quMwliLMna52DSgktywxsqUoSgkeM4Ysh+JMTAOIzFEyBIqGJJw2TarFZv1Bm0NU4zEkuTxfuLV7SsOpx3rTY8xGj9FvvHNb/Hex7/KF59/jvrJVzB5oSPVvI6SK4++FnlGiwAuV2qXNg5lLalOD4ZhYNifJDek2tQZVWjdDY21OK3ZrnuuLlas1w0X247tdkXfObrWcXWxZbveLBvSVd/z8K01Hzz6Nql8h1wUd4cTT56/4qvnN3z61XOePnvF8TiSEnzwrY94660H/N1//7/Pd37pl/n4O7/A1YPHKCM3jSoR8kjxAyWeyHkCY1CmRelGeMe2WxbGN+WoMnspKOMtuSQau6EoK9odvUKbAimSQ6C1K2I8EeOOnA8YI9O5HCXE0mkI6SVK9VhzjTErbKWPxHhgGj0pNlizwbgN1rUYLGgL2kBp5dpQPcZuyXmilJGQ70jpjpCeEOJLcpZznEtgCbKgTlsqMptLkkZg1mFUwfqcizI7NcEsBK9aDlgWX2FI5UpdkkcL0jBzmcpihzunjv70UeY1APn96WwW/xod6vz4859lujdPZiofdUFjareSVCEU2XzmfUHVIccClS+7Um1c5k4HmYbJgFT+O8+1c5ktdb9GUfNnrOX/drQQP/vw1QEJZscyEedPSVzQDLYGTIq+JeaM0xY7Thy/vEWbhv6ipTjJC0pFY7cdutUECiVmmazejexevuROGboHK/SFw100lL4h02G0posZ7SN2Gok//JKOhocfPWBoMzvXgDUMkwcM3mj2vaUoTYiBbtXTdB1XV1cyRJlGToc9p+MogwIF1ln2+sDzFy/o+451t8ZaJ4X0xSXrbs3V9oqYMkpZrrcXGAun4URJheFwQk0nmlzwypD7jlC66iyUGE6BPka0Kuy1xSBFm7aKpmlwznIajotLm1BE6r5Qix9j1FJQaa3p206EsyEQt6myCBQpFWJMxAI3x4mSEtYYnDW8ykesleTuGb1uXUPbWIL3NNailWYME8PkGYYJo0wdasi+FJNeUETvA845acpiYfPwAduHFxSnBbV1kpYcAV8iLYmNv6U/ai7LBavtJdePH/PonXf49scf83d/+2/yb77/R/zv/rP/hB89/5KnL79Eq4R5gyzQ/6zDmBlxyKhUHffmz01bXEUlXpWJz44vGdJUhyt5GRTlNIe2lqWwnq1Txf2SauYizlOqaoCyTEfrc7E0H6nqQXQp+MMtY1ot7pJz8b7oHeo6WBTYtkEpQdiMgAcyMprRixm1KKXSt3I17Sj3GmPHanVFYzr6ZoOzzeuFbxHh+hAmTtOe43Anou/6niUEb9bNZQmZvUebvS9o1kovQ1mA+0v8n+5L1UJuyZXSlLLca2IvTz0vc88wD9tUlQ0UVNb8/qc/liajNhdq1p1WZKT+Gql9KoOg1PddSqGxLZv1Fev+Emdbci74GDmcjuwPt/hhz6lMC/ITa/yCLoqrrqPveu7GzyhUcKC+u1QdpbTW/GUM2b52k/HVky/YHe7o+p51v2HdrqHxdJsH6LHjydMb3n30kLbpefXVc7YXPe7RBm0tuWkkTKUmZyst1CkoNQRPLkhJhtbENGGMJcXMaRjoOhEya6NquByghEd4PErXW1JGFbDaUXICazjEie5qw9/59/89/uT7n2AwcIgcxiALeoFVo/ng7bf49sff5PL6gn7Vs1mtWLUdRonNojYWZe2SEnx2qpF056ZxOGdpO4tpnQhe05kqFWMih0yIYhXXdh2r9Vp4ieUs6AkxcXc48PL2Bj9NWG1YXVxwdXHNr//ab/Dhhx/hp0Tjek7piFIKJ/YAMl2dRUEV8ospEeuUyVlxo/IlE0oiqILXiikIVKp1oXGGoCytabFFMw2ZJ7sbpmlEkdmsRFReUsKSuNyuudisuNquefDwigfXF1xdXXKxXdF1LY02fPTWmo/evuB73/0mtyfPze7Eo8fv8rt/82/zwUcf49aXtKsV2oAiQ46QAznsicfnEDynw44UPbZxmLbDNA2m6dCuhdp0YC//Epf9X90xpIIzjsa2MsFQGY3wZlMxpJpwrNnQOVXD7XYYrcRTPx1ReEpJOANaC8VK8ipe4NjS2Eu03qB1h1IWiiemPbEkfOyxRpKMjRHKgtKi4VCllSlRzph8RTYTbX6PYF+R0g0+PCXkF5RKpyq5QubVvUkpRABWqFZ8Z67pDKVXEKPC8qVOW1V1CRHId84+KHMhzj2woz7fvKSfIeqfQig4L9CamQZSXnue88ZzjyJFwVCF4CWTyuxENT9/WV5/KOJKNKMb9zey16x6y/k/5yZFVcRFFyrOMv8gS4P1Zx3/VZqIfxsbjzldHV4vokAGNaEK+2dKWs4IHU1bkg+YAvF4YHVpySHiQ2Y8DLi3Lii9THdLTDRti24Dd09ecJoOXPRvE7RceFPwZNXSlkw8HtB9w+rxNfkQGU8D2lpWm4bkA5RCKglnLKUxlBDRtiLQWYqRnMXxcLXqGQfJ5IgVBfHBU3IhRfCjoPJd13KaRkKIXG43PLy6xDlDIbHpe7p+hVKFbuV48OACUubkJ6aUuDkGjqVQrDRaxQqC0RlDMpkpBKHoKWkqtNIYV4M0qTz7mvKrEIhtDhjTKMiG1lrWfU/KidPpKFaiKlYmgaSMFxSuaSkU9sMJxoDWE86JzqNtGiiNUJ6MXpqSlDPjFGhcpImBEC3GGqEj1/t+DAEfEyEmjBJ3JasVKss0WRuDa0QE7KeJsWRSCuyOI8fpxMVxTyoa43ouLy/YuJ7f+vgX+fh/9oCXdy/5L/7gX/L/+pP/Ny+PL19DF9+0+6nrWiTUNUtzsaSUy9Q/xUh2ip/cPOPTl19Vmt08jDnnhKTqaGSMZc4aE+pulGFQEcr2POiR2zIvFNicM0pX2k6uiHZ1Vcr5p4JJ5yYjZUISk4+cM9PksdaKWyLUotkshbYqMnAotZ5R1NqmDodkyNPibE/XdvRNK+5v9353KpGQA2M4MsUT++Mt3k9VgyHIVamoTM5JLNHV62Wz1mKfi5UaMM9DtNp8zPk+UFGQ+0OtBQmqde2sR5ydsZbPrtR9XYr3xjSEkxd31ZzlOl8QqFILfrUwepYGo8wPy2hl6Lst69UDXLMCLdEMwziyO90xjDuiH1E5o1Q+909FY53l8YO3+OrZE3wcXx+EFaoZxL375L9pupSPkbQ/cBxG9vZI3/bsuj3TZeCd9QXu+cTqOPLNX/xlpj/+Aw6fPqFNj9HvPiAYQ9evmIZRFPjMF2ZaeKXWWqHGFIVWTtxajAjbQkxYFdA17GUO2wKx+VNQA1/UmUtoDXbVY3TDdx++y3/8v/iP+Af/+/8ElRIqw00cKKWw7Va8+/ARb19fc3F9wXazwjmHQdE3LfuYUa4Ba8nLjaCgohjamCU5u+uFzypCbxEUpZSJSYSOqkDjHOvVSsRL9WIV14fAMI4c9jKd9iGw7QpXm0t+6Zd/lW9/9B2apicHyDExu2XMN8vs7wzVxYBMThFT4W+rLUkJXemUAmP0BJUJSjZvpREqmbOYxqIxjD4yhChe1kozHCIzLdOowsthwj73GHVDYz+ldYq+tfSt5cH1BW89uuKdt665enDJ3/j3/ge0m4esLh6zurimu3yMdk21dx1RYaBMB5KfyN5z2N9wd/MUU+Czz57w5MsnbLdrrh9ccXV1weZiQ9P3uK7Fti32/W9+3Uv5r/TwWapVW2r4ogpok4hxlM9MNYQ0Ujgyi+NSvKFfvYM2K/y0I/pD9QLvMMYRScQilLGcIyFOaHNHKWuMfYyiQdtCwZGzFGgpB+FruxZnepRpMNpSigFy/d0t2QjCkdJjjHmETc9I6YaUdyRuyYSFjCRuannu8ZeJGEXs7WY61ezmMi+OZYYQkEnMDCXL5IgK7cshm0pdI1B1vZjr/POilsucuaMWK9376MK80M+/eX6cLiIeF0vdauvLOcxv3pzzTN+af2EdKqh7z68RC16UkkBNZr9+dc95QzjlIECNvrdu//yPN2diOxe01lr6tpE04mmiiCqZmJLYdNcpZ4iBY4pop1h9fIUOmbgr7JKnv+5pnGPygWLFrc3YBl9GplLID1pWzZUIzBtL46yELebC6EemGOg6je0NanNByoohRiKZEgIFcI0lpkp5nRIlRWxRXDjHPkpIZTIwhQGNBqvpmrX41SP6kHF/ZBo9w/GIaVqmENG7AwnF4TRwu7vDWkPTNvTO0XctlxdrWg2tsWAVW+d43PRsN5lnL3eEBMOYyHZNTBFLzR6hcHc8EGIipkxjLCZJ+nHSmtJobNYiHp6RxblaQe5JrRVd0xBix4OrK46nEze7HTnFpXjSdciVYnptYBhTJmUvWSWjpm8aQow0rqVCFeSYCT4Sm0gwAWddDVO7x5mnMHoPCsYwQcm0bcvsMmTXG4w2aCM6x7yGqCGGRHKZHCLhcMTngcerniZl+pz4xsUVj37z3+U3P/o2U4lnJFPNltpvzjHTlIxzKNdWlyzRiuWUUCUyZM8X+xsOflooPK+tqkr2ozkkTut5OBlrPeWl0dCNEHKUUNkXl6VcJAiZypAoItLu+5U0MT99ykqp1BqhxOYEFMN6tRLnRMQBaglVnYcOM8L8GtJbpLlCbPRNc4Gza1btBmdb4FzkpyyU9Cl4Bn8gMhFSIBcxoVHoik7PyDvLHlaoKF9tBs72rPKo+zrBsxkKy3WzDElmq9oFeZHr+T7ta0YTy7JHZvqm43J7iX/2vAoXq8djfZxaXse8p93fnwQesW3DanXFqr8Sij8aHyYOw5HDcEvwp3rNlPvbqcgVlCVlxdNXr2qDc/4cZlRqRpyU1vfOz198fP0mI0NOHhU8nUtMk+ewP3HYnxjXD3hXbXjy9CnNquW9Dz/g8+//EeOPv6RrG+zbD4jWiOg6KU7TSFQZbZpKpyikLGnIrXN0/YpxnEgxY4yVwJeU6PueWVUvJ17ERtZqcRaoH14Gstb4FLHOcHu44Td+61dIfuAf/ef/GP3yDj0YTtMEOlOI2MZwcbnlYrumaTvefnjN4wfXxJDEzUcM8ms6d6FEybpo24btxYZuJRz6nGd7TrkxYxRruDBFurZhe3HBersVh5KY6s2Z8WHi1e0Nh9NReLbO0ViFtYq3Hj1ElcIPf/DH/Jf/+t9w2N2Jx7yGUubAPVWLf43S0nVSCo21GGPJRWgfx2Fi7wem6uNstZUmBGidpTMOUmGKXnjGISxc+1QUaWbCZwih4JymM65yqwteG+h7rj/4Nh99+2N+83d+k/e/8TEP3/4QZSyu7aUN0omcbkjjHXG4Ix1PhMPAMEVGH3n54hW3tzuePn1JSZof/fAnGCMJlk1judiuefDgkqvLLVfXl/z2+3/3617Kf6XH6APJSCNgdKFxHTFNWNVgbCDnhlIimYNMu3PG2Z6YZIG1qqBsxlpFyVFsCkuRaW+laPiyq2FSO5oSMKpHKUPOK4y6wtkHKBIhDPhwI0W163F2jTVrrGqxugHVisVhWZHtNU3zFil/RE5HYj4Q03NSuiOll+S8gzKRCbLJcBZ4oyDU/IrZxW0u2u9vFWIvqJf8xApYL1MqqFjIwn4ryxPIEi90rBmpPjc58//Jbid2iPeoVursvGGUZDC4mvORy7lxygqZAuZ8D5Kua02WVyiWu7KgS55I3WA0mFKY45GMOgv0are1bChvVgnz13PoqtVJMTFkL0ObRKXPaIrKOKOJSRBg0XBkBj8R24SxhmkFJTfkrqHvWtSqIXlfC16xey3zOvlA0oVLlMInxozRDkWmmEy0mlNFoEvWmBoSG2OQ3lhB37XkINbT2WpUFD+WtrEUrShhouRIKWBNUylz4vxjlcGeDrSnie033mEAXh3vOIwD2li895TUsVzwWtH3LauXlm3X8fbbb9NYi8pSPMYUePRgRdM0HPYjh8Hzajcbh0DX91ywJaQoSEYIHD695fB8B06z+cY1zXUnmowy5yTEpRCyzqFTFP6/0ay7DmsMIXoO6SRCYYTitjQc+rwPT15EthTwqRDHieM4YvUJZQzOteSYSSFgtaSAz8Frc/DcPCjI9e+E0IDHIK6SOiViuGXdr2T4pzSqMVhr0BlOKFRTUCvHXYlM4Y5LNF1vMFmx1j3fdR9K6Nq9teZNO4x11Q1TxPmuERcwCZoTQ4C74wtejQeyEmOAWPJrhhUg6LNG3Zusp7N7U8kohPYNCoOwG2azgRjl8yxZLQ16JhKtaA3vF6NiGS5UntlFdP7j/bmemKfzqKrTmwc9ZdbQIY+rfyvtaPpLVpu3WfVburbHGcuC61RkIKbE5AcOw47Bn6rmNaLQOFsL/vp4Z20dAs0ovFAErbXL4Pq+4UdKudZec4FdFqT7tcFXpewbdW6k5nO0OFXlM0phtOGyOuBNKbzWTgitbYbLpfZCl2UAR0XVldKs+i0X24d03UbWt6LwwbMf7hiHO3L0wnj5qevdWcu27Xl+e7NIHFSpDAGllqZo3ruMlhDor3PTfO0mYw5DKxQJBzGaFCNlOPGZj+zticexY/eDP+ajb77HO+++x7NPf8Lwyec0raY8uCRrJXZs2lBSqqm51PTuKF7oIaI7i3aWXLwsYFYTQsK5hFKFpmnJEsVL8omu62iahv1+j7UWnyIhJAyaohWXD6/psPza73yPlAP/+B/+U9SdoXWG4AdOYWRzteHRW9e0TUOKmXXbcNH1vGqcbCC5UGLtLpO4XZjGsVr1kqWhBJEouSwLe0yZ4APRR5rGsd1uubi4wHXtAkHO/zsOR25Pd/gcsI1l0/ZcbTfkHPnJJz/idBz44z/+CZ9++onYDs45BWUW49Zbba5pKOLs1LYUbQmlMPqJw+mEj0F0GxYaW8XftqF3DToXDsPA5GXxEmhToM4sPmaouRDLMgmwTcO2b/ngw/f55sff5Ld+5zf4hV/8Nt/86GPc+oK2v8DoTibxYUeebslpJPiBcdwz7PfcPH1JHDJfPbvj2YsbPv/8K1b9SiaaxvHe+99gGAZOp4HTyXM83vHlkxsUmbZ1/Pb/5H/9dS/lv9JjHA9EW3BGeM4+Dpw44kxD445o3WPMeeJnlFuoeCmJLmKehisNaW40lAFtUKohlqlaziWKf4kxPSkptF5jTMSqC1y7QRlF8LekNBD9kWm6w5k1zm5xzQprWnTlRJtqV6yVIekGnddYc0HJJ1K+JaWXpPySlHakdCSVmnJfN5E6Z6quUmfKQ1lcTmDBCUrlEy8YRqni7bnROGtsFqere3Oc+xxUVRc+oyoCMvNbVd3VmBGV+pxzAr0ScXZRilj0IgzXUJsStSTQg7yP2Zln/v1COckS0JcloG8Wnmc1u6RQ8Q2Wn/mrOP6Knvav7kgZbbTYbmoDqlqsFsRDv1JJZxrG7M0+F7Exp+raJsidigEdE+HmhA+KdtWhOmg6J4V4CMQSURmirnYBWpJXc0XiYvVsUEo2ppAiKWecMbIxp1QjxSpNzxiyEuONzaojRo0fRLNQagp9yRmlYSLRPF5zPTVwO2C0Y3v5kNvLyN1+zzR5vBdryBgjrmsYh4A/DUzNwGn0WKN56/oSs11BzmjbcDgOZAWbbU/RCp8q1WgcUGisVljtWG829E2Pu77htD9hjMFpi1KZREWOrJXGL2esFlfAglAaUwzkuzs2raN4i9eJmDS2aSR4sBZO3nuMMbV5qZPPrMSso2TGmFAhMUye03Cia5vFHck1LY2TRn3VNuRS8DEx6wsWWg/nwi2mxDAJFaYANohYt3MdXdNVRyZNnCYGP0puwm5PpxzX655V61Ax1Dv0zWz/V62ryKgGlSlxIoZJBoc5M6XAHz/9hBeHG2Rgey9DCCpVqk7t61B3pgqlFIW6lKQgVVkoQTOKMTefc/NHXe9NdaYqWSjw5V4zKInbs/ZBhsFwb8JPLbSpU/H6b6GwUoNiQQpn0ZOgFc42rLdv0a+u6LsNjW0lTHEWZ9fnCSEw+oFYAofTDlVkWKCVwRhLSZX9Ucri+XHfnn1umBd0pDa/Mwq07EbzAGrZxer+Qx2Aq+o2OX+/zKL6dC9IUWjHXdPx+PIhT29eMoUJONOt6iu8R/mdP1ju1XtgXcNm/YBNfyFrFhBS5DgcOR53+GkQCvT8s/MzK+ibhovtms9fPJX9V1W0pe5huZwHaqbqdfRPsQv+vONrNxlaG2zdQnPKRApWK0KOHI1mF3YEnzjuDwz7Ix99633s5oLj868IfcdFv2J1dUmMMt1XNSMBPXPLzjSKcQzC6Wx7Eb8aCySGweOsFRioTiezOkec33+t4lYj/vVRaw7eEwz86m98j88/+ZzTv/4jnFlxcoaiFUc/UExB2cLtq5d8+eUn3N29IuaEVhBTIYWMkZeMs4ZV37Ner7HWEKtfxWJHVhfcGBNWGy7WG7abLU1dPAVxkYvyFDyvdgdOXsRJZIGCXdOQc+aTn3zCj374Cbd3R2KIWFOnNZU3OG/GpmZUpCR8+q7vaNqGKUMKgWEcSEEW1MZY2taKnsQ4Ce0ritM4sh9OhBRxxkrATc1BUIAwKRNaR9rG8v57b/G9X/0lfvPXfoXvfPe7fPDxt3j07mO6VYczWmzoyo4cXpKngXTaMxxuSCmxP5zY7458/4/+hD/4/R9wd7Pn7fc+4HQa+fD9D7m6vuDyck0pUeDdohlGz3AaOR1HjseBcRzxYfq6l/Ff+TH5k3Chi6EUEXdmAjGJDqhtEjEr8a5OCXSHdS1a7SjlFvCUUrn8SrABXZuLXEDpFVZDyhNGW2IaST5Q1FqmVNYQihdI3G2xKpGTJoaRlDw+JnwecamjcSus6rG2w2grFAklG4m2BnJLKVtKuSSlx+R8R0w3hPSSkF+S8xGSJyMc+bIEQ+V6lYgDh6yFtcxWyAZUaUZnASowu5mUcxFxf6F9vUBXCzpgtRZNi6op4VAdN+afUfd/aikkTX2lry+TovEotWGoDxa6AIVU6uZyb5XOWVCW+5SBs9vUvE6dp3l/VY3Gv03Hqu9ZNDEp07i6LtYgsJgjvlp6W22wbnbDSaiUiD5jjcM0YvNstDSWcYjcfH4LWbF61LL94ArVijmGypLhEnWhsQZjnaCzKWH1GQk3dQIrDY4mpKoL0Jlu3ldQKOtAGTQw+YkUJ5wWuqlkpcBp9MRhEIRs1RBMoh0CaX9g01uuH61Zb9ZMPnA4HGvqued0HCX4jMzUd+wHud8Pg2fVKrarhofXD3h5t6PtVxgrSeNWi0lJ4yQhfDgdSSGR4gANXL53zUW5EmpxyYQcmUIkk5ecgSkGyXDCYrTCa8VYCqtVj1IFowyH44n9cST6Ca00jTU1/Eyc/5TSC1o1T7WVAoLkMcjelTmehio8lvs0XV7S2Qt6pwGNM7bSPyM4cy7SpGqjUAg5Lve6jwpT9//TNGKdY7tao1AkY1HGMbWe/asDY9QYW2hWdplGzwXbg5/3DfEXHCkEiqrc/lK1PVVvmZXmVBI/fvE5YxiZrVDnifpMc4kp0lhXg1FnqnpakAcQ1zKlNK5qHM4TdJgn5YAg7qbF1rDhuVlIcf4cMrrM4atCIlV6ziUSHYnork1dR0VELnlwQpdPJTIX1oWMcy2uXWGdCL37dkVjm9cpO6WI82IYCUmGYDlFaaRTkvwzfe/9LJi4HHMdOTcZUJkx96hDBbCVpk4pS806/xEKu9SAclprY1UdpObHybDt/LPrfg3K8P0vP5Uhct1P7ovDl2t0pgnc228Umr7bsFlf0rbVHjtnJu85DAdO444URhlOqDMVWAGtc7x9fc3+eCAlX5GtOuq7hyqZupeJm6pZXs7POv4SORmaXEPzZo4ZWhqOFALaNgxNwbnC8PIVL6cD33jvMQnD5//yD3h3CGy++yHq+lKgqHT+4Iz6/5L3Z0+2Zfd9J/ZZ057OOTncqWZUYSbAQZTYEkWpNfQghyP84Ag/+MVP/uf80mFHh8OK6MHtbru7HZQUodZEEgIIgAWgUHXHzDzDHtboh9/aJ/OCbalkU2TZ3Ih7b+HeHE7us/Zav9/vOxm0suScRByWEz5U5yZjSSnStAaXDTEmUgrkXGhdwzBsqgD8dO6iHUKH8N4TS+a4TKgC7UVPu9vyO3/rr/Py1Ws+/fSXNNZyOJz4R//4n/KHf/ADHj+6ROXCi8/fcHcayTgUlpKVbLAUnIaha7m+Eg1HVp6SBGUB2QRDCEzjRI6ZzbDh8mJD17tzgZJJxJyZU+b1fs9hmsVwUcnyX2LgFDwmJpIvLHPELwmlRdz+gBx+bgB0tdHNWaZSrnEYa8hLEjepeUIb0b+0XUvXSxifNY4YMuNp5Hg4sQShmVlrq2Wc/FzWKKxTPL6+5p13HvG7v/s7/OZvfo+/9rt/he12wGhH03cyBc4LYTlR/Im4TAS/EObI3es9f/KTX3AaZ168es2nP/sMlOVrX/smv/07z9BGqEFGFRHPhwPjeMJag3UO1zT0Q8vTd7aAYZkDy/zVsbCNeSH7QkkG58CVasmoHT4mtNEQbd24Ao2u6bzpNVZHGqPJqibTAqiMdS1KWUIqNbneoo0i5SB6BG0oZYczj0lJM+UZiFjTgbqiHa5IpzdY46EEUhpZ4hEfNbo4rB1wtseaFqNFSK+1rWLAArRYe0HOT3B5ockjqUyUfCSGLwjplpzuyHkm41FlFYhFVBVynrULslLv8zTK2oQ8CMerCN1D3dFDfYU6M5BKDdQyOG3AQKzJtkopshKoWeiEBq1XAfj9RA04H8TnxqE+T+v5qteiUqmKvt4fTGs+CGsDUYXxuTptmQfTu3L+pl/Niemf59VqWQNt07JzLdPtgWmc0Ar63ZZFG5YGUtbMfiazmoRo7l4fuPn0Dldann5whX7s8CUSYkI93vDO4wvG1we8H4k5YothXvx5OpoS+JLJURyumqZFK1UDw2R/9n4RnY9WVWMk1Fi1+ErRNVhjQUlWR8qRRmnK7UKcAu2jFtU7rFH4ktEgWT/Oot7vCGNgyYleFbGPzAnnrOy5QRogawXrOx5FC+mc4zQtGJ3ZDS2nKdH1Dd4v+OORXKDvB+Hrp0Qpnk1voZV1P/uAqXaWPiS0a3Fuy3Q44Rcv1JnG0ThHrBagnXUSSBkjpe3wwVeoToqVmAJl5aQhBUgpBWtdHY4o8eCvAXgrDQXuraAzcHc8oLRi8TMxTPhl4tGja4x1GC2OQsZoyJFSDM41HE8zPgRiDCJUrpP2lDPjMsueEjyn0wkNtE1L17SYJxdcXl2SDp797S2lOg99Va9MoeRETDV/Sonrky6ZUDI/fPUZL8Y3YnOboLrSsNYiMYb6fgmKq7UY6KyuUrJX6/Ut5L6eXYXL9zVfKQhFKxWs69htn5BKZvEj8YHednVRylkME+S9N+I4qKBkoT6XUuoApqCUmAXkVN2dsiYkjzYW63ooFkNLb3o621ZK6j0VaaWPLX5h8iOLn6AUYpjZDj05BdZk61KfabgXZK9i7ocIxorQUb+T6DrWJuG+QYOK7pwbiHRGaM5DMtamIlckQ51F9Nu2p7WNUJCyF+Jxqh+v3rbYBUF7UJzvs7Ga7faKi+1jGtehirzHp+nI/vCaebql5EX4ApV5UBC7+Mf9wNA4nr/6Qhz5KGddiljsruhHqbVMdaL7s24yJNJROtBUVo5som+ccBqzJ7qW/aBosKQx8OrmxJOrK+LnL/j0X/0Rj9TC9lvfYLh6St/3NbUyPKAVSP6FsY6ckiRuaysBOlEi71XOhLiIWxKcX4cUEtXHpb7xxlqB+urDlVQiqcI3fuM7/INU+C//4X/FD//4p8Q5E5eZeFqYb0+gFItPhGzANJTK21YklBJLtWFo2O0GXGNYQqkQWZR0Z+9ZxoWwyOvfbgaGTSfuWEW0EMrIm3kYJ+7GIyGl8+tOBeboOYWFRjcQRVinizRdK0QoHv1gULjaEOQodrRNI25SMSXmZWEcT+SSaLsG6wTBaK2Tjbft2e+P0pQlsUBrrMNpjdOanAJPnlzz/rMn/MZvfJ9f+953+LXvfov33nvG5eUW1yvEjcgTjydKjMQQiX7Bzwun08RP/+RnTMeZH//op9zdjmhj+NrHH/Hd736Py6sr+qHHNoZlPjLNB8iZ0/5AjJHbN29Eo9I0NG391TQ4J+FR/ab50sv43/eloE5j18AdsXfUqgdlmJZAY3eUqDAmEdMR4i0q3aCagtEtVtcEzpwRe0eZv7sq3k512jamQ4V1B6x+RtO8xxwXtNqSs8KXgDENRIuxj4GRGO+gHFFqQWEoyePDTIgWrRzWdli7xZoBq4VOpbVYcSptsKoB3aOLvN9WP8GVAym9JqZbYrpFpT0pnzDrRI0HojEAJVPiWAQWFMpT4ewqUK8Vuv5Ve8I1FfZXRymr05RaUQix6q8b4go319lZEe5yYU0Zv0ciVjh5nXM9/C7r5nw/A/uViVi5/3zUvbNLPrdSb9M9/rJe4ziSSiIGTzYzZfH0azDkOJEN6EZ0DbbSHLSWpOjhaofKLftf3vH6xSseDVfYZkNRiqQK2WT004YmWzCWaVkoWbjo656oKgU21BTk9d121tBoZPhSJK06ZEMoGYsiG03bODCGFAs5eWJOkBPWKLCgjcIqsRrVbYO1BWKmnDxl9qgrh9m1jKeJMM8iwswQUhITDqNpu1YKa23QpmEcR5Z5QZWEzorjPnA4vaLrHJu+o+9bYooY14rdboHNthNHoSKOal1j6BqLUo5xXhi9Z5llcmm0wufEoAcICyaDbfuzZXWpxWOfetqseJQsN/GOl2UWveZK0dFvI4+rMYk4iAHpPqdgLeqqdw8hBsZ5pJtkQj7HSNf1osVE4ZzlatfTOodtWkKUQkgGL6u1NOeOXq2T4vrsnZaRaZkxRgsbYHDYzRX6zJn5c34IvuQVY8Tot1/e6i60jws/ePEpU/KgpNCWax2wyDR/FeWvCMVKgXqYK7Huj7myNx6iGKu9sfy30BxTSZymo7AdtMEYV18bKCVugtS9FbXuxZVKhH7ws/Dg8xSpGgKtrlJdO6C1A93gbEfrOnFNVPeFbs6ZFBNLWFjSxGm+Yxz35BxEY9E2guKs966sTVg5r8W0OmspXdGy8tbHvUVPfzDklbsiv5/vZf0+awMjzwdrpyFnG9UmOGaGppd9qmRM/ZrnwZeqWRjrQK5a1643TilD12652D6i7zeV9VFE8D3esCxvSEEscSVTTZCVQuFiu+PJ7oIXb14JBXWF8lh3xHIeuiklRh3G2n+nZ+VLNxnOCuQsaIauEFSkH3bM4yQTZWaydpTeoIvh5asbTNtw+d4H3PziU7745z/AvHnDo299i4unTzFtf/ZtTim9VYhUEgUUcQRwrqVtHajMMs+UIpoL79V5MiKR9kpETw/oU7J4DMoo5hjQKfM3/+7vYbTh8H/4z/jFLz5nCTNqScQmYFpHsYashQefszg4CJ6X0BqazmCdAjLaWHRxpJCIITKeJo6HCRJs+oHtZoN17pxbkZHJ1ewXjtMBHxdQWfyQkQcnpsw4eVRj0FmeUKONdNJrV1uE52iNoWkcOQWZ6jqx3M1KsYTINJ2IKeKcpelaQSmMw2TN0AxsNluiT9zpvYjvm4ausVxse/7qb/86H3/tQz784H2+952v88knH9D3Ld2mRWtFmE/4/XiGGsMSiEvEz4HbmyM//Nc/4Y9//DNiKRhj+eSTT/jk6w2bzSC2rkng9egnptPMOB559eol4zgyjRPB+9o9mzNMZ62I1du2PTceX5XL+0BB0JiYMqnMpKyrcDhhTEBlL/7i6YQ1I52ZMUpBksmo1YKKmap7EpcOEctaVcPnlKG1DTELLSvlCWs7enNNQWOMcJ1jCixeLIiVzuSsSdET8y9lqmg36NKRkyVmTfRHVDxi9IbG7GjsgLUtShuZ2ioxFyjFUlQjaa9ckdJjTDpi85EcbwjpDSG9IqVbcgmoOtmBtf6WTiDXAlxVWH0tEB6K5B7C17Lh1T2ifsGUxY5aK6FMiaaFGqQnG2Wt4yRnJydxyqozqdXL/fz6ihw055ag3FOqzgXJil4oWAGf8mAzVkZxnnmtPxN/qi/6S3sN04jXEPxCNJqh70mm4XA8Qoarx8/wSahTJAkUzZVO0fY9w9cuuX7vEfN8IquEryi20UYcnbQixUiU+l7CuowRm1QtSLfRmlMI+OTPqJVRjhIzVsFgNMNp5vh85rAkdt/8gJOBOFQ6o9ZoNJbCNiwYEvF6YL9xnJSi+CBu4spQUia9OeFfHhiyonv/iqWxxJwrDVncg2JeraAVKURpXDBsuoFt04MBHSPLaWKMiecv7ui6ib5tcI1lXKRYctYyjhONU1xcbLm+3FJyQCuhOUdTyA7oGk54fAl0uw6rCl3W7PcjzdBjN604KDZtLSY1Y4JpXjCblmEpmFDIaI7zVM/a2sCFRe6RVXK+AU3bYJ0RtH6WGiKXTIgFHyIhRnwMzMuC0gZjE2WaZPqeGnJKNM7RtAGjNZcXO0IM56I0ZbHTzhU5WSfOMuUv+BygNiemoirmvLesH//n+yz8265+O5CTDO3E1lVK9KDgi/GOm+VEQehKMjSR7J9S3qb/rI1CSvkc5AiizVjPGwlHDhR57FjLKHH1BKiohqrU3DhTchSXsbVZ0OvOWRsexdt7eB3srJkbUvAioXExEkNgzScvSqNtg7GOprugbQe6pj9n0MB9M5tLFqpU9tXZbESrjDXiIrjqKd5uEvIZeUatuoM6GMorIi913sPKem2ey/nnWAX1Z8z6rTMspVTtbyvaozIURU6i89h0G3726jVz8lL2ZlijM886v/UAedBglCLreDs8YjtcyzMKhJyY/MJp2rMsR0Hr6vpeDVesMTza7Rjjwu10OtP3V1oYRRzCNMKSEVcyob6d9Ylf4kD70k2GNTJZWZaJnCOlyCIdT6fqohTJaSS5jtR0ZNugp4j64hWPn1xz+cHH/PIPf8CrNz/meBy5/vqHPPvWNzC2JXkPaEzlDJaczy4H0izIXZ/nBdA0bUvwXqw8tWLxEWsc1lrxea5FuNIKpxwmi9UbEay27J48Qm9a/ubf+z0+/+Uv+a/+4X/D8fZADlnQA2PQzqGdhAcphFcqwXYG07S0Q4+2mqwKrhGYq+RMTkfmaSaFSN8PbIYtTdfIlC0XyQ4okmi+H0d8mCgklKmuAavopojXuSmaBltTx83ZrlN44IXGObquO3Ms28bRdT1JwZwjPgVBMBpH07Y0jQOtiEG+/omRFBJ+mnAG3nl8yW/8+nf44P33+I3vf4+//Xt/ncePrhn6gbZtKJwgj4RxT/KhuqIEfEiU4vjss1d8/ssXvH71Bu8Dr1695hvf+KakeG8H5mXmdDhwGvfknFiWmXmeOB6PzOPI69evmKaZEIM4PxihJcjQonI7tSx4Y952NPkqXDmuDkWJnCVMypZyRqpijoSYMSai9EKInqgzznb0bYtGE9PEat1pjDs3KDChisIqS9EtzjiMuaYgqEDMYMwFKZ0oZZL0T91iNKQcCHFBFUXGE8udoE3a4Uwn1oWqQ5WegqylMYzMymH0SqnaYG2D0k4413oVsLdo1WH0pUxL7ESTT6R0JKU3+PiclN+Q19dFIZfKfVeFiASnJTJWaeHN53x/2K9iwrWYp3APQVdRoyoUrc/FPErd+8mvDilZ7qJSIi41StXnu9rbqvsprK60qrepWpWWeKZOrVkOsuevoYRSfN7D+Of96ME6+cuuy/jQa05xYTaK6DQxHfH1uY7GcXO7h5y5vr7i6dU1r/cHjstIKRBDlkaxCA1PWyl+Fx/kubEGlQtkRdu27DYXHI9HaVgysu4rIt10HSpKYayU0H7G4Dkkz7brub5+xHU4sXs5UT69Y/EH9HceUzaD7E2uIZwC8+sXbFrD0F+ytIrjvCAGf4J+a6sxz3b0gyNauGgcQ87MIZGj0LLWoUJKUdZTxfa11uiScApK06Cdo8Xi//hzLoxhe3VBsIW7/ZFyd0IbReMsew1NYzkcZ9682dO3huvLLRfDwKYbaHMiFSWZI0lcf5zVtJsNxRj5/gZa5cioOq3WOKUka6CxxLs7wDMv4gyZEfpH23QE5fHeI4WdqJ9C8piaIeTc/dAsIU5Hy7IIot40wh3PiZyEXhPCzDgJe6FtGowS6/q+a7jaDnJO5MxxGjn5SFjzFUqR4cL6nKr6LJfM4pfzhBjqM/oVmwR8/7e+xzIv7G9vefX8BX6WsL1DmPnxq8+Zk5e6giIiegNSO5UaEaDPBXBKmRADMSecc1K3lYJSBWUy1grym6rRzdqowUovkvcs143WWCvPZKW66xXXLat5iUJlc147YuAgg9qV8lPLboAzwgIFbU0NGZbGahgeseku6dpBxOmVAZNzFmvpGJjDyBJGYl5A3e/NKQZ0ncDfNxkyXEqxhv5VVzPq6xdti1DTjJGfbA3xux+Grwh2qR1ZltHSQ3B7RT/qWSJN3frZImjXWXG628v6zBVlfzh0r5S2h/lMJcsAomu2XO4eM3RbQUZKYV4WjqcDx+MdsVI/VW2g15fWuYaSCi9ONxJoqwThiJUetdrCK1OlAkahzXmi9uB1/ZuvL12dCdQliIL3tXNMkaVI4SJwnJGiIQdQiu7CMd7MlBc3fO1rH/P+t3+D4x/+M978+AvmkCl9S7fdsOkGrGmEE1hdo4SXZ+janmVZ6hSrThiV6BJyEicBrWQyv9vtuNkfiEncJowSKzHZUBQpitj6bjySS2ZQlr/+d/4GNze3/JP/4fcJo6cYR3ENWUuAnanBMFJEyEKx8naLS5BVFC3CT60VFANZ0XcDQ7+hbTrRSlSbuAyEmr44z7Pw3Yx0pKo2/1KYaFLJ+BQFKrYt2tbQmlKgfr+2sXSNZZoj1liathXP9hRkM6nOHSsXVqOJPgpdISQRlYWWobf8+u/8On/n7/wtfu273+TDD95nOzQMXYPWBfKRMEVCPJLLgp9HpqNnf+uZ5shnv/glzvb89NPPeHT9FOe2fPzxM773fUOMgXE8sn8zMk4zKWRc4ziNB169fsHt7Y1woH3EqGqXaHeYqsNIOUnK7Nm1K0GJFE91Ofhyfs1/HteufMJt+hlRLxRlyCGAmrFKYayp9IU9Rme0KXKQWivPjFbYVlxRcoyk5BFtBRVGTRgViEmE7lbvUGZHTCdIvTTBaiLl1wQf0PoRxmmsaUgloHQhhD0hv67FTyLlhVyO63aHVVuceYxWO3JqyNmQosaHI8a0GNNg3UUdOjRY0yAzeysTQQU5N6jco/U11jzFmXcJ6YZUXhLSS3IaUWoUu08SFhkImLqBa7M6CpWzdWw5F/o8qNbrPgREqPaxayNy/migQuSsh4cUcImC1tTv/3ADf/sgefiVZA+6d9SSvUVe1IporIF896I9+ff10PjL3mAAmOaCLk80CsIcCMGjVSA0Bt8rQg4Uo5kOB5ZpImmN0wanZPeVRGjP5COiCcjYGupFFkvIhBSt8zwL+m6kqTXGUrgvkBrnAEUu0lwnYI6ZaX8g7HbYC83F5gJ3mHinecreKLFsngJtV0ga0jsfMBVNVB1OF3SZUc6R4n0RlKxCPepJJXM3nVhCwlpHyEpMUMgSSlpNLqiFcSzSSCet0LlaWqdAujtxdXVNhyNuGpQ2wsM+nZhnycmZF2kAtIK2a3izH+mc5dHllk3f4aylc47WWlzTQEn4OIOTyX/KCa1MzRmQBG/aDlPAolGpYMqRHE5obQllTW9XJK1p25ZY4tnmNKfIPM8YJe+nVgprDBqxGV0bjcU5yYNqBHlxriHGAkbMTtb04RAi0Xui91xse562PRvXcDSOKWd8EoeqWBKxGqWoB2LeVVD71Wor3r4Khe3Fjt3lBVePHnG4u2OaJn7203/NZ/vXRGptUQceD90gxRCmOiKpNWNMivac7hEfaw1GSzEpfJr7Kb2urk/SsKhKN5OhbtP2pPzQfQhKXl3YxE72nqa11qYKapJ2Xv+7QMqr+PzedEFpi8KgTUtjexrbiivcw725FDKZJS2E5BnnPdO4lwTzELFanRPSZVi/Fu5yd1Ot7x66N61airds0mu4rNzj6pxVh8LytfOKXbPqGSigspwROcv9ru1K/feCNbYiKUihncv5vLu/dGUTVFvgmstkjWIzXLAdLqsjH8QUGeeR03THMt1BvM+6Wlu6vml59/qxDETPgzJFItf6smqm6pmolcY5oeT/qj38v+368ha2RosNmFE0TcOySBOQs1jPitjrfiFHHYmtQ28s/pC4u7nj/Xff5733v8Yf//SH3P38OfaiZ3h2SXl0hXEb7LLQ90PNw1AYLWmXsXaacC8ItVaTCSzLgjUO51oW7+n7jjQFluBR2mGMiOlSkII0pMwYPfPBs7EtZtPw1//e7/LZZz/nsx9/BsYRjMG2DttKbkEJGaJQmBSF5D3Huz273ZbOteKqETx+Fi2GVZZ26BjaoT5IlR9ZshTMKZ4doGzlWmoU+eHkVUtxFUqisQ1N1+CUkUYpyxSubRx934mVWCm4xqGMIeTI7Bdm7wkxooymcQ0K8N7jlwVXMo8uB54+vubv/O2/yUfvP+W73/2E9957l2HosA4aEyEuwptOkXmZmRdPTJm7/YHnX7zmzeuRn3/2nKura54+6fitv/KbaKWZponjYQ8KlmWiaR3LMjMdR968viWmxGk8MC8T3i8YY+ia5szBbRqhQC3zjLIO05uzS0ZMkZDSeeqR/9QD+Rd3fffR/5JfHP4JX0z/gmwCIRdymTAkhkEmMEKBypATzhpUEiIPIaFKRqmWxl6gTSbGAwqPyrJZGiSsLLGGFx1QaqJ1GzCBkA/E+AZNi9KJmG4JKaK1R6kTuXyGUjcoFSk5kIo/o36URFaRzITRPdZcoM0OVXpSioQ0ilg8Huq/b2ibrehITAOqisKUBt0J9F46it6i9GNyeYLV75LNkZDfUNJrSj6R8kQlTZ2fb63FQjarqplY7f+o9KZy32ushYJ83H2DsVKlpIiQzVKhqjhbAsPUSqXIpYri5JdVdTIlPDXZVB/QuM5fUd3/uVKvSv28e+D87QOxlLcnhH+mV/k3/t+vzPWjz16xGXo+eP9dupTw08zh9gabMi5JMWn7jnnKRB0ojcKXRNGGzWYrCFQ2sBnIqrCEwLT4c5qvaR25CMrcNA3zPNci1pNSEYSwyORUQHNFqPkLFAmmWrLnNC8Ev3BDYXfd02iFj4nH3ZZu40g5YqLHak3XbYlomhww3cCiDKnpWOaRVO5pKz4EjvMi9r0lo5PHp0zW0uwYoylZ0TQdSmm8X0hZkasvfUyRYgq773+IVRa7G8im4FxD0Zqda6EUQvBMkzQcJUYJeZ0bUIXbw5Ghadg0Dc0wkHLiYjsQgjgMNc6w+MASZUKcsjw/bdPgNAQUTYJmk+mTQs2esTpRpSTZUOt02OKkxFFKrH1LPlMZtVI0xuJzItXiMoSA9wvzfKJrLLptaJzDWU1ENB3nPRSYEWqaGiH6gIoJbWSddDmznzyqqZbD2pC0/Eymsg++qs/Iev3wX/4hw3bLsBloW7Hrn6LnF7cvOYSpDkAl7+ts51rKmRL1qxP6VDO0coryHmhVQxBVpfHICAYte2BK61RdaNkFVWkzBrRFa4dWDqUS5EAhoBDHsDW8LdasG60N2ogrW1GKUhRarXoRTUFCA1N9b43rabuBtr+mc1ta12K0lvXzYMqfcsYH0Ud5PxOjpyA6DduaapOtqrbhnvxUspwva67RPU0qn+1n5ZYKvenccJT1j5V0u16V7qjMAx1FPiMUZxyinhMlQ2MtUSuCrmhD/dnPzQsr+gL3Z4k0im3bsd1e0fWbs2YkeM847ZnGG1KYoKzheytslLnqBy66ns/v3tA0PdO0Znfw1n2Q98WijeTlAOSzsQv86RTGP3196SZjt9txOO5JKWCMOG3ktFCSiK20kvARrVaVfSaYhL5q0Tbz+nBHc9fz/q/9Gllrfv7ZT4kv9txlKRq7XSJF8Uf/6MOP2O0kbOV4PNZO256bDYMkVFujiCqRcmKaRBfQtC2Xmx3H0xEBmKi5Gka8w5PwzJIynHKmpAl73fO//d//7/h//Bf/Hf/iX/6QVBQXj96h22zIeSKFPU4FTLGUBfwpM05HXr16wXW5xnUOPy+MB7GYHYaBxrQoICWhg6Qi2gNKxJnCtpdptVWKUOp0PheKRZTftejKAEboVKZCoGty+MVuR9s2LLMU6cZKQM/iPfMiVJysMs5YcgiUFCFHvvbOU77/7W/w1/+D3+TXf+NbXF5u2PY9Qy++0zFHop85pUiOAucvPnN3t+fF81e8fHXHixc3vP/hRzx68h7vf/j1ijZlDoc9y7IwHk90TUMuiXka+cXPXp3/PvoodqNFaARXuy1d28m00Tqy1txNM8fDgWkcccbQOnE9aar7Sd90Zx5m+gpNhrfmQ7656xnUji+WP+CgbihEQomM01SbJ3FlsVaa3lxkWqhTYVaFMkVal2lci3FK7Cd1IKkEdJQizmSJQop3KBLWvkYrQ9c8Q6NqU3AghEQpC6gR50Yot7Quk7IihEJJcg9JNSCtvi8lL8R8QKtWwv50B7Qo7UilISVHSA1LaHF2wJmtNB62q85UDqUMSllQDUo3kAeyfkIsHptnUj5Q8g0p35DinpzfUMqJUhJZywZMzdxIlR+6iuFkr7yHbSlrynCuTlaIMxr30zOhwygoipxjdTXJEjClslgK10+wxeB0nVipewSlFM5QydllSt3TLES4mO+re+lAzq9DNu8vBzP/mV5fsVHtP/y//Je8+84TfuM3v8+HH37Ik2fPGLMWTZgVy9qrqysZ4CTP3XJgzoljXlgK+CB7SLcZiCmz6QesDlWblljCLNzkReycQ/A4q7nc7lh8ZIkiOo8rNaPSSXKSgK62a3DWcTwdxD5XaYppuJknrNW8OhwYmpYBDVPCJU0MAbPR6FKwkydnxfVmi+0veLM/cloSbWeZ54lu09J1DWWZ0XPAzonQa1JryCrVsDvq2VroWrGXXb3pQ9HEncY0LS+nEzprlDLYthVTBR/oN1surq7w88zpsBfRuDLMy0T0Ht1nwnFm/NlLetdgl0R3NZBVxprMrndcmA4fEsdxIWZEM2INrhfx7U4bhsXT7C54kSPH+mxGG0mToDxz9sLO19WxsE5sXUFyS0ImFilKYyycpgXrHEuQkMYuG2xQmL4h1rA5r4vQqIqYocRceHOYoCiMthiTceMbzJK4+/QNTdfw+BvvoIaW7KpDUk7CQviKu0s9/+XnGONo+57tdkvTtfzs9nN+9OpnxCKuaflsNythjL9qTytFbq7he1Jf5Gqzqo0RKsyaU4HQcOTfIJVQp9cJ7xeaVnSd5ESYTijb4lo5M4KfMabBx1QbBY0myZ5MTYhXpg6U4ByiWIfTQveR4j0X6Lseawf69oJNf0HX9mfdFZRKUc94vzAtE/MyImG3iZISjZOG1DYN6yT/4c4rwyX5n1hXrzQpMRhZWVXnvb6IeJ3VYrfUtPKaA6Oqo6EggNWIqOo+zlhCKYJEFChkrHX4klhiOOeNPGww5P3Tb6M3KIx2bIfHXGwf0bUdq7Z5WkaO4y3zvCdnXxGW9QsJArlrHHfHW+Z5JJZMKVJHi2Ojrq5xgpRoDbYyaHKFo/40xv///vrSTcbTx49RqnA47s8WqUsIIlzR96r6RJKcCoTLNecIvYVY+OXL5/gMn3z7e6gCP3n+U5rGcmePnJZ8hnoAnj19ytNnz6RwTgLxWSv2e2qdSJZC2/bEFIBM04qqnlzY9INQa2IkTDMXuwGVxcotoypzLmP7DabJtL3mb/+D/4jbJfDjTz8XCM80aGtJyhKZsU2h2YLZRJbTyGE54l8EnGtIMTJPC0YbuqYTiLkWPaFIonlImRA92mQaq7FO4PreNIRZtBlZCfRXapaAAkL2zGGkJAdB7BPbxtG2LSlW33Erk/4leJbgxY1LZzQJUwpXuw2/+f3f4vpyy1/97d/kw/ee8cEHz7CN2NIapchpEivDFJkXz7IkliVxd3PgNAZu93vmacLZlm9869tst5f4sLDf75mmScSVdS3EGPnizRvevHnFskxn5MYoEWHaRlyubE3Wtc4xL5Gbu1te3u0ZfWD2CyUlWqNpraG1hs5ZWmtpm0Ycspz8+VW5UjhBhmeb77Adrnjlf8br6Wd4PdYNfqmc10jKFX3SYs2ZUiIoj1KJsAT0YlFa03UdrdsSi0apjpRnchlROqOLp2TPEk6ocIu2kdbuaOyOwX5IjJrF/4I5vML7L1CccBahjhQDWEqOpJoArysUq0qmFA/MaH1Aa4tWDVr3KC4opaHkhpgMMR1Z1I00GXqDc1ucu8ToBmMNEnzmUNqhS4PKkVwuMPmanJ+g8xGnD8T0kpxfk/MdmZFMQDwZM6YWF7mIrqnkUsXbIhHMUGHeUqdHilxW7mpFPrQI7lbLWlgRCFWzTVakQaY1yUiWxr0DC+dfSlWalKrQd0VMcnUCOTcRYjZeT5f7A/TfR4vxb2xcvjp9OACNsYR54U9+/FP2b27p2pZ2M/DRN75O03XsLnY0TYMxmuC9ZBQtBsLMMidS8sQmc/ATxVhc16NTpi+O3TBAbplC4PV+whTNUtd2zohrXmsIrqZRx3oQ50qHNRJASojsdpegMtF7vI/07YaYE0suhGnhdHdi/uxArx0paR5/7RnNOz1x09BmRVkmDmFmOiVe/+JInCJsC0++/QSip6hEjoX86QGnRuy7PelRB1YTkxSQsdwHhM1e3BiV0UIlLSukJ1PgGBKohHaC9qcU0UZxcXVF8AuqZHpt0CVRZs9pPzKPgWwcP9kfefzxM3yJ9EPDMAidatM1vHvZk4HjHBh9IlpHsAVtOy7tY8y+Jx73mCUQfWY/Tiz7CXuxYdt3+FJYknDWc5YhufKJsl8IS8BcNNhdSyhCgTocT3TO8Ljfcrh5RaMuefpxDy6je0MplvgrFERrRSuWk9CEAoXSah596ylhDiw50tJibaXLKYeKER3VmSLyZegff95XjFlQuDwTQka1hp/ePufFeFdtWx/YrKpViyG6HmtXLcTqNrWi/upc9Wqt6rRdV40CFb0QlKGoDLo2DPV8F/qbRhtHJnI83KFKqAiAJheHoj1/L6NrCPN5li9kU2ub814sgnQRrSstmj+tHWBwtqNreqw2ktegHmSA5ISPC6lExulIjIsM7YsMDJIqb+3h67Wa1ayibfl6deigRFyvlVDdVUUSRA8o9/g+MA9YEY16QOScQFXb3/o9xEWx0rGKfB2UwmlD9jJkX1lTa5OxIuQPVX2lnjt9N3C5e8TQb85W7957xunANN1JhEAOrKgHda8Y2o6YE/v5JE5eRRokaR7qOVjNVIwSBGOl4JWVbvfv8Jx86Sbj3afPsNX67XZ/S0qRrh1YykRKAaVKFfNEYlFo26BUpVmVDJeWVDJvbm7pm45v//Zf5fQ/BV6+eClUnibjU8DHyItXLxjniXGZuLi4ZLfZSZbGmVdYkCUgITpd61j8XHno9kxJ6LruzN31y0zjrDj1GEfMhZgKlk4oRynwjW8/4e//vd/j9A//S17dviLnhawdCUXbDdBsKNahm0TfjSx3t9y9uUGXUe6NNvRdh1UyWUkKQs4iyk2Zwzgx+xFjAZIU3cYydC1LDKSALFxtOA9VEY3L7EdM6bDKYJ3FOUNKXjzkS0FrR4iRJQQRe6uIzoFnjy/5+sef8Pf+1u/ya9/+mKGz7HYbttutNDIUcgjMYWb2npQSyzyz3x/52c9e4Not0ynQtRuG7oLt5lL8tZXi9u4NOedzg6Fz4W6/53A6st/vOdzdScZJ4yoFrpwzB9Aa7Rz7eSKlzN14x+3hxBevXnM7ziwoYn34O2tojaGzht4aGqNpraYz0ni07qsj/E75RFER6yyX7gOaYUNrt+yXz3gzfkEqI6rSHlLIFB3ElrjSINa9X1OgWLTpUGFAqZ7WbgjKkdUWTECpCaNmFAkVAqVcgGpRqgGN2PyZA55foMvnIr4ugVAUgg6vHFtJHM91w5GtUdWsB0nV1SWiVECrBaWOaHqM2QKD0K6yJqWJwJ459LRuxLkNLm0wuqspoUYcYxTooinakIvF5AH0NdY8Iec9Kd+Q877+9y2ljBQisEhxVPNkygpWF2lAlDaoInz5wplaLE1DLlDSGd0VId66id+fPCsEngpVH3VPxVtheZlmrWF7teFYJ08PIe2yunTURmdFYMoDTutf0mszDGy3G4a+x88zd69fo7Tm85//gq9/65u898H7zCny3kcf0rYtyjXkKWBLS/SBcgx0XWa7MQSX8WUkxMTRz/jJMCgDGB67DTkVGt2LmDJm5hDwOZHRNG1X7WgjzglFs5TCPM8S0qcMuSSx9G46pnkm5ETf9WQy08ZhP3nEeJzx40JcXrOdLhm2vezLfUvpW0ozc2E182nBNBbjGsZ5YrPZoJ5ucK5nZ1tSCZxMwHYtWVumxTPP87kYWpOX12IvpYRxDmsaYqjW2SRImXh7wPYtpm0rnUahjaPbbCjLhD15eD2i5kCyDr1tufn8NaOB4WJDfrPHGsPlZuDpox0X244nu445CvIes+V0mjiZiLaF3iTicSTkwFwKm6cXIuo3IsTXVuy9VX0WURrVg/aRtiiKMhRjKMWQUuZ4nHhpb7mOHfHNgpoL9kKx/dZjslZgjAT9FarIvorkV+1Bff5zYzCNZYmBZb9HV/qQtZZt33KxHe6591/BS9u2NgmQSuF2OvLj15+zyAZFzPE8/V4DenPVGcj+pc8F9cNgOXioQ6gajiKD0dXeFhS2BvXeW7BqvA+AplFaDDsqZYqSCWkiJy/nmJJBmbFV91T3zFx1IdIURpRSNcgxC0vFWhrX4WyHa8TlsHNNPUceJIcXiDmerWszC6fxgDWFlCUAdy3A10nL+rOnJIM1q/U5E2rdmwWduP/41aXr7X171Q6KO5einLUcpVAp7/kshbhvVM5SB7SxPL16QkkIG+QBinFfyK+B1ZwRIGsM2+GK3eaKxjZQ94JlmTmdDszznhQlfE9VqL2UQomRp4+fEEtkjqE+I/fuXEZroWsVYSStzCRpHGVdxHCf1/Jn6i51OWzQpdC3HcZY7vZ3kAKmH5jmk8BExPqGFEpCigljwMqislvxG//si895vLvkN7//2/z0J/+an33xGa5rUU763OM0MkbPYTnx6PKaR1ePuNpeMrQDptoBYk3l3wrM3TYD8zxibabrugdR8JrtdsfheCtNj3VnzrcuheAnTjnSdR2x1Xzj21/nf/2/+k/5v/1f/xtevHhBQROKRscN6IJut7JZq47S7OhaL9MQo2jqQxBDJJQi0xtEH3I8Hbk73BLCgnEaowVP6baGvm/IDKTDkSVmihaLv/PBomBWhc4kOmuxBmKcSGkmZUm+zdFTYsSUwOXG8vTZE37re9/lu9/+Fr/+699jGBzOFJzJNNqQ4owPiVSFeKfxxHFc2B9O4kDhI0q1GNVwcbGt0HRmPM14v6A1LN5zOByYppkYAhbN/u6OkAOheIaupW9kA88lk7Ui5oxPmdM482b/ms+ev2ReFg7TwmEcQSligaQ0SStQ+jzF01rT1MaisbX5sIb2bI33F39lIqZR2NYQykLwE6ZYrszHDN1T3iw/4ZhuKE42oOKzoBfOYq05T3PkDFXYnPAehCblaqMmyEBOS4VNDc72aH2F0pqwvKD4QnYHSn6O5QWYCUUmRLEDJat6COia8p1JlUO6TjNgnfgXcq4WiCqTy0guC4kDCguqR+sdig5KQyoL4zKjfYs2Hc5UZyrdYm2LVg5jGpQyGGUwuqXoQi4bSr7GlHcoeabkEzHdUvKBUg7EfCsi9TKTSyCRzo2yLlC0xuSMKfnsflKQsCevcm00KpqQq8j8VzbKAucNPT+YloF8TkqVAbVaQxqhx6xptvArAkfu0Y/7NuPf7/X/CxkcwzDQ9wPOOZL3MjTKhbR4fvyHP+CHf/CHRAUffvPrXD16xMcff41nHzwjhsg0zWzHjnw6YHwg+4RqDMEUTpMgHQcgZYUrO1SBi8uBMXoJjbNSEPkQCOOBVaS55CApxsZirdi055Kqrk70G77aa07TCIjxiGos+tGAuWzxwJ337F9PGGOIMaNty9A0vP/RM/bTwu3hyOQDzvWEZMQ1sdGwa2naHp08ZQr4xcvgqmZKrSYeazZUSMtZ7Dn7BWcbtt2WGD1xWcQQpXGy74ZQHRvFP18pxfbdp7RNx/TyBpLCFsXLF3fkpxeMc+J4OuKcY3/yfPFmz3ZoudhtsFbROLjYbRg6h6Jnt92KbbNWzG4Bd8VxmsmxatFCEKpyrgFkxWBajd0M5Edbcdkr+Zy1kGIgFcPBBy6utxinuPWvuWAg5x1FV3RHibOesULvKZnq0iVUUGIGbWmblhgToSRySFAU1mamZebNWgWu2x7w7ff/Ip6K//lLmwZjJbQ4msLP9y/49O65GMNUms5qQJEqMpfzvUXt2nTci5k5I0D3dKpVtF2qVa3UVSEu5Bir8Y/FuY7WtJWuJIW5bHuytuS83goVrZr1aGMqilGpRWWd5ssAa2U+pCSBlDl6XONo+4Guv2Tor9j0O6yx54yVdeATc2IOE6f5wOH4mpxHclqIOdM0MnBesYBSHjYYUvtoFGuuxEPXwnU6td43W5+dVZ+y3jOoNuuryIj7e7siI4IoriJqzmeKwpxtoV8d9tI0VURcdBuqitz16ll1PkcaN4ijVL/DGFsdpWZO84HT/IbgD5AXIKEwVHidRmmm6cSo0nktKIQiv66HVG20Za+pIZcKckySibeeh19yUPalmwwF7DZbmrZFa8122LC/u5WuMTqBnLlPiCw1xbRo8To3yuBNYnPZ4V8v/PBnP+b73/4m73/8NY53t7z+k1eY9y/QGwUGrNOcTieCjxyPJ6bHC48vH7HpN1htkfAYc4ZxoNKpcmCexUEkxiSTIgXDsD27jHRdJ9xCa5l1YlkCMWrG6Chtwztf/zq/+3u/xz/+H/8H7l6/pE0ePR8hvGE2A+gWlCH6CFlSnDvbSVBaTISUJXm4FJYYOM4n9qc9c1gwVmwS1wWdsrzWoe8Zl4WQIhn11sOkqng8mExpCgYxsJY6STrptml4en3Fe+8/4xvf+IDvfvebPH3ylN12y/aix1pFKoHgF8ZpIi6R0yLhe3f7A4fDkdPJY6yEK0oBpYgxIFxMj0LhpxmAm8Mdx0kcsuZxpms7Ru9JSfJENl2Hs67mEsi05fV+Yr94bu/2vLq54+Y4Ms4JnzIoi1INikypWQQaaWxKysQkG0VQmrEKfY0xOKNxawL9V+BynUG5QiiecTmyTB6bemy6pA0anZ+ydZ9zV37CobyR7IZUCCoIhF9DhpRxlSMZJYuhGPw0kovHGmidxpgk6e/FEHPBqhFVFqzZU1iI4TNKOSIBkoVGgTOWlDQhJhE+63rAUKlBtZmTjT/XCZrwcVfaorGaUpJofFiAicwexYBSA0pvICdSWYjhQAgGawa06nB2wJoNjd1hbA37U7KRahqKaVClBb2hlB3oC0peKHlE5TtyPpLLLam8RjGS81yHGw82vbKiE2uSt+yxmUwuwpPNerWcfXAoUIsMBfes0/q1CvcbvVLVPUWKmqKoG7N66yABznB6qdSE9frzbwS+Wo2Hc5JoXXLB+yjFuNa4RqhKVoPNic9++Mf863HiJ8/eFSfCiy2/9hu/xjvvPiGFK8K8wDzjjwfc6GlzQVlD1IkIvPjlZxwmT/nW+/heY1UP1kFK7IYBWzqs1hzmmaP3ghzHgLWGpmkIIdAPAxQYlxGtNSEHGmOIPuGMpXENORfmEHCNoAYxJDrXgFWMy5EULCVGkhYHRqUUru1YFo+2juALt+NIOUV8RVX8Es6aJKUkD2pFMyQROVfb5VXTmcUyVBtc22A6Rd934tik1kJOiommaYha4RrH9QfvoNuW/XjC3RmGywtmMk03UErhNC6klLg7zHz+8sBm09A1it1mZLvpccay2ww8u77GacM0ntB5YokQpTqBkoTnjkgOH+YmmNahWgs+iK4TJYW1cSxL5DDPPLq6oLENbrfF5ywp7CSKEiqOc8Lrj0mKWpBcBH/0nG49cz/htm1FIU0tpuUZTvyqcchX61kB5M4pzTGd+PndFywEQopSL+RUnf0kaDJWLcSaaP2rrnZlnZZrQWFXTFhyimTUruBs6y2euPeGHNaKtsZ7aWYyUt+JS5GpiJkBEuJiKA3JuqeKc5Q5v5a1ySglo7Q4mrVmQJsGa3paOzA4QcPf3jcLuaIYMS8s/sgyH+gaQ0hVi1pzW4StKq8j5Tpog2pNe994wXoeIjeoSLix0MOSmJHUZu0+Bf2+wbi/z4IO1b+VOibzQJifUcrSuobdsOHF3b4SfwF1fx6dB1yq0ngBZSzD5ppheIR1UouGFB5oMW7JFcWoyXuy7oGvPXtPckQWv7bWQu2qr33V8hhjsE7X/QdKbTAeum592etLNxmRjHMNvWspRWNtS+s6zI2BAvOsWPwknVcpokTP1bdZuBvEkrgdj1xfXjAdPJ+/fsnXPniPDz/5Or/4J/+IfrA4t2FWGdNCaxvCEjjGIyVB8IHH10+4GLZo10guRNvKpmtWOgY1wM2QM/hF+LvGKFonh4bCsNtdczwcyTFhtSYtnmgaumEgF813/spfYT6N/OP/+3/HNI9kElrPaD2DEotBkxVWGQqaXBLRa2IqiIGbJKgex5Hbw0HChazGtsIzNqXItCbLxtg2HZt+wxxSzQi47xJVLfoWFHNMtIDJGas1fdvxja9/zNe+9h7f/d43a6ZFz6Prazb9rtqmeuZxZPYT3nvCGJnHmeO4UJTFx8wcDEo1+CXVwlLC+0rJeB8Zx4noA6RMipG7/R2TPzHNI71tIXmMLtjWkYs0PtOSmUJkDJGXt7d89uqGm8OJmBJLiBRlyRiKVaASSlW7uvWhV+eBQm3KatNRC8ecImGdqHxFLtNCJAp9b/HYNKBTR5gd0xiw5pqn3WMGfYX2P+CoPq8TctEVKSe5FGu9KqFFC8HfVnetgFeJEAttY+ibDmUUKSyUNKPzhMkzWi1YLQ2hiOOTiNTQ1a5QGo1UBF2q8yyZstRxveSQCKImm0+uNCJ1PsBWLLgUT84BOKBNhzGXmDKgdEPJlpBPlGLxqceqDd4+orE7rG1Fu2Es1CZHIVQXlMOolpICWe1Q+koQjrIn5acUdUPKtyIgL5OE/nFuC+R1VQtcrQxJ5aqJkHUUkkzCWJEGVXmyqPuvodYj6gxUyH+vqeOIZac8rrXjQA5ScWF5wKc9P9JfnfX6F3UZaylKsSxeHOt8QmsJNoWC0eCsgSLF9qc/+RNm73Ftwx//8Ef0m4HvfP/X+eZ3vk1Jhe27FxA9+xefo0ukiYGUIp9c9CybnnGZ8BTGEvBKoayjbS7PxZvRFqcl9T3Gyr2pGo3sF5xSXHQdewImW0jibuSaRqw3w/0zQzEUuwY6FhoJH2BOQTKUivDfp3nB2gZnGoy1WI0UyVo0RsN2w+l0rPzt+8nzSpmy1p6npUpBjAuSX2WIQYIAM3IWO+do+642JZkYImlc0C/2zAdP1zXk7Hn20TucWsVcqVzTNIlDlzKUAiEEDseF2RmOY6K5E41Z5+5w1mCNWL4/fXyNdpa704L3iSn5mo/gRIdXECMUZc7PhTEGYyS/xipN8Qk/LhyLNJ6XV5f0Rp+fQ0H7xWwm+Fjt6lcBsRTG7Wag5InoI73uCHUAsaaD3wfEfXUv5xzKWLQ1vHzzGT+/eU6sPPqVxqN0zReqk2ZbKXVQcy/SSuORP+uAvOo2NJKNlMkSInIWIJes5O/QONdgrTiq5VDTsbUR85CcaoNbd89KvTKqRgdWgbc4NyGIRZb9VgpdQe9JEUXBWEcuFkVD1ww0TTUUOWsrZN3HHAjJg05oHQh+xhktbI3gz43AudFA3JtKypXir9A1gqDktQ26/z2llSZV9RtQUevVEvceKXl43Ws17hspzueAFP1KKazWNNYxeU/K+Yyiy+uVImCtgeRvC33Tcbm9Zui30vwgjmzTPDJOe7KfxLFyPW+K3OerYWC7HXi5X9YXiTRq+f6+VprdOgQQlDeTYiCnWNdPbVzPX+PffH35JiNFUOIq1XUDaE3Xd3RDS9e3HA57bm5eV29/CSACCCFijEMlWWh0FlqJoX95d0uhsOk63n/nPfaHPbkcefqtdwnO4MlkLYXC4bBnmkZ8WPDXj9kOGzoninprbYW0WrlBypJzEhuznHHOik2qFk3JeDwQloWUEQi5iCAwBEkObbqew3zi69//HsubW/757/8/meYjkYg2Eg1TlAHtWIVMSXspUAroIg+lSQWbFzoDpm9BK7QV/p/JYtGZqhi833Zsdz1380jyoeZwmArjCRUk54w2hq5xXG83fPK1j/gbv/M7vPP0mu2uwzaatusY+i2bYUcKntPphuNJKE3iGR/wi2KZQ/3eiZTFo1qVQtM2jKMk4C7LjFIwniZubm44HY8kL0mrxkBjFJvdBTEkcYGhME4nsQlePJ+/ecOr2z2300RAMYcqJtMaVfMVJKVZoESj5d6pIh3G2bZNr7OWB03HA3jzq8RvTyRZo8tE9oB3TMfIfj9TSOwuNmhartQ32W6f8Tz9U16FnxHTjK1pxFpDSPU+W0jF4+cXNa1YnB/8HJgDzLOhbRRdYzDKktNMTnu0Ws58ylIQR7V6INkq0DdWY9DotOa3SEhTUdKMKO5zSLQWzuxq/iebbp0OKY1Vkhab0kJJHspEUS1Gb9B6i8m2UiUmQj6S0hEfdtUKt8PaLdZ0GL02WWtIniVr+RN6KAnKJSY/q3SqPabcilg8H0jqQCkzhYVcIsgjhCZj64ZckMPUKi2OOaWKyqmptuukr9IBzlBIWVsq4IEOQ6mawr4efvmhuFzX1OeHh8X/5+v1q7TW/7+5QgykUyCFgJ8XciznnBXnDDZrjK2OhRW2R2WOxz03N69QRvPHP/gRtm3phw2/9df+Kl/71jcZLt/lvQ8+IN6+4PDqOSbOWD+zLZHLEDm5yPPkmbzm9TJS0Fjb0DYdBsVuu2OcJ9acAW0sVinKOOFUT28sC5GkBBFv2hYy5JjpbCNIYQGTLSkKvULrleahsWjCNBGzh6Jom0w2QQqw6nAlwWXioDMMA4fjsQaU3U9KjTHnSfxaDKgshVMuEWUEXcvRE5NQHvIswtxzg7LtsN/6CH3wHH/5Apc1z3/0J7SfvEu7aYVahiAj0yzBetuLC2JMzPOMj4U5ilWtPJcJrRXLPNI4g4+BZZ4lC0Mrto0Vr6GSQAsdMdfhkTYS9FaKPKeNsZxOBzglpuVAZw25H5hnD9rQOAnARQmvPaVMCKk+l7kio+BazcX2UgSuKdAYGYKlJE3kvWXpw9X51XrGSnWBCirx8/1LTmEhac4oMxVJjZU+tO7NwvRYMy7SeWKttTxjqCQFbw2mFNE13AvEpRlumqaiGAaUqYMAqZfyLKnuWMuqsUhZePslRwlRLQVdpBHKJTyYnptzYau1IsdMDFkGEGhQDmdaNt0GZ9y5aZJ7Ivus954lLEzziRRljSagbZsVd5ZfpaLZpbo5aqp7VKnoWSanlfYqTZkxGlXDIh/WGeufBskyW9fLQzRdEurrrKLqafRakBcw2qIoWAUKw93pJIGX9yMtoU3Vc4P6tY1t2G0es9s8onGuNpCJZTlxGiUXI8cZQ6moiREXTwq//s1v8uLmNad5WnGrtwxQ1oRzqUFqLauk7kwxSZNxdnSsdsBfYmD2pZsMrU3tdMXdqFMNMSm0vsBoxXa7wVjF7c1r/DKSY6w3WO6+RtwfcI5TGunahqtux+s3exgGnj16QpomXnzxhuFqS37Uk6oAaOWjxhh58eI543ziYnvBxeYC7wPbYUPTdmSgb1oRLsVAjBN9P5CVBe0wjQiTtJLprdbi21wKUAT5yJXrt72+prm45nf+E0EXfvgv/jl+OmBUronb1Q0hS6hXqhkBRgm0psg4rWgGx6PO4JPoNBLiNJVTYUkKXwp5WYh+pmscrjHCmS1g6vSzAJbMo6sL/savf59f++gDnlxteffZMy53W5yFtrVij6oMJDjc7ZnnkWneczwdCL6QgmHxmXGcOJ1GCaqxVg41LX+O+yPTMhND5HA8CPIRU4VGI23n5P1UAlUel4BPhSlmbqeZ569fcXu3x6fMm+ORIOMi4T1qmWrIFFw6dQ3kyjmUQzmTgkCcpor4zhMSpdZzr0Kf5UHh9tW4piAmA2UppFHz+vmB51/cgVI8e3YtCbcFyIat+YDd9gn96Z/xfP5DvL+TNWISuSiKk5Rqow0grikqVweMklfjJVIWuknXWJwpGBXOyZ3roG5tyqjTTSkMCkojhghFxGuEaqFXckUVgAqbO6fOhc16CEkoUCZVHdF65RJFN5FHtDqgVYPSHVpJo1ByJKQTMTl8aDFmwJpddafa1aRyeT7XNSNvsxOXK9WR1YBSl+TyRLi4+YhOt8AdMd+iy4HMQiGhq2uIrBlJM85kjM7YkmugVeWMr31FtZrN1U66dh687YsuK/kh/3m1Qz1vyA+oCut78Zf9ut3vMQZKSpRURDhKOduU52xwxQi1oToLdm1DIXEaFw43Jwqabuhpm5abV2/Y/P4/4vGTp3z0jW8wH97w/e99l29849d48/xzyjzSlkg8HtkugdbAbGa8KsS24TAfcbpD5UzIGWstu+2Ow/6AMYZGb9h/egPWQBPRjzp8SYRSRDfRSJhdLLBMcy0qdN0vs+g/4iKDKK0gF1zbgMqEFEgx0rpWCj2lGfoBoxVt08EG+fwgTcKm66AkQhK6bdM4csmSYVDEYWYtilJK5GrFmfNqW1qFwBRuU+Ti6SXqumUJC5334vRfqTcZhdWG7W4r6d1KUCiUDC5iCkIZMy03dzfibJgLfr/g48LxcIdV0HcNQ9sydFYQKqPwueCjyCZKyaRaUMVUKdaXG9rNljiOsg+EQpo9yVhwDWuSdeNacKKZEUeuWlArMQ8pJUlSMZXtUMSVDl0n8PzpZ/qrdJUc0RjuwsjLaU9WhuD92Ynz/uOqQHktTkvVx5Zc9TzqTEmSQTD1fuSKWIgtcM73hec6fZfyt+5rRSbnsA6gzPl75lLIKWNqoxz8TDZVFJ1StUmv5j31TI8x1MZQ1mTb9GjTMQyXbIYLGtu+lWMBnEXIPizM/sTx9IZlmWRQB3XYfC/ULtw3JquOT0IgkVyyLIO11XbW1qHAvXD77QZjLa5/VeNyfi/W/R+QfI21wSjnz16DEb0PnOZZ7rOqZy76TO9axd4FRes2bDeP6LvNeQgdo2ccj+Io5Y/kFNBVQA+githFUzI3h73QsGv9tNKjqK9HqNUWrcS2VpdCDOuejKBA58bky63fLx/Gt05Eo8c2HX3rCAFUhubyMUu/ReOwyvDq9XNCWGSjMHJjc04ULFoVlIVxmaAUhq3j7jCyxfDOs/dIKTN/cUc3NMxNBi2cbYU6F/V3hzuOxyPjxShirhS51Jqm71HOScKhsdgina6qiIMpEizSDRvm6VRv0qojEbs/5xpCltAnpTXu8SP+6n/8HzNm+OkP/ogUPcQo9mY5ob3HZMlqUJVmUrKWhVUMFo1Vis4KlUsbsc9NubBEx5wiyUATE8pYdrYF4ykpYVBsdhs++ehDvv21D3nv6VN+67vfYdtaUpzQGrpWuMPaGEpR+DmQU+A0nTidTuKs5QN3d/uzNR0IHGq0qg9/xM8TKRfmaWYcJ8ZxouSMj15oM9airavZAoXjOAt0vsyMJfOL1ze83h84TbNsVlrLQVAdioxaG7q68eVy5sRL0mdkzQBZO2hVqhCKcl7QujYc8qekLH+V2CeLP5J8Qs0N4+3CD/7Vn/DpZy/5+Ovv8+yd67fgea0trdnwpP0+2WvepB8Qwl1N/xbOayqBxon3eznfhwf0Ca0oMRDjgg+ZrtF0TsskQwnqkNIKbQudQNxDKnoEWKNJsVJVcs2aKCvcKoWyqpuS8GIhIZOZWIVwAq/f34cVLpaU+xmjZ5Sa0IyI+1WPVj0lO3KZyWkm5RHPgIsL1g4422JNi9ZNTXWv1AqlUcqhjAjgyR1KbVH6Aq2vKPkI+oac71DsyeWEqugGtdlQqjZRRY5Pg9jYJnWv1Vj5t2RdG42HVCw4HzQP3o97B5K3kba3Pc+/Qgv2L+i63d/IM1wUu2FD2zZQh1Jyv+5DsXKlhqq2pXGiGTscT+z3dxxPJ7qm5eJCgiynwx2f/uiPGE8n/unv/z5Pnr3Lx598wl/9a7+ND55TTvgAX/zJL3j16pdc7lqG6y2jKpS25QUKr6Df7WhdR4iRAmzbDdvLnun1nvF2j6FnKYklBFIpDNsN/TBIwnaS/PlxnOjalq5rCTGx0uvyOvFUglbmFOm7FquhxCyE0RDYzwtt22Kto3ctKklhtm1bnIHjErk5jGiTCX7BK49r5EhfTU+appFBElBywidqoGmltyjFKY4ylc65DuKEY5/QGF1tQkMQl6BKP9HSIUrImgJXFHGzowmew2nk9eGOGAPjGMkpcrg5YGPi8dWWJ0+vMF1DLhmnNUMV6I4RTiGRS53CZ2ENuIuOmcz+OFGMw7Y9ucjgqm3bt35eZxrIkUSuCGUmBRmMWGvRdUoN8hwKJfSr22CA0Mpihp+++TnPD6/PCEbOpeZNVWS5Uo3sg6n/Q2S1lFLf84LSMrE26zS/rJaqVDcmXYtnSQaXQeH9Yeus5E6cv6bQDSrFULIrbONIOeO0ESpQyVLYG0s6u+2tlDcltv9kmnbAuh5ne/p2W1EMw8PCPueEj54lLsQ0EeOEX2batq3n0X3x/NA5bI0/kN5JgXpb7L2ihGJTm89Ff6lOjOu91DVPiorErY2GPNeiYUTdO3kV7pGMUjc6haV1LXMKjD7UM06cU+XoXbGYVc+i6LsLdptr2qaVWUWKdZh8YFn25LhAHSiem0Wgaxo+f/WSOXpWje+fchsrQgM+vw5FpXKn888Wzxa29/fz33Z9ee/PorAGlErkNONUz+AG/LSncQ39ZoMpDmcatHLc3L5kHI/VnaNuVDFh0VAirm1YYiJFMDoTYubJsOHDjz7hZ5/+hOknL9l89Ji8tcw5QaldppJNMqvE7f6WZVk47I7EXNjFazSGxrbkGGn7hhAWlukEiAtM2/YEH0hFEaKIX6xxZ6oUeGKWKQ1arAbbqwt+62//HnenkRc//4ycItY6ci6My0GswlTC6IImoUrEIBuvRpOzYiWaZCVvpNUKazQb190XNsvCB1YRL7YorXny5Cl/7a/9NT756GOuNhs6q9n1LW1jSLkhK5m+TvNCijIFPBxGpmki+JFxmvBLYn93xIdQN1VXDy57duCapol5npmmiWVZSFGmQM46OfhKJMRMRDH7wDjP3BxPvLq7Y/QTuutIyuALROkoWDtwpYygMlr0FhnZAGJchcRCXcmx1M2vLnS9JmZyfgiEI1mkwmWlCnw5G7U/ryuEhRI04Ri4fXXk+fPX3Nwe+PABZ1Vob5KNQRErW/w1g/t1YvOcU/qMkGRNxZLJRdJSrbHwYAMCyFpXHrNAmoVMKSKcdVbTVBu6lUu5biRF5drIyYRJVTjXaYs10hiGFKWJ4F4GXeokdE3/RFXXkizooHzMr0z6lTQqpcxkFgSjO6FUD6ZFFUfJDSk3lDIR84KODqMbnBkqyiG0Kq0qlI6qdI6KjBmNyYZCQ9Y9Om3R+l1QEymPqHwic4cqe3I+gVlQJaJKQlXOcaKQzP3kKydZakFlUhZ+feLesXzVCckn5ApPV4auVjVz5D7vhvPnfbnrq7Oq/+yveZqIOdHYhk03EHOSwjYlaf6SoqxmykpjLTTGobTQY611vL655e5OMnpeTs/Z39zSDy1aQ04Bv8zEZeHm+ef8T//495n8wnsffsD7H30o2rf2EXeh8OKPb3jz6jW5LKhG47UmOkUyBdu32L6vgydNmDxt19C8tLIfZUEz5qLAGBbvMU6oIzllttstm6Hnbn9gGFqM1ZwWyZlSStF1HVB49ugR15uBTlmW1wfu9pMkeV9vUEaE2s4aXJ3gD5sNWS+cJk8K0jSs2R7Uws2Y+1A2qzXOaCyZCGL3jPz7vEiugHHSjPRtR0qFlCdCiPVr2bMeBKiifer5aSgp0g89OliO48T11TV3dwf2YWSaFwgelRN3N7d8/vw5u0fXbC8v6IeGvjH0reGydVx0HZOPhJwJUfSNETn/TzFgQkSdZrRt0Rj6bqDvO+ZF9GcsET8GTKvJtrxlxSq0oXwWHt9blMKXfyr//C+l4S6e+MHLTzmFWYaUFWFd0dWS689KRYUS95qdSkeSwVzGWBFvl5rHJaiClQyEIoXj2kwabclGkIuU87npFSR8RXtFYLzSryX0Lwk6bhxaN/J9amG/ahnKiqhXdofVVhAIs8HogcHt6JtB9HoP9tBSxO599jOzH0lpRpUseWk+1ab67eGOUvI8il5X7ItX9Opei1AH6XldL6VSEeV1l3ivi5LPWRsMadTWr6WRTAy9vjfrx6oHTY8RHVhrW168eUPOklJ/tkF/SJOq463G9VzsnrLZ7NBWBl+LXxjnkXG+I/gDOS2VrVPPjwKbruXjd9/j9ekomg9VGST1ft43TpL8rqprm6BM8exOtuZ98KvsiH/L9e/gLmXOfC1jHClmjLMMbS9QnCpcbHcYZ2laR993vHz1OYejZGqgCqkEVFa4piFEjzWO1GSay44yZm6Xhau2R7uOPgTyixPWOFRTwJRK07GkLJ1xzomYT5ymCe8Dj69ngvc8e/JYHo6U6LqOnNdk1wwlE72Ev/ksD08uWQKYkE41h4gqllOcoB9Qjebi8RW/9/f+Q37/v/3vefPLl8Q5Ms+eJcASNUsSXUImkfOC0YVeG/qa79AYg6kQWs6Z4MV6D20pxqCMpe8MH7//Hk+ePuHZs6c8efKIR48eoYyjaw1t0+Bai4i0Aj56TqeR0zjjl4gPkdNJOvrTaY/3AaUM1sgEUBuDtcKvXJuKw+HA4SA2js45uq47T7XWaWwIkZAhGMMvb2759PPPeXOaCKqgrObxbodWGuMMxpt7QVemhpwVmXAosbUTK1FdES7uH7wMpQTQGe0KK2QoNsXrQ3dmLALr5391DohcZuJSONwp/BLYXWw5TBOt0zTO1BRq4V1b68SvOs9EB3b7PsP2Y7r4nLvDDxn9F5SyENJMjIVoDMa6iuzZM6VHHAdlQ4y5MAeZ6jbOUBqLM4qi9NnnXCGCPaGvIe9PnYzJNF5skq1WeJ2IsdTJxz0Ktk6vTP0zUW1kq9A613wJXbUVq0PTiogUNQETlCry1g5FB3kHZSZmTUyGEHq0GoRGZQe0aSuVqq2FT51wKQ040AaFo0QromudUCqAmlCMkE6gb4EDudyh8glVlrpZhrcmM1FLoquqCEdaN+f1gKyngKg8VF2b9+tzpaw+bNO+YsDbX9jVOgkWLaUwLnP1aJdUa6M1pWmkQaZOy1S1C9aavuu42u0k56QogvfcvLljNI4YtzSNRenEZhho20ZykFA01nL38hU3r16ze/SY977xNWgN7nLgyScfs5wm3rx+w93dkePrW3IaiWZP0JpFJ9rLHV5FjtGxLAslJoZ+oBsGppCZYgStCDFWaojidDqRc8SHxG634zRPJERXt/gZYy3GWp6/eMH15RVPd1c4X1huTlxlMBc9yUrWlPeRaVno2p4YEz4Eri4uCN4zRyfOQjHW/tvUxzrXLI2Gy6sdMUX240gqYI2tBVs6u9qFENA63NO7oBqPiJujWOaWSgtUYvmrFYnCpm2xy0J6VDicJkHWQyDmyH5ZZErc9MwZ7m5OtKeFvm3YDB2Xg+HZ9QXDxtB2GmtafEpMqTCFRAHJhNoLXbSoNXBu1ajIpF0by3i3kA2Yd3rRlRdpqrTWZ3vOlS56f3Z8dZ9K01o+ffULXkwHUJqUAqnUrALuGwzg7Eq5FtdSCOb66zwCOZ/vysiAL/kgboKpniNRGkopxvX5vV9DY2Xodz9ukSFyIITVClX+zjqhcIsRRqkC9FSdlmQSr7UixYTSMiB2rq0oxo7GtnWyvv60kEompISv9LhxvCOmGeesIGv6vuB/Syie7xEsXRsdKQnlnpg6OBM6sjo3GLkkzoYztfGQr7+KpGF1NJT7cp6M1iYBlL5H/FVlaRht2PRbXh2Xe0ZGkUH0+uOuNC+jDdvNBdvNBc46VrrVHBfG+Y5l3pOjl8lYyec8KA1su4FEYYz+nC+1DgzWBiOlhG2amqYujM6HKMZ5LT0YIH7Z4e6XbzKUbObJKHRjISV8ue8Kl2WhG3q6tkGbS5rG0PUNn3+h2R/u7v2Qk8d7jTVOQulsYjoeMd2G4xhxRvHOJ99C+ZEf/uiPmE97rn/tQ4pT58RfoXLk6g8tqMPrm5ekKAuupIWLzY6L3Q6lpUNsa/qp0tKxGRSdawlKnyFxbQ0x5DMNJ8XA7Ce6rqfZtDx9/13+/j/4T/nv/+v/jj/4Z/8KlMbHKBP8DCHDkgqzDJPQRJmOaeicYeMcgzVsjWFoLTolCgltNY+fPuK73/0W733wLheXF3S92M4aDcZEGrNADkynjF9ExH0aT9ze7glBDpfjcWKaPSlXARyKvuvPm0MBDocD4zhyPB7lgcqZplojuqahlMKyeFKMhJiYQiAsnqZp6S4vpDkrhaWGoqkEd3cHoc74RZ6QqM7NlAxy1Wr4Wb/ng6agrICgUHycUnS9ZrPVhJjxUUITc9HiWlXEZ7s8LNfKV8chZMkH5uDxaYNrOp48fkRKkW0v6bmrNYquQVJLXphNRG067G5L01+zdR+z3X6dl6/+EbfHP8AjYUulNutFGdZgQ4Fz9Tn7oWgFWVNSOqeK943FGF0ndlmg2iqyz2pNNpX7qcoZUEYr0RUpI6LAXK2XYyqUDKiH+RCCKqHWKRvn97yUmiy5luPq/nuIzWGEElAElApkRpRylNKKULB4cl6I4YQKYm1p9EDjBoxeXUe0JJVXFxOlUnVdKZTSgmqhbKBcAVdQJnS5I3ODZk8qR2CUJreiZlYpktbobNAqYzWEIs1FLm+LAQWpechTXTGLUou9e+j6S5NZ/yyuX0GVvirXbrvFLgtLiCx+IYVArjbVTdMw5DWJF6wScfM5rTgXrLZsh43wspeFeVw4nibu7u7o+oahd1hrGYYNF9stGiUOKUhuStFwd/uG9r1rNh9cs9teUr54zeNNx3vKcXt3x3g4oFPmJz/4Aa33pFev6J60xJ1nUYqkCqcYOJ1OtZAwLFNA12yLrm0pOTNNEa0U42linhcR0jpHWALzuKCN4Xi358WLV/x86Lm42PLO1SOevrOhNJrJL3RGBLXLtKCtZTwd2Y8nLi8vabWRYZorlAQ+RhHfptUpEOY840Nk6AcO00xYFqJKVb8gNBalJZhzXpYHovJ1j12LDKBOuo25D6Q8i1q1oh8kiFBpxZJm5rgQciTESAgybV9C4DiPWDXTuJG7TUNKmu3oiWHiyaMrLrc7hkaLCUwu3GaPD5HDIRHiQkqhCngLwzDI9N0aLj96SomF1CtiCkzLIjS8WmBrbVgWD6Wmuxv3FW4xYFKJP379S47LIkyOB1Qg6vBnbTLg3ggAqBvOg9wDqzBmbUJW+2Nz3vfW8D5XA25ztTnv204S1VH44Cm5oI3G1C4uV+pcShFjLK6ppjjVzEHC7iqCkVeJszhslqrvyyUzdIM4lzYbOidxBbqeFuvwKhXRAsUUCXFmmvaM05G2a2ld89Z7+bDJSClVMxR13wCkUhsKhdHuPBw7XzUJ+2GTsmZHlZJxVvQoIcZ7mjFyJOZS6cVUKtr5HZPfGuNw2rIfXz/4N0HVz1Sp+rw527EZrhi6rTRdlcI4zxOn8QY/3VDCvIqgWUNqjVZ88M67PL99Q4j3Gp5V+wZViwHnZG9qU5Ur02U9Q1Y6MNyfZ19GX/jvEJWc6br2HpJjFYF3NGtxOs+41qFdw3Z4wm6zoTGO568+5+5wYJonYgj4EjG9q25LjqM60nQK92jLPCsurh7Rt0/40Hv+4A/+Gbfd5wyfPCE3GuUUjXGERXIbSik0bUsqkTeHN9zc3eD9wrPHz0DBpu8lcdgolmXh9vYNfbeh7zSNbXh8dY0x5pxUbbTBOE2Mka5tWZaFTb/Bp8Tu+prGtvzd/8V/wmdfPOf5Fy9YSiYXBWQskYI4ezS2BRQH7xlT5JQLb/yCKZmdUbx/fc37Tx7z4bMnfPDOU95//z2avqGQMWUmLQuN62UCQxEL2tkzHU8cjydCCMw+cTwthBA4Hk+0TYd1Da7tMDVUKqciqaynGrJXBfRNI+m2WmtIhek0cjyOTD5yOJ7w88LsF3zO6Iw0Oy9fQuN42ndsjGFKiVgk1dzHIO4eCzIZySvHU36FEu6LhPWBKsLfVErRGNhauNpaHr03sLveMs+BaQrMS2TxidmL9W1MErSVMqSyIh1fjWvJE0F7Mi3GODbDwNOnj7m6uqBpZJNWSgsEbBQxRZJRKOewrqmTqIameZe+ex8/f4YJB05pD7ZUZxSF0VESb6lBh6Ww7p1oWEV6cxDf9MYarNEYo4TNVjfJgqnTf9n2qbzckIIYMSuFrVQtMUaoB0JeN1+ZNLsVFaEGLlYnk1+dfmQFK8t1Peh0QfirxVMIwJGClcZAbYANmZmUWygGlQ2aBh8HjOqxtseaHnDYinAYsyI+FbJWGVUSWQV06cVNJD9Cq2cUfRIaFXfoPFHKCfKI1hGtIlk8cciVLFVqo7E2Dyu/9eFctN4YuSN1yvVwkvarAYB/2a7tsEEZQx4nMfbImXkWnVfjHCnJBLx1lraxNMpSogRGSoCkFAtd67i43ECONI1lPI34Zca5Gv6FhFUabWoYnVwpZ/IUySePv84sneX6e9+gs467z19w+szz0QePmO8OzOFrbJqen/zox0xfvKL3hrJ1HLVijgtLToBmM2ywyqC1ZTyd2N+84dH1Jde7K47HEa3hYhjwMTBPJ9qUUang40JQBWcNd4c9N/s79ocjd+PIk+tHPH7yGFsPfOccLheOb/Zsh54cEndxQk+j3NMC0Ue6YYOzUkDEHAlx4eWbG+CWpmuFE1/ieQBQatpvLFFc7IpG53tnnZRKdePRbxUYRQn1prFtRasVjct0TUN684qub+T90aLjMz6iCoTk8MGjMiwx8fJm5HBcaKxi6B3HRdHoW642PZvNQNM0vLvbMsfEFBLTtMcvJ8JyIPrHpOsrLi4u6ZselGJRCacNjWsx1jAvYnKyVFvTUqAk2cfWBOOv6vVmmXjlT4SKSj1M9Ib7gnFFMdarVCrseSBU7YElgG6lu4pOrxhNzp4Sq1V5iigQtNg4UJZS1Nk4QJmKiKta1KYVBV8do2oznwKoWQY3unrmSq93/31UFaQrjW0Gcjb07Za+2wh1UitWLWLOuTYXgZBmxuUOdKGgq7WzfVAUV2Qir0GEEppnyOtcjHg2BNH3r7si7qoigUqLmP0h/apUrelDdCM/QHfSKpRWa+MmbdLD80PQiR1z/IXcm/MlNdM6TNXaMQyXXOye0HQd2ogV8OIXTtMN83xLipPk0bDSpArOGJ5ud4QYOUyjPLf19ae6LkopqCwOrFYVVAnn1ygfkystTJCodd38e8nJsKatcHVGq3uv3BDEfq/respcUQLtUEWx7S9596nCmobtcMvd4Y5Xr14RYmaeFqxr0VomVz55MgmM5XZ/i3v0mCfvf8RvGcMf/fxfM9/OdO9f07gGpTVv/CKOAErEmyAhR0XDq5tXjOOJxc88e/SMvmu5vNphbUZrONWUV60Up+OBR48es+l6bt/cYJx04SuXcxgGmVRlRbfb4HNi8/SKv/sP/j7/9T/8L/jl5y9BOUpOtDpz2Wq6ruXx1WPaYcvt4vn0xXNe3u1JWTjy7zy64Ne++x2+/Y2v8d6TR/TWolWiqEUyDGyRxNkc8cvIcQ742XM4nOTnmhf84knFsASZZHTthmGzpW1aQpGHcJ5HTseRaRIRvjUC/9maEBm8wOIJw83NgdM08fpw4OXtnhAibdPQNYbOWDpjZKPKgQtjeNI3RAoLhX30HJaJY04sFGINzzPWgdY1cC7WCbGqfYcsUqsNvdU86xzv7hz9JTz7zlN2jy4IS2SePNPomabANPlz0zEvkWkO+JgrFe6rcUWVSTqCkXTerutAZzbbXvzIi1CVjG3O3uY4i2kbtHV1qgQ+eGY/s2ne41uPfo+b6Rf8Yv+HhHKikIXClGtzUXUpRRmqzblQ/wpQXaZSybhsaIpGO9FiFCSIStALaUpQtqIVCaPunUp0tYSU0GxdxeOpTqVkwzTnGZJMUmQwXWdWKwqZC1nVYl2J8FBrXadVEvIXkoR3ZQJFLSg1o+hBNVAsZEcunWysOExqMFqGCdYM2Czp4lmXM9Sv1sC/4oC2IiotqIFSrqA8RpURrWYoe7K6o+Q9ihMKD9lTVMDUA6OcQyPfFoyfp09KhmAgUzxVEb2VvPCQ9PeX8bJai6V4DfaKMWJsYPELi1+Agg+erm3YbQehyq1i1rruU4qUUuibhvbpNReXG5bZM82C6E7TyP6wlya4cecAQIW8H/hIOs4s+xOnoce6hqZruPzae1x9+A7FT7z87Ge8a55AKLzP13n9xQbtTzSHA7sWjjpy0IlTyZzuJgbXgGkoWMQlNPD8+WfMc+Li8lIa8Bjp2x6XAqfnr+gi6AaccURkcHN3OLK/O3B4esQ0UpBvh47WDTgP6fMDm2c9KRbcrsOryDieCDGilME4hw+RpmnZbneMoyYGYR6UM+c8n93QlopeeB9wzp1pFOsAUcFZVBujQPXnxOOKXK5mHKt3f9M0dF17Nh/xIa5D9SoiF6OJXIv9lBLHKbDEhWl5RacU+92Wpp1QWnF5sWXoGqFj24q0ElFpooQWlRoabWnQdAr8GAgGhk2PUpK10Q894zTJ69b3Q4Ov8vWTl59xmOU1l/L2oCLn+BaKIR9TzoW7GHxIgKpaUdWcV44PqEKMhZREf1GsiKpzFlMNbeSXbTqUNnW91P2r0oWEFy2uaKoOm/J5v5fEcK0NyhiUaVmtwVO6b460MbhmQKsGazq6dlPdBeugsq7X1VUqpogPI9Oyx1rNZtPjFxE9q/tjSFzG6qJTag271WfUZm1uHtKHstJY/XCqfz8oK0UatVKU7P+5VIBmpUKt+RirvlSYGytlWO6bDL6sNiyz5zhNYuUv72x97fcIorM92801fTdUAybJnxvnE+N4Q5j2co/ruliRl4vNlg/e/4DPXnxByPG8Lu5zr2Q96WppfW6gKu3rHGRbfzfGvGVc82Wfmy/dZAzdBh98FackUhYLsxhkAYkwrSEEcSMyVqOyZjtcyAvUBmcc5MzhKJQdv4wiUCkZZxV+mZl8oHWWV69ec/34kne++U1ia/jnf/TPMUpjH+/QjaPRloAsinGa772clSKUzN10JHz+C06niaePH4OSwt0YRYiByY9goNeFJS4UVbDOkqvdW9M0D9T3haILL9885+LikhIbfvO3f51t2/Cf/+f/Zz774iXoxPWThg+eDFxvdjy5fJe227D3C0Ob2ejAO+++z/vvvMOTqy1PHj9m6FrIkprZDC3d0IMqJC9ow93dHYe9pEanmJnnRUTrSYRVtnFsNxtxfqjF6eF4YlxO+OBJSSzpmqYhRgnRi8Gz+EhMmSUGxtnz8jRydxw5jSOjj4wxgdbYnOhzYeMsxTlCARMzTZTu3mhFZxTONVw4y9JlTm1gP86clkRWViwdcwYMZOEIGl1QJmEVXFjH003P17aOyz6jnxqefXJJtxsEEQmZ5DPRZ8mGGD3zHJgnz1ibj3kOX3YZ/3u/lLFgCsrIBtz3HbaBrhNBqjzo4taFVmSjUBi0lXwIeR8zs3/DEl5z1T/m++/8PYyx/Iuf/1f84MV/y6SOxCzwtE4J1ziZpLDCwwqtMqpuAlppyIVcAjFBLqLTUBqMkgllyWI5rapirFDeqoEL68Gm0Vl87VWBWGpLoWB1XjJaRLu6ZLQykk+RCiEnQpZ83XXyjxbqi1VSdK4wb0gRtXKJSwJGoAFlQTeUvBUaFA0xGVKZULHFmhNGH7HmQiiZ2tXDsq3UMnMu9tGWgqXgKcVRcidicC5QPCKXOyh7lNlT9J5SjqgknPdcGw3J8pDuQpdq4LAeOqZqhuSNAS3om9zfL+PLAf//3oiYqgsAWVPWipbOe392Res7QTaUsffOdCtFJBf6rmMzCDK7eM94Gnn15oa744nnL15wPJ3YDAOb7Za+68Ryk0rBOs2Uw4jfTozuBEA/9HRNg3Zbrj/8iL5rmF+9xqDIy555H7nYPmbYDozTkS9ePscnj9IZnwuTmirKW7hZRrK2pKTF0/8UxPGoZFgWYm+42lxx5Rp0E6HV3Ewzx5hZfODVqzeUAh+++5TLTz5Cl8zr2zs271zRD45gkHRu51BKgmVNI1a/hcjsI/MyMi+LTE63G8mu0qZOS1dOdvyV5kHu8TzPKBTWOnFqrNQ1mZrXYrLuRdZojLWiDckZ5+R8WrndqSQUMyGIV1tnG2FvVrenmBPJCafe+5npcOL1qxPdZkA3htd3E5vecXmxYegdu77BkmjJ9BrKMnEksdvucBtDmiKq2gvbRkxDMhLKm005ry8pjL+6z9kf/PLH+Bggl6opuR/SrejowyJxRalF/5DPHPt1X09AjkGcCVMiRkWMuYq9pQjtu5ZSxInLujoSsT3W2lp4i+1syZI4nmv4m17FzVqMdkqR1O+cch1wruF76dzg5pxp246mHVDa0XdbOteJE5Wq2EAt1tcCOYSFxZ+IcSH4WTIt1n6EKkhWpQ64hGmi67BszYRYm4o1SfyejpnO+3VBNCAP3QNVqQ1EHYqhdKV8lXsuFPdOkApYwx9XSrLWjq7dMPqFJb5dvzxg4KKMYRi2bIcr2nZAVcRmWRam+ciyHIhxppxTu9eXIE6d87Iw+UV0J1oQlhjCuXGSfDkr9sbI+V+qw2RZf5XVyfLtxPU/c02G1YasqvhbaREMlVJ/OFnUXddhreV4PKJUS6nhPBfbC7TSdK04I718ZXBG8/LmDQBt0+E6R8yJxU+Ua8v+5sTx5YnvfPIN3nn6Lr+1BP7k+ack52AnN7GxjuM0njtJkDeF2oUdx5F5DhymkeM08fj6iu2mF2erMOOTR1vNzeEGhca2lhBiFbdrYgyUIr7gqhSOpyOoQmctl48uePdv/w2W6PnP/k//R4xW/K3/8Ht8/xvv0BXHca/44z/+GcfDiY/fecp3P/6Qp0+foIh1oj1jUWz6jXg7Gy1C8mUhLoFlXjgeTkzjJIKsXKondYM2iqbRlKqzyLkwhZnjOLJ4TyliK6gwOOs4nkYJ45v82dUppIRPicUHVIHWOMxmRz9kLlIWAyej0Y1ML17PozQ/3tOi2TYNg3O0zuCcorGGwbU8uuoJl7szrH2cPbenEz4ItO6UpjOKtrH0nebpYHnSOwabUJvC9r1L3FUDDeiiMUWzEvxzbClRGqfkE36O+DmwfIWaDGtavDqgjGxyTdPQWE3bOtkASs1nUVoahZLFacLUaTu6ThTvSPlAZz/CqIar/l1+9+v/Gx4N7/Mvf/nf8sX0xyQW2Qy8x1oJ/CpJpuqmWg4K/Q7R2WvJ3YjzQmuthPEpEVVapSv6kc+6p1WrUeCMfOSyerHrs1Cu5FwpTyuELpqmtZA2IFoRwdilmFBCV0i5EIxYO5sazmi16G+oDQwlUEqgEChKAxalPNAAjSASNBQaYpJfIR5QqsUYQTmcHbC6R+vmbN0JUJRDYQVC174WXS1KD2i1hfKEkidsuUPzhqJPlOxRLFAClIgmoYsWfntZkYwqCFeFrKmTdxmCpHJ/kPw7Xf+Gz/nzlHn8WVzKGTrTo0NknmfJGKoTtaw1OQas0TRWo1QmhAXvF0KIZ96yoB+a7W7D4+sdzliWELi7O5xpPbd3B17PC4fjkeF0YrPZ1HOopW0a2SdvR+JmxHcdSivxkd8M9G3LsNnRKkNrWxRf8Oh0yV0Wd8Tt5SVX7zzj6YcfUaLn9sULbl69loNaiQvfPsAtHmcdJU2UmMhkxmOArOk3HZMJvDkeeXa54XG3lXDAyXPSst5fv3yDzoXvfPgRy+2R/c/eoKeRqydP8L0iPrtAmRZSLcK8JyHPsLgIZkHGteJwPJBrAyDPVqHrW5Rq7ykUOdX07Axptb7OxOSBIohQnajqNfsIqh7TcDicMM7SIWG5JUpuQuMcd0aCYWMulKLJs2e5mygJhqsNue1IKWKNo5hOrLWdJeTIm7sTd0fFzWFi07fshpZXbw48uzry7mnk8fUl77//Lp0tGAu2aVliJMcjVhkK1Zq1JKyx9CjsYSbOS6W6PHjAvvEX9GD8z1w34Ugqgi7fu/lUVDi/7aC0hoTmLJq8QtWYVrt6atEuwyCL9FnSjMS4ipsr1bDa+mtVSNlDiXT9wDzumU+vcE3VwiHfV5DGB7QfJTkL52DLcmZKiZ620pJkPbZ03Q5lG/p2R2s7OZPUPWVPzqXEvIyM/sgST+Ts8X7GmlV3WCqlSwbbpbpgkdddQ61OKRUJle7rod6AamoA91kW8EDrUnUaq5vg+nFU6jdl1UvWFVU1iEKxknNNa4M1jpvDfvUIewvdXoX6rWu52D5mM6yCb2kIp2VinveE6UgJ8Xz+UhuCxjY4Y3j5+pU007VGTjWUt9TvoSvdcUXGVnvbWBswlKpGL5VxoO6fkj9zJGNZJNkxpyLBX30ni7hkSomUymlzrmEYZHqRq26jNS1Dt6ndVcYZx9APLCFISF309GZDs2mx0fOLw+dcDjvsDLMPfPjhJzx+9A5Pnr/DT59/yuF2YvPkglzDwZZK2co5nRet2LJpQk7c3N0xjiPLsvDo+prLi0Ee1pQ4HI9MZqFtO1rXoaJwHNcbbow4HKWssDZx3B8x2w1q2GBdw3/wN/46f/SjH/Gvf/RPKLZw9e5jnnRXfP7pDY8fX9ZU2IZcPNN0U4vrAaMdbWOIacGHQipKJkA+Mp0mwuzrJGINyrvn6a2Ld5omQjhRlGKavUyKfcBYzRIT8zizxIRPkWXx+GkmLBLcJq24wRhLp6FzDRnwKRGMTOGka874nIlaMZsCzpCT4hgjRx9otGJwhr5xtNbTuQbnLK0zXLWWODSM25Zx8aSYaJxl22pam3EGWgtOZRYW2osN9npLOvMb68SgQrDKSWCOyWCzpk2WkjpK/OrA3c72KK3IWjojpeVA10ZXo4KabaFgyTO++FohWpSygCKnSIi3GF1obANFUKrOXfPtd/42jg0/evE/8rPxX3EqBynGcyERkcTVUilTsknnKgBNyLRK5ogJUwpaZVIJtMbQGkumTlmRtVBU5WGuU7CKRCiq2LMmH60c1yK91XlSkv5f5P1pk23Zed+J/dawxzPkeKeaARAAAZIgKUqUzJaiWy213LZCtl/6A9j+Nv4UfmFHRzskKxx2tzokarAGiqQokk0WAAI1V90xhzPtaU1+8ax9MgsEyUtZEivCG1HIvJknM8/ZZ++1nuf5TwR8TGglrhUWmXJZpYhKi1VmiExxEkGv+GSjtSQa6xkfSfEoUk0ESB6UyZtQAakSShUNpIYQJ6JSqGBRqZJUcdOiZytcXcpz0jIBFCuIClREqQKlHDFVqORJ2qHSGpUuIHVEfSCmA6QDKe2k4YgOFT36SKOSjBedhCAVU8QAQYtJRPwpl+x/cJ+g/tR/fiWP8rSlUQZiotvv2W13M5lYLqJUsKhrlouawoJzE4euY98N+ADWlpRFwWq1pG1rlosGg/jbl0VFu1hy5gOFrTj0Pd04sN1uxaCkrmmahkW7oIyVmI0tasyyQRc2D26EBthWFaZe0JyDSgGdsjj6Zo8bRpYXp1xcPIFS0+wfsXx1A91I3A9cP3/JWQic91uu9zsG22GNYlCaIQTEWS0QSBhlue06Dt4zOk9d1yzbBftDj9UFu+2B3/29P+Sb3/pZzn7mEf76li4YwgBL3dDFyDSjEl7sRkOaueiZ5oHBGE1Vl7ImJKGajqO8J9ZaFoslxIAhMXmPi3OGQsxDhbznzj9EdjTKeR+FgbYqsn6pAMDVk+g8lAIfWFoDLrLbdEwBirKkHwYgUNct4yhObrZs7jj+/YGkJJzxdjdw6Cdu9z2VVWw2O3abPfvTHcYrHr8JJxfn2MpQlZplXRMCXO07eqdQOf3bKItLnnHsSOFOL/jV2U3kCISMfkmooEzcZTov0/u7CbOaqS6ZJqRNQkCreKfZQ4ZQ1hQQIWiPmGtkXYS1BO9Jediaoif4iegnTJLzphWMvVivppit5VVBWS+xRSXGGHmaonL+lVbFcXAUw50lqkKhTYW2NdpUtKVoeb+sLxEhsvee0Y0MvsO5DqsNbVUTvBcaU5xtZu+K9nkvspnuM2svBHnRRzTlS9rB/O8Y5zyMLx9CG4y5GZnNPURDEXOOhLX5hM/oRhRkR2OojKEpSnaHgzxGz4Gzc5Mmv6OplyzbE6qyyBmekckNDMOBvrvFj3tIIQ/45E9ZbXjn8jFFWfD5q2egyPvo3IekHB0gug1j9HHPEIRY1oWYZHiotcZqQ5FT3WenyNexr4U/R5NxdJZIUnAnGY1m3/qAcw7vIlXV0DTCjW2qEpBEQmMKQLNYrLG2wNqSmDS7w459d2AcB1AaW8gLjiZSLhbcbvc8eVRw9vCC07Nz9sPAq4+/z+M332AbO0EZvIiMY0oMo5dEUYR3qHT2Rw6eV9dX7A97zs7XnJ2dUBjDtN3Qtgu0keRQU5SgPZNzaCWT3aQNqoACy+R6Dv2eqrRUdcXpxZr/7f/m7/IP/8GeT378GY2Cs6alu+5wU6QoGvy0R5tE0xRUlQTljNPIoetISS7o4BUx36xDP1AYi1biDx1nwU6m2YQYGIeR7XaPy81fUpCUdLnD6Jm8Y9Md6L1n0x243dwSnadUVnirupTQnhBQ3E2tVQKbEjZzAkOKVMZQ1DVmvZaciyBUmhCFWkZIpBAZnfD+bArZ011TKMVJZTipW4TXp7E2YZTHCjxBYMIXkeV5iz1doDMPeE6ezkvF8aMyoIxCFcgCFb86ZVVdrehtxaQliVupRFGYI0SL1hhriMnRhT2THkRrgEDVsrBNEHvaqmZZnmBtCbl5CN7y5OQ7PFq/w4+v/w3//un/xDa8kKwNlVCFUIxULLJOIzt7ZSpPzI1biCI61Ur0M8FEUqUwJou7M1vKETBRUKikIKok8DBf9tc+Bg0luRYkVDFJSCUCk6s8MTIJgaKVliYnT01cECoJaraJlUNlvPxuA5XFWqHFHUuPKHq0GiGNKD2hqNCpICUDeFwY8XFA+RJrGtFwZDtcrYvcSKnM1833GuIGFtOEaEFqUC3EJYqRxIGktpAGktqTzAEVJ0CSmXWaqWdyb0WiaDO4C6J8nY7gz3d1q5/y2VfvqNctpS0lqLQp0VZRNiVumAQZ05pV27BoSpSK3N7csNlO7A97xjFQFBWLxYK2rWX9jJEQJDPI+YDWlqZpKcqKdlyw6w50fS8BorsdwzgwTiNV3VBUNVOhiG1FMpayjTjnJKhSCVXI1g3V6RnBCwWuNKVM4bd7irqiqJcsHpxjTlq6zQ5/fWClFMPtgagM69UFprRs+j3PXj4lqICuLSaO9N5x8IkdCq80ha0wCg5dRz856qYlasMnn39B0674xZ//RdZP3mC33YDz9Npz6AdBxDPn3CBr9zTdFY8ymXbS9Ga6iLXSCMxTznHoidPEyWJBbQtwnqgVPnO6fzJ7QOcJZ0yBYeiJXtLKXbRonXLBGlBDj24WMDmmEEm3HTw/sB0HdGNZvHlKKitcUvgw22iXx8ymum6pUmLyjlCUkoPiAm70MsmNFpxhGD7l5uA5eTjQrhrW65riwtBUBafLmmKI1KXBxyQ5HGcVqpE1a75hvmr3TYjZNOhLVBWO78V9mhRK6GezptRoRZEn/PeXHMlAmHBeHYXjWokbGyDp7ggPX1CHgJ+cDAqriqqqSXEkhj43DAmFR0WPSjLAMaXGTWJjr5U6uniJ/bfcR6IntCQKSIamWNBU7TGnAzg2BTHKfTmFiclLAF2Mk7hFKTJlSWV9Xx4U5GLYKEmuF6Q95X3sDp2Ycn4G/AQNSHFsXObiHHX3USuTkQlFCLmfUOLCGFI6TpOOmo785lVVjVaK6/0mSzQEZ8nbpjQLtmLRnlPXJxhTCgvAO/rhwDDuGaYdKfrcUClURlh0fo392N/Dvchamzu3LK1UrjOVPE9zp9fIXRNzZootJJsoMyn/XI3GazcZJ+cnHA4DttAUIfsp54CeGIUyIBNTR9OsUQr2u0446dbS95O466hcBCnDQzSX55fcbm95fvVCxCkhsF6tOewGbt2Oqmn5+LNPWC9OeOfNx7zx5js8e/WM7fNXxIUGI3dg1bTs9zuZfBiFsbIQiTuBuOXsx8gUHJ3vOAwHLs5O0dGTwohVAeUcTb3CGkPUCN8ugYpC0yNFitIQvGPXb1muFpwuzzh/dMF//V//HX74u7/N4ekXHOJTrJn5xoG2ranqgpQi0zRw2HeMYyJ42RhThMLUOSZeY1UDUeNSyi49Ga4zMi3abLeM/Z4wTWhtCEmmTmOM9ENgexh4fvOKvZ+IhcZbjWtKolb0SaFjorFQEAlOzrlJWS+RJB/BaoPJaEJynqnvMaXBFhWFtmirUdaiW4stDNYoCBKy51xg8o4xU8+sNlRFmR2txJcbU2Vh8IBqPKsHZ5y/+Yj27BRV2TtHiHgXBDMLPnO3ixBy0v219y/8aIolB9PicDgvG7o2MnWKMUpTbBRTGug5EFSkyFkSgt5EYpzQKrEoTllVD3K6p2IKDu8cZbmgrs75peUDls0lv/XR/4vPDn9EVNnxAqFgzSI0nbPrRPAfIeqcXyIVsHMebzVJeapKFtocc3dP5yELynyu5x9nfivmDToXHjbD0ikGwU3ygq+OxFl572zOQohHSFwmLJnhyh2ULZMile5B/rkZSkmaFYCkJlA9iRKlalI0oCpibCCO0oinAk2NMTVGNWhdo02J1kVGDU3Wb8yNUYnGgAqkVKB1TUoTKS2BE1KcwBwkc0P3RPak1EEaZQ3J0UdRRbQRh5PXQZrVH/vkz/EzX/Ej2ogqNbawmEqjK42akasQhS6lFHVZoHKRc+g6yv2AcyMhBA6Hw1E0Ok4jJOj6EReRTVMZ6rqkaVuqRSu234cD292WfhrpxhFjtpRVTesGOgOLGFmcrWnqkugmCIHFaknd1Oh6SX2miclg0Uy3W8Z9x+5ZokoOc7HE1JbqbEEkcLiN3A5b4uBYZD71WXWOPTWQBIHvtxtOqxKs5uXQsUs+660EXbdNRdQBN43sxpEff/gBddPwtbff5sHFOcMw4GNAW6EJu2mi63vJKGjrHMgmd5MM8rJTj+LYcIgTmzAB3DRijWYMnm6acsifORZkwv3PwlnIqIZYZ+q6JKTE9rAXR7agsEqzakXEO6oOb0t00bDpd6QE5xdL0sLiljWprBgmJ/fXKHo8Y6X5n7w05k1Ro1SNd5OkOnuHVokR2IaIcoHw6pZtUKy7Ja9uD7x4dWDVlCyWDU1Tc7pcobWiGwYGN2HIWqmv6BFCuMvmCXd5DfEoNJ6dpuSNvWsGE2Uh2pkQkyC7Cow1lKWV7KVBEqCLoiBkatxM9RFjEY46psOhYxh6tEEE5z5BNBldlr1httdPaNH9oDFFiSmrPDCVgtgooSViDEVZYYsGo0uacpUTy/U9u1TwKTEFx+hGnOtx4wY3HQjOST5XpkeanGieUpR1I9cPpZ6RkUwUStIk3F8w5/N5/0jZlYrsrJVy7SHbWEbY430rc440QtIdIpoSEGfUSVMVNQ/PH/DBi2t0l40IZAyVf5emrk9ZLR9QVrUghSkyuYluODD0t6RhR4oBIxM9+V+MPDo5wxrDy92t6DBSzANs5hgNUkwUhcWYe/AWiG2t9xBk8GysyXbVYpsPHOlfHJujP/147SbDDxMa8H6iqWuhZWROm0BQDs/MmetpmpZpmtjubjg9PaEoCpngRpedjkpJMNaJtmkoS8urm1cQNXW9YLcfGPxAlzpCP3Fz+4q6srSLJT/3s9/l+x/8IdN0wKxkGlYVlmEW8HiBFbWW6fEsaEop4BIEB89f9mw3N7zx8ILSRA6bkaI9p2watLUsF2v6YaLrO5LPnuEoClUwkej6iS9evOD2dk+hLBePH/Hd9Mt8/P2CzctPsZZcfEuF1/cTXdehdIFSluA1IWhx4rIWlCUiz/eoe9EKYw1hchw2wt1zMTA6R0yemNGE3Tjycrvlar+l6zzb/QGvE1ErKl1zslxwdrqSSV/vmEbPbpyY+h4/JYILqJgolBVxPYpC6/wflAasBjM51BhQyKaDAWUiptC0bUVTlxSlkUDGVOKDwNIqBrHDdV5+FrFFNVahForV5YrLrz1k/egMs2hh1tUcrefCn9h0pDRbxH01jtK0lLqhxzPLg+ep08yPTSoxMuLUJMm7KjteHAFPjzWKRXHBorzA6DJPcTzWGgpboVUNuuHNk1/Dv7HEPP1HPOt+QO835KDku7Tbe03M3KPNi0PKYXajj8TB4wJYA1onCq0EIlUNIY6Al4YlZiqQIvufy9/LdNSsabLoqElertEZCdVwnO6DXOfWGlIyeSIdxPlnRi0ybe8IfqscFHTvvOZ/oVQWGSYHqSexRyWhBcIaVCP3WSqIaSBEi6JA6watGrSq0KYUHYcpc5Dg7Khh7rzeMZAKVAxAAzqg0gqlRaeh2BHZCJUq9bnZmNDao5I49P3HdrRRf8q/vopHW9eUZUFhDMFDtahl7VGKMDmmXogDtpT03qapWa1WuKBYrDwh3HHUt9sth92WKYqhBdnnzBjDommoZ49/JVRFbTW269jvDux3B+J2TzMO7EOgdZ719JDlqmXVVuhwJ2qtixJdVhTrNcFNaOdQ3cCw2TElT6ki5cUSXVmKdcvyjTMm1/Pyh5+x/fxW0rq1oZ9G9v1AuzzjdP2IRWOwOhHGK5bBMU6JPozo2DOliUOIDCExhsjtjeKDH3+fJ5cn9GPNNE4UxtAaI9qHMWJ3IzGBV5axstn5SYtTFOmoSSqKKtth3tlseoSbP830EZWHFtz548vQwlDakhCc7FlEhsGTCjF90UTcdYcZPKqqKGuDKkvCqgWrqYiMay0IqtU4pUneU2lNlSJjN7Lb9VTrCrtqIA/TtBH9ojYKqxTKOfTkWdiKatFi2oagDX03ogLUqwVd57m1hnbR01QVp+uB5aKkLhWnreWkrY/341fxzokzynIvVdp7fyzC9bwo5/X3SP1JieNmwD36EDBOjmkMBC+5GDrbxPb9nqIosYWVLAydA4vjlOML1DG4UWuhmxpTC0o/oxW6oGhWBB9wU5ef25y4ni1rY8jIAzTtgrJqqMuaRZ2zMX5CZJwyXWwKUxZ89zl8b8I7jy3LjALI8GpG1kMUqjCarDMUym/w4ThIujuH8vOzFfARuQiBpI7+i3IW82Y3n+aUB2jx3rqe0mxaIijFfTc2pRQvbq65OeyZbW/nwVoCCluzWlzStqtMIQYfJeF7HHeMw4bgR6FKyV+DIAPihbW46DIten4uHFkxM+V+DrBMWX+ZQpQsIe9RSVgnRptsYW/uqW3uoTKvcbx2kzFsD0wh0K4Wd1qFdN9HG5ITbtjQD9RVQ12XxNhwe3vLycmZ8PaSwWqNcJ+FKWaNcPyssVTVHh+hbgqmceQQ9gRVcrI+5cX1S9554wmnqzO+fvkOnz39mG7nsOcNBCeOR0bSI6MHU0h3653DFkW27YoYXZJUoB8Gnr94xerddxgHx8Zd0bYtjbXsdlts2YAyzF7ibduilGK/39MPA93oCLFjYSvWTcMb77zL6WLB9/89XF+9zNZwiRAckBh6RVlWFLbAKIM2s3WozjzteREBoyKTGxnGAe88h0NHRJJVp+A4TD2boeNmf6CbArf9yH6aSFGhC4sqDIUR+NxPnnJZcvnkHFvWbHc9z55f8cXnL5iiO3bOfuYfBhELl9ZQFJYiJqxKaCJTEBSqMhprQOnIomhYrBaYZY0tNG6Y6DYd0xgoTElZGrSRDtlPnujFYck2mnVb8OQ777F+uMIuaoRAKk4RWptMZ0zHZmL2u5amI2Ru4VenyahNS2UajO2xpUFbLZsymYKkNF47ejpJyVY5z0EZZreKmEasTqzKBzTFClKGrxMUZY2xJUEZEVDHksv25/hr773Bhze/zR88/Yfs/DOiCUfrPAeUtpbgI8CoOw6mAqFUJY0Pgt4plTAGqkJcrxbl1+iGTwnhFh1kQjZTsQp15/4BQBa3aS1TzBQtInWFiEzkshnT8XoXh6Y7YZlTkdn1hjBnUqTjBgrZulrroygP7vzQ774kv1OmLgFSR4oViQpNRaIgpYLoJxIdmhKlS7SpxbJbVxhdYnR5pCXMQkelDFpHoMiIZ4FKVX7/KrRqIJ1CPJDUTpCNOJCYiPifAjP/SeXNT/v6nzQ/+umP/Soe3/rGz5DmTXcOfYoy8Bi6AwejmPoBjzQLRduyvoBqdUrI1NgQIm4acdPIOI64/oBCclpi8JKR4bWYDiAImiksrV7KZNAH+n6g73rGmw396NkOI3vnOLs4wa0WxPWImwTtZX1CWRSYssIsFqh+QO06/K5nenVLRSIZjToVbcfy8gRFZBpGnh8+Y3t9K1lCRrMfHJ8+29GUBe+++5C333nC+Ztvs73ZEDd7ThenROVw00Q/dXQxoJoSHR27F095+snHFMbItTgFTlYrBjcRVaC5OCOEiDKK1ekajOHQ9/R9n2elOlM8RHMHHCfH8wT7p9Gi5uIrZjGtx+O9ExvioiDGQL1oCMEzTQ7aUpqDm47paoDTkqop6NxAajVWtaSQmFxk8B4bE23vSZ9tSKPn4YMlU2swlabQJd04yfplRd9VaoN2Eff5NZSWxWLF6ZMTmmZJOjjUdccYNFNtKK1liomuT2z3I+tVxdmq5HxdSShwuivISIi5zFfkOLrhzZ/ndVNrwzyMkXZCEbOjJIA+ukXJ96Vuy9lKMXHnLDahlKYohDo3U43ma0SoVZ4UoSxrqrIlpcDQi+1xWVYoZcSFSRmULcSURkWxc44BGcwIxz9m62ljLSlBWVZoXWJNRWmbP9ZgkOl9zjvRI7gdLgxAoiwKeW4pD70yvUkbLSO+mU6W1wCf2RaS8aZzZko6TuZB1pt5n5ndII/vxcwqmdH9dNfYzY9TWhpzMgKS6/sjwqStOHLe7sVymrwfz40AylA3a5bLUxnOZ4MV7z3D2DMOO/y0lzUu3TWUwQWePHyMQnPd7bOtuuSVRDW/57mJ0Ro7B23OLIIgbCRSPGYLSSSF3G9fuiZ5/Z3ltZuMH77/fS6fvEG1XHK2XDONEz6FvEgptK7QKhCTvOG73RatDYvFKidFCtXHmooYFCGMGF1yOOxRKrJYrKmblvVJx2a3o9Aa348s1y031xsMBcTEp88+58nFA9792jcpTcVv/t6/ZVGU+CZBCNimpKot3f5AClJop5SkM1NapjTJY7QoEW4PHb//gx/y5NElF6uWT19+zltlgfOKAJRFST+5o2BohhYjiX4a8SHQp4ngHG8+eMTpegVu5N/8i39Bf9ijjSIgvEZdrPEYiBrvhYpVVzVGKYwPHPoDk3f4yTH1AwkvYdbaMqhE5z0HN3G1ueFqc81hGnFAUBptKhbNIk+KjQTVOc+0HxjDnnF7gJj4mW99ja9//S0C3+T73/8RH/7oc65fbOj3jugVZEgNAiGBwRC1wWvF5MXeNiqHTWJRZwuNUwpcwKO4PF3iDwNX13uePrvBdeLG1VaGslCU1mK1Eo1KAWdvnXP5xhPsoibkTWuGI2eqzPyfRjNTNeem46uGZFhVUdoF2mxRhcIUGlQ4mhIYrRjp6RlhpuboAq1KdBJhY4qO0lQsiwsMJdMkeqeyKI/TUJ8k8FAmJJYHJ+9xsnxCoVvef/Z/59Z9QdCCFESXUH5E2XlRCZhZg5CpTik3DVOQxVFHoSelNJDiMyITBGk0j84Zs4NV/h06U6Fk0ZUJzuytHVISbCfTpma/86REDG+1yZsLOVcis1Tz7w8xi9Vmh46c7wEcr4/ZFvcu9O7+lKknpYGYLCRLUkKnUrohxQpSQcCgYoGPJSFUGCWbnzENSluMttJczMjTMX+jyHxYn9GNkkRNwoEaIfVAB2qPUp3Qtu5mYveunp/2+Ze/pu5/Tf3Jj/vTf/df/PGdX/pVEjoXdznMMHj6bk+33bHbbLi9umYaB2IM2MUJyweaoqxpV0uqukYrTYge71zWBE5ZHDoxdB2H/YHN5laStkex/rbaYICmM/hp4LCXPIkpBA67PaHr2XtH3z1kOF3R3dasVxtc1xN9YLlaYaxBlRV6uYJlh7/ZMW463BdXQm12J5TnNWXbUDy2KC3X5P7ff8But6Wua+FwO8+mH7m+rjg5O+H0/BRdVWg70vWJ3b7n4eUpD9aX9MMBN3b4MdJbDy+v0ZcPoCxRPmFSoLaG/TBwc9sDGtMWUOyJWgYY5+tTDmMvic1AWVSSq6FFCOycY7VaEUNgzBbC8/07azbmie/s16+1IXhPVAprLdMkgWB11RD0SCg11ekFiyh0zy5MLNqI85FuGOncgPMQo5KgxaYiHnrCsxuK4Fl+9wlTqUkhUZWGQA58U4KJl4sW++gMPU1AxJiELTXr1QPaB5rrqaMsDCF6+jHQDz2lMYxT5HCYeHm9pyzuu+bI/7/94D/7LfEnH5qsAZi/cIfiClsjI+RZtCu0XLEEn+lToLJNscs1TJkL25QpPPJ7QRGiJFWjZ9tYMdbR2aUqBJfNcSRBfLaWjUT0TM3xIdt5C50x5b+vEkQfUFpTFCUeBarGKhF8F1+y4hU0wAeHj45hOtANO3wYcM6jUsQaEanH6NFWKD0RSbs/oudK9Hwxxkw3gyOukxJ+csdzqJSSQlv+ODOx9+75pC+dKzL16P6+g76jFWcQBRXFL0rMWGDVLhiNRtsiZ1zMFGCFsRXt4ox2sRLLYISVME0Tw7RjGjck16OTBGOTpJloqop3H73B0+01g3cy2EuCotxZ9krIos00qPnamDNzhN51r+bKWUY/iVv8eXD4124y/tk/+sf8jb/1tzg9PQevqIuG6CMueYIPVGWFaRWHwxbvHcaA94GyrFmvT9hsNqAiWst/Shu8n630BKItyoLVYgkJKlvRlC3OB7p9xxB7mtJymDzDtORkueKtr/0Mr66ueLF5SRgcy7OaqJVkdCjpmI2+g/dClCltioGAxhYFyogD1YvbGw79FqM0m/2By/OHLFYnNPWKopSJQN/3Yh9blEQK4Qm6Ce9GvDa83G04qSsu3n6TN7/+dX78B+/jJgeFQduKwta5LkhHn/akxdu9P3R0XSfCaqkdcUnEtvuh5/lmx82ho4+RTbcXF6DsOS0CHigwBJcIPtAfRoZhkiRONMPg2Gw/5/pqz8//4jf51V/7ZZ48OeeNxx/wR9//iI9+9JTbq5Hk5aawWlMYIwLuzOs9OpWgJfjNKFRdMqD54tWGjz5/TmmFAjH2jn5MaG8IPtKN2e1CRcpCsVhrvvmNRzx87wGmFog1+YRS7rg4QCTNoTTqTjgs/8zT5D/Hxf6f4zAYCl1TmIZgrSz++dxpY0CDzzax3AuKk6IVQTtSpNILKrMghoSLDoXB2AKtLSEpgo8Z8cqoREzUpuWbl/8FC1vyw5f/jOfjD+nSFgAfPCSh3836Cp0FcxLGl+7C5FCCOpJIyeP8C4yVVHY7T2vyNIzsmpSQychsHZqO10qmZR2nbzkxOKojfAtJnkOeUMvk7W5iBEpSVwEdFfN35+tENlt95xyi5unR/QZ0hsNHSBMwgupJsSOlEkUJqSYhgX8+WkJ2/FK6AlVgdJXF4qU0H9pkcwadEUnhq+tMyVLKQSyJqgJaSEtSGlBqugdz/2Tx/8f/fX9BT3/m41/nd/7FH9XqIdlrDFKe/MVAczJwct5zfjhwdn5N3x1wTib6IYgl9PrsjPXpKUXdQtJHNNP7CXHJGfFjz9j13N5c8+rVK26ub9nvRceWnKe3iW6/o1s2RGDfD4yTJ/mAu77lthTzkKnrOWw29IeO0TlW52c0bYvRhugDg9J0gIuQhpHuk+ek/Zbluxc8eOshVVmzvrjgjW9H/CiWoq53mcIkot79fmC/P3B2tuZkucAfOj5/+pTDfqDbdxhdMYw9Pkz8/Pe+zem6onaKkyGyriqcDXTbLbEUS/FYJ8bDSNyPeB1QdU1IiUhkHEaSgnoheRkhJuSVith+GEaMkvW/NFbMHjIVZJ6KH00eiEcKT2kLCUjzXorKlDAoFm1LYQpZ30bHcNihtWXRNoxuFPdDN2aUNbGrLMt3LmhSwgSNf9mRHi/xOgtplbjhFLbAJDCVhkpjVCK2laAo2x19o1i88YQ1sueO3jFNgXGYmMaRYdez20esEVrzHTb4H5fG+B/jiCmQHSOkiUhCTRIBf54pJ2kOQnaVMlnXcKROKY7C3RCChPmGXBtpc9TuuMmRoqeoC2LyTJMnBE9dtWCk6HRO3MuU1viQKMsCrQpScFJG59wIKVJz8+M8KkPMwYdco2maaonRFXXZ0tYLClscp+Z3trUJ5yeJHZgO6OQY+4M0QoXk7MxaktlGdkYNxFVq9ii8S0mf6U4hJkJ2TptpxLM7Ikn0sjHd/zmOy+kRRZ+HWfOedS89PKWsL8yPnQXnpSn4+Oolkw/oTAeem9ymXrBenFGXTbbhTTg30Q8H+mGHnw6kMM3TMxLCAnr7yZv0buJqv82vdh6y3bE+VEoU1hyHBEdBekzEkDLr7q7JMEZE7CmGIyXs/vE6WRmv3WS8+PQLfvtf/QbnpxfURUW9aPNkw6CseOnWZYVVS/aHTXZZ0WgCSkFZFgzDKJOEsgR0TguX4nGcJrQuQCmaskYlTWlK8cVPcLvbcOh6GlPz6csv8D7w1qM3+eVf+St89PGP+Z0//HeUjaZaL0hWoa1Boxj6AWMM5+fn4kwxDtKAxMA4TlhbiAXs5BmGDmJgmCZi9JyFEdf2LBcnpOyopZLwBUtbCCyXEuMk9rGv9hs8C07Kmre//S26buCTH/2YqqgE1k4Ka2X6RkpHkZTrRrz3OB8IKjFEz67roCw5OTvFKdhcjWz8yJRAVVW2UxQurEVhldDVpl4WhmkQWlJCg9KEADopvvjsluvr3+Hlyw3f+PabTK6nWWhOzxr6gyN5R4wck3glEEcTYr6mtcbk96xQFktB9ArnEn5STP0EMU+io5EbVoV8+4irByry6HLF137ubS7eOMWUJsOxQcLoZu4p+UaXuyAXll+e0n7ZXeMv/lDRUKolTbkmFoIYHEN/igKMJihPzBPxpHKjgYiaFZ5CJZb2HJvq2Z0OW8gU3UfwQZw5jCnQVjGmnuAc0URMMjxa/AKhX8J+zQt+k4PeCVyaEtHHHJaXMCrPY9IsVEt5IZHAoRgiEyLItSlB0mA1VmUpc5LpkFEKm6dDd1SsWVMhzUZId5D9XbAPHC8s7uDkOFMXVHbgV2IwG5WSgDvFMeV9FkDOGw1KHYucu6kTgIQmcXxuAaJYN4ImKUuKLYpamopkAUtKlhgGUjLSWPgKretMo5pzOIpshWtQmQMtm5jKzbFFMj1qYCQhU9fjNXx39fzk1fSnfP/Puua/OvfETzvi4FA6gi7EBRANWqGp0bXB6gKTtEzEYyR6cTBEKZbLFYv1GtucgGoBS0LyDxIOGCENJN/xcH/L5csXvHj2lKurKw67HcPuQPITVWWo6oIm27LP71eMgdAd6KoC1Szo9hOb7YZt33Nyu6Fdr1gsWpSP9IcD+yxCjs6xv7mmf+FZTweKpubsUpqh9cNL3vlOwijD8w+/4Pb6gEbEmIf9wO3NlkePLjg9WXF5eYb1id2mY7Pbs+8O9KMI1d//6BNWDxpOF0sWiwesbyaWbcn5gwuqqqH3E1dhom4LbF0ymoRXXuzc3ZgHfZppHITXn6Hh2VXGaC2Bu2l2/pHrSHBJLcVlpqWQ4vHfaNEreu9EM+UdMUT2VxvWRUO7WhONuOrEEKjLUvSE/cCkJymCtSaNE1OlKb71mOQCyipsoWR4qLI2KkbU9R53M1BcnNBcNgSTGFJimBxNWRK2e3blS04fPSBajbKKooCmbrI5iWMYBob+QD+N8BXaQ37ySFmknBKZzpLXT768982FrTbqjwl6fQiiqzSy38BM8TGUtqIo5L3zStCQeQg1MwqcDxnB1vfWXPkT4yQBzCjR4lljmIEXQaFlgm50QfAhU2VljV8uTmjqJU29yK5q8xotA8YUxU51mAZ8mIipJ7gRQyKFgMsNgtE6D+gyzn3kMt1lPTE3D/Mx09DUHa3K6NmFLdwV4OkuQV1qoLtTK1S19KXH3gnz0x2cfv/ySrCoF5ydeJ7u9wzeZ9aAUOCW7QnL5iQ3XLJvT9NI3+8ZD7eE6UCK4YhEpZRoi4qL5Zqrw07YEFYys2ZR+kwz10pJaObRGCY3P17CG4XqrI8NojAJpM6cz2E+efn1/tnX72s3GS+v9ux+7weU9Yq/879uePDmY3QhWoqiFP1Eio5FU2MV0mioSJwOuBRoyobCllzf3DJNnhQTZdkwjhNVVdK2DT64nMdhWC3XOBeoShGZR524Dht2fc+6WPDFq2csFmsuTy/4xre+w2Hq+OFnP6Rc1qSFoa5rEZ9qzdAP7HY7KXL08foSdCN4CYBKBmUafBC61jj27Lsdl+eXeD+xWJxgdEVK0HXSqHjvMUpTFyXDOBKC43br0Cdr3n73bR6cP+A3dMGLL57ivXg8D8PE5Aacc4xjz5TTt30M9G5iSJ7NMLAfe+p2SXF+SrleU21v0WEE55BSRrQcIQrUprVBBSOWsFNERYPJIuuoUi7cFQTNsJt4/3c/4NXLWx68ccZiUbO+XDK6wMZ29FuHzTCZ8D5zQBXq6DagtZYAnCihWH4KMpyNCXIomYpK/LKjkyZLJ5R1PHpvzfd+7U3e/sYFRVnkBHNE8GV+ggp1zzmB47Qg3X1M9xuPv/jDDxF8QWmXuHLM15g4hGljwIgtrDCjDTL9lnMsiuoJnRJFbDCpkIC67Ojiwyx2nxckjc6uGdM4oo00a7ttz7i1VN038LfPKM8/xrUH0UbMpExAqSiLKxnBULlQh2NTF7IGQ9ZJcdIoLdnQQDzQE/I+xSRuUVaJKNMYSRr3WQslTWJGSvJ7qI3OTfIchDRbBApPVuecGBQ4XLbLFRj4SI9CpnM6khuNdLfDZVHjHDglYXgzuqHyvEdJ4jkTUGBSBYgDFaqCKK5vPlgiBq0KgioxqkbrCmsbtG2E8qbmTJtZsF4g4kuD5HkU6Djlze3Pupr+tAf8h37vq3H80e/9jqTcF0VGlKU5tJmDnJxj7A54548UhnGaMi95wqfE6kxTNhqlLWL/KCFc5POubEG1aFhPK6bxQIgTKgXCIFRUFyZ8cJmCB0YpitLSNJJ2PAwOVzmUShx2Hdcvb2gXLe16Rb1aUtUVpJTD3DwxOg6HPdvrG56+ukEVJeHb73L+4JyyXXH6psaUBUVp8O9/wtWrnhAdfR959eqWx5sNJ6sFy+WS4oFi3S44O10zjAPd5Hn64obtoUOvFS+ub/n1f/I+KcB3v/tN/spf+h5vPDjla28+5o3mgsH3KOdkUqsTXfJ0aIK1uDwcwwA6Hg0hIPPllQSGWq2plQGXBLU36dh4aKMznUTu00IbwjiRpghFFtcrSGMkfPqMzfAZYdFQvnVBaAxTTNRVxelqjUbTH3YQA8kprn7wKe1qwWAj7emKJpWklBHQXBSqtsYcAm6zpVwCtUVFTdiOpAcrlo/OxUq379FNJdeYiiSrsLWliiVlU1EtGnGquk+5/Yo1HPNgJkRpMEzOVFC5GJ7d/yRkLR4d+9Q8rJkLbsQKN4ZZ/Ctor1KRECacdzIA5c6xKiWhjM9uUWVZirYn5Kyt49Rb9A0hJrybCE4scNFGBgDH1yDDtpQSISqUaVCqpiokO0y0fmLkkVLMWS4T4zQwuQ4fR4apF6qVFwdHYyvmoRaZ4iQdWbYRj3NXnKm9MR2TrY+aDXI/8BMNA0qa7fl9iNk6fZ7qx3mYBcf96Cefx0xJMhnlqYxY/H789Cmjd/m1yntdV0vWywvqpkUp0aSGGETwPWyZhg3RjULP5Q6xefvyEbvdgetuR1QcmQRw1xfMQ7f59RyboewWm6LEA+gsCJckcKFaxfx67kqt10f8XrvJcAH0lPit3/o9Hr31Fn91taRZNVS6FgFfShhVcNgPrFdLvItMrsM5cXspq5ZF3bDb7jn0B1bLJdpomqYBUi4apJMTB4KU4WTH+uSExckJL58/55MPPxbqSWV5+vw5RjecL1vee+vrfPzRB/Rf3LJ4fIqxEVNBWzeQwHmHyqFB841554uc3/xKbG+DCxz6nun5c0bnGSbPY2WpK8RSMfO/505Qa01hLR65Ybuh4+n1c1pT8vWf/xab3YZXH3/KNE6ZqiUc/Wka6WPiEAO3+y27w5akkETy6AmuZ/AD58sFJ+sTtn1HIB4vainyMhymFWVToHoIvdxXyHBBoLH8WBUTOhXEDl5+umXYO95895L16RKlFWVjub064A8OQkBhj115Uvcm0fn8xZTwLtue5RtYZl5JJl25IERpkp548FDzC7/yNl//mSeUtSF4CRqytqAsi+OY4L5z1BwGJdOcXNR+qdn46hyHnYQ+piBUs5S8TJ+0QhmDJ2UanDiK6WODkRurOGKiotIrSi0C5KQ0LkRSkKDFeVoOiI20trhxwMTA2Pdcv7pic7tlvXrCxfYXufoscPaNPRvziimOoOZJUso2g3dUAZ2v54QgSnOtHmNi8gmvNTFBGeX+lKJf3ocQAzEFyZUxVhAvLdMljT4iHzHNQvBcMGgrsHBKJJ2O9C2SOLppJVbQAEI1VFit8Ekd4eeUBPbWMdM48qsyecO6g4Dvoxt34taUr1cYCWmCZFDqIDQqSkCSwROGEA0hWXxOGzehxgTJ3rC6zY2GPg4y8hMXVJFCHL1+6gjoP7S4+WoVRa9z/Pt/8xsoU6CLbI9ohaO9XC0oy5LoJZQ0gVg4Go13E96J5ebyxTPOLi9YnZ5hijK72syOZykHj3ncdOCw3bDvekJMlGVF07YUdQ1aGvfu0AlVKiXAiA0m0jxMlYjOq+WSbfeKV58+oyiuaE5XNKsl1aJFlyXRGmgq/GpB6nq2L3f86Lffz9e45vzBOUVVs7w449HXHcPkuN6M7HYTwSX6bmK73TKM5xTtUoTUVWKpLYvlglUIuOjZPDugI9TGUhjNvvf8xm+/z7/9nff52luP+S//2q/w7Z/9GZQKLGrD1999A2MiKTqcSuxV4FWYiFbuX0/mjWcEkGzbbrUMEdw0ovce6xWp0bCsxB7bSsindjIcMj4y9SPjqz3lYoGpLanS2AdrKCvii1v05ImbHapoKUqh4bZNDSkRg2M4dNjCcPmNNxlNoLESFjulJJN0m8PcElAV2HfOUVYyfvARte14+cnHxDd2tN81mHWi3+5p10vaxxeowuJTOk5mjYXGVqRUvN5I9i/oEBqo6Am0UpmOc+ciJcWuOC8Kh16yuKK/cx7SeS0SZMDn+CnR2fSDz3QhWR9lyp1wziPNe143dSJGj48eW1aAlUwklX0UoxK3RBIxTEQ/omyJsg1a2exGmgXfKKp6ibUNVdlSVY24gOalLOa9PaZI8J7JTwzTHjf1TNOIVqIHMibm6ye/BjXTlIQaZLQSKt0skBYXkbtzeK+5TPeQoTsTEUEM7qMXwBE5T9wJr2cmlYA/SpoZJEFbvi7NRF01TD6QtBZNSlIZOTK07Sl1s5ZcudyUee/phj3jsCW5HuJsUpD/boI3Hz/i/Y8/ZsiaG2Fn6TtkNlOlSpuNl8jDz8QxV0WukzuEbK6P54C+416m7l7j6+w8r91ktE2FtZpDt+Wf/fqvc355xrd/7tvUVU2pLabQ2MJw0x0onaeql9JlGsUwTYTdlvWJZrVuiXh8cFS2whjpgucwP2NtbjoTqAkfEla3nK3OWDUtNikO2x2um+hv93z++UcUb7zDenXO9779PX77d36DHdfYBwtQmrKtOcQkPtD5rbl/Ic1TspgibpLy2BrJc0gp8fzlSw79QFKa5eKE03Vk0awkLdhIbH1dV0zOsN87CS0aPcF7RlPy9luP+eW//qts9ls++sGPKdBEDbfjgevdLWaxQi0W7CxslKdMkUqJj/XkPW5ylGXJ2ek5u37A3Qo/UV6ILB4xeiBAHTELA4ck2gol+QI2F3Ah26kpFCpA6B27MPFUed6rn3B2usIUGmXhcN3hdh6iJ0Z9LAh/MrBGFgDhaOokv10jU5KkfE6FNiQVWJzCd3/pEV/71gmLtUUZaSKVsdmBaoZnxbmMdI97H+8cpkRoddeEfJUajauXNzg3UpdVFlNmGoLJTisKojLC6zfFPRQDEdjFiUa3rJsL6lKmGS4LU5WumHsCcdaLWG2xVsSXPiX2+z0vnr9gs93xta/9DJenb/Pi48+oFu/xzpt7rtWPuU0vCNFjkj66YsRcnKdMezo60x6nOtl6LwYkREYMO4zOQXuK41Qzj9UozLwoqUzByNO0TB+br6lIFLFcPhM6Q98ahU6ZT6sEs5jREI14rUct2S5Jzb7udwmt86KuUspo36zVuE8xkNc9a2Tujgh4FA6lRhJCnyIVCD3HEpPQckLq0fGA0Q1etdmZKovEtc1C8byB3Vv8///5uHn+nKQNbhrphg4fHE3d8PjJQ5q6YhxHNps9zsnENCJUj7quspuRYX26pG0XJIykXZPDPguTtX4QwkT0jhQDVitKY2iaBev1Ke1ihdG3uGlimiaUMthgcN6jFWLnqBWhKCjbivZkhetGhtsDoZ/wo2CSpVmiqhplGvRJooiB0gVeffYK+CPKqsGWBSenS4q2YfHwjAdh5M2u47Dt2L3qsSbi+oGh66nLChcD/TRhkZyJWiVOuyX2acI4obCetgVxCrgh4RNcb3Z8/0cf4rVmsVigiPzhj55SWM0v/cJ3OVtWxO1LTvGcvvGAZ8OBPsFEIhqDI2UELlMrXaZ1NgVhECvywkXcfiRV4ho4vDhQmFpse1GcnZ9Q6ULoV04ygtKiwrzzAEUiGNFRKKXQowTF1YWlKSq8mfDdRKksVV0TKg1TIIyRQMQH5H4yGpciPkFprei0UsKsG4p3HzIkuNlssNowuomTpqYpKmJlGbwjIYgvzNboga+SechPHsYYYX+ke0ORjFyoPGCJQQL1CmNln4mR2f1zRtGNNiQtxbT3gRTCHTKlddbhzaYcTpAJL/eBsaIddH6iKi0+ekKAkAtkZWbEmIxum9z42zyAkmn5XIZbW7BcnKBVQWFLClNypA3nFyhCds/oJ0JOZvd+JEZPAgprc5jcvYZrPjn58zmYjhhQR1Qh7wF5XzieZ63RRh8HnDKEklLUKIXL9rsyQk1favS+dNxHQkDOiZZGUCVFW7eMzjOGbOObpFkpigWLxTll2d7VqCEwjiN9t2fsNwQ3HF/nTCevbcGh2zMEoeGmbOGd8oRwbrDKbEUr8zQZ5onhhnzfGCP200phC3u0tw0hZGkD3CFXr09Tf+0mY71e4mNgs3e8/wfv88FH/2f+D/+n/yP/5X/1N6iMwbkJU9SgE5v9LRcPHlDEFUN3YOgHGp3Ybq7Fb1gBSjGOA9ZayrKkKApubgbqosK5hDbiqVzXlhjAkFDG8ODRQy4uL3n1/AWbtGHY9/zRpz/me9/+Lu+89w2qquC3/+C3CHtHvViglKYsLFhDmEacczl4Jrv9mBxW4zzDNB1PXFk01JVlu73henPF6EdO1msuLx7x8PwRlycPSEnhgkNNQoUyNkHURxecMXk+v35Ju2z5hf/FX2W7O3C4uiF5z+QDt8NAQPHgYk1tlhz8gXTYQ/SUpmTK3FGtDYvlkuV6xbbfE1K4B/GZDCUHnA/ZzShmWLWQSXXuViUzYeYrSlhNdLC7PvDxB1/w5tefsFyvUIW4OHV2YDwk3BCYCCJWvHcDxdxlpxw4A1IgGq0Rd08NpRJKV5n4zs8/4Od/8U3OLkp0AS5EbGmxhSYgVDKbqVhazW5DedmZbSj5yaYjfaU2iKefv8QYxcWFoS7upvdGG5S1dwiTLtBq5vGLBoLosElxUlywqE+wtiK4wDiJoK4sZLIXQspJvkkWWW3E0tN7xnHk5vqGq6trHjx4hDWaqloT+oaH+ue4bL/BZ+Nv8WL6MS72Mw39WHwnLe4fRkNh74mpk+h7Zhs82arER90GuV60TvLzUZqCkB21lMpaDSUQrNClfPbXz/7f3olblMrkIqPFTUwJjWxuLGNIUrxn/ixHCgUEJc4msvbOokGh7ekjp/tuk5k3aAnEvC8Ql+9FJeGIGkdC3oOEJSVDSlbQqFSgkiUFS4wHPAWTE2G41lWmVFn0/H7rfAH8SZYFP2Wi+jpf+clvfZUa7592KG0pqhJjwccBhkRlEo3VlFrhU8KS8GFivztwfXtLTFFSvhcL6rpi2G3RWtH1I1ebDZOTYsgak6egcs1opVitljx6+JDLyzOMAVsUrE5OWJ9s2G27vO5IM+iGCec9o095TZLJvS5LqtMVMUTcriddbUAlPBG7TNi6QdUl5dmaNZrdU8XV0yt+8G//Z0iJt7/9LudnS6rlkos3H4mVpYan7z8FH9Ea9vs9VVXhpsDNYYfK5ihFVdFUDY2piH2kagouTpaopJlix34SzvycC2CMxU0jNzcbXl7d8E/+1e9ye3vDotT82q98j1/4+UhyHe9+7S2MCexTpC8to5YspuQhKU1AqMrlqqKyhjQ4pqueMYw0raIuDLEbaUzJePCUFyXFWYnRmqEb0ZNDx8TOTRRnLRQZhY2RsixZpUTaDBQbz0JVbNLIvusoUos1FtWNpJsDZV0QTyzOhOMQQZyVMqXEg64M6nyJc55nfo8ZS4wxjDqyG3vKohXqKdzLQpBU9DA7Cn0FD+893ss0urCzba2ss3MWmPfhSGOToaMgASoJNUiSuxNuEpch78PRuShmQ5y7ApJMYZZMLAnvK4HZ9jjgxhHvZUavjUWlAlJEG/mdtqyIsfwJ6hBS9HpPVTUUZYs2lqZqsbY8NkRHTk5K+OAZ/UiIk2gyghekW925GgJHVklKgherGUVXgujkaulLs51ZGE9+bikGfPLS6KSYNYvynIIPd/Sj+RN117TMx32nw/mxKa9DRFn3TpYn9P1EiCL6Dkka+0V9wrI9pSzK3OgHnPcMw55puMFPO1KUYl/n918pxaqu+OT5M8YgmjX5e/PgMut0gMJkUf7x6hCtZMgU5dlC3liDtQY12/BGGTbntuv+q32t6/e1mwxjoBsmhsExjRFbwK//41/nl37xF7A2UyA6T90U9MOAm2TabsuSOtRCW/AjXT9hi4blao0PXhAE50gp0jQNdy5GcycrASHb3S0kTdu0WCsaEOcm1FJzeHXg1faK07rm9OyMb7/3s3z4xYe0wQKGzTTRVC1OazzkqZVcDGLFdgePHSGiBGBo6gW7/Zb9fs849Rz6HdPUoVLg/PSSGIUTaExB6CesUaxOTwkhMvQ9t92OzgyYZc13/vIv8a9//Z/z4vaKV9tbDsPIeJhYnp3Sni2Zlj1d15OSwqIpdGScHKP3tMsVJ6sTbncbhmk8TjWOkw0lBmkiXpIboNQyGXDBEUPIfPu7ZGWVIiZZVLQcbkeeffycJ+8+5PzBKVbBrd2xLyemW0fwkBwZnkt3LhMZclN5+i0XqiakgJsmtE4o43jwsOY7P/+Iy0c1RWEgKgpjKCuxI7y92bPddtjCUhSWsigkyt5IYT3rQBSZhmLzRCHxx270v8gjBCVOHOnO9jEmSX9XxhCNiF2VstyFzCVSdOjgWNklZ+0jqnKB8MIHvA9UTXvUJ3k/sd93VFVFnRf/+ZBzlNhsrnnx/AvOTs+4ePyI9ekJl5dfY7H8Nhfhbf7o1T/n8+7f06WtQMwZAlUz/B4jIYK2VsRn86KJOMxMKWJUQoVE0BETRWyYjDQqqJm0JAFOVmusFrqiNhqTTF7mpMPxMWb4VWHzPEuuJTKNSX5bTLNgWh8bjaTyzyqTmxzZPKZwb6GPx78molalMnImz1fnZlA28CRTwKzvuPOziigVJCg9QYqis0iqIFEhVrXSgKhYoCnRqkEhFsXGlNl+swA1L73pSz1D+imf3X0l/bQvHx/7pW+9VrPyF3fMvN+qWmCtZuo76qq803tZS1VVgGLsR2IM7A/iNNX3g1Bt6xqloBt6rm9uCSFkHZk0BbO5gNaKvusyopWo6xI3jhhlWbRLLs7PxEghI76Hw4HbzY7gR9zo8PoWpRW2rVFlgTlpJWisH1HXW2JKlD4S1wFbVaiqpDxdsUiJ4npLd7Xh8z/8MVVVUuo3OT1bsVicoR4a/M86rNLsnt7iuondbkfTNBhbMHrHYbOjKEoW7YK+67HKMHWO0pbUTUM7OdqDIgSojCCAEprGMalXK83mdsuLlzeUKvL/fP6P+af/4l/x5Mlj3vvaewQ38M7bj/nlv/TznFeKUXliVdCnyBQDQWUXO5VQhWb5YEE9QbfbUjy8wC89sSyo2yVJ5T1BJ0yhMcGQdj3l6CiKQFyXRC13k7EGQkHb1AypwPSeF5sedVLirRK2Q13SPCilRtAKVRj8cc3XjMPEETxNExpFJDCpiB63tFUNhxvOjKItNGVVSaGVZEptC0OMP2HR+RUDGX0MUohqMQqJOc9KHWtxKf+M0RSFEHRmfcb8oIQE78UYjzbDorc8Dv4hBytXlTQHzk1CSdKWGGRoZI04wikldGCTh1yYimE84MY9Stkjck8eTKn71NvgAQu6pCpqClNK7TC/HjiiHz54nBsZxz7vA+nYHKUcdgvkxG8p5BMyqTda5Sylu3ry/rJ4fxJ/v5bKM/DskDX3RkK1MnY+Z/L77i6b9Md/zxzeGkL2+ZC9syxLrrcjk/dHPVhhaxaLM+pqgdVFZitIDTUMO7y7JfoBjuF+4jy6qiu+/tbbfHpzfXwqcu7yniAiHGymy81GLPMzjnN2nAGdUcxZfB+ThD7OMRUc///uL73O8fpNRnBoP2CUF3ta5/jko0/5l//in/N3/pd/E1UYpjhRmRqlE33fQdQsly1WOcbxIDZ13tEuT6jLAhc0u8NeFumyoCxLpmlgmibaNiMaWgmX0o3CUyOyWi6ZxpFpHDAYKluxvdnCOHHSLrg4f8x2s+X62Sv0ytJvrmlKQ1uKe8Fh6LOXtAhKiRFrjMBXuYD23jOOIk4ripLJDUyj+LCn8Dn73Z633niXVbOmKCvR7GYu4G63yzezNFoqQlvVvPez3+DF1RV/+P/4kBc3t4whEJPl9mZDs16yXp0wXt/gU6IwChMVgxvYdXvW6zPW7YpF2bLTO1zmN87ipJgt7rQx1G2DCx4dpYCN0WdYTqbAUqvkULQEKmpMUHQ3PcP6wOm7Tzg/WXC9uuHV9QaqHV5F+o0If03mtccooiEykmGMochTZh+F4mNUYLlIfPeXLnnrvTV1bdFJXELKUrij+73jkw9esdkeqGpLVRdUdUFZ5oajLCgKKw2IteJ6ZS1aiXPWV8ldqm7WtMsVxgZC6AheXI1sUZKMJurMW83PXabujhh6ahInxRlNuUahGfqRcXIUVUO7WFGUtVCnhoHbq2tW6zWrRXts8mak4OT0lPOLC5TWNKs1D998i9P1KeuzNVVRso6XLIvHXN58iw82/5Sb8AHKCHc0hECcuZZKKENamzwhUUfP9pBFhQol+RkxYUIiWkUwkAzYGXzKm2LkyPAVhzZlj9OUGdJVJHFwQyhRX+K7zgFP+WckO0V+p1UQVMrPXUBwC3klzU4oMebrXjjG5GRZMo0Klb3Vw4yIJKJO9xC1jEFoef0hBUTC7iB5QRSxpChC76gsKg6QSlSyGFMJfUBVCP3qpzQCiZ/69fzdn/q1P/bVP/F3fHXajL7rqRDzj7IsKa3ObksRpTzOC/0j+CDT+RAYhoG+74VeG8W1UBt19L+vygplLaUtqBc1VVXem9ZGhl3HFS8lJNYHpn6kLWvUxTk656CEENhUJT43qVM/4nY9XYyY8yW6rVB1SXG6JGpNHAb89Ra8IHNhvcTWNba0VOdr2rpG7XYMVxs++8MfURSGuqpYrloWqzUP3nyCTnBtK57+6Cm3NxuWiwUPHz1mfbLi+sUVn33xjNVigRsmxtEzBUVZRapWkpmrQjNNispKie3n4kWpo5uMJomzYlFiS0s/9Pzwhx/y27//Y4YAF6cr3vonv8U333vA3/tv/waPLwsO0wiLmhExO0mFxpY1sYGy0djVGZNKmKZg1BGvwZgaT8T4gC00GkvQmipZwmZA1xVla/FR8p1SYTGrhvU751x/dkXTV4RKqFshRKJKjJVBVyUgJhL3XeK8D9lmU4LWTEbrxTY92/UOPW0zoHpDBMpCdJUGI+tW5G56Lr/2K3XM2RfWWu4C1dJxEj+jMFIozgOZbK2R5PXCPFUXByjI62kS1EvqiLtco5QSVVXngexsBpIF5l4qeRn+iVWuKUpiCHTjgFYuuybOtKKUncvMMcTOFi2agsII6jVvFceWKCXG4OjGjmHqGKc9IfT0/YEqvx5pXjg+99l+dRZaS51999HHQEp3lO/Z9XE+tDJCD7qnBz3uQfl5zWDLLPom14v3k77ngfVMyZpfmVKGFCIn7YIfffbZMctDK0PdLFkuTiTYMNOUvBPBd9dvGcfu6CgFM0ofKfL5dJkuF1Fw/7zn/CFblUIFu7efxjBraYVpMbuSGQ0qSYPn/ZyFd//4MiL0Zx2v3WQ8PFlxtqzlQr7Zs+sCm9uOf/j3/xFKFfyXf/tvYGuxuCuqCj9EQvDsdo71siaECe8dq2VNaQLJ96QgyYOjE4jKGEtZNjQxMk0DSmmsKbCF4RAPpBQYx479QSbbDx48xBjDh/uPKVcVYYjcbLe4yXF+ek53uGXcT7zz6A2KdUOqSjb7A0YrpuBxWYtBlBvgfH3KcrXkcDiw3W2ZpomqLFivV9zeOnGB8p79/sA0emKARb0kxMSqPZHpJ3IT+uCO0KI20K5qmqLl537pe7y63vD3//t/QKUrkjbi2X294exyzWK1Ytrv0Eamq5Mf2O5ueXjxkEVT07YNVku4kHDZJRKeJH7a1ha0y4bODYQxStBxmi3YclOATO20np0qEipq0hi4fX7D4fqGb33n23znm98imcAXL77gRx9+zA/ef8aLLwbSpNHGEqMjIoL9SifajEA45yEFtPEs1opvffeMb/7sQ9brBkWFjgpbGZRR7DcTH33wkvd/9xPGyUtjUVnqRhqNqpHPy9x0VFVBUd6hHdJ8FK9/xf8nPprlKfViSfIbsQT0AVsYdGEJSlj+cy6GTG8CMXSouKU1ZyzLNUZbpmGi63qUMlSLxdFtYhxGSUTe7aQZvjg/TmwMQj185513OX/wgLJqODk7Z7lYUlUVRWmJ3jMOEyaseFz/MmEE1U8ceIbD41IipuzdHfMkPwVmrYzW0hylo/gM7hZyJKE7JlKAaLUsWkqwAB8iKt4516hkRBR3j/4mKeUCw6skjbMiZ8FoCR4MIaMNMRIyzjCPZ6Q5ks0yzWOoPM0izVkgkYg+cmRBpk5G3YUTQUYz84YzJ58aLcLLoFqZK2YAAQAASURBVMBH0TmJLsgjLiEiDhf7Ww1pJEWhNKooNKqkalD5mv0pHcLrYRB/+tfSn/D1r8px2G8JwVGVlroupKgYR5w/5GZXMh36Qye0WqNYNBX9MDJOE1OUHHkfPGVRcrJcc3pyQts0NFVN1VSUVSEuaEnoDuTrcjqMpBjRUdFUNXVVC8KUkri4jKUgqVboeikk/LZjCA57vqJYLbDLBlVY1KEg7gfc5oCfPGocMasV9bKlqgqqqqReVPibDddPXwq1qix44703aNua5ckZGkVlS/wU2P/BjqnreHS+5o3HD0g+8ju//T5fPN2glGYYJ2KEsqpompqqqGnKimkMKC1cejeOhBAorMKaRF0YTtqG27amMtJ4DA66KdJNER8TL15teHV1y9WLT7i6/ojFqubNt97kF7/3C1ysTnhQNKSkmVxHT2SwmmhLuRe9oijFXUgbg/OJ0U8YB9oHVAll1VCsKlwBKjgKQJeVDMNCpDxXeBOJl4Xs4YdOKKCz1u+I2ENK/lj4zbSZI9MGKTSdi3Rpkp9XMo1fRWGsK9Xmgh386Ll9ekXfDXJhzrfKL/7nviP+5ENoUXcGIXBHw5FJc6AoFFonSJkqlaf+sxUpgHcR71Ju0mI22JGCWxgdQh3ve8/9hPeZGn3fMEcK9IRzvQy3nDAldB7iWGOZS9OUkJBdIw1NWbVUzRKjCsqiEiqxPBKYtXUSqjlOHc73pDShchyCaH3NkYFi8msMKg+90hyabI86DHFQivfQmz++JmoApTFWhswh3tOE5sebPICen+d9y9r7j50bjNklcRbdl0WBTgY3BEKU4VZRViwX59TVKjcscm7HURqMobsmTT0qBvQ8QIqJtqj57te+w6dXz3A+MLeXs5Ojz3ukTglrTG4qQ94H09Gmt7BWbG11HkiobNDic4DfvXM09xZ/HvLIazcZWineePCIRbOiMl/w4mrDpnPcXN3yj/7Hf4qpKv72/+pvorQEeaUcwjI4B53QkGzVsD9swVjS5NC6oK4XWJsY/XjszOdO09oC56I4VAVxN/Bhou/3FEWDLUuKquTi8SV0Dj143O3ActEw7TRvXD7h+e1z+u1EsaxBT1gihZEb1wWxxJydbpx3WG1Ytq3QsbxnmgJ1XWD0HEgnTUTRlhiteHX1Aq0Vbz56k5SgqiqapsUqSyJS1zXr5YrtZoMrHUVl+Ct/9Ve4ur7hB3/wI7bbjmHs2V9tWLQV9XKJGzp0SrSmZBgnuqFnmAZOViVN21AUBVMQypeOgFbYKGKsSKAsC6qyYBzdnVhJyRw25AUjy7+ZwUm5yUpCV/DJD69Ytp/x+PEl73ztZ3hweclyrakbzw+qK1585nB9IilHQrjEl+uGn/3a29T1guevNvzgk48JNvHmO2u+8a1LTs5EDJuiwZQGVVgOB8eHf3TF+7/7GS8+3hBSQBuFLQ1FZbGlpSgNZV3cIRxz81HNiIelKL86TYbWkm6aotDynPeUdSNONkqK23nhN0qh0oT31+i4w5oLNCXeRbpuwIfAcrGQ68kWRy3G4XAgxIBzYjuorEVpoUbUtJRVzQkXlFVDXcv1opTCuZH+sGe33eP8iLGWE/s1LvgVrHqfPZ/h1E6c3gAVoiADR77uzIXWR87r/UmPuBcnohK41kdxs6isLGDHxTgEyAV+yhzRmC1IY8ocdyXX6rHAV0r0JyniuVsg4ywGv/cezAI1a+4JyOFus4yzY1n+PcxOV1l0njeqeNw8ZAIom7ZMgSRNV9LLQ0SaDZLQqZIiJSPNRhrJ6hVIFh9KuN9kHI+fbAt+chX/s/5972vpJ7/61Wsy/DQQjCJMA04luq6j63qiVtiqQhtDN4103YHkHMumZrVoGCbPoR/ElltD1/eQFOvlmpOTE+qqoq0a6qaiKAu0TvjJE7VkE8WcHJ/0TI/Lk78EoxuZnKcfJ0m89j4XMALqqW7CViNlXYl9+7LGNhWh6hlvtvh9T/SO4ANKBYxaEsqa1FTYsETtd1x98ZIvPvyMZtFgHl1S1yX16oSUEg8PHfvNDXaKrJqS8/MLhq9N/N7v/pjr232+zkRvN4yeGBPWyMDFaIXK17NzjuA9hZGvF0azrEuWVSXuiSExTZHReUHsMgVS6ZiNCoRm9uEnH/LBFx9x8fgRP/PeN/nG4zd578FDlE9sR8/GeQ6lwsVICom6aUFFycGoGrEINomkIre7W9bVWtajpLBYyXzCYMuaKUERoPaGAosyGkIi+bupsNJfRq2PFpz3agY5svMhcp6IHdaUGFNgjLmj2xjxiysXDcoWd/z+/1w3wWseoisyR5ZFjOFY/M9rr9XSUEJmJ8hyhtUm/8xsFpIwRjRvkn4itLMYEvZeNSi03FmnIgOaGUkRVEXO5TDI70jJQ8z6DMRSP/h4dHuSey+gjaGoW4ytKKylLKqshSIzZzPqHQMxOpzvCWEg+IEUAkZpfI4dmAv5eW+ZjTWOGsgk7kwpIkMrNdOT70x/jq+XLzcT8rmc/fv1013ehM7DL318rLpvDRvT8XfmNxGAJjtL2bombTQoaKo1bXsmbIf8WO893Xig628IgyClkqMlCIoGHrRLTlZL3v+8z0CcnMQYU67zROxe3nNEjeGeWUCMR0v4+XqaG7cQfA5dTF9CMu60wPfpU3/68dpNxm/94Y9549EDlm1LU9U8vtScjJ7PXm35/ONP+e//b38fW5b86n/xl6iXFUoZdGnxo6N34jJVWENAcXCTwFrOc9rUJCUduc3OUlorFosFXdcxTY6isPgQKLQhxkDX77Ah0jRLIFFUlmEcqE9q2qaFXgRSRknq+KvdNXovvHOrLWOKmMJSk+iHUfpnaxjcxNOXzyElirKkqRu6/Y5wGFi2K8ahw7uJKYxYBavVgr7b8+zpJxAm2ralbRc0bUHTNgz9IB3pNGFswTSNqJRoFoa//d/8dXRQ/P7vvI93E+Nhot/3nFysmKqSOE2UZYNSiv0w0PUd68VKJnWLht4P96bJAv1GFYgEkgnYUjMiolaS6CSEXiQL1IwCxBhkE1XCxTOq5MWza4bfumHwB5wPXFy+wcPFO9xeHBjei7jxJc8+HglO2hRrEnVlOD9peXhxTqEjn11Z2rbkrfcWnD+sMYVMeIuqRhUwTXD18sCP3v+MZ59s8HtxkAkq4rRn0A40aCtNx/xfUVnKylJWxZeoVV+Vw/uAd44UPMMwHK2T0QmXAlFLYq1oJyIpbInhGpMiyhncmPBRaFJlWbNcycYsDlASILU/SBhPjIFhHPNiKL/TFpkiUVbYss6TG0HgNje3XF+/4LDbA7A6WWPtgmX6NmY45XTxlCv1PlfTFzjlIBfz9xeWeUM3ChR3wvAQ4nFRDvmxXqUcHpXpf9nJJJEbjYgUeErNUT/ZATmJE1yKgjkkIewarSmwGA1BG3wIuJxwe78xuJ+RrZXoQWYaX8pNhiCZc8MRCdyhfQrh8+t5KpUh5iP8PM9LMxolG6NMwhIz6hNJSaZAMuGSJiMxEdOI+jOajD/z6/lc/+ntw1evuZgP0QtomdZ1HX3XM0wj1fqU5fKEqqkpqgqLIgw9dSGTuGHy1E0jLjkK2SOcF2Frpin44ImhIIWYNX1BrDaR60FZe5wCxxhx3uODZ7ffs93tuL6+4bDvxL2tMBTzNR4dtdK0GJIpmEqDLivUcsnY1HQvb5i6A3p/QFuYYiK1EdpG0Mxli9ofuH1xxctPV1S2wD66wJYN9RrO3hp5b5pwzzcURrFetLzx6JLL8xNevNhlEwkpAvphxDsZKJW2pCwsxugjTdf5ibayFFacCpumpK4su33PNCW6yUtKeYLZOMMaS9vWVFWDTppWW9arFdHBv/793+TfffAHrBdr/vI3f56/+Vd+jbObLS831+xVRC0sznnGcZL7P1MQtS0oLxeYVQUahslh0NjgiFtPU1eo5YqxrNjf9hy6PUUfuGhXbOjZuYO4swGkiFYFMxaZ1Nz4c5wap0yXUlqLAUBSkv+0O1CWQp8rigKjNJoClxKqLSmb8k+4Uv/ij3k9+5IG815BrLUgSUqHnFAtgxGdx4h+CvjZDAAvIw+lBNlTgnpYK3TklGR6nXKcwOw2NKPHMYomYL5/5mL1Pu2I3KAoZY7FdpHvz5QU2lYoZWnqlrIo7xLkk9RokmQecG5kGDtSdLn2GvP35Pti56skdD5FjBImDUqJm1MUw5B4hNnla8bcWcDL+csaBO6aj5Tmwlv2u7v09OxceJxsZYE9sy4kDzFyEN9d8yOf12XDvht4fnWV0aKCZnlOU59kOUDOxXAD/bBjHDYEl/UoaUbyEudn53z9zXf55NkX+GzTjppHx8eOUnS3eqaXzciLuILGEAS5yMiUtfrYgAhSFZgzyL7cfN1dj69zvH4Y33Zg33/BsqlZLhrKwmAry8X5ktvNge3VNf+fX//nfP3r73D5xiX1uhVYq7B4L8JjY6BqSqZpZBwnFosFi3VNdxhQgwiNgByOF7G2pO9HtJbF1LkpX+SJMB3yO+0pjEItaqwpGENHs6ooigVnlxcs1yfUn3zK5y8/pggN9apg0pFgPNZWNNaIg0hu4+cJ6dj1+HiAGKgKgykbGrPg5nqUFHIFfd+xXq+4enXF9faaqCOjG/Eh8OjhE4wuGPNUrLCW0liSj9jKcnq+5Nd+7Xt0u1v+8PsfcugHbl9uOTs94fTsFLfd5KA/y8GP3O42PLi45HS94vx0TTfsOQyTdM9ZVDQH2fjkUbUmWknLTDl8BoQJXpcFq0WDKQoRlSGFltEWowumzvL08x1RfUhMBd/9Ock+qYsli+WSenVDKg/4waCwoAIvbzt+8/f+iEfnX2ALuHxUsHy05uKBpWwsSgu9wFQC2X7x2Ybf/+2P+OTHV4RDhQkWMcqNoORjUpGoImMXGZUnqYTJQU+m0JjSiN969dqX8X/yIyYpWsI4MgwDyiiS9Xg14XQFRig3JE+MB0hfoNOGmieU8ZRp8KTo0bZgsVjRLpbY7CgVQmAYRvquw3lHTIFDd5DAvCSWhi4XXFbGQlJwOEmU32w2PH/6jN3uGmtLUIr16SmVXTB1pxhfcN4WUJbs1ReMvseHkH3FFNqAsXfFfJgdKbSI+3yYhdOy0WsUyiRsplAZA4UtsFo2v5Dk2kw6NwdaHzN3Um5WSDHzbEOe3Bo0WlxWFMSQZutzIvNUjbxYRuagozmpnvxRqbmpkecbEpAUOqm86am7zRiYNxN/bGLUnT9U9pAnCVVAZ6Q0hSBmh0mcQmRyaCSZOrk/5Sp6nebgdRuIr2ajUZRS6A9dx+QcfdeDMSxXJ1w8epPFcsF4uGVjFG6/pdSCNlQusIhR8mK0YrffS86FCwx9x363QwEnyzVt22KtZJJoFNYYQbcUmWoVGMeJfd/nBmPP7WbDYb8nhURVFrRtw6IS3rjzjrquWJ+eQFWxJTFWFeVyQbq8YLg4ZXz+kth1uG5iP93S7Q8M6xVV3aDahtJY3OS5+uQZpSqoqgWrixPKeoW6iDTa4NcbKRGV5vz0jPfefYuPPnzBYRxFP5QiwzgwTU7MH+qa1o2UTUVRaiYviAxGU1UFrrbUtQxn0l7ReUefrYHnQylNaaGtLdYUQvOk4HL9iGZVMjz3fHr1nM+vn/PDzz/kX/7Rv+d///f+d7z93lvsr/cctgeSjfjSMBjY9j3JigZimEaaqqKuKsZpQmkrxiDasb/aUgwtqzcuOX/zEc1qyXJ7y/Vug0shU3rEctZ5YR64w4jyimpZkoygO1pbtBVK0ZQHB8mLwDkFoZn0/SDPo6goMmIzSzHmKfRX8VB61u6lo/5CKXX8XApFIJe7cyEstaAE4gYvHH8IHIPzQpQsB6VRRiPAr+RluClQloYYIHN0jkNgMV4weOfRmmPjMSNIM9Id7yGHcyFfN0uKckVdLlk0KwotDd9Ra5CHQM5PDFNPiBPODfTdHpJDGY5p5onczKYZKZGw2jnhe3Z2vE+NmhuM+zQwnTUhIqgnN6xZsxITZIt2a81x2j8jJsdGYn6vcqE/ayIk50lQOLynKSoKW1HWLWqYaJoToUrVi+NzCyHQ9z1Dd0MYNkQ/5b1FnptCsWhauuj5bHNFyM1HRGVTBNFbqBQpcmr33CDFTKPz3ouW1qh8TQgdmJhzM3x+T9OXm1tSbuT/HMdrV2cxKQYXCaEHpVm0FZaATo6mNKgIrz79nH/2P/xP/K2/+9/wRvsWtS2YvBQ41mjc5CgKTVmWpBSlUx06vI9ZbO3yzZPyC5THxuiPm73WsmGHODA5ETitmhOB6rQmmAAFVNaig+KNd96mKSv22xt211usWrBYFbjk6fyYE40V4zgeX6tSd1SLqCI+eq5urymsBVNgdMHNds/zVy8pCoNWULNAd2I9drvZMw6ey4sHMhG1GhUUbdNQLRaoBGPX8Y2f/Ron56cU/+B/4Ld/6/cZdz27qwMnFzVlOVEkRxthmDz7botzI2eLM05Xa2421wyuz85AsriYpIlESdYuwVYG0iRd/vFmViKkNmJTVqq7ibApDElFjClxvubq6sDHn35CWVnefPNd0CWFXWJNi9GHzAFNmAREy82t59C/4vyx5fythtUZVE0WbBcGU8iUYnsz8NH3n/P8oy3+YNCpQOk7az7yDSqp0zE7Z+WPIeKJeBVAe7RVKPPHr9e/uEMdNwPvPaUtQAe8ckR1Bw0rRmJ6BekGS0nNGQYRz2ldUNUtddNSlOVx44jei+d/ijjvxHmiG1AUFEbEZ+M0CZfcWkmRHwaGYZSFTs3Ft1AZp2EgjBOFsVRFxaHbEyhpT95EGY9OzxlSx5RiLuRlyi/7maBkikBhs8ZEywAFJRSiSJIMDSP3cPAe8Ggr4XsiIs9Cxphy8JE6wuYpkdeCRFBQaHGssipmGoDkcofIceJCpnilPGlKiHbCKPGEnzmtWmmskUYmBoWOd5a38zUoHN38f2q2fs7baUYr5FTcEbZmqpbWYsEaowRlErjLd4k5nulPXav/YzYRX71Go1nW4v8/TqRpwBhDWTc0dUtTt7Ttisok1HDgkALJSUNaJk2poKoKaRwTFEpz6A5sdgf6gzTgbhxZDCuqspRJr7WURXavyg3oMDl2hwO32y2bzYau75jGkaKwtMuaxaJltWipa3EFc25CK8WiabBFiYmR26gxylKvV5yvVsSTNe7qmt3NLWm7xfcj/eRwJ0uquqWsS3Ce/jBw88UrVqtTbFHSrFtU2VKdJhpToLcjU/SURcu7777Dg8uPGD5/JnuTNRAi0+TEraYoqZuKZtmgrCWkhPMSpFYUhirTTuvaYkuNHtSxCNRKS9OvoSk1i0bQz66fGPNatF6suWhPeLm9IqUJHyeu9q/49f/5X/Pg5IxHpw94uDrnjcUDrI/shoFFmuhCoLeJUSf6oROUwohrmLGG5eNz9MNESDC5iWEccTpi25rSj9RuxMdEl/US1gplWfmIuzqgx5LyrIXSiiOOFvplofXRmEKKQplwj8PAONYZfTd5wCHn86tkHvKTR0p3S0UI4Ygez4fOVLmUqaExyQhEsg4sxNlxKqC0UKWO1vYxydAUWbu8j9JYoLC2xBrL5KY8fB3zQEUoceRAPB9iLshn/cjc7Mj656ZAVckesVicUlWLrMWwzJa5d69VkJXJjYyuJ6mICwPGKoJLmdYl14HRsytYOp6omSamE186R/cPrTUh26fP67r+YyhRPNKdhP4ojnhyntTxb81ZFIAgQ6QvWfpz79sKJCNjnHBBGuOmkYZLNGFklCEyjgfctCG4Ayl4CTeG7LgamLqRV3rDFAXRk6Zq/r7QoozKVs1aZxepTIfy4ei+JQaKs30tgvSHQBRGMyD5GXNTB1/eTV5nZ/lzjYAT0i0Nk0MbQ4vGoGgKI0EfJH70+39I21b83bO/x8XjB6ToidbighObTC8TpaIQZOLq+gXTmChMTVnWmecnBb/SiqIo0LogJo/WSm6CFIUfnjvX4IOEjCjQpWGME4Vt8Cli25KLNx7xzubrfPTBjxh3I+tmgSsTY5qISaajg7/TLswQ1ywOC3E6FnCGitOTE4xJPHvxOT4MaAOHac9wM1KYEqsswzhx6Dsuzi+o2ppgCtz1dLTPNCRCZbl8fMJ/+3f/K65eveLDD55xe7OhaBKLQlFpxUopupiY4sDoegwXnC5PWS9WHLo9vYs5YEcasxATWkvTtliWpHUiTIHSlGhMFrgvWDQ1PgQm74gp5QvSorRm0ZakfmSYDmwPB15uX6JLy+XDJ6xXDzg77WnqPePhkC9qh4oRhcbYgFkZyhXUTUVVtZS2oLCyEHZd4JOPrvn4j24YNooiFGiVwMQsWsrATNLkFwa5yE5z00EStCMEko9Hx6GvwlGUhVj0erHf1YUC4/DKErXKNvETKW6J8RmakcY8oOUCq0vE/q+iaVeUVSu2hUlAOz9NuGmkaWqGYWQcR8ppQqsBajFlcDHi+ilzrDWHvmfoR5l4VhWnp2co1JEGFYKghG2zZHJ7JiPCyDZ9g9Y+YK8/Zuev6b0T8ZxKWCNQekiRyTm8jzklVt9z2kh54VM4n/UNQcKVUkQ899UMj2fBWg6DUibDvkrJApru3DS0zBAIJm8MZJgasmuXwmdKSSDD3yC0CD0nmt7XYChMDguJQdw54t2ekTeSlK8/jn9zjm1R8wwuzum7d8F7SsXsWy9NkriyyCZ9bIq+dHz1moH/VMf67ISmbZmGgY01jIPD6AKrEgRHCkLX01ajtSHqTEFA9DDWiDPYsl0wZ/PMM8TtPrDf7+k6aV5sWVBXFU3dUJfihhODZ991bLY7NrudhE0By+WSpmlYLxYs25bloqGqhEozjnLPyd9T1FFR+YCfHKZtWK3WlG1NXLQsmpZCWxa7HRvnGA49AYWv60xrcujtlqtPn2KtIcYLimVJNCVl26JjYlKRyhY8evSAx08uefr8pRQH5o7uFbynLCQ5u25qfILReybnhDtfFpRlQdNUXFyeUbYVi5uOL57f0HUTKc2UVzg/bXnw4Iymrdlse/bbgf1h4KG6pKlWLMya6HYY41EhMXQD/jTxbP+CDz7/kEWsUfvIw+VDfu7nfokLneinPTs30AGD1gSVcOMBrzQGqFRJqQuatiTlomjMFvPHzCSt7+3HEU5LzGmLHgcKAsGU+JCYvCdpfVwHkrqjE83v3zSOHA4HiqJg0ba0ZZVZDF8qC/8z3QWvd6ikjhP7OUvivsDYGDWTVPNwbkZmhNLp3USKibqs5fylOYRQhkcz6hvz1NrMyIgKDNOA0YaiMJLrkN8LH70Mu1LIk3pFQhqJmFfFmGQqPguRldIU5RqtKkpTyKOS8P/n9zmRMl1oZHIjEMRF1BpS1NkN6a45ngNYNeqYdXRsFuDYbMoX7pCNoztiptfNe8x9J6k5h2J2sbozNZtps/L5XY+T35N5T8j/ljgnOXeFMWx2B0bnKEoZppRVnVEMyTyZpomh30qD4SeIYQYVAM35yZqqrLjt9vcnXpLPljUzknZ+L3xvHp6ldNeA5OZUIU6QWqU7emmOklBGaIfz6/lpH/+s47WbjLnbKazJqYgBhXiVyx8LcmGriT/8vd/j4eNLfvWv/zXsUjQX1lpUlNA7N01Cu0Djphx+oiMJxzg5pklClWbnI+9d7sCFx9sPAZUkrCuFyHa7papa4e3XFSWi3ldGcQgdy3bFN7/zc7RVzYcf/BFdN7Eua2KZOPiBkCKmaUBJboYPYtultZaky2gkeCYlUgrc3t5graKwBcpHUnJEN4ER+aotDabSjGHg1e0r7M5wdnrGW0/eYBom+r4nADpoQrfjrXee8Pf+3t/l7/93/2+e3b5iu9nQnpVUBShbsE+eIU1Mw54UPCftivPVGbeHl8RpIjh1DFSRdTVSlxqDxu8CLiYWVUFbtbzx6DFff/cdFoslV7c3/PijD7m6vpbwOzTjMKBUoi4N02joDp7O9Vztn1GWlrPTR7z16DEvH1xz2PVMk0cDxoI1kdWlYXVZYmvQJejCYIsSpS3dNvDpB7d8/999weZFpIgNCo+O8tyZi0oUMecszLCnUGYMJJsn1HLXfNUSv9fLJaiApcKtl6RywJmBpBuZouIgPsP7j1DcUKtLTuybnJWPqPWSpEvKqqWsGrGzUwZSwAfP4XA4hnWdnZ2KADYEpmEUjnFdEkNiv9lRlANlXeFDoB/EAWR1dspqfcJhf6Dve7z3FLZgsWjFFYyGiYSLnqkz1OFdzpsTSvVjXumn9FGsn4OS8D3I05O8YGs1vw93YUk+Qj8JDzglhYmRFAMuJIzJ2SpKHMpStlz2SIMkeoccoKckFk9lmlaK4ZjibebCPiUIEaWS/KzOvzc3KD6mbPGoJBSRlCdUag7GEdfeqI6oxQx730/LEJb0XVHypQkYZKQqw+1JkEatIem8hpBdrTJg+5/y+KrOZxfLJeuTNdE5Cq3Z3u5wU2DY79i9ek4MI0Yn3CQU2bnBmN1tZhGs1pqqKKEWl5SmrqnKgqvrW3b7jt2+JyRF27asVkvapsQYRXSe7X7Pbr9Hac1qtaJtatqmomkaFnVDW1c5u0O2ya6X+2gYxJRBa8sqJrrbW0L0eKtYrBY0lyWLZsF6seCwuaU/9GzHkZfjRJ8GaGqitRx84Pnzl/jRMXYdqzfOUZXB6MBCR1KYqI1isWx58sYDfvCDDzgcBplcKyNU3HGkLAxN26CNYegH+sExDoM4BtUlRWFpmoaLywseFk94dOgoq4/4/PNraTRioioUl+cnPHhwiTaGZ8+3bHcbXl3tePTEo3VLU5wwTZHoB+KQ6Lcd/jJQLVvqVeLls2e8+PgLxpeeX/+Xv8k3f/5n+eVf+i7ruqb2Dm0tnsiQHAMBt9sxdgk/KczCYE+WrNqG6D2llSFNCAnvPF3X45wTwwWl0bbEFgW6HzDXPeO2x54tSauG0Ytl59Hnn8y3D56iOLCoWw5pR+kVjTJ4O9N9vpqHzlRB7hV3c5NQFBZr5zozMwHurUfBCzrs3URKmUpb3CE3WiuSCsdGK+UBjdaZDmUMTdPgQ8D3jpBm61h9RKC11tnEw6CtBW1zyJu4dyoNMXrKaoEqKoyxFEWDVlJYz3u86AzvUIzR93jfM4w9Cp/3+9xYSeX+JQH3l3QDCHU5fEkrcrc26ywgRyli1nbEEKTWmKGVO4ZQRonuVv1jppI8glnvMTdh9wtwaTwShSmwpmQ/joQYOWlPWLSnWHunmZimUbQY4xY3daTg5AzloZTRmicPH2MKw6uXuzvjokz5nelpRims+XKzAzkXI0Z0bjJAkbQkws8NyvzfbLpy/zr8yeN1Go3XbjJsglJrFnVJXVdUpaW08gRU7qbm5xOnid/5jd/k4uEF3/7ed9GFwgdPcB5iOoauKCUTmRAdhYp03Q6tC8qqkqli8kfudMiJlkqrzBl1WZgiBcDkE8lU8nutRRUa148ELME7Tk/PWPzsd2mLio8/+4CDm6hqw0sSvZ8Y74k05+ljSnPCsIimoxKmeFIKPzvwmIIkyCHERHAOx4AzBYvFghg9V5trpmnAkDhZr1ktW7b7PZ7IyXLNarXkV//KX+Jw3fE//uN/xovNMw7Wc1bW1E3BMlniFFFEFm3D+dkjmkVDe2rZjRu89wxDzzAdCFHs3dbLJU0s+LH6gmcf3HK5XvH2kye8+fgJX/vaN6jbluqLmk+/+ELoM7l4G4eJstLy3E3CxYHBTVTecHXzirZac3l6wltvPmZztWV/faBtWqpKUS9h9VBh20TQnmRLTGEwRckwBJ59tuXH7z9n83Kg0gssBUF51Hzm4zwDmG1P84QZmUpFJYWeoHjCNVXpK8WVoiyF65qMwVYl3nS4vBRVOkI64MNzUniBVbAozzipHrGsVxjVkFSFtjJd0zlPI+Fxk6PrOoZhYLFYsFqtSCi00hglcKgU94auH0jdgXa5oKzEIjBmWLWsBMG6vb3N0zzhghaFpQyWNDjSFJl2iXHTs16cU7WJk8Zg9UuGdEtKkRDI05y8UHF/wbmb6EeEDjHD+TNa5WJEG0ElrDHMTmfSJySIIRdTsrBJiisyTsoUQZ8iKkoAoM5uVHNskDYzFzXD4fmZxijuVfFIe1KQcvif0uKKR9Z6ZL7Vl5009BGaltwPda/wPe7vx/7h3lYj08G8Wej/H/ri1y6HvrxXfqUOlUCjsWVJ27a40ZNCj59Ght0GrUR3MfXdvTR28mQRfBDbYJ/dnGYrRlVXeLegHyYm59lsD9xsera7gUM/slxUWKMJ3rE/iLh7tRKL5+ViwXLRUNc1i7rJNrYmb7SSmRSCGDv044ixUJmCKlmGQ0///CUmBMrVCc1iRaUNy7bG9QPn/cByu2MXI6Gu2HtHFwf2YUTd3pBSwE8DcVniC2gKzTL2GN+iPCyWLScnLdvdAT8ptE0YH+j7gbYpKVSJc55DN9CPDucDLgRciGK9Hj3WGtq2oSpLukcPGbqJ6CQpva4sbSsNVghyIR8Gx9OXtzy5lb0qRUsMNclHcB27p7cMF49pqgVNveDk8oJu1/Hiiw/5gz/4lB998Qkf3nzI2z/zNu+98Q7vrt7kxDQ8DIlx6NiFHbFM7KaRofekyjIkj1awbhdSK0RYljUvr2/Y7Hay30fPGANBKRZlyWV1xqr13LqOqdDIliCmE7NZxZQSzkf04cCirJle7pnqA8U336Q9OzlShuQnv1qHRpLcRdsg662wD4TWbYxUwTHJVP9YSTMLeGXg4b2wQUKmhubEIhRzsZ5Th9LsvCbUqq4bsuOQDPTup6Mr1NH5U1lL0tnJKOd4SQq5QZkCWy8Fpa+XVGWLNkUOPM37R4wZxehxYUJpGMcOjTh/GnW3Fhud0e6UdXjcW6fvaTKO/773+Wxzq/OaLxSrPEyK88BsRnjm0VIixRmx4ThwOgby3XtuP3XSHxNFaVHGgg7ooha2QtEc97gQAtM0MvQ7ktuDGyCEu7+fEg9WZ5wt1zzbXd8hOHnfnIdpKQpl3mrRg8jQXN4zabqymD2j+fPzDj4cLZFlD8+JU3OwX378/M7f//CnHa/dZFSVZblsWS5qSuF8yAsiIVld6ug1b3SB7wbe/93f5/zijMfvvIG1BYOX2PYg1gWQhBcWYpKwkbzZW1sxhkDfdcIfPHr8CuVCKUNRSPJxwmXhkccEKIoSW2gmN4GN9GGg1hX7bk9T1bz1M19n9D3PXz6jNhrVWF4dNoSxxylJdJym6e5mjmIZqHUFeFIQH+qYImiZtGgtKE0MXuw7lScR6Q47UpCL5+b2BjdNnJ+f8+DikmQMp+cnxOB4cfWUy+VDfvkvfxdjKv4v/93/ld2+Y1xVnC8LzpeGaX8gEbm8vOQXvvM9PI7PXr3Fq+1TRt8xTQMudMQ0EZLHaEUZC1oqVukZT07f5c1Hjzk9PeXkZI0pxSbSOZdFtwbnA71zHFygCh6HJyTP0E+crBdMkwiwTteXvPPGE25ebPi4/4xpHNAFrJc19doSbSDaiK0TplJMPvLs5St+9AevePZJh4mViKgmBwSZLMaZlnK8nOX6jQqTC1nISIdCPmp1LPa+KofRGSImgvJEBnwCrQOJDh+vCP4pJjlKu2ZdPWHdPKKp1sRUEZMmJnLIkQU0wQeGceBwODDrPez/l7z/WrZsS+87sd9w0yy3TWYeWx4FQ4AGJJtBSiKpjlaEdKPQhZ5Bj6B30a30EAp1X0qKbnWrBYREAgSqCkDZY9Jst8w0w+riG3OtnacK4GE0zQliRuTJPJl7r73WNGN83/d31rLebPBzOvNrpZDVjMPA69dfcPvqJZ98+gld30lxHZNMqGLk3ds3rLqOm6srQGheTWxpfU9KhvEUODx69NSymq5pWo3ZbGj6z0jmQMCjcpFcDCNXSy+V87LPPdNG5FITWTESWkpBJfA60xRw1tbGMlV6WF28dToXlqWUs3d73RplDaqDgGU9Wop+g5J04coJUKiadZNrQ1DRD5D3v2x2qlRSL2dKlHrWQRSoFChBRIxaGo1LwyV0gXKG8+X2rdC0Vjzff/42HuNhoLESDJcLGCvZRyVHSgjMp6MI6GOQBvE85JFrOMdEYSaE+RyS2rZNnYbK1zeNIBE5nTiNE3NMTFNL4wwpikWjtZZS9y5d+ctam/OfRXVUmyKtaZuG0Hb4EAgxopVh3TW4GHl8OrAPEVc07uqKbrOmby15nlkPI03jmLMitw1fnPb8yk+cihf6wkFBCsRGcewUZtOxMpY0GnalJZG42q343Br2Q0BFRaM1wzRzlSOUhuA94zCIBXVJhBgZZ/DjwPF4EAc0K6GDV1dXvHxx4Lg/okpk0zusUdKcxMTkA1NIPDzu+fLNO5re4UMmJkuaDEQY0yMPN2/oVyuadsdmfc3m9kj74kuiuefuyzt++SOD7guzirwd9/zgkx/w7ZtvQdtzvb1hbTSPb9/weBo4nmZKTvSrNXsvU3PrHMYKWrNZr9Da4hpJAJ+GE94HHqc9rXKYEJnvRtz1hqJht97i/UxIggQro4m5MOXA9uUtzWqDV4kynS7TgW/g8TyLQZVKHc4FY5XQkIl1oiEZQyJSlHFLTJkYpEEwRtO0TkTCqVQdpD7rD1ISyrNoZgUFEhvbxTI8o/QzETBLIV1Q2mKtE8Q3y8CwlIIyhrZfY9yK1fYVWrc42wsNGFgoXbk2GCEFpnlk9hMxR8bTEWs0OSlSjkLprtpSSr40EM9QjrNL1TK9fzakWJqG5XnWNUOp1D3jTJdf3JzqULxANSGwor0onBuOZVj1XCvznrVyEXpu41pc06Fcoe93rFY7YXlUVCjnhA8j3h8IXrQY4iqV62C1sGo7jqcTT8ejsAiUDOVSFqaAuOhlTP1sy+df3k/KCUP9TCWhaq1BuehInzeYC0J2gXXOZ/Ir///XH1+7yVivO/reoWoRYLRF2xZjFEoXQR0owqc2hZgCf/Xjv2CaZ/63//v/HaZr0Y3FuRZxigmIcMgi88yCtSJGziXinCYl0W0ITcqcT5bRihjDM7F4JpdAKV4gdwraGjKKMXhyeuTaZPw0sXIt3/3BD2is4zgdWbURjWYKHuMUgx+xdfKb8uUmttbK9FypZ8FhGUsVLxlLLBOlRFIKHA4PHJWlMR2bzYamaXg67Dmcjtw/PnL74gVNY/jeJ5/w9vPPePPwOddX1/zzf/n3CXbg//bf/F95Opy4uupYrRydd5xOR758/QW/88Pf58MPP8a0BnRkf7onNI6MWGT6OBFzwCXLd7//Ebfuho9232PV3GAwOOM4DSPv7u44nk7yOTEM48xp8sQSOaVqIesSx3eeVzswvWaeBnTOfPTiFfvvDbz58i13wwOrrqXdCk1M60JroW8bdIa7z/b8xZ+/4fO/HEgny82qk2JARVarVhrNxU40Z5m05EW4B4XFHrXyUws8bzq+SRuENmLNnMtEVA8M6g1Z9Wz1FZRHUvoVqjxgiuOF+wEv13+HzdWnONPj58w8zFhrMM6irKSUzsPI4Wlf7ZY1ucjm0XcdRov7irUWYxS2aEqOfP7Tn+DnkVcvX7F9eUWMWaw+tdCTTg/v8MYwf/iSlAIpOVSxuLjFTgMuKogBP880uqMce9LTS1YvOtoPDxzN5xzygZITqVjI8bz55Dot4axNWCY86iubgrrA0KoOHi7k0/P3LI0KC9UIXV0xJIU85QKkZ9MqaVJUdYFj+R11HlEt3OXl65/9RFmXqHt14bwJL1+8UBdSzjKJY3lZ/V6TXFjQnlJfRxZrGYx/c+7Z/xTHcX8kpUzbd1gjRYM1VtxNcib6GVctWFUposXLmRAz0+yZvGeePYfDgWmeUUoMLbSC2Y/iroSiaRpaZzlOnnEStyGntRQoiJ1lCIFxHHHWSqETMyEm2qapzSk4IxxwAOccfdeSBymGGqdpraWfDQ8Pe97FjEkZ9+KarnEYa2ldg20blHUoazFv4eH+HfvJkxtxxIl7z+hnjjbT3u449B1PTyMvdQ9+ZH3dcX3TsR8PzCFTLIzeM/tAX1PRdZZcHlvD1rwvlWZ5YBhHpnlmt7umbRte3F5x/+4OVQJta0hk3j0dGEfPu/3I6CW48/XrezY3K+YsZg85KOIp4nJk+uItx+0VXbum363YXr9k9+FLNh/cMb8ZOH7+lv3O0Tqh5WA0QbdcrW8wxvJmOLG5WXO1XWMf9mgK05Nn51oomRBOuFLojMUXaSZLzHS2wfaKmQHbNGxtT3g7sy6aRMbHwhwHrDZQU64LEkyWU6KogmosZRlafIP2kK8eC2Nj0WOIJhUaq7BGaBQLpaewFM8yAL24K6mKyslrprJoB4qE1mmxX59GCXJ87sKk9WIPrchRXNko5ZkQ2qC1PTdCQn0tlKLRusE2Pdo0dKsbnFvRNEKVkvVSVbMQGR6GJHbSCojzwOwPEmCnNSEWXLMwFy5ZSed1H94rrJ87S33Vhp28iJ2FMXFuUOBMmbq8thgjLIhDqUOjKvN+b/943hCef9X3K2i75jh6+v6GptnU91vO1tPTdMT7/TkXhErLWkCET199wM/fvWYKMyjNAqRIkyINiUE0tgvqtNw/OSdULujqlpWTNCNG6/N7/XUDhOc6lefH5Xz+246vL/zWDTHVdN2qV7C2wRhNIS01BaWAD5mcI2UK/ORPfsL/+cv/C//if/1f8YPf/yH9doVSljBHDFIgyM0hi71ShaYRilPbKGIsctPl56Km5YLKBi6wKEzTiZwVIUbW/Q7jGqKKnLyHuGdDh5kTt9trvv/bv83T6ze8fXzLatfSdw2/2r/BqsxsqNMcT6EQcySGgNY1fEU/uyBZdByqVPJEAUN+lpIswqfdbodzjuPxyOGwl/efIsPhQKMVt7st98MDmiN/8Ie/zcPjP+H//t/81xz2MzerntY1DHPg8zef89Of/4y+39A0K9qmx0yGcIY7naRIl0gi0q8t9oXA9rY0DIcT816cQ2IMWOcoWqYEOYXqu96KQK9EEpnhFAhToL3q0SSsUtze3hJT5ic//gnD/Jbdy5Z+Z9FWOvzWNXS653Sf+dmP3vHZz46Ek6IzBlsSOXua1tBWe0hp2C/CpVR1ManCtOdgtDoVoLyPdnxTDq2NWOypSCj3zNzT2Fu0vifnR3J+iymZ1n7Ipv0e2/XHdO2WkhUxDqQUca7FGiPBQ3FmHEcOh8N7vuQL/Nl1LTlL4aO0JmHZbDYopXl4+5bheOCDDz/E2oZpmkgp0/cd2+2W6GcR7sdImD1+SIRR4wdIoS601fNba0MOHeXRYdsr+nVi1p5oJrRuZVqGcH61fhaktwT3/VrDURfsTM2ouPiZWy2ZGgugv0DTqRRKypU6tVCshJJ13hAK50132VHP68aZprkU+tR/f//fdLlQOgVZV9Vp43IsTYQuC/WA83s9/0zKGZ1bpl3nBVud//M3HF8P7vgG10d/7RF8BEZSKjTO1nOuatHvKVnRmAbnDCGIZ/48B4Zh5nA8cRhGnvZHHh+fGGdxJZQhldALV31H14qzlOxR4lQWo0IZhUGjK903+MDpNECBYRgx5ki36mkaWZusklyhrrFn++XGGLxWjMPAPiehHTaOJgWG/Z4HrVm3FrteoY1GO0dvhUKptGF7OrFTltenGR8S48YQUYx+Yhg8Gy3DoNF6vsyBrmSajePFyw2Ph5nHg1ggex8Zxpnr3YbGOrbrFbZt67BOQrlirnSJkhmHE13b0Pct/apjd71mnkdSzgyj5/7xwP3jiS/f7cWSusA0jphWkyqNWCbmhe16zQe7K8xxZP/2Ht18ROs23N5+yIuPP+dkPWZMnL78kq5X6NZibUvTfI6xLX2zYh9HfvH4hnkc6JXjw9UVt+trwBD3ewiGDSucLqTiOXrPadgLG6LeLyeVSHmk9JbrfsNDms5OSmGOnB734BRuK3qd2XsOpwNN27DZdmjbfLOfIVVrnnIZX4iDoMJaCfoMKZIiFJRozOqwRqFl+GRFzG20OVOtJH5IYbWkaEf/64ne1i40eBn0lgJNu8LPI6m6gVLF9rI3lXNdjJK/N9pCZbi0TYsz7jKQKsgmUEMcvZ8JMYDKaJ1qRpowM4wRIXOKiVybhWVP0bUYOCMJz/aE53vQuRGqSIVVVux46966DMC00ec9dkGQlF5o9Msav/yS/eJ5Y/O8MFdKEAbZtwtFt6xWVzjbstDTzlSp+Uj0Ayp69CJaL0Jl6rRhPwycwrRQBc6uj6VIXa5KxtRMqqVWEBqYZAWZiryXuunJNb1kBi1f/3y//s1NxvN97m8+vnaTMU2emDSNs6TGkEzBKPmVE6QkPuKzT2I5S0KrTIqREj1/+W/+hI+/9Yp+15NUIWuNKgmdFVo7pBiXRGPxNk+sVmsKiuMgxZFSQrFy+sLDX05ErNaeKRW6tseHmVZptLVMfmJQQdyVouLp3SOtcWw2O5y1HPKJftPT9x2fPb3h3eEgVBBr8TmRcp2ElgvsdL4IWmEaeZCCz6hsudptsRZCSIBlHE/c3b2j63o26w3zNGG14XA4MJyO3N7s0E5hlWW3bsk+8s//+T9j3j/wlz/6M648mGJIOXB/eOBnn/+M7WbDRx+8whlDYxwhaYTIZUC36JwoOaBcYQhHDr/8Kbfb72IyuLYhxYCPkzQjWewOV6sOmw2xJHyJlCh8+pIEot1sOq76HZv1RorUknn1wY6p9Nx84GjXYgGq6mI2D/DmF3s+++mB+WhwxrLqOqzWaN2JAM3WaUgpUMSS0hSDK67yUqrjQd0oY0oCDS6WozVQ6JtyKK3RBlCJmAeKibRNRpsncr6HFLBqw8b+Ftv+h7TtLVo1+CgizlyEd7tAr97LtPZ0Op3hTKUUXdeRUhJ6oL3ci9YYCYXs19zdveG4fyLFSLfqmOeZ6CPWOm5ubzk+PaKAMEs45nSaOT1MjEdBBJf8lXO8ndJErzi91ajxQ9pVJLZvCE5gXZk2V6Giuix+X52QKKWRR7mgsYKGRIgVmi2mNjUIH3lBASQ0b4G81Zk3C7oW85fNg+oIJYfcH7qiGsv0SDaPZ4v0WV+hsOr5Aiq0qMWN5cJHVdWfnCo2qQYGSymwNB8L5UotLmmgLmlO/77uvH+Pr/Uf/igJcihi7ZwSjdHn9FyQe8gasUv23vN0OHI8jez3R+4fnnjcn3h6OjKOYmUuaLIUUm1vMcbSOAfVQCJV68dY3VYwmoWwUXJhnsVpSfIYEm3fSnib1pJa3zRSnDeOVedoqvnJOE487A/sfOTq6grXdGgfeXp4oO8aePGCzWZF4wzGOWkylKbtWrZdTxsyw3SSAqZrwFkMGVsUV92GYGCYZorO0Craq5arq4bgZbJMTszjTEoZ11jW656izZn+gLIo5Nw2rqEUSEGcu9rWcbXbcHx6klDE40DB8PB44nQasUpjrey5UoQJ9UPrguscL1685NOPPmH0ns+/fEfSls2LK7pmzdXtFc6MGB/haWZ+945x26PbHm17rGn4zic/ZL3ZMocjd/t73gxv+dd/8adc2R27vGGlG771ycdoY+mLpc+au/0j99OeQ4yotiHlxCnNzMZgdZY06+KETqnBNpZ+s8Enj1KGmAuHYURQro7Neo1GiwD6m7ONvHd8tWgtRags1i10c6E/XVKtNTlB8AnvhVrb91VPVOso0aIJWhtyqlbhUt9dnkEleWXakRekTCsatyYFoVIvSIeqIm4QlCWTySnip0xqGlabHpLHKXmmF2JpQVyqSsrEGIghVm1JJMQR5xwxBFIRdzEZSmdSfA/urmvqhc76m4rf9zUblyL8q25Q9avPTYTUejX984xMUEHvy77xXMuy/HuptrYKRdv0ONfiOoPr1uKChuwrIXim+UgIJ2I4QVqaHnmdVdvxW59+hyc/Sm6VkutVSr32uSaqI26LZ0F4vtisq5Jr7SVUs8W2N1XNhjSWspYuw8LnYu+vitm/7vHvQJdaVZcACTAavYjMyIEcEz4ZYoKcAk4lbncNH314w8vbK26ur3h11ZH3d7T5llGMIqVgjEUgG6MxuiHlwDjOVYgzUJDQJWrAV1lgu1whPZXRWnzBdYW0Yporhxu6tqYlK8UxjLRaE5SiDB5iwvWOTbvFqg7bNEJTMV+wP52Yg+I0Z6KPFCUFnKld7wLV6crLFjtOTVGGdw8nXtzu2O42HA4njFUMw5FpmqSrD4m+aRnGUYKT4swYPNebK25uX7Jetfj9ib//D/8AReTNl19QWung96cn3tx/wWef70jRo1dgjaO1LcQqVlWahCfjKbYQTeKXv/o593qk73sKhcfDiT/98x/x7umJUAraNPgQmPyEz4GsMhglgVRth1EN292Kjz94yfbqit3uGu0afuf3vofd3aPagawhBwk6ixP86vMjr386Mz6IQK1rLL1raI1GLZa0JZ8f0guP/4JUUBSmGGwxLH6nOVeU4xna8Y056vuLaabomXXn6KxH55GUJhw9t+0/5sPNP2W7+jaohmmcOZ4OnIajTHqcuChF7xmOR+7v7s7Wmd57TqcTWi8ZMunMoV0WiPVmy8sPXvH55z/j3bs37Pd7bNNKM54EbdhsNvjqMDWNExqFHwYe34kbDkrX0DuHQhP8TCyZrMQtSp9WuP77NLsee/0GbTxTSefk76JquN6y+Gnhdy5WfQv0T0UDzxkVCDYh9IWah1EnNrlIcxBzgSi2h2bRQkglfx7rF6XOaIogCaU2b0KjMloQCurPTTVIUAqyimjUS7roASSyI4EScanKnCkH5EVo+Hzxlc1JKy7ICDWoKn/9Rfo/x2MpBEKMkgCtxNI4hIAPnqIsszfkFLm/f+TLN+94eDyyP5x4qpSeeY4i5lViaVuU8KajT8xzoHGGMAd8uPjcL+u2UoZGXRLrQ8ikNBFCIITE7GcaZ7FG4aw500e6xnG9WbFdd4zjyOPjnv1xYhwCuaiz/ul0Gvg8f8k8BV6+fMlmt6LtW7AF4wrNquP2w1d8eDjg377h9PhE3qxYbddcdzt++J3v81vf/g7vTgf+/MvPCBRiW8g7y/pVQ46JNBdSUJCE7tV0OxrTchpnhmGiXXvaxtaiVLIFYkwM40g3DjSNY7tbc32z43g4iAV2mJjGEylG+op4rFZbUJmYAwaFMZl117Neb+janpgLp7ef8/mbez75ne+TTUYby/ZmTdcouJoJb47Mv/wM1XQoK1So1WrLB7cfcnv1AT7MJDx21/LHf/av+cn/8Fe0g+Of/uE/4Nvf/pib62tZ8wLsaLlZ7/A58e7xAWsUutWEHNjPjzJBbxxFQ0Jh2oaOhqIXSkkhZ2FJDMOMKkIZ+aYeuWYFqapjFcRP/i4l0d4safBaK7QSfWWMF0pRCIGmaYgh4X1Aq2dJz84KulegsY0IxGvdFc+U8Vz32iJhlYu7nzIY3aCUuBMpqpC7JHGPUhrtepr+BUa1MkXPkZQ0RrkzXSkBMUeJOiiZ4bTndNhXe15BsJVz5+JYaPP6Qkf6SgF8CeVbtARn2EGCOa2VPeZZY/HVBmP5szRuSwNzSTdfHKb0M53K++Lvhf4rWsLtesvhNJHVCmvdudlJKTPPM+N4IPhBnErjIvgWKt8Ht6/4+ONP+LMvfiZDrUoDvLA/5H4wy4CSqhFeCuF6PpYGA96nlj1vsGSv1ufPvTCU3h8Uns/2v/X+/dpNxqcff4gxmofHBz774jVjlAlRiJ4UZpy1rLuOded4eXvLb3/vA37wrQ+5Wq/onCWGidd/8edsrnrczTVN3zGLkX2Fi/K5yNTaYI0lREmobKzF6HwuRM72YaWcJ4Omdt3i95xIccQYjQ8aW4PJokocGHG9otcGPcqD1FpHiXClVribj2h6xxeP77g/7lGjwPc+RHJWv6YPychDH2NCKUOiEDPsjxPWavq+Zb8/Enzg+voF1jiexifx6m4a5uB5+/aB42nisDtxOB75/icf82q75epmyz/+J/8Ff/qv/zU//vlPoRTGaeLx6YnDMGAfHijHgusSuhFOhkLhjCVpzRgyU4x0m47jfOJHP/ljXr34gFcvXp05yz4m5pQhR3wK+BxJOkOlrDRdh9aOcYhoGlarDf1qxfbqCts1fPu7H3EqNzwcZ+aQ0UWKxqf7ifvPMtNTg8PiyHTGCB+aQs7Cj1b5Qj1ZpuYsDQfqvQHtmfaCFnFlsUKz+gaNoFKMzH5iCE+YxrLuW7Q+kOKAKY6t+y1erP4Ru/5TrGmIMTCdZp4e78kls+57tFKkIJzz4160GMY6EWJRGE5HjBZbzrMQWuuzz7lzlu1ui9KK+7u33N29pe1XlZcs6e9d32OcIdVzt1CO/BzF+MBYnOtwbYcyGj8ehStfAGvRGBg0JbzAYmmvCsm+EwQsK5KK6AJaVRi9TrhAxPFLsa0qSiC6BXEqiUXmXKpyTnXNlThTjhBNiikZvQQFFZ5N8uS+ycvfl8o/zvK6i5BPEH1p6NTiuFITxlWFo5efqQtVM1IRkrw4UslnylXU/ZtuxQuicflcSv06X/hv0+GjGIDEOcq0vGvQSnM4nRjnGecd4zwxTxNv373jzbt7DoeBcfKEIGu+rSGQzjqhWcWEGHcL8l5KIcyBGAQpKegzJUAMVBb6hJz/GFPlsYPD0Hctq94Jep8Sj097xuFETp4QWsZx5vHpyOEQCKFgbUO/mok5cTqOHPYn/JSIPnE1XdFtV6y2iWbtCBqa6w0vvvUBg4rMr98xjRO2caz7Fd/95FO+9fIjjHP8+PVnAGRryJ3D3LRsQyE/JXKAELPQHYrwvufZE6ZEv92xXovBh3WWUhLTNDNNkzjPNZaua3nx8prttkdrzewDdw8njFK0jWWzXrHZ7Ih5YkqiabCNYdVo5hh4PA2cxpmHg+fnX77h6Thy+9ENPs/0q4armx1qExmy4vT5A/tffkZoVxRteP3ul/RNx251xe31B0zhSAiBDz/+gMMPj3z2r37Ff////h/46c9ecH1zS0qZx8cjxjg++dbHrDcrTCns1j0lFE6Dl6yN1pHRTKUQCASE0qNNbSpTIQ2R0AfKlSQdX5qMb+azqKoL0qJJlbd7yfVRyqBVPjfNS01dMdQzxTZXtbCq56OwhDqK01Sqa6pSqmpSwc9irpNKwioriEIoJGUwtoXqbnh28lNGUHbboa3DNius7VmtrmibDuekKVFVE7E8k3OY8dHjo2ccD1VvK3rDs8Ncluyh8ryYf4aUnylCeUGvK8ogU6raaOT6sxcDo0uTsSDZWlODmsu5LlWqnHM/liHZV/UX8jrLmi9NV6nXoLENxvX0aie2tRW5FQbQSAwnSjhR4nzOxgCwxvLq+hYf6wBmQVly1RdloUNpJfeGUqIFjFG0MzlFSs64GkQqeyrnZu036VcWitnyJv6nbFFfny41HiUoZxqYvcdHTVISfNW1HR+/2PG9j1/w/U8/5NNvfUjnMk5JIUAOGAMuF17/xV+x/vRjtp9+grJCk6ose4FpdJ2Ep/hs0l3FNc86yEtIiqHrWrp+x9PTA3OeKCUw+RlUxjm52Z11ZAUxZ57yCbe6wWlHQRws1koRnk5Yn/n06kOc69D2DVo/kSPs90dizoQQ0dXxSqZxkvPhnJOpAQVlHLOP3L295+XLW4yGMXqOxye6boXrWiKShtz0Had54ul4YI6yAZQYMd/5NqZ3fLDd0nf/mLvjE/u3b4kpcTwNjPNM5wPzOMJpYnfbYBtx3NH1XOYMMSRpXF3m9dM9w1y4uf2A65tbbh6fuDscCNMsITfVP1nsPcWLunUNVjtiKGhl5aF3mq5v0C6z2TV0vaYcCyUp0gzTIXH/hWe4t9jc4KxGFU/wmeAixYhFrdG1iThDkJfJ84WVsnBilsKP84MgEKAsmt+U43h8ZEh3TOotuu1omhW5nEgBOnPFVn+fjX1BYztKhmkYOB6PjMOJ9Wp1sdf0keE0sN8/kXKmaVsRn1qDKonxdOR0POCceGyL5a1GG0PjHNvdln614unpgbdvP2e7u2a3u6kai1xpVg3amDpNSaAU2lps05w1CMYKbBpCFMqEsTRVkJtDwB8t87ymnz+lewGqecLrgCrm7NpBheYLFTGoyMLCBwXeu4Y5a5KqCEIpkBaPcpkaYZYFUlyeLitgefa7erbRLnQrub8SF5rl0kxoY84Dj+Xr5faT116mPtIYlRpp/nyyI9O+s8PUc1id96dkz7/nb+txOB5QShGCJNSHrgUFj8PAFANqVEQfOO2PHPcHYpLps1YOoxO64ZwwbCpXWsGlER9nhiHUpFtVHaUQq/KS6/0txUdWpQbkcUaY+q7l+vqK2+sVXdMSQiClzMPTE6dxInhP8JHZR0IsjKPn4eGR48mRgDCHKigX96v98Ui76VnfXNHfbjCdJemC3a1YDTuaw4n9/R6tRq76LZt+Tdd19L7HKvCVH65cg9p2mAxGBcopU8YktOQUUbohxcw4z8zTTIpF6EDKYnXGmYZ5ngl+QrGhbzvyOtO2Yu17Op5YdZpVo2idomk1TePIMWJRGJVoW4frHHMq/OLLew5T4PXDyMO7E6eHAX8Y6F4WlHZou2K9dZQxMt+dOL57ZOq+IHcNTeNo246u6ei7DbvNS4Z54Ormio++/ZLTmyf8r0ZiTOyPT5xOM2/fHtgfZ/7Vn/+S9abnkw9u+O63P6ZfNVgd0a3B5iK/YsZT8Ch8iUThepFDYjKWoWnw1xOxaTgH/3wDj4t+oRaBWqixCnVuigGhsimhSlE0RjuZ6KhckQDJHVO6qtwWGicXOqexFu+97CtFkBNVEQtXXT6Dj7UGM+JQpS6T/4Kq+SSJxhlcu8LaFca0dO0aazusduhq9nC2T80RH31FZAKqJJy15FTdE2uTtRylslrOLoRfHUY++7Mq6txs5IpyqIqsnwP4lmak0p++WnR/tZl4rlV4v8Gob6ZIsW+qVkWhsbZlSgZrnAjf6540h5l5PhLCnuSPNRtDPqTRmr/3+3+HXjk+u3uDT7HWnboO3cWAhJIxmmrzy0U7koW2ZlAYXc5sIDBnqtTz93+hSl321PcHZ+/vWf9ehd9Ck5o4HA6QM50VitNmveX3fvs7/M73PuGTV1e0TtE2htPpgRyC3FBtC8rSFU2cPA+fv8H0K3YffYQvipgKFDkRulIOpFPLVUR7ERQJd1DhXFNvBM00yjTMWov3EOIERKZ5T8oBiJTSyQNSICpNSQdu+jU2N1Kw24ZVuybvJeDkk+0L1JUU2dvVitf2jsf9kcmPcmFUpuiCeZbTsLgwuKYhhYmM4e3dvTw0ZMZpz+wnNtsXtH3LME0orQhZHtrjMFSR756Hxzt+53vfZ/3Rlu+9+A5/eP93ufvv/ntOD0+M44nHwyOb9RUoOBxO+Hzi+nZTYwQUoYBPknsRh4jpNKU1/Ophj//TH/Hy+oqYZhqnsHOpeo6FCy3iSKcNTkPXauI8EOcMWeyMndMM88hpvGfyB1IO5NAwPCYeX4+MD6C8pegCjcGoproWZ7RyQm8oeelo6kS41Hv44spQhH/0TBewwJbqvDB8k2q1d8dfoNZfUpqRrm1wFmLWlLSiVz+gUx/T2A0lFabhxDTKtHah4nk/M44Tx+PEYX+o3uYygbPOSUPdtUyT5+npEaUlLKlpGrquwznJmbl9+ZJPvv1tfvX5z7l/fMvm3WsKmuhHjk/3+Mlj3Yq23UgBnjJaW169+lDc0Z6eGEdPCIElxTvlTCJjcwFlQItGZj5GmvySjb6h271laH/FYPbE7Guo3TJpqlOWIgD5c4HZUpiDXNtUAzWW67sgIbqCyLYOI3Lh7OPNglqoC8Qrx1emXHUKpZQSt406UTtbED7vTuQbz0MQbaq/OIrEAjPLbSkL84V2sWwiz7C65QW/Uejbf4rjy7evZXI++aojEv3EGIMEdlnH6XDk+PhEDmK9bLQmaUmnLglSEY54QnRaqsimjs7Ms8dHmaoaK9tcJhHrEuOc8M+FPZAk/LPeC84ZmsZijMa1La5tUcbQrXrsMOJDwgexTm4ai7FagihLYh4Do0/kKKLrcQqcRk9/90C/6Vldb+lvNrhNh+kckcgpeHxMhDHBNBH6mXGYGWbPGDzb1UYoFX4G7bCba5IZyWVPUTN5yoQxMs8BV2175xBJXooVrR1aN2CgbQupROHYlyLrjmtYgDptDJtNy4cfrmmdAxXxYWSaRjCRvresVj3ONcwh8O7NPe+ejjw+iunK6TjxZXzNbezRZsc4FNabHrde0246ysMD+1++xtsGaywxgbMt3/noB+zWLxjGI4fjns1ux/WH17y794QcaVTLdremYCjseXN34ukw8vbtIz/92ef0vebVy5YXn16xfnnLyqzpaGiSYmdbkjYM2csaphXKQAkT0/FAbDpM057vzW/QdgJIU7FkSFijqrC3DlLOIaaC8GYZ35ybiLZ1KFX1DjEKfdNIoKEyGtJi+61xzjGOo6z3KcuAslJ9JJByMZeR4tw6W4t0aeRLpfbEGGVKr6Bf7XDNhsatMMadaTjqvTVZ6MUpeZTKzOOBFKc6hU+ITUPBOVMn9xIwSHmf7XB2jnp+7pQ6lxWXgvjys8/03jrNV7X+WF5nGR4t/5bzBR1/rjW8NCDLTFToxmiNytIwmfaKKa7BtsvcjZACfhoI04E07cl+Ej2wkiuaY+Cv/uzH/M//yT/lTz77meiZK/ofUCSlKeriKLUMwxbWRynSiFmjxXEqi87RqEseSq6DR5CwP3P+TPk3QBjv71vlawx4v3aTUUpmGE6kFHn5YseHr275+NUt3/n0Y17ebmlMweqIMRJjb7QDJ7DZeXKqHM44UjGE+yPsguQK1EU+AanaR5p68kIMFb5S9KsWiuZ4PCFfvRSjmXGcqoD5EqqVSyTGgYlE1xas7VDKknPmFAc0sO47rLKEAM1qxzokTqcB03S82OwIOrDZrll1G97e3fHm7g3jPEpjQKoXcuH+iV90SlFgxBKJSWwXnTOknDFkxulETJGcwFhHyWLFSclECvvTgWE6EkmEEokvXvLJdz7hDx5+j/jnP+bx6NnvH4k3H9Cv1jzO8It3nzPOV2yvNlhtmZPYIY7jgD+OuEbz6sWW8fjIu4c7HvYHrNMYiyR0Ihaiyii0KSirUU529IKipMLd6zvy975D31hUmXg8/IrHw2umeSSlzHTKHB8j/qhQwQif3hQaW3BK0zhN0xqs1qhiiL46GQiNU+7ns1XcVx1+lpZj6ayfIx7fnG3hIf8Zu8bQNo7WWopOuHSLyR1N+i6OHSoVwiw2myGEOuWQqc3pNDJNM+/e3vP4+MR6vWa93Z2LX2sdbdsyTTOPjw/ElNntrlitVmedhjGa9WbLJ9/6FvvxHp+OvLn7QsRyKXDcP6BzQSkHyjBNExOFaRKXmeVXjIF5nsX/vBRCiARV0C6gz+YLBqUtqrQ0YUczbCnRoNZfMOh7IkJbiTVM05hLuNmyMC96ja9yYkWUV873htZUrZW0nEpX3UW+lPbvTZXqnO5sUVnyIuth4e0ublK2Nhq/6ZDbrU566vaojZJpUl6Q1mWa94zP++zznAGdUvOF/oYm429D+/Hm9R0omEYxHeh6i7aKfrvlenWFsUKTsNaczQRiSii1IN/5TGWgCB0PJQVZXtaGCnIu91gupZolSBOxFBQFVXV+GWMNTetk+BMjwzATUyKnLNz3LHa6KSSUKuzWK7brnsYIvWCaPQ9PB05DJPsi638YmceZoQ6R2uMe0zWoRmhTh2HgcDcQDoFCJF5FHh4OWNdyNz7hjKW1Dj+LbaV2Dq0dc0ikkAh7zzx45uDZKGi7hmb2kjmCAm3QRoZyyiSMbaSpiYmmNaAMqQj64qt174sbLbxxDafhiXEcWW3Ewcs1otPyIbEfZo5zImRQWBSWMMFwF3HNxOPtEe0caYzEAk5p8mHm4Vf36HbF7KMkjtue3eqG1q6hWDEccZrcQkxLsavZrFvmueM4eELKhJR4PJyYvKHtM/qoeGwiLnRsbE/rFX0x+BQYS8R2PbvVhmvTss6O61RYx0Sj0jeuubgclXqjwGlwRgrekpcJu9BJtdFCN02BUiQATxlFjkHctkpNnFKSjTFP8/l1xEZetHOidb0guN57lNIYI2i56AMFTSkVJQgpiQaviDWqa1qUcRizwpo1je0x+pI0DoCqdtUp4UMQ7auGaXgkhKm+BaECWmMqg0ge7JIvA6q/TpB8RqtrbUap4XU1HyRXNPP5XnRuKuovvYTBnjMwynt71bKnAecQu6UJkSYwV3pbYdX2HGjIxsgKlrPk/PiREI7SWKVY9w2h4u/WK773yXf4/OkBT675UEIXllBF2SOXBO/nAvRchCLnlKqueHKvWCUU4VLTwZeGahm0Pb9Gyx75G+/Kuo//246v3WQkP9A38MHLj/n9v/PbfPzqhut1R+fE9eh4OqFMli466yqki8JT7XY0bVs90EEVQ3g8cfeLz1i/uMauWuac0NrWrATJ21hgpqWLLEWK9fWmEzeQZw9fjKkWFVbgQRIlRxE/x0Lfr8glyI1uDOM8oLTiMRy51mtUSqAd7fWO9JDwJ8+q7XixvuVufGK33eCcZb3pefvuLXePd8w+ivDUGuYYKEVuRoOlpIg2jZzk3hHCXD3zEypMiHexpjeGvm2Z5xmlBZo+HJ4IJfP63TtKThwf7/nWq0/4re9/D6Ut/90f/f84Hfccjwf61RrneoZT4Kc//QUvP7zh5uqanBPDceawPzE8PKE9vNg4/HXH0yFymj1z0jStrZMQJIFAa7HA03Vqaxxgyalw3D+gyohRDwzjwP3+RxzH1+J0MraMTwo/GhQaZw2NsmhT0MXjlKGxViDQrPA+IrIMjapUhwv/sXby+syUqhOQhUFV4d4zJeWbU5aF9h2q/RDbrChqIpJZ832M+oBW30pD62cgSNNZP2QMgeAhFZhmz+kkBYlSitVmSykFX1GFvl8RY+T123cM02tm77muwkhjhD7omoZXH3zIu6cXvNu/5f7hDdMxUKJnOh3ZrndsVzekCKfTkXmemP1UF7hM8AEfAkVN5Eb4nT5EQknYpsW5jNEyKdY1hZtiMdM1dii0yqJ3Laf8mlgmIhcnj0WAViqHaqE/npvG82hK1ymSLKIKcaXKZKHPlIIrIuKmbibPBeRLWJNRuibLGlSlExYW+pSgJqpkSfs+bzbVbx7qVy9TtwuH//kmp3TNbynV7azekurZFG2ZhOX8zQqQ/E9xDMNMzokQZDqaybjW0CuFqqiec5a2bZnTwNm5q67txkDTt2w2a6BwOBw5naY6+JFpRa4I8UJZEKOOC9dYgNQlUFaQUrF8LQzTxDjP7A9i+QqFYRilMCmKcfI0ztKvej768AWbdU9jLX72vL175M27R97d72HOElTmDNoocoyk0ZNmcWI8TTPDlJimRPGJaDRFNQyD5/Mv33A/HfBF6Fk5STetikVZh91dCQtgCDD7OmTLOOdwjeivMGIdivLkVCm0OROiZ5xmuj5X6q86F3tKGdZ9i3OOXDJhmlHK42wjqI3W+DmKwNxH5pgJqZCiaAR0VoyHiDITzeZIVgbCQDOLu41VisNh5ouffsn+uOd0PKGi4Yff+wNKjkRfOA0jU5xJpuC9JLs7Z2gbw2bdse4nvBcRcx0YkwuiGSuZECb8OLLyhrkYDvPAXRqYVWFTFN8xLR/vbnDHAX0Ysa6VZ7fUveUbdJRlIl3ZE4voN591ZBeKTs6Z4MVZsm1kP8gklC61UKY27tI4N01LDCIMT7mKwBWUks56vxDkOXHP3IaUqgTWglCPzsiKUNyttZekb9vUHCdzpi3JMEb0s7FEQkoSbKozKY5S+ud8rgGs0eeJfC6FWNKvFb9fpS2dh0aqDqdqltPS7FwatIvVq2j+8lkzumSByIuCyhfkQs7DJcT1gmosq3uWRhCFMY6sDBnJWysUUk4Souz3ZP+E8gOqCrUL4Izh2598i5cffMSf/uKvUNRcsHIxNaFkdMkYldGqIrY5c2YGZAlh1MgwH6jOjvmC2i+ozVcC/J6f17/2xvwax9duMn7vtz7l1ctbPvnkE3bbNSUFcpiJ3pPjTG8hkKuwyNI2PdbKDWZsS4py8+n6gMz7I8fjnuP+gW/97m9hWysLaM3iyPVGXWDCEAQlAej7Hj8HoVSgKSXJ71nC/QoJox2lJBSalCLjeGS9uiaEAW1bilFEk3iMe1CZdbHEx4Gu7djubjje3xMeZrY3LbndMeSBvrNolzG2oEzm7u4dfpppO+G3n0ax/UsGQqHC7+J3nmOSpkuDquJYlCHmwNXVFeMgXMi+6zmdDmw24l/+5t0D43EmJcu3P/6U3/ntH/LZl695/eaJ/WHP1c0LmqZj1V/xqy/fchgGxo+i8GtPJ/ZPI0+PJ5ops7YNr65XtCZx9xQ4zYkcMzbBymjG+sCjhALgnKVvOkwtBPtOQ35imn7CIczsj78ghQN50gwPmeGxUGJDu7K4lQGfKSmhqp2xUcLJnwPEpGrRV4HeIvSSBRPStXlELc3H+43HErR2pll9Qw63MehGo40EeylAmQ2t/RirrTgpxQhUizilCSExDhKUlZWhFE3bdewqhzSlhDZVTNc4jJaGd5pmfvbZ5xzHmdF7sSIkc6uuaZxld33NR598yqwmPvvFOx6/eCR5jymG9Sc7dK8I48jePzFOA97PmGrXGWMUnncZmf3MMHlCzDRdh0KyBUotzEBcSGLwIk4NDSZ/xKr7gJX6gKfhR5RyEvpUnQQrDcYuxV4t4msBeHF1Eg/4xYEsL859SpFVQedC1hkn5t+omkmRyuIoW9EwXRNepdqvaafyvlORFiKVagla/1+V92H4pfTIuUhaboUmZH+Xm1JsDrP0W1T9SF2rF13pUgx93QX6P99DUbKIVm0datjG0nStCDvr+XGtIycnOrOQSDmL41HXcXV1xfXVFZB4enzk7v6J42limiMSzigbaYhyny10N6UUMWTmEihksbpdiraKhgfEthWoFBWhUTlrKVbWqBAixjqurq+4vtqyajtyinSdWFUC7I+jiLk3a0FjSibmRAgBExN2SrQhY1BM2pCVpu07circvXvgp7/6OcVmsIqsMm3f4KzFuha7drWBqjSHYIQ6YaxQWYCEIWLIRZFiJIVAjsJ/Px6PrNdbcbSzljBLERpTwCjEwtcYVn1BdSu63uKsI3jP4TDw8LjnNERiLPhZXCdNyhgrIvuUHPMBHj4fKPnAJkZ6Y+isgpA4vNuzf3rk8c0jT2+eeLrb8+LlR9zvj+yfBg7jwKQSKUfcNNE6i3GavrPcXjVYlZhnTdNY2s7RrBXZij4n+8DhcOJwVFy7NamBUDJz9KxRWJWZjpE//dd33E2Z8JWu///wf/w//cd5DL7WsdAtZd0UNz0RaS8ZPShpkHOl/qSY8eWEMeJAqKo9s9aCXAv9tgUMKc8oc7GvXZ69mAI5Ldo5EVtnJOgYLktYTrkOkGseS07VUc9ibEPbNNXNaZka1u+rKEYInpwjxijm6QAkuqZlnAaMEsTB1galpKWOvGRffJUiRZHncxleoZb3q95rTBZ6EwgaIUjEwiq5rP+6IhdnAvezc3R2Il8mZOd/k71dFTBFsV1dg1qhrbBxKKk66Y3keKSEUcL3RDEIQOscH25ueLN/Yj8N0keiieefJT9fL/XTMxTj3GCoJTOj0u0qdVQQrAstbDE0WhCb33he4dcau69zfO0m4+///m+x26xonMOHkRi8iIXL0gGCsa0U1U4sT42RxNQQhbsdgwdVmL1nOJ0IKTO+fUtC8env/7A63ciGEFIkFSTxVWvI4oyQUuZ0GmhaSzidSKk2FnlJ3y3VWcBitDhqFF0IccbHE0Y7UhT6ViYzhBGtCqqsWOWCf9rTWsfqxS1P92+x7yZubzuM6TjlkV3b07cWa6FrDA/3D4SY6LuWmGLVWRjplit0k+IyUZMHwxpLppBKIs4DeQ+6iDXuu7s7geZDpO974ux53O953d+zu7mhNZY//Pt/l3/1b37MMJ7wc6DtenbrK6zpeffuLT4Uuq4hhMDxeOJ0nFjFTK8UfaswUdPqnv1UGHxApcTVzQsexiP344GgBPp01kiidAoYM7HZaEo5Mc3g1UT0R+Lk8afC05vAw5cBjWXVdzQrS+0QALENVqlATkhgqMQpLy3FwkH8taajPPv7BemoT9dzpOObclgnPuVaaZLOkgegioi96sIgvM1LzkfImXH23N8/yuTRtYCiaI1RWoTfdUFtmhbT93RdS/CBL9/d87A/kBdqCBlnNFe7HU3Tst1dsz1csXZ7pumeHDNdu6NrVpJlMg2M44l5HhmmgaZtsVocmhZBbUJsElGK1XpF23UifI0Rqrd2SgkfIwahiDS2oWtWWHpm9qDeMus9cwqCVNZnXevFHrCcheJK6/cu6YWKVA9Zw2VqWiBnRUReptQCf0EbxFCk0q+gTrd0bVov9LvqKSWFaX1H1OZHUJdl6JPJZelSLpMycsEu0Lyqi3GGoi4LtazP4lxS+M26jL8tYvBcpCjSRtH2Dd26oe3bGlYnyF6sk9X+9kqCKYPQCZum5Xq75erqiu16jVaZddfSOMvT4cRpGDFW4QbPMEtjIveDhJAtDULJGuuq8UF1Y0kpkZNoFZZpYELWmqZtWK0a4hwZjyM+ZpqmYb3asuo3rLqWTCFmRSqqDsYe0dZxc3ND13dEMvePTzw+PuKs5sX1mlJg9pGH40RQlu1mg9KG+eh5+7PXnOYZt3bYtebFyxvWbcdqu8H1HbHr6JxlcA61l6wPnWQCGzJMUwCjSTGTfCBFD8gjNE4j8zTRNi3WWLQ2VTgcmRbkoG1wjTRX1lqU0gw1HHQ4DsRoSFHh50jwIkqNChosTbvG2A1xiqRYmIGVMTSm4Hwkhkz2BeLI2/iO2UdePT1iqnsRGIIueBUxcWaTeowR9WDft5ALuc8oo+W+aTPBIk9yysQpcnzwDMqjryyhCVhVuHaWbVNdyHIiSkrdf5oH4WscIkwWLZIzi96snPeS84ADdV5XFJxdkpRylKzJRde/l4l1zoUQPClLuJ82ttKL5AgholQSa+bNFTEGsh8FVdYiMH9OIUoxkEKstCTouhWN62hsgzNy7yyoLiz7X8IHX+njgdPp/sxaWRAHpSq7RYvda6naqeVYaLSLc5b0DepC9amNhAy435/Q/3pRLV+/MCd0HXrlInvWb2psyoKCnFGUBb3W9dwoOteSMhIiCeTaXPn5RJhPBD+SatK5UvJa637NrBS/enxHUuJeumgjF5dVaefLeQB/Cd8TLUZrDUZRU+IvKMzSjADnhu09PcffdC/+Ox5fu8nYrlrIYnfmQ6h0HxE7W9thjasON0qK/toN5pSYxhPeC5w7+ZnT6cQcA9OYOB5nPv/igf3k+d0//D1CCaIDqJyxFETshFJ4H3BOBEDGGlyjCKdJOHHPCPxKGeGuqYZSgiAjOXI43NM0Lc50mLKi2A7VNDwcB5RRtF0PIXP/7g0vvvsp29sXPP7VL9HHI9sPOnKvsX0PTY91ir5t6JqW/fEodDEl8JXC4LQh1qlqSpmu6+hax+P9A6Ukrm6ucF3Dw9Mjsx8wNPRtz/X1DQ8P90yTh6zYrNbMU+Du8ZHTv/kTtusNq67jk+99xP0bcSXarHZsV1dsuh2P+lGsHkdPLplpDMxBbtqjibgqoN32K9Z9wxgcqcDHH77i1bTjL7/8jNfTQRolq8llwuiJ737vlt/7ve9xc7NmmiPHOTMdNOGkMdFSRk84zJQ8k8YZZk/fNLJ2a0VOCjFfE1cKrWQyAxeKTDn/ekaN+k2Nx/J3qTz7um/GoSufVRsrRUtOKBVrg7Q0XbIQpZzFBjqE8wIwHE+gJ7KSBVU0Foa2FcF30zY0zpCj4+Ym89GHHzDOgQKcpgm339M3DmcNbd/ibM+6v+FmOzJ3A94nNqsdbdNREP6uVtRNxtA0Dc6588K5LGiL+G+z2dD2Pcf9E9PkSdUJ47xoZUXRCtu2aOMocyDub9FF0fUNRT3imYQmlWTzWGD55TWWxXw5ZBPQdVNVQEKViwAxV6HF84Vz+XZdJ3wqizCuvPe6nBGKxdM8s2zg5bxxSLZGhfdTOQfyLTjOcuRzrSKb6LnZkJ92/rrnmTB/W49p9qAyq03P+npFt+pwrcMY0Sb5ecZPM+u+Y7NasVmvoIiGw5qGdd+x6lf0fQclnTfnvu84DiNd17I/DBxOM4dTZPJyH9tlI82SNK91wYf0zFxoKUqe3YPPijjR+HCh02kt+UhI0BuIle16vebm5pqQEnNIYsbw4iVN1+LaFTFEvBlZNy1aaQkVjJHU9my2K5RSTJPHD4nxyXN8HNEdGK/Ydh3d9TUvtjuUM8w3Vww3N4z3e9LTCYZEM3v8mDg9PKHbNcoHSJkcE8pII++953g60vei57LWyiCsSMFYcsQYR9s2WA1aW0JKTOPI6TTgZ08uLSFkgo914CfooLaObrXB2RUpTaRoiUDWitYWOlUwKRNDYZpl8BBVZAoz19e3AHSuRzcDk4uMwRPwtEXCFI0x2MYRQ6zUGNDOEkxaOliaCKPPPIYR1zU4A9tGcWOhdZqQLNmUc1q0Wq7/N+4olTIkom/Fc/HxBaVb1iTnHLqRPVYszR0xQI6lishFO6CQ7C9tJEslVjqu5GdkQgi4pmN19SEoxXz3BSmMOCv7S1KctUziUpRrMrk8J31/RdOscbbFKCvZG3WQAxfkI9QmY5oODKcHck5MMdZk6tpscCmgn6+rZ3zhjEpcEBahyC5mHvV5NbY2JRctwjIk/+p6rLQM2i6oCLU5y2c61vNvKec1Q/ahpKpAXWlc2xOKrvtLFsG3HxmHPfO4J4VZFqU6v3La8Or6BVNODONJzquqFM98CXQ1VLReOgmhnhegpnsvTI/l/X7VEWv5f1NZFcs+unzNV4//oEhGpX+JCwfC1TeNo3EOYy0GcR/IOeJnjw+eFLNAq8cjPmZ8jJymiYfHR56Gkddvn9g/jLRdx7vjkW7d8K0fflsmpLqQasBezuCMwG0xiljWBkTA1zrmaUJrdxbgLCejZE0p9WEzkEvEh0FOuhIIzmfwOvKgjti142a1oomaoUS22y2rFy+4+7M/JR0MzQ8/wFvwOXK9vkZlg8Kw3mx493CPPlisaxiGiRBqDgTVizkrplloL/M88/DwQLdq0SpRFMQwEoxia1dst2vu7z3BB1LTcLW94uHpkeNp4O7hkbaxXG/WrPorTJSbbb1ecXN9zcPpnqfjE/M014c/i0YGxawtPntUjFy1mdYkWqfRriPniWEcSDGiisbZFoUmp5GPPlrxX/2v/hn/+B/9No21fPb5W96+e834VIhPLfPdSDoWVAZdwJQiyd1K1dAfJ/dPkgcOrc8TXzlHdRpyhoXfwzTOTQjnKctXGo9vEF1KpkEGZSxET8oTiT3g0aavi3kCVfAxSwKrtvR9z2rV8+7ta572B0qdKjVNS46XAL2273FGk42hWwVevXrFcQwy7ewaijKchoG2eaJPa1IoNKWnsz3OWGwN0bLOkNJEzsItt1aDVqzWG3Fpm+X+mWcPSuGajrbr2W63tKueeRw4neLZlSKlxBw8Ohu6TYttHTHDYT/y8MuMDjdcvXrJ9voNc/OaWZ1IhDrNqptOvboLzP18QVNc3J9K0fWKi77hErx3sSBdms9SLRtT3Zg1pcLHIhbOlHP9ryu/thpbXTaTUm0fK2Re6mJ8mcohU9VSINdJI8sEUj+7P99vNP42H3NMrHpH2zc0XUPTdRgn25GfZobjiRQCZtWz6jpurq4lC8MnjLE4LQOtJZCr6zqsNaz6Nf1pxBon9svGiPA6eAnhMpUSUq3TUy6kEHGIsFVCzuB5sZlTJgDDMInOL14a70LNdkkJ5cWNpShN1/VcXV8xx8i7hydG7ylKBlnX1zccjycOT491srpkp2i6vqPrWgnNOx2JUZKWU0gkXzioI/v+iVdX16w/tax2O4ozZGA+jZzu7/H3R/rukfCzt5zevaVdB3rnaLQlYSgklDGcphn19MRms2XVr7DW1FBcWQsap+gaQ9MIZJxSYZoC0zhTcsIZhYmJEmUdMErRGI2zmn61ou3XWLPQlh1zNAQLnVFsXWY1KU6hME8BP2Y2CpQ6Yoxlu97QNx3rviP5maIykUTWhRwy3sdKvZXsqCZ6XNugaYk5kULEKlhZzRQSKSaulOIjY7i2BpSl6DVdJ9qdlNN71/ybdkhgcaVgnik78m/LtD7GSIwZ59paUKZaTAvbwxihqHovf28qepWCMBestefkZxkEGlIIDA9fAprkBSnLGaZR9gfn2ur2VCk4SuzUu3aNbXY4u8IaVwv+y+cRLZQY+4Qk5j5h3pPSLDqSFASZTwljLzSuIt9MInG2wD2zA6oVO8/R7yLFt1po+OWcjyFDqXhGMoRKVPeUul+knC9ZHkXE2Ivta4WJZH80jnmeyc+QEtnHNKVonO6JWfaNnDN+nvDzgTA/Ef0I9Rwu7/nV7UtuX3zAzx/eVSFzHYJVKtZSIUkYrZHmsbqByYuI4HxpkCilMn0uDcaS8O2sfa+RU+pil/zV4z8okhFjDUBqGvpWqFBGy7eL56/BB880HRjHk0yiQmIcPI9PR56OAycfOZwGgbRHz+wTKRRCnvnVTz/j//vf/jEvXtzQ3m7xORBSxCkJzzHndFa5CDFKJ2qtJTfgva8fR07k2XZtCXvLgjCUUpjnEap3eOsM1jWkEHnye+zasWlXkGGcPNsPP8KkyOvPfoa6m9k0G/YWJgIUcNay6npe3r6gbcWW9unpwNPTgRDjOb8ghCCuD0ZjGyeQ9PGEtYqiDBpDCBMPj3dst1ua1uBnz+An+q7Htg1zlInP2jmxm5uO2AI+XuG6nu36iq7rOQyHS6G20EBqvH3RmuOYSdlztVX0BrSKzHFmTrJwdNrhcsGmifUm83f/4Af8/h/8PtvrV5IW6iLD8cjdF3u+/Hnk7ouJ8Sg2k5pC2wjC46yr18ycha5S6C2TwctDdT7UBddYmonLVzxvPuBCs/rmHPm8+EAqMzGfSOUIJqDVVprN5CkZfBQoer1paZxjt93Sdw0/++lrTsNE2/W0XU/0Adc4Xrx4Qdu0EhSkoG17bq5vGMbIm8cHTNfSty25eB73B8Zxlo1mihQvYUmNc7Rdg9KZ6GdyCbSuQSmxIxSxp2gUYo6EMKNtI64mTjI02raTtPGUyTlhq7B2DkJH6FuHMmKB6IeMZkXX9PR2S2s25NYxmjcMYc8YZ2LOgjYogfgVZqnSgWXy//7khUp/Kao2J3VtzYul3tI4LJp0qmtd0ZdnoVzuP9mEqgVghqxypVkJ2kTmvKHkUuo9/MzdRF2Ew8vPrn99FiCeXU64UKf+XY//bKxvtUXbZfsplJSIOZGVp6REDp7WNvRNT990NEZc1aKtQuUarFVEpIOpaw1KM8dUX1sLRWFpAJdZtVI1AkAaSgpCobVGbMiXVaZUSkeRSX2MCj8tmz1YKzqOkrJYfhZViwqZorqmpWk7KE88PR3oNwdM05PrZBN1ZH98oiQR6/qYWfU92lkmP3Lc70mzxynJVCoFGCJ3v3jLtmv51rc+Znu9o1v1uK6HW41/cct0/8iwe8TPkV/8yWckHGq3ldA5ZQglU5RmSpl5f+Rqe8DZBnEQMmL4oSxNY3GNxVhxRpy8ZzjN+FmyC7pWaIpeFyYySiv6xtD1LevNWrI3rCZng1KOmAw+JtaNZuUMvQWdE9MQMCrTdhbXRUZ3xBmLc5auaZjbhlw8nsQcPWlOTIPYFg/DzDhNhKJZF01Dc0Y026LorWXl5L3dWsNtYyR3JCTmUtCmqbqW9B/9Efi6h1aX8LQlHyzn6rBUVNU6SCBeSYopzlijcU5XxLpmZ9Q1T6z+Z4yBFJOE91YnIqiTfZ6vt6LlcE1zRpUlc0K0EcvzcsktW9H2W5qml/3KOJTRXylypX4TQ5xIITCOe6npjMEaw0JdFdesdFn79MU1UF6v7gV5GS4vjYa+DJqUZHOhLwjKQju7uErJ6y8CaYoiJVBGi6Yp5zPuvRzn7A0lX8eCtpSl8tI0tmGz2vFUJFw2xoifR8K0p4QjKvkzKqUpKG345INPGXNif9rLW6GaNqRy8cAAmeouYu2KoOQUhQ9SURXZai6fT6i80nxpFK6mj5+Roq/WZP8Ti6yv3WQYJ4IzU10DRGidJYfBeyiZmCKn6cTpdCL4yNP+xBfvHvny7R3jMJMwIkTLCrJ0T7opaCPd4/2bJ/7NH/0Zv/9P/z5u15GQTqtEydBQ5rJB6yXZMAWsM+SsLqmQVSyq6iQ9Jvm+tm0Zp0gqEW3k2sx+xOpOQmhS5G54IneKzeFE2E+wu6L76AW7OPP4+jWrrkff9hxsIFqLiYZYrd+2mw1N09AYizWa/eHIOM8UMtYZxjlgatKjSpocZpQxXF9dczwNkjkQJjgVjNOoqGjalkgm5ETWiqJgjJG83zOfJlo1QLF88OpbrJoVK9dL02cW+0+F0uIpn/A0Tcvo4XA8EUrgg11Hrw1GOXabDaPPpMMJFWaaLvB3fue7/LN/9vf44MOXFFrGKfD05PnpT9/wkx99xv2bE/MQpKFSmqZ1rNcr1psNWhVSgpguN+0Cx77P/3s2dXjvz/yGpuP9h/xCnvpmHAutIicv4umcyRU2FcqnZvYzwXtxZjJONDvGYJzl9uUrXt7e8nT/F/hpZGp7csqsd1uGaQTFOXHeWEffrXhxcyX2z21D07UkP+MPDwz396gsrjVpSsRQaJw0Cyl5fJhYRHQLXUIWG3GZmfzMHAOrdiUW1E6ef9c41us1TdMQPLgqEJVE8EBylozDz5Eyw9X2BetuxXq7wnUduYk0VihxIT8Qs79g3NV5Y1kYl0Puk6UQeFbg1+nUog273D/AWffC+T6SCXYtUHkOu8t/lNKg6+ajCkU/u7fq+rugJMv3LhD5r3um102LS75H/QJSfv8+vnzGvx2HtRqtIYbIcJyIXq6LawzOaBF2b7ZcbbY0tiHHTHGildBaE3M80yYW1CiVwhwiwzQzTBPHYeRwHBlmT0zpjHporaUIUBc3MSqtYOkDl3wTuaMUGkUKmTin+qwYlDLElPExEVPN8nnGiZ5mL3a3KXM8nPj889fMsWAax2H0PBxn3r5+EnMMJeG2L9sWBYyHE6fHAzpHVvYiyNSA9pm7X7zlix9/TtevsG1Dv1rT9Gs2qw1xvWNYr0kUTu9OzO9GYmiwjQGkmIwlk5XmeBr58vUdXdOyXq8wVgSgSpf3HIGmkDgeBh4fBrz3IrZujNBAsahk8XOka61Yvq/Xco7q+UM5Cg0hzOAKjdOsXWKlCw8xM/lCOCTyylDayDic0Os1Tc0GGmJgyhEVZ+IUmYeF/lG9/I2i2EpVKWJ7qnKhMYVdA72DDxvN1koo43GCGTArg/g9fJOfvXweskJdX+rQ4zK+0FAttZ1zOCf28T5EKDJNF7qNTD6MNqK3i+mMYi/6OFnONEpJ/bXoN6w1l4GJVug6sBEKlDQf1jiafottN7hFi6EVuixWsoJiSDZGwPuZkiLTfEeYD5VulVjsVrXW59DNZb031shyvtgIFlBFVd2BvDc4z4QoRdBrKvOhlEzJS06TwbmK4mRBvJ6vw0sTsfwoORcA4lSn6zMfZw9oUg1C1HrRn2ha14Nu8cUQS8Z7zzyNhPmEmgd0ChXZQRCHmLGu51ePD/K8aFVF90tDBahczXFkHTubAFQ3xqY2peTFyP2CBC3XCy56jK/Sxy5fez4RXOZi6lnf8W+vvb52k7FabdFKPkRMAlWGOTCfRmIKhOg5jRMPh4F39wfu7g4cTgPHcZLpnrKgpBkQzznpGI1VIjA2ii8/v+f+7f+Lw2niH/2Lf8LVqx39ynI87IlxrhxaXfnZgs0ZsWtitWo5HeW9ONtS6lTJWktMM9Zarq432CMM4xHvJ+YpYu2KYqF1K7KyjHFG+Uca3ZLzyP7tRPKBzWYD84wfI+3UkZuOIYoIsRrmVkg5s11vaBvHetVxv3/icJRcDCYkgdUYsi4kYxh9hKcD1IUu58wcfKWhGZ6enuqiryVUSiumEDgGj4qJDz5+SWMD8/yG1jXs+p7WNngvcKNWGVsKSYEvmUZrrO3ZP514dx8hj7y4UbStwuDY9i2n4wHtPL/9ww/55//yH/Od73wb1/QcDom7dwM/+rNf8pMf/Zy7uwPBi2uBriEuq66j71pp/FISz/q6eS/Th/doMOqyICw37Fcbj8sz/37jcWkxvkkbhIEiWSlzTQlOulTnp5lcIofTkRg8q9WathUKoDEyvd9dXfPd7/+Ap8cH3r29I/mZ4/GJ+4c7ng4HZh+wrqZ7W4NrG7bbLUkZZq3pNjtQhWPbc+d/yf7tG9QUyN7TOke36jFOk3IgxVCbbS2THRAXtBhJ9Rm3rqNbrdlsd8Ind5amcXTrFavthjh7XONIMeHHE1oXgtH4aImjos0btrsb1rsW0xWCzsR8JRSJ+YSKE63SJO1J1AldlWE/d7vIOZ05sSJSk2mxmEFU7uuy4D2Dv0qdOistjlRVCX65XLVQlVvqeVOjyGVxj1K8px+qX7tMwN7/oQtUf2k0FFSTgktD87epofhNR9NqlMoEn/E+UcoJYxQvX+zYbq653V1xtd2x6jpUEaenaZpp2uY9Ot0ytfbecxwGHp6eeHg6cHf/wN39noenicGLy6Dl+bWR95FStRW3jqUMUkpJ7kYBtESBGW2IRGKlV0hfK/kvsw+Ms0drSSlPOZNiYBgn9ocj0zQxDBP701se9gPdakVIifv7PQ9PAwYw1tKtW/q16DHmYSQME41SOFMF2TmJAN1qmD2vf/Erdjcb2r6h7Tqapsd2LUqv6Uvh9pOZT3/7Iz6bfkkpIsjN1YgkGRFphxi5u3/g9mpL1zVnlxlVLlqpnArzHNg/7Xm4F5cbrcU90jnNVisao5jGiDKW9bqnce4SdFiD/8SgQZNIGKPYdoZdb7hzlnmO+DEQ9w7lIjmfhH7VOxrXMDuL95GSJK9nnguNtRhjaRpwnUZZXZ/xpVdMtK6wdobdSnPtZFI8RsWUWqJuSRG8Ele+b+qx5IQthhFVclILb2k8YkyAOeslKHLezTIQrmwGrRcLccuSCl1KJqWqrzVO7uMQz02N0Kguz1xKYhO9TMqNUtWkp0Ebg3YrXHslAXzayoBYLYPCemVKxvuJRAKVmYYnjFY40xDCBFAbXH1udKRIKqL7q6OoZaKfS67mP+pZk1F/L0ARK1ejNCGm83MuxJeCUhnn9HlQvQihnyMdMihccpHqJ6n/bq0lRGH1nFFyoDGGtu1ImHMS+jSdJOF7foI4nZsqkH3ixe4FpwQPhydSzerIqDqYugxblV4aHVnHcs2kswqcEUpVTEnMLhRnN6miLna9zz8j9fOcA/qe7W+/qWb76p//uuNrNxmUIuLt6Akh4X1kmibC5DnNM/f7PW/vHnh7t+fpOJOSJikNumXxK085kLKcGKtl0bTOYRsn+7iCyUf+x//2j7FNx7/83/xzGlPt9cJUIa5lk5CC3jUO5yxzLXbCMJBLFG9w5Ouk6Ujsn2SBbFwrE6ZcyNmTsyEGj3UN2hYO4UBrYHPVYQ+J4f4dXO3odyvicQ/7E313y037gqf4QNs2YGEYRoEpbUPbOJrO0rQa5xSPT0+kRmObBm0sx+EkRZVKnKYJrRVN62QRSZEpJaxupUmKkZc3N6SUeHd3X+HNSMyBz778jJe7a8p6w7a9Zdv3bLqeKU7MSfQeSmtKVvgMShuu1orD/cTsDU8nA7qw2Uw4K9ep6wvf+90P+Bf/5T/ih7/7W3SrG4KHh4cH/uqnv+THP/45T48DMchERVcXpMY5ur7DWlf5oRLSlAs02qLVRUj13q3519yov7nx+A1oxzfpKA6tGlKaJUhShuzMwROnPcdhZpxGxCqzSDp8joRQncec4/bVR3z7uz8ghMQ8jaScGIaBKQR8yvQVEVFaCoK2c2xZYZLC1vRabVuUEVrj8VdfEpm52l1j+pZUIiGMxOQxGLz3eO+JMWGsESQ1FYqyrLdXXF1ds95shOOuVQ0sa1mt14wKGuvweCIJayCpTIkaF9ZY1bNpdkKt0CdCDJx8YZhhDiu0usG5kWIHEp4piavQIqJ7fxFbFsPqAFXUe8X6+Y9LL6ov9KRybhjeayXOTcCCoMhUuyIQ791e6r3vKer9iZAgI/o8bXv2E87v7f3P8v7X/duPbw5a9+/jsE7jDCIYjgHnHKuuY7vecF0bjN1mg7OOeRqEMx85T9ovAtWI957D4cDbh0fuHh45nE5ifjEFQpQ9wBh9KZqLuBQuBYNWCzpeXXdKRiE0EM2ZcCrXr16GgqBRfg6cxpGiIOXEPE4SLBYD0zQzjhPDOJFiYvaR4zCjzB4UzNOMMwZTjS6apqHrOhRK2AE54SrtxViNMQ5jwVmhfpQceHr7ju21OE1pY8FcU5Sh2Aa7XrF+tWP74YZwP4pWgUBMHpSgSW3jiOPM8Xjk+mZH6yxt16FKwBiLQoLW5nFiHr044NRhWsoZbQzOCvrkGge6o1+thd+es9CQcqB4TwqB0EBQikYbNp3mgyvNw0ExzaKzOD15bFa0qdJr7Aqj5H3OKTGbRDCZMSViglXraBqNbR3KyNpFhqZYDJHGwa4xXK8NvYM5FoZoyLrHmoaQC7MKBPGn45u4pxgjbAQppiFlfZ5aL0epQjJtwBhdtQFGUCbtKKlmwZRlWr2sSZIAHmOUwUpOpFiTtkvBGQnPTSmLyUcVUhtjccYQQ5QE6rxkY1iMa7C2lXrK6PP7P6PJFenzwQv6HWeCn1jcmFJasmtkuJprUrmi0llLbTGqAxRcch2Ufua+xQXpFHhSNHg5prMTlOg6JcRQVwMR/d6+8xyVvrgyKQVZVym7upiYgAzExHhITnRjGwrigBrDTPAHYthT/IkaFiavjaJxLd/+zvd4Nxzx0UuIXkVeS830WXLdL/tjqUZMWZopJa6L4pSXhKr2rJFYDqUuQYLPGwq5JvG9r/ubfv+3HV+7yRgf3lSPb5imRPCZx8OJX3zxmtf3e+4eHpjngNKWUgwhFeYSiCVDlij4kDxawco6XNvSWi0uIeteuiprOA0jp9PEu88fefzykaxmPAPKKcjqLFaRDQOmaT5vHkop+r4nhFQ9oTUxpjr9tBKmiPSBFE0hkZKEHGUr9mICEWsewpHSX7Ha7IhfPDAf9mSjcTmRYsD6jFmv0VbxdniD1uCsRi+pmrlgnMO5LV2vWfeGx4cDw+jxyTMOA6ZpMMZVCC9irSEmXxsuJZ2qUZBgHEeur69ZDxPONSg0p5yZUuB+/4RDsVNXrFzLuut4OGmZJIEsvkrCCbVSdL3DNZoxFOYAD0/Cbd3uIl0H3/34mv/F//If8od/+AdcX39AyS0PD4/85M//kj/54x/xxS/fEOZCjvIAW6tprKFrG5rGkpIE+6SUyRgWDuc57Vn81y7NhXq/+nu/rPzNN/o3tdkwWuyOcxZbWY1GZY0fZw6PJx73R8Z5IueIc5bVeoNz7Xk6WwDXtrz6+FOOpxNffvYrchD3KGWFxy70mwpZG43OtVgIhWmeIMkG1PRrbj/8Niu35vD5Z5yOD/hSUcfTkXkccc6hKEzThJ89rmkwzomPv3FstzvW2y3WOoxVMjAoIsbruo5plFBLITMVrBYkh9Di0oZerelUS55GjvHIw3TPYTrg/UAMGqPXNF1Dv12h2hPoA2OZSUWmMgUlcHEpi/atQsKcDQQEGVjuiwUip6bC8owOUSojZrFErpNPeYHz5rEgKQIZq7OA7kzMK1QtyLPNDPkZWsnXFF03PXR1y3q+4S3Hf+zG4ZvTqCin0EYyotu2YdOvudrteHlzK/a027XYlJbC7GVSSV7QI6G6GiMi1tNw4s39Hb/68o6HhydmH8T1pggC0ahy1hpkCnOUX5SE01pCxpR65sSC0Evq9U91886F2twv3OrMOI487PecpolpnBiGQQSgWQIt5X1Xm0mEWjWNMxQlKMB2hdHinNj3LX3XUYDoPboi5Npk+lXLZrOi7R3GCH0Lo0mz5/D2Adc1NRRMo/pOpv1KU9Yd5lYolGEK6FhwGmK9r5vOEn1gnEa8n1n1W/pVD9mirSSBz94TvMdoxXrdgVKVLiaDQl21HJ1r0M2WplmhtaGQKSVS0kzxsyRPO4NHs1bgTGHVZTYrw6qzzHNiGgNEyIi7oessrrUyWHOWUAKq12SbmIdAYzWdc5jWUEwNm0Ox61asbIuLA9u2sOokw2bwhSFbydFCkVIgqEjA/6d9IP6GQymkQdCQU11pFkG3UhREM8RyxzhxoSpFXD4VipgihkV7IsYZQoFqRGNWdXUxBUoWGqNSCqsWsfHSIAgtZ2MV20bzEGFEEbNM7Zt2g3NrjG5EkFynxxfrV0GeQwyVThw5DU+kLGHGSmK9xQI+Z6zlveZEdFJiESKZNzLFPyMTz5qLRRS+IBs5X7QmcBkAnVGKJGhIqc3zYl1LEWqSGHskSsqoqgvLVG2Mqu+hUhqpf48u9F1XDSgCfh4IfiDFAyWPSAxpbW4oNNpiXMvx8UH2O63FujcWySNZUIw65EJJM1FErY4updLUy1ljI/EJl/ppaZScc5fz+uzvlxr7/XtQ/Y3//zcdX7vJOHl4GkaeDkdev3nk3cPA3cOJ+8PAaZLCWCsEurSKaRwZQ5SpZOVLG63o1x2NsyhdaJyhayyNWYKSDI8+oXRHCIq/+PNf8PLY8+lvfyD0okqnpmSKEm/nGDPDMGJqN750wyF4mqZjESgZpbHGErMlxar1WCamZFLREDPQYF2DJ/AwP2F7w9XNiv6UCE9HjNGorsFoTad6se/dtXz28HM6XYhO4aPkgeQUaK2lv7qmcYa+axjGwH4/opUhYwizZ5wl1CmEeq6IFX6bJS22tQzTQLwT2+DhdBJHBy2UjqAKQ4qkFOiM43a75c3jHT5oSVs1kiFSQqGUiG4adFdQKVOyYc4eTGHrNB9/94Z/9D/7A/7BP/ovuHn5KVrD3f0TP/nRX/Kv/sc/51c//pxwDKQpUJI8sE23Yr0Wd5eUMiFGliBEo7UIwvUzf+l0gSQvvy/j52edxsIDfHb8etOxfPE347Cmw5qW0S9wo9CgxuPA8WkiZxHGN82KkgvTMNB1Pcq6Wph4MJbVdsdHn36L4+HAdHeHdR0L5bBUwXtdhdDKYDRYFfHDwCGcBEZVYoW3vr3B6YL/xUwKI34aOZ2OjKeh6io8s/ecTidxsGpbcko03ZrV9op+fUWq8Ps0T9jxhLWNbHw5EkMhhhmUxrGlCzf06oY+rbHFMu5PnOID9+Nb7k93zHFGZyThPGS0gt2u5+qDa66uIl3zwFDu8WUi5nRhx6HOVqOlZGKsC+GzkKUF/l0W+aKW9qKOF5SIyFUtKs93WO19Kc85ueexNVqJkwdc7rkzeL1swgUMUrA+f0+o5Wt1/f2bS834j3U8ThO7xvLyasvVdsO2Ez3Bdrflerdls+4v2qPpMrGUYxFYF6Zp5HB44t27e96+feB4mlGIxbk0nJIbs0zsQoyMNTvDmaVbkesTo7js1FKk0kkyqtIHFNXkBJnkx5I5nSbu7h4wRmxo51lEnDVOHGsNbeMwnaZPhd5HToPH+0jXaK53Pdoqjifotz2msaQYOe3FWaoApjWsth3rbUfXt1gtw5qUhPp0enyibxs2TcNcCkdrmIxk4BxUYe4daqWxGFzSNEETauGkjUZZy2nwHPYHtpuetu3QOCALzWt/JARPv3I0nammK0uzJ8XTHKM437U9xjV1Kp5ROaGixxIpVoqzpA1JZVSRoNa+UdzsOqYpCm0qJcqhQGfI6yhJ0FbTta0MDXLAbiDOiVISrulQnSHWSX2vLd++esXWWuLpDTo+olTmFDLvfGFKipUqqBDxZSZqT1Lx1+7Rb8qx0KVgoedcaDpFcY5+iH6WVHmr0E1T7aClCF2GsiBIR4qCBswh0neNiOF9RDWNaISScM6UVqAWVyvJjtElo3UBPCEGUpJnRrcrbH+Faza07RprHVpboRBlVRubLFTieZKGhsQ0PYqVtI8YzRmpTLWhWArrkhNooQctDcVSyy3WsjmlmrN0mTZptdAg4SJaL+e1O9cA1YU+9hzFeH4sAyZFdXWC9/YKeX05VyVf3ndjnWTWhJnJD4RwpIQDJUVZo+q+ZLTmt3/rhySjxGWr7jOpaJYEcoU0I2KrLiYlKUpTUWLAGs4UM5bzxPuf66ti90Wntlwb6nDgUlc90zny7153fe0m44/+/Jf8+Ke/4PFxz/5wIGUoqiFipDbPCWcKRmtWnWXTN1AiMSm0bmhaR9c2QsfICT+NNUlRin1thMM/T4GsNafTzOPbPWF8wlnDt374KUHNJJUJKdUTKWNKPwsKIDy4XP+cyMWjFv/7Yuq0ymC0UJCsdYToiWkClVBWNAQxgHMN0zhzP9zTb14SmpZu3VHmQNs57NrRNOK2Q7Gc1jfcH17LSTWGpApKWUL0srgby263pV8XXNtRjGUYvEwgtCHl2vggE+2QI9osFrCaRGEYB0CmSForXLHMOZJQPJwOuKT4cHPDR5s195stcwoElUVIFDQxOyKwbi39yuEnyThQFuxKsXvV88O/9z1+9w9+l93VDQXN49MDf/GXP+KP/uhf8dOffi5CMp3QLmCMLC6bbY9RhmkeCcuDoxSGQqMzTeMk2K3qecTp6+IQsXTlX51EnJ/oM8qhvlJsnO/2b8xh1RaNI1XHCKWU0AuPexSOFy9uhHqkDTEGUvAkP6PajlKyUBBTpula1rsdLz/8gMf9vgZbOspij5vjudBanHZ0ThBmHt48EdDi8tIYOqMwfYvte7KXZPFpnpmmSRZlYJ5nKRbmaiGYhfPcdb1MYeZIihIeqZxms6lQdhZ/9ZRg3e7YulvW3NCWFTZbwjjztL/naXrH4/DI3dOD0MioQvHghU4xbLhdfcj19haf7rD8nJN6zaT2hJLqffFsoVwmUgvkr3/9PjhbHp7bAXVBMaBaG3IeTMihkUX2skgXxLVKKbEj/0233Hk29ozv//z95vcQt28O8vaf6vCm4HrHi1c33Gyv2PZr+qZns9mwXrVng4Ec069zrOuaEWNknmeG4cT+cGAcPSlXO9hcKUjOVfMV4TT7KEMQraXxsBUFjymjVELrQlb6jFKV2miUSvM1NQFU1rLCNHv2+2PljGf6akFLTuTqLrha9TStw3vPdJpwWnEcJEBrcQ0yztKv1xRgniaOhyMhCNXBNo521dKueprGIMbpGp89PgT8OOGKYqMcLsK7x0dehwmvCvM4MjuD7h0mFZiUGBt42etSLvhUmHzk4fHE7e1E5zZ1yOU5ngb2hxO6RMlfMAqjLSHIfmVr8GwIUazttUMZK+yAAiUmDJnWgjGOrutonQEliKsqis4Ydr1i01mCFxdGa41w/OdCMRG9Ev1FcYlUCu11wkVok0I3kvS9UNZUgW3juGotc9aEAeaYeZgzb33B6UITIyVWBMNllP3mPpOmWjWDuLC9h4xWXYa1ki9DnXKjLs9JLsIqcE7X/5eiMpLqWi+aAG0sq/Ut8/hEiWJdXkqS+3DJuED2Gj9HSRWP8rzYtkNboelq0+Kcw1b9x7LgLs9TyomYg7zXEsjZY1j2/uUn1Z+22MA+WzPPe8Ci93k2dV/QDlW1e7DQn+T7UxYKuRhFVItyKo2sSFMgaeXy3otabNG/QjeqNNsLki0htLnWNoJ+QNtYlHKcssb7ieBPxHAgx/lS6xTZdW5vblhfv+Qnrz8npHn5sGd79uXa1lVQrmWlRJVchwZ1f1p0FcswbalFFqTiecPxHMXISwr40lFRf//K43EWoH+N42s3Gf/1/+OP2Q8TKUesMdW9AAqp3kTSLKRQiLOmbyzdpkUZi3YtaEm0Pp0GxklcbVadiMe0ErvZKSxFqOLw9MidUzy9C9w9vGOzWvPpb71iZubucSBmB0phqDzbvHxwmc40TYf3MzH5mt5ayEmm6sY0WCs+6VqbqhkJpFTFhKpgncV1hjlF3oU9udlx3a3ocy8cw6ZQjEcbS6cabrYfUFTh/vRa3k9IFY60VYwjjUFjNVZLeur+ONI4gyIyjCMxyUJcSGgSKiWszVztNtzfP1HObjki2HHWsupvGMeR0Q98MT7io+dbNx/z3Q8/Ylbwq8d3BDKqZHSS5qVZG663DeNjEPs5G1hvHZ9+7xW/8wc/4MXLFzSuJYTAL37xc/7kX/8p+/2Rj7/7AV1vcZ3icX9gvx85DZFMJkwzeRwheaxVNG1H37Y0VnF11bJZS6jg0+PI8cHjx0zJUBLILaTOsOVzTuT7zj2/Ae2oTKtvyiE2yZFUJkFiimUeA8fjkZurT3nx8gW73RU5JU6nE4+HPeM00q+3ADUg60SXVjRtw/WLF9zc3ZMVBB8Yp5nGGpxw7ATirony5ExLRoWJw3FmmjvyuoeuwZFoVj36ZLDO1g1EzqeuhdYi9BNf7UxX9U4LRzMEz+RHsIq27ylQRa4ZZzvW6xvW3TW93tIUQ5xnjvs9T48PTHkkTp5wlAZHqSVwM9B1huv1Nbfbj9g1L5jKijJbWrdhbD7jqdwTijRtKZ3NkOW/dcP9dc2DzJHy+d8XoTCoKhAsaqGdXfzJlnuwvPczpKlReUn//nUkbhH75VLdPOoLnmlw5f0FnQrl/2091i+uWbUW2zr6fk3fr9luNuy2G5wRqg3LpBaN0uJquCBVqXrCO2tom4bWNRg1nrnWKT+jULDwtDM+iMTXao0z9uxyFlNCZRGHS7aK7NaC1tXNvIAy4qgTk+SngDrbYW63az784BWb9YqUIuM4orVitRLXpuE0UJKI1H001eQjQBCWdb9aoUtmOB45HEZCLlhVQNVGo29prcEWcFqjcmKIiaQjm77ng5uXdOs1h8HzF29+wUkjtA5tUeueEgtqtuhZU8YsjVKGAASfeHd/4NXLrZh3NC0ZmMaJ42Fi1Vqclft/tV6hteVwPEoqdClo5ereJYOHlBMlCdKw2/ao0rIfjmJraxQlCR3MKEXrRC+IsnSNomTR3RhniVkRQgZfsCuLblq5NtsMRdNNGtMqskGmxzmhSoY0YIrD4vElc/KJt3PmKcEmJVo8KoJySONYqZjwjdpOAKqOsSJDCEomLmaLhiJWMbeqgXOCti2UYl3zHLSRiX6ICaUvzxJQc0Ig+xNpHknBP0NiZa0WK10Z6IRUiNmitdByOicOnRLMLAGTiirMVuW8HhZkL4lBaLfzfBCSV4ricrUkU5caklgbIlVdsfSz8/IceXhPoP28gM65Wt7KfkBdn8nSjBgtSWZKVaVfqftqzhUlKpSUq62zODwt53NZX9SCLOVYG4y6H6HYrLaYZs0xFYKfCf5I9ieI8WJCUgpN2/L9b/0AnwvHozjOoWWflgDYUlEMOYvy+aqdMRmqmYJWha9SnS7nK5/P04LsPj9Xz5GMc3PI5d+X44zcf83jazcZb48BnY145VsR0tUWSRYLp2iNxWqwVnj6plmTikxJ5ujFWnCeUQr6pqFfbWiaTjixxhCGozQB1pLCzHA84JSI6/4//88/xth/yM23dgIJlowPGafLGV6TQ53hQWMMKQVySeeHThXxlG5cR8qhngUl2owCIXoap9Emsuo6TsPMw3FP7gqxL9z2V1y3a0qKpBwwacY1G67aV2gcBXga3lEMjPNcO0slgTcKKImuMbTdls26Y9u3dE7x+Kg5ngaZ8mpbvzYTUyKmKNOwEDkOE6lqUkophCDZGUUZPIW7acQe7/jht79Ht2mZ/2zg7TFRNChbKCGStWe763jshKq1Wml+54ef8A/+7t/hk5ffpaWDWDg9nTgeBr733R/wg+/1vPzgA7pVw+PTHW/fveXdwz33T4/sj0N1t9jSNoar3ZrNesW67+h7yWVwjQWVgch4mni6G3l8N/HwZmR/PzOPiTBlwpSIUSZcZ6fpWvg9f7AvD8g3q1JTWpGyUNd0sejUMJ8iMSW69Yqr6xu2mw1+Fg7waRwFvfAeYxtyihwPe8Z5ZrvbYI3mw48+4sv7I3f3d9zevyAFz7q1NFomWd4HFlFY1xg+ut0yTDPTNJIah92saK2leXFL6zTb4wbyzBezRyuFs5bo3FnrJPCpYr1eYY0mpFiF/JFxmsgmsw07lDaVKwrtes3V9gV9t6XRDWGcGU4nHp8eeNw/0GwtXdfirGGeC9SgKFVg02149eIjdle3uKYn+hmXrrAYmj7jGVm8zZcF7nk/8VyUB7/ebLwn4C4LoqHODepi6/jX80zPZKtfu9vOTcOv3wm/9vdf7Yf/XXit/7kd1x++pAkTucDsA6suS4J315FzZpp8RZuFImisO9vXglxTow2r1YrtZst6vcbaE8zhwtlWgmosxUgMgogtDjRGLdaOFzFsLpUWV5turcWj36cCWZqR5bqKjauWUNjGsl6vuL66YrPuCcEv9vVYZ1naWAU0jWNdxF508h4fMu1ux+7qCmc04+HENFXv/JyJIZ8HVn3X0mlLozQ6F476RPKBlApdv+Lm+pbvxMgv337JXzy+ZWqMhLP1XaWqRnT06GlCjRldJIRsIvJ4mHnz9ombzQqz7UWQXiCGDK2GGmJ2fX3Ner1lczjw5s0bpjlgXYOpWRslZ3IMxDChSqDvNyKj1xK+FkMm+kCnMtZA3yjGOTOHjDGKtnWV3lOFtVExjZnsoFmJlX6jDKwzZirEuAijE41WuOgZD18wBEuKE1NIPPjCXYZZafogVtuNMjht0EYRzTeXLgUQkwS3xupollM5m9vELI2zc45m0XlW9yhxhZLrWLISXW0qEMMZXThby6bINBzw8/ReqJ1SVvKT8pLsrYk5V4c/I4NCLI3rsaajsSusEU2GNs/1GKLniClWy9bIOB5QJVNSonGWEPMZuZQmqIqXiwwG1G9YV5fJ/FeNQlJKGC5DooKqugY5jLoEBpNLFW/XYNgchSmzHM/3llJ1F7VRkX8utaFS1ZakoNFcba5QbsU0evx8IvsjOUxn9EFE4oVVt2KzvebHX34mhf6CmOaKPCkpt9XSSNVrdtYoI45SughlbGkojJHGbWkunjcgy35/eR3RTi90Yip68v6+dXHvukx5/+bj67tLkesPN/KByWjkAlmr6RvDZt2cO+qcYJxmZh+ZQyIUgaTl4mr6Vc96s8YaLa+bM2kOZ/g1hsA4CjXDWMXDF/f82R/9iH+8/YdsdjuGeSQQCTlSKJjKFywlY+qNaIxsFClHICF+0f4sFNdKQmgEIluEn5mYPNN8xJVE2zSUoJnSyMOQ0Mbimg0r12NKQKWIjRHX9Jj2FlUKfp4I6Q7nWuYgehWljYTXyLskp4AzsNt0NPYlq75lvz/y+LgnhECI0mCQI/ePD7RdzzBNlYak6JqWlDPDOIruIRpiTtBaHuYTf/XFz9muNnz46v/P3n89W7Zl6X3Yb7pltjku3XVV1WXagIQhDAEhKIJOZDBCz4pghF74or9KT3rmC6VgiKEgO0gqSAQAEkZAm+qqLntd2mO2W2Y6PYy51t7nZN6qW41Gd3azZlXePLnP3svtteYcY3zf+L5LDn4khUwyFTkmOt+zcEsWjUMR+K3vfpO///f+XX7ru79JrVqGbQ8E/H7kg4uP2Vc7dvsNLz//IZvdHXebLftuZL8f2ez74gqdcZWl1QvwmRwShITvIofdlqwi2oJrLHXjePqtSz75TWk6Pmx7trc9m+uOuzcd25uR/cZz2Ab6vahdKBQqKUk+HlCs3qdgbeoByjljsOjsiEHuw6qqaeqWqqrIKYncoLP4XiZ16+RcgveEmGjqCl1b2rbB6D1dd+DQdbS1oSqNrypPyhKSGBhjWLY1jXMEH3FWKCHGQHaWqpjpLRaLGWXjZIKeEziOP09z+sRhPUqzSjB2hLLfXQqcmULvohnlk98fryIT5j+1XP+JvuGpEnO6EPxJtvPr8ac+6vUZ/i5yvdkx7jyta6SgEkQtarPZFj+KozuxNBsf7zFltDxjzqFNMeOjqNNEaXY8Fp+YucdqqgoaShItFXcBmGxB9RTalCosIrNOiISU52dtaj4XGrAW+qyT4lYI0uuXYiJ5RS5KOIu2ZtHIue4PHa/fbDiEkYvVgvV6jUIC8JRTqYhmum4Un6kYcZVjUbXUSoy/+vXI7WbD9e0tu67jqXM8ubzie88+ZtMf+LTfEpTBWUtua4gek0bacWSRIflMDpKQdT6z3fSkEHDakI2lcg5nnVRNi9+UtZa2bVEKdrstPkbQFdpalJpkcr3QMX2HP6+xWpgDSmX86In9iLaBtrbUTmi1ukhjK0rxjCz7jBliJHaBarng/PIM11hSjozdwKuXN6TRUxmLS5GlUsDI6EXhcDMkXvnADgncnDZUylJr8fmQ9t33uE9KTQ3TmRggRjDaSnHIizSxNqb4Y4gP1zxnl3tV6Szu67PhXqKuahIaVyviYVcKL0K/0lqaghUKU77vrusENc9ZEOws20nKkbQSY0PTCK1OqXtryETf8UHUzUIcCOHA0O+ARMqBIODUXLiZ+ywmBGeOaY/I8PESHWf2CT0uJyAqT0oQySnQFqVLM0v6xiRqadN+H0q6Km3e+lrSyaKVTxYyQfaE4rZenROypRt6xnFHHDtyUbc60n0VzjXc7Hfsur1sD03OkhTmguiIrMMRnQ0+SPN/hkrLPDXR0cQo0dw7vulcJj+s+79Lpf9lunYn1/beqnlKnfp6Bd6vnWTUlSNHUbnWKKxxWKdZOEdlDa3TWKuIlOa6PtD3nhAzPkHMmoiYslilOWuXrJsWhcCbKSY0mmWzLBBUIvUjMctkZ43j9c/e8IN/9SO+8ze+i6ksI16an3UWVGGeNPSsLGOtJY1SBdUntInjjWzKezMaTyaIp8UYpJ/CVGjjSFnTxciXN8+p3Bq3vMIoRfIDOR4wWdHUK9Tiit7vCRtPSBtSZcVZORblGlVoFcWkSaFZtBWVu2DR1CzbltvbDbv9jkMnrss5BmK3kyobGqXkPNerlUhAxkTlMoREIDPmkf7uJR+bxKPzFT485kc/+4w+xKKwAihNXSeePTvnP/z3/w7/1u/8DpdPnlLVS8auY7/ZcPN6ww9++FNub2549fw5MQ9E5dn3HZ1PdH1kHDQhCHdTa0VddaKyZTSVqsEEso7oKqKMaGK3y4rFUhoZLx6dsz5bcf50xcfffUoMkf4w0O16ul3P3Zuem1c9m+uRzZuB/hDJEWl2i/eD4fdizMH0ae7/Dk7nOz4G9+HL06HKa2W+4R2/5a2XOO0POE4WqhyfUpPj8VccV+bB5+cPU2bHByfw1ptn9Gk+gre+qwJPv4P3ef+ofz3+Mg3dtHS7HZu7N4zZ8uTyEX3fYzXs93t2u8PcN6GVPkExynNU+tT6caTrB7qhF3l0rUU2GuY+nanSaazBZsUwjqQsIhu6SMjmLImFogQpETiRJFY645yFiFCEBBAXxNwWsZEwsj/scEYQEmcNWYukuVaa1ljs2RlGGwY/st3uCRG6EGlXS4w1+MGTfZC1hWL+FTO77YH9fsfF+RpljdB02wXrdaTrB7788ks+//wLvvHhRzRVzUePn/Lm5ppNt2c7DiSEdkPbiMGfF18FfRgJPhVJ3EwI0hBfW0dlLWfrNW9eb8g5MYwerWG327Nen0shxWpxW3cNrqpRGpIfCcPA2PXstlue68jjR2f4JD0DKQjFMxLRTU3tFIsmoauWs8tHxAw3tzfs9oe5kquCIBXNk4pvfPhNHj++Yu8PvHrziu1hJB46XFPj/EDdCd9/CDAMiutBcZ3AG8UiGVplqY20tpMziUhW73GSUe750jYAWQwE+1HiK5QRRIF8X9o2T0hExhqN0YogHpYkIKSMEX6gsCKCR08JilISpGahnHZdhx9HmaILomGsAxTWOpTWWFtTVSJhrybN3TJSlh6ImAIhiTj0MOzxfsBZEcTwMRThhdKLMXljzGwGTpKWY9D8sJEZSnJQEobjgeS31p976+0J3ephz4I61qqkUFESoAkNutfbUNZpoxV1s+A2wDAcCMOGMB4gxmMfJdDWDevzM17vbhn8IKIKWr6HiaZpimqhLkWPTCLHgEoJS8ZphUqCdp02nc+00xMU45QJMqFTImE8mRk+KBp+5dr89cbXTzKsQmmN09KgtV6WJjRb3CNjYhgjvU8c+pFxiMWBUZebPs1UJWMMi6bGlonNasMYwdVL0frWErzHoWcYvHTQx8AQe77/z77P6D1/5e/9FZxxhOiJTBe+ZO1kXCVW6d6PWFsV2bRQFpGItVYav30qBiqTRCFAIsSBFCP96FkuzqRRKgd6P/L87jNQ8HT1hGbRkHMgamkWreol52cfMuZMUl+yG2/JQMzCqJuyz5RVUYXIGKuoK4c1mrqyLNqKu7uamzvDZntHpMCBWhV4LuH9wHK5ZLVqudtssUaQGR88JEVIihc3Nzy9hG9+/BRrLT/88U8ZugOoTOUyq4vMb//bn/Ab3/2Iy8ePcYs1Q3Lso+LnL17zj//J9/mH/99/RLcfWLqKi7NWaGAjbLpAyAqlpPHdaI1xmpwsPitSCHQpChqjFFW9RplM7/dgPNodcE2mbr+kajR1Y1ifLzi/OuPi8ozLxxc8ffSEp9/MAvelSH8YuX3Vcfu64/ZNz83LnrGLhOH9WSBmWbzTB3T+8TTROOE8ngTopUhxf5xs6u2E4O0QXN0L7N9N5Xnnfh6ey0RNerC3qbl5nvTfsQt17+/T5ObBtqYjnBKN6djKoasHW7r/yX/98RUAyy/5zLFr49fjTzZcvWBYLBmMoT94dvs9++2O5D2H7kA/jKIAZR2rxQLtnPTRZKkgGjJ+jNzd7nn1+pa72x0xyDxZO8paIFVfH2QdaqwlpcAOaXZOZJRRtM4S/ZEUJ/9XM81uWldyBhMhz8nIkW6Scuaw7zm0PZerNW3dUFtZXq2xKPSMNILG9SMpKNarjk1/wGrNMA4cdjtCf+C8UozKkJXGKo3vApvbHZeXA6tFwloFrqKqa5aLBZvXr/jpj3/C9779bT589ozH6zN+4/FT3mze8Pn+jl3aE+sWYx15uUJHWCpH1gcOBy9NulrO2VpD09Y4V3O2O7BYvGLfDfggidn1zZ1QozR0owftqOoFq9UKYyydUQz7LUPfMXQdr195Ugw0C8tqUaOtk1JlQfgra7g4r6gXV7TrC3ZdLzTq0ePHIGrnUYkaZJd4dPGEjz/6hD52pJT57LMXrM8bLq8uyNs7Ur+l7wIxGA5ecZsUg5Wm/UZZKgw6TVV4oUm9SzjifRpTRT+WhnpVXLClsC8eW0qJ0Zo4fxdkDom/FIph6Ev8pUtxVQR4sjWzUVvMCWccddXQjyPGOkLZN9oU7xNhsRAzSlsq12Bdg3VL6qrFanGKl6Lv0ewtZUnEY/SEODAMe4yiCMGIIpT4Ssl5hRCE1qh1kRFPs/t3LutFEvixuL/nmeY4oxlKeu9ioR5OQ2TXjwkJSOI1UZ6mPrr5vScJjdai3MhJUpNOkJUJKbXGUNuGw7an77fEYQe+J8cRClUYYL0+4+zqih9+/jOh9iuRJ8kl1lPFkI+ciz9TnulWKkeMFo+Po4memuWDp2RmSjAE3TgmUBMNOaWIiA59RaHznY/H13tmvnaScd5kKtfSVJbGGRonLt0RgfF2u1F4lSEzBghRCWqgc4GryiSuFHVT0zYVZC/qANrgU2SMiajA1hWqMnRxZNd1tECtEjaOqP2W69fXXJyf8+FvfoDPgywCqjhbpkxWimEYOLoDC0zqs1jZ65Qwkq7P0mxS7TIUe0gxtSkQm9GTxrLBOcWuv+b2UFO5lqvVE5btBahMyhZMxWJ5xUXOZKNJtwl8ICgYxgFttWShWVHVNcEHQVnKsda1cCrPz865vDjjxcvnbLZ3jMHjU57di6umYru7o22XhDiWhvZJ31P+dNHz8zev2HYDjV1wuT7j+aEnJrB14uJpTb3WJJtI2tCPmd0w8OXnr/hXv/fH/P7v/4TdbsQqBRpCzGQsMVrRfs8W7SrxUNAGWwz5jNYkHxi7DoXIOFbO0Pc9w070vLVeMBrobEbZjHYB12xw9R22zrIgnS1Yny85v1xxdrFmsWx4/I0LPv7eE7SC/aZnd9uxveu/7m38ZzjKg3ryyrse2imgPv5q1tWYPz+RhtKDBCOffP50o6f//eqU5MjrvLfNe/uYZtm33nZ8eTp+8nzMx+0fD3De7r0DPp58nrON42fz/J4/WQDwpxM2/EnSkF8+/vTSpL+YQxlDvTqjefSInG/ph4Hdbi/SsMHTDyPDOFBVNZWrqKsKpSwJWehjTBy6nlevrnn+8g27XSdzuFY4Z7BW5tO+96RBChUpi9fK1IODkqC/rhWp0iIhnijI9okbLhMwKBxx8rERMycJXlIM7Pues7MVSmuWyyVT5dRaUxRssqixhYTSHoyoSi2XS1Cw3265e3NN8h3PrhZ0fWS7F3dlPwRu3+y5uNyyXi1Esc9obF3RLhbUdc319TVffvGcR+fnnC0XfOuDD9hsbwljT9/d4RXodomua8xaYXVFZS1hiOy3PYddcQ5Go63F1TXOVVR1y773hUMOXd/z6vVrtDGMMWHcgqZdcH5+Tl3X9IuGseu4fv1K+iesiL6QNIuqprIOHUdU6kEZtDGsmpbV2Rm2WTAEKUzNleFSnU0RNq/v2G8PVO0Kk2q0duLbsF5zcX7FoR/YR83Qa7oeuqjYuUyuhEUhVGrwSSgrI6P0N9xrKX6/xtTLMAXrAv4qrKlIcSQET44GWxnxc1C5UHYnKlCW/rkUSBESao43yBBDmJkkSYEyjna5Yte/kWbnDNFHXEmQQZSfBVC0VFWLMY14ROlKZGsnj4w81cak8h6DmNB6fyCEAaWV9CNOvRvlnOdAN0bxCsvHoH/uDZF3zOhLyTHmtcaUZm0x3EPONUXI3ENGJLnKTI6HE9Oj4PzFi+REBjZLM7jMCdMqdYLsF+WlpmoIIbM9dIzDgRh6keE9Kd41Vc36/ILbw44YQln5FSnGmb4llM3yGSUoRkqBFAM2e0wpiMTS4zHXNUvx8hTBMGZ28ZDzmJWzEpNU8XRvvN3s/TA+ePvf7xpfO8l4fNZQVcU2XoHO4APsOlkQ+jEQoyZFTUYTVZH0CtL1bp0BVZr12hbnimwrmZAzh3Fgu98RssL1LcppxtET86THLZAaEaxy/PT7P2dxtqB6ZPFqJKvigpgt2dzn7MUY0VbjnC3SoomcPQqRs5WGNivSalEqJyl5cVrVlrbW7Hd9qRAACTaHa6xtcPWKenFFvVgVKEtTo7gwcq1iGEnxQD8mjNUMoWfwXtSrrBMO3Yn5ySQ5BrBer9EG2rbm7u6WrlxnHwP7bk/Mit4HaZQPAV1Uq2RSSpI0kdj3Hcuzlt/4xsekmLi7uWYIgfMnF/REvnxzjVvfoWzi1est//Kf/T7/8p/+Hq9e3FBVLbVVVE6Dc2hjUVlhksJqi3PFdAeRVZwfvJLEVa7GNTVZwb4bOZRm+Mn8SjiRoh4zmkpucAum8rypDphqg20iTetYrGqWq4blWcv5xZrzizXrJ0s++u6zr3sb/xkMuQekV6GMMsM9DMSnfgPmCeRdScf9bf9yHIMjSHIvcH/wltOdfdWZzMjJJAd4DPhn1OGYZbwjo3mYxhzPOJ0c/HR17m9A3Xv/n2j8m8kPfj3+FEbK4OqG+vKCcRjZjJ5XNxuW44hSYg45DAOVD1SuZtEuMJIrEIIkIrd3G97c3rLbHaS3ToMxUDeWpqnIWdagrCRBDzlKwyoUusNEvTJYowlJKB1TZXSmVmRdEoTjXC29V0XeNsbZYDR4QctlXqTwrS3WaGKMjENgHAP9MNCNA2MK6ErUGrv9js3NNcZoLi7OWY+R+PyG3WEkevExeP3ylrPzNXWzYOFqTOWoFy3r1Zptd+DFqzd86xs7Hl2s+PDZE/qxYwgdw5cDz+NIzgHtFjRNS7sMuFXPsq7JKbPb9sQQ2O17Dn0PyjFZU8WYyVkXuq2iHzwh9WjbiMjHcs35+RnL5Qo/rhi6jps3r3Fas2wdqIBGsawbri4uqKzi5uYFuQR2bVOzXi4YsyaUYDTFVAzMRLY2o9jcbPnxD3/Eb/21v45xplTzM82ixbmKFDNdn+i6zO6QGBXkWpdq75Q0KpKCpGFUEHNAje9vyp9K4jvdr1obYohEAs5VJalGVLumqL4E23Vdk1KYG7mnpuKmbSXe8SMRYWCQ4XDYkzMcuk72GYW6h6EEt3KPi/eViApYV+Fci3M1xthS6VczZUqM4nL5TqPQrUJPziKGk1NAWempMlrLc19VKDIxJCjUoSNVqkj1SuX62IhcntFpzOIeJaAWGPTom2GMZvJwy6VPY0pqjdHztkTMIM7bzQgyMh8DR3QfCiKCGB3e9SP7/oAftsQwULrkKTq6nJ9fcHZxwc9ePp/RmXlZLiiEErgHjcRNIUrRW6uMZUI2iuP4lAiR5hj4XiKQs8Qj020yQbJFUeqr6NqnvW3HTX29Z+ZrJxmXy4asRcnAB9h3nn2f2R8GUTtyFcpaMsemLW0NJiuMohgIZRZNxfl6KQ3ZQUzoUoaxH+gPB2KRC1TGMnovCMfgGWvL00cXnJ+fc7ZaE3aJ3/9f/5Df+bu/yfrZis53xVAnl9MqN3m5CWIQGbKmrhn7g3xJxcxucgfXpiYjkHBKWhzCdWK/u5PvAUPOFoyi83e8ug2gLEpbHjcOW7VCHyq+GCulCMkT2XK3e8Ou28oXqyVTHWIqjfIn0qHIzT/6EcgslwuqyrJeL9h3e/ZFt3w3CH9y4h1GJJmq65qmaWBQeD/Md1JKgbqF3/jGM15Vls31NSk7lFnw+fNruv5naHPGj3/8Kf/in/4Lnn/2HIISN1Xj5LvVFWhL1Spsa0pVMaKzfL/OFBg6QddHYk60VYOxhu1ux26/px/GuUo4/a1Vwmh/TD6KQ7vWDqVatM1sXUS7gHa32PqautHUraZqDctVw//lP/u6d/KfzTitxR8L9vktcECdzINzEF8+esqsmhYN8tuJxr2yuCr7VseX8un7ThKLKSGUW+Rd0fi7J5H5PObtvSPDUG/98JU5zXReDz8scP+7PzRVrd6XcYo+/Xr88hFGT902tOszodS8vKF/8ZyzphYpS3JRl+qxpmK1WAIyx+33e7aHHdfXt9xuNiSdaZdNQaM1i0VL01SEEDj0XoLKlPAhElPGaFNkQaeERaqF3oscs1JS+VUn96TQNKbKoprv+5ikym60AmuYHIVTzoUuIiaztjKooIq/RKQfB/YHkXPHaKpSKPJdhzOaarnELhDRlHjLfu/pfODl6zvOr85ol0vqsxKYORGHyFpxc3fHq5s7PvnwCZfn53z8wQcMQ0cOAXv3mjc6U7cVV2eXnFU1zRjImw1NW7M/eD77/DXX17e8vr5htY6ifjd6dvuhqBc5UlLlWkCzXHB1+YinT59yeXZO0zT4uhZk4eoSzs9pm4bt9gblNzy9OOfR48eg4PbutcQOSejWOiecBqsyi9ZBqtjcbegOI2gjcrwh8qM//BE/+uM/4vHTJxz2e5aLhuWiJoziL3IYofeWkDKq1izPWmztGfuIw6GcJZpEUJHgRXBjqvC+j0PQvXhUfEJ6LEIIjH6gqWuRrT1plIbJNTueUGCmtVXjx6FsC8giwxpKQ7Lve8a+Ewp8CPPaYKz4nxxriEbM+5SVJMNWs9Ln1McwrQ0pBXz0xBwIaQS8mNGlKAbHSDKSOfF4KHK2R4GXY0N2CLEkOsfv7bT6LnGFJscSE2aJVVCpzAciYjRdq5wT1ogK3OSgnUmCoqhj78VxTDjKFMRPlX7xJTFK01QNY/DEeCDGAyl6keIt62dTNyxXa262G8axl22Uc4gxkCmKUhOmr2CiPsUYcTki4lFpfk1RZNbzfWnf+fMlxpqbvVMkxoAiFVXT07Le20jGn2R87SSjbdfs+4FD37PdD/R9YIxFMSonVAyQEz6KWV4u0Ix82SLBZbSiqSx1U4mVurbidN17+s4ThkDWGqJw8FWMKO/JGqLOLJqGs+WStq7JGbpNz0++/3N+q/0uq4slqMgw9MVsyZRA1RQvDFHrsNah6gXeD0XtaqrVaMBgdEtSIs87KXz4WdpLFy6fIeI5DHe8ufsCaxu0s5ydP6Wpi7KCslT1mvXqGSl6cnaMIRBVIiJusLkgDuM4zg/nZOYiknHSjGOMomkbrDMsFy3LZcub2zv2Xc8wBnJ2M7Tvvcdai9EGp6r5Rtrsd6gUOT8743vf/g3+qPNstz3G9hwOe158+RO2dyM/++mnvHz+nDh6Gluh0ZA0OWqGHMlaY1xNvVigrGYMIyolKmdFwlhBGAJj7zE5U7U1YwilMTPND1EIR8nA46RUVF1UxuiI1qMkHt6g+nIv6ZbRQD/TrCK23v+JH4A/7SG8UJgfVDWHzF8FT5TfHicCkekr92U+4gXzx+9t5h2R9vzS2xSmaR9fAzaZqSL3Nn2y7dNd5fm/+cH7T+AKvrpJ/7QSdPqOf00s4093fI159tdpxtcbwzhgqwpb1dSrNXebHf3tlm6/p3GibKO1SDDWrmG7XhFTYBw9m82WzWbDze0tPkQWqwV15RgHTwxJJFCtxseJqivz/+hlXXLW4IyGDP0QCg1RArmchCqLLQs1E6JXwIo54CltleV5rxuHUg6jYQyBwQeUMRgtylIJUTlMOeFTYBgHdvs9Q9+zPr9g3Vb4ERpn8ONIChHbNFw9OienzIt8x34TuL7d8+LlNcuzBW1ds6hqtDW4quKibQkJPv3yS7754VOuzi+4vLjkw6EjhohpG3483BEXNZdX51yur2hQ6N0di0VNtx/YbTfsdjtevnyJT1F6Y2LibtfjXGa11NggwY+rK5arNU+ePObDZ09o6qqgPdIQv1yd0RQvLE9C7XrOVytWywU32xqfIIyyJhy6A91hi60iq9awXDyi78/ou5H+8JqUozSMk7l+ecPv/d4/49u/+W1u7l5zfnbOermgP/SQFdYtsZWXAHblaB8v2auOm7AhxkTPgLGKrCSxEUn+92SOecc4pcnmLOpBlXOlCl/6SaaG7VwIN8pIxT35EmyW+V4Z8ZAp3kBCFxLEYhyGsj1JToxWGFsJjQhJGpKSgFQBtmowtkHpGucajLFFEvZYJIJjUByTJ+XAMOxIcSD6sSQZBdsuykiVLQl+zrNh5rQ+CJoja8KsFneaXJSqnVaqxGzqpJh2XEBPl7yUTo34lCAn5Fk8SPZ7UmAAjr5LeUaZ7ikzIgjI/rDDH7YweFRM5TsTS4Wrq0c0ywXPb94cHchRJ9+3oA7T90ShvgWBMjDIMZ8mlg+NS4/HPG0rQenTEQqixLbaTuv0VJzneAz3/vV2ovXLxtdOMroucn038GZ7EH6mEudPrS1NZVnUFTF4iAeSiYhswTSk8uGMoWkarDnKucYY6TqhAaUslBsiZAI5jFQ6s1qvePz4kqvLM6raIri5wuWKzZc7fpB/yN/5B38Dd1Yz+INoHqdMEt/3AgcVeDwEjNEYYxnGUShO+mgcY7QFC6OXxcf7QEakzmIMWOPlocgGrCEpz+3uubiRojCXNVUljX5KOZrmUni4WTH4Eb//HJ89hAIFKiWfzXIDGl0mgVJ9CCEgVvXS1+BcTVVVVJVjf9hxu9mz3UdSgpgQM8MCk2pj6buOHCGi2I0D9djz7NkTPnz2mJ/9/Ate+y1Vrdht73j1/JrrV2/w3lNp0RB3Rssx+cS225C1BVdRj5GmbdFWY12NrsUkSSmNZaSqR5QxoLW40noPWvjJU+k9FZhSZNfSSXX/uJALRzAXhAOMGt+mWelfQYn5z2Sok7g4zz+/BV2eJiP3X3zHS3LNjsH8L9z7vd1P1LXTd7wrdH8rAThCLPeP4wjI3EsiphTj+LtfcE73Du8Xnde/ucX/4VV553veM8TkL8uIfiCkBcbVVMsV9mzNYbOju9kTfSxeQEI1Wg09+/2ecRw4HA7c3EggfOh7tDMlyahQHPDKF214QSn8KG7H02OXs6g+GSN03Th4QbJPqn42K4zOYsqnJj8NqWiKZr08ixLbKarGsVwtMEZ6PLwf2B/2xBSlWKTAB0UYPYdDz6EbGL2f5STPzs+4OD9jPPRsVyuub67p9nuqIh365Kkmpsy+9+yGyOvXG1brG9p2iToDqxSuqVkuluy7kVev3vDpl8959vQRjy7PuLq8YuxHfI74g+G2htWiZX12Rm1r1KIhp8CHHz/iww/O2N3u8ONI1/coDFVV4ZPi7k5UBSunaWvD5XJFs1hytlpytqhxlWEYBvquF5fvuqZpFzN6VNc1xlWkrOhD4NBHlApSLU4D280N61XkfLmmWZ/RD4G7uw2buw3jEBjEa48QE599+hNi1eFszXe+9VtcnJ1xmzJNu2RsAnHoycljF5bV5QqCYrPZM/QjRicWphJDRrfAWWksPo7364FPRS1o5sUXtsjUy0lhZJAVcaLSaFETM0YLVz9KP6exTtSNAJQoTKWUyF4kZOumJceANa7M7Voq3UodjVAL5cy6Bq0bnFvhXIstSMapeiekIrojz1mMnqHfMgxdcYUXlMBM0HvO2FJkCCFi9NRvcay855xFKS0jmX+Rk1PTupTz7Io+X793KCtN17OqRPZXRAY0KisRdyhIzCnt6F7fyPT95JN+GcESpLggHtzk2JPiwOQqDqCtZX1xzj56hjgW+rB8h0eTwTwfw4RnxCRJjSHjVJqFgMipFPOPCcKUGMFRIUuSyuKjESMkUV01MyNhkrI9JkzT2UoB9FdH/L52dPbF62s2XWTbSROzQUnyqRWDjygdqK3I6tksus1jiGI2FEWmtmkcq+USawx+lIvuh5Ht9sA4+nIikxpBxBrF5dUlzz54wtnZmroR6daUo/hpZIcmcf3llv/5d/8Jf+3v/haLi7q4A6eiLGWlkU27Yo4kAbu1Bu/FEEYrx2Q7L7KG4HDkIvOnAGcrxnEo0oXSKBZTBhW5270k+YAmYbTm/PxjKrcCZTDGsVhcoihSuWSut5/SpQ5r7ElFv+i7a/kiJ96hMQYfRshCIco50TYrnHMs2obVcs3tduBuu2e77whRCQUgJhZtgyJxOAQR5w2R8fqG9eKci0fn3N3u6Q+K3Zs9t7cdu+staUxU2lFbR+0qaleTsPRDT3/opZJnPDprbGled6bGZENKiiEn0iBSdMZZuq7j9vaW/eEwn+u9JMIYVMmicyoc5ySNa6Iqxr3PHGlWCq0SWnveryLUHGK/9dp9yHGqdlBAjvuQ5kN0QU2ff4guqCn9uP/iPR1s3hFQq/vvefeZTEjKO85x2qA6RTHeOrtjRQXQv2h395Kv0w1/HQnbX+MHf9GGHTwqRJLNGG1Zrs+IjweST/Q3e6KXwOasqslKceg74j5we3vL3d2OsRRoVqslVdOIQStTZVPjvac7jPS9v1fx1KrQKHISV+pCmzilQ+SsiEIFl8qs0SICokSpago2tM4sFjWXF+dcXJxRVbY45mY2my13mx3OOZqmxlpDGD1933Hoevp+wBpDu1jw9OkTLi8v6cyO7tElMYjClnWWuqpYr1aER4HNbs/wZs9+O/DFF2+olw1aKc4WLW1T07YtPma+ePmSP/rjH/ONjz7g4nwl5p9XV9ztd5yFntEKrSLmRFKKqCyjdlBZzs6XhH5AIbTlyjlWqwVVU/Nmc+Aw9jS15unVinax4vzsjLqqcEa8sqwyEAzdWYMfavZDT9cNDPsNzkQOQyDrnu2+Y/AJcqSqDBg4HA60Vc1qfSamjGpkuWr46INH7HYD17sDOUBdZ4xN7Pe3fPDsmzx9/ISz9RoSvFkt2dgt0UKqE7nKmMrSupZFXROCZm0di6rGWcd6eUZr6znJeB8FsyfBgDnQ01PztZqdmSV4LLF0STimez3ESAyREBJVI8aW3o8SDhsrKmrGsV5doQkcNrco6wgpUxkplk69SFopMBptHdpUaFNTNyuqqsVZN1OYJlaGUAcjPoi5Zhh7gu/x4yDPRJTEQSldAt3pfKce2zwjEhRFzln+VSnIR0UlpQ0qHV8/uYLHbc7r3kRLEnq8sUfak8i+nqASShNJ99ZvVdbFnATiVMUHR/o4EsbWNG3Lj794Qd8fxKst56ltnkXd0vU9u9ALl6YcU0knZzntmTGgpn4R8blxiDiCiCJMScn9e2aiZSklCl1KUa5nKr0xRcZ7dkQ/rvkPV/X7eorq5Kdf/rx8fSQjZUxtuVo0kBJD7xk6cRrtVaIfB0ypMBvrMEYyOaVsUWaS4L6pa1HaCIFIYhg8/SjO29baWSGprmvOzhd88OEz1utlUQsR6MgogylUqBw14z5xffcCY+Hv/wd/h5QyYxpAZWIq1ClpmzkxeMloI+iE3HyWqYcjlZvGGAeIY3g/9KSYsK6Szv8oCUjKnpg8t/uXKCPQuNGOs7XCupashJ+3bFbk1VNi2BFDB+k1w9hjrSAXIJB+ThnrNCmEufFIa01O09esRKddaZp6iXNCOVgsatrNnt2hZ3foGfsRZysq1zAYecBjhkDmB88/Y2ksl0/XhK3Gb68Ju5E4BowyOOtE1aWu0drQ94F+8KLCYRSVVVQgZnt5FCPvmEvTeSQOgzhtpkjfbfH+gLMKY1zhJB/hPXiQQGiNNkrAqkIxmiXrfgHN6n0Zpw/lPBS81fY9oxMPUwT1Fa+cVvzfncqc7m9GT975y68AUR6eyzv4S1PvQS7Zx72p8C2U5uTnUuV513d1VE158Pn8Pi75v3xIne8v4pH/2Q01BBg9SVsw4JqG+uyMw3bPeL3HD4HKypIcc2bwI33X0fU9WWlc7TDOUbcNaMU4esYxSGCVMqNP9EMg+oxVk/v3tApkIpLLWqtoKgleYpoUbEowU5AKa40YV6qAGiMpJHSGtql4dHXGBx885dHVFa6yjMPAft9xc7vh7m5HzhQXZuHQ+yiobgqimrM8W3F+dclyuSSNnovzM1IMfPnlSHc40NU1zcUlq/WSx1drdoeBm/3I65sN9ecNlXEoDXVTE0qP3O2b1xx2O77zzW/yjY+ecLZalbnckfsMPtDVe8YIdb0iDQPbu1u2Y49rDIt1jWikipnnctFydbHk1ZuOQ+eprKOuax5dnvHJB485O1uRlchhNs5Sn62orWZZW37wsy/4+cuf4bfXuGXL3WZH5yV+mKR/Q8gYrTiMI03X0/Q9cXNHF0TC+Lvf/hYZzY8+/ZKXNxti7VkspFJvjaWtl6wWa/wYWKxaVGMx0UFK2IUEvo1tuVido1xmaR1t3bBYLLk4f4JJJ/Km7+Fjm+amb4mdtU4l+JXf3+9XKIj3nDBTAn8wttCgJpMXMtGPxcMrkH0nfRMxYZQwTcZhKHGRBNMiKJPFE8XWWNfQVAucccIsmKv/eWZnxCz9mTknxnFPzqOYEVuFzhSju1SOXM3JyYQYykVQx4B+Oj99pDMKTSgXE7rjcUxUqGNVvyRnRR1LYgrpwZ2Us3JZd3SeFOaAlAuieUxy5mLpVOmDOblRyrA/jGhjSuN7Qsog8l2dX10SdKYrZs3lqs1IxZxkZEEnVEa+pxhROaJVLskFhTR1TCTkY8fvYLqOKk+ojhT9Y/H5OBV1yalc89M1X50mH3Dyw9cq733tJEPZGkfifNnwwaMLVDbcbg68vr3jertlP46MKWGy3DiMoUB0AtM5o7DayURXqEIhR3ofiUkyOWvlYdBac3l1wZMnV5yfrTFWo5RIbKmsUFlLtZ/MmEZ8jNy+2fGz3/0UlObv/4O/xWq94HpzLY1P2sw3YAqpBMMSzE83VkwRracbxBEjWCO9H95LJp1yJEYPWTGOEWMcLlswkTH33B1eityirdFk1utHGFsJyhEzC7fgavUROcWiBPCGpKSpLpeM3BiLUKhMgQYl08yIqsKk2UzxDq+cQ+lMUxuaxrE79Nxu99xc7+n6LQpdmtqKRCPQxwAq4NCcXz7i6fiEz35+Q0qCnFRVhasqtHWMPojZVdehlRZJQ+uonMVU5Vi1kpvWe4IfIQWs1WgNbevQZsUk8eZDZBwjo4+MY8CHOCd9YghzlI+cG8PNFLJNE0k+Skem+xWGP/8x8WuOwbc6+dW7EIrTj6k5+r8fcE8Tzv1d5bJY3N+imv9bNnw/Yzl539dZUR/UL44ljweTa3749vkDv3Av+f6Pp9/0cSPvR8j+Pt1lf9FH3veE5oBWYNsG6yra1YrxfEXfbBi3HSZLgOVD4tAPeO9BW5qlQ1uHsQ5baVJODP3A0I+4qgYy/RAZepGkrZT0CJCLN4YCnROVgUXjaCrDMERGn/FpUjMU5X6tVCl8yDxktUJpqJzm4mzFk6tHPH36hKvLS4wxdH1Pyrfc3G7YbTccDn2RFxe6bkhSJGmbCtc46rpBG0uIiW4YQBvqdkHdtmw3G3b7PcvlCm0sq9WS9XLPpgv0feTly1sqq7BOsWwXWG3ox57gR168eMnv/eH3+d63P8Z8bPAh4WNmv+04DDvi4cDBviEYg0XR31zTbzaY2rFYtyificFjNZxfXfA7v+HZ3Oz52ZcjlXMslkuuri755INnnJ2fS/3XD6BgsWxZLFvWywZy5OWnf8ydioQw8PL1KxarM4L3WGMYgmj+aypiymx2Hcbe4bqBzWEg64pvfvRNzs+XPPvgGd//8Y/5bPM51GL+ent7w6E7cH52xqIV1/T15RpTWUKqUJXCYrDacbW6xLaGtmq5uLji8uIR67NLgh9I0R9vzvdhsjkZKYo/hjFO1sdCG9KF9q2UKQUZxeS4LrQlUcOM8ejinFMi5hGFIB2VrVBO5tjgB/w4ijmbj1gn0vT3ab5F6ck1oByVW1K5RoJidQxuhZIjf8ZxIMZATAP9sBPWSBZmhXhuSGFZ/DxMQTFEAGfqRQilfzUXJCfnwOk6OfVVzQHxaWHuhCp1WpScxAumZGNGCyaPDWTzqTRUK6XnItt0j8zvS0eVKpSmrip8TPS99EOpk3W4riuWqyXbsS+JthxuyhJjUjzbdEFylLhIk6IYM1uESjXFQHlq7telCJjT3LyuoNDYS9KRjqhYzhlb6G3lbMiogoRNd9/9wugc1aj5pV86vnaSYZQWl2rvqazmgyeP+PjDpzx/9YYf/fwzrjc7oipOiEp0hFMsGV/W1M6wXqwgQu893kPIiXGIc7XHOQmIz87WfPjRMxatGP7kojJgjEWjMViU1lLd6nt2ux3bbc+b647/6Xf/N+q25u//B39TMkJrSTHiYyqQVglilPSDGGNYLpeM48gwDAgHUTwxAJypS7Y7lOzXS3LhlMjr+Z6sNdoqxrDjxZufILiJZOKr5TmMPWN3QCvD2qxQ7YcQRiyK28MLnJX+kKlikLPA1EqB90NRiNBofepwGaFIpWplQWdWraWpa1aLlsvz88Jd7vBjZBgSKRkxx8swjpk3/Q573nL+4QUff/sJ8ccvSUlR2ZrK1WJG2A/0vShRLJYLmqYpMrMGXbTorTPUdSUKLMELBUoJNFjX8r2msrg2OZMXpcmpNGN6L38PYyCESIilUaw4UZ5ODkealRwDnFTc34cxQwzHIP9edef0vfcQhxMMRL2dTzA99+881bcf9ZPdvxX3q+n3J1WPY65wUqXIpUHuZBI6Hm2ejnY++rcP+Vhtu3dMD8bDXpVTdOTPJ73419znvczy1+NdY3h1i+8G7LNLzsxjqrahaVrG9Zr9eYu63RNz5nDwKLWjdiJviTag1EwREOQ70fU9h8NAFYA8st12jINHQRHRKC66SQotmkxTay7Pampn2epRuNFJZCGd1hgt76MgqDklrM5Ym1mvHBfnQhdaLSekQDOEQFISOHgf6Hvx8HGFZ55Kn0bOIsPrfeTubgc58+KLF1gF3ouTs4+Z7f5AfbelbVpQhqqucNaixsxhP/Dll9fUdc16ucIo6clbLltevnzJv/y93+e73/4mWokr8/7Qsb3bsb27wV9nNsaz00XKPQT02GMcuGWFHjJxjGidefL4kmePrghjYn/4ARhDVUvTb1VVrJctKWf224EQRlKSNbWpLB8MA9/46BmHzQ1d7/nixSseeeHVW60Zcp5djVPIHHZ7/DCyaBq23UAwLZ988g2quuJcaz75+DFju+UNN+Ss2G7v+PSzH3G2bKldTWWtCAZYKRLa2lBrh8HStGsa3bJeXXBx9ZT1+QXtomEong3vaxkh+AgocZa38m/npGfC2qPh3YR2HO+1RE6K4CX2cbYqwX6kqmr86PE+lILmxC4QCnRSSI9DqfSDkniOjLYVKIcylrqWxn79oC9ymtNlf/Jn9Ae877FGisQxxEKVOpaWRC0qHpGCk21J03tJAKbAG0kw7lkAMPVRSBxBWd9mbxAk0B68v4esa9S8sk1rpMRb8QQhSIXpcu9kT5AjQQ5iCLy+eUPXxeKNQQGDEs+ePUNbS7fpZH9ljZ2QB8EmmBhbkoSkRA4RnSLGILSnPPVP5KNZX87FhkF45pP6VhYdb3KemudTERuaki5dUIyHRcv7VcD56ryjpvhV42snGSkK1HO7G/ijnz7n1Y1Ix3kfaJuGx0bUk0Jp4o1WNMdTTBjgbCF62onE4D1D8PjgGUYJlquqoq4dy2XLkyePubw4R6mJM1cuTiwcfiNV/JhkcdlsN+w2d8Qh8PrLHb/73/4TVmdLvvlbj4QLp6Rpydq6ZOZyM4YgN+w4ys1W1zXDMJakRs80L2sc5EjMk960bFPpzOg7qlr4iNY5wpB4ffcCmRRanNI0gOoPxL7DNUtao7loLgmhYwgHApmUNaiEUaInnQOYlNHaMmYFWhe+78l3kjJEacwWNl/EaY2uK4zJVHbFcllxc3soiEBADWORw5OJ4/n1K8JZ5K/+7e9xdrbmB9//lJw0wUfGsaPrOnwYMMbinJspbca42bGSLLQ0cTMPVFaR4sA4HpBmyVTkgu9XxbUxtMbQNvJajNJLEkIsyUcU5MPH+Zi/imb1/ozT4JsJgpDfnFCCjjH+fa7jfV5lefUELZgnpWmrXxHM3scp8nHGmjf4AMk47eGY+J353anDW4nSnP2cvv80MZnQt6+iS01w7ClMq+YTVCebe2gS9OvxF3Mc7jbstzsWTtOsVrjKYa2hblvq8yV+sSHvR0LIdF3P2GeausZVDmIuSCwoVSMLpMiUd3Egls+kKBTcqCCqowqLKRSo5XrBct2gUcT9yBhS8WXSM6Viqgwr1CyraY1itahZr5bUdSWIevCEENnu9uwPHcM4kspCXtWOtpX+iYkDnrLMaf04cHe35e72jtdfvqCuHDlHdrsDXS/9HUrdsVzI2uP95FANKEXfeV6+uOXy8gznDLU1XD665HA48PLVDf/8X/4+dV1xdXHO3WbLbrfn9uaOQCC2YFoIGhKJxinquqFeWozP9JsDMQaWi5Ynj54CmjfXO372/AaA7aHnZrvj/HxF29RixNcHhmHEOkfbtCzXZ1w9foRxDc9fvWKMPSFmVm1TmujFU8FqzT563twd6A6ax2eBFBKv93v+xb/6QzEtXDVEArbWaG/xSbHvB/7V9/8ZF6sFTy8+oNtsGPc7lIZFu6SqK6mUB/HXcq7GVBUhBQ7dgZg9Qzzg01DmV3jfko1cGAYploBSi+fKlGhMHc9yf8tnpt4kOBZUTypaxVfLYMxRFamu61np0hWaT98PpdBnC0VJSZKhXfHIEEq1VpMzt56r6amoRYlPx8gwdGit8WOHUdITpIuUtEKC5JQSRkmCb7QuVCOK1VRRfNJT34W8di+uUMUjTZ0qQT2Ucz0iIBPValq54oOCW77X2/GwoJk59kMcEXhjxJNtO8r555zm49cKIvDq7pYx+HKsBtLk2J2LlL8uyY0kU9O8oZUc/1EZKs+JgqAiqdC5jknVfMj5lHon7QuyxAs9dNJZna/ldPNwuiw/XL9/+bPytZOMECTj7YeRQ9dzc7fBal0oToap6aUfBgbvSZN3Q05YpaidJuuMTxGfE4HMGCI+ZpE/bWrOz1ZiQrRey+GffHkig5ZRSIYWYmS733Nzd8vN7S2HrpdJKzief7rj//3//B/5L/7L/5Tzxy1jGCWTwwksFRM5iTJRitB3A1or2kUjtKgU0FYJHpEVWlu0ceQYyVl6OpzTkmQMnmHosRayNWAzB3/Ly32PaxY4o6BeU1lD8h3DsENVLcumIdWP8MEXYxdF5w+MSaT3rDH4YaCyDpM1Pomz+lyBLlk9sQSMSuDCTMJoaCqDMTV1XVFVNbvdwKEb2G0O7HYHclbl3YHb/jVXqyXf+t5jtocdn/70msMhMAwD4zhI1cmZmZ+YEtRGnFZzTKATcfQE71E5F7MrqRRqrTGqBAFlQogpFY5modMlCS61VtTG0tRurszElGadcEE7jgnIFDSc9mn8eY/7KcSUJZTfvQOemHOQ+Xflszm/9b6vDK7flWh8ZSV9jta/Gloo494RnUw2+eR470vUvr2rd+/iZFvTh08RF/Wud/7pQgOnc8uvx5/9SCHi+47x1R3dxRrrHM2ipapqVmdr/PqW4TCgciZ6ceoeCUWRD6C427KSgocqtI4QxRAvR5q6EsQ7whgTMUz3rAQwdV2JvKqPdINnDJMuf1mImShTGRULrceK4tVisWTRLqicYyhr3qEbpOH79o7dbkcCTGVp2paz9QqlwY+yXnS9R1mHj4HNbsuLL19w/fJmLpzEKPTglBLjuGN/CCgFu4MUieZAKCn2+4FXr66pG8fTqwuWZys+/OQZISd+/OOf0TQNv/GtbzCOnn4c2e8PjOPAhT3j7GxBX2WSg2XTclY31NqRhsgmvWa32eNDYHW24lvf/gZ/62/e0P3j3yP5yOvXd/zxT36O0/DRB0/EQ4OWGALDGNHaU1WOs/NLlutz+vCK7a5DK0jnkbqtqFxFZcEag7GGMcB2P9A6y6q1VDrxk08/Y9P3fPSNJ7izyD71JGXwSRFzZt/f8sOf/kv81Z43n71m3NyxuDxn2bQY54ilyKIwjClyuH3N+OpzrLVoZ9j2GxGLmSeh9yvJSEWEQGtFVTXEGBiGyVfhWF2X4umxT1GCZKlOC1vwKFogiUOhik8qVci8mEqT90TFmZriU0nA63qBNg5ra6wpXi1G1vnJ2V6C/0AoKIYPA8N4IMVAt9/hrCQj1hTZfi3CCjklUfssHjOJqTgnq6A5aYiOBTUw0z5LQJ7LZ6a/TylSp/GkUZPSZbmGczEul0Kz7CflNK9D0zWWbdw3/5vimcmnYvSRVKwdpgSjaVt0u+Bw8xpyoUpNn03SNyHeGLJvU4obOQR0jkVVK53s+1gUUVkVA8XEUZnz6C3y0Ex0LvqV2z5pR1JWtpkz5Em9quwHHoY0vzSGgF8hyRi8pzXi4Dh4ycCM0biYMTrJQ4AqfQqKIUZCjASgqsUZWinNGDxDGAkx4pO4YNeNZb1ecn6+ZtHWGCWukpljBjolOar0U+z2e25ubri5vWXfdYQ4VUpFKvf5T2/4h//d7/N/+A9/h0efrOmGkdF3UlVXVh6erNFabrSUEn3f470X7i/I4lWqZFpZsnaSZORACJmUPHXtGEcIYy+LExnjFH284/NXf0BOAb/6iCerR6i6JuxuYdcRDxWuqblw50Bk0dbcHBKbfUfWmYMfsJUlT4oJMxogN0hGJB7zlHyphNYJaWmUxlODLFTna0fbGg4Hx/my5fa24na7p+s9KdcM0fPy7gXf+KDmb/6936Eb/oAffv/n0jcTpGJSF65zLhPN1NqqEP2t7D06JcRHS5IIHwSuDGNAZSSZrMRPY7pfM/cTj3uaz0o07StnZzQrl+rBvd4OH3l/xhF+uB805/kcTl48LS5NH2Mq0ry95enz04OvpnXmrXFUdXqwz5PdPvzc2xK2+R0HUibh+din/XAvMTr2lszhEG/1j0w84TwlUO9GQU7ztV+PvxxDa4NBEW737L94DdqgjaaqJIAfLleMtzuyz+gsVA2fA96DUZSm0TLPaVvotoakEtY4zs8XGKsYh0h3O0rvV+Toh6Ag+EDXG/bdwL4TqlRlLTmLCZ7W4JwtBbRYVHPAVhXNYsFiucA6J47l+wN3my2b3Y7Dbk/f9YgtkEFpgy0O4DFmQlTs+0DtGnyGYbtnv+voe48fjzQHY6V416fArtuhlPS0+ZhKVCCGt2TNi+e3WGtoK8fjqwsur67QWvPjH33OH/3ghwzDyHp9xugFadjvdjx6fMFltSacO1gLT3xhHSbD2Hv2d3uGN7e8ub0hpMRyteK73/0NPv38BZ8937K93fLDH/6MOA7kHPnww2fSII9URQfvsVrTtA3Ncknd1hy6kUPnsW7gUV2zXCxYtJqmscQMbVuz7RPXe0/TGFatZZsTL7dvuPv8lsvssK0jqgaFxllDJrHZv+DnfWB8Hck+4rTFWYepGmprMMbiY+Lm5pa77R39sGP0I/t+T1Jg6/dNBv3+kGTTz4Z8p2pCEwVo8ryQZEKVHmQp9E0I2AwAUIqtD6hGs5Gf1oUimMs2jkmLcRXaVlRVgykmy0apYqdReiWzBOc+jPgwMvqeGD0hjoi7tBSdlVLkGNFG4jBlKLSoeEQR8lRkjnNTdy4eZqhJWlWSIGNMWW7z7DR+VLuKJZ5Mp0tVGfcX3ftrYZ6XIVVsEQRNOkrSZnLxAhHh2qEf8SOoGAvSJNK8ZxeX3G22jN4LUsNU1JCGbKMROlnORXFKUKccPUaVHpKU5bvNcs2PCaVQMO8hNxO9Ho4/56mpvtwLxccnNxdQtaI6VWhipEhxIkXlOCdM8vPpmv3V42s/WVPDjTaabKSiHVHkmNBJdIul6gPaOGptQXlUjDTWsqgFlvY+kHwUqCdLE/ZiUbNeL1guapyDnAPhxPzk9MLklOmGju12x25/oO+H0tik5yzeF67dP/uHPyAMPf/gP/93OPtwySGMBN9JY7YS6baUpNdBqFkTHKmABEqq5G3bkpJCRfkiY5IgP8UAVmMt+BREl9sYVJIu/SFteX3zKSoabLZc2RajD6TDNaSOHBYs2gbsmjprVBvwQ083dFBuvKgTWSt0VlhnpXk7HyeanI8VrxADxlC8P8T8EJXRKmGdpq1aQqtZLRqWdw232z27fUffJW4OB/SbT/no8Yd8+zuPefnFGzY3IxhFXVVUVcXU9DXRzzTgrMUW93atKC67I/14YHvYFenahCkJQ105mvKnrhy1s5KsaiP3DDJZhJJsTInHyVRQGt40TX3knr5Po9QIyr9OH8STn+dYp0TQ86Ixwx7ze6dJ9LTKdv/RVm/9NL/yVXNAyWZ+0RQxd1qczrfq3mGcFDLedVz3j2NGRN5KGvJJFfHeyzKR/hpx+Es3jLFU1jH0I7uXt+Smplm0OL1Ca4tbLrCLhrQdjshZmiqdkLUplIGErg113VDVlmxyWVNalE5sckfOg3xOGawRKkYm0w+ekOCwH0ToQ2tsKaSFGNFJCUKdT+5tJfOwda74E4iX0nYrDuR93zP0PX70M5feD55xGNFG0/eeXT/SB3DKEUKi7wa6TqhhaU7sM6pUHFMU1RkQnXyyNKBnpXDGYLWi70ZePL/hbC1rynLZslqvefL0itevr3l1/QqKmiJTQBQSOYLVDtsuqBdLtNIkHwk6MdaWZBQvX73k5etXPLp6xHK55MMPnvD69ZbtfoMf96Rxj1ERFFxdXpSAsQQ4RqrSzaLh/GJFipFDN7I5jLhmxNWKlbI4V9OkzHrdsB8TXRzZ9J7VwrFuM0MK6EUmaoXCAhqjLJWyoBwxjezCNSk4UnCQDVW1pF2uULUhmUS3u+O2u+bl9Qv80BPGnhQyVbso5eP3c555mxIsQe5kkkfW85Q6BeZGGzGAjJIYTGI3SitsLYlxGEVWNeej70Zd10IxjJEUMyFFUcCMUsy0tYj3VK6hrhdUVcXUnC39wlJoDSlIP0YMJV5JkKRx2VmHdFNM5ycF6tMV81jQVGSV57VI+gePCQQlLkwglXdK7AZHRCWlk69WlJ5SlAZtpYthZqbQ4yclunIMHG+L+x2V0tw+ofXS8J2Lt4/DD3mmt1FAlsVywfLigs3NtRxJgolzfpSwP67/U09IioLMmiLylXOSY1HH+BgovU1FMcrItmcUqCR9E0IzIzplbs2mQrXn6HpZEjj5MyljTclGPv17SkB+yfj6SUY5aWsNzpky2RWZrxJ0DtGjlUx6RkGlFNZqWuekGSlnUihZUpTsqKkMq2VDXRuKd5tsd7pxoPQAGBSKYRjZbffsdnsO+14cW5NctMlkTyC/xDhG/tU//xRlNf/F/+0/gKGjGzLeK6xJx2yUifZ1lD4LwZPDlPFWuMrh90P5gozoTyvLMBTEBYjRk3Okbhq0Ngz9SDfccrv9ApPAnn/EsloQ4x39zRuy3qHPLrCLikpXuFRx1T7iLt9xGPYkVTjE1gICh6VoCUHk6KyxIuk43aAFkVHmKKGpgBxFkUIrja001jUsFg3r9ZLr2w2vb+7oDpm9H7nZXPM7f+WvMW4Tv/cvfsr164RVFgMzh3Y6f2s01lpE1UE0m/eHPd0wMAZRzTp0I/7EH8NogUiN0VhjaOpj0tFUFZUTDxNnRb0qg5gJZYFHYzqhWT18MN+DceR8nhzTKZJx8l518rYjkiEvvpVEqCmpPEUm3j1Oc5V7W39wSL+I6TT9Yjqbt18/Yln55L2ne5Dj+OXfzcOCyJyM3Hvl642vQ4N65znd+/yf8MO/Hl97WK2pnKMfA/22g9e3tKsFlXHi8r1c4s6WhP1IChmnzYx8MgUfKQtFUy1EzWi9ZBxGjDW42jBVYLXRM3WgckYUmYxmGDxd7wk+4YxImBut5iqhRA+qeGnIzwAozeADh24gA33XcXNzy+3tLSFIT10oynk5Z0LKxbxWczj07Lqe7CxKGw6HntvXG3a7QYL+CaDMQKRIVTLFTaiUcUqoM0prUfEzisFrrt/s+bR9has0H+inLJqGqyePSAp2+wPb/RZnDM5ZtFYc9h3b7QFtoV443DIRtPQqdmNkrxyxqbjb7/jjH/+IGDNtXXN1ec75quHm9gVpVNz4Pd//I+mx/NY3PuHi4kJUj3SiqSz9OKK0YrmoSWEBKF7f9jx/vcU6aCoRhtFoVouKizGx20cOIdCiaapEmxNuYTFOVCVRZe0xjkSFwuPxDER0AJUUGkfMmpA9SY10eU/nN9zdvsFFkUl32rKwTVFp+rN/Dr7OmAQ0VPneoaguFk69rCrFB6Fw9lNOsnbGSYVpqnhDzgptLGKEKOIpsRj0xZQgBKIPxyTeGSKSpBtXY2xNXS1xpipeHeIzk8oknijshBiJMeDDSE6ecexIQXytUlFEkt4AO69v4mWjStBe8oiUSEU5SjFV1ZP0fk8LR0E156jndK2bERpJuKZCaflgub6CCsQYi3pVKkH6UWlqVp5CzTHntO/TdaOyDkWF3h3Kmi8Iy8XjZ4xZCgWqMGikSV2C+WmOoiBGmUQKAzkMWFXiu9JzIUWT+30nE8qldfECEldrSbvSRKmT41QFRUpK7geaM3SzQpmqXJXjdWUqZhcKlczBqShq/SkmGaFkutZarB9JQXSudZbg12ppQM7lIchZ+tRbW7FqW5wV47lJpjSlROWc0KTOVrR1LbxMpYgUudlSyZkanA5dz353YLvbsrm94bDdgg+oKDw+0RaekA+5kXfbkT/45z/mD/7xb/Dv/Sd/ne3Y8fzVHSGOYhwUI2DLDa9QeFZNzaFL+BhwVcUwduThMF1jsblHYW1VIMVYskqRwh3HnroSB1TiyK5/iUKcZpU7pzYNedcxvn6JW6xI51ewbGjXBrta07YNb3av2XYCq4nKhyncR3O8kbTDWXl4QhyLs+3Jg1QeOKWYtbCNVjhj0SpzcbakdpZ22XB7d8ew29ENe169+SHf+d6aZftd/vE//EPGQc5boXHaCfTvNK5ywpkuKhFdf2C73RGK6kE8kZidEqEYxf12evi3h37WsK+cUKNqNyEd8nNdiWRubQ1oO1c6YqFZpa9xo/95jdOYdKoqHMdpMnL8xelidy/5eAiKnG7mwWbvtX0/2OdUebqPmrzj2N+K/qdp/OGxHitN9w5unuvVXAV+1+HmOQF7R4L2Faf46/EXexg1LXaa8TASXt5RNxV1VdGuV7i6pb26YLs5MN7sMaXnImWwVow+Exk/jmQSy/USq59w2O+kqJGL/j0ZbTJGZ5yFujLUtcFZw9B7/FA8moxmboBMgkDMRRt15H2nWJCLnShCucox9D1v3tyw33doYyFnYoDgpTDi4zCvScMwMsbMsmlRSjN0A7tiRjs9HZN/xOQIWFa1guYDE9/aKKrKifGpTnRh5MsvrrFW5DCfPr6ibWrOLy/IQIgS4LlKDALHUXpIxv0G5w/0ZFwzNW97ugS5bTFZ8eLVS4wyPHn8iJQji1VNUwszwRnD2Hf88I9+xGefveDJ02ecX6xpas2yqTh0Pbv9jpwTq0VD9IntfuQweF6+3BL6A/nJiuWiQStoG0PKNTnJd1vZxMJBrqS0kZKhdg1OOZTxwBprItl40sJDUvjQ8+rmJYdbD2eR8ycrUhWwtaHtK7QHAyiXWRiNddV7Vay6N5QqxbzjOno8Vrlvp7V/8vrKWdb8iWYkRVh5hob9WLj5ouypi0wtKZNUJJUkWZdG7jCO5JSp6pq6bjEFxbBW6OSn/Q7zel/QjJA849DT9zv8cMCQRH00p6L6JsXeaeWIMWI1aCXCNCD5tcp5Xhm0UsSTutnUfC3BtRKvidJHIYF7YV7oEoxPDdZzQJ9n/7S5N6Jc3lMq2bxGlWRHz2ISx0QhA5VzXN9K/4lCkhfnHK5uudtuJJYSvVkmxE8pcWlXnCQ2WfpjpgLx5BMyJX/GTsmaFEKm71ksD8r9UKgHKYrDt1IFsdUGjJIEwzSo1WOyachF4XS6uyaT6pLKHO/J6Vr8soonv0KSoZUkGtYZnFaooq9rtWHSB5gyz5hyCTQzKDvffJMs6fSlNm3DcrmkrsQRdVIMODVfmzrkQwgEn6VJb79n2G+pdeJs3XK76xljRidAy2Qu8F7Ax5EXLwb+H//3/5ZDF/mrf/cbaN0LNB0t2jli8hBEdWThDFfLBQ2ZXd8RCPjpopYmqpQy1lbShIg8vDGOs5xYjJnRK5QyxZ08MLDn9eE5ujZcaoNWju56iz8EbDSM1xvsRUN6YhgWnkpbHp1dcLfb0Q2DJF0xl4y3qGsVCV7hKhqpWmQjx2WZ5R21zlRVxehHUg5Uxop+fO2onaNyhkVtGM4WpK4n7HpWV+dcrD6g2438/u99hh/FnFCoAhZbixpM9AOJyOB7trsdh27AOi2FQIrBorVzr8Vp0iEP9HQzC9/40I/zg+IKolFZQ+2sUK3qiqYkH0Kz0m/J5/35jgeLwBwzTwvEWxjFycdOqEHTwytFqhkzyLz9UL9L5vUhSvGuAvzpmnovETo9l3zvKI/bzPk+HHL8xckG1b0DeRuhePC508/Pv5sSm/chAPg6MMavAnX87xcWmegXKSGI8RAImwP93UaapZcLqrMl+byh3+zJ3qNyCQwrC0VMYhylj2GxrDi/esRyvWIYeg5dR7fbU9WGRSuob+UqmrpCG0rAFYkRYpzm9WJQlaHIwSDuv/okKVf4MXB3t2O7OWCtlR6H/YGcwFXqqHxD4cinzDiIueowJqJS2KpCKRgKkjI9wxMtZg54OD4zUxOnBCSa2VONY4Vy6COff3ZDTpocM0+fPRIu+PkZfdeLqZg1NItFkSjv2R32DHd37BMsrlrGkPEFSanaVgo+Y+Du7gY/jkJlJbBYOoYuY40EMTe7HT/57Br/h5+yPlvy7Ok5z65WGJXYbO5IIVJZy6KpWS86LlaO5aJFETgcuqKcI42t0huTySpiK03dJgarSFljXEtTLzBJo12isiuaRUXWI5t8wxB67rY3dN2GwQYeLa44tyuMNlSuxqaG8RDYDwP1ZaBPPYzpZBL8M3oIfoURgvRaHiVHZUgxdSqyTc7ThWIXj0nJ3NOYJcBNKcw/13VDjolhGDBSWy+SqJP4TSYr0K5G2QptKqyr7kmgnlbUZV0PpfA5Mo4Hhm6PMP/vx6Xz+wvtyShhwYBhalSfi3MF5jutsmuVSx+EKtsuaEoUmpG9J3N/LIAD5biPxzG7mms4won3j/PYy5BPZm6p8k++FIumoa5h2+3JOWOUpl2fMcTA/rCXBvq5GD81Yk/PeT7+LwqqZKfvvCSC07OulZoLdLFYE8h8cFTkmlCMSRr3aJhIWZMNLC7Jbk3OZp633l727yP8U/JxlBj96vG1o7NKK2n2CBmnFK6qsEYSjFwm0pSz2K+T0EqMU2xlsCVj9d7PlSHrDE3raBqHsXq+UDklfMkI5SbWDMNQPCky3b5jd7eh1opvfvIR52dn/PCzN3z6xfP5ZhxTpI++VNg1xlRsOsV//7v/nCcfX/K3/u5v8MXzLzDO0RVerlJAUmIMGCJnzYLGVmz7A6OCwzCglaGuarwX9MIYcbiePCDmryNPjeqiTIXWDLGn61+gUkNizaqtcJdX+MOIDYphe4N/2eO6R5gPGtqzirp12JXhhX/DkKPIx2kji602hDjRuY78RUk+FARZJI2RG/Ty8orDvmO/3zAOHSlB09SQrShtGctysSD2HbE+ULWGtU38rX/nW6To+MEPviRGg60s1om51DQJpJjY7/ccDnv57ov5YW2NNIIrVfpfjk3eKcYZ6ZgmyYfytMFHOuVnmpVQrIRmVVeOtvR1NJX7urfxv/FxzPtPV6xjqD9PcNMHytzxMPWY59T5pZNJ/J2pxv3Pv5WsTHXSKfc5RTJOf3F6Lg+O9TQhyu947auP5l3jGGBPE+X9C3F6fO9PIP6vH3+8P+fy5zkGH+nGSAgZZzS1sdhuxN/cMSwqbF3hnKNaL9m7W3b7DpM0tdE02RGTXMfuMLLZ7GkWK5rzJYu2oUkrmr6jXyxo25Z60RQJ8wqjNSlHckz0ncjUDkPEj4WTrWR1noL4aXG11jI1jYaQ6Ps9MapSACvmqojMuCvNp0JnVqjSuyFJTMa2Fa6SIHro/cyVVyfP7cMA6LQSnXPxmShBXsrgi1pQVSnCCF9+cU1MgawSj67OaZzIt4/FbM1WjpSkUKgz3H35hs3oOf/mJcoZojGcrc5o1wsuneMSiz8MvH79hu2uo/cDxmlcsnifOPSeN3ee603HvvOoF7d8/sVrrs4dT68ajEpUxmKVyJIuas2HT57y0YfP8DFwff0lfuwIITD6hDEVytZgBlKb0K000KMq6mpNUy3REZZuwXqxoqoqDuOGrurpbc/dmztue0/9pMFVjzFG6NdCi3Nst567/ciTK8VddyB0h5Nn+/3KMpytMFaV/oZjZX2eP7PooKGsxGIqCyqXT5WVjqplqfhuKSXMiHEU0QPxpxqL3L0hhtJ3AChj0aZC64rKNTgjRn0aXZgI+t5liyES/UgYpR8q+lGq/6XZmYJMTmNShxLjbqETSU0uSeNAnnDu+5RhqXUdMUBZRqb+A1FrykUWV2U193hOyfxpz++xCFj6IR6gRhMyMNG8lJGCQkoU5k2mshIXdcM4n1/VNlTLFXeHfTHbg6nXUChO0tNsCp2Ncn4xBEhR/MiQBvk0SfqW73TqUybmIgUtxRM4xv8pxtK3zPxH6GyKWC/R7RUo/fbKdO8xOGXHFKzjay5lXzvJaGonmWYG0KAVysgXl4hkVaDmIhOoAQrv1p1Usqcbv3KOuqmpqmp2dswxk3yGBMYarLbi5jqMDONI13s222ui7/jOtz/md37z2/SDx//sOTGLgVJEmphEnQq0tShriMDPP7/mv/6v/2eaFi6vDI8en/HyZsQPkJUFo9l5T7y+4dnlFW3bcug7xmGALL4O5+fnrFZrnj9/weHQYYwTOK48/JlUkhvIOdDUFWTwwZNi5Hr/U3DPqFePqD50dJ99zn43cvHsE7YvX7D7g+dU12dU3z3n5d0dVEI5221uoLI4bdB5gsOSoDA5F9UUTQgwuXzHIO7kqMTrVzcsF2tyVgzDQRZwZxl7qHSFqS1d6FB1QFPjdUSvMx+sFvxtvgE584M/foVxgmagykSSIof+wGa7YQwDrqpwlWTLVd3MD32MhT4VRYt+SjhSFopZKr8/+qKUPyXxiBHUCc1Kqx6l5SFzpVrxfoy3wu/5x3sogZpUMaR6wcmEdoz3j2jG8aV8+vJbu3rnEX0FpPlL2QH57XRmrqjMiMVJonCSfcw84nvJlnprp9Om5LSO1+70XX8+YXn5Xv6Nbft/32N36Nn3EZRmUVtWbY3TirjpONS3qKqiXS1oFi312YL9dhCBeaUYQyLsxeQua83gEwFF4DHnZwvq2rFYr1gulpyfX3DlB3I+IsAhROLo6Q493aHjsOs47Dv6bmD0nhxToTlIAGIMOGdQWhFjxvtUgjURVE9T9S8nsjC1SsAglU1bfASSUiQdqVtZM4JPHA6H4uUkd/3DBl9hSBRZ8BIAieR5orWydvoxzpx6ow1JZbo+8OXzrRSlUubpk8dUdUVWshaZGNGl2KOVwSXDm5/ckMZI9UGNW9fo1ZLlumG9WnNpG9QYcJVl/6OfMoZBohgNMXm2+47rrWffeUIQtcNDByl6ovcsKkNlNXXlGUMg+khVOVZnK3wM3G1r9vsdwxDoPVQLkbZPbUVXDwRnqExL7S5Yrx6zas9FQco4dNZ0h47Nm0624Qe6MTAcIivbFANZVaRZI7vdyKvXW/o88NHyjG4YCO/xIyleEmIVF6PIyYtkM3MwHWJAYQsFiBPq9BHdgGPCCseiXoyRpm6wpZ+174XCLHSronSmHcpUGFdR1aKqZo3c1zOJNgFJ4sAYPSkH+mGPUlKINUqaw7USvzPvvRQktcYZjVVI9X6usOWTcyg+EiCaPMWAcEo4pmQhcewfmILp6auVJD++hbxMsakqtDSly2p2QsM+NpFPwkAIvWwqlBbUqKkrUqGvTb2qq4sLqsWS1y9fEE8SHJEejqWvpaw4STw1UgxkPwprSCuIeaaga6XKPZHLdy0iSqbQv6YVWQodkZi8KG+pYtyoNBlN1ga7ekyullMeB5ygFPeGejte+JrL49enS6EEfpE2forIhQTVufDy4zGJcNbRtC3LtkUbQwiTkZ3ctNZZqnKjzlBekQBTxddbRc3oR3GsHgOb/Za+3/P0yRX/9r/121ydr/jBj3/Odrsv1um6yH2ludqvtSER8CmRguHLL7f8t//NP+E//k//OklFRgZ81GQsYuxkOQTPq7sNjy8vefLBh/jr19xuNsRx5Pnz51xdebnoWs2cOKOdZJ8pykXKQq/q+16qMsgiFVTH6+EFzjZcrFvMB4/Yv3iOP2w4f/SI7etbPv29H7PW30J/70IePu1pmwVjDsQgC7MqC6YqDT7TzWq0gpwYx7FIJkJVOUSuWXG2PmMcO6rKUVWGZbNgc7OXxspk6bWDKpOU4s2+55uPzvjeb12JW3v+Pq9vPYnCA1SRIY7sDlt6P6BIuMrgqqK1rCZ5PE2tLTmrOZlIMR0TjyRCAmmSvktHI8fTvo5TqlUCiBSa1fvjkyGx9DSJnUIB+UEgPf/i9GPl5XesePOkeO8T83Ye5hGi9/+ucUzUjkjCV51Kvr+b6fV7E9IvWp2P1Y5SqHrrmE4TqvyuS5MfIC5/RmPOpU7Gn07K8X5VSf+8xhATQ0w4g/DrtRFe8SHAmwNju8XWFltZ2oslw82eFD0oTYipBNyKRKIfA9vOs9v3PHt6xfn5gqa1tK7GVg1Nu5h7GGTOzgQfGMeRcRgYuoH+0HHYH9jv94x9Tw6pJBReaEkmY2ZD0VxMx5iripPGf46JSAKtsEboJlpr8RTKmbpxtIsaFOwPHeMoNCpV5CiNEh55KlXNUBS1IlmSrNLAaowU6rQ10HuJywqjQBpW4XAIfP7lLTmDNpbHTy5RxuDqGjKM/UAcRVK0coYwJl58dscjt+Jq4TA6i0HuakXbLqmzpm0XHLqO7W5L18diXqhwRlNq1KJQlTMhZEaV2R8CXR9LbNCX6jNcXm85u9qQgd2+Z7/39GOkD4rztYW2Ji0huBGUplUNZ/U5l6srFu0ZOWvCELh7c8OrL17y4otPCfaO6qqiWq3Qfo+tRHRG4sLE4EfeXO/Z7nuqM0W1MChf09Tul8xlf35jQrAmQ1rnKsjFs6qsl1nEkuZgHCQQl3VY4hRrDVXlOBy6ufFYfB2MsDNyngPg03jOGIOxDmUc2ta4qsZYES7ISpH1MdnJZGL0xBSK4eSINnLPyj4T5Radkx9Veim0ykczvCw9BKmwNY4oXjmfe/Po/Qbo+X1Mxa9jyWj++x0Ur8nvI6XA3NOgTrcpe5v8KWTNiveKeHXTEpKSIryWfmK05XazLT0Tk0HekcEhqKkubQIiDZtjQJ0kDkcqp3wfc56TYtnuJApQzrsUcE/3Mf1BSd9Ksi26XgG2IF/Tunf6HJyiTdN6/autYb8CmV2m9VRW35zFWGiM0uBjUqByFbo4XxutqasKZx0pRkIIiImdo6ocdV3RVPXcdCSQszwp1hiSkka1bhjxMdANI4dDR1M7vvutb/LR0w8gB1692dANI0eDlONFNdoQU2KMnkDA6ZoxwO/94XOasxX//n/02yzORaEjxZGxT6V5CDZdh3aWs6tz1mcX3Gy28gDlyO3dLedn55ydP+X65pru0IkiQbLkKIGZmOcYQkgQYsnYa3xOKDXy0n9Oqp5x/uQcmxO7Fy8JGurf/JiztWP75Q2X50t0sybVFmU6VAzUVhNGL5aEyoh/B5NpTZRkK4NVer4WOSuMNXTdgYvLJYu2ZfQDb968pK1axtGTlEwYSgFak5OgP6Gy3I63fPSdD/iP9d/gH/2TP+bTL16TAqQwMHRb+sOOnMeiAgYhjOwPYvhkjKhFWWulsX9SN6lFjz7FY/NUPEk8YoxzFW9OPCZZ23g04pPv/H0K3N5GMuZ4+QSFOP7ytNJ/fH9BjZmmRnm2T6hSJ2jGw1ThNCx/gEOU/07w+Xxg5VAeuGnfA16OCc1br82Vp7d2Ne/r4WdPx/HjZfJWD/bz68r/X7rhCwrqjNBngg+gS1C/S3DjMGcNrqmoz1aosy2pC/iYhBqSyvyAIsTEuO3FGbzruDtbs1rVXJyvWa0WLJcLmqqhLn1kAORMjCJE4n1g9J6hH+j2e/r9gTAMBD+y2+5Edr04DZuSDGhdpC4Toh6F0FTyxInmaCiWEUncTGJZhD3GENht92KKlg2KjCbhrJVEKEqBSFPMvSjzR5IeO2edJDEFHBRkROhn2urS7Ar7vefFyw1tW1G3NYtlK43ilUMFj08SuGolSdGhC/hbj/sQFo3BOpE8dasltamoXcUnH3/Mm+trbnd7Yk4YZzk/W5ACvFY9u0NkiIqQAzoqEg1jyOy6gVxEYrRSfP8nL7nZDjgD/rBBq8wQMkFbVlajFoZQZVkXlcN5aJKixaF85rDf8+b5NT//wY+5efGacThgl5rFxQUXz9bo1ZJqYbBOF559ohs6bjcHEpl27ViuHNE73LJ9b5OMeb0rRdpJ/GUW28jTXHyf9jPFRNNnpH9zaggWCqDWmm7spIhcEhRThG3ytK5qhTIWY8TvzBg7U/vmQJ18z8Mr5VSQCk0Kg8zh2kKW5z7H0szMFE+KXK6Y/5l7RcX75yYx4rReyDFI1qK0yD6LzOq0jpwi6HMUfQ8xPBrW5TlROhbR9D1EQz5+orCURVJXUXqd6oquG/HDCDlzfnGBa1pubm4EjVInxcaCnkxzxKQwFb0nFZEGhYI4xTwRUZQ6Jj8pRfI0R2Qpvsi2SjGwKNDe+64SZGVxq8dktyInMzfPz6v46fqtTs/95JdM1/cXj6+PZBhNSoqx6PYaIo3TrBcNRtdoEmNU9FGRlS5ygeKBMKlKxRipqgprLZWTGzZF8GNROVAaZy1ZK2KSqkMfxRyv63pSP3D1aM0Hz56hlOLmdssXz69JSSbmMAf4utz0RaUqRzCTqg5gDP/L//J9/uiHP+H/+l/+n/jwkyV9L1KJORsxJ9GZ7bDnx599Stu0tG1L3/eEEAlx5MWrL7HacnX1mMrVxARDPzAqTw57cvZMBk45+2IuU4mUoUqMbLkOilxrXFvhUyZ1HVfPHvHoWx/T/8EPuPuDz7hyv0n74ZJat/g8EuJIVokQR5SyRXpPuJExjVBQhvkWyJO0WcIYeHPzBqUyxllyDhzGjXB0XQPK0C5bxlExdgPaaFRlWVxdkiP89l/5CKNr/rvf/Se8eHGDHwbC0FNbhW4qnLU0zpBSonEWlRM+BLrDyIT8CFQq8oOnf5zVOCbdbxEPSHESCyj0hJwL1Wqq4Aj8KdDk+zHuh/rl32paDDIPH8qTQv4M+x6/v5OtTZNkSVS++tE+RSpkG/nhr+c/v3hRnRexd/zmNDGZ95G/Yl+nL71znyf0ON49hf3yROMdkMuf4fhFx3dsOvz1OI5JMUcxBC8NpKU3IcZIut6glxXVs0e4qqK5WjHc7tlvRiKa2ogJ31SxUyji4Hnz8pbbN1ustZydL7h6tObJs0esz1ZcXJyxbJsiV66wtqauq4JAi1DIOJ7hh5HkR/w4sN1u6buB4TAwjp7DvhdvDBWYJG6yLr1xWqOsKpXFY3OnD4GYE1VjWZ8tqWrHbn+g63pyylgFtdO0jRTgckr4iYtuFGRBXzQZVeR3ndEoUpEnL8hKKRIYpdDWoIgMPtF1I5tNx3YjConOCQozKRZOCZBSsr20j+gx01ihxiYNuqkxVYszlqsnj/nWN7/JzWbHy1fXOFNR24zJsfg0DdwcShFIKaw15CB0rlQSMK1gtx8Yupe0leJiaWlqKS5iRZA2KA0mo5VFBYMeRjK39PoV2z7z6aev+flPPuPm1TUGsEZRKYffJdbfOqO9OkPXcVanzDnTdyPJJ6rK8PiTBWdnK4Y9uLYu39f7N1IRzEEVx+uSWc7KRoA2pYpdZE1lTYxz9TrnRHfoSEkq4SkmEhHjdBHvQSrcUQJ0aywKZhM/YyXWsLbCaotRZvZFmwRJUhbkYfQDIYx4L4XHbt9JEhwCVVXNErfG2lk1KaWISvEYJM9oRGm2znL3KLL4beRjE/NpL5PRmhQCTP0fU+LzAH2flJg42Rcg/VrlZ/nMCc1/+kKk0UOSjTQF+yItu2hr7m4GcowiWtMsGIMvyQBILwYlgRMUSanSnE2GFMVzLEaMUnI8s4Lm1Pif5kRFEBiOTujlmHMpzEoB9iQeBJIy6OUlenlFRJeGdT0nO7KNPL9/+s/DtX0qWf6y8bWTjNEL19LHRG0y3/rkKX/1d77Nt77xITkl3lzf8ePPX/Hjz15ytz1gjGG9XgIKPw7kiXtWtIAF8tGlmiTZXeUqlBK1pNF7kW8NkWH0+DFASlysVywWDUMYefHmWviElSFkGEMkJlH+S6lUuebA5XgxtLLE4Pn80y1/8K8+4/GT38ZacSCPMUCxVvdj4M57hqFncow0RrNYLOi7Dj/27Pa3rM4uURj6cQRtMNoVkxNpggdpgg8pyk1mLQFFnzre9C9Z12vs5YJ4t+Ww3eKqmiff+Q4vP/2S7U9fc1E5Lj5ak0KgH4urd4iEOJTKnEiRae0E6ipZLVCur/Bu5YaWm1pp4eaKgZ80cxMVV2dndF3PrRfd859+9hmVrrhsLrj8+Anf+PYlf+Ovf5N/+k97Pv1ihzWG9XpBztJ4aLQ0SLZNPScHPgRxUg8BH+R4hjDQ54FMvo92FMRDa6miiQmgOqFYTSoQE7JhC0f5fRnT3Tal/6dw431K0GnB/qsD+gdbP4Ux7m3oFxzOO67PzKSdkoWv2lk+/d3JRPZgF8e/j4mCOr0OvyjOPs5sU1Z2cmLvyFTe43F6Xd5Fufr1kFFXDhWliTpk8EmUhyjV+tSP0PXkcUC3De1ywW5RM9yN6JSkUdxqUjjyr0FUZaLP9FmShOAHRt9z9ehRuZczdV3hrIhI6CJ9bq0jZ1v6ABpSCMQQaJdLxsEzDp7D4cB+d6A79PRDTxoTfhzpDj0xSJV0qvTN9JEsfHk0tMsF7XJJzpEUIiomWqtpa8OyqVmuW+mxGDyDgZyEzjJRqqyF2lUinQkYnRl8gBRwKpOtxhnFonZkFN0owYOzlhQit2829F1H01a0bS1KPmXuD4M0npIzvvP42xE9io9E0oloFLmqyMbSXJ7x0ccfsd0fOPQdISSquir0MGbPrNhLwa9xBqM0jRM2Q2MUi9qycJbaQlUp2sYRlWYcI2rpsEtNdh5I5KBIY2apK5Z+ZPzyJ7x8eeD7P3zN3XYAJcGlU6B8YPtmy6OkOHt0iW0ixkqiRoI8JBaVpW40H3/7jMWyxo8e21iUeT/nmhBCoWQX6l0JvGfUOcNEx57m0skDbAqkK2shJkIWVsUYvdDwQqByjuDl3+L0DEkJz19rVdZnJy7fblE8UPQRICjVfcik5PFhwIehKIKOBD8yNWyngjLMPRSFEqQmlUmtj/YFAErN51rKbHP/xNQbcb9KP6kolabskl1MJpc5q0Ktv1/K0sWtfH5lfv8pqnHSe1Ku++S+rYo/nMqKUPqS63aBthXDULzM3qI8lyTthN6VYiqN6nI8U5E856M87XQhVKZIWuv7x5yY9xNjnuc4pTURBdUCvbrCKyNzbc44c7+vdaJMTanF8d98jULn/fG1k4xuHMlRqimX52t+53u/wW9/7zucny2xGpaLmv048vz1G7oBnn7wmI+efcibN9fc3t6ilLhDN3VF29RUVUPOauYZWisKQSI7GwQ+z8UY6NCz3+05qx0fP3vCclGz6w68vr3FaEVbWfajBLkBXSBg4SGGHIgkdFIYVxwPtUHbRPCe3/3v/zcOXc9//n/+O1jbs+t32OxOpAQzOYf5+Nq2ARKLZcM2dhz6LUPoWa0vSXnk6LJYOJMpMkkiGzWpHmiS1gypI6qIbQ3nHy1wOqN3ns730DScffCYw80tmy9esbx8xll7hgb2Q8C6DAiqYrQTOlZWJKVRacp4M1KYCDLHJjHxkwfcU1ctV4sFQ99hgHEc0GPPZbsgDonr21uyygxh5Nrf8Nmrn/Ltxx/wd/7d7/Do6pL/13/zP/DpZweMFpqUdRalbdFzBsyEJtXlYZFEy/tCUyhUhRAjwQf6Xtx9zYR0GCMCANYWXqgRV9/sJEuPJ1zF921MVQGYwJmHtYA5y5g9MOaPPpyMptcS71aWeggX/CKQQr3zx3eNGda995npvE6RjOlgT5CXe4nCgyN4R/T9kEl2SsX6i0iXmvi8vx7vHsu6wobILo7ElIlZikJSvBdpxyXAMJAri3OW5XpBf93h9/54ffX0bBX6Uhb6VMqZGBL9oec6jiSf0cicvD5bsWgrVC3JgPSyyT1nrSFnDdYWb4CGmDJ+9Cz6gfX5gPcjwzAQvGfsevbbHV3X48fAMATUmBBj7UjK5ZyMplk0uLpiHDpUSrRG09YVy4WjbSsWqxpXVeQQiSHijCXFxGazJaVA24gaY4gRHxMZzf4wShU6KjyRpjGs2oaYM1ZLw7ixBkJie7tlv4GqtqwvVyxXDSjR8M9NZrnwHPokcazWAAEAAElEQVRE8pn9m47dzZaLbiCtI70faZqMdhazWnB2ec43P/mIm80Nz1+9QUeF0zUKkend95neByadfms0jRNfpVUFZ0vHeuFwDowFrGGImqYBtVLoJkpvS4Q4JtSYufzgikdVzWa7YW1vuKwzQ2dISvptmvLHhEx3u+Xq289wTSarURDvELEjPFo31EvF48ct1oGyCre0KKO/6nb9cx/SuyAN0zlnfAhMXg8zvefBMiiJhqAZQwxSlIPZLVtrqWL7E7GVqX/DF0lUrR3WVFhTU7kWV7VzIZGpNyKXOGm2KQiibJYTfXcoQf6kRBmPCVKhY2mjikpa6bQq61dKqRQZi0neO67LdMxzr2Zpgp56B6bfTQnKXLYqO5oEdGYaVD4iglK8nXZ0/OtIKZ4+L+uX1poYMl3fy3O1WnE3juy7A0zf0Ry059lkXg5VjiOFEV2MCgW1yZKAZekJM1NbQAzlXHNJju+vtCLNfURgjDayM23RqyuyW5OSLt4ZptT2TtZldSwUPtx4ngKa0wvzC8bXTjJc1UgFwEDdOL54+YoxJdZna7S2/ORnn/GDn/6IMSY+ePoB3/rGN4ghcTiILJ1zjqZpWCwW4o1R1xypPGKwhMmMpfIecxLTo82G29sbDvsd3/nwN3j65ApnNJvtjucv30ijkBFZwpilN86XbE6MlUq/AkAWh8XJcTprzc125B/+ox9QN5a/9/e/Tc6+3LDiAOucKxxIuZi73RZrDFVdlWdaEYLnsL8rClsTh0+WvkmhhHJTtW0rXhLFuDDlQB8PKKtYP1nSjxtef/6CsydXtMuGtbti+/IV449fU33zisX6ipgVo9+inECSPkRBTyYTmUmCUUn/Q4wnjo9empGsbSBFTDYs6yVpHKkbw+72mroZWLVLFOfs9nt8GBlCz+uD5qk6p71Y8L3f+oh/8O/9Pf6r/+r/w36742JV8fGHz1hdPeHTL5/z+s21SMUpZgNAyNQYsqsEXkW4ypJoxhnpmJCPbvTlGuqSxUtVThAPqa4caVbvxzjCqvcrJXDke8IURJ9qL73rYT1BPuZY/uvVD45c2XdPA1KVOb7nFDq+f9zvGuW4Tgp/b73zBIRQJ4vRvT6Okx8n6PftLZ3gKA97Rr7GmBaXP/n4RRDMn3D86x/UX/jRVjU5DaVvLjLGgCKzqit0jlRNRaUh+pHhkMlVhVtYbOvwnSdm8DEyxMQYo9BlXCX88VhW/elCh8TuboNCMfjARe85P1+xXjXUlcUaBdYUypEs7sqIWZXQSqGqKpq2JXih/UqV1hPHkaHfM3Q9XTey33ccDnu6w8Bh3xP7hFIaWzmqupa1KiVIkcZZ1ouG1ZkYt9aNYdG2aKWorEiKj8NA22hiGFi2FdZZhhAJUQpIdeXYHTxx7DBJqvRtJb2I3muCKW7MMTJGSMEz9gpjFdZprDUoo7HOsGgqmsozDpGx83TbPX4YSDHifTF7tQ7lLFVTsVqtOD874/puI4axWQxaxUS1uA5LVIbS4oEgojCKyhqqStBqZTJJa8ilAdgCOs6YcCoVZUFdpOfTOUVlVFEsKv4K0z5AkCIogeSEkpZehBLUThQTQfZVoRy9f2OipKYsgjYW6YnQ2hUZ/R5yJCOytLMz/bTmzIiayO7nNCFhci8aK2HgOAxHS4IsTtzGWoyrUbahqpc4Ux8biClzd5qULiMheEL0pXdyZBw7YfyliNUKXTwcckro4rWmCsUvcZSgnQQ/ZhrTA/GXqX9En8QGoZhwSpIyZVwFMUkFWT9Z96aYOuc8F4In47tUqFBzcpEnSds0x1kpHRMMyDin2e47fIho52jPLnm52RYxI2CiOWUpEButMSimHeUYUDGgkDmDNF0L8dowpXckp1xMoI+KeRDnOl+KmVjaE3TpxZk8NbANanEhpnsxA8U5froqp1T705vwwbp7fNsvf2a+dpLRVpU4VmvFYQz89OU1P3p5SygZ3G67oRs6ztdrPvjgE2rd8Omrz9jv99KfUVU0jcjJWWtnzwxg5kymEETqNclNsdvt2dxsOGx2qDzwyYePWLQVw+B5+eqGu21HyKoE65Ohi2R88Z7+QCl3JcgxohFZQYsmpsTtzZb/6X/4F3z32x/x9ANHTB2KCqhISriqtjyIOQslq+/74w2qFOMwkIHV8gyfQ5EVK0obUmcjZ0XXd+QUyUkcw7W2jONA1pnkEuuPz1h6z+Fmi46B8ydPOGxqNl/esDQG98kV56tztiHgVUZbCdSFmxnnQG7iBYuySWmULDelTAAKlRO77UZg5pR4dvEE3WrQhpd3d0JROOxQVia16/2WP/jsR9TJ8s3Lb/HX/vq3+cEf/CY/+uPP+Bv/9m/zW7/zW/RKM2D5489f8fLVa6xW4ireVDTOFkdvK81/gLWKbC1kiCcu4SGmGe0YvdwXMUaGYRDEg1x8M+w8Sb4/44EE6zzn/wKM8eReelffgjp5H/NE9eB3XzXemQGcfPAEyr33sZOqxvS3erC9exK17zg39Y6f3vmO42z9jnf8WS/+72ew8Zdp6BIMalVkYFMmKSkAqZjEyVoBpRClUhKagzmifBPnWCRepSx4StFTJ7d5Tmlu8p76Ayc1u5wnN99SPSxj4nKrEomqd/xh/ps5oT7m11+xYM9H9e4xbU89+Hn61PyzRAWn+fz9eed0oyXnKjH/HPz/wpGPhZETyYmT4+T+XPXglH7lXPorLsnDl+fv9V51lfv/eBgU3f/P8X1/ER71EiBONHO5xwzGLbGukqDej4hxgCHnKZiW52LySTDaYI0lZOmzmPs1kKBVGAGiAKm0xbgKYyq0rTDWYaybE7Fj34I0Y6csCEaIIyF4/Dgw9DtiGISKlBLWOSbzuZJpyD1UtqVKYSAlsQHQTH0nD6Rk4f4zyDEJKZdrTsyk7Fw+iyg1HSVkT4pa+agImdK0lkn/xNRwP6m2HVGOyStMJK+ttfSDWCdcXl4RYsaHWHK+k3UOKTjreX/i6p1CFOQCVdo4p+SYE/O+IpQz+V6URDlnmbtySeBIkphMjduZTNYOvXxE1g0pIkm9tqDMfGhfib4/eP1Xea6/dnS273t2WSRaQ4okDVEJPccYQ6UUdb1k0a7p+p4vui95c3NNzlks1csfpRSj99IUpAURMMYI1DZ6CAFlDH3Xc319zWa7hRh5fHHGJx8+xrjEzes7Xr26phs8uqpQpigjkamM+Gt4k6Snw6fiSy83Rxg9YRhJXriBGlBJ0d+M/K//4/+P/+Q/+xssrxrGNIpEW5ykYtVsyDRxAuciszrKxhltqJY1+/0eW1xLvR9RWs5bF2g3xAFUQCcLGPowEPVIXVvW33hM8JG76zs++ea3ePadb/GzH/4x1z/4jKdRUX3ngrVbs/eRfRAqV0YxejF2mY4nzw+KqGtMDUGT87rSGaNkgrhYLLm6eAReEcmYquanLz/DM4rLp67IHt5sbkljQGXNJ8tv8g/+j3+Vxxdrfuu3/xqPP/iAl9sNy7M12Rg2nSQDCoXVpWFRaypraOuKtnaSfFSuVKEM9mQCSNQnylLxSK+aEQ+pKA7D+Cvc8v+mxwPogTyVSOaK0r2h1MmEyL3P3ntroVS9a7F/ODPMwcm82OZpzpyh6Ckg++Wn8zCZmZrD8jyBTW97KwiZQ637aMS7kqj7+ddJuDTdw19xrH8SdOPefnlr/vw3Pn7l4Osv83h48fODvx+8ZQqs3zmmL/OXfaH53l9ff7xju/eD+q8OuB/+4lctDPziY/3qZGYKQL7euH9UbwXub73zqy/2wwTgrYTnF53RV/wq83Au+sWbuPfuKSH7qsTkPX4iJSjOc38EFLrMsEchvaqytkixUSGJiCmMjRDyLBubSn+HONUPOOdK5VsC3KyYi6MKoWdpY3FVS1W8NB6Kk4gXQyAmTwieGEbG4UD0HY1VxOBnk714IpVblqGS5ByThFzk7IUFckxqprhlQi9O15EZ6SgUFq2PCkzCItEc+x4LOnIPOZdZeUoiprzmSCM7/pxSLtKylH4M6WcyaLb7EVtXmKZl1x+IYUQroYIqdVSikkNPRZE6lt4OcUQ/JjtpVvjSs+KW0EDnpGhe40uyFVMpvqSisKrnpn7qJXpxTkiiXjehIDml+YHNmXeuz1/nOf+q8bWTjOthX7KlYhiUFMrq2SsiF2pRDpGXr16JOX08uitOTb3CJ5Sb0VQKRSTHgRASyQvkF6Ln+vaWV7c3dMPAsrKcP35M5xVvbjt+/sUrXr25YxgildBn5UImqXhVChoDqq4JqmHX94whYnIEH0ghzMYmKSdqZfhgfc4nq8dwnbh8/IS4juzCQH8I5JPMXylRSchaeLbCkZTvIKXMZrPh6dNn5QvLLJdL9ntp3jLFCRtlUIUfHFJAqUxWiSEFNlHD4pL1t664TZ6ffP4Zf/tv/y2WqyU//cPvs7u+pVk5lp+sUU1ijCM+e84v1my2iXH0876na6+VmbNpgfmEyxdCYNFUVHXD46cf0SzOaN2SH/3shxzSAV2BzpmUg1RMPGhdUS3+/+z9d5Rs2Vnej3/23idV7tw3ztyJ0owGSQhpQJpRshEyEjaYDLZhZIzMgmXAgIA//EWSWSSTBGKhBZjFkoVEMmmB0A8NOUgoGBBKozD5hs5d8cQdfn/sU9Xd996ZuTMaMRepnrX63u6qU1XnnNrhDc/7vDE2AJdo1k+3Kco1VFiSlzk7u/tsbO0wmUxqp8YvIqWF0kz1u0FOck+lEr6ZXiMOaSYxzdh38A6UREnfwVJKh0P5wkPnU73GmBnVShvDVYeLHIfpX4fl8aaPc+TIqRNw9NF6CThiUD/atnh47l8mpjcL6j3aezyy8e4OLc2PYjIfDq8+mk1RR0sPexpHjZirO9z4qTo6n424jJv5GK84rO5y6Hhx8PwjvDGHZ8xsiB21Qj9lPKbDfuSzLn/sIw2hxxz9jzRFHvWFl/mwi9/n4ozARdcwNRLF0YePfk9Xco+fkLf3qHpuF0ct/KsOn/ChiPS/CIiDAM1BkXCBKTQSr7rorI+6CwEqCKHu6i2EBHGgkmTqDN5UkUzifCC2rmeazQ0hETJCyNA34FPxTJHscAbBWF33a9BoXWGtpqoynC6QePtJqQBj9EzmVtb1L973qKlgiNl4m343U1vlcM3I4fX28P/WTusrpoXUB9QvIaZ1FwZH3a/CMSsMF4co14+0lvvs6cE9nL43ePWtOI7oD3O6CwtEjSZlv8+0n880yE3tsMzqUpxXKrLGINxBwbo7lMFR8sDRmmZ2Zipj9WLmr3VaG+PXOaUUckr1DxJkewUtY4yp6WN1wHF6D44Mt4sDl4/w95Vse1euLmWdb24nBK7uJUHdPCQQkmYU0W22CZSsFZqm0mlu5jmDN7atszMvG+dTY16iTWKNZTyZsLe/T5rn/qaKgHGW848f/gTWVOz3h0zykrCu69Bae+nbuvBI4PXXV1e7dHs98kpzbmOTfn8fqQ2u1Egs0jdiACzHVld40e2fT7sRsruxg6gcJvaTUYjaqNVThSyJE5AkTaIoZDgaoaIAacGUjq2trdkXYYxB1d0t/WP1YK6NfQ9DIBUIxTgfIRsBnc4i8fFFJhv79PdHHDt5kqjb4+wnH+Chhx/CYGmdbNNpLDDMdgmlIA4VVZkDU+WFg6zA4e/COUeWpcStGGNAG8FwNKEVdzBWMMzH7Ke7BM0QpcAUJV4F2HmnyljG2YRttc1C0mNhPSYfZjzw4H185JPnuO/+BxlPJhzoOU9H0ZSaAH6qQyUEhbFMygo5zmo+siKpaVVJHNKIfHfyKFCESvm6msDzlomnEYmrAwdaZlO3oP53ahhd5lwv8icOJvRlH7uyaz1ck3HRJ00PeMyFhNr4F7PnxDT0dPDOhyJa/iWXO79D1/NIoQ93yNm4+FQv/4p/4fgXZOA8pXCH/j2Kyxmzl9zRS174z7BWPNIQd5c55iJn5/Jn9zjGydS2vpIQ46N8yqMlG9xBYuCx3+iSJx77Ch8xtOEu0vG/2MHh0Hk/ksN2+MQf875fPThYg2scog3N+mHVTxnrGRrGWrQxnoFxKLLtrO9hMaX2ae3roaTwTBXhfITbOxQBUoUEQVwbtfYgGg9Mu9obozHGK1I6oMhST9HGzjqDT7MQCFGrU3njwEfwp7/XxeG1ItK0IeBhOtTBLTikUlU/L2taUZ38OfIagah73EwzBf6zvU12kDW4RAVSeLXOqfrWlB1wcCK+xswah7agGg3GRUlVVp7+JH2B+KGmFf5a3VSS18uhSixB/ZyZ0qSmpkN9rraWGHa4eg8H4bti+3tgXN1V3Hf3Fvh6SBm3IV7AumCWfRHUIhfeReHIBR1EES/PwLh4PD4KrtjJCILI82jrCO20iQrWEccBi50uvVYbXRW+CU/tjUHtUdW1ANPUk6r1gaeGhf8iJWVVsD8YME4ns9dGUYxUAcPRhCzPyAuNdnU6sPaqp4XlVeULj0Tt3RdlgbOWVqzQnSYIQYD3YhsqJKi7USshyQuLJOLC2YqNTzzI6c9ZIumG3hmoNdmFUDWfWGIKgxMBywvLlGXpddZdhda18+Ako9HIe+11r4TpdzX90mRAPWht3aEcCp0ShAFxt4EYRvzDhz7EF3Q6dBcXuO5pt5KlOQ9+4gGWyxW6Z5YwCQwHA4wtCZQDCcb4RjdGe9nd6b2cNtuJ4whZ7xaTLMPqgslkTLfdYWFhiaTV4OzmQ6AcYU1FE4GYqWWVpmRvvE9ZFdx08gxlC6xwvP8DH+fcuQ3yynjZEOdqrqWPkExb1h8JkNW2t62N8bJ2OgS+OC+UcqYN30yiA6pVHKHq3htXHw6FBWcGxVGFidnj0znlDjqXXm47nj52cZDu0skujm7Alw1aHrzGwaE4zsERlzM0Dp/D1Odg+vclC9FBtHO6bl3yTc1efynZ6uDcr8bvlyPf1xyPF4cGzyFMXfTLD9qD11z87OWMxMPz5CLz5PGe7KcMd+hMjjhHj3j8IxwiHvXPK8DReT979NC6M31y5vJfcrsOFpdLAhWH3v+R1p8ncvcPm3Xi8P+PGLN4JC/j0DHuCfliTw3E4eixu2j/vDIDcMoosXV90kFjWzNzVDyd2wurKOkj4WGYoILYMzcECDxdx+FV4KzVWKspq5LKVDgMRmdEUoATtdJlHbmvHRvPshA1vevgOpz1DBillG9HcSh674Vk5CyC71k0BxRwXN2Qr97MTH1ds9opmA0k/76GmUPCgX02C+zXtqk79ODUvxDOK9k55xBO0IgbVNqi4iZJp8ve1s6hXhzukB00/azp9+bAGYQzB3tp/fw0qyFmx7m6ZoPZwK37EPrrMb5Wg7r5sm/i6XBBgm0sIlSCreqi/mnQ0El8y0+OnNvBjWIWBT1Ytx7fDL5ydama6jQd4FNJMmENViuqsqRUOc55XWpZS8lOsxizNI9ShIFv0ocAJ6ZNVRyVMYwmE/YHA6rK04vazYTVxS5LvbbXPXcJuc7Z3emTlyVREBBHIUkcEijlO7fWXaN3J9sE0ke8vSZ6UHvRiliGREHovT4h2dze5Td+7x3EYYu00AyKLSb2Gj7382/EyZIK31DOpxkDlICq1i9fXlphZEY8fOECrXajzhpMh4s4kF8TZlZU5FzdQKdWZfD0KYcKJMYVZFWfymV0Ti6QRRXDvKAXhCS9Jk971rOpsJx96EHCJKF5rIuVlonWOCymqrziVBCRxDHWVhhrvQa1sbN295UucXUH28IZdJEyyMY+axB5NSjlQDt/nb3uMmlWoI3GCMOgGFPYiuM2ZWlxgTNBzPM/7xY+/LFPMH54E4TyXXDxWlJu2oYSezDhnDtqqNYD3Fk/QayFSlio/Fjvp8WsaCoKvARko5a5uyowvYiLF3kx3bAPR1YObxyHDr0oO3Dw2KGIwmPM84P+FBfVcBzaoR8zOzJ7/HLxQnf0c46c0oGpeIj7Nb2Qy26AM7rURe/JoazQU43Z8uvEzFl+Iu9xdVzN1YhLt7on862PGGZX+LKjmdhHPOqiL/UxvuFD1vFjv/WVvNdhuEd7sj7EXcE1MYsmuIM/Lv/hl/GELvvJh33HT+ULvvh2Xw6Xe/96LTpYXp/AgHhKcFkX+hKnw00DMocCN5dQOWdR9APj+Ui0X4hZQbiUCiUDkqhBEkbEKvCNHqnNUue8WIupqKoCXfdDK8sUrK5ZIA5rxazY2vd2EN5YdnXQoI7Su1lmYdpD40B91NbFzEJNbVw3i+BPjW/wrxF1TYKp6fqiPmcnRN3N3Gd7/Fg4uIcHBebeObLO1T0n/Lhx08/jQDHUh5sFjSSCQrDU7jLJSvIyo/aEaqfEF7tPVaycc7O+NL4Znj1UdzGVnq2dM+O7ehtt6vesr392Xp4mpbW/5mlQHwROKkR7GRH3sNrgTJ3FENPcxeFJeXivPhR2dNMV4LDtMbVzHnviXLGTcfjiD/SQLYEAGXuPsqxKhHCEyjskRVWijSGhCaIuio4i4jhCCNCm9J6s9IOkLApGaUpWR7HjMGCx1aTXbCBxKBWChMIUZJUjL31X8LQ0JJWjkfhC4bQoUMJ77dr6QR7WX3RlNEJ5T2+2RqqACkm+M0S4oS/qkZZ//LsHaTWWuem2FZBDrzo1y3b5L8lqw9b2lnemQoVSola5oi5C8hkaRN3dEgPSF25Vla6zDH5h8J61RcoA7QylywmTinC5wbndbTLtOH36OFG7wQ1PfxqtbouzWw9DKGmudtCuJNOGMJJYSqwzhKHn4JVZhhW+46ofwFMZNu/NG2tRgUMI38RHlwVhEgIaUxoEgm6nTavZ5cLG1swhKnTBJx9+iFtOhMRU3HrTGl/8r2+n+P/9JbuDMXmuvXQiClfXhvjiMltvYHUKEXeR43F4I3Sz+22cp1khRJ3x0AiyKx3Gn3YcnXIHhsT0t4trMvxRF0duD0fxjz50Sar2crh8kPjQp4nZAnXw8MFie3Atj2BYXNaOcQc/F/km4nKHH8JBoOaoA3bk9P4FmeZzR+Lx4RFH8xUYfo8ULX9iH/gE8BiZhaPn9/hOcnb0ZZaDK8GVj8HLzspLfr9kJRBXNi+nlMtHevdLzuIRYx6HFhbxGJ7GIwRIjjCOHuXlVyMOB6QeKQszC9PUhvrhgM6UHnU52tH0fesj6/srEVIiVTirhThccD3NINi6S7VvtGco0hGhkmid1+wMeXRfcW5WwE5tIFvjC8+x07qLur5kZtAz++zDztPh2oWLnSZrD/ZaL34jZhT2WeZGqkPsgmmHbHBeXPYiw7q+N/X/h4vChbAYFDKKGA1GzBg6HPwPPqAuxfRvf43O1A0JObimWU2JmzqRU4cJDjhU1AwsVztUdWlCLcXtBBC3EM1FrPQCAG66+wvfxNkeCb64Q9PFcjQYeJG98DgWpSt3Mqxvb66oi2mMvxlJEtNMEsK6SYyQ/qYUuiIrSipr6OAQ0vdsUMJhqnJW+GOt8Z2/tWacpozHE3SlkUrSiCIaYUggAqz12t95UZGmOcY6nFAYvMFfaIPNS9/YRQU0o4iFdps4jDA4sqIgz1JMWXkOv/BcNe0MtiwJjSByvsW9UBIVgJoo/vJPPsp11/9bWiuOwg58cztrCVQIeA89yydYa0kaEVJJTKVRQYDV02Irr6zUaDSw1pLnGT5H5/tATCMHWmvAoQJ8MRWCTE+Iax3zzc2zmGzIiVPHiVoNnnbLLYBlc2uLqBHT6y4RWImWOVJJxqOUosi9zKtSzDrMO88RFLVn77NMXnceZYnjiMr6WgdrLMJKkijyBdjOEUUxtqoHIprKVWznfWQO693jPOuZJ6js5/Lw+W12dkf0BynDUcZokjMeF2gDTsj6J6wNb3uQ7cCBs4fShDwqzerq2i78OR8Y8u5gUbgoanSpFV5vEbWF7YM0dcSlNu6ngZvLXbNPRx9dCi57aL1ePCZVYOo3iMs8fGTRPbrgTANqB593KOJ08aY/e083+82/5aHN8Sow2UW9XTyRV15d4/PqweVHQo1HuGVXMhKuZFg/8oc8/u/rcp8nLp6IFz//hLyjR/78S2lLn8q7eVxKYXzUww8eumj+Pi48qvdxBQ9fFOd4xBcdiZ9c/fPzSMGzO3jsCHXqovX64kzG0czHpftpvdEeciZ80bhSwSz6Pf1aDz57qrg0pS35Lt9iWr8gvdLVlJ41zZQcZOa9+I62tXzroQi/0YcEXdzBuU0xC3pfsq9O+4J54Rml/GfNHIiZczC9HweOykHmckrjr3+/6DMc06JsSRgIgjiiLBVFYcjK4sj9pnYSvDPiZo/5Ggov1Svr/ibTRsai/h7trJP61JGqz7Omujvr6prmKd3NK4kKKXBBCO0lXNjAaIO1Einqxs11Pko4cdDBfDbY/D9+H79ocB2JS17ZHBduLosyxxxzzDHHHHPMMcccczyJuHpaJc8xxxxzzDHHHHPMMcccnxGYOxlzzDHHHHPMMcccc8wxx5OKuZMxxxxzzDHHHHPMMcccczypmDsZc8wxxxxzzDHHHHPMMceTirmTMcccc8wxxxxzzDHHHHM8qZg7GXPMMcccc8wxxxxzzDHHk4q5kzHHHHPMMcccc8wxxxxzPKmYOxlzzDHHHHPMMcccc8wxx5OKuZMxxxxzzDHHHHPMMcccczypmDsZc8wxxxxzzDHHHHPMMceTirmTMcccc8wxxxxzzDHHHHM8qfiMcjLOnDnDXXfd9VSfxmcc/uIv/gIhBH/xF3/xVJ/KHE8C5vPk04P5PPnMxWfjnHnd616HEOLIY5+N92GOR8Z8PFwed911F2fOnHmqT+OqwL8IJ+Pee+/lv/7X/8r1119PkiR0u13uuOMOfuZnfoYsy57q03tCuOuuuxBC0O12L3sNn/jEJxBCIITgJ37iJ56CM5zjXxrm82Q+T+Z4fPhMmjP9fp/jx49zxx134Jy75Pm/+7u/Q0rJa17zmqfg7Ob4l4TPpHkxxXQvmf7EcczNN9/MD/zAD5Dn+af98w9/9nRPe/GLX8zb3/72J/R+aZryute97qoPagVP9Qk8Ft7+9rfzVV/1VcRxzDd8wzdw2223UZYlf/M3f8NrXvMaPvzhD/OLv/iLT/VpPiEEQUCapvzBH/wBX/3VX33kube+9a0kSfLPMvgfCy960YvIsowoip7qU5njETCfJ/N5Msfjw2fanFlYWOANb3gDX/u1X8sv/dIv8epXv3r2nNaab/mWb+Haa6/l9a9//VN4lnNc7fhMmxeHEccx//t//28ABoMBv//7v88P/uAPcu+99/LWt7710/75L3vZy/iGb/gGnHM8+OCDvOlNb+Lf/tt/yzve8Q5e/vKXP673StN0Npdf8pKXfBrO9snBVe1k3H///Xzt134t1157LX/2Z3/G8ePHZ89927d9G5/85CefsBd4NSCOY+644w5+7dd+7RLj6W1vexuvfOUr+e3f/u2n6OwOIKUkSZKn+jTmeATM58l8nszx+PCZOme+5mu+hje/+c18//d/P1/6pV/K+vo6AD/zMz/DBz7wAf7oj/6IZrP5FJ/lHFcrPlPnxRRBEPAf/+N/nP39rd/6rbzgBS/g137t1/ipn/qp2Xz5dOHmm28+8vlf8RVfwa233srP/MzPPG4n418Krmq61P/6X/+L8XjML//yLx8Z7FPceOONfMd3fMcjvn5vb4/v+Z7v4XM+53Not9t0u12++Iu/mA984AOXHPvGN76RZzzjGTSbTRYXF3nuc5/L2972ttnzo9GI7/zO7+TMmTPEccza2hove9nL+Pu///vZMWmacs8997Czs3PF1/j1X//1vOMd76Df788ee9/73scnPvEJvv7rv/6yr7nvvvv4qq/6KpaWlmg2m3zBF3zBZSf+Y13Tgw8+yLd+67fytKc9jUajwfLyMl/1VV/FAw88cOR9Holr/p73vIdXvOIVLC4u0mq1eOYzn8nP/MzPXPG1z/HkYD5P5vNkjseHz+Q58/M///MURcF3fdd3AfDwww/zute9jq/5mq/hi7/4iwF4xzvewQtf+EJarRadTodXvvKVfPjDH37M974cHmueOedYWVmZnQ+AtZaFhQWUUkfm9I/92I8RBAHj8fgJncscnxo+k+fF5SCE4M4778Q5x3333XfkuSudI7/3e7/HbbfdRpIk3Hbbbfzu7/7uFX/+LbfcwsrKCvfee++Rx7e2tvimb/om1tfXSZKEZz3rWbz5zW+ePf/AAw+wuroKwOtf//oZBet1r3vd47j6fx5c1U7GH/zBH3D99dfzghe84Am9/r777uP3fu/3+JIv+RJ+6qd+ite85jV88IMf5MUvfjHnz5+fHfdLv/RLfPu3fzu33norb3jDG3j961/Ps5/9bN7znvfMjvmWb/kW3vSmN/EVX/EV/PzP/zzf8z3fQ6PR4KMf/ejsmPe+973ccsst/NzP/dwVn+OXf/mXI4Tgd37nd2aPve1tb+PpT386z3nOcy45fnNzkxe84AX88R//Md/6rd/KD/3QD5HnOf/u3/27I4P7Sq7pfe97H+9617v42q/9Wn72Z3+Wb/mWb+FP//RPeclLXkKapo963nfffTcvetGL+MhHPsJ3fMd38JM/+ZO89KUv5Q//8A+v+NrneHIwnyfzeTLH48Nn8pw5c+YMr3/963nb297G3Xffzbd/+7cTBAFveMMbAHjLW97CK1/5StrtNj/2Yz/G//f//X985CMf4c4777zEcX4sXMk8E0Jwxx138Fd/9Vez1/3TP/0Tg8EAgL/927+dPf7Xf/3XfO7nfi7tdvtxncccTw4+k+fFI2E65hcXF2ePXekceec738lXfMVXIITgR37kR/iyL/syXvWqV/H+97//ij57MBiwv79/5LOzLOMlL3kJb3nLW/gP/+E/8OM//uP0ej3uuuuuWXBqdXWVN73pTQD8+3//73nLW97CW97yFr78y7/8Cd+HTxvcVYrBYOAA96Vf+qVX/Jprr73WfeM3fuPs7zzPnTHmyDH333+/i+PY/c//+T9nj33pl36pe8YznvGo793r9dy3fdu3Peoxf/7nf+4A99rXvvYxz/Ubv/EbXavVcs4595Vf+ZXuX//rf+2cc84Y444dO+Ze//rXu/vvv98B7sd//Mdnr/vO7/xOB7i//uu/nj02Go3cdddd586cOTO73iu5pjRNL3ns3e9+twPc//k//+eS6/rzP/9z55xzWmt33XXXuWuvvdbt7+8feb219jGvfY4nD/N5Mp8nczw+fKbPGeecq6rKPfvZz3ZLS0sOcL/wC7/gnPNzYGFhwX3zN3/zkeM3NjZcr9c78vhrX/tad7GJcPF9uNJ59uM//uNOKeWGw6Fzzrmf/dmfdddee627/fbb3fd93/c55/ycXlhYcP/9v//3K7rGOZ5cfKbPi+lesr297ba3t90nP/lJ9xM/8RNOCOFuu+222Zr8eObIs5/9bHf8+HHX7/dnj73zne90gLv22muPvB5w3/RN3+S2t7fd1taWe//73+/+zb/5N5fsXW94wxsc4H71V3919lhZlu75z3++a7fbszm0vb39uNaEpwpXbSZjOBwC0Ol0nvB7xHGMlP4SjTHs7u7Sbrd52tOediTltrCwwNmzZ3nf+973iO+1sLDAe97zniPe+MV4yUtegnPucaesvv7rv56/+Iu/YGNjgz/7sz9jY2PjESkgf/RHf8Ttt9/OnXfeOXus3W7z6le/mgceeICPfOQjV3xNjUZj9ntVVezu7nLjjTeysLBw5P5cjH/4h3/g/vvv5zu/8ztZWFg48tzFkodzfHoxnyfzeTLH48Nnw5wJgoBf/MVfZG9vjy/4gi/gm7/5mwGfWev3+3zd130dOzs7sx+lFJ//+Z/Pn//5n1/R+09xpfPshS98IcYY3vWudwE+Y/HCF76QF77whfz1X/81AB/60Ifo9/u88IUvfFznMMeTg8+GeTGZTFhdXWV1dZUbb7yR7/me7+GOO+7g93//92dr8pXOkQsXLvCP//iPfOM3fiO9Xm/2GS972cu49dZbL/v5v/zLv8zq6ipra2s897nP5U//9E/53u/93iNUwj/6oz/i2LFjfN3Xfd3ssTAM+fZv/3bG4zF/+Zd/eUXXerXgqnUyut0u4Hl5TxTWWn76p3+am266iTiOWVlZYXV19UiqFuD7vu/7aLfb3H777dx0001827d925EULniu4oc+9CFOnz7N7bffzute97pLOHxPFK94xSvodDr8xm/8Bm9961t53vOex4033njZYx988EGe9rSnXfL4LbfcMnv+Sq8pyzJ+4Ad+gNOnTx+5P/1+/8j9uRhT/uBtt932hK53jicP83kynydzPD58tsyZ5z3veQB83ud93syA+sQnPgHAv/pX/2pmbE1/3vnOd7K1tfW4PuNK59lznvMcms3mzKGYOhkvetGLeP/730+e57PnDjssc/zz4bNhXiRJwt13383dd9/Nr/zKr3DLLbewtbV1JJB0pXNkOrZvuummSz7ncnMC4Eu/9Eu5++67efvb3z7rQ5Om6cwxm77vTTfddOQxuHRO/UvBVe1knDhxgg996ENP+D1++Id/mO/6ru/iRS96Eb/6q7/KH//xH3P33XfzjGc8A2vt7LhbbrmFj33sY/z6r/86d955J7/927/NnXfeyWtf+9rZMV/91V/Nfffdxxvf+EZOnDjBj//4j/OMZzyDd7zjHZ/SdYL3/r/8y7+cN7/5zfzu7/7uI0ZnHw+u5Jr+23/7b/zQD/0QX/3VX81v/uZv8s53vpO7776b5eXlI/dnjqsX83nyqWE+Tz778Nk0Zy7G9Nze8pa3zIytwz+///u//6R/JvhI7Od//ufzV3/1V3zyk59kY2ODF77whdx5551UVcV73vMe/vqv/5qnP/3ps4LWOf558dkwL5RSfOEXfiFf+IVfyF133cWf/umfsrGxwX/9r/91dsync46cOnWKL/zCL+QVr3gFr33ta/mpn/opfu7nfu5IreFnHJ5attaj49WvfrUD3Lve9a4rOv5ifuCznvUs99KXvvSS406ePOle/OIXP+L7FEXhXvnKVzqllMuy7LLHbG5uupMnT7o77rjjis7tYhzmmjvn3J/8yZ84wEkp3YULF5xz7rJc85tvvtndfvvtl7zfj/7ojzrAffCDH7zia+r1eu5Vr3rVkeOyLHNKqSP38WKu+fve9z4HuJ/+6Z9+Ipc+x5OM+TyZz5M5Hh8+k+fMYQBHeO2/+Zu/6QD3x3/8x4/52iupyXg88+wHfuAHXBzH7k1vepNbWVmZceBvu+0294M/+IPuxIkT7tWvfvXjvcQ5nkR8Js+Li/eSKabj/N3vfrdz7srnyPnz5x3gvv/7v/+S52699dbL1mRcXGNSVZW74YYb3C233DKbD1/0RV/kjh07dklty6//+q87wP3BH/yBc865nZ2deU3Gp4rv/d7vpdVq8V/+y39hc3PzkufvvffeR5WCVEpd0vn0t37rtzh37tyRx3Z3d4/8HUURt956K845qqrCGHMJLWJtbY0TJ05QFMXssU9FTu2lL30pP/iDP8jP/dzPcezYsUc87hWveAXvfe97efe73z17bDKZ8Iu/+IucOXNmxgV8rGuCy9+fN77xjRhjHvVcn/Oc53Ddddfxhje84Yj8IHDZTrNzfHoxnyeXYj5P5ng0fDbNmcN4+ctfTrfb5Yd/+Idn4/swtre3H9f7Xek8A1+XURQFb3jDG7jzzjtnFK4XvvCFvOUtb+H8+fPzeoynGJ+N8+K//bf/RrPZ5Ed/9EeBK58jx48f59nPfjZvfvObj5zr3XffPatFeiwEQcB3f/d389GPfnSWIXnFK17BxsYGv/EbvzE7TmvNG9/4RtrtNi9+8YsBZv1uLt5brjZc1c34brjhBt72trfxNV/zNdxyyy1Huk++613v4rd+67e46667HvH1X/IlX8L//J//k1e96lW84AUv4IMf/CBvfetbuf76648c90Vf9EUcO3aMO+64g/X1dT760Y/ycz/3c7zyla+k0+nQ7/c5deoUX/mVX8mznvUs2u02f/Inf8L73vc+fvInf3L2Pu9973t56Utfymtf+9rHXdQqpeR//I//8ZjHff/3fz+/9mu/xhd/8Rfz7d/+7SwtLfHmN7+Z+++/n9/+7d+e8fge65qm9+ctb3kLvV6PW2+9lXe/+938yZ/8CcvLy495rtNOlc9+9rN51atexfHjx7nnnnv48Ic/zB//8R8/rmuf41PDfJ5civk8mePR8Nk0Zw6j2+3ypje9if/0n/4Tz3nOc/jar/1aVldXeeihh3j729/OHXfc8bjkQK90ngE8//nPJwgCPvaxjx3pRv6iF71oJsc5dzKeWnw2zovl5WVe9apX8fM///N89KMf5ZZbbrniOfIjP/IjvPKVr+TOO+/kP//n/8ze3t6s/8eV9nq56667+IEf+AF+7Md+jC/7si/j1a9+Nb/wC7/AXXfdxf/7f/+PM2fO8H//7//lb//2b3nDG94w25cajQa33norv/Ebv8HNN9/M0tISt91229VXA/hUpE8eLz7+8Y+7b/7mb3ZnzpxxURS5Tqfj7rjjDvfGN77R5Xk+O+5ycmrf/d3f7Y4fP+4ajYa744473Lvf/W734he/+Ejq7hd+4Rfci170Ire8vOziOHY33HCDe81rXuMGg4FzzqfyXvOa17hnPetZrtPpuFar5Z71rGe5n//5nz9ynk9UmvORcDkaiHPO3Xvvve4rv/Ir3cLCgkuSxN1+++3uD//wD48c81jX5Jxz+/v77lWvepVbWVlx7XbbvfzlL3f33HPPJffxYhrIFH/zN3/jXvayl83uyTOf+Uz3xje+8TGvfY5PD+bzZD5P5nh8+EycM4fBZSga0/d7+ctf7nq9nkuSxN1www3urrvucu9///tnx1wJXcq5K5tnUzzvec9zgHvPe94ze+zs2bMOcKdPn35c1zbHpw+fifPi0faSe++997L018eaI84599u//dvulltucXEcu1tvvdX9zu/8jvvGb/zGK6JLTfG6173uyN6xubk523OiKHKf8zmf437lV37lkte9613vcp/3eZ/noii6aqlTwrl53n6OOeaYY4455phjjjnmePJwVddkzDHHHHPMMcccc8wxxxz/8jB3MuaYY4455phjjjnmmGOOJxVzJ2OOOeaYY4455phjjjnmeFIxdzLmmGOOOeaYY4455phjjicVcydjjjnmmGOOOeaYY4455nhSMXcy5phjjjnmmGOOOeaYY44nFXMnY4455phjjjnmmGOOOeZ4UnHFHb+/93u//tN2EmVVMUpHqFBhcWzt7BIGCaP9nIfuPYvUJSfXlzl56iQOyWSSkvSW6PS6ZOmI7c1NxsMhaVaQa8ckzcmzEiUdrUbE8kqX9ROrrK6t0W12McZS5iXjdMR4PKC/v8tor490jmYvJm5HWK3JBxMUApXElEZjjAEJSatBt92hFTU5vrRMaB1BqHj2Hc9n+dZbWT9zK+ut4yihSESTkR5yYXiBRrOJFIpROqHSJbvbW5w7+yAbG+cYjPYYpxlFafznACoIkFJijUUIsM7hnENIgcDhnEEpCViEEPXdVFSVRjhHKCEOA+IoQgiBtBI7sXR6SyysrNHqdAnDoO7K6jBGU1YFRlcoLKvrS/RWegRxjHMOKSUqUBhrMVpTlCVKSpRUWGMx2hCGil6vixAwmYxxDoQA58BaCwiyIqMscnRZYHVFZB3BuESYhH5aMclLRumYjz/4MT583wc4u38BGwiSJEE6qMoKrS2hDImCEKzj799+/6dtfD4ebOfvRCpBoAAM1laMJxO2toYMBjlBGNPrLZLEEUL4+661ZZLmjCcZprR0Gk26cYgqCgbbezz0iYfY2exjXMTTnvVciryin48wvZgKKCpDVlRo5wiUQgjBtP2Nw+F/FSiloP4erLW0Wi3KsqSoSn9s/R1HUTTr1Ku1RknFytIyo9GQ4WhEGEeUZenHohAEYUgQBAghyLKMqqpI4pggCGg2E2IhwVg6rQ5Liyv0Oj2ajQZREGAqjZASF4SUWjNJJ+zv77Gzu40Vgr39PqN0gjaaKA7RRlNVFbqei0oFaK0JwwBnHVWRo3WF0RVCWKIwIJSSE80218QNWkFCkRU4BKmFcVCxZ8Y4DNZojNEURQGBJIpi2lGT052TtJI25/a2+PDZT1BqzfVr13By6SShCNC6ZFIMsU77uSkESoB0IJ1A4sCBE6CEBAdal2irwWhMWVHlJWVVUOqcNC/IqgLjNMYZDAIjJShBt9eh1+0xGuds74zQLkBLyf5gxHB3F5mOUFVBpS02SGh2l1lcWEMJBdrwv9/81qdgVlyKH/rlr0OpACkDlAqIgoQwiIiimCAICQKJlAIhHU5XZGlKoiOqfs5f/tFfsXV+j9XlVU6dOs3y8grNVosgCMiyjP5gwHg0pD/oAxYpBaYy7O/36feHJI0W6+trnDp1iuXlJdrtJko4HIbKOLI0xzqLsJayKNjc2uLBBx9mNEmJkoRmq00QBFirkQJ67TbtRkwziWg3GyRJg9I6dgZ9BsMxQikQglIbkkaLRqNFo5EQhQGddotWs0UYBEipMEajq5L9/X02N7fZ3tlDqAglFePRPsPhLjffeANPf9rTKbKcc+cfpsgnfN5zPodet0WaZez1xwRRg2MnT7G8tkKeF2yc3+C+Tz7AaDCmKkvGoxFFUaGUQiiFAyyAEth6HbDWUVQlkyKlNAVlVVLpknRSoMuKTrPBsz/nmURRTFlWPPTwQ+hKo8IQRUA2KajKkpe/4ot43p23U8Qjxu5hinIfYzQIgZQSISxSglISFfg10TmDdaZeY5jtb845rHOA8OunkAihcG66/z16269Hbwt28NzX3Pm/n+jQftKxvLSEEIIwCAnDkDiO6XQ69BYW6PV69BYWWFxcotvr0e12iaKIMAwJgnB234zRDEcDNje26Pf7aG2RQlIUOYNBn/7+HpPREGstgVI0W22uue56Pvdzn8WJ9RXe/3d/S1GWvOQlL2VtZYmyzBFCsL/X54H7H6SoKo6vHycIFePRiKos6C0scO99D/D7b387O7t7OOdQKuDpT386d955J0IINje3qLQhywu0Nggh0FqzubnBufNn2d/bw1qDkBKl/Hfux4xEKkUj8bZYp92m1WoAUFUVVVWSZhnDwZDxeIQQ0Ol06HQ6tFttEIKq0qRpSpZlOARJ0qTVWeDYiWvpdBcIA8XiQoc4VpR5Sj4e8vGPfYQHH36I/v4AnCNOQtrNJs+4+SZOHj/O8toxFpbX6HQ7rK6vsbTUo91sUGrNcDBikuXkecrA9nn3x9/P1u4mpS4RSqGCkEo7kqQJMmRlaZkzK8tcv7rMYq/n98VBn3/85H3sjiZU2lBVFa1WkzzPwVqWF5dY6K5z4thNLC2t02q1aDQadDodWo0EaUsmo332+7uc375AXuSk2YQ4jhGAUoKyKugP+zx09kFGoyHWGlQgSZIAo3MC4ViKOrzyBf+O9aVreP5LX/6o4/eKnYxPJ5T0G69zljAMcc4CDhUqlFKY0lFpjbUWFShAYK3BWouUCiUVUkqkEAjhkEL6yeUc1jqMsRhrsdaAAAEIKZD1gFXSbwLOOJx1M+MJIXDWMV18atMeZx3WWr9gOWg2miglwFiKLGM8GRGrFp2oSxw4jNXEcQSANhpdVpRlwXg0ZDQakOUThBA04gRj8trJ8MaKw2HxCwIcWmzxiy9YENPFUSAQKOevXQpJnhaE0jsJxWSCyByLS+uEYYiU4uBLEAKkQE4Xb+sX5DAKkUqhp/ff+e/EOYdA1N+bd3wQAusEo0mGkgJrHUopwjDCGENRlFhr/fehLdY6rAXtBAQCWRZEQUQhDUkU0Wv1aIQJ1hiQAuEMkhDpQgIlkSgwitB8+sfolSJQEikdAoN1FUWZsbM9oL+fIYOYTqfrx4IQWOfvQ5rmjMcp2jiaUUInChF5yva5LTbPbdLfHRComLX10+R5idYa2YzIjaWy1i/OUhIIieDAq5s6GEJ6p8NYgxKSIAioqgprLVrrAwdSqXpOSYwxB88Lgy5LsjyHehMAvIFSf5YQAmvtEQdHSoFwflTqUuMaEAQBgQqQ+NcpIRBSUVmH1YaqLCmK3H+ukgglsBhc7WQb453wOI4w1qKNRkpBURTeeTIaa7xxEgQKKQRREBIJgbQOXZU4Y3C1cRVYx6IIEPg1wCCYCEOOBeyhVK/DOYsSEEhBI4xRgLMGBXTCBCXwTpyz4CwSh3UGYyzO+LXHAGVRUmYpkzxlkk0oqpJxmrGxv8eozNHOUjqDBrQFJwPiRpPV5R6dk4t0jp+i2hliRtAfjJikKcP+EFnmhMZgrMUJiVABYRDO5ulj2F//rBCiXmuY/k9tPIjaqAQhHMI5tNHYqgIt2dvZYzTKWFxY5sTJazh+7ATNZoIxFRvnH+a++x/i3PkLWGsIw4Bur4MEyrJid3ef/f0RrXZJb2GBRqNJHMcopdBlxnA0oDKWRqNNI0pQUuLEmChpsLiyQm8ZqOdSlqZoXdFsNQjjGKFCykqTZRmBFKggJJAglKgdYkkSJzTiBt1Wm06nTbOZ0Gw2EUJ4w388Ik1TlJRUlUapAGctRmeIyK95cZRgHRitEfj7Y6qSKi8QnQ5RENNpC4wVFHlOnhaUZUWRV1SVngWqpFIEgUWpkLjRQIUB1lnGaUpZFQAURYmxfnGNowQVBojS70iiHdOMIhqNGEFAScUkH1NZTSxilAwx0rJ0fIljN5yAjiYvNyiqfbQpfXAiUCglsQ6EsAjJIefC2wD1aKkDVAdjB7xz4V8k6735SsYdXFUT4QrQ7S1SVX7dT7OMSZrSHww4f/58Hchp0m53aLVbLCwssLS8zOLiEr2FBVqtFs1mkyiKWFxYpNPpkKUp21s77O7u4WzE+voxlhaW6Pf32NzcZH9/j+FwyHA8pN1usL6yzOLiCru7O95Gcn5vlwLGozFlURDFCVEYUpY52WRMFAbkWUa/P6DV7JCmud8/gPF4zHg8RgjBww8/5A3gToeq0mR5QZzEXHPmDEurq2xubLCzvc1kPERXOeBw1mCxGKOpyoLxeOjvQ6PJQq9Ht9Oh2eoQJi2arS6j0Zid3W3645T+eEwSR/TaXbrdHqurq1RVxSTNQcZ0e8u0Wh2c0cRJRKuRIDBUWrO7vcWDDzzI/qCPEIqFXpen3XQDN9xwPetr6ywtr3L81EnWVtdIGk2EcIzTCWcvbFFVFcY4pAqQSchgMEZFAUiJlCFIBTJABT5wJoSiF8YcW+gRRRGVsYzyggt7fYZ5SVn5eRkEIcZ4O1QAcRjTavZoNNqEQYRSIWEQ+X1ACMo8I89TyvpelmVBpUuazQYCQRgqyjKnqkomk5SiLBHCOz7+/QTClgQyoNPqEIbqMcfvVeFkTKOm1rrayfA7YhgqpFJUzkdUrTGEYextKGNmRqxUEjHdoKCOJvrouXPeybDaGyeujoJIIRHSR3eDIEAqgdNgjcMZvPFsBFVpEMIRhxFCScIoJFARModSF0ySFCUFi4sLyGYDZEBVluyMdwm6MbFsMMpTXO0c5EWOtYZ0PGFvf5f+YJ/heIg23uiuKo0fLofuj5CzRVbKqRHnoz9C1kc7R6BCjBEoISmyjHa3Q2lL2o02QRgxdvsEjQiLq++V/5ypMyMcCCkJgxglQAUhYZQgpXfsyrLCOYiDEKsNUhyc59QpM9Ziy4owDAik9JEna8jzAls7bAJviHkHsDaKsMQKlDUo5Y31XrvL6tIxtvNdEIZIRggZYaOAvPSGhy0rrLZcLfDRFoOzmrLI2NsbsLs3wtqQdqNJGEbeQbUObSx5VjIZ++h/p5nQDgVuMmL7/AYP33eW8SClzB3HT56k01tkfzRBJiE6EBR5gbYOJ1VtQ3qHQyqJAO8M45DOzw2jffRfSkUcx4A33A87CFJKtNYz5wPncNYyHA7RRvtxMs2K1Jga/1BHGo1Ba00U+YWtKkpGewNaYZNIhCgEQhvMcIzVFtXtUElJWZaUZT4zEPuTEdpWCAFRFBCqgCL3TngURgjho1Z5UXhjzBiM0RhdIQVI4T8/VIJQOAKBN2lrA7yqDEWaITGAxTiDrip0WSKaCpFIpBPejhH+/hqjiYOIJIwJhKLSFUWWUuYZPgYLZemvP8snpFmKMRpblUwmIwSWMFAUZU5RFhRGszMZsjsZMao0VgbIUKHC0E9uJFJAKwxZWVnn+mtvotlosrM1Js1ytre3KMZjlHWEtsJpg7WKsNGh0V6g0egghULU2aurBQK/XkghkFIhpZqNv+my4gDqsWW1o0g1O1t91laPsb58jF6vh3Warc3zbG9u8tDDD3Nuc5fBMGNpsUMYhGAcWZaRpgWjUYZG0Oj06C4uEUQhKpA4ZynKivFoQn84pNsrvaEQN2i1BcdkwMraMYI4QRvDYH+fjQvnKIqcJIkQUqKtD2RFgUMbQyOK6LXbaCRZURFEEYu9JRZ6i7RbbYJQ4fDntre7y872JsPhEIBrrz1DHCc0GhVBEDCZjJDSoZSk0WzUWRSLkoI4CijCkFIDIqbd7hHEFZM0xVSGbJJhnQAEla6YZGMwDiUDCP29D6QkUAF5WWCqCl0UVKZikufs9weAYnFpgTBRNOOEVpKgncUZf63NuIFSBc1uk8FkgIgEYRyxcnyBz/2CZ7F8Q8yguo9JvjWbz1I5/yNBzAIixgcPnZ+PU7vAOXGwb0u/1+MkIOoMxsE8eeRExZU4Flen8/Efv/7r2N7eYWt7i43NTcajMZN0QpqmFFVJvl+wu7eHEII4ikiSpM52dFleWebY8eNce+YMS0vLRFFEp9Oj1eqwvLzMxsYGmxsbWOtYXFxiZWWV8WRSOxu77G7vIqSit7hIlqYo5efL1ObY3d6iLHLa7RZVmZGPx1RZSiwajPOc3d0doiii1+shpKQoCkbDIfu7eywtL5OmKRsXLnDixHFOnDjJQrdDUWoq7cdou9nm2LHj9Pf2uHD+LKPRkLIssMYHupACVwfDiqKgP+gjpaTVaNLpdGm02nS7CzRabYq8YJKm5HnG/nDCXn9IGAR0ux3anQVOnLyRVmfJO746xdkSXeVYXbK9ucED991HkRUcX13nujPX88xnPpNrrjnN4soya+trdDsdGu0WQkrGozF7u3vkRY5AksQNEIJClzy4c4GHds8xGo/9XiQdxoIwEEcxgVIsdXus97pEUmKsY5LnDLKcYVH6axaOoihoNBpUukJrTSOKCIOEVnORJGkRhhGBCojCyNvJzlCVKWVZUJQFzjkqXfmslwrqbKYgK0uGoxFaV1AHeaQUKCWJwwZlZlhcWCSJG1irH3P8XhVOBnhHw9aDV0qJw6GCwEdXnaPSpk6b+R1oGq1U9QYlpTesBKLOaIjayfDvH0YRjVYDFSnyceZvrlK0my1MUTAOQoyR6MJRCk0SJ7SikFSnVKUjCkLarRZRTQ1BOiyG3cE+5/Y2ua33DHSoKI0lS1MiC1WzpAgKKlsBllAGlFnBaDT0i8bWFv3BgLLUWMBoH9lH+Cixd4TAWIOznjKFo15MfcRaiINrpqZlIEHFAVZakk7TZySUp+csrKwQhvE0pDPLjAi8cyKDgCBQtNoNWp2GT7lKiQOM8SdnjJ0Zpda6Q5QodyitDUIqpPCvq4wDWztG1iFqe8c4i60qT/1y/juUwqGtpdlqc3ztBP2sT1FOCKSkLC3DcUY1zDBliZQWq446ZU8lhPBT1RjN3t6Qne0hxkpazTZRnOAsnspiLXlekKUlxlgaUUw3CrGTlN2Nbc7df4697T7WAE7RbndI4gb5zi4qkWihiOIYneXeeBS1Q+cs2NpxlwJZ0wimBuY0UyelrLMZBlUbLcYYwjCcZSqEED7LaDxtwgn/PnFNn5s6I0L4hV5KyXQwOGf9Y0CZl3TaPr0fqAC0gWyE3NlHdbtUtok2mqLIqarKZ92KwjsPElSgvGNqDUZrpFQUeU4UR7RbLX8uVUVVlhirfSS5zqhY65DSEUnnHWcERgpM7SBsb+3hrMbYirzKGY8nZDpn7fqTdFsthFA+ooxDW4N2hk4YE6qwzg5ZBsMx+1u7WOszemlRMU4njNMhZVVgjQVdolyFFI4w9LSQCpiUBbujCaNSY0KFqrNcuo4UBkIQIThz8hTPvOVzOH7sFFubmzx87hwXNi4wGvaJrSMWPpNqnSBMWrR7qzQabZQKkcZhK4Orrp6U3zTIIcTRn4vhnKdhYhWTUYkuBetrJ+i1e1ireejBhzj70EMM9vcpahqlUoqqMmRZgUBQFjmTrKDUlm5vkZMnT7KyskwYhOhKU+WaMs/9nmIs6XjMKIo9FVQFNBoJYdJgcWmFKE7QpWZ/f4fd3W329nbpD/ZI89zH0l1MGCqiKKSVxDipqJDe2On0iKMYIQR5lrK/v8/58+c5d/Ys+/09lBKsrR0jDL2h6AMznhIhpUDVkX8BGGPqbEBIEMZUFoSKCeMWpc2o9Ng70EFEEEY+qyiED7QZPxcQnhGQZRkRfj5b5zDOUpiSymi0cVRVQbGxxcJii3YvIUwiBFA5zf5oSBw3EErQaDfIXI6KQtZPrPOMZ97CqRuXyPQGRTlE1/ug/17xBoozPhMvfDDDZzFMndWw1K4FMwejdrxBzRwMIVRNIfbBgMvCXfrH1elSXIozZ85w8uRJqqoiTVP6/T77/T67u7vs7u6y3++zv79PnudURlMMBzjn2Nnd5dy5s3zsnntYWlnmxptu4fobb2RtbZkkjlhYXGRldZWbbrqZjY0NNjYusLW5hZCStWPHWFpZod3t4hB0Ol32wi2CIKCsSpyDfDKmv7+PqYPCZZ6RjQbYPIVAsrW5xYWNC6RpjpCSTqdDHMdIKRlPJpw+fZpet8f5c+d4+OxZhBCsr68Txw2iKCBNLVlV0mo06F17Haur62xvbbK5tcHe7jZV5Y1gP5TFITsIsiwjzzJgk2arxcrKKp1WkyQOyfLEM0QcFHlGUTnaIqbZWSRptNGVD1pVVcVoOGDY3+Pj99zDeJzy9Ftu5XnPex43P+1mTp06zcLiwixTpI1mkqUMR0PyLAcEjUbL263OURQlhSnYGu2wO+hTVgYVRGhb1NchiIKIZpRwYnGZTjPBAdpYdgcDBuMJwzQly3OKqsRiKaoCZx3CWVqNJo2kTSNpE4WRZw0EAWEUEQiwVe6dM2vAWkKlkEASJz7AIwRFVTtiRV7vn9bb0wDC1YwhWFxY9tS66F9IJgNqJ6OOBoVh6DdsAUEY+Ai5sbOF1dvT1qdUhSSMAkxNn3J1lF7VdQZxHJG0EqIkoCwzNgYDyklJM2nSbjURocS125S9Jfb2BuiqQtiAVtJCJMIbV9pQactgOCSOQprNBnES02q1QDaIiglxEBDVvDZdlEQqAmcobEapC+IwJMtT0nTCeDRiMNxhOBqQFQVmaiTiMwlHlr86GyO9N3GIo+qdDVmHb7zx6J0A6xxhHOEEFJWl2wrJJgW4mOFgyMLiMs65i9bd+r6pkCgK6HZ7JI3A066kqCk2pY9iiBAhFNZWh5yNqWNXL+DOYbRBRYHnyJuaelJnpbT2UXFrLdr57FFmK8KqQln/WTJQrCyusjY4xtmNBxmMxuSTnOH+mCIrCUOFiiT6KpIvEGiMqRgMR2xvD8gyR9JoE8eJpw1pQ1X59GuZl1jjaMQx7UDhxhN2z55n6/wW/f6QoipAWwLV9GNLWKJWSBE4T11wAptmOOG/c8TBPJpGhV1tPIB39qRUKKdI84yyKGYOhqipgcKBnDnojmajSVUUlFoD9SJTZx2m71tVFQBhGPp7IDw9xxoD1r9mcXGJRtJEKYWqKqLNLeRghIsTCmOwzi/qlTaUxjBKJxhrkFIRhSFal6RpijYaISSZ0Vjn+cO6pn55+p+fP1ODNVCSSEqiegNy1mItSBVSViNGaUZZlozSETv9fXb2dnHK0Ln2GF0EUihPmwEqXSKmGVbhDT1tDHlRUlYWbRxaGwbpiP5gj+FoH6UczTghxCFxhEqipMAAGkEpFJVUuMCny93hLKaDUAUsdhd5+o1PZ215nb3dff7hA//Axz7xMdJxRgREAm+1yYAkiWl1lmg3uwipfLawKnFldVWpfAgxpUbJi37EIUpLbXQaS0jAOEtpxi0aUYssm3Bu4wJ//08fZXtrlwBHO4kRUiGEJE1L8rwiywqkEJTG4qSk1fb0EYEgzzOKVIO1CGGReGqdcKDLiiLPCQLla8+KnIWFBXrdDr3uAoLrGI2GnDt/ln/64D9w3/33UuUZeRYghCWJApIkYbHbQSQNoqRJqELyLGdvb4+zZ8/x4IMPc35jg/EkJQwky8s9ojiuOfV19LHOXJdlSeA81dE7+AYRKJAKJyTaWIzD89vTjJ3dPdIsJYwT2m2/Dnh6ksIJH4zShV9/hFTIqqp5xCCVr99rt5s0Gg2KQjMcj6hMRVEIHJYgiomikNJpJlWGFRYZKxKarKyv8azPewbHTnfRbg9dpDg0QtjacXA1ldkHQgTewXDUFCkx/e5hmtUX4sBU8WuTACdqurS8rIN6GAfOh5u95+zPqxx///d/z6lTpzh27Bjtdpvl5eVZ5D5NU9I0ZTgasbm5xdb2Fpubm4zHY6qqoqgqsqIgzQvS3DEYW2648QyrKx1azYRms0GgQk6dPs2x4ye4cOE8F86fZ2dnE2tLkmQZayxxFBHWtXrj8YQ4Cunv71MWuXcKwgBbFhSTAa0oRJc59957H1vb2/j0eYAKPGtE1Y5Kq9VibW2VBx9qMR6PefjsOYx1rK6u+kxeEiGFY5Jm5NmEIAg4fc01nDh1is3NDba2Ntnd3SHP0hn1ckoNPTwcsjRl0N/H6IqiKBhPJmhrCcKYMEpYXFjixKkzNBqtmcNrjKHdaoBzjEZDklaTZz3nc/mC538BN950M71elyRJUIGnNE6yjNFoxGgyxuKD0oEMqMrC1/s5SxAryqwkMwXGOrI89zWu01rIMKQRhqx2F1hsd1EKkJK8LJmkKWmeU5TaB6XroJ6zFoGg2WjQarVpNnskjVZd1xb4tSRQhMJRVjmhkgRKzui8gVREYYSsKYl5njPJJuRFXtsP9efUlHgfu3Q0ghgpfE3dY+EpcTIOG6LT/wMVgJzyykKy3KfEmq0YYRZoRwFSSNLRwC+EgaCscgbDlHQ8ROsK64yPPgWOY8cX6bQaVFUOWHbObrHnfOFlo9FEWYkpS3zRtKLTXcQJz19O4oh0MiJLU0QQEUcSaw1RHNBsNQmVZDDss7O3RaMZ0WolRFGIDEIQUJUZhQrJihSLIcvGFIUiz3JG4xGDYZ/d3R2yPKtrO6gXXR/lObzRGuONxCA8oJRNdwOHj0z7FDKemydEbWxZjHGEKkHJkHGeEocxzvlNqNXuzD6r/oVAKYJA0EgiQuloNmJyXYBwdTGgoCorRBTPIt+idgCDQM4iZdP3nRacOydQNYXNWk0YhbVB6QuOjfVOklBgbYEtK5zV5FlOEsWs9lbY3tpiY7jhU6VS42KLDsAErnbMrg5YUzIaj7lwYY/xRJMkXZKkMaP2GOMpcVXlI4qNKKQThdjRgK1z59jZ2CSdZDjlkA2B044oinDSkVUTbAKZK1GlpKgMVgi/GQtXZ5UOds3p91GWZV1HU38vScJgMPBJrzqjEcexp1dpM8uOUdcJ5Wk2c9phWnjvhRCm1I3JZEKz2fTF+XWN1dRWTBpNGs0WKqidVmMI8gKRZ5TpBFN20RLKqqx/KsqqoihLgiAgbkTkpS/mNqZCBXUWwRiKspwVqsraaHV1CreOcxIAYZ0ltc4iA4UWMJpMyMuS4XjEhe0tLmzvMMlS2gtNVF3IPi1oxzmKskBJSRxGKOEpaqYyGO3QFipjGWcpu3u77O5uUhUTFjsJQSCIQ0WoAOUotGasNaUKyJzFBArrAh/jNdbX1yhJI0xYXlxhdWUFXRk+fu8nuP+B+7jnno8yGo9IZEgiFaEUCBUSR3UUK2ognMRpXwsitEYJR1Q7gVcHDhwM77iqGT0G6u+pNqYlCmUlgVM0wgbpZMR9Dz3EBz92Hw9t7FGVngpXGE0r8t96WlVUWhNkFY0oQClBGEV02k2E00xGA6pMescvDAiUwjpfM+QNFYvVFdpadFHUxayaPJ1w5rrrOXb8BAuLHZaWF+gudFhdW+Oej93D3v42uXMQhagw9HVBEmyZMypTtra2OHfuHOfOXeDC5jb7gzHGCbrNBlHUoNVqEUXRrLj32LFjBEFAXmRekEOpWdZfG1fTtBxFTRu0xtLv99nZ2fGGXLtNFPvMQ7PZREqfJQuDEJwfvyoImNYA1qV1xEnI8fXjCKkYTTK2t7eYpCPKvEJaiFRC3EwIEsm4HGEBFcZcd+I4tzzzZtZOJJR6m7JK62Cgg5qWKOrgmJC+vsO5ul4S5xmCU4GTWYYLpkPD1tcrkARBWGdojhqVlx9tl/42/dPT8j610fzpxO///u/hHHS7Xc6cOcPp06c5c+YMrZavwVhbW8MYw0033ujpo3nOzu4uW1vbnDt3ju3tbdIsZTTqc/99n0CpgDI/jnUTWs2A9bV1FhcXicKYM2eu5cSJE+xsb/HAA/dSljmDYZ8T66s0Wy2GwwGNZoIE+v0+RVHQ6y0SSMFwPGKwt4fstNgd5Zzd3KYoNAKBceVBrV4Q0Ot2GY1HyEARRhHNZhOA/f194jhmcdE72EkSI6Ugy3JG4zGpcbTaXU6dPM36+nEGgwEXNs6zt7dLlk58vaKUdZmqq5kxijTNvSCO8HZTWZRMJhlR3GBl5Tjd3gJSgjEV1pQ0GjFBINjd3mJ1bZUveP7zecZtz+DEiROzOioVBOR5zmjka6kA4jj2waeyxFIh0OTpmO2tPR7cOsfCDSsM0hF5WWKdr+kzxhAnMaEKCKQX6inKCucCrDNUuiI3lkleUFZVXV9sieOkDgw6Oq023fYi3Y4P5oVhSBRF3skQjlAYclOgdUlV5ThnyLOUJAwIhUBIQV5V5EXm63+MxjpDICAMFUL6zDrWEAeSUEjvnKjHtr0+LU6GqxeJabrl8N/Tx3yRppndsCRJ6LbbDNMRzhgacUxZVHS6EQudGFtWpFWGcY52t0ez02R/OGJjZwOnDcdWVmkkCRZBmuUs9LqEgeQTH/s4o8GYVtKkmUSoUFCkOePBCOssTkm6vQXa7Q7NZpswjGgkMUmzSZal6MoX2DmjkdISJiGVLimpyE1OlVe0ek1Wjq1hhCOQnrZUVQVFlVNUBVmWIYRga2uT0WjEcDRilE58ER4+GnPYQDwclTlsNE5pLr4I1WE0iEChjfWqNbUnb6xGSgdCgYAsTzG6IoibRGGCChQSeaSmQklJGIYoJWh3Or4IX4aoZkBe5eiqmvGlwyBA4iPVQRjOvuPDTsa0ONxnpOryzjrTUZWFP84JwiCiKg3WaawUCCXRpiRKYnb7A4I4YGlpmeNrx+kPthmOKuI4oXC+6NlHu68eutR4MmZ7e5/+ICMIGiSN5CBLZxxVZdDagoMoCmkIsMMhO+fPsXnhPGmaYYRDBxYtDSIKaXYXGU7GmCggD8BYyCcpFhAqBOu/P2fN7B5PswzgDacwDClLPau/cM7VGUM7M1yMMFgcZV4QR57PGQSe2iOkxNaOxdQhDmqlk0rrWv3DbxiuLJGzsQpREqOiiCCOEEGAEYJiZRWVNNHdLhU+Aqu1xlhLVXnnQpZlnW3xXF4lPDVS1dEwozXD0ah2gA7MB+scVVWhcIgwJLSCOFAHpaF1dGi/P2CvP2R7d4cL21uM0hxtNEnSqOmXFmsrKl0h8co/gZLEQYwUqs7KGarKUhlLXmTs7W+zv7+JsCW9dky3mRCH0gcJBEyqnL3xmH5RUgUhWgqfyRHOO0g4AiFpN9osdRfptDvkWcb7/v69pFlKf9CnyHPiMKAdJ0QqJAxCZBATqRZKRYDwFEtjsLpCCoMKQKvqn20ePBbE7H+/NkgpamfjwGicjuMAiS0hQFHmI+5/4GE+cM/9nNsZorU3JSoHo9JgEUS10eyEoLQOoS1NFdJpt2k2EqzT5NkYrSRJHM+yBT6TG8zottbYGaVLSsl4NOCTHx9x4fw5bnvWM7n+hptYXV2lu9BjdXWNU9ee4d7776Uqc1rNhDiKsFZT5hPGo5z9wZjt3T3SNCUIFL2uV7kpK0MjjmgkDZK4SRBExHGCCqYZfcnO7jZlmRMnMVEtelBUFZNsQqkLsjwjz1JclMwcb4dfj5aqJZRSLCwsMJlkjIZjBIJABtjAz3/tPK8dYUFYkjj0RfMywAnB1rbFVJoyL3xtHJ4aqo0XtwiihOtvvpEbbz5DewkKvU1ZTerA2ZR1YJHS1kExgRC2FnCpiyDrjNw0Iz8VAvC1FwA1ndgJpDqU8RK2rl/6FMbio3KtnlqsLC1R1Gvhhz/0If7xH/+BMIxYW1tjZWWFEydOsL6+ztLSEouLiywsLLC8vMz1113HxsYGw/6Q0WjEYDRivz8inwypqjWazQ7nHr6fhx54kBtvupFjx4/TbDSJwgYnT13D8soaw+GAJGnSbLXodLrkRUG73aIsStLxGJx30quiZDIaYa0lqxx7kwIrQxrNFkKqWebFC8AUjMdj+rWq1f7evhdMCBTj8ZiiKKiqipWVFZIkYSoSEEehryHZvMDS0iq9xSXWjx1jcXmJfn+fnZ0dtjY3yLPMU1TxcwepcAiK0vq6plaHZrMDSDoLy5y5/ia63R5lWeKz9aDLnH5WEAQRz7v987nuujOz85nu58PhkPF47NeoOsPo6UUQRQpdFtx33yf50Ic+xH0PPMDxp1+HHoWkRelrdAV1XXFdNyE9LTiKEy87IgRW+BqJvNJYITx13dlaVdRTiXVe0Gq0aDW6vuC7pvSHoVcji5RnWDinfWF+OgHn/w5ChZCgagfL6IKqyrBWewp7oAjDACWnpEXjKbwqnO27j4UrdjIuNnZnjkJtsBz+exrlnjkR9f+6qijLkqqOVE5/11rTajU5dfokxlmccCwtLYKUvkhoZxetLCpuEApJq9tmfWWVQpe0ug3iKGJteZUkTBinOZW1bO7ssL83YG9nnzIrGIc5vXaDZuKdlyiKWF1fI242aTZbCCHQykeKojgkikPiKEaXJc5owDIa9+n3+5S6pLIaF4ZoCVErIW41sc55zpt0CKdpNRrs7u9S5CnGGkajAfv9Pv1Bn/F4RFUXL3npwqp2Iqab7TRzYWY0qem991JwEkQdFRKeRy8QCGf9Qm0cTvqIkXIgrU+Rtztdz8M/VLgr6sErw8DziZMEXRZgJEkzIisyrNbIMEQK4WVHZyGgaXH9gYE7HQ9lqWsOeuTrEBwIFaCdpKoVKlxdn1A5i60s0lmUEkQqACUZFSO6jS6nTpxgku3xyU+OCZKQBEjLnLKasnyvDly4sMN+3zsY7Xa3XnxsnZFy6MpnrhIVkEhJNdxjtLXFhfNn6U/GVDiMtFTCYIRgZWGdY2vXUqaaCQajApwBbYynhuALssy05qK+/wciB97JmI4pIbwS0+HvCpgVejvHjEIVxEGdffIF1WmWQR3BcbiZupRzjkajQVxvCFEQgHXEYYwUXgo2iGpuuAogDKjWV6mWFtBCUhlDoT3PtKoqjNY+q6YCxuMxQag8d76qvLMShljno7jURbfWVD5oMC1wFg5XR2imWQyvDhViVMh4NODC1iZnNzbY3N4izXOsExjnaLaa/n7hi+UFgsrouuDR1y4Zq8F5ueiiKJhMxoxGffb3NlGupNfzQY1YCZRUaBzjImdnPGQ/T6mEwlhBOc0+CkkgBEmU0GkvsNjrEYYhaZ6y399jPBnVnHnLQrtDu9mkGcdI6ZWxnJWebOI0zhqvwOI0FSVaakIha6W8qwU1N+cIbaqOXGNrOqwvxLeFRBSKqtTs7e/x0Y/fz4WtfXyJybQuDbRxpKXGOAiUQgqFdd5xjaKIXqdFEgpsVVJYA3GMqGsvfMaqph/UGSypJFOFNusM48mQ/f0+e/19PnTPR/nCf/0ynvvc2zlx6gQ33HQTS2urHD9xkv3dHfq725TZGFsVvoZCV56eVRtajST2Yh1B4KmIDhqNBo1GgzCKiOIEZQyNZotmq0UjGyOkIEkioiShsobRZMzeqI+zhkk6pj/s0213Z5RC6yArctIsZWlxGaVCtHZU5XnSLEMonwFXQUggJMY4T3sKFEkrxjpPsRhlQybFmNKUWOcVHoX0WWlbOWQYsHZ8lac/4zqStiUvdyiqMWAOKFD4QnUf+XR1waibKbEJycxpcNhZUGpag+GcwFn/rFQgZF2mKqbBqwMWwBMfktP5cXU5G91OC+uaM2VGXRvq+3t7XLhwnn/6p3+i0WjQbDbp9Xpce+21nD59mmuuuYbTp0+xoS4QhpKFhR5rKzn94YQi3afTXGN9/RQPPXgv//QPH6S/t8/S8jLr68drKdyQtfV1kiRGhRHNThuMD1RN0pR0MiEMQgLpWSHpeESlLSUhUXuR4ydOMRgMMDBTNBwMBmR5hjYOhCQvStI0qwOxfqTsD4bkhVcgW11dnRnNjUaDY+vHeOjhh3nggXtpbW+xsrbO4vIyq6urLC0ts7K8wvbWJttbW36fq2t2p69P4pjeQo9Wq0kUNVlYWmNhecVnxpREIUnzgu2tDdZWV3jBC+7gaU97Ot1uTY9SPtA6Ho/p932ReZx4WlVZ5r6OTir6+/u8+93v5m/e9XdYKbn1cz+HpWtXGBe+biYvvBCOwxKowO9lwnr1KRUgg5BCaypjGBc5o3TCJPNqhGVV1ufh96dAKuIwIY5bRHEDpYIDRyMIiGSFMxprNOlkRFnlCOFljWXgC8+RvoWBV7OrEDUt34sqOa+eKhw4DaZkobPg17XqsQNXV+xk7O3tefUWrdEX/T/NRky59pXWM+ehqqOfUilvyKpaSWSqCBXFqKRBjuPe+x+k12yStCImcczi6gqtVotOu4dwiofuf4jtvR22d3c5v7NJo53Q7CboynB26wKxjFEyYjJJQUianTZOBeRlTpqN2dEpbeN7WqhIoeKQ1bVlhBDs7e6ipCBNJ0yyEY1Gk1bcQAkoS0egYuKqZDAeUJQFxho0DpRARQkiCnEIXzxoLWHYYDTuMxrsM5mMyfOc8XhIv7/LaDxGm8o7Jc5iKu+I+YiZYqqIBdQ1Jq5WeGLGPXeulv6tPxMn6sJcr4aFsygJvXaXwEVEYUySxORlQRCGPkVeR4mmm2ocxyRxVKcrF2hGTbQrsdpTfKbR6izPZov7tAD/cNH3TBUEZoXB1moQwYzXKaizGlp7SoK1lGWJMJaWlIRG01AJm6NdDI6kEbO6fIy9fp9+tgfO0Go2UIUkv4KB/s+Fra0xKmrS7fW8dK/1Kmhaa3TlI3EBgsCU6EnKzoUH2drZYlzk5AFUQiBEgBQxsUo4sXYtzbDDxO5QSr/9Jo0GlQEhVF3sJtH2oMYFmNGYps6DTxXLWVAAOBIUmNZTVFWFdD7bEUWhT88agxXUqi8C6WqqgvB9MaYF41NudBCESAeBUAgkURgTBZHv+6K8E41SmDDwqmq5pigLSl0yScdUVVnXVQkaSUIjSXxW0WifjraWSZp6mmUQ1LUoPiJe1uNUSIdUkkBCImGa5wvCmMxJtnb3ePDsOS5s75BlxYw6FoYh3YWONzCtjxSFQUhZpRhnvBhDbYsYY8iKnEk2ZtDfIpsMaYXQanSIgsAHAiQUxjAqC/bTMf1SU8oQI6nraPz3F6qAbqPFUm+BJG7gcOz3d+mPhhR5yjTC1ghDOh0vvWqdozIl1ta1fK6uhXF1YAKLkxaUQGNxV1HGD5hlCDxVanpuvl+Fd8y1rwcaaIJxyO7OLg8+eI7z2/to4wslraupfYCrBSOoqnp9BCUUoRLEkSIOBRJLVfr1Iom9kksUeloBMBMe8A6GX7+KsmA8GXNhY4ONrV22tvfIP/IQu7tjtHa85CUvYuXYOuunTtJbWmZ3c4sH7lV88mMfpZhMaDYSOt0u47yiVVS1itpBkM05QRh6/nSSJDNaW1X5+TBJJ4Cg1W75mpJWk6IoKExFYUpwjnE2YXdvD2dhkmZeQ98YXF6wu99ncWHJswW6XcJ4i72tXYSEOG7QiSM/Xp1Exku00ESNACsd48mQwWQXTY6MPB0k7kSo2GcjGu0m11x/LTffcpqgOWZcDNA6r+lNPqvvnMYHlBWeAuyDdnJKwRA+6+KXrjqbPy3ydvU8wdY1GFNaJIdoUvXzgLusH/14xr2YncPVAiUDAjG9lxbrHK1GglvwkfCylhfP0gmDfp8HHngA5xyrqyt80ctexqmTJ7BWs7W1hTaabidGSkWZD5BBxDWnr2V/d4fdjR0eeuABirLgpptu4vobbqTbW0DQwTQTWu22d5oFpJMJaZYTRV6evsoLJpMJTihSFCaMWFhdJ0ga7O/tzfaJ2XxXCiEUC4vLNNpNsiKvqeA+O7y9vY0UFoFjYXGJKPKFzM1Wi5MnT5GmGefPnWNnd4fF5WXW1tZZWFxkfX2N9fV1xsMRm1tblGVBEIR0u10/duOYIPRqmWHYYGFxiTgMKYsCXEU66XPh3ENEccBzn/dcnvb0m2i3mwSBqseaIE0z0tTXonjqovNB2Frp6h//8R/4pw9+kPsfeBBtJQsrS1z/zKczYsJwY9f3Q6oK357BeuU8agVPqQKKSqONb1tgnadJjdKU0XhMXuRevtopdFnRSBJaUYMkbtFodIjjhChURFHgf5QjCh25LsmKySwwbYwhjiKkUighZwqRZVXWyqH4NSGQqFCgQk/7RBcoV7HYXfLF8eaxQ7xX7GR84pOfPMhSXPS/wy8gstael1IhE591CA+tBmIarhCH1Z/qaKo1JEFMpCT5cB9sTjoe0Ggtcuz4KZRSJI2YdqdJGCvCRJJnKWlWePUCI2jGDeIwqj1EweLCArfdehIh4RMP3cvDWxu+qZ4TOGHYGO5TuQpMha0qmkmCdY7CWoR0hIFXtgobDa+3rxMWewtYq9HOMi4y+uMBxlhEEGJxYAzOh3lIJyPybEKWTphMJoxGAybpxGcwpKy18w+iMJc2CvLZB6nkRXQz6gIcNePOa6uZSviCQypRaxi7uv+Bf/88zwiMYYEDSgL4ot1Ws00oJU5DEjdJwhZZ5UiaTapDRd5CeiqBrCkFDkBO6Q1+IVGqrhGoDWwphHcinPXULKUwFXUheS3TKxWVNuRolIFOlLCFYHfQZ7mzQKe3wMrKGoOz+zi8xrtUCpPlVzqMP+2wKDqt9kyBCSdmRmDtk6KMphj3mQx22R/s11HVqKYDSW+cS8lCY4VesohJSwpdYerCzSl9wN8737dCW1078NN+KtKPkdo5nWYp/HNiluI9nOVwzvP2hfXF34FS3gjCG/FR7Kk4h4+3dZR4mg2bOp2NKAHnx960wdqUJmF9iQNWeHWxsqq8YkZZkNbORBAEaGu8RnhREUiJCgIqY7Aw495OJZIDObM4avqXj740lKAZSEKpfGbC+dqJh86d58LWNmVRIZ1vdBdFIXHDN4JT9TUGYehrL6yZRYhBooRC24psMmYy6qOLIbHStcS1X7gFgsJYBnnOfj5hYioKJSina57wRnAjadBrtVlod4ijkKLIGKVjRtkYbQ1hpGZR4EApSlthcluPAerv199P5EyY2svDKp+NknXW4GqD50xPjcaDi/GBFt/wMx0VyH7B1tYuZzd2qfSBOEHdGWZ2zRaorMOZikSGxFKShJJmLAmEQZc5uipRQVhH0A/Gsw+SVXVGw8347WmWMRyNSPPcy9O2Whw/vsLK8gobG1vc98D9BGHIYrhKo91mGcdkPGB7a5ML44FvHBrFdLodyspHodNJRjrJ6A9HOCFZXV2h3W7TabfreZfTH+yysXXeUwKDgEbsnZU49gXuKgyJGy1/7VJ5+lSeMU5TRukYBERxRJ7ljMdjTpzoAZKTJ48zLEZs9XcpqwnVWJNEcT0WWyTNJiqUZFWGNhaHIAgDpIIojIjbMY2kQaPT4pobr+H09auEjYJJ3sfYCiV99tphqKoShJvV400laoVwKHwNCPiapim11mdI6+xFbSMIAWEYMCVtKDF1QkxdSG6PjqpL/IrLORqP5HxcXc74w2cfnhnISZzUWbapIIW3UxqNxEu5GuMd2MoHd//f+9/PoH8Dz3jGM1hYWOCBBx5gZ2eHYKo6Zg1KxSwsrmA6XaLBPoPBLuceeoginXD85ClOnDzFQtcrQxlnMVVBkRfeOU4SjPNBn9wYHzzKC7SMcELSbHZQImBvb4/d3R3SNMcYTRT6OoyVpQU2L1zHPwwHVJXGWWZG8M7Onu/PEoR0Op26Sayg1WpwzTWnqaqS/nDIxsYFBoM+J06c5PSp0156utXk9KlTs/E0VU7TVUVVFcggIml0CWfKihWjwS4Xzj2MEPDc5z6XG2+80TsldcBI64qyTMlzzwTwFORyxiyZjEZ8+CMf5q1v+zUmacbCwhJra+u0V3sMijG58EIrB0IsxmcsgxCc75ehwphSGzrtBgIosxRtoNKOLK9w2jfcldJTiBdaHdqNFq1Gm2ajRVQ3bAyjkCgIaAYQSIPRJUWRoXXlwzjW3+hQBbNa20pr8jyb2WsqCBABfj9UCiks0pUstXvIWkZk2kfn0XDFTkZmfSMREXpZv0DWDoM78PsPK6M4N+1QXddkWJ9q8Q6Aq5876GJtrWVsNIUyrC9GhBKywRiKkH6wC0rSbDYJQonWJcP+iP3tEXmhKYUhjDxFo500OHXqBJ12B2scSSOhdI5G3CSoDa520qAVJUQqICsK8skEV29o1hlSrYnzjHGW+QYkgUA6i9OGpaUlHJZBOmbiKuLa8Zk6C9Ou4NYZirrpSVmlpNmI8WTo9YnxURs3pbjUkrBTo+lw3xApFWGoamUnf6e901AX7FmL0Y6D/dkBDikUWhtG4zEmhLIoSJKEdrtL3GrN6Key7hXSaDRoNVv0t3dIggXQDkIASxgGNBpNxuORLxzUPqId1BNm+h0fUOcMWtfp7trxCMMIgaYqvUKPrItpjzQ/xI8HjW9gGKLoJG3O98cMJiN6jS7rKycYpSMu7DzMJMvriN1jazX/c6HdXagLLH1BtbMGrKmvGaS16NGA8cYGaT4CIUgabQIhiUUdzZCSOEhY7R5DGkVaprgopMIiK0OpfRbM1fUU/hs/wIHKl9+kD/oPiFlmY1qHMaXNzTIaKkDgv4+pjJ1UEic4RF/w7yOnzfjwEeAg8EVrQc3ftNYRRYnX6w6C2jCsneX6MyutmUwmDAd9irKgKrw033RMTNIJ1hiazQZpWVAWBWG94U7POw49Ja0sK6arUKC8U9GUkkYQoBBgBZWF4XjChY1t8klRZxJ8lEo4v6BKmEVLg8B3EtdlhTOmVuQXYP2GNR4OKMd9AjeV51R1JkVSGE2/SNktvYNRYtEI37sEQYCgmUQsLnTpdXooqSjLjEk+pDIFUSyIZIySQd20sM5WQq36cZTyGIipqS2grrnyPF9HKBWdqP3pGvaPG7MxeQmvd1qXVqt3VZoiL8l3M7Z39+iP09lYF7UxOcuB1GPeAtrW607gi7ojJRDWoou8Fpyogzv1elVVJWVZkOc+QmmsozKa8cSr9+RFiZQBa+vrLC6vcHztBIsLXZrtJufPn8UazXXlDayfOkmSJBw7eZLh0EtZTob7KAftVos8LxmOYhASY7xYRxgHLCwssLq6SqvdBizpZMLe3i4Xts+zl41oJC2ubTe8NKVUqJpat7ywAs5RFQVCSm8oFIXvkN5IiKOYOIoYDAa02x3a7TbNRoOTx0+gcYzSEXlZkE1SnLG0TYuO7BK5BG0tQoY04iZV4otGwyQkakQsrS1z8vpTHLumh5NDxtkQa6u6mNv3S8IZpPDRFTezBSxS+AJvvwYcrF7e2ZS1IyFxtnYka0dwOm6ma9Asg+FsnWWdja4jC+IRl+Gy/sPV5VRcjMFwOHOEp2tsFMUkUyWyKPRFuKGvxfK1QLbOxJU88MD9ZHnKNadPc/z4OlEUsrm56Yuyq5IgdCwurtLpHae3uMjWhZg0HbFx4QLbW1sM9vssdhdYP7aCEX6fL/LCOzpBgHWOSTrxbI0ypSAlaraIYi/13Ww266a8IefPn2M4HCKcoBE3kBICFRAqBc6h6ya9AFVl2NreIQhDTp06BTCrfWi3W1x33RkGgxFR7O9Ho+lFeawpZzL71jgf1IG6obPBOWhHTdrNDlP58yJL2dvdYTDoc/vtz+OWW26h1WoThjFKhUwzGGVZzb6HaSZdCLj3kx/nPX/3bv7uve9lrz9kbW3N9/1YWmT5hnUqV5Hmqe+NVOSEUUBVauIogVqlaaGzQLPTQWvfiNVZS6Y1ha5mATQ4YLAoIUmiiE6jTTtp04wSYhUQqYA4jIgDQUSJ1SVZngH4vbXOiEm8426sJS8Kqqokz7OaDSNmxd6B8tLZEg0mo6lWsVpjMQeBoUfBFTsZQbM9cwqMc7jqcEG3T+F5a6euHaj/OTgFH1kLVd38R6r6R86aAclAEkrBQivBGkuZ7nH+gfNk45LF1WU0hjRLKfKMPM8RSiIjRYTX8s+HGaoniUVEaCX7owF//48f4MJ4gGhEPtrvLDovqIxAi5KszEnzzCsa7Q8AfNragta2ntASa30n4nP75xGBVyIpyoJuM+H0mWs8+9S6mqqkwfhBNRnvMxqPGYwGpOnEc+WFnFEbDvPijypqCIzWdZpKzJZBVXP8fXF55fnvwr9uyic2xuKUQgYhVntlhrBWf7LOb7xCHqScgyCg3e6wvrJG//w2y71l4rBBpBJG+T7aVDhnieNoVqQ+pXd7ed1aflf4tL81pu7lYVHCU2+s1rUOeu2E1Fkcy0HKdyprWzqDQSCrkuVmj7P9DSZVjpKKxV6Pa49dR1VqHti6H4MhiK6eCG273fLNfOqonZeY812irbW4PGVw4Ry7G+dxAuJ2m6gREakQKwNETd9Yai7RDhbY2+ozyjLSSKAF6DTHWIFUqm5oaL0DABhdd8oVdQHrlLZ2iM52uNAbONLZOwh8J24lvMRdlvvslcXVVAeJc1CWJcYYkkZjVgQ3pUpGgSIIYqQTRGFMs+GbAqk6HewlM6mzA162djwZ+yZP1kvSltqrVXXqLrCT0RjUNFOiZw7NlBqWxBGj4cDTMITPPAsgcI4GjrCu/zHGYiJJVlYMBkMf/BQOi0UhUIFX+el22j6TISQSiTOWyvgIt3CeA2ucZTIZMdrfZri7galy4kaTMIpBKSa6ol+m9MuUia2oMF5PXngKVyAFrUZMr9um1YqxrqQqLUaXqACfCZLT7IOnqMGUPlk7MkzpiX4dVfW6yjQjJgMkvtZjrbnI8dbiP+NMeHRMlaWmGaNpNsNfoZutCWmaMdgfMNoZ+gZRZkoFm9ZvcHSfmdKnnKMyFiEMC9LXXRhrMaXGWEMQ2trp9UIDRWGYTMa1YlrohSgwFKZEC4OKI9a7XXoLC6yurNLrdJFSkVUFn3zwPj567z1s7+1wu/gClte8s3DqmmsxxrJ57izpeATO0G63iOOEIIpI2g3WmjHLyyvccMMNrK6uEoVe9rLf32NvsMuoShnbAiUblLqkv7+Ps5ayLHymrtUGB4WK/DXWUu9VVZI0PPUqiRs46/jYxz/CyZMnkFYiK0MvSiiLHBNoxuUEbUt0njEq+4QqppG0USqi1exgraHQBWEUsLy6yg23XMfisQaV61PkfXAGIWv31znK0qGkz7i7WZbBIrG1gpWvf5opDikfGPPExgBn5SxCPM22AnU/DAHUGXTcTJbaH1APgsNj7ZLBd/EDVxc96mIYhy9kNr5nSpbndQbQ0zvDIJwpkiVxTJL4wI5UgmmTw+3tTdLJiFOnTrO2ukagJFub24xGQzJGVHmKMSdotTr0lnyPnaoo2dg4S1newzXXXsvKSs8HJYWkqgrP+5e+Li3NSuLWAqqbcO7CBdL9XcIg9F3uG02CMGB1dZlms8H29jbdbrdWcjMHtRMKlDNMpfGlVOR5xsbGBkop1tbWZn02jDGeWhjFPuhdZ/mNruqgQS1Sgl/3Zd2A1dccRnR7i7TaHcoyp8xS+nvb7O/tcPr0KZ75zGeytOTphY16j5tSHKdBtbIsCZTCVAX33HMPv/5b/5f7HniQtfVjfN7tT6PZaKIrTWOxw+LJFR7eucBgOGA8Gfh61WKqwil9DZmoRVMEqChknKU46xhMxmR5xiRPMU77WkApiUJFEsZ0kjbd5gLNqEXiFDLNCOKEGIhNgaCg1Llf27SmqkpfY2nNLGOfFzlZkfkgn64wRs/68aggJI5CpHAYnYPOoTD4FgaWK/AxrtzJGI7TGa951llbTBug+I0sCLxHGkrlnYnpj/ARU+9M+MdUvSlSR2S1Mezu99kZDMkbCc1GgzBu4cSA/f6AQleUtsTaijAQRFGMCCNsUVIWJa7wxc4PPvAQW+c2mSqTDNOMPFI0Gl5Csyoy+qMJZWK8BFgYIqyhKCusECgc0hmkcTTChFazhROarDRUUpJZS5bm3ogSim63TaOVIGVQ05h8cagxPvVUlj6q5FUTSqwIauOGmdE3dTYOCh+pO1p6rl9hdL12eh6ysabuLO2zQZ5jLDHaIAPpDSptycqCXqtNO+pijfGNoGpFaYnwPRGAJIpY7CzQDtucPHaSRtRAKi/nm2cZaTnBGEe30yPLcgIlSIt0piQ1NXR9ZFyipulrY5GBdzoEAim9RKqz5iDDVVM+rHUHRe5SokIJmaaVdGgETcbVmLQqaMWGhd4Sx1dOsjfaZ5DvYrl6mowpdaAygQOFxAofPbBVSdkfcO6Bhxns7xNEER0d0CKh2Ylpdnt0Oj16nR7lWJMNKrZ2drBJTG7lrEhaiAN51Vkn+Jq/aYz1tClxqYMxdSgOF/0bY2YF3MYYnPZNepyzBIHvSlxWJSF+MZfK1z1MFZzCMJy9b1kUBELQjGNf+B35TSCcUrLqhoGmpth5XnpOWfq6gjRNaTTj2qHw0UujvQtQGYeTEimDmttrmQolwFR4wl+Ls47KGjpJQEtJRN1ZvrQSFYSMJymDwZBpXx2HIVKK9ZVVbrj+OtZX172ktq+H8/PRWZAQEiHxxlw68UotZZ4ShjFx0kaFEZkuGBQT9quM1Go0XpY2rCllYaD8JhHHCAmVLryBJQQqkgQ0mVbCCukdHUmdeRJ+jvm5Nq1H8VmLUNZSrNZhK0skAxpBQjdscqy1TCdK/vknxCNAECBFMKvt8g960Q+wWKupysrryo8zsrrpZBQqgtKCdczkvIXzDSjhSFbPOe/ITtcZb4D7DTSs6zBkXcA8Gg0ZDAYEQUij0URqRSkMOrAQhnTjFgudBbrtrq9t0wWDyYitvV3O7W2RFxM2B7uEccJttzyDYydPsLy6ShD6zss7WxsM9/cwQrKwlFFWeiZXu7y0xOrKEknsKVxFlpOOJ4xHY0ajMVb5JpJlUbCf7zEZj8jylO5Cl6XFZX8tcYxE1DUeXnXPr8+1g60r+v0+5y+c5fjqMZQIfIfhIKKwOSr2u4LWFaPxiDLXLHZXWFhYIo4jOgtdYqPpLfa46Rk3sbgWoRlQlAOsLQEDxsyCVt7RP2AyzGTZpY+I+ADJ4bocEEicmzbZYxYxnmZhDzdw9N/vAX3Y2jqLdxmr53G7EFddYkMcjOnZP17d0RhDTu73AxXUNWRerchH+MMZhbMsSrIs5+GHH2ZpcYlWu4VSikmaUuYT9na3aLY6rKyuk45HCOUzUpubZ9nb3abIMpJQeRnUsvCUNylI8wxjNCeuvZFrbv4ctra3+MTH72Fz4zyj4ZB0MiaMQhqNFknc5PixY/QWeigpaho3M0aDrz2bZuBdHdS07O/vEwQBrVbrCF0XPHW2LGsmhDX13yV5npPnOVmWoZSi1erQaHdZWztBu9tDKElVlkxGfbbOP4wucm6++WZWV1drByaaOTRlWc4+19Z2T1kUfOAD/8Cf/tlfcGFzm+Mnr+HGG65DKsVDDz3ExvYGn3/8+UzK1NfO4WsepoHgOE58bVldn2edb9gXhb4WEvBU4lq8oaproFUY1owBRRK3PO0rbqHihne2whDpHEKnFGXGpPR2qDaVp4MCOEMYhD7IoqtZPYavoZU1zUzOpNyt0QhnCF2AcqEXHBFy1obg0XDFTsZqs0NYp7XCIPC/Bz4b4dPy9cY3/V3UKhLGzDT1jdaYoiAzUyPzUH2HMYyznDTNwFbs7e+S5iV5YWgkARWGIApoRBHSOtJJQYbBBoKgpVCNAFlCPs7ZT4dUZYm0ync3lYJQBKjQF8uUaHQY0Wy0iKXCFo6qHGOcIYoUKEev3eL6k9fQbjXZ6+/QtwZhLAS1woM1tDsdjh0/QRw3awOqLoyVnqtXlAV5ljJOx4zSlKKytUFXOxV4I8YbCj46qbU+kCOdLTHMaCvWmjqqI9DaIiNAKnRl6kyFf8NQBGgtQAsyXfqutUFEGAU+qjyNIElJp9VmubNMLGNWV9YIAh+CMrbEOYMuKpyThEHEoPIqJ3ZqSENNEfMOk/AP1IuAd0qnHEKMqdOYzvsgtXFq60aK2kyLki2pMahKQ5qykHQZFxmltvTTEUutHstLq6wPj5Nv+DTt1YIpZcwY/z0IJZBWYG2FHg3pb2yweWGbvNSEkUMGJc0m9JoL3HD9LSwfu54obPDB97+Xvf4O47ygudihshVG++iOQMzqY6SUmDqaB7XOv5SzReqw6tfhc5w6FzPZPTntbeFmHFSlJMJoKms8ZQiNcPKoY1GWM7WqsiiIlVdlKoqScCEkDAI/5g8VHfuMqF/ciqKcSenqOgMmJQShqlPZ2lNnrM8CSKlqHqyv5VFSkE5SnMPXfSif0UMIojAgmBZqOwEqoLSGcxcuMB5PfAMw4YgiyamTx7jl5hs5ceo4UStGK1OTjmqDyPnOq0kYTXke5HmOU4L28gJh2EAlCZWw5NaSB/58EyKoMwwqCAjCet1UiqDmzyrlJXlV3fRSypBARgglUWHga5ikp3zZqkSXlc+ySHEgsmE0Gk2FwBmHLSpa7QXWO4usJIu0whh5FemwTTfsAwNy+syBOlpVVeRpQZ6VOCdoNhv0OpqyGvniSKa1at4gOahIwztoCAIpCKTEakMpPM0sjOJaLtZnOLSumIxHTMZjGq02lTFQlZRSo0NHECc02x2SRgMXOPazAbvDPoM8Y5Cm9KuMPM/INs/xrn98t9+nmg1Wjh1n6dgxGu023W6HrQvnkRvnqYxGKUU6yXwWudUmCgJMWZJXJZNJymg0Ynd/j8H+PmEjoQozRlYirWU8HqF1iRM++t/rLRBFMc4ayqogL7K6HmuWCKOofD+YcxfOMhj0WV89TrvdpRHFWNWCwFBUKanRlFVFmufEcUrLtgiQJK2Eld4Cp84cZ2E1oDD7VHqCdRUWDRhwllB6B1qIWq3GeQlbhJcnt66mCjsBHM64HtA7qYMHYaiOOhjCBxSmK5mxYI3PqtclThzxEC5XmjF96tEciasssXGY/noYR2iyDqyuELoi50B8ZRqMmvb7kVISx2GtRuVrgFrNFmEYovMRWxsPc/LUGVZXVw8y20qxt7tHVRTEKiZLJ14SX0mc0aSjIVWREzWaqEBx4tRpFpZX2dvd4aEH7uXsg/ezs71JWW7QaXfpdLqsrCwxFXdoxLFfs+s9bBr0mp7vtA/T9Jqm9Y7WOdS08NoYRqPRTFLWZx40XorV72lFWbKe+GLvXqdDluXk2YRBf5fxaMCxY8e4/rrraDVbRGHoA014KrDvNeWps9ZYqqLg4x+/h3fefTfnN7a47vobabVa7Oxsc2HzAptbWwTtiM5aj6wqcFiqMveS+4FXkwqiyPdECrwUfBTFgMQKiZMSXXraV5pmOONZISKOUULUilIRzWaHJGkRNZrIJCZoJITNBqECp0uqyotWTHtQXaw66Z2yiqLKGWcpWS3jq0QtzCREXd5giBQE1tGIGz74JQO0zh5z/F6xk/G0YycOjF7nJ6k1Fq39Bldqja58qkXrw5Hquv6Cw30zpswqdyTVHQQh15w8Qakrdvb2WFxaIIkTyqqkcsbLpg0ztLYMywLRDInbIVIYYqFIwojmSkKiA3QVYVONyCHXjmI8gFpvvzKGdDLGVAVCW/JJyqg/RihwjYhrT66x1IipshGD3KfS0myCdp6jFjlFIAMW2z0WF5dQcextGPwKaoXGGEuWTUjTMcPhgDwvETI8ZOw5jPW9CkJZe67OzVq42ym9pf7fCYcQdWdm5w3FIAh8dsQLb/iF1jgCJ8mHE+K4BUZjDETdDtpYmmE4m6zTCZ1ECY2ogRCKKG54STVXUJrUG8m1HKKX8zxwDrxH7jMu1BFqpWTt8PiIelkbubFSSG1R0mF0OX3JbHxYHNp5qWOjNdJBA0PZ36XTXaQRNshMSqZLRvmEbqvN6WPXkhUpk8ljD/R/LkzlmnHU3GFQ1lKORuw++CAPP/gw2jiiqEW7t8DCwhLNpEkShDRV8P9n7r+e7c3SPD/os8xrtzv+/Ez+MrNcV3dXW3UPPQOD0AyEdIMicMEVF+I/I9CFINAFRHAhAUIIxIwIYGy7qq6qrkr7c8dt87rluHjWu8/J6pquZKSezjfi5PnlPn7v9a71PM/XkboHbg/vGQ4jMSQWJ2t6FVHaUChNiE+mWillCpEU6NYIDS7kJsLmAv8peqGUOjq/zaI4rZQYNqBIIUqSPTHb7MWjEFYAqjnhXX6GpBPLmpq6QahWQWz5yrLCFsVRkK6yIQJ573DO5+8Pfd9hjBTNAOM04UNCW01ZaKq6ZHIivn4sLJUI+UI4ajR8EKG6MUYm/SmSECcTW9Vsx4nPPvtCUEGtaKqCVy+v+cFv/BrPs12ji15CjiIy8QVSCoTgUGWLUgkXRqY4klpF0axQ2uI1hKQo25ZTWjakTElUmdpQYXPqrdgLlpI6a6XROKKVSlAKuS/kOU/eM/Y9Uzfgu0HohykRMtIUUsrWwoqmqHi+ueSjiw84aTcUyaAS+V79ZlziMiavyxHNULkgTTJ5H7qBw66j2w0YNO2i4VJZEpr77Z5+8DifjTZSQmUh9+PEO9KU0tSFEEAlrNVHu0+bUdYuI83TNFEvpPgNMRIIQg+Ont14YIqSoHyYOnrnmFKiT7kxGAZ6En/ysx8JQrla0SyXrM6vWJ6eUeTmkpxHkUKiqkqiDxgVmfqOMAkNchwntsOeg+swpWHR1BgdmcJAjJ5Re7AKXVhMUWBska2UOzEXGXYoK1qPoihoFw0heZpFy/pkA0YxRUdRFbRFjRkNSgfCNBJ8JMUkJg8m4fxIaxqevXjGi4+uqVaew/Ql3g0kPChPyg2G0RmtjuIeFTNiPfu9CHqRSEl0FdYUzDkYCo5GIdaqr5gBPLU3TkkdNY0xiaPazOF/imD9/9spqL/yj2/W9YvWvL+86VDHFizGJMyTPNCUiXyi73u22518fdZjFtayaFsuz87ZnDwwDh2//us/4PLiHKOhqSuqQkm+VWWYhkEcNK2VMDnvCV6m5A8Pd5R1Q1k1vPrwI55dP+PDVx/xwz/7Y372s5+w3+3o+wNNXXJ2tqEoDFVl2SxbnPckpfAh5j9NHREL7/3RMreqpcnwQXSpy+WSmBL7/Z7b29vj2VbXDXW9QClpMtp2yXp9zmZzKs6Ihy2H/T0kyeT47ne/x+nJKW1TS1gl5GZlynR0+T2id3z285/zn/6n/yd+/NOfcn5xhbWWn/70J3zx5acM48jZ1Tn/9v/wH9Jsltxu7ximkW6ccD6gjUZbKzWbysYVStOPE6vlUhqMGOmmgcN4wAcnDI8UM7ofMEpztjplaUsapSkQUxlrLWVV0JSRaZ/oneN++0A/Dce8tscBo5igDJME33Z9L4M+owgK7NxkhAApkPxEqxTGBaIbCd4fh9V/3fX1LWzfvflK9gVZTCN9wkx7iVmQOgu781tMx+kSPLrczF8nm4kmakXhJ0bnKEuxarTGsFpUJDSfDoF32x1TiESrqILA5CnIpCaYgCmhrAxFU6LrEjzYEOiCZ3QerQKFVoRxoJtGgdhTpCitbFY+0O873k8TX7x+TYwKHyP9MJIUFFWFNoamrjAR2qrC2CJvk/KHSRLxSDf07A6dWGTGBEo24pg5QrKxZrF4+qqV6FEMnae+c7ESM289pjylRksj4ZwgEClRmoZi0WIsHPotJ6tLuWmUBD9VrWzyMxxtC0lTDyHw+vUXPH/2ghA94zRIIWAUpMg0DbKNZUFzCI4pC9KttVjzOGl6ak+ZcqF6bJxiwtqC1HcE7zOdimMTGlPCAYvKoA89KkTW9YLh0BOJHKYBoy2b1ZqXFx+yfdh/3WX8N35Jgy3r2SiFSQk1Ofr3t9x88Zbt/YGUNEpLYBgJ+kPPF59+SvewZRombNlSLc7QpVg8R5UolBYHljA3mpkCFSMRxJRBP1rRPdVdzBv10+YAyM5PJTEEoQPlw7yuK8ZR0KE550YpcwwpQ4kAOeRNr6oq3DTRHTouNicEn6iqVrQYxog3vspjRa0gcsy0mJGrmGT9hhQwZY3rOpz3mNKKfiOEI+JVlsXRb3/ygtg8IkhiJWi0QpH1Y4i2IWlDN/R88fo1PgXqyvLxqxf85ve/z4vnzyisxQ0OXwVUJRS00hYYLfoXZqKh1rhxIumIbjQ6KRIzPU5RWJt/rj76tCslAnNjLXZuIOYgZJ+y+UQ4UrRS1hRMXkSW09DjppHkPDYoTKY7JhWJOqGMpqwsbdPywcUHPD+9Zl0tcmPq8SGJVeI35HrcH/TjJDvTJeYJZ3/oub994Ob9HY2uWbZLitKw2bSZctlBioQkk3GN0MlkUJPQGJpS3MKSVoQUZaDSLiiLUib/Q89hTuxVgi6ZosAUFp8S+OwwNQ6ElIizO5oWZMuHCecdLjhIkYf+wI8+/QnXf3rB1dkldbWg3KyplktOLi+Y+p79bkvf9zKl9YEwOYapZ5q8pAhPE1OY0IVmWSxEI4ToRyYC0SiqumZ9esrZ2QWFsex3O7b7LXfbGyLi7mQLS1kW1E1NJHJ2ei62vdZibUHdtFhTEIlMbqLUI43x0GiU0diyoKxKrp5f8+q7z9HVwGG4YfI9CQcqoJLP6GfW1ygJ9Uo8JnhrrUlEYpBCWB/vCTPDTqQkTABtyCiq/QqC8diMKEEwIqSsUzKzDny+0lO8g69+YP5X+uWPf1Ovp0j04/Pxyz7+BDGe6Za2wBYlk+uzq5B4sqWYBAF1nn4Y2O73LG/ec/r+LWN/4Ac/+D1OT8/QJEopSzAZkXbeUx+NX8QU6LNPf84nn3/B5vSMq2cvOTs9p6orPvzWt3n18cfc3bznL3/6Ez7/5GcQAvvtnnZRHweXWmnqRvRKMUW8/6qhzBxWR0wU1lIXBbYoqMtSsmUKKWf7riORaBvJQDNWDBE2Jxc8e/6Sum7ou47+sOfh9kZcTJuW1WZFUZijvkMpZHCeGwP5XTx93/FP/9k/41/+6Z/SDwOoG16/fcf24QEfJrRWXH/wnI+++y3upx2zTlIGZxGrNHXdkJBzsR8GyrImkujHAe0NfS86in7oZX+ZRlIMaBQxZ6I1ZUONodhu0cOETqLxFGVTwEfPbr9jt98x+omuH1gul0d0y4fAMI4MTpqfcRyP9boYL4gmSkWPVpEyJlrb4seEUjbrOItfuXa/dpOx2x+OFJkYY24kYhYBiw6BYxHCEa5Ggc4vmjGSk2Hym2RCzIhHpk+FHH6XEm/f3zIEz3K1QmvDQXna6w0vz05oFpLcen93S7fbgxZRmI8RdxgwWuWQJUNRFqyKgiYWTD4wDIHuMDKNkxTpMaI1FEpTlZaD91LYWYUtDUUqmYiMo8N3A8vFkrPVKevFimbRZPcL2eySSgQXGSfHME7ZAckTo4RMeeWORYdSj03G3Egc+fxPNo7oJRsjEjAGrI44H7C2ZBqCJD4rhZ5pM0pTVgXKBopkiPgMnT8mqOaXS37v3JwoBa+//ISLizM6tyMkgR3LsmLCsd/vjyJfEXE/hjEG74VG42WykTLk6b1kAPhMm5sFuKJheRRGpyd/c0qJIQZGpSkKSbQ8Wa247e9x0ZFUYD/01Is11xdXTIdvDl0qhIhSYjlqAOMC/f2Oh7cPDIcI0QgFxzmGQ8c+h86R4PVnb7l/2PHht79POxim0nCwUQThuQn8KwF6WpPUI31KNn1xjZjpUHNT8VSfceQ754YhD45o2hpjFD5MhDjTHcQ+dXayOnrYwxENMVXNi+fPaOqG7tCxaDeZCvSo/3jkUMua917u9cPDA8k7scNTMuk/9B0hPiKg4yhc0bIscF74sXPCubbiN66UFPgJgdFtSug88QuIW8nd/S27Xg63D54/4/d/+wdcX1xTliXDMOF8IlVyL80UUJQkkiulKTNH3Acn92OhiUFExVL4JpLT+BjwURFiTmmNgtzI76nzwF5QR5sMYZqoS8u6XVPZWhqZKdB1Iw/3O8a+R2VhvSoKMJrZpthYRaULPtg85/r8movNObWpUUHuSz+jx9+gMD6jzVcLpfzPBMfnahhGps7hpogtVHY6KijLmrZpOelHDp1jnMR0gBhJIQcyein621o0QUUhZgZN3VJVUthM48hut+N+u6UfRkFMm5a6bsCAixGCNPKzdTIqTyHzmRUz9bcoJQOmrAumMPKjn/6Qj69fsV6uObcGu2goG8nPWS6XLPa7I/3isDuQ+p7JB1SMdKMYm6SYkbA8aBqnick7lLWs12vOzy5YLVeSoNztue9u6fyBqqyOib9VVVGXDYUuaIoKcSWDYRizZag0Xut2g9YFi3YtmTsqYmrL1csrPvj2Bare0Q23TK4nJofSEaPE2ckoMTIQLn1Eck5kIqqNuKlJkN6s2xP06rHBgJQyspoHUyqbF8hplTKCoYgxh/LltSzN+y/yon4Bjvgay/6XNyXfjEv25n9VU5E/55d8/FG7AmOeVsfMlkhKaKWJvL5iou9H+n7k5vaOz758zd39jn/w7/xDrq6umMZehi0hMGbb1sJafMjIutZ8+slf8ubmHmMKFssNL15+wKuPPuLDjz5msVxxcnrG7/zehu9879e4u7lhOOwZhgM+whSCFLoh0DRRku2LUs6vmF3JtCCgKg+QpOGIuKHHTyNWa169eC577+Rw2aDEj466XfHi5StevPiAwhoedg9MY49WiWEcOHRCUZxD7ESHELOZigxAvBO05rPPPuNf/PG/5P5hC4Bzt0dDG6WgbhtefPySIY7C7In+iCIopSjLkqZt6YcJbQxVbakXLZuTDbvtDk0SM4ppxE8y5CAGQQqVUAzroqata6H8B4NJGhsjpdbYJBSoYZq43+0Ys1nAU+qhtfaIYIzTRDf09MOQkUd1vE9RCZ8mKh2wKWJZYMvlEV0syl/dQnztJmPf9ZmHpSUF0IrY+yg8nPm12SnEZpHorFSaRT3MRbSCwiJ+zZk+gEpst/cYDYu2JRUFdnPKyeU1dVNzGB7w8UDTaAqr2e+3VE3Hu7cHhr1n8jKtSyGSJo+JUCjFYAxmYdGNpHnboqAsFdNY4F1i7Ccm53AuYlFM2lDZAqMtBEM3jDgvxpPWapyb2O8faJeW9elano88tUkxMo4Dh/2e/X4vITQ+QBbrxiT2lUVR4pw4IcwhNeKKMjvwzDxVeWeNRWuhG6UQIEYMGmNgGPvMvZUbw08jN/db2rOWqDStUUxOHBzaciFOC8cFX7FenpCA7f6GsikIyTG4jqIuuLl5x3KzAhTDMFDWMlkfMzVu5vPHKPz5WUw7F5Iq8wdTknUyZltU0elkPY4X7mQI+bFcGPYqsqw008OexcmG2lT0g7iqjMnR+ZGT5ZKPP/r46y7jv/ErRTlYTVRo75nuttx+9pb7mx3Bg1WFOH8ZS6kt2sMM54UIi8055+fP+OzNO9TlGp9mn+9Z6Kpzcyji4zTrG9yj88VT56gZOp4/NlvuSSMrYYjBu6yzCVSrNT44hqHDR2l+bdZMhJBASypqTDHrAqRBtVbTNmsKLdQc4ZkLCiCe9kBG30K+R8ZxYHKjcH3LiikERh8IfZdDPEUwHWIgKbF7LYoCvxeu6VxYapsbGQVRJYwSzUOtswtzUriY6OLIzd0NFxennJ6c8uvf/g4vnr3AmlKoW0GjTUm0joRj9rrxzos4LnoKLd78MQZMAXVTor3CB08IOrukOVIyFLZGJ8XoJsZ+ous6Rj8JfQ2Njoo0TBRJsaxqFueXLG2D1pICPWx7tndbuu0eFROtLSi1oUxCYVTW0LQ1i8WS85MLPrr+kLZqMUqTXMD7IL72QFKCqnxTrkcKjCBZcg9EVHaXISSuVy+5+O0P0b9RUJctbd1Ql5Xst8eaSiNmjBGVK9mQ9T5+coLSeY+bRvzU56msxY0jDw+3uKgYpgDaslytWeVk3ylMMuF1k6AHs24OYN63nKy/wirqqqWqCsrSYIH7/R3//E/+Ccum5bet5cReo42iXrSsVkvabYtCKCxDPxBTYhiFu931PdMwMux7+mkgjAFbWKZxpJ8myqbkg+uXYlWaAod+z113xyHuCUUkWqBQ2ELsZ+uqgSrRtjUxBaZpZL+T3KYYElVdY42WFHkaVGGo2orz5+esrw19ese+vyP4iZgcKJ/12xFjyMWLTHlD9EJxyuhCzDa0IHXBPHQ4UqXTrC3Ldsuzje38BvOrm7+XypQrgJRNEOTf8n3nfz8pwv+VFCj1yz/lG9hv/OKfoJT6yq/5i03HPPybrVafDi6PyqwsYj42G/mciDFx6Dr+6T//J2z3e/7hP/jv82vf+xZFIfWeCx5tCkxREhF71dl8oB8G7u/fkuKn/Ogv/py2XfDdX/s1vv8bP+CDl6/YnJywWC5ZLJZ479huHxhD4vnNHe/fvRUN6+HAOE3ZJavIhX+Rqb2Iri03oHPekAYxxSgM2k1MvmfqBybn0MZydf2CZy8+oKxKDrsH7m7fcn/7nv1uK8Yj6VGbOCP+sxZDZ0py8J5xGPjpX/4lb96+Exo5eYinJEumKCv+7r/z3+bbP/ge7+9vSSqy3W059Ifj61ZVFavVivuHL1BKs1gIujCMA7a0klkRJezaB09RWFJAWCq2YL1acH5ySlsuKG1N3Sxo1muWV88o2wUpjfRDxzCNPOy2jFOmFGejGEkEL9nt5XOGcWC72+U1E7BKBpSmKHFuQu7YQPIegqFuN5Ifp46t3l97fe0mY3W6Oa52hTpCSrP94LHRUHOoDn/1Y1rCuObudC44fAxMo0wyXQyZh50whaOohf5UNRVJtRyGB7a7d3TdjsO+Yxg8WgvvIEUvnvLGiKOPS8QoU2A/iqevOIxEhE4m4tCybImLQHIRFWVyMgwTrneMg2cYpAizxtDUGqPh/uGGzUVDUdkMCYN3EyEq8VufJMRpGEYiCq3Fj9hqezxQ5o3gaXE4T6tV4vhcCQ0mYpBmwzuHsYXAXc7JHZYXe4qJu/t72lWJMlBpy9gdmHTN+vRM+LEynKWwBW3dUhYVkcjt9j3tYoGPj4FUMYrbyWK9YuglbXJy/jhZOWpDhoGUnZWOtIeYiCFBTn5WOhFjf9QIWGMoSiMT65wcGVPMTZkiatk9kptIXce6WnJ32JI0BAW7caTQBWfr1dddxn/jl4qSDUKY6O+33H/xlvt397L+8hROY6QQ1gU6u32hFHXbsDl9RvSJaDRBJUKE4DwhpEwRSEe9gTHCeyY+5o1YK6jIzL18mpHhnHvCdRaO/jFMJ0AKwrMdh04mqVpJ6JeRY96niHcOnZEsBUeR+GxXqFKiPVkcOe/zFjTTKiOJEAWaHfqB7nCg7wcqXaOswfUTvnMYY/FufAwCsuY4KS0KS98fiMHniabcQ2X2/FZKNrZaKQqkMHERxuBIIfLr3/kOV5fXXF1eUZgK5wLO53WqQeHErakQV5bePaI6RluiD7jg5B4fBsZpYhjH3CwnjJYD19oGP02MU2CXPy+miEmQvCe6iAmK9WrF2XrDen1KWdT0w8TD/Z63b24Y9h0mJdqqpi2FAmOswZSWqq15dvWMs5NzThenLItW6JVO9rgQhUokVj86mxF8M665sDza0B5FWlDqimfrE05Orzmpz2nrBU3ViBjTmuPXqBl+y4tM5f/KGns0FAlZHO9ywrbwu4W//frNa96+fcvhsGe5WLBerSjKAre/z4d8xCvkXFKSkxKyd/0wynCKGDFVgW1LrJU8jmHs+YtPfkhhDG2z4DfaisVmTVFXLBYLFnUjmQCDmBgMbqCfOvndhp6uH+h7x6GbmIYHVqvFDGngx4lxGNgfHjgYxd32jv24w5mIshqXZH1qrUUzZUuSkhyZQ3/g/v6eL19/zn6/p7QlZV0TiHgCpik421xy+eEpq3NF57/kMN0JwyCJrkXr+U2mykY/hmKqzChAqWzTro5op0yH89Rd6SN6rfVMtZK9UCXJqdG5kA5R9r6QA/ueorFzg3N89Y/uUr+8+PnFYvyXL85/nRX9N3eJvfdjvtB8Pf01nzYdc+E9o8BH7V0WUT99/uZz4qkgWJoNoRj95V/+hP+yLGgbzfK7r/AevAvEJPamIUSMLWm04eWzFhfgZnGLG3vuHrY83N/xL/7ZP+XNmzd873u/zrMXLzk/P+f09JTFYsHZ+QVN23J+dc2nn/ycn/74R7z98gv6vqfr+mNRvli0tK2gjHOwq3MTYc7CKcTCeRh6Hh4eOBwO8rV1Q7NY8uzFKzbrE7yb2G3v6PYPuLEnRkdRGIqi5PT0BHLZLOF76isOmiFEdrsdb968ISWE4eE9PmVdqtLoyvIbf/g7FCcllRrppx6fAvvD/om7YqDvBkDhnJhAPDpYKcZJwjPnbLQjXSw3WG1d01Y1dVFSZJq+LktM3RCUIo4jfux42O0ZxumogwZFTFCWlphgcp5+mth3omuVeiFl10KVacEOazNlOqn83AjVW6HwXwMd//ruUhdnx4JinoLK0OC4tLNGIzcQUULSgs92ejNknzJ0mh4D+eabR6Fo6pqqCGjVkaLj85+8pf/pJ2wun7M6WYJWTEPN/rbj9sbjBk8KEKMWq1yr0TYRCrH7HIYJoiH5hBk03mmcSwydLNCZulWUiqo0FFWFiQl8YuoDzgWCF273pCIhJlbLkmZZcHZ9IoEkiPp+nBzOJUl07TvGYcB7R9UsKMuK/WHIYrinN/MMaT5OG2aPaGZ6SQhopGuOnuwLnrJXPvgQKKyhPwyEIdLUNc2yYtE0HO73dHcji6KF5LC2eUKPF2cDyQoI1E0FsZCD3pYMrqeuKqF7hUBRloyTFFOz9/mR7hUTST9Sc+Ses4LMxJTtitVxuYScdwCyocn02eNcJCj5u7UqSAZUikyHjpPzMz7DClfTgsup6yf14usu47/xS/mAcfL73r9+x/bmgWly2abZ4Z0HJZSpoCMxKYySNbg+OaVpl9zeP1CdLOkLjZ8CwY2AuJY9DdV7tOdMx/A5q83RREApdWxUhaoWSUkfD5iYaSlV1mVIryrBSj54SDlrIRep04xCRZ/pLtkhTaksEhMaQ1WJ/d88tQz5ez9FuLwPHA49YzfR1isOrkdVVhCMGNGoY6FflAVdL445MpmzDIM6fm+xbxTNyOw4UhqNTRGDwUfF6APD6Fg0Leenl7SLFcZUTFPEu5CTZg3oAFp+vrEF2haENOCDzyGkBjcFbu+3fP76LW/u3+CmAElTlSWLxYK6XpLQdP3A9tCx7/eMU48CalMQu4k4eGpbsl4uuL58xqJpMUVB7zzb3YG723sO231GOUqWZYkpLMoKnL/enHJ+fsbLq5fURUOhLASxrnb5HgzMU0sRh/uvU2D9G7pmC0SdBwkg68Nqy7o64aq65mrxjEW1QKunNqaPxdW8vuei6KjvyPkiR+pu1jMI1VfWjMtC0t1uy8P2gcOhy8GZiXGa2O4fONk/cN7vuDvseP3uDfv9FkXAB7GVPPQ9MUQKLVqi0FhCWQIBF0b2h3v6P/snNM2Cs/NzXpUlZV2xXKxoqlrop2HC5bCsbhCXqruHB7b7PS7FLO42mQpohJalFeMw8O7uLUkFtvsdU+wpamEPlKpi3a5ZLiSjJmkYxpGb2xve3b7h/cMN9w93qAQLq/FTzxhGpjixbjcszyuK9cjOvacb7wjRoVI6Dhvmph6V6YzMZ5ZQFxOzg6CsN9FX6MdCJ5K/hz7SqI16dBrTWgvNMcr6jSHhczZTirkB0bP2BkkfVn99Z5CB1CeV+V+9F75WA/K3cF1cXjAMPeM4ZV2srOUnRAfgyZ+m5EwRPaUhZnKROjaD8UiHmZOjZw2tfLkYgQBM3vHDH/+Ipja8uPz3OdusjmG8WlusFf2P1qI/fH59zYcvXlLrwI9/8lP+5CefMMXIfrvlyy9fM7nAF198yXe+821evnhJWYqV9Ecff8TzZ895dv2cH/3wz/js00+5vblht9vRP2x52O1o6prlUgYBy1asbGNKTD4Scce/v6wbWW8oqrbl4uoZm80JRmu6w56x73Gj2LUaY2hqSVFvqhKiWOzH4IhhNiZRuQkYefv2LQ8P95RVwUot8SExOcc0jRRlwcff/zb1ScPBDxhrCX3INVxEGTnPxnEEJM5BktzrJ+iJRB8M/QEJmB0Zh4GqlEbKak1lCwo0FSU2JLQSR1JjLc6NjN2WcTyw3e6ELcNsnjC/Gfph4DAN7IeefpzErS/fw6g5JFVQZq3BjxMqD4zH0WXdE/Tjf4MWtgGPn1xuIJ5Yz+a3R/hTlvs8uZwbihnFPGYjABwbknjsps9OarR22CL792vD3ftbbh86NhdnnF+esWhOWS1L3GS4d+8Z3QgBsZuYAqHwpCaSikTyEX+IUpyPyAtlCqqmIMVE8IlxGOj2HqUiTe1Y1gV1ISmPIaQnfFyFCp7OKXS0rM7XFJUFUg4jC4xToO87+r4TVwKtCdGxWp4yTY58f37lkuZCHRcakL2YZSJhtZKJboJ+25MM1IsFzss0uSiEW19VDYWtsVpTlgqmhOoSn/3kC05X5+zbPc1qc9zIrTV5ChUIaQIdicmjTMIk0Q2UdU0YerpDhzJaOLfZizrxKEI25qsbWAgRCSSPYkOKwvsJ76ej6DGEQGJGlwIGTVmUOZjM4/BEZTFGMY0Da1uyqBru+h0oCBoGl7jZ3n/dZfw3fql+wm079nf3dA8HBIoRF6RxGpmcE4pTCKhk8DagtKaqa1brU7o+kEpLqotj8jUKoe6hmZPEtUZoRMjGNTuIeC+p6jLBtEzZA9t7/+RrH2kL2miGQVyhKluwP+xxzmdqn6B9IOGCKaZcyIuOJzhxlEvOU60M3rljMFRRFF+ZlpEbkBgjbhqJwTEOI3/2Jz/CjZ6Pf/MVbVvjRkERUubChhCYOnnualVmKpKMJIw2JJOOa9C5SYpQLS25jYmIYXKRwSWmybFebaiqBQlN302Mk8OQAy91JGlxy1FKY7CEIKnko58oTIFSmil47h4e+PT1W7b9gbZqWS/XnGzOaJoW5x37w5btfkc/DkJDMxrtE6mfoHOs64aLk3POTk5ZrNbEGOn7ke3djvvbB/YPW4qkWNUVy7KgKQ1Yiy5rzi+vePn8BSfrDXVRg4fkEy4+7qeRRFQQUqbEAbEq//ZujF+4pMDJkJr8tiSSTMuiYhwmPr/9BNdNuBzU6b0n5JTuIwIitxcqyfcsqkqml3VDW7VUZYWpCtHoGEtRVJR1RVlVLC4vuLo8P549MXgJe/SeaZwYpol933G/3fL6zVt+/LOf8Pnrz3hz84b92OMmKd+slSI5uoCbcoifc3T9xM3NF8T/1/+Dl88/oG1brq6vKEoJTNNKRJyJiCk1Y5q4H/e82d7iSVSrilqJ3q6wom3TiC4pRc92d88UBwY3YGtL29S0bcuyaLlcXXK5kYyLlBL7/sBnd5/z5u5zBjdBAZWtCEShCqfAydUZ3/utb7E6N3T+DYO7J4QRCBTGYHSmIeWXTfaEQFSPOovZuCOGhM4DitkRkaRFW5GELmdzGvsc8PYUnQByUzHnYGTHpCd7ymyMEuJXrZl/UZ/wdT8mZ7C8/yZdv/tbP+BwOHDoeg7dga7r6PpBUDnnMk35Ub+mEN1Q0y5Yrze0iwXWGg6HA/d3d/Rdh3MTRVlSlaVQPTNKe8whmYefCD1qv9tjVc5fSlDnwtxaK2vZGHzf470Te+6q4fnza6wxorWIEDW0bSP032lgGvaMPfTDQLMQCtW3vvUtPvroY27ev+eHf/7n/OhHP+Tdu7f0fcc4BcZbGQg8v7rk7PSMtm2zdkM0ilrBy+frnG6/QhtDQtHUBUYFFk0JZ+foFOn7jpvbG5SS3+vh/gE3Sc5MCtJsFJkqFb1nGgdubt5zd3+HVom2LglRUdc1ig0f/dpH/NG/+/fYD3tudw/46CXfIof4pZS+clYXVrFsFxS52QsxoMgRBzHgphFSQCFOnSEEVEzU2lKMgeLmFn94TX16TnF+iSbix45Dt6cfDxzGnqgUfd/TtC0hJrwPaO3ZHQ7008Tdbsf9YY9LgRDFQEQZg8rDAoXUDHhPkRRj59k3QkPDOe53v9p052s3Ge/uRORCerwBU5pD1OYk56c2tenIc5OGJBydah675vSVyYJSoHc91hYsi5oYDT5MjONEd5jonVgInp5sKKyRqV5didXgFGGCMDoUCV0ptFVolcQJaRJ+qBsdxibhqy5a6oWmXJRMw0jynlIZdDKMvWfsAyGkLFYHYw1lZdEWyqri8uIca8TGzcdIQuFjYMiCo5QnPjEkdvvuWGzFPNGd7UNFk2EyIiPioZnErjO3SWuFyrSism6YczaivAgysQ6JsqjwYRRYOkU2iyUff/QBJkOCc5Kj1ohfv800puAYuwN1aVHKM/keHwacGzBGbgCihGSRItZonPM5yTrkSX1uOuLMCSVTc2ZqVXiydrIf/pyRkQ9bUsIoxZginQ8ciCKEGgZUCJy0a7b9XgTmBiYSt93u6y7jv/HLPxzwu46pH/LyVgQf6fqRrncMoyfERFMbikLhXSTGiXaxoiwWPOy36KZk0CrrO4ykvaKyBkZlG1TNeHAUZYUxBufcMVtghsOPbl1HiDxnmuRmRQTSBp+cNAbzRqbm8Lni+DrFEElZKzRzoJ2bRHjXDSzKGj94zs8uKIvqK5a52pjMz4459EemK7bUXDw/5bDrqOsCTWKxbOi7/oi8TM5hCktRlhhT4H1OIc9c4rkpl4h5SU41CioFNQqFYQqRyQvaZssS7yOT83ifUzE1Oa04oLQMG4wSLUmKkSlMuOgptGhThmmgG3t8SiwXG85OTo9Up2kaedjtOBz2TG7EahE5mwiuH9FesVmtOd+ccXoiqbIpJfp+4OFhx/5+jz8M1DGxLAsWhcEahbGWarnm/Pw5z66fcbLeYJUmTjFPNsl2q7Lv+ujBCOUwGA1FCXX1t3JP/LJrtjSeS5mE8IF7P7Lfbvnx2x/y+s/ecP/6nnEYM7U2EXWkqAqqpkRbKQpdcPgo3OmiqmjbFatmxaJsqG1Fk8WcdVFSNQuaxUrsozdnLNqGsiyxRYHN2TCltTRVxUkujqdp4uXVNR8+e8nrd2/55ItP+POf/QU/e/0p3XigsjKVJCT8JPq6SjdMJjEmz2dfvuYf/Vf/iKuTC5ZVTV1XbNYb7u/u6buOpqpYnW74cveegYlghYJqSkEvkg/45NAJrC4xShp8lyamOKKtpqkq6tKybCpOFkvapiLpgIsTKkamMDKlAa8mdIHksihD9JFo4OLymm//xivWV4rOvWN0D6Q0obVMQdHSuM6iWznbJcNGGcTl7FgDiIPU7BDFcaiogFm8KoG9kpOhHhtHpY/BorJfQAjqiNyLM9WjgYl4+D9O9f/rXH99A/K3d/3R3//vsr27ZfvwwPbhgd12y6HrOBw6Dn13pGVP40jX9aIfDTLMGfoDWsHm5JQPPnjFq1cf8nD/wJdffE6IXrSufYfK1uE6N4vHEEXBQKirEu9GlFoxTpJtVJaiKzW2wJYFenI8bHf4RcKYAsoVtp0oUqT0Dp9gWRWcX16xXi1oSsvN7Q1/8qd/io+Klx+84vrZc042GzabFb/1W7/J9dUFn372KTfv3zNNov9YtSXPr67YbDZimU4u4MtSNBvWPHHplEFaCgO+G/NAc2RwI9vDgbc3NyigbRrevn1LdzjgBoeuzdEVNUYZQLhp5PbmPZ9+8okMp7JuoSwr6nbB5mKNWVjGh5GYApHAMA34GMT8SJtH8yRkGKaMZpwmQSKMyc3FlGtODclQFgWFNqRpomlLGjTNYYL9gdBPBK9IDzuid4x9x2EYGKaR0XvJ5EiRQMTFgFEFYwh008QQPIdhyOG6EfI5o7Jdm3cun3+O0kcq0xC9IWIYJsfB77m5e/iV6/drNxmHw3TkpYUnhcu8Gcj7bIWZr7nAfPpeEl0f5SIzRDcjHGHSJFcQRgtak4ylaEtsLzzaSMS5iaopITp8SgSVoBCP/0QiDbl4KICQUJkiQkx4Hxm7AaUm/OBpVg1FLQJKFSJ6CrjRMw4O74CkUQZpMoymrDXGKopSc3ZxCkjTIHaGiXGSdMZD1wtNJglM+bA9YG2FtsIbT3C0sp03zZlxKVOhR6tfM3MnfSR4wCexZQsThkRIgtSYBIftHdiINRXeVnT9wLOPXmJsyezEMbt4lGVBUQgSk5Ln7Rdf8Oz6irBu6acDoxvpugNFWWELS5/pAdbaI4dTa9EgzPvzXNzOr6nWSibMJIJzmbceKauSqMBHacZ88Cgja6Spa7phEKcwBWWIRB/AOU7bFW/uC/aulwWm1THd+ptwqdFjksIqCZB03tP3A/v9yKGDyWUbYputVaMc+JvNCU2zoBwcrpQJdGFLwBOjIwQJvpNMikKE2pmOcNTxHBvWxyaCJ+iSHB7uSBmRgDxFXVW0TSMbaXBCc4xQFub4c59Oe+umEvvUJNSJ5WpBYQtub+64vnx+TAl9RDI4DhZC8OJ45Bx3d+9pViW2UQQcbnAMhz3eefESV9m5LiVJszVGgoMmEf+jzHEfgqwF04ZSa1qgTBCVwaWEjwplCkKUpPEovr9olVDKo3RCqwgFBCO0s/kAc96jIsQUCDHQTSOTdyzaFev1htVqjdKGvpecgn2/I0ZPVRhMSsTJEfoJNQbW6xMuzy84XZ/SNAtCTHTdgf3+wGF3wHc9ZUwsi5K1hTIFVNmwuHzB+dVLLs4uaUrRvgTnCU4sk5PShJRAK5QyUoRGD8YSmxJV1Ni6+du5Kf5Vl0ryhrgUQcSFibvtA28+f8snf/kF27cHeb1SBK3RtaZe1rSplgKciE9S7GqjUX7ipu9o7QNl1OgQUV7WkEIoZGhDvViyWW3YLFcSzNc01IuWphHud9s0NFVN0zRUVY22BecXJ7SLhpOTNecX53z89iPe3Lzm3d1burHDBZlYttWCpq3YFCNvg2F7d8ef/Pmf8urZB1xfXvHRhx+xXm04PzvHuwmfPIMJNOsl+sFgSg1a9mQ/uke+fAFlZfM5K43aomypmoKqLDIl1TP6nvs+4VygMC2FrQhpBGIuuIR7HZPHViXPn7/gg+9cUawG9tM7vB9IyWV1y1fpUXNT/yjcfzJESjJYEhpNgSR4ZzQ0UxlmittsDmOzGHW2N5+1BbMeJgTJaBJdgWg3YGZHpCNtN/2SpO/jMvtVyMRMO/qG0qX+3j/49+gOe7b3t9zfvufh7lbebiWs8bDfs+86dvs9P/vZJ+z2ndCI+gE3juweHrh595a6rlltTlivNnz04Uf0fZ+DG5+cn9nl08+uSiprRZ1jHHqCm2RfVI/WwmVZUtQ1TQRTCLV1sVxSLxpOzSW37+/48uY9u66nWl1wdfWMqqwZp4n7uzse7h+4u9ty+/6G19df8MEHH/Ds+prVsuXkOx/z0Ytr9oe9BD9rQ4gOm39nEWc75nR7/RWXM31EXoahZ7vbsn3Ysut6docDw9BjbZXPQpvdtWaUpyB4zzCKcY+bJnbbPW++fMNut2eYhCaktUz+682S7ze/icOLXXaUGAPUYz6MDKgNBqE9F0WJsaJvCEmG4YfDgb7vmRdl9F7c8ZSmKBs2dUvpNToYCgtlpWnOzrHLFS44Dt2WQ7cn4AXJBlS2xW4ak3WJ0LuJh8OBw9DjjgY+Il4no8Q+eLHC9SNtjBS2xdsF3TAxuUAfPN2h+5Xr92s3Ge/vb47d7Sz+/sUmwhjQ8qweJ6ApPhYYZPhTQIz5c/LazlQr3wdiH1kupJucClidrmg3ir4bmLxjv79n1xkkIESEzzKRj5RtQXSRYfJHe9foEylltXPKXFGVcKNDqYgfzXEDUxF8TISohQsaPMon8FDWFu0iBYqTswuatoIcFiQCtZyeOE3HoDGyRW6KimNmyDx9TdKcpBhy+MtcLMk0WeAqIGps1Lj9SIll/7BjU54ep4BSKipcd8AGS93U4orVDbh+wNqC82fPKasakjpCzia7tITgQSU2J2uatmacehLipnA47KlTYlksJf9jHCnLMucRSAK5HIIc9Sazz7JMnVO+GcnOIxxpOzJ9l2l1TAkVE845VqsqI2CJqCJj70Tz6Eba9pRF0bAfO4KO6KSJ35weA5s0U1JEHwkucNh13N3t2PURFwtcEDTKR0NUYum8Wq04O79gch5VGIJ+DF0UK8fcmCt1dAtxUxT6hFJMzonvdW7gZpGl915cMZzYC89Bek/TYFOUAr4qS/pO9BAxZVphURCiyy5oUXy0VaKqc4hYfv3LWixB15sNVdPINEwrjM0IRqY9zciE8w7nRowVQwd/iIyjZKXcvb2lqmtJLy1LuqGX4rkoiFkwHkOgMCWRmIXu4mbjgxf0MAYaDNaUhGRwwTO6gNJFtnPVIiRXCnAYHSkLMDYRjGJSikLZoy+795PQeJTkZBChrhc8vyop6pIQItuHe7r+wDgeUCnSWEsRIQwD067DaMvF+SVXV9dsNhuqssUHJQJyL4FIIXgsgVZF2pRoVEm7WLJ8+TGnLz9ivTqlMqWgR85nAWaetqkkvvhK4YiMKEY0aCu5K40U0N+US+oUKWDFOkWyglLwTH3P7v7AMHiiUmCMrKlSYVtNtSooy4LSikVzpUTY7IPQlYLzjMGgkkXNTW3WlY3eC6J6814GPEnQvKqqqVdL6kVL3dYsm5ZFbjYWzZLN+pTVck1Z1hhteXZxyclqxQdX13x5+4Yv37/m9v6WGD2n6xMu16eM+x4zRXa3d7y7u+Wf/8m/5NsffZvzkzNOTjY8e/6cGD26MHBv+PD6BQ+7O/bDgWl0jMMEYbbGFAODtmgoSktTtayXK8rKkghMaWBgYBgGfAgo1TFVkWV1Sh0Tzg2EICJ1QkJZRdU0PH/xkg++c00obummt8Q45cJdXhPFHCj5eFaDNBnitpXzWnITp7UglwqdjSrIeic5A+RtLgTTMWdB7i0ZwEiDEeS+R+U90HxlmPRo5f1YR/wyIOLp8O5fvRj/667mv9lrtdywXK65vHpx5Okf9lt22wf223vub2+4e/+OLz77hBQT797fk7SVEONpwk8j0ySWqNvdli+1oSwrzs/PKTK1VZ5Dcc3jWJ/JwNNq4fAPk+QpFKXQLsuylPOmLKjqmvf397jJc3d3j3OB1XrFYrni8tkLojKY9++p64aqqigKy939lj//4Y/42Sc/58WzF/zub/0mH736gOV6hTWGMof9lbWhLpa44HPt2BzXTVEUeO8ZhknybLI5TUyKk7NzTk/OSCmx3R347LMvuH94wGRk8+L8jLPTU7yT+qttWtwkmoiyKun7A5/8/OcorWnqlt12y/39gyAm9rF01mXB7/29P+D8g2se9jvcbDThxWTCO48t7LEZr6qKaXIsl/Wx2RBmgKPrO0IIDP3A0O2xQFNVECJnm1OWuqQeI8aNKFug6wXNxRXFciUDPAJRJUICF4K8RaHeazcRsoqqdxO3u628ptkpVGubQ1KzFX4MhOjwbsQQsKlhiAU4x+3DFodhnNyvXL9fu8nQc8z3UVcRhd6Tu4P0VG+Rm4sZJn3aSDzqNebv9eSHJIUjiXglKWoq8QSua6qmZlq1bLc77u93TF0nwjAvxWhZGZrGcHp9RqE1223P23e3R5hVXGEgWQ2I84YtRXgYfCDkIKSiLNFViY7CdRS4bKY9RVSyVFXJd77zbWlslBIr0SgJySpP7mMWpIYkThxGm+OmOk8AZJAnG6k8PxGl4pFmNT+vipw2GT3OR1brtUxWJwc624jlgwhVoHVJ8oHQe9Q4oWIgBH/MyThOhYwEz2gjnX/VFETlSSFPlDLVZW4IZJI8SbhVfoEfhd9C2dD6Eb6W5kP4naNzIoz3HqPF1pMc2DSfATGI5eahP8ihRoLkM/oBwU0sjWVZNrwNSaZ9IRK+QUhGcIGuP8hGMznu77bc7UY8JcoqlJfGVw5ujS0si/Waqm45TI5YGqElJHVszmfNzpysnVcEZQ7UmV0rXG42gGwRHI4oxuz6NQu+5wyN2c64LEvhj2YNR9XUQqkIETc6iGTzAcnEUdmW2LsJu9rQDwNtu6TKYV9CkcqJ9XCkxA3DgPOORKJZtPg8oR6nCZM0ISgoSqYUKTJSQYwELYFdc6aM9/5o3CBrSO4hRaRSsFQaowv6MTIFafZjMsf1SIoolShsorBip62sEqvXTOmYpzkhieW2NTJ11UpLwe4kcPPQH+gOO1L01IXBpAJGj+sGxq5Hozk7OeP59XNONqc0TUPwiv04shsmDmNkCgpTFNRrTTmOxMNIc3rJxQcfc/ryFU27wKBJQbRxzgUp4rQEzaFkSu+DY4gBpw2xqLHtgqJZUDUttvzmaDIUs3lITvmWnVbc64aJbjcw9tL0BpV1STahS4MtFGUpbmJ5m8RHL37vXYfBkErJXPGTHNx+pus+oUAEH9BJkNOmLtDJ0Hc928OO94VhtVpyfnqCsmAGLcOXIHQgY+SsWJQlL8+vaYqSk2bJvjuwaBrONyf0uuCmbSWHSMlw4M3r19zd3bJYLlisVlxcXAhlSBX4BPuhYz92vL95D+PjWaqMxuqCRbPk8uSck+WGRduQCIxTz8M4ie4rDlgvQ4MpHTgcHpjMyHZ4oB8Ocu9by+bsnJevXnF2uSDaW4bpvThIkdN98+uijTQFswD2qcj+SIXKHxMNpeT2zM1FygjGo9OkZEopNWsR816IxmcqtQ+PNEhtFMbIz5Traa0hdcijM9Jf7Ra+2niof8Xj8rFvKFvq8blHKDZ13VLXLecX14QwC4U7vvj8U1TR8md//Ge0y1PWp+e4aWDYb3n//g13t+85dIeMTHu22wdBVi+fUxQNDw93TOOYRfL5tTIzKg5TtvGXQNRs7KEUVVWzWCyoSgnM3O06trsDXT9yMgaur59xdXXNyckpF5eXLNqamMM2u37k7PScP/o7f8gf/lu/z2qxZBh6UvD03YGbm3dM00TdNhRlzWyPaQoJT+4OHW/evefTTz/jYbvlYb8nxcTl5TWLzRk+wmG35ebmhru7e3ZdL4yUsjhSvuqqkEDL/Y7PP/uU89MNTdswDAN3t7f4ELg8Pz/WPlVV4nIQnbGWxfkJf//f++9xMzxwGDqpKaPYns9slrqqQCnKohTHpxBzPRioKhFZHxkJ+V6x1mCQPJ8iKWprKENgERTtbo/zicUH36I82RDrAlNosBpdWKZukPygJHpirSW7SSdDl+lU+8NBqLbBHweYJud2pehACZ1dx0ihLH4QFlHZwqHrwVYyoP4V19duMsbDeEQbnjYUc9NwLJTzXD3N2o30KPqe///xUl95N/+PV3CInuAN9QTubsvd7R0xSSGqo6OyEa0UDhhHQd3LoqSoKgqjqUPC3BtSEhhNLEAf3Y1QSSgSRjbKSJ64ZpFN1CJUUlqhk0z9q6qkqkrWJwvOLtYyVdYysZdp6cQwuqwvEGSjKApONht23UjfB4H8kfTfdNxk59taplYihFPZDUZlhCVRtzVhCjw8bDlZLwj7nlBZTFng/YSxhrpcoVNER8fF+Sl3d7dURcHu7p7N2TmzhanJ/GNjdNaFeKZpIOFZn5/SdxMuBIqqJoYgh3cWKHnnjwXq7CY1OzXMvvfypwVAHvPTYyIzUZI0Y/DEFEDJgRafHBjWaEoFxRiIRjMGCcNJIbBuFpTK0vmJ2Wr3m3KFEEGcHtkfBu53HZPX6LIi+IAyYuuqlMIWhnLRsDw5IaHo/URvEilP7eYmYaYmzAhFCEG8s3UkOpksxRDzVKTgq/oLKIpCqFYZBfE5OFFyWTKSURQYJcXELCA8oiKlxo8yDbZlQQyZppDEt7ssK5KHtmmzte4s9nzUhkDWZHgv6y03F2HKTlNdT1tU2KqkGwfKhQTSGSsBUCHEPDkrcJ2EBylFPuwySkmiNIalsdQJYjQMzuF8RPqMbN6fRPxW2khZqCMVMhK/sj8pBGmIKeVcEOGpuuAISZJfD92OcRowRMrCYpXCHQb2dzvcMLFYLDjZnHB1ccXJ5oyybojJcBhG7rYH7h52x2mjImALw/LsjNVVw/XL77I5u6RtW0E9nVjwOudxkxf3NiV0kkRkTAGnYTKaVFUUTUvVLqmbhXCUv0lVVB4iqDQ3GY+H7tiP9PseF5yIurVoMZQ24iCYs2ISgagVPgT6oWPbHXAusCxKLAqCfK+uGwgpCv1ySjmfB1KIYkteLWmqlkXV4uPE/aHnZnfD2+1r3uyWvL4/5eXFC15evaCxlSCUhy0hBMqypKoqzhdLTuoFPkZiCmgSo+oyR9xyfrbm1YvnlKXlyzevaRYLLi4vWK42eT8FR2RKkcPYM/qBSRvi4Ek+0VQNJ6sTrk4uOF1uqKuCFAP7fsdh2DPEAz6M+DRBDJRKE6Njt7sDDLtpzzDuSQpOTp7xnV/7NTaXJaN/S+/e4/2QIYfA7Cijs5tUjF50E/LCfYUaG2PICMbsSJOzLALHfdnmAMv5a46uX+mRsuliyHx1cghhRtufuIp9tfb46oDrKdXpX0db8fgl36B7JF/b7VZ4+WX5RI+S2SPaslisWS7WrNdnLFbneGX5iz//c/TWcH39nLOPvk0Intvb99zevuP29obb2/eSet0PtKbi29/9Dd6/fc1f/vQvSEH26HkomUgMzrE/7FE5NPiR4q1o2pblesPF+chudyAqxWeffy4hl+OE0obzszMuLy44Oz1Fa83DwwM3t7dcXlzy8uUL/vAP/i0uzs/kfBhlPTg3iUWuKTC2wlgZkoQUGYeJbhiJUVG3J2xOR7rRc3h/izaGZrWiqBv2hx1v337J7c1tzvYSKpj3gbKUYahW0MdA1+9ZNCUfvHzO2cUlRVHQ1A3v379n+7AleM/pyQlnJyccup4gLwJn12dQaGKfKMqKfjzIHuM8Q9dBrolJiG11SKxWq3y2R4ZhIAQ5T2aTlqMNcRIdcV1X2MlTdA7uesbDgK0W6KohViVJJ6bkGN1EiFGs1YPL2hChlaEKVPDs+wO74SCBstnls6pKabys0OdDGFE4oh+xMbCwLQ/3W0yxwuIZ+45gHelrDHi/dpMhlpGPG83xln7aQeR/J548pnj8OqmuMt3qK99OPl8hr3ip8EWiT46KUoryGCVspbTUVhGQzmI0Cms0q82SxaJi6DpuDh1970hRoZTFB8/QZzE0Mhl59NeOeZAmhT4xStqphbqSpOAYRYDXlhWVtqybBWcnJygl1p4pJoZhZBzHbBs2yRQnRKqmxE8eN0WOtoqZSyqQsaJta7quE5eMFISnmsTdQOuCFCLD6ABNUzdYWzLEEbVqjpZr1lqSVywXC7psTxjXiS6NnLYlrvePjj+5a7XGZAaZULaMVlit6B62OcxqpLKGZDWTc4TgsNla13nJygg+HJuDubgUsa98zFqxMJymHshNosqWkiGQokOlrxoFZAU8hdKUJFKRUDFzd4NnXbecNku6/Xu89phvUPHUFBWx9Oy3B+4f9rioKOsWbSumNBGtlTW8aKgXNUVd4yPc3j8wVZbOObxKxMxNjuFxgji7R0GmIObgqhgCCk1VVccmRBuNtjJ10kZuuLIsHzcw5HX3znO62eQk11H86o3CTw6tCsTnnhxGF2ir9khR0mWkLgqqqsY2BevVGpubKPJg8ak+R353mbZ3fUffj5lKJeunVxOmKSGFY2OklcaW5okFL5AUVVnnAkWuGIW+VVlLnRRjH9jHjvvB45IhKUE8UvJY4yltoCzFtS3GmFG2CWcjlAprCtETeWlwZornMPTc7x64ubvh0B2IMVBbsQ1NLjDsOrZ3D/jR0bYLnl1fs1mfsl6usbZinBQuJHZdZLcd2G93BO+AKNr1suHq2Ue8OL/mZHlKYQrIDm1xElQvZCMAEPvEIXmwCqqCaEt0WVIultRtS1E2Ocjza9BG/g1eSqVHuhTkrVcKi6F3DL2TYUip0aXFVpqy0FR1SWEkjykkj/eJ0U90bpA9KOe6KGTNdsOAczLcSVHjpolx8MeBU1kYjCpY1C3LZolzA4dhT0yJfd8z4endyG44cNc98MHlC06XJzSLOjcwew67LevlirPzK5rlikRiHHsOuz0Kzapd8OL6OVcXF5RVwSeff8LkHd9Pv8b15SV13TBNnouTU5LSjG7kfn/L1tyAj1gMbVGzbtbUpmB0B3bTyKHf048dKSVMoUlao5IWOubk8NbRxQMhJYY0YErDxdk13/7O91ieazr3KeP0gAsDQo2Sk10bobLNpi6QHkPytKCCc5GvtMIqQXZSgphU1nylfNbq47kgr7s0IkfDhvw6+PBoaa/RR0H4HOonFsTz2lFHZHQ2tvjr19o353z417n+9//x/5arZ8959vwFm82JJMYvl5RleTwXlBKk+1vf/jb/i//gf8n/+x//I/5v/5f/jD/7k3/Ken3C1dUzNienXFw/w00T+/2Wh/t73r55zc3tPdZU/N7v/SFGw8/+8kd451ApW7ehGfuJwy7vd5U0O3mhUNU17WLBZnPCenUre2dSfPn2LffbLZ9++glGKy7Oz7HWMA49n336Ka9fv+Hjjz/mD37393h2ccnkJ2IUqlw3TIQkZ2cigdIcDh37w54vvvySv/z5z2malpcffCyi9lcfcnp+wfnVM/b7PavlmmHo2d3fcnPznt3hQMTQLJbEIDlgZVlJAe7FglYDn335hs+/+JIPXn1A0y753ne/y4evXtF1He/evZOQ6Ji4f3jA+8Dlq+e8+v63uN090LuJQ39gGDrRmWbtYVlWGQ0UJ7SiKKnrBpVRIOcmCcjc7x4bDTcKYwBF2y44aRtKn6hGR+o6xmnCrs5pL6+JdYVLE7vdgf0gH+uHgUjCFEV2HBRn2KmXDJ6H3RY3DUzjSEqJsiwwR8F8kOF89KQwUOJptOXLXcfLF+cYo0jRk5JF8asDXr92kzGLt/JM8q82/LlBmKcOx8cUv/z/c0K1UjzxOpdNJZIIJEIKdH6g1gVKR1yIRCeQjXAHFW6KGBRN0bJZLukOPfdDx2E/oY2V6YqKog0JSRoMq9GFIWkRgqtMCdZGoXwU4a7RUGn6kEguQswaDiJNVbNoa6w2EhCUXX2c81mEJBuiQmXRIrmHmu1eQVKDE03bHvnyJElQVXoWtKW82U9HSDolSTj2ToSfkJ/LFAgOPv3sEzaLhvXmlBHH9asXFE3FsmpkMpWnEDbzacnC2hRipoMp9vcdqYRpGBjGiXa5eLScTelRiB7j0R1qpuTMaayzViPGMkPjAa0hzvSTKNkJc+E5OxjFJL9HimLtGqyhbQuGwQk1znu0Ldi0S94d7hi9f7LA/vavtqk57PfsDh2HfsDWlQgvg8o0i5JFU7PetJQLEcztHg4UdUlqTyXUDX+cWgnK89UUb2slFRSVES8XQIXsCjE3BF6EW1rn1G5zTAWfnZ+8F4cmayzDKLxdrDQyCiOvZYhZE6Gp2xpbCF1Qoxi8F/RCG5q6oSwrcdlJUhToJA1pzHzT2QFrnEYOhy47R5WYshCrQQW2MJlaGI9/q7XmuP6Ax6RxcgGhhF5mraFUhjbnjgwRghLHt5CQBl4F6gJBMLKrTQgiuNsPB2gMrV3k/BgNWXw+N0l+GNnuHui7A4rAoiqotMb1Pbu7HYe7HQrF2ck5Z2fnXJyd0zYtWpcME0w+EdFy/3qhghVoqrJmvVrx4voZL69esKpaDJY4eaFIeaH3eDcHEEpYoyehKw11SSxrbL0UBCOn5Wpjj83eN6nJmK88cjkWrc45/CQaL20VdVtSNiW2MlidqKtC9hMdccnjYqCfRjlUfaJSkhcTY2TyjilTNqVgyhq5YyhWIlmE5rFYsWxbhkljxxLtxK1vCqLBGxW8H/Z0bz9js3/gannKplpQVhXdbs/r15IB8OFHDavlirqoGS4cLw8DCc3FxQVVXTOFUSbJ9++xpWVRS0K7QVFqy7ppuNqc8/z8BdFNxOAFLdSWED23/Xu6sSfoQNLIWaaNOIkBYoYgtFqdPCo5okpEFbi4esaH3/oWzYnjMH3O5PfEbJF5FHhrlc8cd6Qmam0wqZSfA8xVwDGfBo77fojicKawjzbFzIX+7NOfne8QC/k4G7Yk8oBKH5sRGVKEY7E7NyizWPw4xPgl62q+vqmC7q97/X/+8T+SELbFkvOLS07PL7i8uuby6oqz83NOz86FrlRVaGNYr9b80d/777Bol/zH/5v/kH/xz/4xZVWzOb3k/PyKs/NLTk/PefXht3jx4hW3t7cSH3B2we/87h8yTgOvv/gMfwyiS3jnxVEpZ6VJXSXhcHVV0TQty7VnsWiPuQ/a2JxV1uXgVLGIHvqeoevQKfDi+oKXzy6oKtG3TumxKXRedDnGGPq+59NPP+PTL77kxz/9CXf39xRlySdffMGHH7zi6vKKpmqoDfTRsb15x8P7NwzdQYJlyQ6dJGxRorQBW4lAfvIMLop2xTk++/wzvn/7PaqqoaqEFjbnWxRFifeBYRwxZcmv//5v89FvfIdDmECpYzCrMUr0DylhrME7cZWc3SC9D3noC03T4JzYdGsjz9s49DRViQ6J9XLBpqxYDLDQsl+WTcvm+jnN5RWhMOzGjne7G3adWNg+7HcoDZv2hH4cCQlGH/B+EmOXbKaTgLIssruewVjFNE5ybgdP8gNljFhKFidnrNZrBhcYD1uccZTN6a9cv1+/ydApNwgqNxMckYnHf/+yhiInu+rHjnv+/0eO55P0V6Xoh54xiDo+ktCFpq0b+n7gsHOMQ2AaPCro4+T7c/eWw+6ALQq8y0Jv5AWzZaKwIipU6hGyPWpHQkL5hJIBukyASxF55j+XECLDMKJMxcXlhroWYajAW7IhT+PENDqBxKK4HkkYCqRk8jQUogJr580y0HddRlVEwDoX3SlFlJbUZ1tKCN0wDbgQ0IU80TrnXBgUTb2gcyNoRQyeadxTnmyEX1+04oGstVg1Zt94mRjNE2+ZIHXdSJE9s6dpwo4SiOaSBAPGDFG7SXjAarZfS48vvHD1VKarSbE8TSMxCpdeKSWagmlOcTYEEioolNG4GAjANkWSEYtdppEwTRS24KRdsiprXL8jqUdr3L/tqyg0h/7Aw/4A2tK0S7Q2TG7KHM6K5aIBq0ilYbM54/7dA8ZaDt7h82HrfBC3Ix7pATM1YJ7gWWuPm58y4tN/zA+AjEo8Thq890c3F3FacxRaHJuGcWR0k0xCU6Rt2jxR8Xhm0bkUDVpBmMRlpC4qyOLxmdOpdU4xz7+73BsjQ9dJmGN2tpqcp61r/ChUw6Iqc+CkDDGKLJab0Rvg0WyAJ42X91gjIV2N0pRJEZWibBt07Jj6PShNUWiaUlEXWlCQCJObOHQdb27f8TAe2Fyd0qqFoDX5nvRBXKVcklCzcRqwGpqywSTFtD+wvXtgey+prs+vn3FycspqvWG5WIBSTE4xOEWImZroJmKU12NRNjw/v+Tl9XPONie0tsJESM4TnQiWvY9HOknIdLVgEnZVQF0wmRLdLqnaJUVRi3d7RrVijH+t+87fxvXV6bKQbFOMjJNnGEa0iTTLkuVyQbts0BbRZ0WPizHrDySxduwn3BCwQQsvOUVcnHBhNgWRvAYTEqoyWB0YR8cwuNwgt6wWK9q2JqmALQqKuqTRLVFrQZOTwYXIQ7dj1x24ub/jotmwLhrCONHt9hw6cVp59cGHrFcnnG02qA8/4ny9QRmx1pyGgfvbGx72DygDF5tzrs7O82vlKbRh3a54cfac7e6e7XAPhSVozTg5tn7PYepkLRcVysjvpzUZFVb4KEs3GkkqTwZWZ2d88K0Pqdaezr3B+S4jAEKPUsSsm5D8Cx+mo7W6aPfKr7xeRpHdrCCk+T6fbcslf2k+00FoTk9NjECoI6JnTEiSeKbvPkHEyesCZfKw6kmw6C80Gk/X1Ddrtf/Xuyqj6A57hsOeu/fvUFpTVjXL1ZrlasXm5JTvff/7/M7v/j5nFxcURcF6vebv/NHfpV0u+N/9R/9r/vH//b/g3bu3fFL9lNVyw3p9ynq94fTsnJOTM87OTimrgrPzC373d/4OlxfPuLu7ZXfYcdjvCUTGacT7x8wHyeaqjgONuq4yiyNxstngvWdyA9vtlvV6ic15V/vdnqZpeHZ9yW/9xq9xebph9I+6w6IoGIaB3W5H2y6AxJs3b/jzH/2IL9+85/5+y+QCPo5Mb94w9j1vvvySzWpFYSzDIAYIk5uyfi9K7aM0zgV0UbFcn1I3S7Qp0LbBJ8PkE2NI/PzzN/z8k09YLlcsVqujXmG9XnNxcUHdNJJttWy5/Og5I/E4cA1BnBETeUiWMzymccQY0X4ARxfI7XbLYrHAuQlrDdF53CiWttM4YX2kOTmhTdAmQ6s1TinK5YrlixfYzYodgbd3N9z3D3TjyK47MDpHUVqCWLOhtOSVOA/7Qy82uUqo8nVdC1WqLI/xA7PLWPKeShco1fDyg1c0teL9528ITpDzdlX/yvX7tZuMYmWOXEr1pLl4bBqysEvpo0XdzN98RDeeoBzp0XXq0Ykq5il4DpQBFJpClVgKVJyIAaYxMvYBfMgblGIYB3b7UWzCjNg5hhipjXDSQxMJSZKqk5JFkH85ZuFhihC8bHqTl9RfkhLPZxmAsVq1fPTxM9q6JAVP8C7ToaTTH51kZmhlj6LshBT3KuapDhJWR1IMw5TJZ5I0nNBHSos0EJkmkxR+LvSsNBGPExqNUhHnB5bLhlIrqgLqqkGHyLjd05xWuYl4TFktCnOkTMUYMNagLSzWJX3yhBiySFVSoftDl52lwqN1cYw5UEn+JqFDIRZzCqFzBY3EEAiakZDXOvgpNyEphwrJZH2ebHof6JJiWWraSjF1O1zXUTYLjDIsi5b9eCB9c3Tf7PY73r67ZbfrKeuGpikxtqBJEnwVVWTUnm4aOW8vSElRVhWhKuiye0ZMScKAntg1zvzjWeD99BCWhmMOVhQbV/Gel3wTnYuBeTJojCH6II2BNnRdT+96sBKyp1VBUZSMw4FhHMA8psN65wlWHDNKbbh9f8+iXXJ6cinWtVnVOU/NQwgE57h7d8PD9p5oElMYj1bY0oiLSJ3sApTSozB9/vvmpoqEWChmgnaMgRgdmILCGBpUXkMVSRmcG1FhpKlLmlIoN0blkE3nubm95d3te754eIcvYHW9EXqRMnJXzr9TkMmrnzyVKWgXBb7v2d7tubu5o+s7qrLi2dU1z66fsWxlopeUYXCJ0RtiKgg5R8ePA6UxnF1e8+zskuuTC9bNgkJrlBfdRQqBlPUo0ljInhZ1hELRbFpCpXAYVNFQNYImFYXQKJxzWSslwZu/ilbyb/rKJeQRzQg+4AdPHANtVVEVBfWipGrkeZtcYt91TN6J0Nt7YkgoD1W0WDRFpg8KmhwoC0tR1hTGkqQaxsckPu+HgcKWNHUlb01FiA1NtWDBBgoxVkhJMXYD05AtKUPgJgReh884q5csyxabDG0NX779gv3+gdPTMxZNQ1PXXJ6tiSQpnIae7X7Lw/6OP/3hv+Di5JLf/vXfZtG0hCBavkVVc31yxbuHG/bvdkzJYdCEIpEai1EFKiP9YQqAOP5BJAQv7lLW4JNoKzaXl3zrex9TrPd07i0+dDkDIKLmJkMnlJ4t6iUw1NqCwlZPBkj5vFcaow0SridONsBRpzcH7CltjsNEeaXFNCKEdAzgnZOrNQatDFpZFE829IjQjNGESL4X4hFdnH/u0/f/GosQ9fR/vmHX7/zOD5gmx36/Z7vdsT8cmKaRu7eveff6c7SxvH/9BdvbW77367/Bx9/6Nsv1mrIq+c3f+R3+5+Y/oGlX/Jf/xf+V/cM993c34pJUFCyXK9arFWdn51xdXdG2CxZtzbe/9R36Zy+YctbGYb9Fa0s/jNRVxTCKY5JRiqIU5z9bCAL96Sef8PzFB1ycn5FioLKWQhucm7i7v+f+9o7Li3P+4Pd/i+9/7yPqsuVu26G0Yrfb8e7dOx4eHkgJhmHgzZvX/OQnP+X29g4FPL9+RlkULJYLqqaS4OK8nvuxZ5ycoO+2zCWepx96EY7bgofdjm6a2GwcZ6cXbNbrHCYc8ePA/XbPn/75j+R5+PZ3qOpGqJVlyeXlJefn5/zl559RLRuqTUs/Dhz6g4TtTg5rNf0wMI2SY1WWJd54tLLUjWSczQYp45jYbh+4v7+Xxl5yEyhtQXAOo5Mg3QdP1XvU4FhUDZvnH3Ly4bdg1dJND2z7AxF1FPYL+lIyjqNoUbIx0dB3bHd7Ef97j1JJ9o5cW/psZxv8SBgOmBhZFCVugk2h6KfA/eAI/Z7F6Zq6/m+wyVismywGytzM+eZ8Iq6YxVmkJ/kZIdMNckgUaQ7wS8fH5hC/rHVBGY0pFUoliXJ/N2WxsMe7SJhEXBt9PBZNKnPehkGmniF6tJWJvamLY2Eds69ejAmjZWp+NDiJcuR5qfRISgoasXqVBmmxKjlZN9ikhCaV7eEmL85JYuX3OL0ReFeJ45IymYssj/sgHHGhjCWMzboQcjepFISAWD0/Zh/M+oV5ymuM5BkEN6JJVKYm4lBR9A/b+3vsYo1RMoU2WuhgWj266JAgOoe3cBh2THliVFa1OALlwnaaRhIpT+UfBb5zcE8KnqQ1JnPAvZsyTCkUKUMkGaHqhOizMCkxDiPaGmy2t5VNQxFiwhSK1abk/s7jp4mUoCpLThYrttOWkV/tcPBv6nr/5i3v3t8yTI6T1RKtwZYaCsMQHcPk2E0dkws0+5GD3VEulvRW4/yU9Upf7ZqO/OfMv51pQ5CdR7Qm5CJcay0bRXqc+IF418+UNqMNkYDJk4xxGpm8+H7PdIZpdIzjiA+BwsgGBCLY917WVdO0fPr6CxbNBmsKjJo1PunIm56tb+/f3zC4AW8TkSBOF8YcBdUpJcZ+yJPZR3vLGXmZJz8hoxqPaKTcJtYYCqVpkAFF1JZDP+CngabUtJWmLBVGQUzgnOdht+OTN1/w9u49u9CxPF1jCklVJoilcvRBRPXKYDAURorZYXfg4eaOh/stfT+yXK95dnXF1cU569Wa0haAYZgS06QICXwKBD+hgmPZ1DQnJ5xuTjhfntCaEpMUyQlSmDI9KoV0zAxIYvGFXVjsqkRXht5BMjVVvaAoKrQyR/pmyA53KT5ahX5TLqWeukoBKZECpDFRYjFNjSktSSdcEIi/GwcGN3HYd+JSZyyVEcOC0loJT0QcUciBcFoZKl2IlkwlSZY2htVCsVl6gpfU7hBEm5eCoHwGTWMr+jDR9yOTF6crpfOAKgVsShwSVEVB27ZUdYMpCvbDgftP7lgWlpOTM9bLNVXTSnbJ5DiMAw9Dz3bq+Rc//ucs1ws+evExKf8MYwwnyzXXp1e8237Jzf6tIDRKY0sFqiAGn1PQHX502LE4om8qTwKVMVy9fMGzj59TLDsO45f4OJLS7MbkM4IgOVAxCcWSBMaKCFSydeRcmpkI1uTHI6Q0O9eBzq+FznkGKnP2H/UYgsIFH46T32PTYvLXPEUj0jxs1MehQIiPyIXQt7Nz4+MDv+T6OkTBdFyL35y7RK4QA0VpOTs/5eJCEur7YaDverr8Nhy2/PCP/wnvvvyE15/9Gt/9/m/w0be/Q103/OAHv82z6+d88OoV//n/+T/hZz/9KdM01w2e7W5LiIGqMNy8e83t7Q1lXdMultRVQ2EMJ6uNWIL7+FinKJUHGnmYZTSbzZpPSNze3nJ+dknTtKyXa7z33N/e0w0D0zTx0atrfufXv8v5Zk0/TNSVJY2e3faBt2/fyqDXTXzx+Re8e/+ew+HAyWpDURYoY6jmQYqfKbhT1vlJuJxSGlM3WFsIShFkT28XDYVzbLdbxnFiHAeWiyVFUbJoGpzRxOT58c8/EcMDa/nOd76L0kIlOtmseXZ5yfXlJVe/9iH1ouHgesxXzmXFOIz4IE2+cz7Xn2K8MqM1M818GCSPTCnJEisLS2ENIQaWdU2lCyo3Yfoed9hTLNaU55fokw2u0BwOI/u+Bw2T81RlhXdCZTt0B0Y3kYBhGjkMnYRFe8lqE0MQWfMuRoJzaCWChZgCtdIUwXK433F20tG5JMYv2Y6aXDf8ddfXbjLKUj41RZkehvg0zTsem4Y8YDw2DbIRPb1tMxoy86mOb48BfSRIIT8aIn6K+CkRsm3j0QQmdzUpJbGD1bOjDQJL6ZQTkIPY1yaxH5zrd42isIKXyORL1KraaMpKkJTo09GmyxjN+fmKtq1ACxVhcCNjcEzeHTUNCv0YVqZ1hpOzDTDCDRyGMf9bz89Kbj4eC8pjy5GzNVQuCmOGso4ODykxOsdi3YCLuPFAl3q0MVxdn6FGaNoFCjCZk29z4qpW0iz5fuTdJ69ZX6wIMTFOk3Br1ZypYaiqinEcjlkNMyoyT6UAmb4+gbBjlOdPMXOuhQ8YknD9AwJ5g9xgqKcrQ6YTLiZcDuDpDgeW3mOLklW95LzZ8Hq4+brL+G/8+uLNO+73HVEblFFgwCnPEBwHN3KYeibvaOwCP4hjTmpKXBbBKmRKGPIaOBaKGdmam72nr/2ss5kfjy4cT8oZYYJ03OxCdmOZjQAe7u9QFlQ2RCDpo9BbaxFvgojQh37AKk2lC4w2LJcrNpsTCitTLZVAxZwdk5vhcRiF0lRaun5PMupIsev7PvNlNS54lk371YI4N6sp0yPcJF7/jyFeeaoZAlVKLJRmGhyTUvTTRKEVbVOLEH7m6jvP/XbLm9sbXt+/pQsDutASKlhYrMrZNl7WdchmBSpCGB2H+x13Nzfc3T2QYmKzOeHF8+dcnJ2xWrRUVUWKimGMDH3ERQjZPUnHwLquWC/WLOoFi6al1gaTQIX4iF7k+4Ts0pOIJJuwTUFz0RKNoneJZBaYskUZK1k8Oh0LO5udQlKQRoknQanfjEvu++N5EYUuaVVBMjGHsQX8KIdaJKGVpdAVwYNymqKytFVFmff7yQufWCWDURaLwUaDySi6yYLPoigJKeW03cTkRkIoRaPjJKvD4Qmjwx1Gxkn0HbY0iDRB9AsJ0NZStS11Iy5gw9QzhonVosaHwH63YxomYs6QWG3O2IeRzu15/fCaH3/6FyzrBZt2RYgBAyybhuvNBa9Xl7x/eI3HYQuL1hFtRV8TU0DZmKWXkaSlcNApYoqCqxev+Oh7HxHLWw7TW1zYy/OsIrPpiTGzSYfL+4QYdRRWiscYpQkzmmMDIfd25hlk1HIOANVaAtDyWOnJPiRnrHfi9ggc96vZRvvxjcePK02ICeeD5OCkxyaEFNEYquJpyOSThiJ91YQm5cf+ymemr7Yh3zTt0mHfCY1Mm8xGMDR1zXIhuTfOCQVZDFMcP/7zP+aTn/2UH/zev8Vv/vbvsT455dmz5/z7/+P/Kc+eP+c/+g//V/z8Jz+hKi1VVeTGb3Y3crx7/5ZhGjGZArtsl5ys1uAH+u4jlhcbsUd1gaLQxJiYRk+7aNicnLJZb9hu97x791YagHHKKGxAJfj4g+f8/m/9Bq9eXENKOA1aRd69e8cnn3xC3/f4EPjJT37KF198yeQcShlCFP1dUknOjSgNptJaQm+HgckJCmespY5QlSkPziyTD+gh/11GBOh7o4nRU1c1hRVL23EMvL25Zbfboa2lXSy4vr4CrWnbhmdXl/yDf/Bvc/mbH7M3Hj9IlIA2jzSdeZgn9N6EUqLF7fv+OCic8ylA0IQYHBh91ENYpVgvVjRFxXK9YKErrIL2/JLq+XNCUzEQuO/3TNGjlWa337FaLpijFcYccxBCYJpGuq47vhYpgSkkFHnOHErJk5ITC1s8pQbvYh6mj/hgmCZPURVYYDzc/8r1+7WbjJv328dBwfG9Ov4/PKIa8l4fqVVK5Rv36Sfz5MBLv/CPIH71MYD3iRgQIcNxaiIoh0C8+igESURsaahaRdUqtI1MITD1gTCpjKCI+EcpSc+eYkBF2ShV5pvXtWWxLtEmMg6e7cOIHwPLouH5B1csVytiUvTO0U8yne77iZTmqU3KhZMBo/NfJdqDeVIzow8wF3b+SCeKcLTl00puLLFyg3Ga8tksRXvKn6u1OPBoD33XUZia9ekaP034UWOLKqdjc+S9Cr1G0lVDCGgUbpzELjL/HdM0UhRFTtacGMcJGzIqlIsvlJKpb2445yn2NPnsViDrxIXE6CIheowVDcbkQ37uNdG5nPQsGR0xSnHUhUDlJ1Is2O3uWV/1KES8vigX2Gn/dZfx3/j1/mZL0JqirUilxleaITr240jnRgY/0diaq/UVxaRpTzZsVWKKomExWkRhgIzcmZvjdMy+KIriaC/41L4xHdeETDOf2h1KsSxNxjiOqBBp15vjxLsoxR0m+EhhC6IS5xhj9DEoMaVIoS3DbqBsLYUp+OjVSzbLlhKF7gdwAVWX2c1H9CP77ZbdbsfybCm6HKOp6goIHA7dUS9QVRUgdnsKlXVI8rxoJa45c+EQZ+QsBrmvYmSVFJUyTEkCiGIMtHVFZazsAyEwjj23uwc+u3nLze6eITrqtqWsStaLFbUpxWiCmf8tEx1S5LDr+PyTz3j7+g37QwdZ0Pv8+Quuzs5Y1DVVWaLQ9C7SjYExBCKCHFbW0lYrllVLXbYUusAk0Jnao3wiupC1MA4X3TwwRDWGalNTrEpUXTFNiagLrG1RyorOSQeZditBEmfNV/QTpPiNIoOkrAOYk76JIgAOkwi2+2nEZce6pMGN0jgXqkLXliJapn4iTUIdU6WiKA1FY0QTkCw2GUwyqJBIXn6GymGkaub0h8DQ93R9R9PUYnPrPUM/4IJnGBzdQ8/oA8lkCrBOpOjxQFvVBEUWV8t95knU7YLNyRWb5YLkHdu7e4wp2CwWfKt8xWaz5s32DXf9DT/+4iecLE/4zY++L6h8irRlzfXpGR8fPuLLu0956N7Kc5QD0wTVSuhCZW1WjbEFAKWtePniW3z83W8RzHsO4xtC7KSAIAs2stYQMsIQPZBTiLOO61HrILWPNQYwxyGf7C8yjNNZ45fSnIP1iKgAx3DahLAItNKURTUvhq/sVToXZykjjmNuuIUZLW6OCkVpS9pygdESZvYVHOIXGodf3nw8fv5fj4T87V7GSFCv6PECSkkA2mM2ibRtOlOfDRDHgT//Z/+E/cMDv/7bv8eLly+5uDjjH/4P/l2+973v85/8H/8P/Mk/+//S73f0k2e9WhHCxOFwoGlqnJ8Yh54BmKaRcRzo+j0f/vyaD178AQc9kLxYoGoUUUeqsuJkc8JiuSDFSN8PjKNjsVySgPu7W1aLht//7d/ke9/+GEVit93Su8CbN+/54Q9/xLubW5yP/PRnP+Nf/vGfcugGyU0BlLaPNOGcqq2VprAFSSmh0yUpqMmomfcSMjdrgr0XpK6pG8ZxJDjJHUplKXSpbFxgihqvEn/yw79Aa83f/3t/xNWzZxRFwfXzK87WJeq85d3Na7qhf6Rb+YkYNVMOqZtpvjM9SoaGHK1qx3Fgu33IDIEJoxBNbYzUVcOqaVkXC07rltViSXl1SfPhdyi/82182zCEHkegXS152D3QB0eZAutFK46EiFFP9J5+GuiHTkAC7zFWBuopRaG8BU9KE973BDegUpSU9WgIKdEPI30wOdw3olTgsPvVA96v3WTEoGcQQhY4zH3EV5uHHMRGfigxJ2f8K67HEf7jZ2UahPcBl51GQJMQtxf0I+qhUqbrHH+0NBqLdaJaKPpRs0sJ35MnfLJBqQjJJ7zK31mLta1VEozifRC1fVVgKifcXK14+dE1qrRMCQYfGF0ghMTkPH0/MU2CeoiFqBEP+/n3y5MXKewENZmneCDOHDrDFyZPeKSJEPH0TC0DiCnmgjRbmoaAjTDsR9rCUtctCsM0ONrmJFOj9BHFeBrQNtPWpuCodEXZVLhhJIVA3/c0jTzHM2VFKyVpkN5DFJ5tekKRm1Gsp5uisVrCwkhykLuED3JDy8sr1qmGbJaF2CGixPtEFeCTIyaLdxNl2xJiwOqCtlx83WX8N39VDatmgW0LUlPQpcDBj/ROiiaUpi2XtKrFFOCsYUgOZQoIU/aaf0QvjmsjI0VVXYNSYjYQzXHSPqewziF1trCPNDY1N7iS7m605Gm0bct2t2WxWhBVyMFBIIMC4do6N5JCoiwKZFiWSFOiWlcYZcT5xlis9/DuhmQs6fIcVgvJDPaecRgxhRHnjWHE1iWlLXBOnKZClEbTaCmWCYJw4dWRCkVev08pYCBTfmMUtdWsjZZJd1UwTkI70kWJGwPjMNEPHXf7O15v3/P2cCebc9vQNEuKsqQqayyGGUeLEVxGMVOEfhh58/aGm9sHlNK8eHbJy+cvOT05YZk1BEppRhfpxolxcmhjqKuSZVNT24pS15S6wCaN9vE4tYpBqFHRZ3F/8PgYRDDcWOrzhuX5iikl+iHhYoEpF2hdHCfQIriHFIMUdcEj0qh5cv1NunLTo6R5TTHgJ0/fOUbvmJLcK7oQXrWbJqZuoqpE8FwvC0Y74sYJFz2EhFUlVVlQmJKSEhs0BHBRTERCCkzOMY4HxtERlSALZVWy3W1RRjKPxmkieQmh3D8M7O9HIvI6KC1FupscRiuGZWD0jsMgE0JiwmrD+eaU05MT6rpk6A9Ekxi6LQ2R080JdVVS1hZ9l+j6A5+//ZyPrj7gdC17tdGKzWLBy8tnfHj/ET/98oCLg0RZJEH4lQJUJGlFuago6garSl69+Jjr52d4/Zb9+IYQhrzzBhIhGzvK2RNSEqQoidHCU/0FPCLZaJ1dEh/1kzElEYbrR73m8TxT+WfAUXsx37diIGGP58ZcAM7NjVLz2eEZJidUwSgoCknO/KqsqcqWqmgpTH1EKNKT4iM9qUt+ccj5iGL8AtrxDaIUztfPPvmMtmlo20acgIw5hpCGEBgOA7udDNps1l/J65TRgZ//jB/87u/x27//B6zWG779ne/wP/qf/M949cFL/ul/9f9ke3dH2y7Y7Xb0RFZtzaIqGMaJybmsEfQcugP3D9tjw+ico81a3HmIX9UVh8OBTz/7jN3+QDdOGFOKA1Zb87u/99v83T/6Q05P1ngnGRrb7T0//slf8uXrt5ii5Pb2hs+++JJtd2AYRF+hlMLYeYCZ6e7GYIuClJF8nY1OlPdZ36Mzk2JCGU1pClQSp6yqqlgulwDZxMYxjWJtG5M4AJLgMAb+yR//EGNL/t5/6w+4fnbN+atn/Hj/lofbN3S93Pf9MOQ6DfpesjHm9WyMocjhhVVVHYd33nv2+z1jzskI3kFhsKaABIuyplSWVhXUSlEaQ7VcUTx7SVgsGZOjm7psWS96irqpSQpu7m5JSWGLghA928OBrh+y5sIDgaJopEnNovgUvcQJBEn7tglKDDoWRKPAVAyHPrOAoFAR+6sdbL9+kyFTp/w/eRMhPWk6fqFPmKfX8wOPt+4vthtPOJjzI9kuVxAL/VhsKSVibCAp0UyIVFpoGjlCm6Rk6uF9wk8J7yIpZR3JEzh2boIiUFhLU5tjINk0TSRTSD5Ga7Ea2sby7OUlLiZCUrggkP7kPNPoCRGUNlmMGgnTRMbWpUFKSegM5IYjdxQCAYsQPGh5fo2W3IM+26/NT3YiHTMEnk6xjVaYIA2DkQqdaXCooLFLmWwWylAo0T0UxhzzEyBiS83ybEW1KBkRx6yYhBdZFBLUMnPix3EUkf/RVlUEi9M0Coc2Py6Wh7IpEATuFlchRyRl94fHIkOFhCaidx5MQlVWEpjThC0V1dqwH2EaD9RxcSygS1P8quX7b+xaXJxRWJiM5+ADvZsYslOaMRabNEvTUKEplzWjivTThM4ZF+M0HcPynlpIzq+zLQpiiky9y6nafMWNZcyaGeArqNIs3CYJZWS9XlOWBSEFTGExSlKHtTLsdjtsIVQb533W8WiKqmDYDTR1RV2VROcpGotFobsedXOLWa9g1mOhcZPHVgWLsw392FGWRaYOikjNe3/khAbvKYyhLqpjUqmgjkncs54kAYN8jbGGurBsipIFME6eqEu0mptVcavb3W+52d7y/nDLw7gjqUhb1zRVc0xu1SqnEacIQegnIRtFeJ/Y7Tre394To+LZs0tevXzJ+WZDU5U5fVrhnGcYJVisaSqauhFrRVuik0EHgw5KBhspkrz4wsdMaZqd2yIRbKRcVSzOVzQnS1RhGXcTw6TQRYFSj+uC/DqTIsFF1JzarFRGfOLjvveNuNKx8VEpU2kmxzQJJUZrCzwaDtSlwTihoZa2RFWCdA2jaJk8gcFJMWGRJm3sPdM44aeQ8xgkV2TKk3GlDaU1mNLgkud2d0/Xd+wO22zpLQVJjGKbLJS2TDfKlqpzIN0wdLhpoC4qTs+uuTg9Z7OW/Jn78Zbbwx1+GBldj8LTLDdcb86wFt7dv6MbD9w8vGe9XGFLoQJWTc3Z+oQPLz/ifv+edw+fi07QZHtXPCHMAwhFVTY8u3rBs5fneG7ZD+9woUN87z0xSfaIPLdyBh330LI62l2rnIMxF/5iVy7DnvneRpigYg2cL3GKAiFDqyOdWhBWsWyf+egzlfopHXfmrPsQcJNoTlzI7oS56NNK/s62XmGLhtJWVLY5rqmnDdJf22QcPzE9efgXG5VvxvXZ518IhbsoaJuGpmlom5qmaairirKsWSw02+0Du53k7pjswuemiZ//7Gd88dkX7HcH/vDv/l3OLi959eGHbM7OefHqFf/4P//P+PLnP4PoaUorQwtjqPIZJK+HkxC8caAbRoxWOJepiWQUMv/csix58/Yd+24gmQKUI9qCl68+4KNvfZeiXjBFCAE+f/2WP//Rj/niy9dobdhtd3z+xRc8bLeM04TzgZTPNh0TkXg0CApRbFijlyGbLQrJADMGo4tHs5I8eBujDKdjCJRlRdsusYVl6DsOhwPjOIHSlHVN3S6O52UMgb/42eecrNZUbUVYF3gtdZ+xFhMDt/f3VKXYre8PEyDPWVFVGVXxx8Gz1hpTFNlhMIi19dijkRBiY8SGu60aGmVZaEsRoDAFxfIEvTllSpH90HG3e6CfBkIM7PY7GSArsW1XKKpmwe6wE32IMaLVdMJAme/twkqwp8QKiHlEigEVAwvTUtULTuoVypQM/R0GhXcjw+GB66uLX7l+v3aToZ8eUOpJGF9uJr56W371NPuVw4F8g6cn72fRV6ELYoZ354PUey+PadAJdBRxIzphSis5EgnGXcT3CR0NxsgGmPT8t2RtiNFonTBlomwtdWVlS1MKWxWSrBxlyvvq1QticrgQ8BGGaWJ0jmGcCEFsPF1y+W9Ome0iThtGyyRmFrEKNDwXgI/hRvNzPTsJzfayMSX85FBaXGOALEidnXakqVnVltoaHt684+z5C3RRYAsJSDPZIlBuwjwNUZEQxE6zXjZok5gOcmBaW9JUpbgQlBZrNFMSbn+RnSScd0e6ldC7xJpQaGAFWou4bP74TPFCXj58mvn2CUKkcon9n35B9cEp3VqjjCLiMCqilZOGwjlSEBGn0Vr42N+QS580hDByGIME63lxGlNG7OlMUNTOsznRsGl4nzyT95JbojXODcLh1I/OUNpolNHZylEMEGaR9zGVW81iaScmA0iTITawPFIgYkKjWbTiiuGDz9QJjSkLhn7g/uGO5XIpvutKURSWojCQDNM08MEHz2jahsKW2LLAKLDjSF2UqM0GVzWkJDzvh7tbxqHHB4e2hrpt6fue/aGTBlPNk09JbhaUTHi3syi9qipijPRdJ7ke1pJxQIxRlNawMgbjE904opsC7xxGW8YxsN933GxveLN9x94dUEZTlxVl2WBNScoT1Xktaa1Rc2GUaRrOeR4etoQQefHsGd/68EPOTzbUZUmZ6Wtj8IzeYcqSs3ZNXdYUuiS5BE72KZPAkNCIHXTIzlrzpDfFRFQeXSna05bN9QnNZsXkYHcY2R0CUAFWrErJerQIwU2EFI/IrEK4t34aRdBnvjk2bCpzq+fJuPeBcRIhNhi0eiz1tDZUZYHxGjcMhDFQ1RWm0BS1ZQoj0zjJ5HV/oGciucR4GFFRsV5sWCxaNIpxnDDDKBkxyH2mCkuyMKWRIXRMyaELg02KdmUFcVAaayXgEk3WkcGiLCijQrlATJ6iqFm3C5ZNizWGXXfgfvvAm+07QphY2ArnDpxMPevzS67Wp7RVya4/8H5/y/lwyXkxo1OKRdPw7Ow5b25fcftwQ9IDpS5IRUmMHucs4GmbDR+8+JiL65b99Amj2xGSI+FRSI6OVomnCGnMdBNjZOqb5oM8T4ZlX8kNTVRHN8g5p8ZkFEMfU39TDshMx2ZBzrtZA1ZmnRCZBqi+0mSojFQO44j3uWFRGoVBJUuhCuqypi5XlOWSqmgoiwbzZP9/2jwcH/uFBuP4mHzBX33sG9ZkbE5O6LqO/x91f/5sa5bm90GfNb3j3vtMd8qbUw09VkutxsaSJVsmZEBICjC2sWUIIggIgoB/CIIfHSJCQAQBQQQEYQRGwrItYWxLLXW3uqu6qnLOvMOZ9t7vtCZ+eNa7z82qrKpsW+pO3qqTd5/hnnvO3u9a63me7zQvnnGaSa+vpfGuazZ9z+NHV7RNy2YjLlHWGohiuJFzYl4W5nHi//nv/d/4wx/8Pn/uL/xL/Nr3foOLswv++X/hz9N1PX////3/4p/89n/OsoxSH6mHgL+UEqm4Sr589ZrXtwfeenrFMnviMp+yq1KQgvns/AJtHRGxSW37nnfeeYff/NPf4+rykuv7gZt95v7mFb/7O7/H51+8BBT3+z0fffwJwQeuzi+JMfPy9Q0xp2I2IMMIU2qKVIwDQsiABPUqLU5kyop+0RTUp3HudO9pLeefdY5l8Sw+obTDVaubo7yZYlxQ1Q1L0vzjH37E9q0znmyeEfDk8r+UUmnqYBxnYsg464Q6lTPaWoZx5qJuBAG1lmneS6PuDCaJLkRZQ/AL8zjy7OIR27plZyq22VArTdX0VLsrcr9hDp5Xt9fcHO+Yg+gljscDfd8Jvb7UDnf3d3IGFKp1iokQYzmzVn2uDL0SkqMh9VjEpMC2bth1TzDNIz5/+YrZT6fhcU6e2v1TDONLfNUB9aYmY120bzzmzTX8059/0yWCN74sI8WQWFGKJsE4W2BboTtZig93gjg/TGQMFoLGD+BczeMn5zhrePH5F9y8Hgk+ooyhqQ39pqLtnIipirRDa0FLQojivz4GUhBf/6tHF1jbCI0iiBOHD6GIjXJJvn5DsKuF7vSVPt6Zk9D89DiLD35GkQ0cx5G2bUne40PhpJZkv7UoWmk0CkXjKsJhgE1D9orpdqDdqtME6PS2buqIDaFMnMLJBUxuRkFmNv2WxT8kq3rvcZVwRLOS5+FNnYlClQkrhRK2chCl8H0wCvhJs4AsUN4hUAUwk0dttHCdySSV0SkRZs1yGOguI7YSes1KIfsmXLOKDGFhKe4NqmgTYgjoCE/6c95qN3Rdxb3VzCGTygEfi/WmUgq/yFRWGyNvhd62aiiMMQ+FaS5BcUFsh621J1rRg3BbjANyQSSrquL2/lYa9xhYQqSp2i8F9hljhDetMiCaGae1ZD+gqJtaAt+s2IPm7QbOz8hlMz8cDnzwow/ody1LFrHYKYirNEeC1mTqppb1kxN1UxOKUG11T1s3ScUqZo8YLVPt2hi2WkNUGFcRUnmeQuR4PHBz+5rr4y1LHDFa9hJjJewwPfA9JedDr5xzRaQgGRn84skx8d7bb/Pu2+9wtTujq2oqZzHOEFIEo+nqDW3b0zQbdNaEIZIWCfw0WZXpr7jrBC8J3rkI2FGAU9ja0F40bK/O6M83oC37myP3B09MDlPVaG0xqGLEkUizR5uMNkXPFMUWel4Gsvfr2PiPf0H8zGulAso+H7xkgSitcdYWFCqjtfD8U5RBzzwsKCMIdtVVGGPpaourK4bDQJgCIQAJXCMp2U8vHtNWNd57Xl1fcxxHfCoBhzmSao3bVWirqFRNpTwxe1pncW1LUlp0D8ai88NwSGWxm+2sOINZZ3m0veB8u6Opa7EZvbvhi+sXvLx7TdaJvbXsVcV+OvJ4GXj89DlndY+zjiUnbo97+nZDoyx+Cbi65qw/58nFW3zy+iPuwyuUUcVQpcLahrOq4Zd+6XtszzWj/4Il7Ek5QBaLSlRE6/L65zd0XFmCwnRpJNRJR6lY7dPXtyhO4+KuZt1pSCVft9L1FLEgHSuNM6ZMToLirqgqIP9W6WhUQfsl+TgUG/lVBC5FozGOpuppXE/tNqXJqLGmQqkvhwS+eY/91KOfmnh+xdd8w5qMP/tn/wX2+wP39/fc3QlaMc8z3numZcG6msvLK7SGphaqzWF/j/cz8yxT6RRm7m5v+M9efMrnH3/A4a/8NX7rX/gX2Z1d8Gt/6s9w/ugx55dX/P2/+7f5/NPP0SSapqZtW+zaxJX1etjf07z3nHEYizGAmLWknGmqmidPn3J5eUnWjqZt+c633uM3//Sf5le++x2qyjEvC7e3t3zwwY/4/NU1CbGu/f4PfsDt7R1d19M0DU8ePyLlzOF4RGmLX5YvUYjlvlub2kTOkRylZkyF3r3eoylHtG5p2pa2ERvZZfE456gbcdAchpGqDGVP9L6sSvaOwnUNt8zk8Z7r/R0B0bOO03hqYGJMNHWDtZpY6N5VVRNLAzYOIvzOfpH7fZJGcLX+TyHSWsd5v6XTjk221Etx9DKW3LZErZjDwuvb18zMInofB6w1WGdOZ7+rHDknsagfjhIgW8grrpLBmKR8W7q6Qrea65f3MqjKma0y9K5nd/mMZHuGjz4stPmAcxVd03ypwf9Z19cP43vDKuKnm4OfXpRf+prTIOHNr/vZtKnyDcTqzscSjx6xlSOrBCpR1QZjNYqMVxDncmCFRBwUuYLWJpyd6duK3dbiZ4v3ispZzs8aznc9m64mx8w0ee5ujkxLwFhHTHB/mFjmgMqKq0dnXF5cFBvcXPzzJawsxVKUlNwObSUnRCtNNvr0a8uLD2v2hVh1lkC99JAPoQuyoY0qATiJ1dY0vcG/Dj4W0VfGqUzjDG7XockM957+quXineeYuikTp4cQxFVoJ5NQaVgIniXMzNOEVhYfxK5Mo6C4RC1+odY1GfF9f1OrAZSwP1uET6oIwyX0LJNZXbNWKpC81CUfJcOiAGvAB2oqFiValTknKqWwJrMUDru2Yl34TfLMGf2CL/ZlQi+TILp5nLhstnzn2XMujeVoNMcodAelrOh6ir+11prFSyAPPIgi39xg4cEc4NRoKuRAKAXEOilcG5KqMuSUqYyQDo/DkTnOQmND3DGq2p2C3IRGUZ3yLGLKnO12aC0CcW0trq4x1uG7FtXW2LomF2vEcRhlWWtFWiLzlIoQT6xGU4gs04xx9nRfz8tyojTKhEh+Zj8vpHJoQLlninNdqzVNBq2MZCD4meAD+8OBFy+/4Pb+NWM8gkkY6zBG3rQWRCSlTAoBq4SOE2MkWwgpEQp1Ki2Btmq46s/Zth2uoB7WWpQVbYprBN1xuiYnS5wSeQYt7D80GZIk2kt+iPxOJw6709iNpT6r2V5t2ex2ZK24vT3y6uU9PlnqjThJgTpZouaUJL0cMYgIKRODR+WESkIVotA1vylXXgXfpSj1xY7VVFAlR/Sm7I227A0zKXpC8hhn8ASsqkTfYi3W1SgMwSyoJdPoik3dset2nHVbcky8HkcOxwPjOBQ0uiDEhzv0VtFuW3RjaXRLWMAnsFiMcyUzwkKEuET8NKPR1NrSWIdVhr7b8ujyMbvtGVobDsc9r+9f8fr2Jcfjkexg1Jp9PnJvDkx+hJx59OQ5bVtDDAzTkeM0YJQlTwpXO862Pc8fv8UXh/eYb4ZSTCnAst3seOed96g3E4f5I5Y4CPWheLJnIhCKfbxCYU40SmvtaUAkYOLqxKMebpWs8EH2M6etGIaoNdNi5f4L9S0lCOnLgaFCebNfQlvlrChnnTZoDT4sTOMiazFnlLLSPCiDMxW162ldT203NPWGynUY607OVD9xd/2CW/2r6pX/UrfzP9Pr/XffJRYK9zxLeOjdnWQrbLdb3nn+Ns4a5vHA3c0119c33N/fMc+zFM/HI4fjHr8sGGsYxyOH/T0/+IM/4C/8K3+JX/rV7/H8+Tv81//af4ezqyv+t3/j3+Xl519QDSNNPdLUNU0jAZ9935WfxWOtoBxiN68JXhzKtrsznj55Qt9veP722/zGr/8q77/3LrtNj/ee+7tbPvrwx7x8+ZK6qZnGiQ8+/IgPP/lEHJFCousibd/y/Pkzrl/fMgwTcfGCMMfwRu1QNKVleCbaIE0mkkvtECNoo/DBEPaem5trtJKAya7vqZsG4xxVkwqyZ7HmwYQApVgWzy//5q+yfd5xOx1EoxQCx+OBefZUrjqtqxgjYYm4yhGCrIW6aUg54yrHUix0p6lY35ZhoMoJlRONE/ORDkcXNWbx5JBRlzV6syUoxexn9sMB3egiIJ9PNdg0T8J+UDKsH44HlmkgLNNp+L0G51onazrFQJiPxGUhBc+FNrzXbHFmS6JiGiaWeRZWhHX0bUPfdvjlFwch/xGE3yWL4CdQB3mh33y/4K28+ceaHKF+YW9xamSUUKFUlpwJ+RmEV6wULKMHlSSrIesyvUvoMg222kow0zJxDCOVgbeebMXVolIYDSF4Xr6ciAv4KTINCzEgaIkxLFMihOKsYR2PH18JfcdHfBQEY17EdUkoD0IXWl1LVLEjy5lipZtRak1NfhB9ex/IOZZCQYqenOV3SyvtKhfOunWnhSXFJ8TksVXFNM2M48yTx495+isNTe14/cnnvPPtX8U4J8LqQpeSnAxQOYtXfM6YEMoGX4TrKYsTkVYs48zheJTfrTREa47B4r3QebJQIFIS2M05d5qcL7PkYCg4TbNy4gSlp5QIOTPXhu17Z1Q2Ex3kLEjIGBUuQWuREL95gn5bBMrfHLpUSGWzA/w8M0/StPlpRuuOOidCZXjlPbc+4JOIT7PskFLIAA4nyfOpOH/p1Wb5YXNdKWjrdeJPx4CtxcnCGuHYxqKHccbQNSL4nvws2RxAUzfUTYP3slHO80LXdVIYFE7rMs30bSubZtVS1zXGObCO6p23xK1MCa87pIhxhsdPnzBMBw7HAz4Ezs7PWMLC/f6epM3D7AABAABJREFUYZzJKConmSt+LiYGbxZBWdAxZ0W0t26kUCauCnoFFkXKiv04scTI/d0dn376KZ999jE+TlSNpu4bTO3EntNYUAZVLGOtNlilMFoXa1Ip1nOhIwlHtmFTt1iVsUYQB1tZdGUwVYV1DRpD9Io0JZjAeIWKQGmkVdkbgvfEUCB3A7YxVFvH9uk57XlP3TagNfv7I198fsPxGGk3HU5biIFllnyElCUMU+hSEr6nEbi+qisUnAq+b5KoVZoMcQYLMZSslplqa7CNYz4E/CRNpUXjWtGR1duWbMBU5pTXQNInyp9zhtZVXLRbNk1PbWuS99wf9ry8ecUcFlRlqZXDiYE20UaG+YjdOBrXUNkapQJhDJAzOgoSvFpB+sUzDTMmK2pjCNahraJpWvpuQ1M3xBTYD/fcH+5EY6VlgjuxkFRmtpGkFdx+ypw8l5ePqdseP+45Hu+pTIWJgWqu6Tc7Ls8ueO/Je3x2/IBhOaC15vzsMe+8+y6uPXKz/wAfx3LGyCAu48lJulyVhXaUS7K3+Yl1BG82GEp4xSg5G5RMPFdLTnUaAsTSxKSSSC+25Kmg4bKGJWBvzcA4GY6UfzdnOWMEiZXaQWtpMLRyWNtQ27Y0GdJcVK7D2uokHv+q6+sbHTzUG9/U64ff/z26rqfrN/Rdz27T8+zJY5nWh8B4PPLpp5/wxeefcrjbc3t3xzAcOR6OEshZzgmjhfKXc+aV+oK/++pv8cEP/5C//Nf+dX7rn/+zXJxf8a/+N/8q3/3lX+P/8L/7m/zdv/3vc/f6JVqLg1PlKrq2BZV5+/kzLrZbgp9RSuOXhbjdYlD0bcfV1RWPHj/iz/3ZP8fz58+oq4oYPZ999oIf/+hHfPH5Z6IpzI6PPvqYDz76kMPhUMxedAnfXLi4uODx40e8fPlKsiQQC/+HxvIBGYcSCZCl6VCFuQGwTBPB+1K7yHnStjIEPBz2JWctF9qgJJkr5L4IwVP1lv5RQ7LgpwzaklIxJciZ4zCU0FNhEXSbTbFnz3gvZ+lYmCk6iUNkKJqWyhhijkLhTImurmm0Y2Na2gCVgnZzRnv2lNztmJeZ2/0NPnnUohiGo2g3i1OU9x5bOXwI+GVmnIZTjXqyrtcKbQ3GWWnGwsI0HPFhIUfPZdVwxhn3e80hvZAMuCS07q7uaBsJGcxfY+F8fSSjwKXldS1/lNZBvfnxLzcY5W9/6fHPgyUzQOGOutqi61xC8jQpF69zbXFO4xfhvOfyM2glm4uzlr6t2FYVLiviBNmLEEYZxeQjkw/cHxaOR18SqRWrRDuncBIkowxow9nVjqoxxESZgMWToCjFB8pORmw1T09Kzif3DSmwszRP5evX8LT1y0UcJz7kMeYCbwlfXSxBRY+xiv9SSuTih1xVtcD93Q6amXHvWQ6Sd7FSpKwVcdIpLTpLwisxon1CaUrcfMI6yzz7k92urRzWVWRk4a2pzKtffKZYi5YMj9WPOcYklKcQZOJQvi7mYs2rBcY32jHj0ec1SYvg2CUgZKYUaKwjKk9cIvPhnubsUmgM+htUPLE6Ki3MwyiL2wd2bc/G1qgUOObEhCUX55+UpZitqup08BpM8bLOxOgR4wJxR1vzMkJ4QJDktTWE4PG+ZKhojXWO4/Eor6FPnO22GG24O9wXrUygriVHIkYpFmR6vFL3At5PEgqpYLfdoVC0bWkySuGhy1Q0ldc0hoDSCNQ8wzIvoEtxkjPH45EQM/2mJ5FY/IIuokEQB5qcJDtFaSn+s1lzH2QCrpWl1oqtlkT5cQmSfeBnXr5+ySeffcKrly9AJc6vdjS9wRlxxVJJRh9GV5hKs9nU9HUjln1Ky7252uPmjFXgjIYcsaahqh3aFXvVkOS58lnoUFGhFlBBtBIq6dKcB5IX1ygfJdnVOI2uDe15S3+1Zft4h6sFhr7fj9y8PjCPmcq2aAxhWohxln2gNF0xegk3VEUI37RUdYUth461ugwu/qRWxVdd+YTMCaoTJUNBFQ2SFrFk9IlsLLWuMLWYDySdyRpyQQlTEM2PMYnWOfqqpm8b6toSwsLtcM/d8YDXgWbbUkPJ6QmEJFSyTGD0R0yjISd89oQY0FnosylGwhzEkCBmyXrJsi/P80xlKvq2p2taUowchgPX16+YxgVnG9pqQ14GQpzK+QJjilyHmbC/ZkmRR2ePcK5mr2+obYO1YrZRNw1NXfFoe8lZc8E47GmajnfffY5pb7g9fszsD2LpXuhR4ia1kJXYL6+W16ZMauUlkDUgiNEDopGzNG4rndcYjdVrnoUuOg3KACmRiG/QYCnfz1C5qpwDX7bShtJgQEm0jyfUSibHToS7uqa2PZXraFxPU21Eg6GrIl5XfMWU8qfus69zL36Dewx++x/8A9q2pe1attsdm+2WzXaHqyo+++wzrl+/5jgcqJxjs9txfXfLzf0d0zgVjVc+Db5MNCxB6LGKzIcffsQHH3zEv/bf+3f4C3/xX+H528/59re+w1//H/wPefb8GX/7b/3f+eBHP8RPgWGaOAwDqMwvfedbXOy2qCy0VaH+HCGfsdv2/Ff/uT/DdnfGW8/fLg5rE9fXr/nB9/+AFy9ekHxkmPZ89sULfvDDH/Lq+hYfZRAzTZLFNY4jAGdnZ1xdnjNPAyl6clAnja4qwY/wYKmsCmsD9UbafBYNnCpsjkxiWUbJmtEaY4UGiFLEsODVOsgTW9rNpmOIEzbWHIaBmCUAUBUHUGkmvORsLBPTNAGcWAErzWgYUtHSAkhEgKHsYylSGUfrOioEyTDLIGddvyHttsxksffOATQch4FhGIROpcpAqRg6+GI9HH2AHMU9SmmqylJVFVVdnZD8m9vX4I9Si8aIToZ5dizJUafENA0PzAhraZuGvu/ZH+ZfeP9+fXcp/ZPLcC0r1/e+BGd86fGXlrn6yc+uD/KX3jdaUdeObdtgtYaUeXR1ztXllspqhuPI7d2Bz17dMy2xJLIKN9xaQ46Z8bgwKyBqopc0RJ8iCxGfM0vJ4dAxYbIqiEH6MjKjEq7SvP3OFXUtNl8peWKQYLmTQI2VIpYIKWELHSPldXL/sDAkVHYtxAXSzjGi0RKcpSV10mlJ2NRm5QQ/IAhr4Z8Kr1Y66Mim2uKDpJZvd2fYnZUAKa1OGRRaKVQWmtRaSHnviZVlGSd+7x/+Lu/96i/LpE3JK6OMFlSp0NhWeC7nQqfKQqlSwBIWmagXGsT6limvDRQdiBQWVVeV4D9x+ppL+FhtTBFNy3Rh0Zb2rCKmQPQzZBGAUr0ZxvQne/klMAwTy7RIEzwtBO/5pe/8Gk+qnrapmYygUSplsfZNEaPF3ch7L0FzJAwrMhFZ00FXtMJ7EfdWlSsCN11oUfHEfTbFl/s0VVSarm4ZhwOLnyFnmrqhbTtiygzDeJoyShPjicnLlIrAtt9gKwdBU5dCeNVurPfCOlVa5pnDcc/t3c1pZTvr8EFsREOM4nuuFcu0oI0pInVV/v2lWCQL9WsNLVpT7skR6xy90myQpmGcJ1CGeZ548fIFw3CUpkVlrKlRqgTWBYHPG+do6wbrNH3f0FUVTklQjYREiojaaejqGtM/vGZKC2IUPGQsXVWhkzQC2SdUiDJIWJ+TUkwvwRNTAguuq6g6R7Nt2V5taXYdVVPLZNBnDvcL0zGjVY3SFXGZCWkgJX96nSkBbxKgZnGVo+87qsoSwyIHms4SavgNajIEySiNRsyooNFBXh+y5Fzo7InF3Sk7W+iehoDYPcbFMx+FihhD4GLby5StspAD4xw4LiN3acRXgcZULL6gf1mEmjoqmBM5ZPw0Mlihnwa/oA1YtdJ8igDdiGVmDhUqCJVOeNgt280Woy3H48DHLz7lwxefElPCtR2bqkIvFWo+sKRZ9nRjicA+B/ADaX/NWdWRfKRxjm6zI8ZI23V0/YZtu+H5+XtUpubirXOye8398TMWPwKxTF4DKU+AuItpVRqHlNFOF/3FqoVQXzqc5f4QvUcMD/uNCMPFdnZ9LMMRoaOkQnUNRX/hrCtBn/r0PeX7v0G3Vkr0SAXpV8piTF1oWA6ra5xpqZ3Y1NbVBmc7jHYn57G8DgJ5U27089qFN5wlf+Ljv7hZ+ZO7FIrD/sDtzQ1f6C+oKoerpIG7ub9jWZaSy3LJxfaMZ8+f8/L1K+JQzDXKgEFmeYoQE9PiT6yCH/3oh/zv/+bf4Ob2Nf/mv/3vcHV1xXe++12ePH3C82fP+ff+r/8Xfue3f5t5mgghcn17z49+/CG//t3vyP1hLdZGgp/JyXN1dcX7bz/FVDURGI5HPv3kI374h3/Ip59+Ws65wI8/+JAff/gxd4cjMWVBlpU4Gs7zwna7YZ4X7u/2nJ2fs9lsRZ9RJvIyuH2gBMufa/O5UqfksTFG9IOFnrRSht40EcnRS9ORLXMUlgYZum3F819+h+CUoBNKEWNmmCbatqVC9HzTJHk70zxS1y19v+Hq6hE3tzcnetLd3R0A43BgGo/UZag2TSPWOja7LV27pe3P6epzuqqnMRr7znukq3O8KWcJiXGZGceB43ig61qsMWQFrqpQWhCUaRqxRvPu87f59OOPmfxyokmd3NzmkehnclhEb5FBJcuiHHW/IWfPPE0YLS6L1lq2m5bKGaZ5/IX379dHMohfeu+rzqs39pOHj50oVG++/4svpTRN3XBxdsb5ZsNZ33Fx3uGcYhxGXr+65vZuzzR7lpCFN5rkH5jCRIoGTUVTV8SQGUbP7CNBrSxV6fpUymhK50uWKc7ph8iQI01jef72IxEE5VhevKk0GTLFUUg4nSpTeaFFOXLkjY22bKyUhNTyUa2F6gHF0aA8SeuEJ4SAUg/2uqst24OjUKStW7L3eB9R40iyC4f5yNNnb9P0/Ylasv6ZcwnqigLTjdPMdLhnGkce786ZhpFkLX3Xi7gbdfLHpjx3K6c3BgkRXIW8a6G5uh+tIrV1zVtj8EpOv5gix+N4ok3lrPBkogfQgoqgMcoSrSPXGghEH8ozqqjbb06TcTgc8XMgLJG0BJQP1Al++Z336VH4JHZ+odj3ri5j8EBrAQhFn2GcNKohhtOhvzYNxoj2R9CBxDCNkshuTCnQJWSyrmtyzlhdkk7nGW0MNmdpFLRkWMzzgjWOUGwLM6LxWNLMMi20Fy1kXSblDdqIa9YpEDM/uMrI+lgEio2JbtODUidbQjE68AQvFLEIJ9F5JrPMM85aeVwEf6rQAxVAkvtoozUuK1JIclhVNa9fvyL4iUdXF+Jwk5OEQkah/VVVjWsqrDJYpamsobaGypiCIImwXJOwSVFrh25bGmPLva4JORY6z4bGbWnMDsrPoXyEGEUzklYhbJAUdRKmMbSbGrdx1H1Fd9HTbnuMFaer8Thz9+qeLz65FhGzsqCX0pxHcoGVV/FtZbVMljY9m12PdZplHpjDDHlB9l9D/gYJv2WcUNDcbDhzO5q6Yx49Y0ntDlqTnKGpa9q+k2HIspBm0bOoFLE2oztLbRouujP6pkUDN3c3jHHBmwSVBaMIU8TPEz5EXF3R9DU5WIyBKUxlv/JoA6YCg8EqI7xOjLgjOUfOUaiQ+4kwz5jW0fVb2qbFB8/Lm9d8+OITXk7X1HVD226pbY+Jjjp0hFCmfzlLwrtSTDpzpxaImTxGbl9arFZkPfDiReL58/fZdBveunhOtUsc9IfcD59IOF8WbV4mkNJIYmEVTees0AjdRZeFc7JzL+eQ3FfCFpAGLJ0aCrHTNBjlsMaijSbFgI+BnNMpOTidCtkHpyilVu2F5s0aQCn1BvqfAYdWVbHQdpIlY1sq29HUO6qqxZm26DSK21WWM2wdwPy0LuPh3/qKj35ls/Gzvsef9PX8rbeLKH4RWuGyMBwHDscj++FIiIkLVbHdSVP37Nlzrq+vmaaJaVrXfy4FtyrUoGJvbQzeBz7+8EP+5t/4d3nx+ef8m//Wv82v/Nqvs+k2/MX/2r/Kk6dv8Tf/N3+D3/tH/5BxGgkp8+LVNfth5NHFGSklWRcp0DrL5W7LZrthnGau7+748Y9+zB/8k3/C9avXGG2Y5oW7u3uquuGdd9/lcpjYH/bFVUzcxWKSeIC2aQhL4Ob6WihOTcfiwxvUzy9TpVJaeChC1ck0Zb2XZTAj7/d9j7UiKF+8P1nyOmvZbLYnlsC3f+XbPP3l9/EEhnnGOofPcj6uwaniQDoRfGDT7+j6ns1mc0I0Vpph2zbM04SzhglpbuZ5Er2GMVxeXtFvztmdv4Wpd4QLTdztyG89J1Ya7wfm7Lk53DEMA8fxyLzMtF1DLuYukFlmaRhC8MzDwIg0b8Za6kao0etaDn4iJaFD5RSogS47bLOl2+24u31NShGUOGWdne/Y9D3DODGM/xSbjPQGcvEzG4yf8Ul1+pT60vs/8yvLpjUHz+1xj4+eeRm53V9zGAdeXe+5vR2Yl+JQlBVieKtQJKyRQ7euHSEmjuMs/vkYUFp21JiwARRavImVPk1980lAJD9T1RjaTqxAY0wyjV083geBiXOmbiriaqkWH9KvjXEnBxhYGwpO02ZZ/Pmk01hTjldqk1+Ecx1L0be68gi3zpJCRBtH9BGmwJJHtIHd1Tmt3RKSOKjI85oxKmFVwpRQwhA8yzKhkY4WFdg9PuO+2L+lnDkcDqcFt4r6uq5Da80wDEDxgS6c5XwqnoVWFcqBlAq/mZxwBpZFUJF0ghML/UdpfNIQij0nkiiODuisGYeZqLT4d2dFpb85ORl+CaSYsBlaW0kQ0WZHrx1pmQiVY85IVogCEiftjl85ozmdmsjghRceQ0AXG8F1w3rTwhZgWXz5exTESyh0azNal0Cg1WtfIVOcZfGM48g8e9pGfMZt19E0DaTABBjnaKsGozRNcZVYCxkR2skaTCgRus9zubcWMJq6bZnmidn7089vnKTOpyzoXM5CGZvG8cSnDeu9pB5yWRSaqDSaTK8UOsMcMxgRAR+PB+q6kgOqNEyrQDH6gC/UAaIUnX2q2W1bXBGEx6SKM06UBG4fJJcmygQsK0POFZXraKsLnG5IQZFjKNPtXEJCU7F3DsQcyFpRdy1V76h7R7VxNJuGumtQ2pwElXcvb9i/vIdhBiURasIHNRIKZ3SxVHU0reXqsuPZ0yueP39OXTnGeebmVnF/tzDsBxkOFJegb8yVEVosYLIWTUmUlPRxf2SYRpYwYmqN6TTVhWiU7GQItx5/kCl8VVucaWirmtZ1GGUZl5EXd5LmbjcNjVWgMlOaGZZJCm9dUdUW1VrMxlKFBmWVZKNET0qSDJx1sWxViqwkkDXFSMwLS57wyfOobTm7uMBUjmGa+Ozl57y8/YIpD2SbUdHSNY6666hSQ/SLOP7EKPS5HIWuqGGvxPigCQPN/gbXOPztTLfdcfWoJlcDw/Qh++kzQpyRgjmRcyAxkVl+4nlW4iB10mBIga5QJfhTnHNykjWc0hpMa95Yb6r470OOAR/F4S6tBV7ORbyqH9zAknpDF5EeeA6nhkQaNzEyF6dDrSoq0whFynbUVU9dbbC2FkS7ICMpCtKdkhRREvjK6ff7SVRDqa9+LO9/9eNv0rXbXUhDFYJkwnjP4hd+/MEHhHDPEiLDNBXBsafa9Hzr/fc57Pd88ulnpzP5TeOQE126UHJzyoyHA//Rf/C3SSnyb/xbf53v/cafous6/vRv/hn+p//z/wX/5//T/5H/9O/9h9zeXDMMR27u9jx6dEWMUtiHIFkMrq4JIXF7c8MHP/oxP/rhD7m/u0NrzTgtvHj5irv7Az5EtDbstjsuzi9OVqu+CJkzmco6yJnbuzvC4rm6vMQ6x/6wL1lhEdEfaZR2p6Z57UHEgt3Rb6UwnqaJw/Egg5+ClE/TdDJdWZO7h+FAztC0Db/2W98jXlhuh3vaVu7mJXixnF/rm6IF1kaK+JQy1zc3p+d6pZcHL3EBpEjf1Dx6dMWnH3+M0Zq+29DWG7runGazA9ehmhZ9eUlsa5a44GPgftjz8volS5Tg0HXQlwsV2fvANE6Mw8g4jhxHobmllKibRmznjSaXgZWfZ9Fcy1SMraloTMvm/DHd9owXL78go1Dacb47Y7PpqaqakBZONJ6fc/0Rm4wvX7Jef6Jx+Mkvyz/x9T/56S+xqx5+4JhgnmdSXrgb7vksgcoZ7yMpyeQ/qwcLXWuK9aEGZyX1cg6RYZyZZk9KCqvBoqVgTYKW6MJTFSaTKn4ca+MigsK2ramq1eUEQkn4XkpwmkzrZXNfE7hXcVzOUvAJdSWUBfCw0GWzjGidJcyvUDlECORBmcILXL8vxOjLwQd15QplKXNx9ZhwOBLijD9GnB65vbnl8aOnqLigQ+JcGbbUqGRIyRCDFzPBGDFelNU+JaqqwtY1SptTMFwI8jt7L9ZvIYTT9HmlPqxNiMDlIlbOqYjYY2Qehe7RtA2rbf9pA1TlPsuQlWZJQMonxGeOiTrlEoA4QxbqjPsaN/of1xXmgM1w2XRsGxGPbbsNfhzIGkalOYwL0zzj6grvPXXboLUqeht14kevzzPwpWChNw/DN5GllMTmtapssX19OFzImbauCSngSagklsuLDzSNFXqUD+RqDeeqcMawRHGUeHx1gVUao1bYeXVIe3C+SuX1PxyPzMvEPM8cj3v63Y6QIq+ur1HWoK2R39mIZ9pwHFAFul4Th5WiNAeC/KnizZ+K05WpHBtr2WgNMbPERFU1AiEPe4xRYuOpSpifenO9BZY5EpaxPJcb8pML4YSbGnxknkfmRTbp8TjIgaREN+RchbM72uqc2rREH6XByEmCMHlIU16KNbSuLFVtqVpH1RqajaPeVFRtjS6w9bws3N3ccry9Iy4Ba6T5SuRTloHRTgSTDpozx3e+85Rvv33F5eUZ/aYnp8hxiARXk+qWVE/YSZN9IodvzjqRRV6ICglur295+dE1d3d7xjjjSSQFtamodCBWEVUrlNUor8FrVBSUqa5qnLEsMXAMM0c/ctDiDGb9QjZSAMccsbXFaIupRMyMVhhnsaomqyhi/DmQwupyRLGSBogytEmByAI2Ufct51eXdJueoBI3x1s+v/2U43RPNlIQxxQJcUGv3ikql9C7hLUKjS3iWktb1zRVR13vMNZh0UQ/c3+4ZmoGPjj+ZxzC56IlAVYXqZhnUL68X9DRXFK89ZpiD9IyaJQy0lxkBbhytmWMcaWheEMYruV3jwWRW+m+X2IVF6qKMbaM+8T5cf3fOjhc0Wr5OQxKGRQWaxpq21HbrmgvepztSoNhTqjMahUvZ8/EPI+nfVP+X7j48PDnqfF482vKn2987utRrv74L23EMt4YR1U3ghZ7z9nujrvDgZDGstceeHZ1iZ9nHl9e8v6773N7c8cwybQ5xje0oz/RbKDkY7fXN/ydf//f59PPPuff/uv/ff7FP//n6bue73znu/x3//V/E0Xmb/+tf4/7+z2ffPYZ3/3O+2UiLkPVu/094zyzPwz8/u/9AR9//DH7u3tAcxgGPvrkc15e3xAK60RyjwyVc0WTo6lcy6bfST6TteSc6LqOw+GAsZaL8wtu7+94+fq15EAUa/OchElSuarcIzJcXa33l9IYrzSpmBLTNJNixFkraGChaksd6didt7QXDR/cvWCcJ8nJMepEYY8h0LYtfhZ69NqYL8uMsRaUoHuLn4lT5DjsUeQy2IWXX3yBn2cxFmk31HVPt73Adhu0a1FNjepbopYg0eM8cnN/Q4i+UIHBORF5i/ZO6PoZmOdFdDnrC6wNrnJCeV61KjEQ/EKMHpUDOXq2tqeqNlRtLwyD4AvN3bDtN1RGajm/eJaC1Py86+trMtSX+Ztv7jA/lwK1frIU2z8X8jh9VAodbROmEVtJkyxGOaoqM08zAZmDpGKnKQWuQF1Ga/ySWGKQHIKSqWG0LmiHbLQZ8Xim6CNsZTFOqBAxZkIpzq4en3F+sS3UpMSyBJkaexF+Q5k4n3523phGa7JW5aCJ5SlZi2rFmhir1qm0lYMJpcXerxSLIHoGcskJsbIA7493kvJdteSUmcNMu2sgZbq+43x3hi3OPC2ZXiU6FfDLwFymBE5ZXr8+8OKDG55875mEXKVi/xYWqqri7u7uIa2yICsgjSAg2QYpME7ine3qCh/FYlOj6JqG29tr2eSUOET4QrmSqXFBOpSS0DnpnYv1omh0VM5YrajOW6ajYp6O2H4r0+NvyKWXyKZtuNp0dG2FTxGTEuM0EbuW2xA4zjMoTr/3MBzpmgbnVqcug0Y2bl0skK1eOafmNPVfhVhiSwd1LVSOBwcX2Ui01iQvlLe7/b3YEDdCzUFJZkYMwuubRjmwmkdXgnYocaRq6prhONA0m9LMm9O9u1oxpyQboTh4JA7DkeMwcnZ5yTyPLHEhJ4XTNViNjwFV1oEuyF6MsTQbgjimLI3Sas2rAOcMWiVaJdawSknj0hjN9f4aYyWgD8Cgqd/YVAURkWyQNSn27GxD01T4KILs43Hh9uaW/eFeuPlWhK/OVFRuQ+121G6HpSb5QA5iKqFzwVJVIuDxOZGdpWkFuUCDq6DtK5pNjXEygUoKfIhMIaIrTXNeManE8d6TshLLUFuRtQajSY1m86znyftX7J49Qp9vmWrDqCeiSfg+MWaD1zXJblA+oEKAb9A6OVFuk6Rq393e8eLVS3zK6NYJV9kYlIHoI9NhRHsjxUMOKAONc/TUuGSZpoW7YWAmEa2m3e4gC0/cLwsocX3TddEVWIMvFESrFFlnlrAwTxN59igfyCoTs0LphLZCgQWZjqoEdVtx3j3mydOnKGu4vrvlx5/9kJd3nxPzTNtuaJtKgiy9Z5pn2dsysqaqmq5uaWrRkmyaDbte3KmckiThsEzkyjK1Rz68+0dczx+WoZgg4BkJAVRKzEZyVqzZtVrrh4YCMXYwRnMK08oWpV05P6WosrZk2aSS26ISMUnoLOSyT7+R/5RlD7Gm0KmUedi3Uyo0LpmYr7RiGe45lHJoZalMW/Iv5K2qepytMbqiJMuQsz6h3WLZOTKOR0JceGis/ote33w0QxBjKDAUxmkuLh9xfX8rTI15Yb8/MC0zTW0JMfCtb73Hhx99yPzFjI+RtDZgJajzNKHlQTcaU2I8Dvzeb/8j/ubsub254S/9pb/E+cUF3/3Od/kf/0/+ZzR1zf/n7/4dPvv0M3JSVK4mKHHPPO4HPvrwY168fM0HH37INM3U3Yabuzs+/Owln724Zn88YquKvutQwDgM7A9HofQZg1/8iVrUdz1t29B2W7a7MzGmQfHk0SPeffttrm9veX1zzX6/F2pSFgRfzhHJvFi8x08jkxZzgbqu2G42NHVdzlLo2gatMuM4st1uePbWM3a7LarT3Oyvub69ZZwmNtuOUMxamqYRKm9xwprmSTJkCi1LkPgk2UVJMc+TDImDRAHkJCiC1Yaz3Tlts6Htzmk3l9i2x9Ytpm3BWAnbGw589uIzru9fswrY66amqhzTPKJNxbzMgCSwz4tn8VH2CyU2uU3bnNyl4hKI80Ty8ndyjOiY2egKZxuctRzGsVDrBPVsmppczHyWZTmJ83/e9Udzl4Kf6ii+nJnx4GDyJVTy4Xx/47GCQuVep/7rXzr9NQ0qa5yyPHv8nIvdBaTEp198xsuX1yetAAjVACVnSQqSiuxTJOmSQpozIQdA+KimiImleSriMaOkmMsKFUSMjTJcXm1wzpzSrUOIhYZRPOkLDUGXRuxEI1mF3Uk9dI6pCMtLYnnKSQQ4KZIRT/KVCjPPHqWkebFW0seXZS7hXTL5TIUGo3RkWG5RTcY0huU4cR1vefTkKcaWxFpjUNqSkhaKUhTaWIiBuqnoL3oishlNy0Io2R9r6qefZKq8OgAty8r9VcRC94nI6xDegGjTyT1EnC18CCRlGIb5BFOeDrZCnVgRoJzEhUojVsKdyugqswyJ7KNYeoa1wfuTvy7anrO+xlaGMS2EJRB9ZLnI3MfIPiVSaRZkcmgKPSOdJhPaSKowCpJKBalap3n5lDWxXmtq/JvuTCDFuDFi7Wy1CKuHZRALWuqimzGMY/HPzorkk1jKakVOAaM0dVVRuRo/DlKglVTsNetlFcam4uUuon+ZKl1cXpTQSpnyhJSKn7psKNoYrJO/u06YQvlacdXKp+bKey/NpobaqBNVShzgFAZN1onLx5c4u+JfQhcxRr5mnbqSJNNm03ZcXJzRtS3H48T+cOT6+o79/Q0hR1zj6LoeXVc0bkdvL7B0SJBGLkhbKeyyuBaFFAiI92Db1jRdjWu0FMaNoWosprKFbpKJKIKqME2Lcg1ZOfzwmliJ4QIocmVRlSK7hOkz1ZlBVTCpyOuw0DppRFGZZA2qb7AamtpKqrgPpG/QOgFKQRAYx4lxmCAr2q6l2XW4xpGLlaXKiTgEwhJIVoY4de1oUFSzYhlH7u/2vLrbs2iozno2zQ5bOZRVLEehA1itQGkSiZA8OYJRmlxyZOZpZjwO2AiVNjgDUQnlLS0zztXiepQ1UTmsM1xdPKJtKqb5yGevP+GzVx8x+xFXW5qmoq0qrLKoZHDK0DQ1fbOhqWo2bc+239A0PU3V0VQttatw1hCRJnwIB8b6FS/9D7mbPkerTMpeGoxcHKRyFGcpFEpLkKEU8mtDoSUQTz+gGivFOHoPaJytqFYkkUwsZ1TOEpaZygGdkyB0K9qoT8J4EcNm9QbSWvaFGNZcAwWF1qKUw+oGZ+oTelG7nsr1gl5oU5ojRUqUbATRQ47TwDSNxLw8zA5+xtDy610PNcfPHZj+CV3TdJSBY3lbz9x+s+Hi/Iqbu3um48B+f8fd7S27vuFw2LPpe9579zk3N6+Z93MZKhX06g0DACla9Ok5SDmxLBO/93u/w/3+nsN+z1/5q3+NR48e8/jxU/7b/9q/gTOKPE9Y5wrTQc6gECIfffAxN3d3WOvYnTXEmPnixUs++/wF87LgrOV8txM788VTV9UpaG8VZM/zzP54ZBgHzs/P2fYblHJcbDa0JQS2qRsWH7jfH4r2Lp6GnmhN17XstluxYS4ubVVdg4LddkvXCu13mgR1b+uGi7Md/WYjSHtt+N1XH/Cju8/pug5XVxijGQ97UIqry0vuD/fs70XL6oNH3K1kODcv4qiorabrO8Zhj9aapZz1fpkx5ec6P7uk73f03TlV3aKtQ1cVqnKCJqTAsAzc3L1m9lNxkQxiEV0G6CuzxGgtOtjSANnKklPGVqJR1gjqE7xnnidC9DRa6Lc6Bja2pq562k3HzeEg6x/LdruTAL6S5H44Hk/n+M+7vj5dKjzw+gHpiNfaWSGF/NosUA7y0+d/hqvDTyIjqxawvIWQiceFRQfu9Z7aNDitcNqInekUCF6CiYTVKZugDxHvIz55shH60WqkETLorDBpRTQoXHIkLTJnQo6l2JNu8dGTHSkLbSGULjT4wLwEQswoLQUjpCJCc+QyRcpKobVoKIQPr4voLZVCWibBKQmMl9JDFsDqGLTCfssiNp8+BFShySgtUH5lDXFcaJoKEnTbHbvNBa4Ibo2xLAmup0CooOpbQHh83s+YjeXsnXPu5yPDvIhIPkoTaa1Yng3DgI9ChVqnSl3XSep58A9Ba3kVrZfEZBI+LJzttuR9Zj4sTLO47KyNiALh1lolr48WKtTJEhgjjW7KjHcLca5kihwDYfjFkN0f1/X4fId1maACi0pYY+nqM+g7jn5hSeU4VAVZM5rg84kKtdIBVEF77OqulWDV8az3x0ofCjHAG4fP6V4ra1VrzbZp5d4pPFaxXxY9x/F4lPs2Kpqqomor0dD4BYPGNT3GOja7M5q2PVkyP4jpxPYzRUmxDlHyG9q2ZQoLh2nEh0C/2XB7f1fMD+RSSmOtOiEY4mgVMEaaTmMklX6l48ksI9HbilZLQ+pzYhwDs1ZMLOiziqTX9a0ICrGtUIqsJAhQY+lsxeXFI7ZNRwyRaRx5/fqeTz/5hMPhjna3oWvOUNpgTIdxl1i9Qwcl1KO4okkI6pKEohPygrKKbtNQt5W4FFWaqnFUjZEpErKVhgRJGZISLch4DBxuA9NkULpBaWjOG5qLFt0o5iCC7skPHPca11qUzmidSdmVfbhwkStbslZksrUGHn4jroISL4ugRse7AaMtXdvRtxtc44QiECUcipTIudxzTY0OEXOMDMcDN3e33N4NjFNkioHjvOCaGrWp5fkwquw1CqUzaAnqIsthm4qQ1Be7aYNGG7H6zirgU2CZhPvfNj3GOJxr6F3PttqRQ+L+eMPr28+IeWHTdbR9y/nmjG17RmMaatvQNT193dHULaYkiJtinmC0w9ga5epCWXIYE7gPX/D54Q/Yj6+JeaVDxeJyGEAVI4BkyoS6mEGgTzavKeVi+14TYy73gaCQUFx2jC3DKMrAThoMKUCFvizhl6ogzlpczcrZtu49wGmPWs+IU8q3MgW9qLC6pjadaC+cNBnONhhTFTREnzRE6x7n/cw0DUzzIM+FXkuFEyHk9N+HSz0MNt/82Jdvxp/5mW/CtSzHQhc1J92LtTL4eXT1mGGayF98yvE48PmLFzx/6wlk2c+ePH7M2dkZ9/tjQS/yw2T6pHNTpQJ6E9ERY5oXX3zO/+Nv/S2sq/hv/OX/Fm89e8Z3vvMd/o2//u+wHO9pVOb++lZCQZV0nvMi1PHtdoPSlh9/+BGvr6+JOaKtJixeMiJSJEXJC9psNmw3W87OzsQxUkFTV3RdQ9u2PHn0iMuzHX3XsNm0dG1FillqsMK6ID9Y9a+/W11XZUAl1FljbcklS0VXiIS2fvEClRUXFxeiOXSGo1qYbUY7R2UMlpppHMgh4ZTm2aMnLMEzDnJ+1nVDXTSQSgmlavaLOEUqOBz2uJIVZqwlLNIQWWNom46u3dG1W5yrMM6irazJEAMhS1ByJOKjOC/GGIo7pdCj5GxPaMQFK3iPUaIDjhmatqau65Olee0cU0GwKmtoTEUdA53rafstXdfj/Ygi03VbthsZthuEara/vy97xM+/vnaT4ZoiAjvBDCvvkYd1vIIa+eGxbORvfKy85ZxPUc35jY89PC6TEg3ZKW5v7piGI03tcMZRO0eqIkOYSIVelVJmXi0KFbjK4CpF27iT0DnHTJikwEpBsgAiDzkPKyKyTmi1UvS9eB2HRUKjpmlmnlfBmT39e5JgKj9HThnRmWveDMLKeRXIKXEGibkUhZp0esEeIKA1hE0K0ERVqB8pirOHVgqjDWGObN2O2knImHU993dH2s0ZxlaYqkN1DbHpCXWPdTUgNmd3N7doGwl4xmXhOC+EmGm7nSSGDkNZsDVxSichmfcLbduQcsRERVIiJpSQlszxOJJJorUoB494pxsSEtQU/MotBrImRbBWywS+6GaiyqA1S44cUpaCOhuWYaTLmeVrQHZ/XFfTWWYlnPKm6bk051S2Z7IW72cyusCmUjDVdV02jHhCKVyBXFeNgjAs0unzq9B7va+UEv3Geq1NoHPF3rYIJodhYJqnMi1ySBqvIcah3H+JzbZHGUUMnhQ01ijaugO0wNZNh3UrrcKUWrHwpGM4BauF4CURXkFaEcckFrB12xJTZBhHKYBKAOEwDLIGcsIvM+REXVf4OZx+T0HFNDVgxR8aHwM39/cMKvLycE20sYQqicZnpWMJT1wKo23T0bVb+npDjplpiIxTYvEJv3ih6BmD0RWtOWdrL2nUGQRJehV72vU1iKQgfP2sMlVjqbqKuq2wlcJYTd06bC2WvSlnQqGGhRiJPjHPe4bDyLg/QlR0ruH8asfusmf3qCfWmcGP3N0r7u4jeU7M+4HJaeoQsMuCahtsZUoODhJMCiStyNqQKvPHvh5+3pULb3o4Diyzp9I1lTKomEiLJ2lRyCmlxL3GgHIaXVmShnFcuMsTe+NJvcY1ljRp5iUwHgeUSVSt2GKmLNoIi8NVBmMdKQjCtnjhdBMzFjmAfREmJySvaJoWlPIY7ei6irbp2dZbcorc3r/i+v4LQhh4fHHFpjtnuzlj0/W0VUNlZK1YY1AZpmVgGb24XLmWrt2x6a3IoBVMKhHSPa+XH/Lp8A+5n28EAaeI9pCwPaUpaPz6uha0Icu+KbV9EtqIXbNvclmzJWTPCL1YlQM85kRM4YHlnLM0wiu6nDNWr65TwhAwZXKbUipDNV1CZCWc79RcsKIXlegv3Ia6kvwL52q0dpIizqq/SCeN3zxPDOOREGYkzVm0jEuYSFEoyyfdBQ+0p5/UaPzsjz3896snon9yV1Wt+kfxIxKqtDynTdvy/J13ef/b32a/P3Bze8NhmLjcbRiHgX6z4d133uX29p5hGhF7bLE8t1VddJ2V2KE7hy1ayrbrqer2ZPLyj/7Bf47Kib/4F/9l3n7rGU8vL8jnO8I8MA3TiaqktaHf9Niqom4bYgw8eXzFX/jzf47jcU+Bwri726OtZrPZoI2j6TdcXl7RdR1t29L3HdYK+l67SpoFJQV55cSEIMZA4yPTEkT7yYPFeTitbUFIZP3kYsQRH+yXk+R0uarCz567+3v2hwOewK3zXA8HlhCZloWqrph9oO03mAyvrq8JPrDMC1ob0TGWs3c1ZFEolmlmOh7IKUmGlVIsy8yyiB7EGkdVNWw3l3TdFuckMNZVlaDvCZYws8SFQOA4jaeBrrhJSX6aD0JpHMcj0zigVD6hGtZZmrrGOQsk/DRKCnhYcEaz7StsHHjc92ybnqrrGaeJcRQb5O1ux9l2S+VkbV5f33EcjoXa/vOvr91kaKO+1CSsqMObTYE8fmgUTs3Eif63TiLfhCV/2g73DbBEdABG6BfTErFOs9tueHR5wXAcuX59x91+FERBqTJ11Fib5a3KNM7htMGojM6K2ERpMnxmnCNzFJLQVCY1QmcSdwznxPJT7MBCsXEVxxijhXYUohQy60EQYwbt0DnRNi3H43gSvQGyY6NOTUXO65QNZLNUQmGqG5bFF3REnwL4VmVJDhmfIzQ11hoOxwNLrGj6Lbv+gj/44T9md36OeqoLP9GhK1u0FaYIhRPaWXwOTH7BVRXnTcs4eRKJunEMR9mcnKuoq5p5Xsgk2rZhmkamaRIxbBFu1dZyHCWIDjillM+Ll4PemkIL018qmMniuR7XAZrSGKvQOqNSmVIaw+VFg0mK8TBw5gPj8fB1b+N/5tdkZpbsUdpwubviaX3FMWYOMuyXYDzrHmg75NOBvzar8IAgKbW6QOST+J+yWaI4TRLfdA7xXpxxnK1IMWGUInjPcRDOrqurE4Ig3zOXNWMwlVAoFAqiRiuDMw6VFFVVY0rjo3URjqZSDERBq0LwjOMg7msxgFaMhYu+zLM031BohwEjkQbyMe+xzmCdQMlxDZ5UhnVaYTSSzJ1lQBBSZn8cuT+OTMrjhwV0Ev6xXt2vFEkhlrQK+qbm0m7YmQ5m0VklD3lOpHmhqWrauqKpNrRs2KkdPRtcNqgHJZcUUSXQMBaLv6p2dLsWVzu0y7ja4CrRmGRKUGHO+BiYJxlYLEtkGmfCIlbUlxeXvPXoCe88e8amb8AkhjByk+6xREiJaZ5YjiOv74/4sz3Oaa6enNNve6rdVkwyhlE0B9aBNaLp+IZcOct9pxU47agqRxwD+9tb9MGgrAIDujbY2mGVOJupJZOTxwexXA4m4XY1VVYQFX6JzJMn5cA8jWhXYZ2hyrYgoyv6q+T+DQmlEFTBGqJyYuhRzi2lBWVwNp0m6nG1RCazH/cchjv20w3GGDabc67On7Dpt1hjCNGz90eZnkYJ3ZrmER8X2vaMp0/epW5qtNMMy4HX9y9ILqK3R27899nPr8v+oNB6HYL9dDLuaoWt0Bht5XfLnJylJFtGF1rTmoGh0ZIMS6bYVud0+vckuTsRsz6d7ycbUEQobt+4p1YXuJTWgFGEX6AsRtVYLe5RztQn9KKqVnH3g3vUuieKYHdhmgbGSegoaEBnYg4sfiBGOYvkplo3z5+82366afhpVKMwL76BWMZv/dZvsd/vub+/53iUFG9VMpJMZZmTuFy+9/67vPetd4kxsmtr6sMBawx/6jf+FN2m5/bujrbtMMZSNzVXj65o6pqz3RmbvqdrW87OhMKkjabruoIAJvq2Y7c7o99sIEqzXfcdswKrLaqcXdYUdD54Dne3zOOR6BdMXNhVmhjBE3hyuSMZS9N29P2Gpt9Q1a04ZqbI8XA4GYzc5YTRGqeNnHlGmuJchmwx5gc0q+gEVyaY0LTLJFy+QlaJUtgydEk5U9UNdJmweGJO0FS8uP6I+2FgfzxgKyeDoST5UyFFbm5vGIYjd7e3p/N6ReSBYi9uySmwzOKYZa2hqSoW709IfdsIote1O6qqwdlKBoxWGDJLWDhOR+aw8OL1SxGgK01VyZ4Qiuh+nQRMw0AMC0ZnKucYxyANUKFj+2UhLAvzOBDmCasTr28HdiZwvrmUYU/dMZafsa4cTeWonGjBFh+5u78/Db5/0fX16VLHL6MMpwaC0ibkN//8OddXfP6h4XgTrivQbESKgJRRIVNVNbZq6DcbctIYO1DXSQJECjXJWtAEcprxc2aZktCjMsLxT+LG1DhL11ouTSViqZx5cT/xeijFkBL3JqXBJy83WYl+l+mt0Hmcq5m9l74qlfww5EBY5lkOG9LJItdqmWBP84i1hhhLPsLp9cqQVQnSMliri+BNDpcUpBvWWlNZR4oRU9XYrWQOdN2O43Gi7Xv6zaYgJ0JpE6/zEpSURBRYNw2V0jDOLCkRlUDowzhiK0fTVOz3R3zpnn1YMEZhq5bj3SAWm2UCv+o3lmUqN6DwcJfgmZaBUHiLfpnKREUW+nrwyfMWMdqxihiNkUYuZhizYiBiyYRFbOjC8hO2jX+C16yCUPQS9K5FK80YJw5zwntBnpq2luA71BuNQ0HCjEya1k3rTRRs3cBisW6sm1rskctCX6cn8zzjXMVwHMgp0bc1fpk5Dkex3rPmRGGIMdI0zem10EoxeU8MQqO73J0TJ4+2CndenGdKKvZPBvB5v+DDzDSOHIYDrq2IZMZ5YhpHrDayWcd40uKs+4i1tjT2CmsEvcor5Uk9iMKNNlgjvjURRUgyaT2/uOSL68+wU8bo0nxp0UWB0IeMMXR1y1m9ZWsb1JKKAE8RZs90uMekwLNHj6nqFkxL3ezoqzMqVWGUhRJsl6IvXu7hZN9c9466q7G1wVRFE+O0FEWl8FKIffEwDEylyfBTgJC5PLviW++9z7fefofL8wu6tkUV7v1maVDeMOiFl9Nr7q9viXnBNIGLy5btZU9/0dP2DVknjoeB4/EgWiYlwW+CXn0zrkyErNFJo6KIWmMO7O8mEUMag6stVVvR7nqaLGJtRcJHzxQmluhRWYwJtFKYSkumRpNEZK3EWLmuW9EUnQ5FKaqTiigjTWxVVVgMSQVyTGKdnCWbyDg5l2TvonyPiA8L0zByu39F1JG22qBqh24s0SQO04Hbww3DdCCnTGsriJm4CLXi8aMnnO/OgMTLmxccxj2byxbbjdwMP2D094TkZSJpTKHPr8WUFFqrYFcs0CUwb/XKl71VEXxiTUWOUVzStBEK7eoORwmfXAeBYsyRWOs1oarZ078rP4M8OA3P1gZjdTBCA2uD0VCZhsrUVLalqbfUrseapqAXRuhR+cH+PQTPPI8FwfCUiAx8nPFxJiZPTEtx6nrzWhuG8vjNz6w/81d8Tphh37wm47u//F1STGK/ejiQonD6UxSELishO9VtTd93NE0r6HgQ16S6aZiXEaWgquqyDyn6TY9WmhADlRWaz6pp0Fqz+KXkAslrv91u6bpO6NO1UGrHYZDw3YKGaa3IMfL680/4/u//E25fv6KqxH5aG0Pd9LiqoWl72s32zVt63aplkm8sCsmCEnRFGgmrxTo9JC+ubyjS7CEnXCUWttM0kYsLYSIV58WMX+SsFQp2adyNIeRMKjbIKWVwmtEoPr1+ia4MfdfJjhHiiY48TKOYoYzDKel7PQdjjNR1zRqOW9c1YZnRSlFZ0UzlLI6bF7tzttszunZH22wLTVJoUspo/DRxffOSYzgyLqPQr1Iiq0xIitpU5GIVb5WSPJWSN1I5c7K8b9sO45w83ylJqrmfyTkQY8b7mYvW0ZoKa4ViNt3vUTnRtR1NXaEQOvQ8e4bDIM3dP80mw8+RU0vxFU3Bw/Xlj32VkOoBjZQHXzVgW78mpUzwwqW1laHttpztrtj0G6YxobSI6RKQirXpMgdqB7XV6JAY58gUVxFaKuJkzTFFKh/o64r3z3rePWvZdUfCJ6+5WwKyeRvOzruTb34sL2iK0myYMtEiFSg6glYWslAzKtcIT3G/ZxV0K604HgeUzqQUWO3/cuEUykJZbWIfcieqqgYSGHDWSnOhNSolxuOB2ihIgeasQS2Brq2xzp24/+sE+uQljUDtOUVynInjSLYaX8KYqqoikYumJHHYHzDGYp2hbjqWEmKz2tlqpU8cdaH6yOJeN8JxXgShcfYNelmZJiCNk48CuS8pYrUihIg93R9iMZys4vJJS3wxc9zf0bwhdv6TvnKh2VUYNq5l8YHD4pmjcJI3mwZltIj4g//SQa21/H66fEycK6SJlZRvsf6Nc8BVTqZ9OZ20EfDQiFhtGIZB8gPahv39HSBpoEbbEw0hxijBPFqXDV8Qk+gj2ov9nsaw2ewk5VubsknmLzUYMQYJ2lskHXQaR6quKR7qoIyiaitCTDJhLtxZH950w5IJhjWGaDQkQSKUFjQnpQhJ4ZCNS8K5M03fU1UNH3z6Q1RSUmiVyTYRVJJp9e6s52p3RlO1qAQqleTUQglM0XO+6+n6HZkG63a03RmVbZAbVpGKpaxPkZA8iYCtNW1XUbVOClITMU5jS4Mhr5NYX8cQOB6OHA4H5tlDhF23471vvcN33vsWT58+Y7PZCGqp5DkJXnGcj7y6ueXFq9e8vP4cbOCd957y9i895eLpGa6usXUj9MwIybQkW7PMoxw8KcD0zWnGVx0WSZN8QhlQjSLNiekw44LFKoUyCTsnslnIzhCTZ5gm0cXlJBQqo8gWssvYWlN1NW1u5PuXkNAQAhojxQmJnAKohHUrEpDRWfZxJ95ucniFLJa1IZKSJ6pECjM+ejmbkhfqZ9XQbrb0my1NVZNjYjzuubl9yeQnKq0xVY/D0lQ9V2fPOOuu0NlyHAbujvdsHzVcPnd8dPe7HJe7MqGXNb4UKgSF+gfFlRDhfosGw8gQDTFvWNEHrSS7IhdqojElnE+bQqtKrAnsKUdxFUyZlErhj2QNrHuMYg0X44TIZopFamEyaBxKWayuqUwrDYZtqFxP7WRy60yDXjOOUmluUiJEj/eecTyyLJOcDRrQkSXM+LQQs8f7GR+mojH4iqbiK5CJn3aP+opcjf9yt/Y/9Wuz3ZJSous7EUtPs0yhy/nRtD1Zq5LRUJNRaFcMK0rj17YdayaGNRrvAzc3NzgrqNf1dMOq5Vu1gauLpLWWJ0+e4JyjqqoylFq4fv2Km9fXTNN8GoZaa0hx4dWnH3D9+cdyPyqoqw3GWHmdkxTscVmIxrLoUc6eELDOMY9iz69X4xyy2HbzoA3WSp9C8LTWYvQTJWxOF4vVN4OL1yEmcKqz1lZzbbRjEtpdfbnj08OehcR4f6Rum2JXu6CzBOUGv6CbhnkWPWjTSuL2an6yNsoU+/SUoa4brFGCJARP4xy7zY5tf8lu95i263FVhaucoKoxMs0jn774mGQD17evT0LrXFB0XRDywpE8ZX7knDBa6NJ1U9N0YhmfcmSZJ5ZlJMYZrYQdUGnHo92GR5ut7Mk5ME8DpCRIU11hTcQvoulatVbrQOHnXV8fychwEmD8ES5BUNXp8QO8+5Nfp37mn+ukJCU4HkdevHjJrb7h+vU1h+OA0oqQoojDogiQkjI0zlE5RVgS0wSLkPxZf4qcwKfMwQ+MwZPSjs4onvQVPmTGDNrCblOjUrFUTcLZ9sX6LCdV/JWl6VCFRhJDJGfF4XAUgZx5mB6vsPOaersKeFdtRgyLQFRNW0S5Ery3do1KK0IUrn0MHmLEpIhylrrqWWaPnkM5hATCVGoVBRa3GuQ5SySshunlDTp7DocJ6o45iSYi5ohCkJSmrjkOIykbuq4t9JdVL4Jw0kM6QZrOaYZhfoCzEZcQKoNSiRSDuCgYsShcueo5J4H7McQojYgYYUWCSnhtUCZzvnUMKeBs90e6J/9ZXsZYso90pqfSjvvlyGFemLMUBclndJZlt6JaUDIxKodBtBG61NyRMh3KD4JwrQX9Wp2cTuL58rh2FWthUFsrzkdKUdU1SQtdJOcsyd9an/ictgTCQaapHF3XcXd7z+gWLh89PiW8/+QekFJiXma8X1A5oZZAU9XEFAX9MpqqrrCVJc6+NBjyHKwbv9A5ZPOUu/Ph34lJNjRrRG/gtMKCJHYDXmtevnrJ69c3HA53BR1aBarQVDVPH1+x6zdsuw4V9SkQc/FL4Z1GttstTdODcuRU47Qp2gvhlcvv4wlhIaSAMpmmqambClcrtEEQn9qinSKUqXhOsgLm2TMME/u7A8s0Y5Vl2+/4lW/9Cm8/e4u3njyl3fYorU46pnEeudvf8cXrF1zPtyxm5PL5GVWrePT8jO3Fjq7fUTc9xrZY3WBNReqFxzsvR8bpyDwfmZfhn+3N/0e4lFJYZems5dHmAnuhGcNM1Tn6bY0JilZbKudo67o0TxEforjNGYNKMjVVWe5ppTXKamxlil25hFzGmAilqVSF6ptVQpkS9CjwKaKjTlRo0JKQHkmkqIiz5Bg5rXBK01ciXE7Nhn6zJSs4Ozvn6fYJ5+2WGD0EzzwfuT2UeygbmnbLxeYRjy/f4qw7R2lxdto92TI3n/LJ3e8wTNesBJCECLAzEdH0a8mICnKWGS3NL4XeBMJbT/lBmxHjinZoGRLoEqCZETS+rPlU6HwhlswmJX9//Xvr/qK0DP2kgXkIaX0zGFdpCUmsTEttOpxtJFzPbXC2xplKhnHI878OKnz0jPPAMk/4sKDIaLtank+EvBDSwuInfJiIKZwKrC/dX2/896c++lMlzDetrfjyFRMyXXYZl2VQcXd/x+effcLt9WtxyTu/oOk2VHVDXTdUVV1SnUtjqJRQkXIiRUEn4loIl1T4UHK8TBlC1nXN5eUlFxcXbDYbrLXSYCwLf/iDP+DHf/iHHI8Djy6v6Nv6ofFMgcoanNFknTEk4jyiU41ykPUCxhAmhcpJzFvmiflgCt2qDMxAUJqyV6vSEK5sEq0QK9EkiOUcE8O04GoROGcF0zRxc3vLMs80TUNT1wA0bSd5UlpBTizLzDAcmZeF6v2nHLeOqnb4guaklE8ayhA8lbXc398S/YItCIrSpfHJRfuRhHmyTJLl4owhJc80DeQYsHVNXXVs+gv6/kzc6wpNyjpx2Lo/3DPOA+MwcHt3Syk6T5R3kLUjKe7x5JSF4sRwWO+DTBaUY5mK5jFiTKZyIvpOfiIsA3VtQGtSimhjaNoOJe7p+AzeL6cG9yF5/WdfX7vJEDLkeq2Q7fr+lwNtfl6K5n8RH+pTIRUy43HgOoFThuM4Mi5zyaEI4vCkS9ETIWVL1RhQhjlGpnEVaiJTwphkEycToueLu4F3zlq2jaM5BOYQ2W4aceNQ4H1knCZ8CpKpgYEkIVA5r3zAhIR/ldRUI520Nm9sxjlSOVv4hHIjVJUEs6ksWR8A0zSWybJHkbHOiR1gijgrFCitDSFFmk1HXjzztMB0TV/3XD15RFVXQq0qVJSHyTkngRRKMxyOjDkwKc9uY5iGhRAk7+L+fk9MgfPzc6wzLF4KLT+PGKVKGIzAf7nY31VOCgTvEvNShM0pleC/gC6NSMxJps85FeqYLOjKiSNEiJGqckI3TFlyUYCkoK0dyVbouv0j31P/rC4DmOQ4789QWTOFwFKmdPMysxw9m+2WGAKmvB4rPUorhXX2S4GO1oot6UrJGUdpqtdrbS7WAEThikuBXTnHrkzFrbXoypKNUNdSacorXeFL4ndlLdXGsek6lmHCVY64ZHa7HVWBfx/uoQcEJkaxDjze3RHmietPP+Ps3bcYphmfF7ZdyxIWliLQXJ2vRIwt+ozFe5xRVM6yBhPmJEX7ino5Z2nrispoVEySl2ElRfbHH/2Y2/t7jsPINMqk2/tAU1W89/ZzLs6v6NstRomYTpWDZRxHlEr0fUtVtWQqiOL0o7VBF2g9lXBMaTAWss60XU3TOipnQUeZmluFMhCSUCDXBin6wGE/cDxMjMcFEjR9R9/0qAzztHB9c0szj9SNw1rD5Adu9jcc5yOqzzx9fMF26bg/3hHSjKpb6uaSs83btNUVShm0cmgsykCuI7FbiGkhpJnZf3MMEhTSJHa2pjmznJuWKc7sF6EFmKCok8Fpi1UyZFiCZ0qeykpIVIhRUBAUutKoRqMqjbJlHUZFXgQlbawjG1VCpjNRBZI43hNTJHuxfDXO4OoeV3fYpkZZR8qRcRlZ/IGu1lzszjjfXVHZipQCyzJChk235by7oKtaYvKQI5Ja3KOV46w/42xzTt9sOdte0nc9zlm89nwev89n97/DMN9Ic6zXIVQq9rRyrbbeWr1JdSoOUmbVuOky0JKJrlIPToWqWDIJHfhNBEO0hDGVrA001sheYpTkM+UkXvsqZ0hSUMbs3xCFa6HAKUelW3GDNB2V62lcT+U6nGskUPJkrbvSo6SBH6YDw3gQ5VMJJA9ZqGmxNBjTMhZEKpKzTN1XDvaXSp5fXP/w/w9Ixh/8wR/S9x1dJ4Lott/ynV/+FZ49f87N9TUvP/+cH/34x/zoP/vPWXxgtzvj/Oyc3W5HiIn9fs/iPdvtlqqqyUge0jLPKK1YCrVKK03TNFRNzZMnT/iN3/gNLi8v6fv+5DDpvef7P/gD/v7f/Tt8/ulnPHv2Ns+fPvsSddYax+7iEU/fOjAcj3gvCOpxGsnTTF3XHI8DaEPXtDKBD6LVNEqRCwV1DpElZqJS1HUrdq91zTRNfPLpJxyPg9QMJaNCGYsPma7tefLkCWdnO0LwvHz9CpUzZ+c7Hj96xG63w/uJnBXzNHB3c808TviQYNOgDpZEU7psoRJpban7nhAC0zQxzTPHwz0+LNTdRlgJUZxHN31PTAmtLLEU5GnVGM0TMXhxSK0bumYnCd91f7JwN8aekBofFnz03N7fMYwDxhrm2aMxJ93Sim4IVWoiRU/lXBlOO+pGLHFzTqcGIUbRxCkFwc8kZcg6McVA3zT4YjZknZUzOYs9UgbGcZI8r69Zy3/tJsOYhwL1J//8L3r9ZBf05vtvPl5dnpQWyNeHQNaSEC12kBlbO5TRqKyY5onoE4cl0LeinE/ZE3JkXCIxUviMhQKmROSdYoIYIEYU0izsNn3RcUShgSwzPnimJZGywbmOHOVr/SLC6a5t8F4yAGJKhBSpSziYTIUU1haKSJlwz/OENYa6FohLG8OyxCLclJfJaUPKi9i7LgvDsrDb7ai7lpgDNiaMUyyHGyqtGIZjmXyvlmrmlBwt3bZnmoUm4p5e4peRNggNQWlo24qQhYu8220LlB7pugY/jVzstiRtubs/nITtIXhpNErAi9C0FIuXXBENqJyprCE4K1Oz+KDpkYYisVr2QSD4cOKRKjRZG0KMNMrS1g266/9L3Yf/NC8TFOf1GU8vnhCUYkgZXde0xmCcId7fi7WckaDFNdsi50zWxYOeom8qzfU8z+U5ech5WLUvq9tUjJJnIn9ZEUvQYdt13N3dMgdPU61IRCKmjF8kP0ChJRPGGGwR7n/yow/ZfOuMy0eXnO0ucHX1UNSUtQglTTV4pmWS9bHf03Qtrm8YXr9EW0Xf1WSv8FHgbu+DhB71G7lnike6cY62EUpgihL6pYuISyHwrzOaSitaLS5zaEeY9jRdxXvvvY33QabdSTJXnNI8vrxk2+/IEVlTCHd1GA7l52uwriIlC9lhVFWQzkBKTnjfSQYZMXmMFceXftPgnBbaVpak2JiycNlzLMLZwDwtTEfP4XAkLlKgVcaSo2J/f+RH84/5/MXntH3N2fmGi4stdeM4zntux3tMY7m4esz54yvOleVsnBmXGWcsVxfvs6kfYVTHqTzK4jeqi12oMwpMonPfrJyMXChoFRZlLDZ5slHoVpqLRlU0phbyUhIkeiQyOQVGo7PBJkEsrDWSKWIySsl0lCXALC6CWhmMrSU7Q2t8isx+YvazNMAKlK3oqh3d7kIoeG0j6bgkQhg4HG5QKdK3LX3Tlsn7grXgVEVX9ZisS5M7k6PlvH3MRf8WfXfGtt9RWSeiTWepqprZHPlk/Mf8+P4/YZjvUVr26Ri9uPbZB+eoMsQ8aaLUGw37SsUV+qI08znFMsyxJzrkw/cqaebKlEIFsbdNGZTsSSvCTpbBnNaUgVWhl0RBlQSgF3qw1RXOtNS2p7Ytznaiv7A9zlZFM7KmjedyPnoWPxV72pFEFGG+ymIfHCdSDvgwsfjx5EAHEl775atYhP+CBiP/ZDeyakq/gdf/+n/1v+Tp06c8ffaM99//Fu+++y6PH11xdrbj/W9f8vbb7/H+t7/L+z/6Eb/7u7/Lj378AR9/9AkXFxc4Z/n8iy/Y39/T9z1N252s8sdx5O7ujpv7uxMVrmka/sJf+Jf4c3/uX+SXfumXOT8/IyYZcI7jwO/9zu/w9/+j/4DrL75ge3bJxeUVrnalqBXns7rp2F0+4fd/9AE//Ow1N/dHhlHqAV9QgbqpsVVFW7ec7bbEsPDq+pr9ccBocV8aFk/lampXcb7bstuJjWrd1Lx4dc0XL19JVlkU4bu1lrZqON9lmqajrkWj8kvf+S5N19B3LdZolvnIOAwMxwG/BLFM1g2Xj8+pv/WIj8Mdfp5xVUXdNCgvTnDHSRqzmAKV0dxNI23XlzXwwNbwIYDRWKupXUMMgv7EZWKZJ6L3bHZnVK6nqrb03TlN0+KcK3oIV9BXT1Seu+Mdd/d3aC3OYjZZYgxl7UbGcSSnJKYAi6SHW2NlQNt2gmQo2T/8PBOKmZBREXJA50BnNVur0NmSVMU4TaVOsUK5sgZnGiCwH45FH6y+9Hv/rOuP0GR8ffvDB7vWr9dESOUkD9VJtLX+WT5aJqgpZ+YQwEHbVHRNxXEeWUq4VvCBWAQ+4xTZO0+1UWwbS1ikuVhKmneKRZmgNZ2xnBmLy4rjkphCCZADnDXi4BBSgZNLAZEMKAmLAsmqqJxjs+l5fX2P0ZC8JCl7H4p/OeQc0Vk0JColsWQr/MMYxa4vpYx1zQl+U0oxDEOhIkmzstlsiD6gkyKGmf0XN7z13rvY846YsrgIrTemtZL0eBLniVOC0uBnj25rqkqxDOCT2B6iFCpGzs/PAMU4T0INU4rr/b34SduKYRpp25415VwsEBO1qx/8+ZM0YVYrghZRnzHFAzqJHiPFdCqiVwqWTPRKg6EEis9KiS+2Vij7zRK0umTpXce8eEZmQmkSlRYu9DAMaGPE6QFONBCtBVr2wZ8mQqeJv9YFoZDp7Zvc0rXRr+ta/l7ipK3omhatFcM8SV6JVich2LKIYDLMgbqS9GkR54ll3uNHT9lttmIvWA6mFRI+ZUPkXCb8MglbvOd+v8fuOua4EFPAqopp8QzLwuQDy+KZp5LCvBWyqlKK2snzM00jZFlnqlAMrdXYyuEUVEYygA2aZQlk66ibmnfeeiL0OyUi4JggRS0FZs6YLALYHBbRVfmZlCN912NMTQwVUKMoFoQ5oJWIK0VgKlNfbaHfNDSNwzkNKolLW/JkEqlYDWcyfo4Mx5HjYcDPmRgSmkKdVJo5BOawcDtEuEvoCjb3Nef3cpBiDaZtuNpccPHkPa4un2Jsg1JGAi3DQuUccQ74cIdS4JeZZT6IEL3ucFWHtg6lJYjzmzKmTRmWFJgPnunlHX4c8GlmyCOLidRVQ3KJbMtEPUseypIjwShJ+3YdvW0lEb0kW2slRXGKgagXovZELwci5f5FaWnoTUWMCZ8jOXhS8ng7E9KIj5B9YA4i8l/mA8f9a/wyc6M1lXOE5AnZU9WOi/4RJlliDszzwhICVd3Q9ed03Ya+7cV0A9nfjIJDvOHj8Xf48PjbjMu+IBcl04NcNHux0CURlECbU6G/NhVr+KvQpdSpgBcLZnWy0pT99OEsXTWW0lyoU7PwJjUKAJVOVBilhSIlGkXRGpENWjuMqkV3UfIvKicoRmU7rJF07xVJiatjXgwsQdKMl2WUTAEr/9YSZsnDUJF5lnTvXBoMrTOqaJa+fP38RuGnPvvN7Cu+dNW148WLz/n4ow/5e//xf8Sz5+/w67/+Pf7Mb/4mjx8/Yrfb8ujpW1w+esJ3fumX+ejDD/n93/99Pvv0M65vbjjs94Wnnwtyq6iqBmMM2+2OpuvF9dFZfvVXfpW/8lf+Kt/7jd9gu93go+RJpAw//MEP+I//7t/h/vaOqydvcXbxCG3kXjBtCyFLkLHR1H3LHDMffP6Sm5t7CYE0lsLcw4aEdYGbw8j9ceDRxRnb7RkhZoZxImExSkx/yJG7+wNkcarc7Xa8/977+JDYH46sdu1N07DpezZdz263pd/0XJzvaNsalSLzcc/r4wEfFtGcui19X58o5P2Tc6p3L/n004EGLUOLMpxNPpCKq9em6zApMXQ90QjioN+gLS9+QSeDUaCcLTTHJGYhfgYkQ6ptt3TtGU3VlaRwezJfCWEhEhiWI7eHe0kYr6rT2s9Kwg99WMTdsISahpgwRWeltRYGghM0NgUvoZYpigaNjFGJrtL0NtEph6MC0zIfxWa/aTpxZ7WSf/L69Q37+0Op1TLG/OID5Y9Al/rq5uFnNRRvfkypB0/qE7dOcyocVZmMSkrpl2k9QHEHWGHdXGxXFW1VS9JhjEzDUSgKEXIQK9Q5Z26JWLVw3jm6VjMuisWXsCEFVml2Tc3b2w3nbUWInrsxMAcpyoZhxGiIvnjax1Q81x8oYzkJT9BqSd/eH47EnInzxJrSeXIBUYqmrlFpBiK6UGFCWA8Aaei6rmHxJWSluBdExGKQQh2yCG/5eLun3jb0Z49ou3OMdrz88CXf/tWLMi03b0DrD1cKQVx4yIyDQNDTNBERG1EpHj3aWHzJH7GuYlkCVd2xJpRXtQiHx3Fgnid04TovPuD9yv03+GUmGwPKMs8Ba/XJ+eE0NSu84NUDWjzYpaHQCHUIrYkafBbL4m9M5QRs6y2bfsfgF+7iwhAzIWWspcCukvCZEYG1NRByEM/59CBKizF+aR2cxKsF1VvFeSBogqSuRoy2+MVTVY62afApchyGk/1eImGNPjWa4zjRtT0ooWRopbi/P6CzJi8eVWvRihTUZUUUQTifoYQCxRg4DEf248Buc4HKQq0IMTEVUd60LMK3VZLCLYWUTBKqylJVjuN+X3zvdbknxG7aWkPjLK7QNVSG+8NEe9ZSGcVZ30nxYQykTPAZP2eCKqhIEFGqONYMOKdpug6lG2KsUdSA2DrnnNG2ImVLjsVRjoCxir5r6boabSATiNELbzcHVhlJzmIjfNyP7G+PTFOQ30cZshJ6ji96qKwjmIRyklg++5nDYeJMnfPuk2/zzrvf4unTt7k4e0blOinSAOciPu65f/GC+7tbjne3hGVimEZevv6C7W7D1dUV2+05bX9G221o2i3d2fM/9jXx1ZfQBK/v99wM16A8qIRXglr6FIlZniNHEnpb9MwpkJM80dpUWBJaBCyonE70pxgDwc8s04ifFmKM+CyOZDkrslFELbS2ZZ4YxwPRL9wPGg7CC89KUqxViJLdkby8zlqRVCaphHGG2vYsfSBuIpt6W7jrPV3XF+53Q44J7yecFdesgz7w0fyP+Pz4e/h4gCyuTyc61Gq/TD5RfE0xBVkLjbWQWMNexZ1JnVzm1iZjtZteqczrsC7GXOhK6uSI6KxkuZBX55iMNsLH1rpQGWMQYXhWKCxaV2JPa1sReduOxm2pXIuzLdbUPGTqiO4qJqEfLn5iWkbmZYQi8E5JAj3RiZSLK2GU4kwV9sLqNpQLygJfpbWQ++wX3Ibf+Ovb73/75Cz1/T/8Pr//B7/Lx59+zBcvXvAbv/GnePfdd7m6umS73XB2+YirJ0/43m/+aa5fv+bzTz7lB9//Ad///ve5u7uTwlAbqqqmqhuapsc4S9v3vPPOO/xz/9x/hV/7tV+jaRvmZUYbi9aZzz7+hH/4n/5/uX19zeMnz9ieXQCZ/f2e3WbDbtOhtYIkeqG72z1N1fKb3/se0zQzDBM+ZWJWeD8zTqMU40pjVPk+2563nlwxjjMxS2CdLiGS2+2Wtq6xVgquR1eXdF3LNE64qkJr0RD2XUfbNTRdhTWKsEzsb18z3N+xLBFsRdOLLsiYCl0aKJ8XsllY7l+fYgNM5ch+Eev2MgDzwePalmWaudnfo62hqWoqa/Hr8DY+0Ar393cs00xYZqGngfyMbcdud8l2e0Hb9DjjJBCzDB0nP3KYDxznQc5mLYNEv8xoo0lZzsb7+6M4JMbIPC8oTPl8pq5Fl1PXNcNxL/VXjMQchBlgwBlF21h6lTl3G6zZgq5I4U1qraDiwzxxfXOPnxe0zAeRwM+ff33tJuNNq014Y22qB0Hxida0FkeluVBvfOzLuoAv+/u/6VazWnM+NC8ytdBaJtkhJo7jSEqJ4zSSUtkEVT4J+XKCYUq8VkJdOuscFznjY2YOig7Duau5aht22w1LitwNE3dzkkmoNhwPI2nyzPO6MALeC+XKOnGAkWmSpt+0xBAZphHjGrRxb4i9168z+GWhdhprMk0G7wzTNKEx1K5i9r4InjVDCZo7fZ9irWuVwXvPzWf3XPTiItGcd5ydP8Nkx76fyKhiOSqUpZXKr8phllJimkcpjJIIwmIMzH7hOEyIr3/EVRXDMInwWGsOw0RTEqTHaZIGqPDP5XeVQL1l9mjlCD7QtBJAqDSkJDQACZPiVFDHwh/W+g2Kl1IQgxx8WgkXvySVjxEqpVDhm0MD6doNSimO88RBZUYvDhFNXRFipO97jLUcx0Ger5hLwysHvlKCdCmFhBWGeGoolmU5UedCCEWzYU9N+KoLiilRuYoYI5+/eCF5FUUb5Cp7upesdZyfNzRtU0SWMI8zh5s9m7pDpUzXbb7kLANIIVMajBCkIAhxRlvF5uoc29X4GFBadFMltUJErs5Bw8npZOWTWmvpup5lXhgOB4xxQuNKvqBbcg8bMqpoezCGEANpmUUcmzMqyPAiBSDKOgkashbBpPcL1hk2Zxu064mxQiUHWRP8KNNiU6OoCq0yELPHuUzXNdSNQeko1ME448PCssxkOFE8JAV24ngYWZZQni9VEpvFUW5OM9ki4XmtxbY1dV3RtA2bfsOTx2/z/rvf5tmTZ5ztziVrJnniMrOMR/w88eLTj/jwgw/4+OOP2N+/5uWrlyzLwv54QGnNdrvh8vKSR4+vePToEecXl/zLf/l/9Me2Fn7elVGEqIiVxj3boJwiqUSeFvzkiUmRXEUylqS1nGhKY5UhxUDIA2NKpGXGYMgBCcaKgSV6luQZl5FxGMTiurjcJcR9zFYVVFbQp7CQmdHay563CA0oFgv1vEiToZQiaWTgUWlJEveReQr4Y+B4d+TJ+TMeXT5h19c0dSNOaX6RQ98ZtNPc5Jd8PP02nx9+r7hGrZQDGSKpVYxQGiIQgbcpjmy5IIgPFClFSgqjV4fCB1rsSrNaRbMg1uoxyKpcKVhCp9VlgLAiBFL0nwxDciYEcZ/KSUO2Eq5nmyLyFhSjrrY01QZrxMlO3K2EUpiSZCXNfmaaDsxeqFBKCzofCfgwo3RmXgaWMIpeJImOT3Tmgh4qJWKQFZP5Sl3GT11fp6v4ZnUev/q97zGNI598/DEffvQBwzBw/fIl/+Af/gNilNBbYTb0PH7ymOfPn7Hpe64eP+PZ83f4jd/6M3z2yaf88Ac/4Ec//BE3N7eCJnvPrGeeXl3ym3/mt/j13/h13n7+NtZaKfTJOJ349OOP+U//3n/I61evefbWu2x3Z8QYePnqJTklLi/Oy7lV9IE5Mc4zIUa6pqGtaq7Oz6mrCu8D0zyjVcYaxXEYxFSmaopYOVNdPaJuWxJyRvVtjzIWpSUzbRon5mXi6uICvxGTj6Zt6dqaunYYFfHznuv9Hfu7e+7ujwzjREwKUzV0gz9pPEIMJOC9732HT4ZrZi+mhK6qUEYzT/NpIKe1QpNpq4offfIJwzTRVBWuaamdk0GhgtY5jFaMR9GkpOAJ88AyDTjraJqOTX/O+e4JfSeujdbagsIbJj9yfX/N59efMnmxHkZBRBg4IBorcVKVxmEaB3L0pXaSOrFqaqqmlrNJK0iCYuQY2LSOxig0EWugz9Cbjqq9IiweP8+kFGmaVmiX1IxTOFG3jTaEZf5akomv3WRUrvrpJqJcX6XReLOBWBuHE38r/+TnH97/6Us8vbWWz8UAMXhiSIwP28sJEhYLUOG35ySNxjhn9lOgry27rqI2DhWgNgaTDSHB/TSxxMTBJxalCeSTaC57D1kx+8A0LQ80lfV3K9NhETSNoCxKWdZ0VWsfRDq6UJ1SzpCS/IxRpjDGStG0JoILxUqf+PbTJHZpMUNMgbau2OwalMoYJ4LHcdhjYsXZxbmkRmvzULCv/265UhZLXltpXF3hj55O13Rbw+v7gaquub2/hxAkGKakIVeuKrCgZ7/fU9d1maSnQquRQ2qaJ3L2aC1TuKqqy3TM01QOlGacpGB+MxPCOXua2BklFIBcPNydgl5rnJZsjTB7rPV8U666atHacAie2LXg5R6ZlxmUQI46BnwIpeES2HNNgl+t4ZyTQB7vQ8lIkUZqzVpJKZVJzwN1yhjRqlhrqKzj/v6eYRikMNErf1ueY2stdVWV185CTkyHI+HoscZyfn4hm2fb/QQSJkXISrcTusPCqiSp25qsVAn/caTheKJ6rdNYKitIQxGPKQXzLBvmPE1FsCavP1nQFTRYlXEIqUlnjTIUq0IQ0el6rxQ6iX3IERDx6Iy2mrar0bYhpRqoQa1ucBZjnDTGQQoblIR61rXBOshqIQRVskpmEYKXJjhlCGFhnkfhw1pwnQRV5SwWtilLca2jQjmDbiy2q6jaltrVtLbmvN6xq1rMHMjHkcgN0dxz2B+4v7nhs48/5pNPP+ef/P4P+PDjT3l5/ZphOFA7TWU1lbW4yrK/vefFZy+wTqwtt7vtN6bJIIt4uWoblJPp+ZwWQkr4cWKaPHEJJB9kv17PEKII73PgwEGyS7IihMQ8Lwx+Fpc7o1nCwng8Mo0jRE7T/crVVLnG5Ko41CScyhjrMDkTk2g2VMoo7VCVgiDZLjFEsopY7WTdKvDZk+IBUHTzhvN8KUJrq4Uym8Q2VDm4yS/4cPrHvJp+SExi6JFLgZZX0xC90p/k3hVEQnQYrDTb09eIrk+VpHJVBktGy3kozzUnKlbOq3uUAiSfROmVfrU2GOKKIxa3gFKnoD4RsBoUFU431LajMi3W1jQlxbtyPVa3wnVHnc54SbgPLH5imA4sfgSViylKIsSFiCfhZfIbpqJtivIzqdWuM0IRxa8BtT99e31N2tRXftkv5pn/cV7vfut9CTdNgYvLC4ZhIMSJ/f0dL1++5J133iPnzCeffso//p3f5eLigvfee5d33nmbp08eU1UVz9/5Ft/6zi+xLDOvXr7kxRdf8OKLF0yz5+133+O3fuu3ePzkCTEE7g97UIq6qXn14iX/4D/5T/j8sy84v3rCdrMhBs/19R0f/PgDFj/z7Olj3n/3Od57SXjXmt3lBaapOOzveP3qNdMg2RVGS7CqoPJSLJNzWVcUu/JcXNes0IkLpVZbS8oZYyxXlxdcXV0wjRPGGppGE1Pi5YvPuXnxgi9evSaj6TYbvnh1wxcvryVIOQvbROnVJEFRtTXf/fO/RjxmXN3QVRVZQUhrjpKE7HVdR+UMh3lgv4z/P+r+q8myLLvzxH5bHXGVyxAZqSqrClWFAtANNTBO9wNtjN09D0O+8ivwcT4FvxDN+EyjkUbSKNA9DaAbhRIpQ7u84qit+LD2uR5RQFUlhmwge5t5hoenu8cV5+y91vorXFXTrJYkZ5mKTbk2hrquSLOpDrlomeQqnbMzFu0Jq9U5db3EFq2SKQ5Q/XDg6uYtu/2WPnVMQTScEsQpDAJTTGBICZ0TcRqxZYo8h/y5uqKqxZxCamax/FUpcrlao1JPChOnGR5VS3Su0fWGGMW8xyiLMxqVI+1iyfj6VrQYSokLKOq9evI3rX9Ek/HAez82BzPa8C7qUICEGcN8F4j4XcKq/BuaoqKcKN0ypCBTSaXAlotFJY5FiVHiszwneygEjbdBsa4rTp1mHCOHIbAdJ0JWOFsdH2/KmYBsrKvVEj8lSYEsUO9ssZpSJpcci4TQMarKMQSBvq15mDIbY0qkey6sCiVbeVuxXi7ouq5YpUXGaSrdraNCSQJtmWZbazkc9iyXS8ZpYlU5MArjLDpnrl69YVmtOLt8JN7Nzh2pR7PjVWIOcMviIJQ6yJmpn9C+5GDUFcZaVqslN7d3rDcnpJwYponFckFKmfFwELu7lET0boXyIgeGTKCn4GmcIRaqD1pushyi8PKLHZ1SYs2YchbOvVLYYg2sNKSQUFns8GyOaGVoFgsCkhT9XVmVa0hKE6zFVQ11lCMrBH+0gA1BGi8Jo1YYowkhvWdzLK5T4T3dxWxlCw8hOHNjNlvbilWeOHvd9p2gAFrRNA3OOSY/HB+rMYbovRRLMREnT1U1XD69ZNEscU2NLSnfc5MhjUoROqfE5D2Tn8QKtutYbNZ0Q0/VVOV6laCzeQIyN5MxpSMyM4tMh77H+yCNSC7oTk4gfklYLWQhmxUx5DLZ0lhdk5KEVBqtseWgCqNcFyFEgh8wxUUK45iCQWvRYMwInbM1KE0M4nSTUqRuLW1rcZXcsTFIIqz3nhDFpeNYfOVECCKm11pyMhQgpVY5AICUDSE5sWe0JeMgZCwRZ6BKoEdPd3PHm0PP315fc3V9w9vra/7u57/i9n7H3d2W++2eyQfGoi9pKkdTG5zxmF4Xqoxksjhnubu5+6e4Bb7VSvkdsWQx78hJaG1TN9BtD3QZDs7K+5mVKF5yJBHIKhzzIkJMeB8YvTSc2hhsVZFSZEgTQwpCL1UJq0WLF6aISXKvOGuYx4U6i6A6pQwBmnpJVTcYpRiGjsPU49NUUAElgX9WROhtu+Bks2HRtjRVRe3ccc8POXLLW77u/wO309dMsadgBOU8TcckYxDKkOKBHSAhZ5kYPUoZxMT5XaSCci88DATmAcQxeLPcd7HoL7TKR22HvJa57Lf5gdpcrG5j9OIQqBRGWYypqexCxN2mpbYtTbXG2gVW10j+hTw2QS0TIUz044Fh6BjDiLIUn38YpwOoTMzjkTo1O/LkQpMiB2atpi75Oep9Qed7a6ZoA9+u/vgWBdM/xzo/PyOEwHb7mMePnnB7fSMNb/RcX11xe3PH46dP0Mpwc/OGr7/6il/96pdcXJzzyaff49kHH/D48SMeXV5SVRWXj57y9IMPhZqTMu1iyWq1wsfA/W7LFAObzYb+cOBv/+avePnyBWfnF1xcPkIpePXqnjdvrxmnQEYxFnqR92KB6xrH4ydPOb24YNt1jG/e8sWLF/hp1i6ko72qnGUPtZsqzBBrbam35Lu0kSbYaMPJ6YbNpqWtHRdnG8miOuz4xS++5qtvnnN1c8cwTjy5uORk8Dx/+Zo31zfHgljuFUPTNNRVw4ePN2z9PUknDv2etVkVIw91bAz6vhc6soHb2xvQirZtWKxWcn0rMdrRRpzYoh+Zxh5yxGjFGGVIWFWOplmxaCR8r65bOV+thI3GFDgMHVMYSUqs4Y+hgSHIGZOTGBelhECtEkpsnZMcp5ypFyL4btqGbr8lxeKMGCTcM/iB2mac1ZxYw9IuIC3R9Rp/dy/UTGsJ08hqUUN5n/0UjgMDY79d+/Ctm4zD4VBuQvW78Mjjeq9p+LUN4Df9ive+XnbP+d9VFEiOjCkvvNWzJ7r8sNJaRNWAyVAbxXljuVhW1FoRfSCi2Q6e6/2ET4a2blhYR/SBbvDs+5G+FA9WW5J2jKPYYlI4jdJRy0bnJ18QFBFNawxx8iTzkMshXfNMHuXIp52CJ3WdXDAaNJpF0+CMZfSR6CdWq4W8scHT7Xa0bSXpjgribqAyBhYV/RCI28zZs2rW/xWhrj4ePDMCM1vFaqUZB8/hfkuYBsIYaFdn2Mpxf3+PqytWm7U8v5L0aYr7yTCOYpMXAofDgcWipaos3o9YI9SYYezIWaB8CQHMaO1ESBWYB+MM/SCpIVkx57vMFvBGQyDhTHEbUjIRcVqjnSP/fYuRf7Y1ToFO5SIIm45iSWMMbdsKKqUMPkvgVEqJphFrwBgjD0FBHCf9ME9h1VHDYozBWnvckGehpgRtCXd68r54bjvqui7an0KzMhYfPWGaWCwWaJvJbYtO4IxlmkZOL+RQmkVt8zWUUj7mo4zDUDjtPa6uSQrGSXjWOWfaupIJdIikGOm7/kjDe1dTAoW2gWRoZGY/d8kNdkqJvWEIMELMFRhVpriCYRqlqW2FUuDjBCRi9PT9DnE9aVCmYYwWpVuUrslF1zPTwbyXDBxFoqk1i6XF1RqlSijaNDL6CR/EXjnFWKiHQTQmzC5gqghq47FINHOjVgr/mdqWA5ACOkg+SnaO6Cy33Y7tfs/bqxv+7pdf8ssvvuZ+1+GjuFgZbUVMHCPRz7o12ZtSjPgot9cw+aPg+LuycvQMB8/2+oBPgayyJMZ3PQwel4RGGMJEyJlhmhj9SETE98aqMq03YjSUteSD2CLsnk1AQixUvaID1DIQ8iHhw0TQhugqsjHIlWYgKqLPGO1YNktON+dCDZ062vHAYero/Z4xTEw+EHNi0bSs6zWnqzM2yxOWi5WkIzuHjxPX4xc8n/4jN+MXTGGUa6UU9ii5b3VBPWJpUk3ZBxSSSEyezxGDVjL9TEnSjo8WtQpQJa9JJXKMZCQXRmhOpZnSko2glTSj+UjV4qHx0IYQxOgkp4Siwqjm2FxUtqUxS5pqjTNiT6u1O+ZfzAyGEIROOfmBvt8RU5SMkpL3FMKEsYpxOjCF/ih4T4UarMhHCqkMOixKCZXRR3/cRx4ub/XOf+dP1K9/ylxT8Os/9925TQAwxUr47PScD55+wMtvvmYaOmJMxOHA2zevefT0Gafnl/R9T3c4cH93y2G/5csvPqeqa07Pzvn+Z9/n+599xocffsjp6Snn52dsNhtQ0I8ju92ecfKsNivImc9/8UtePn/OyckJZ+cXWGO5unnLX/77v+Tm9p7K1VxeXIIyjNMkpnZKhoHrzYZPPv2U/eFAzvD27RXPn7887vtlBH0cvgi9noL6SpObUVitaduW0+WSjz78gI8+eMrZyYbVsiWEwO3NNV3f8/rVG95e3XB7u6PvJ1zl8CHw/NUr7rb3cri8O+hJMih69OQpH/zkU17ubhiNJiuFD0KPV0pR1xK2XFWOse9xznL9+g31slhcHxGRXBK1xdWtO+yJQRylDOBHYcA4W3N++pjF4oymXlHZGquN7ONaM0wjiUCzaHi7f83N7c1xkCj7u+h0p2lizrgah4kYS5ZaEv5j3bQS0pghhkAouo2UAlZlbg9bapc5qcEkRWUatDsTLWLKVMYRUsSoRF3X7A89fTeUOiWgjToyMH7X+tbV2bw5wbvNw/utwrdqHI5fzL/x/7174SmkuLBKNmEZhivcscEonWMUtCEf7RthVRsu2oqTxuBj4u3dQNCZdtUQKXBzjPhxImhNionRB8YQRCxKZn/oGMLEFMWzOCZPQIEqyEeBwnOWrIAQM8ZUOOMYpum9HcuVib4qFCa0Rmeh0KScqCsnUHCUVyGniI8BXS54YzSLpdCjtE60jcMvJtKdx/aa1lnufcdhe8fFxaVMdY04Bin90GBkSqhgCAyHA2nf4+93pFrja0hTD7okfyrQrqLvZMq8XC7p+0ESy8v0r6rr4zR1GKYSxOPwtaMfLM5aEWlNQQ7lKEJeciYMQjWJMZCUHIY2ieBx1vWQElaJI4tWRqgM2pFipFo2BPXdcZc65MAuR6KSZNCYCnI1O9skoeHMG8ecSDovrXWZ+s+Jpw9Be++K99/NxnigHSZyirjieEEJ3pstblOKx0wO1ahiH5mwWoNxHIYtNmm67Z66WVBXFfadbAytNCpz1O9M3jOOA92hY+gHVOUYS7DfOI7HzI5p9GXqkpnGAWvdUVtytMIs6ePwMFGcC2PnFLVVaEpI4ZSxy5arqysqZ1m2iyOCAVJc+pKBMQ0DOUfapiGrmsFbkmoxuXqYABdRqve+5HNEqkqzXFbUrQEdiUGoHuM4MkzCN07zL6BMfgHxvpJmuXxBmqxysGpd0u1TSXbPRcqdMyYldIro7Fm6zOnmhA/ONnz86JzPnj3h5U9+wMu317x4e8P13Za+kyJXHRLe98e9791Mo1xez1T+je/KiiFx2A7cvrwW4TxRqAlBnPeckUasshUWzWQDh/HAEEeijmSVSEgavaQNFxEnJTXae1QEW3RLUlALGmiMQWkJqfPF8cxrR64qksnorDGVw1U12Sb2fi+os85EC2SN95LCPYUJpTSurllXG05XF5yfXnJycspiuSQSeHl4w/PDX3E1fFFcyDjeUxIyOZschAcxtypUplKskxPWVAXBkCJ+RgiMNe+hILNuY367U0EvjuqFXM7Rcs2mWcCkMmCY7cNTooQfRoyq0Kqhtktat8SqmsasaOoNzrYYXRfLZFMe20yR9oxTRz/uC4oaUUbuDR9GYQAw0fcHeQw6H90JHzqAIvguaHyG4/0Y08NE/Het39Q7vN9UfMc6DMCYCqUs69WGx48ecXlxwTR2BD/hQ+L+7oqrt284OT1jsznh6uotV29fHvMpcs589cXnfPGrX/HiJ7/Pv/7X/4rLywuqpiLmxDh6dvs9/TiyWC1RSvP8yy/58lc/RyvNai1mBnf3d/zN3/wNX3zxBfe7HSFl3l5fc3a+5vuffkRb1wQf0HrCTIHN6TmPnj7B1TV//Kd/wjh5Xr54yWwElLOUzEcnsywUPqVUoUC1fPDkMZ99+iEfXJ7z5PyEnBK73Z7XL15yc38PyrDZbFgu18QIq/VGLGSVYrvbcb+XJseUUNr30CoFn/z4Ez7+8ae8Ge+JIVEt2iPaHkIJvNWazcma0Rm6+zvWywWmbmS/KbRlUDQF8YyTUMPausaTGPsOkIFu2yxZL89Ztic0VXt0bbTGCJsgRSKR7WHL1c01t7e3bDYbpmmSwZQGQioWtsLiGIcBEKOd4ANN08hgsakhRXG1KtkYOSZMZUAnjFVUKlApjVUNpjnDVY0Y8miFCommcmirmQ4T4zCU4WUEZb41g+TbJ36rv38T//pXHniOf/973wc1HlymgONFN4vTjtoP1DFe3hnz8D3v/EyKJeQkBqFHqUxlNJvKctYYTM683Q0cogJTYbUmHEQLkXyZmMyT4xiZYizXukJn6P1EUpEx+KPbSZpTvktxp8sG2A8TGY22WRKBC9oyhw0FLyF6CglQmR1CZGIjsfYaSWz1wTOMQrEJUVJNjSnwvBII2k+BdrMiaxHKxSHwkx/9iK+++BXNopFXqxw+uvivq2KHmEpSrhSLI7ax6NZiUuYwjCSl8TEwpQDTRN9PTJNHKc3kA5P31HUtsGfi+HlO8vrIYSauRxIgMzJ6L04nEbLSYquZczlIxRJNK3HhocDsKcrvNAVBs8aQkYAmlxNHNft3ZF11O0ajZCoqCiz85AkxHl8jHzzGGQlzhKOt7LwBztxxay3TNJXfnI+NSc4ZYw3T5AtCUVCBLIVr5Sxjsa1tXIXWcNjvqJwVhwulyHWNtRpnGqIPMCX8fuLk7IJmsWK1PpHr5Uib4HgYzAFAsgmP3F/fMaWAXQttyfuAL1kgMaYCM5uHDf6daSkUVE8JtSgVpFIXhJKYqbQgWColqiy2i5Ouubu752S1ZlG1WGvQyMRoGkeG/sCh36OUaKUSlsk7lG1Q2kmids6SsF4OlBimQlvJNI2lbgzGwuRlij6ME/00ivtIufaMUe+EFL4/IBHk7sG84qH0l2lUVg+6k5yjNNjWsmxb1ssFm9Wi0FRP+OjpJT/+3jOGYeS+63h9fcfV1R1vb7e8ubnj9du37LsDwY+lkeRIefkurhASh/sDu9f3xMnjo8dnDxZc7aCuSiiVY2kXnDlHbCNjnNjnnoGBKU14P1NXy35R+Lo6K0yZ+Cs98y4SGkVlbbF1zGjl6ftJ0A9twFooFtPtoiWmwG33hn7yGFcVemgg5ojWhmV7wtnygo8vvs+nH/yAZ88+49HFJcvVkilPvNh+zs+3/w+u+q+EXpdSoe3MdtIzmicUYEE0CsEuq6KLmM88TU5zcyKDCWsVpoihQR3tvI9ax5gJMQNW9iPSsflVZWiXsmgw5nMVKA1YJCcwusJqyb6oTCtBe3ZFXa2p7EJcepTQt0SHKMO+GAPe9wxFf5FVEotswEdPUpHIxGHYYkwClUo4bWLWjhkza86kSQoxk4Psp1llaeq/5SX+7lhTPXz6naVJzWsKIvJvVyuePPuAy0eX3N29Zegy4Bn6HddvX+GsnBtt3aCUDKtECypOQ5eXj/iDP/hDfvKTn3J+cQlK0Q09h26g63uqqqZtl1y/es4vf/a3DF3PopjKWGeo25rlcknbtlzf3bI/9IzjxJdffcmf/4vfp3GWmBLj5Bnu7/Ex8eyjTxlGz8effsLN3S23NzfkQpuNSZWMCal/dDF3ubi44MnjJ/zwB9/n2dNHrBqH7w58+eXnXF/fcH1zgw+Rul6wXKw4Obng4tFaro8QqZuGk5MT9ocD9S9/yeurK3aHAzHO9uKyXF3x/R99xMnpkt3Ws7u6YrGS52uMETqvc2QUTVVzulrwYhppFi3KVpimRmslWoc8lyKKaRzQCkEPUjye722zYL06ZdFsWC021FUlWqviGjeMQpEafM/t9o7buzuGYWC1WpUmQ2rgWWObYjgyIABpIIwEKjZtI/lkw4AfBqKfM7Ey1joUUFtYq8imWhBiS9Wsy/kexO3RaZpawnqHfmS73UotiqAjaHM0+/lt69s3Ge/diOq9+3r+XKt3Goj5gwdE4vj58fse/vxNK/PARU8lACSWIkfcQuSiSWXTXFSW81XNs5MFTmneXO94uw+YqqF2lpDEIcNoqBpFjg/T5X4aCQjFSQNoTds0BCRExk+++HurY1esCvQMoifwMVKZQqUqUxdJcTSQPdYqgb+jaFmkCJNpvtENfvIoC6lMx/pxpKplWh2ToAAqQ1NXuKrGRUWKGj9NrFbnLM/PWd1dE1TCVaaIp/U774uBYvOojPAn+x6WJxvGMeKSZjAT/Sh2iz4mDl2PtRXrdUvfd6QMq80apcTpIYbAYrEohaUke14PAyiN1lamFihiThhdEcIDVWa+aXSS91Vby2xtqpQFJiIJiFgUKEPSSl7nHFB+RNfVt72M/4uv7TSSrcWUwCMQLnTTNPIevpPmPWsV4EFbIeGLktY5Ixzy9YebZM7E0Fpeu1D4mSlG1ssVSsmGpbSmqsTaVknXxtj12NqRUpQpSs7EweOiodKOzcmGxXrN+uQEV9cFBcsPBUkpImbr2uA9++2OZr0USp3WGC1++MI3F5HqjMI45+Ad9ObIHS/iPkVJJ1YU0b80GZXWuAzOZ+yyYZjg8vwRq7aRQxVBSaaxZ+g7xmlA6YSrG0KuiFOF0i3WNIJ+FhQu+kzynhw9ioC1isXCslxajJN7bhjFGnbf9Ry6ju3uvpgxWOrK4epKdA/F63ymr4nThz3uA9JPqAdDg4JkkGXYYbSiaReFynDJyWYtKGnh3ea8ghT5ICQ+++iZNFR+4n6759X1Nc9fv+HNzQ132z332z3bfce+60XrNR/m35E1Tp79ds/udkcastB1XMasLVkrgsp4FfFpIuSG1hiWboW1jugSvRrZjx33+3u2+x19PzCOXiD+WZcTkljbFq1BzlFc9koxXlcVTb1gtQKd5DrXChnMVIrkAj54gvGMeQKfj6j6ZvGI9eKMy7OnfPjoE55efMjF2SWn6xPquuIQD/zs+v/Nz27+z9wO35DjTAPhSDecDT5mU5RZsI3SGGVRqOO9LoOE+fvjcfg2U6pAKJQqR3GNAqHVhUSm7P+zi5QGpTJKRbk300PpnSjOUzFLGKaqcHpBW62pTIszDQu3obJrrGklvfvX6FEpRWKcmHzPMHaEMKGUZDLFFPDJk1VmnHqmcEBrOcXzvF8WkfmDBq08tpTeQzvzrLL4n3lZPzTg381GfF773QFrDe2i5uzyksvHj3jx/Ev8MAgCO42M3Q5S4PT0hN1myXLRcH9/zTCOGFPxp3/wR/wP/+v/DX/yp3/G2dkpKSdG79nvO/aHDusqqrpld3fHz//T33D15g3r9Ya6rlkslzx69IiPm4Ynjx7x9MkT/v1/+Pd88eWXbHcHyb+ypugpxBzncH/H6/s9zz79Pu1yhTaGP/qjf0m3O/DqxUt5/5Qm+kRSmrPLSz589owPP3rG2dkpFxcXKBKvXz7nl58/55uvvubrb77Bz/pUFE01sF5NmKri8aNHGGOZRskOOj054ZOPPuGjZx9xe3/P81cv+ebFC65ubhiGAessy9OW9qzlbr/FTyPGaGFUjAlbV0cU2gfP7c01J6uWF69fEmNifSK6qzmkeRxHnLWkMDH0HdMwEKceraS+q5xjsz5hvTxjtTylqRpqa7FaGCopyV53O9zwxTdf8vXzr7m/vxO0olCcc9FU6Sz70BgjfhxBFXZBStRVxWK5oG1bMcsIXgIAgyeGCa2K0yOZ2ijaDAuzwIcGW9UopO5Y1JbKNRhjOXQDd/f3klweEyFIrVHXmul39xjfvsmwBaqUIf8/3EDM8C4PTIEjjeA3rXmjyPlh0vCAiJT/H7NYEEbpymOxIxSELWOcRRnFonU82ix4drrhfLkkR9iPsJgUPsEwCi0pkahqJZQI7SApdMoMJWAoF1eonBJt0zJOwu0VgbIqUzHZUJUSQZ4UgRIIFaNMZepKouljDMX7X4oMEe9kVOJhIqpF4J0SmFw6/KzQxpYgMKG7KK2pXSU82iTTz74PrC9O2e/33N6+5dHHH7A8Wb8n+p6L1HmykVJmmkZi8ujaElLE+xFjnSSD20o63inQ9RPL5RLnpCjOMWO1iKHmVEg5C4TC4708LuHUG5R1BTlR7Pd70VoUZy1TUKNwRLFKwT2//1kTkiqe7PLa5ZhpVQkWDJ5svjsWtjiHTPSk67XW0ra6TPUm0RrkxDiOxwJihmeBQp+SVOw5PFG0FzAXEm3bSqifljAegBl/rp1ju72nGzopWoxhHAeUEgenGCO1kXRRZy1xmGhdTU6J5XJJVdXlwKnemdC/c+2UgngWPft+IMeIrSzdIO5NAgGbIz1j9F5ei5LmHosWZc73eOCbisBPlTGjyom6srTOUStFHTL+4NnmER9gWS+prCXHzDh0jMVvfxp6rLNUTYNPjn7SaFvjjCtFS2mAfCSOnhw8RmeMidS1pWk1SkfGKdBPPdv9gUPXcbu75+7+jt39PcFPaBJNW7M5OaFdLTHagtJFVKtoKkkwr4qLV1VXR9qjNvPrKodHykJ5qduW1XLDar1hsVoVMKzk42QpTquYaGIkRwmduzjd8NGzC37y/Y/Y7vbc7w7cbXdc32+5vpOPm/sd2/3hn/JO+K0rBMlN6X0gTDK9ts6ItXVtUZUBC1EH+nQgxokmDSztirZecladcbo857K54Epf8Ta85W66Y4iBME5EHvjdguSCNUJLUEgYnFOOZlFjbUUuFIScRSgWiYwBUIIaOldj1YJNe8bF+jEfXHzI5ekl56fnnK5PaWtB06Y4cru74uv+Z/z86v/C/fRc9DqFxiaNRsaIrZUEojInaZsyBNLHZvSIdJf9b3ahmxEOgNmQYW7WZXgFKZbJ2zsZGXJ2z9zuQlFRmVmAPgURyatsi/5iReOWON3gdEPrNtTV+kiPUsWedj5XZBA2MfqecZobDHnOMXlCjoTk8XFiCh3aZHKxuJYNX86FuWiYqwEZwqhy7ueiafn/7Rr8riMY8xrGEeM1zhnqqubi0SNOzs64vr5lDLA+OeHk/JK6qVmuWp48uuT2+oKUIs1iwQ9+8Hv8u3/33/NHf/QvcJUMLmMxmNntDyitadsFcZp48atfcHd1hdaGYRyK85hiUUxknjx9yqNHj/izP/0TXjx/zpdff03OEetqMrpQZQfu7u742d/+iv0Y+f73P+XVy+d88Owj/pf/3f+Kv/6Pf8WLFy8IMXJyds6HH3/MJ59+j7PTDUZpprHn6s1rnn/zNb/4xc/Z3t8zdH2hYgk1MoTA6D3T3R33+z2v3rzmfLMmTBO73ZYUA9X3a6q65uL8nI8+/JA//GnPz3/1K37287+jXbX8+X/33zDqxPVuS0CL61SehwBynXW9uCNe3bzl1etRmAWSSMk4FTtXY1gsFpAj+26UPIoyyPVhghzRumK13LBcyIez7ujeZsrgYPQ9r9684HDYA1JTLhaL4yAulhC9XJpwPwyi+0QRZ4MhZ6mamrqpmYYD09CTUyAFj1ait7RGUxmLTT0OjY4t2wOcxET2nTQ+Woag6KKRzPlYm82D0pRgubn8ndfvt24ylnNC8Xtf/d0oRCYXIe/cTDyIfuZ7PL/Dlcv5YWOZP885y4EaZm5zqUaPNKtMYw3npzUfPNrw9OwDVvWSsR/hZkfMkW4q9mpGMiJ8n8jKcL5uaZqKMAkfVBuNSvn4705TpO/GomWQByW0I1DFs11lCewCi7GG1WaNnxL90B8zBsSVXJfXRGzfndKgk0D+xkGCqhLhTYiSHGmtwVnH6BOuqhj6gRwT60ULKmMry+ZUEojHOJH1hF6s0c6WIrOkSJbApqMQr3DgY/K4ynF9c0ucIq4OVMaiW8d+6KmrWsRhSFqoLnqSaZqOjgvLpZMuN0HfS2cdo8D7usDxwzThfaGMuULbYrbzLeE1SS7ieZLvcywJ65REX1VQjUTUEXRC53iE1L8LK1PoaMUZRTzvi8MKIurMehZwcizkgaP2YrYDnjnbAH0/CAza1BKqVzZB731xWVG0lVCj7nd3ZKVpqkZ+XkFdVfQh0i4Wx+A+qyW4LiMoodC5JFVVGyMtQpbmHiNlifC7RY/hp4nd7b0kj+bAMA3YPIvfZDOKBaGZ/HSEoOEdBAMpnCn3m7NSBKYUSSrhXE2lNCZnXITDBGPoJIgzJ3w3yeMZe/qxIyRP5QztomWKhmEyJFVjXY22ttDxtARoek8KI0ZltIlUtcVWELNnGjz7rmPXddzvttxtt+z2e4KfSCGQQ8A20oxpZ/ApcLffc3d/4OZ2z2F/wBrN+WbN+emG85M1y9WKunYs2pbVaimJslocgUREV/a58pFTAmPEI75cXTPtRwR+8v1VijQp0ixWnJyc8jTIezMMI4e+53CQRunq7v6f8lb4rSvETLQZe+IIeiJnTW400SmC5qEQrwwJ2E892/FAlfes8orz5Tln9Tmn6zXn9QlP1xdc377lZnvN9rBnKsYdMSV8yWFoG4sr7ncxJ6YQMHFCWTBGYY3GmBZdCu6UEllD27ScNBsebT7lyfkHPDp7zPnJKcu2FZvNlBiHA3dDz72/4VZ/yfPh33M/vhKKbZrPvvCAzFOGRkoE7DNtYkYElFJFhJqKhkIQ8LmhmPcVpZQYYswWyjERUiZFoVblnIvxhFxBMmtKM5BX9h5dBOczPdXi9ILGbgpFqqI2S2q3pLJLjG7Qygp966gHE5G+DyPT1DP4nplnIK+lJ+lISAPD1JFVImcRrAoNU/YAoXMUuq1Sxz1H9jt1zBJCPdCV/+dQAr+rNMJ/aGmr2W93WF2C0xYrlssNU4gMPnHebFhvLnCuoR8mVieChK7XG/7oT/4lf/hH/4JPPvkUYyz90BdK08S+O5ASbE7WkCOvvvoVX/ziZ+QYOTs9ZQqeu7s7fv7zn/M3/+k/8cmnn/Lsgw94dHnJZrNhvVrxgx9+H+9HiIn+0EFW5CRaqOvXL9l7+OR7n7A5OcWHwOWTp/z0j+Anf/AHrDYnJazSkYLn7etXvH79hpubG+5u7ri/veX1G9GWzKNqS8m5cfURHfd+4u7unjj21EbsZoOfqJ2jaRcY52iamsePLzk7O+Wjj56hGs3Jp5d8uX1D1baYkDGVxYckZibFdKWpa9qmoT/sIKhjTatMGZhqLda2lcNPPTlLwHLtDHGk6CY1dVWzWp6yXJywbNdUtpImozyHaRrZHrZ0Q0fTNtRNRdu2bDYbCRItWsdcHKUkfG+QQXMxi1gslyzWa5rlAmXA++EdFCNACqA0wQdap7EpsnQbukPi+v7AxTgx9ruyD85mMsgZXNVlGCJDL60NIeWjK+tvW9+6yXj3njxOmXnYYOYGAt5pJGZ04jf8PZcvHLmS+d1/4/0pg3ikC8VAnDPmfycRfMIsDeuVY7lqqeoF9eIEH3fsxpHeT5LuXVKGRcyWUIPCN9A64fhnncXbHAVI13zYHRi7kezkfJ9D8iTnIhQqEGUaLd3fNE6kpApaEHBOIKiqEjeUEGSCNE4TWmeq2qBzZtG2dKMnIT+rlS4aiIif5AAwxrJoGiCzbBb4w8CiqVAqoycIOeGaBpSgKnPi+Pz+Ce1KQvckS1CTtMVoxzBMMCpsBckpRj+iYkYZR86a3e6Wuq7Rxhwn6XMnL5Z6EWOs2NfmB5ckVdy4ZopNVVkyFOhbDtnKaZIP5NI5h5RJSnzoYwrF5lITs3jAjClLcmUI6O/QRMoU1CEE8bxPSTJOxL0lEgtlYUYpZotIrQ3TNJJSPgYdzu5S0uxOJXjPSlpuFAtYSXTPMqGwhv1+Tz+MVE0DyIRRkXEmMzlY2pbJi9A6G0u37xjGA+tmhbUiTq8ayT1RgMpiJ6yVOTrUjJOIzW7eXnFzc01ztqYbe0FKUiIMnv3tjuZ0gbGOqpLJ08w9lcc1o4ERRWIYepq6Rs8FRIxoo2i0waWMzZmlqTGnG7pDxCrNNA6Mw54pTPjoidHTLmva5ZKYK/pgSKahsjXG1aJ1UYboE34awY9UOlNVCm0V1mUm37PrenFb6Q7c7/bc77dM44TRmkXbYJciNK/aCmUNPiWubu55c3XD2+s917d7xlEE5Fq9xlUVJ6slq2WNVWC1uJZUbcNyueJ0s6SpLZXVfPj0MY21WKPIXLJarrDOHVPWQZp3VbIRlc2QLSYlbFUfEcJjEns5nKZpekff88+/olJUm5r1sw3N4AWtJpN0PiZKGzJeG0nf1orsNH2a6O5uuLvZ82Q58eHFM842J2zaJSftikXTcHX/hsGPqIKsSjhfwDh5n1NSBDIhRbqxY4wdzhgq22KrBZWpUGiMqlivzrhYf8RZ+5jz1TmLdkFd1WidSWFkd7ijO2zZ93t6Bnbtc67jz9mNr4mlyTkWyjkX29DZySk/ZGBog0LE6KJFUceh1JypNAerzqM+Pdu3Z9EyxARTQZGRHymUqqLxUAVbVLmIy4uldtFXxZhRWehRi/qE1q1xpqV1S2q3wpoGrauCthSXuYKwxxQYxz3jNBCiJ6m5GYiC3OMZfcc47sTAKwQgleIxM4edzRqnmBI+irPVA81PH++DWbMhWr7fRHj6+1/93b3Fd6/5WCwWRB9KZkRisVxT1QtQhm4c+PzLX5CV4vd++H2euEuqquGTz77P+fkF//JP/5iTs1Myit1hjw+S0bQ/HEDBeiN5Wjevn/P1L/+Ofrtlc3YOOXPYH5gmT9f1/NVf/1/R+v/G5eWFOFQ9+4CnTx7z+PEl1pljTSb1gOXs7JL/9i/+guc3e6KPnJ9f8uLlCxZtxeOnTyAlmnbB9dVbfvWzL3n54gW73V5Cjm2F0Q7nGhaLNfv9Fu+nMjBTqKxxxkmmRmFLSEj97AwldO+qqnh0foF1jtVywWq1om1rvvfZJxwqz84FTFVx9fYNxlouVo9QOnJ7f4+xlrppOF1vWC1aCJ43V1ckeuq6ZMCUIeAwSCFvBQbBGUMKo3zNaJyxrNsNm8U5q8Wp2MPP2RjaEVOmG3u23Zb1yZohdHg/Udc1TdPQ9z1kyaQK3qNzxo89MUoOh2RaiIX2Yr2kXbSMQ8/QHxj6PVp2ILE0V5HaQa0T9RRZNWe8epXYjlOhHE8saiPW83WN0g1hCAz9UJg2ZfiZM/uu55u7X/7O6/dbNxlTiO8jEcfGAt5FJeCdZmP+7zv9g/oHBOTvCkt/XWg63/LiGCI+6EcotdBprNGsFxXrZY1WivvdPbttx/XtDf3QsWwdpnjxhxDohsQUoCp+/ClHlEk0rWIEtEdETpXjrLWk4OmjBEUpbclZi91qmQYnElNM5Gyoci75BuCcK49ZhFfGKOI7lnvOujLRClTWiKAwBrIyuMrR9wOVteViEuQkBC+J4ylhDpHKWXQLOcGH3/sJzYkVf3brxFtaFfrae0JbmYB3+x1huifZjFaG9ekFNiuub17Tqyw8ZJXIeGKQxzzD8rOwdw606fsepRSr1YJxmidMhmGc6IZR7M9iAj0HSMHoI84YnDYYrQgpC81Bm9LAJmLMTCEKrQorDaDVjCHidSL1A3nx3cnJkKJA9DB+8hgNSqUjxUhySdI7/GJ1hCOrqoYsokutxRHqXfF3zpmhaDhA3seqkslNIpIrx/1uWxw75mwO2QwnL65mKkDyA6ZypCngB49LmnaxoGla2nZxnGKI3kgfvb9TloLHe8/hsOPVixeMwbNwhsoaej/QHQ7gM1UrORnGmKOjFXBMKJ/tNp2z+KlY/TIjn+l4eNRIg+EiaG1plmvGfss4DPT9gXEaJCHYQLMUu+UpO/qpJpkaZwXBMFomrykrUhhRYcLqLLkJWZJQpzGy73Zs91t23YHdoWOYBnKZaDVNTV2VEDakod/vOt7e3HF7d0936JnGgNMKakeIUhAqpdl1A7f7vUD+SmPNgyZt2dasVi0nq4brqxvSFLi+ueKTD5/y7Mlj1us1y+WaqqofaFbqHce4MnwRr4FicepkKpKz2Nmm+ODe9V1YIWVMXbM8t6gkLns5RaZxoOsP+DAV/q+8XsbYYqIRmbqe/X7PeBiZpgEfPmTZ1Ew5EVSWhHcrr0VlNS47bPRENecuCEVBGQ0qE3LCzAhRjCSVad2Cs/UTPn70A85PntC4thhlCI89+gE/9PT9ns4fCE2ga6659j+j87eEHOR+KQdyVkJ/yGlODhbK3IysKYrxR0E0hB0ntFaxdZ4dpAT9Y743tSAWIYSjtbFQljPWmaNRhjpSkqSwn5GTGCXjKGbQqsGZNW21pHYLarOkcStqt5AGQ7lCvyr3aUrFgnbE+5Fx2hPS7B6lCMmTsicTGXyH950MW2Z9iuyWgCo6JtGZoaTRnKb4kG2gzDuU3yxC/zmb65024/0m4h8YPv29L/06N+O7M7Cal7WW1XpFXVnGTuhNp2enPH76AYcxECN03Y6r6ytOT9ecnW149uxDTs/PUUYMQlKSodQ4TXRdT4iB1WqFAm5ev+BXf/M/sb1+y7JdYLXi9vaav/wP/xPbwyDBrPWCL774gr/6z3/L//P/85dcXlzw+NEF3/v0Y773vU/4wfc+42S1whbHpeVyzU9+9GOe7A9UteFss6Y7bIg5s1qvefX5L/nlV1/w1atXvHj1kr4fMbbm0cVjztYnMogrSLfWmtvbK4L3RK2lbsqSf6TJxc1Sgi911tRNyxQCX716xe1ux+OzCx49fSbIRNNQnSx4cfU53RDxKRFzJnphd2hjqeuaKXh2B0GP/NBxf3/Hfr8XY47Fkso6jBK68hjEnVTnyDSOaATZJIuRQ+UqTjbSYCybE6pKMshs+RjDRD/2HPo9uoLdfsf+cMA5OStjimVv0MUMJzIMHakE85KhaipsXWErhzIKPw3EMAmdPIxoTckECrR1os4jj5tTmnTK66trvElSs1qHNTN9U8x5un7H3f39ezb7wxS42/fs+uF3Xb7fvskYfRGhvvPfebOZ17s3+INm46F50OVg1P9AIzHz8Y+6D6MxhUOrjWIaRqbei293kk1HIOVEWzvONg1t7YDI/nDL/jCx3R/QlWZVQrZCEc8tFy0LxGbflYNmuXQ0q4qT0RPGiMFQG0tbg60UYSiOMsoInSlFrBUqVC7iIKPVMWRmTm82xuCsKXzfLHSLFAWBiVIkSmeoyM6RdWSaAlWZDEgIn0zDU0o4K1M2pWAYgoSlGQMDhCoybQdq16CXc/KrOGG9u7v6EIk+cn+3JfZ3NJslzra8efOaZdYskhXh97qiDzJBGadJaFvjeEyVBkXVNIzDWBKqpTmo66ocjobtuD+KzGSyZhgGT9NI6iZalXRNcfUSqlgQ+hRiVzxrPbRSElqjDVnoxxzud5yufjcv8J9qjeN4TDBXlITnSabJMUW0tTRNwziOJdE7Fo40WCtNqRRVEKOiaWrgAf3IedYjZdkwq4qu66gKMtIP0piqLNZ5WsWCwEWMdoyHAa00TjumbmTZLOnutxhnWCyEOjg7NelCadJKmuqUU0kcD/R9Rz90rM83x7R5kJT3zWKNSkoc30o6OXD8/Oi2VKDi4+tVEn1zjFigUmBzxipgCmyjR5mOse9F5O1HfPAonVmsGparFcatCFMFVYNTdRHSQo4ZL56c2IJgWAMxCgoyTROHXlCL3WHH4XAgxIirHKvFkuVigascWUvRfuh6bm7ueHt1xe39lhTFIWtRWZZVIwnghSSZ0fiYGEcFVQk21FBbQ+0q6trinGFROVonSOiXXz7nb3/2C1bLlrPTDd/76BnPnj5muWhp2gWLZklV1xhbitVikXy8y8umqhANiMW9Nwj65159N+In2b8at6AyDpUSw3DAVYZx7CEXWqHRlG5dCtvs8dqzjVuG256b4ZrNQpC4aerxTARk0FNpJ/kktWNKnsl7cuDBjEAjBhhOaKmVrThbXnKx+YiLk6ecrR9h0Bz2d/SHLSl4IIpZyDQwJk9cJ/btG96OP2cKWzLF8SqX8MCS0KtmvgFgjRXRtsqoDCEGEVFrIzqJ0nSQs2SCGI1oOmAuznNOYvoRJPcj5ZJ2r03JERFalkQRz5kbMtSYz0M/eVJSON3izJrGralMQ2WK2NuusKYWvVEpwR98+wPejwzjgWkaSES0LQ04iZg9mYm+35NVIBOIyYN6cBM0c7NcGK8xCWofgiAzgvLO+TwPe0dKiZiDPL/3KBB/j9D93t/e/+PXUQv17v/+zqwcg/DorWMqhdLHn3yPTz/9PuM0cXN7R8zQtA3r5ZL1esPTp8+o2oYYI13XHdHwvu85HISSQ87cvn3N6y9/wd3rFyWw1XJz/YZ//9d/w3/8m78l4Hj0eMIZzfrkVPKztnd8+c1zXr99w6++/JIPf/6Uf/UXf85f/OmfYq1jnEbGccBVNafrFbauaazh8uKCL795zsnJKRcXj7j5/JcwTYQQpQHad9xvt5xeX3O2OWG9WvH04py20mgCt3d3hYKtIItmb7lYsFkt0ST8OJJTZLFccXvouL+94dD37PYdXQj0fuL3f//3WZ1dcPv8QD96lLMs1xuGoSfExNDtQBXdcUz4fuQQPddX13RDT7NYleY6HIdkWjv8KMgBWYbGqaAMxhhONmecri5ZticyxNOi29SFMh1iYAwDWUUmH7i9uyGEINToKPbSOcfjnjEMvSDWeXYpVVhXSTZG02IURD/KwCQEpnGAHLHO0jaGxmaqMXLWnNDtMvthoj1tqCrH1FNiD0T3NXlP13f4yR/336wUjx4/5id//BFPnz77ndfvt08xUw8Wd3ODMGsy5qZhttYSnun7DYVWHP+utRTAojew7/1pjKayVibc1h4/12TGceIXX37Dq+tdgdUsVWXZrGtOV7V0vjnhk+dut+N2N5DRUmjNgpWMCMWLw8aUDAsUrbISvmUt+yHQ9Z57HwjK85Sx6Erm52iYgtjKTn4SHl5RhxRE7yjmncWG1kLKAT/lYzOVi4hWYxhCBB05dANV1Ry5t4vFgnEc2O22aK2pnCNFESZdXjyiqiCEEU1milfUdkNV12QtmzOKo1BQ7AGRaZrVVOsFUzigJoVRNVlZlusndP6OaD0JcK6h63oW7QJtDLe3t+I+sJCkyrlwtNZincWHCaMUlauLTkVQi7ZtCF4gzd4fpGlViogSDnoW21KVhUoWQhC0KAmCNhdQsxbBOsswRBE4+u8ODcRPXpJ3rcM5w1TcH5QW+sMwDAXVEl61Uuk9fvARwUnhqFkAaJoGYwzDMIiNJu8378vFgsmPIjKuHNM4Mk0jTeMYphGUxuAIU6RqLDkkVFDUpuLq0Eu4oatwVSVTITK6fMw88Vy4nyF4lIHHnzyV/JgUkDG6om5qmnXLuJ0YpxFbxN3w9wP4ck54P4kIvqrIKmO1RmWFy9AoI3QtFMNhYLW5JEyJYewZx54QB4yBk5OlBEiZhi42RLsEXaGSXG8pBuIkYUQuBSolya1THDlMB8Y00Y0d2/2O/X7HMA5opdhsNrRtS1VXWGOZoqc/dPRdx3a7pTt05OBZ1U4SnqsK6+yDE9i85xUxewy5aJWU2E1qoX/MYU61NTy9POfjZ085PT1ld+j4+psX/N//X3/N/+H/+H/i4uKUZx885tmTS55ennN2esLZ2SmbzZqmbqjrWj6a+kixmq+Rsn19Z1Z3GMTcoG6kiJzPEk0JKmyKcYTQPrMySHCiGAsEJxSdg+/ohgP3h5rlckHjHJWrqJxDZyXUJ6sJBoiKPEIcJRNCqYzGYLVlVa85W16wWZ5xsnjEsjnFKsfd7RX9fss0bDEqU1UV1mhUUkwpMLQdXfuaq+FzptQfJ/wzHTSTj9qH2TTEWaHtmTKIEmTFPmgyEE0SqjQjxpRAzFm3BSAIxhS9hOzl2Z1J3KOMKYX8bDGZM8aI+1lKEublfRD9RdFe1LalMg2tXVG5Fc4sisBbGgxVKFIxRkKa8FPHMHYiblUZZQotNkcCE+N0wIcDSgmSphQYK45zKc3ueBwteEMJuAwhIdWGPtYUs1HEA0tCGq25DvnNK//anzP74h/EOb6Tq3Hi0mhKAJofR96+fcM4TsQk2s/Vek3lVqw3az7+6GNOTs8IKXHoOoL3hEnCc4ehBzKVq+h3W66ff8X9mxdUzkiR6Se+ev6cL1+8ICnNarlivVqTY+D29gbvPdZVZKVxTcvq5Axb1ez3B7wXZycybLc7EjvGEHBVzbkPrM7OaeuGcZg4e/yUDz/7IR989DFUDVfXN3zz4gUvX77i+v6Or158Rdd1rJZLzjYbPnr6lB9973tM3hOSaNaaqubxo0tON2tur97w+ee/4u3tjhdX1wwhHO2c77Y7brZbPv/mG15ur/g3P/wfqNYLrq/ekMZB9pS65v6wZxhHlsslm+Wy6BgylarY76oyWC5D73EsTYajqh1vdzdSyOvMFCQIlpRxxnG2POdkccaiXlKbCoPQIa3VEogbPWOQodn2cM/V9VtyzkdjmBCiDIyVQqXM1A0YJfEN5IytBMVol0us1kxDjx96fNeXpG9PZTVGZxqnqcicasdZveHLV56kFJ9+8jFD36NzpKoc1llxvArCwhAGQySkzB/84R/xF//qX/Po6QdHdsxvW9+6yVi01bE4Fh9hXSwaJTH0IfZd6EvO2mOTUDn70EQUHqktASTWCGdUKxF1hRAJcQ6/koC7IWcWbU1d1Xz45Ak+GoGsU4LgMcoCicN+EP6pNizahv0hlAmPCCWtlg075cw0iY1ezJkYNaMPNE5QivvDRD9CzoYz2zB5T8qCPnjvAbEYPG76SOPhnAS0xJBLYqR0ha0SsHogFZu0VKa7GecqCbCrKsZhKqLndEx07Ptebt6qkq7V6KL+12x316zQLC+XtJuWpljOKmWF81cKWa2kazamwG8iDGC5XHC6+B4qwN9++ddEMv2+YzQeZ2umKA5ISpkyoZBifr1ei/OmklRj6yT/IWY5HOZpwxhGYXLMVouFDz2jMnMDJBqRhKsaTC5UIe9Lk6Fg5j/mTC5TLW00WWeqxsC38Gr+p1ptuyyogTxmY00RSz9Y1PoSYvNuPsYs4hbtkTwfay3jOB0n/VAyY5wgSkW+QOUcbdsyDL00e8YyMaK1NGshyMRYG8PJ2YZMxHceGy0+RE5OToXDXehNWimcKVaXzJorLTzp4JmCJHorN3Pehc8do1hiDuPwjv1uoYoFjySVy/OQ10AaDT2jnGSMzugMDYbGilYp9B7vwVQV3f4O7wd8GDAmstmsWW9OwFYMqWakJSpTprwRkiJ5TxpHVPJYIl5n9uPA/f6e6/tr9mPH6AfZy6yiXbS0dUPdSDOYYmI/CMox9D0xeFIMBYlYFvqTXPOyv6nj/SDGCzKFV1WBoOdBDQ/Up1Rcg7qhZ7ffstmsePrkEauV8Gx/9osvuL2756tXN/zq+RXkRFNZlsuWk5MNp5s1Hzy+4INH51yen7FerVguFiyWi4em1mh+95HwT7NipAjwE+M44BPk6PG+P14rOWU0FZYVzjm0iSSjUVWEBD5rpuxJSVLap9FTmZq6bnHakEMq+3YmqxI+hUEboSWiNcoI/eJ0ecbl5hHr5SlaO7a7a/b7Hd1uh4mJVdNwslmjEVQsqUxaRw7VK677XxKy7HWxOP7NOoLZEjfljMoZp2cBd8Ej0gNtQqxqH+4JV/ZsPY/5mQd9Bm2siOfjQxCt1loaGKvIhQJInoM8Lbo8jmnyBUEV96jaralNTW0X1G5FbZdCM1Sz/mKmScs97v3AGHrG8UAIHowqv1toHQFPN9zhg9hI55IZJXzIkodkQEAqQWemkiUkTFq5X+bnPetSREAfiy6j0M/e6xR+W9vwrqbp/w8X8D/hev3yJYvFknbR4KySYLjhlK++/JLXb97y8tVrbu7u+fSz7/Nv/+2/Y7FcAhk/DqTg8aMEk/rJA1JLhbHj+uXX3L38GqvBOId1NavzR/zZo2d8+qOf0g8jxjiqqqbvB168fMHd/a0g1AmMsZyfn/PRh8949uicZrFAJWlgpilws9tydXdHSJn13T0/+slPuXj8hNvbG0y14fTZh7z98pecNDUf/uEf8Gd/8sccup6319e8vb7m6+fPefXqFTc31/ztz1+xahc8fvSITz79hIuzM1QWJGzoDux3W6EHVxULrTFeMr28DwQfyUpxv9tydbjjy5cv2HcHDsW4xjpL1TYslkuUsbi6YXc4MI0jMQTqyggF2ehyn6bi2FgahUGs02tncVXNMO4B0MbgjKWtV9TVEmcbtJHhjymZJrvuwGE40E09/Tjw9uotfdfRtu2xBiTL4CWMo1jW5nik/mtjqJuGdrnGVTUomIaBaRgYhp7oPShwVlHVhkVb0w4jTxZrrLLoyvLZD3/AkyePIaeiGwZyludoaqZx5HA4CO2ZzJOnT2kXK+7v7r+Vzu9bNxlPH59Ic1CQhqpYYNbOUln53JbJ3Fw0zKiFBIdkOQgmj58C3SQKfu/jUcR1TAktk46cEqrwThdtTd04pjGwbmu0yuwPB6wGlSPDfmQYJhSOuqnICZZtS98PhCmijaFyDltZUk4ssmy6KIGrcgwEDZFMUOLTngnQOMYSGkN58dHFcjNJsnjlHMEHSOKs4JxlzhNQOXPeLui9JAWnJBQq0Vp4+v4gSv0gVLCUC0w1TbQF0hRhnaRkO6MYu466ePPvbwZWj8+oa7nBm/UCVdybtH4QyoFMASkISoyB6Ce6uwPjbuTpxUdsd/eM9wPb3KFVhW5tsbdr6bqenDOnp6dkYBwHUIrDfi/2jtaWDJFERAoEH8Jx4j5v8iEGrKtK+FkgxUwookWdsgiHoyBPxgj9ShpbQ0rCz85IFoOzmap236UB7VFrMYwJkx/coapKNArjOB6bCZm0yCR7pkLNvEf5uxy+IA3JfEM/0BWkWa2cI8YgDk7WoJ0lFXEnZYpd5JXUi5bx0NHtBmotgXxt05YJlZVkdRLOKGKOkMXZKOVcHoNMXLqhxzU1Pkoq/eT9kSM+DMNRj3EU/7+zF8w86ljuO+eq0jBl4bHGxNJVtEqhY6LbeXzSdFNP53uGqaNyis3Jis3pKbpeMSbLFCwhzc5W0qinEMjek/2ICp4xTsKx3d9xs73h1dtXxBRp24aLywvWy3URvMmUue8P3N9v6fqOfuxROR6HIjFEJj8UkX95jWPZJ4zMWm3hENd1hXWCWCitcEZ0U9aKw4hQ0TN32z3+i2/Y9xMff/yMRbvg/PSUDz94ymYtuoy77Y6Xr9/wxfPX3G23xKSwTuxyz043fPzBJZ88e8JHTy55+uic89NTNus1J+sVH3z/n+pO+B0rC+o89SMp7Ek+kLwIGyUzyIowOTlUqtCuwtSJrPtiQCzoR6lKEYvUSIzirARGuMt+kNwHlykDeawV0bN17oGnC0eedAieu/1bXr15gfKZy9UZdSUT2mny6MrCKnFXfc2t/wrPSEL2rkg+as5UGaLI85Ug0TlkNqZMikHSsosF+Hz+zbbVpgxrjkVxGdiAJgYxkfBFGK1LZo7RWoTgyRe0pgx9tBbR7+SJUaHVktquBcEwDbVd0BR61Jx9ofVD/oUg1hEfB4ahY/ADKccy7IGQEj71+DgyTgcyAclNSOUcmkXa6fi4UtLEgl6kLO5YMz2Kd5yrUhFi5vKizsfJu8jGP7R+G8rxfqPxXTpB/v7q9nvGvuftm8Dd/T1XVzeklGnbls9+8EP+5E/+jOVmg7EVH3/yKXXT0HcdQ8lv6LqO/X4HZBbLBYrEzetvuHv9nJw8tmrJMdH1I3mYqOsF3/veD1lt1oUWpIWZUCxZQ5IB8Ha3x9qKzWrFwhlM9hDEIMNaS8iZMWUOXcf1dodrV/zZn/83hLhhCBOr83O6m7dMY0/yIz4FnIEPnzzi42dP+Zd/8FO6YaDve95eveXt2yusMZyenlBZx3DYc/P2DfvdVq4DbdgdpKlJZLSxGGOpWyuIw6Lio88+5tXbN7zdb7HOHs/Htm2xtqJLIzc3txwOe4zShGkg1FqYJFbcBGMKxZpZMeSIHwfIGR8mYkgEH6QB0prlYsNqcUrbrqnrVs58rYtBTGYKI7thJ6h6f+B+ew/IgDEnSRPPRrRV/bTHTwPWigFADII6VHUtdudGk6Jn7DumcSCEiZQCRkvGaNsI0p32nrpZc+gCH//wD/iLH/yE7rDn1Te/whgYhwFXAdqxXq7p+57dbkeMkUVBeK7eviYU3eTvWt+6yfiLn/zoOO3Mx1TPB2epECJ9PxZry8A4eekii9jwff3FA51g9vJ3Vuxf579r/bC5KgRmtcawUx0+eNpKYXSNyhmdFP1uZJoS3gcOdmLRNizbGqsyh9zLlJRImgSGrp0VDnwUupKyGm0yUWtaFKaWQ9BVIhYVgc0D73kum2eAO2UpNOYNebbobKwjjJ6ReKT6pJyZhhFrFU3bEHwgpXwUe6cUS7CL6Dis0YXfnklJ0y5bcZmoavKpJm57Dkl4ciY5CVXJGaM0ZhbqZXmMs4gop8wwTjSbBttYdt2W0EU5XJRlf79nionWKKqqLkIkx2azYb/fkzMM/VhyOiQtVDj5XRG4P8DeRpkj6hPCfD0U3nFMx0PZT+J8YcoEwBlNRA5d7wMkmXLFKA5TtdZohJL2XVlVVaG0uFzMNrTzQTmneM8cY2NMEW9LJsVMPQvlfe/7/gibzkJ7X/ywZ6eRnDOLpmG73TJOowjrC0WjbRvqpmHXdeRpQmmDiZZpjHS7nlRFlM6cnZzgZoqJEqpUmkY8GqNrcgzEDD5MdN2hFBeCCApcP5BSOk5fZiep+TnCbNkrBU9KEk44Dgkfi9ZGIQ21j1Qqs9aahdaM/YSfEvVyzXZ7y35/i7WZi4sT1qdrcEtSfYFWNfQDJJn0xDQxjT1+GkjeEwqEvN/esr27Zr+/Z/QDxhpO12tOz045OdlQNRUJ6Lue29tbbm9v2e2FcpBSpKosbVthtSGEkm47zZQVjtPXRCSniNOidVmtTlgsG4ZBqI/jdBCHqsrKQWEtxkpxtT303O17bu53XJyfUlc1VmsenZ9hq4pI5m63o20b+mGg6wf6bmJ7v+X1myt+9osv0NrQtjWPL0758MklHzw+59mTS/7Hf/W//We7N95dKiryFPHTQPYekzI6ZvATyRpMJfqc4HvJsBgdqR/JrsM5TVu1VLrGKLHPNkZe+ykFdmOPNxYIRJ1IqlgCx/TQ/Fqx144kxn7k+e7AOHqenD+jtjVGa87Wp9RYTto1Rmu6cZDgxU1iV7/kdvyCKQ0lx6c4Sc1CZf2Q+K4zLFoRjseYpJhOWdCFd+7jlESUbY09TjDFdUkK7tnRJoSIDw+IidIUJkEmpYlcinuhTlmMNngfiwDYYM2Cxm1EC6PbY4PhbIs19Tv2tA8DKbGnHRimA5MfSUhoZsyRFCIhR3q/I6YBVejJMiAqluPvmg5ocbSKyc+skkIdFS74/Lzn81JCFCVDJed4PMtysd/+TS3Cg37lv+41Dt1xYJO8582r13zxxZf0w4Cxjh/+6Pf4N//m3/DjH/8Yay33d1uG4cA0TQzDQN/1pBho2xpNYn/9hqtvvkTlRFPXhGni9dtr/vI//4xDgsViiTVCv3n67Bmffu8znjx9yunJCbZuySGQmDg7u8BZS/Ajr16/pdGZ09USYy2udtTOQYqoFFk1LVYpVEqcbDZ89c3XnJ+esXr8lPuXz+n6juVyVVBvYbJoY6idY3F2yuNHl6iflkEpMPQDb1+/5ObqiqpuOD2/gLpmFyL3ux3Re3ISW9q6alht1nzvp59x8uyCF/s7bOUwtaNCatrgA9dv70qzL8PMRVvTpYnusBeKeLPAWieDVFeRShDfYX9PpSFOU6FKAQpWyxVnJ49YLs9pmg2ublDGYJ3FFWbKvt9zf7jndnfH3e6eu+29MD+KYUoIgXZRY4uj5+Q9VnNkysw058pW5Cj76TR09N2eED3iLGmpa4e1lt3uDjvuUYtzYqg4e/S0UCgFXa2sZuh7oEYpyzR5tjtxcFQK6qZhnIJQLYFp7H/n9futm4yXr66EwhQCvlCZUizQZ5lgGv0OhcporK2On5v5e4wuBcj8m2WqqebPFYjjxMxOBZS4SXRTZJpGjIo4o0heXphF7ajXDdMwcXc/0vmE95G6yazWLet1Q/SBMAWG0TNNnj4EGMcjd95V4CqNMpk2wRgUfgqkMRSIV5MLxp1yRGtLyuHo0AHC/1YZqlpC6yTUNzCkzH0cBLZHnn8K4lQF4pqTUmQcCzyGbLjO2QJPT2ikmFwuGobuwMq1tJVlc3HJ5eJDrq5e0t0LJ3KeBmljSrCePeYxHL3FyyF2d7gjpMA49fi9Z7M4xbY16EDjlNxEB7FLG4bheOF7HximkvSNZ7fboZToTuq6JhU+vLOVWFJG8TmPxTGmqmp53jEdqXHWzcLG2TteE6NntmqMqVAAtCSy11aaL6O+O02GlkB1QQGiaFVmq2attTQhatbvZKrKvTf9//WPtm2PBchckKA1lTHiwW0tqCyQa98VWpygiFVVMfkJyPjgWegWcqQ77BinHqMSq9UCBaxWkqasVQkHihGchaLliTEydAe6w45oEsoWvU9JK53pIbNvvTHm+PmMuEjh8jCpndRDErhQRDIqJlpraACbYcqSBjvFxOFuhzOwWS9Zr1eAYxwNqqox9YpWVcBBzBXwGC86rr7bs729Zntzzf3dDcGPOKe5ODvl5PSE5XJBXRLZx3GkGzr2hz37vbhXKZUwRhokKO5fCPUk5ix6F6uPInkxK8hl4i4J7ecXF5ycbLjf3jP6yPZwT06eYQxoPR71GbOOwjrDzd0d69WStm1x1ojDTN2y2wl07SrHZr3kZCVDh2HyTGXAM/pAfzjw+f7AL794jrWG9WrJ//i//2e4Kf6B5fsJP0z4fqBRimVdU1WO0U5004jvPSFOTKMnTYLiKquwrWVj1iyaBdkYqGr6/oAiQEqylzGRcsRaMFayYMLkjy5nRhtyLTTMkBOHrqcfBoYp0HcD5+sLllXL2fKEWllUgkPfQ2Vw53Bbfclt/yU+BaGMln/3IbMhFxMmGfSsmgatDCFEUtQk9ZCP826DYbUpNAr9Xm387iRfXOoewmgpOhZVNCYUS9eizgAUk48yyMoaZxbU1SmNXVKZmsYuaasVVq/QyomDFJSMjWLEEURfMQx7QhI7eK0NsegfQxqZfI9PHUoVilrOBcnIYoBQ6LHCapD9RDIvdPmYUU6OrIZ5D4Ry5h7vv1gSOH6dLiXr24AU323s4v1lrDnWXqvVkj/6g5/y6PKcX/zyV8Ss+OlP/5CPPvoEpTRd19MddvRDzzSNjMMAKdFWjspoDnc33L56jYoR18hwa7vb8/k33/D89Sv2w4SxltX6hN//gz9iuVzRtguscxz6HjUMhfId6bqe25trusOWHCaenp+xXrQ4Z6ly5tF6xbBfsAVM1WBz5P7mmscffnjUmjbrDd32jrHraOpIu1qJbrPvCWGi7zrRMVUVddNQNQ2ukgyJs/MzfvCjH9MXatPV7Q3r8ws+//IrXr95I78jetKgWJ2u+eP/9s+4SlsaIxqDUEKSU8pEpJFdrzf4MMm5mT2U+3o+V4dRskC0MVSNCL4ViJ5lkCw2oc8aNpszTs+esFye0bRLCUc2GluJ6U1Mgd2woxsPbHf33N/fobVitVodmxClwDrHOAptnkKpHMcRrbUIvhcLdCXNT/IjY3cgBi80ciV1pnWVSBLiRGMsNhtMtWKIMFzfogk0laVyCa0ajKvQbsHtbk/X9VKrKdlVTLVg8Irbuzt++atf8b/7Hdfvt24y+n6QSWwJNnnXHeofco3iuNVlHhyoMooI6mGqMSOax42l2PDl9JBMPaMnwzDiQyywMWRV9BbKUFUVjRPvaHOY6ENkf+hoU8XppqVaNoQpsPARPyWmEBn9SN1Y1puGxdKScyTEwDAkCbLqeqLOnIcKcQpwImbOsrnNSHsqoSTOOhJG0Bul0Srz9PyCu+2dOCxN4h8+TSOoJG5NwwjoY7HlfcBamYRZ5452n6jE2PeQAjaB8oFpSEx6RbKRRlXsdx2LxydkH4+TD60NxoibQfRRrNqmCT9O5MGTwoRbOnZ3I/c3N4Rhonq25uR8TSLh73fEydO2C+o6HWGzGBNV1Ryn88FL4EvO0ojFIHbDTbPAF6qPMa44fMlBYcv0fka43s1ZmVkQOWVijoIaGYVMxWD0E8G10o5+h4ZVwzgK990qctZH1OHBPjgdmwxB/xWHw+Fh0ygN4UyZmt2X5hVCKDoZKVBcUxce/678/sjQdxLYk2XKqw1EL7kTMUxM0wA6sFiuaWsJ02mXi2J5LDxynzLKCF0ixUAKgdvrG26vrqlPWzLSHCoK0pYkk2FGOE1pgkJBXmZP+1KDUQQ3MrWdRbEqY0ksjMMBpMx6c8oYNFO/pbKKdrmmrVqmCbwPjGlCxS26jShncXUt9rw6kvsd+8M9b198w/XLl/hpwCjFerng9GTFer2kWbSgtbiQHPZ475kmgZpDyXSpa/uO8JSjlWjO4h+FShyHJcchi6CyOguN5fbuFjSSqCz2JcQkmT2zYFfBcVKnNNxvO27qHbWrME5RNyIsHycvoj8oLmySBtw2gqKlKA3HOAk9dZgCIUR22+1/8ev/267Q90z9yLA7iENevaCuGjFH6Aamfcc0PiBEQUPUYH1NZZc0K4Opa0wLLidS6AnTKPRQm8kmEVWZUsaJfpoIk9AYtE5kxIo850wOCZs1OmT8MBHrgKsMtakgJHa7PZPyLJ+23LmvuB+/IZOxtiWkQIo9KcXje6eVoOBGGxaNeOoHn8ipWLUWnZZU1Bwbn/nef3fN+4dSqgz3ElBCvJgpWQlFkpZCLiKSFqcp0TpklLI07pTGbqhsQ21aKregtiusWaJ1jS75F7MhSYpiuz2Me/phT8xTodzKECXkyBR6ptCRKe5RMRRTFY4JxXJGlzukoEnkQhu0DqXM0RRids6bNYtzEzW/Frk0V3Mg79FkAR4U3e+tX0/ceudr7wnAv0OHyK8tpRSurvClUVZK8eTJEx49fszp+SWffu8zmrrisN8zDB39Yc8w9ELLjQFnxZnKDx3b6zdE39O2jdjN5szdruPl22tCVjz96GOePfuYH//49/m9H/0YV6z/UQofI+TE7noryPk4luY1YjX4mJgmj9WWpm4w2jCNE6u2p58mXn31JTc3N/x50/D40WO++eZrbNtSLdbElJlipM6KqmnBCA1aayVOhoc993e3aKVo2pa6XdC0Dc5VnJ6dYYzlg48+4gc//D0OhwNd3/P5F5/z8sVLDoeBxZNTcqO5v+7Y7Tuss4I0W0sxzufk5JSmqZkmjVKZ3e5Q6GIK54RpE6Ps305XtHXLjhvqypGL7jAGuY4FPVixXl3QLNZUdVvQOCcMmhQZQo/PnpA8ox/oukMxM6oe3nfnsEazLc0WQPQBYsS4ClfXNMuVMBv8yDQcGPoDKQY0Ikxv2xZb1fjkid2WJ1VF8obgKrb7DpXhYtNSGYVSibquUMYRleb25pbddg8py7lnDFW74tAHfvXFc/7qP/3sd16/37rJuDxfyyQCeLhx50biYePIPBSLZYB7/DweG4dEig8ajHl6/fC9JVnxvfteMU5in9k0Fet1Kw5KVuGcIYXIOCZU7VjXLW3SdF1X4LfAarlg0cohprUhK7HgWywcVWtIObLfH9jvDmQVySoRSMI5jYlUpq2piF9dVRURqzzI2rUiUNa62I4lGlexvb9h70dCEv/12TdZqUTfHzBG9CNKqaPN7TR5qqrmcDgwW+GilAiTiuAze82yPWdTr9ndXxOmAZWlQIxDEcAfJ0S6gENS3PrgGf1IrjVJZ1QIJANnP7hkzIF7v6XyC/ppomkW1PWi6ET8ke5zdrZGGSv0p5xZLpcSFKM11lkOfcd+dygFsipUr0CKSVJyy+s5uy4dTxI4CqVjsXL001TQMJnNoRWH6DloS6U1w9B928v4v/ia/MSiWlLpitk2cBwG6qo+TvCcdRhtscbhR4+fvPC0Yzw2EH3fHz+fG9B5A5qdyxTSrN3f3R5pVbmkp1eVUD6MthAFVjVKE8JEu6hZNy0nqw3KazabM7Q1iE99ImLAVWjjjpzVcZrY3t5wOOzRa4cPQdC6YvLgp4kYPGESCt08NZ6Lc3ifIx19IJdCOSKFmUqBVitabSAllDG0yzW3r65KiKOjbRrikBj7iJ8EEYx3A5OCXFeYZUtQiUO34+rNS958/RWH6xtsDmw2K5arFctFi3EWbWB36Lnd7bnb7dl1h1IcKhFDmnwMBzNahHNFtisonXZoa45ITs4UMXdBM1QiG9kt77b33N7fkcu01lpzRKZSysRCgQnFKU32p4Q6POhZJH6jmGVYydLRWh0b1/n7rBanmEVbv0ev8f67Y5Dg+5HQDcTBM2XNOAacixK0haNShqwiGtl7Q5LDO8cyIAqRBoVxjsWywQ8RraLQjYphwWywkbOSMEZbHdElsmLyXhLrkqIyDet6w+X6grP2hMbUEGSwFU2mfqQ5rF6wm95IYKVbEWMm+AMpjWiVHwL0csIozbJdorI+NhjOVWhrGOZgMZA9W+uji1TOD3RiEUjL10LM0nBhyt4OpVdFkcu/D0o7tHaikwqBGBJGNbTujIU7w+mayjra6lT0ILpBq/p9lCAlYpyYfE/fH5jCRNYZjC7Dn4SPEz72xNSDEqdFpRJoyR0hx4JkcNQBzk2CNEOm0MJc+feER/9AN5NXgNIoCqpSTjAtgWxzY35c/1jU4r8SOKOqFtze3nDoDpyfn9E2DTlDu1xyefGIpjLs769F8DsOdF1H13fklKgqSwiJu/0d42FPnkbaStzyYoabuy1Xuz0f/uBH/PnHn/LZD3+Ps7PzI2UtxAARumHg7v6eQ9cVBCqLDreu5XtSInsxjjFK0zQNWht2+z1dd+Di8pJKa15eXfP8yy/4w/MLVssVh92OarFkigH8xPZG8jCmIGjDOA4cup6U0pE2PPSdCLLrivVmw2q9YrXalKynhsuTU8zlIz77+BMZnFWOv3r9OX/54u+46w/HJqD3gfVqQc6Jvu+x1jCOI/v9jr4/MAydOCkiutscIxihM+YyzAvTRI5BBlPeSw2cEtZWtM0JTXNCVbdo5zCuwjqHsYZu7LjZ33B/uGfwxfUrJ1xVHy3uZ/aCLTEJ1hjiJLk2WmuqusG1C2zTYKxi6gfGfoefeubMmbquqGuHJjENOyo8Z/UJeWq485H7X37Oqqk4X3+GLlrMqnJ0PnG3veP27pZhkCwMoWaJk9jX37ziqy8+J0zjb794+Uc0GZmpaDHKJOEdODPzYHGZ0jtOEOmdkL4jP+rhzhbOp9h0PvAnH37mmOhZfp/WCldVnJ5tuLw4IebIMIzcbQ8c9j0pKep6SVXV2GJdicpYY0hxImtXLBAVrjZUVUuMif19x+HQM46TCG/JtI3mTDnOT1pMeYwhBeG7okHLVLmyRqhBwZJMAi0Ngc6ahSuPYxoehKFZoC6hqM9hU2WyVSz55LBJuMqV7zVoLTxECZzxuM5xc32Akx7XWFxbc7Z6JA5Sk7gOaDUnSs9okHCT/TAQp56INADECpdqqqUhE+h3e7a7LSFnTjYL+R2pCIKcYxZjz/qTaXoQe4nrQcSaCmNGpmmSm9qKBWVV3LOUkkYCZcpU0B7f89nz3xgLNpCi0OtUgSJNyVOYMjgUQ/e7eYH/VEs2hKKt8JKtUtc1KUbEeWsWYisqVzEOI5WphF6lpcCYUY25sXg3zM4V04VpmorBgBSOzrky9ZlYNDXCx5YGOcfC6w7y/q9Xa/xhkKYjJZarZZmiiiANbdDFsz8lGQ54P1I1Dhcq0ArvZaqmszlqSGbXrHcpUqIl0eXx64L8JWIM7zQfCmsUa9uwjpGqeN1bWxETRyTHuYowBvZ3HWGAHC0pGcYpcBg6+uiZbMI0lkTi/uoN/f0Nlc6szza0iyVVLY454zSx6ztutjtu7u7ppqnYUs9JymCUoDRV5SSRuyp22mWaK7QwySU4WpQWpda7oaNq3jNjhiTUUGfFmpXStIiPRHpoOlJi8hLEFEJg9OLSNYyBymqxnIyx+LQ/7KlKKUJBimcKq9ybRsTL35E1HDpC7zFZEnFzkimoUqCspW6bo/g+5IRBUxtF1bbiKKckX8Y5g7YVVhUEmFyC/RJRK3KSa9lYK5q5GIo+I5NCIEweqwybZsPl+pJNvcagGYaJnKBeNTSXFdvqOfvpdia84v3AMG2ZvOzteqY/RUHxmrolRSW2k8rgqhKKOQlCNi9rRTOhy5BBhJQP1tUpQYqZmOW81EqGBUpFmcBmEVKLhbRFG0eMEggbQ8LqJYvqnNatqHWLKwiGMyuMqtBYaYySUJJmi+px6kR/EUYZVumikcmREEdGfyAzyTmWM2JxL2GGOcuQ7QEVycyh3Q/NcHGV8uHhuieRlTjQSThrkMeV8pG+9a7dcS5J539/vXs//Ob/9/73fHc7jslP/OpXn/Py1Vs++PhjPvnoKR88ecx6uSSnif3dgf3uHj8JvXAYxKHNaI0OFnLEjz0pTlgteke7WJJNRVst+cOnH1IvViwWK0A0lrE4e47jyDCOTEWgjzZoJ4Wv0Lg8/aEn9B1rFdmphJ4HM8Zwf3/Hl19+QdcdOD8/5/J0zbC9odvfc3pywmG/RymNrdqj86fvB+6vr9kddgxDx263pTschMkSM6MXdO709ISz81MOhz1KwcnmRDI4zi842ZywWK3ZbDY0F2te72/QlWVjV3T9wGKxONYaWhlSlTAKfPDlvIkEP8qAGaEtq8IMcU4Ccm9vt+IaGQPBTxINgNhOrxYnLJsT2naFqxtxibMWZQwhJe6297y9e8v9YUtMnnEcyEoGhc45+r4/Orb2Xcdhu0WRCJMneF8iAxzNYlF0TImh3zH2e1SWvVC+PGJsQ04T2h84rxo2ZkXXGX728iXbKfLTH32GD6I5dEbRVo4xarKSM8hYQ8xRhm/Wcnt3x93dbckWCb/12oV/RJOx2w2FL0lJI30fYJynLw8HbeGQ5vROs/AgFgeOn7/7Ifak6kHbYRVKixB8s1mxWi+o6grfD2zv99zebrm9H7BVQ7tcYasF2hqCl5Ctpq5oFw1NI7/DT567+048pmMuKn0JnNPKMPmIzx5ba5a1palbjHOQOrFCA4xpy5MWFCfGSNM6bg935GgxpmZZNyxshT8cSFqKaKcNw9DjnAUViwvKg82ps5aUKTazAe8TVVWVYm16LyRFYbh5fsfH3/8B1bKmXTQ8uvwMSJiqonLVgy5j5r0jE+T+5h4f9uR1onaOw/VISob90FE1VqaIzhDGgd1+izVO3F+ix9YNCfBJtCIxJbqhZ9G2aK2FDlIKSmsd0yQowxw8Z42V5kZODxHzkYslY3xwY2G+nh4ws5QTitmxKOFTJCklftbfkWWNJoyjcMGtRWcJzev7/mh6kFMSJ6eC6BwPTok1x3vPYrE42kTPmyFF/zTzuefrJMbEcrWQhiPJRHWaxuNrHEuQjoqJ0I+cnq2Z7jusMqzPNizX4q8txYtkEihtiUk9CNFjkILamQfKRApMw8TkpZmc6R4hPRQT797vlOYUlUqC6Rz2pzAp4JKW6XTOwk9XlkPXS6GsLGTY3x/YXe/I0WBMQ8LQDyNdt2NSYuqQo2TwLFtDWreokGiaBdpahhDYdzvu7vfcd3v2fc8wjkcKUy5UP18S7jUJ3Ses9TS1Y9FY6soKfG4KZaXArrlwVpXmHTplsaolk9VD0aMKxUpejznN2EA2JfGeY35MzkKrGovNZyy6OBDKoSrGB+/uo1CauXf25W/jaf5PtRSKuqqoXcV61co+h+wrWINRlVh1p4TJIt42TlM1NbZWaDzRd6jspE3LMtg5oupKFcRatIHOiTHFlAdIHuMUWjmcdmzqNZeLcxrTEFLm+u6GwQfOH12wfJTYVi+492+I2Rfa0kSMIz5M71DcRG/mTIV11VEPAUK1UEixKI578v6YgmDod14Teetm/VImhgdqjyromkRj5mODIe5RFqVkaj2Ok+i91Ipl84jWrITeUa2xpsWYGqsraR4Q/VUutLIQRvqpp+sPJFXco0C47USmOOBDR0YsqBUKY2erbE/K8/NTR4H7bH+rtRUUv1BFRfwtH/IClLTyHAmSd4jk3OR39sCZWv1+bsZ719bf7yx+83X4j/jef671zTdf8vz5N/QT7Pee/bYjX3jSNNL3e8a+49DtmMaJ/iANgqucCI2zNH4GhTY1yljMckV1eknTLFgm6HoZsPZlmu6D6C2GviekCFqjrRN6VZTf1/uJ/nDg7uaa69dv0NFz/tMfocOEIgvNx1rapqVtF9ze3ZFSZLloiePE888/57M/+EMxsogR1ywIfcbWLcYOdH3P3/znn9EPPapEmhqlcNayrOT32rpme3vH66u37PZ7fIxEFItmydnpKednZzz94Al/8m//F3x184pBFVtzIPipuFtGXF2zXC7l3i4U2aGf5LUrDk8pKTkjrWW5XAoVLQszhQRTDEfK93Kx4PL8CavVGXW1wNm6DDlEuD6MI6+vX/Py5hXjNGFdFr0FmsViKcL3FKmcNNvd7p6cpBkf+x5yFi1x1WDrWp5H8uy3d9IYZXmtrBPBt2iAB8505MN2Qx1ant9OvLiecHXD06dPGUePThGjLUZnoYu2C8bJH9PGJTxZbL9/+oe/zx//6b/k6vrmd16/37rJKENKQA7KzEOg1mzXKuLP+eOdpR5+TpsHuN9aXTpeXQLMTPmYvcNNCT8xZXIB4+A57Druru/ou5FxjLRNjbaW5D2j6rGrJU3TENMScqAfR6Yxy0boI+Po6boBEby2tG2LNjKd1QFctqikiDrhI5hUpipkchaBpkCG8sTatmZMPVkXWK00YY22HKzFTz1doWGJrW8WVykSOVFcP2TaGZPYkrVtwzT5I5Ix288GH3CbJT4kPv7xUw6m5+TkCcZE3t5/Q2VaNuuLdyarso6uVsGLHW0c0K0ipJFYRbIRUb3uBkzSNO0CnxNjN2JqhQ8jxkrTFyYREoaQ6IaB2Zp08p5pGrHGopRM9JbLJVoruq6XokwbVE5M3qNUPm4ewDFbIudMKvxOU+hUKQh0W1tHzNIYrtsaV1mmvee7srRSWKBGsc9zKFfCGgmkm4vquq4eKARkxmnE1e7YQABHipBz4l1tlKSjpygC+BgEKbHW0LQNd9c3ZC8N3Nj3EGWjWZdE0xwSYZggRC7OzlkuljT1stD3VElsl8mrBGsJihFTYEqBSSeihmEcyDkxBYF0rTUE8xD8pnkI7jTl+Yr1MDR1hcKyL42h1gpDJocJkwxL12CzwiSwtmbaCxJm0fTbjt31Fn+Y0K4l6YzPgSFPZJupa021qslG7qPlaoHKmeEwEBGB7s39PS/eXrHrB3HoSUkolCUPAPVAPSLnIyEjRugHcYyKIYj7mTVoU5o+itONliYSyranQGX1QAY96o+AUozNaIZ8u5LqqkxrDWKJvawdoa1Ex+FDScTOxWXs/WnsfNv/+kBnRo6+C+vxB4/RWYTyVe1QSjjd+AmVM7Vy1Dw87pxTGdYLShT9xBQj2ToRNSZIg2cYe0IZXqAUOWmcS6XxlXtK5YzFsWgWnLYnnLUbaiyHw5677T033Zbl5Qn1s8x99RW7cFeKYUHGQxiIyRd7cGkIcxLEvHb2+B6mnDDOERHXw5giMQvN0RnJszHH930mIYtBRijZQTmVhknNqMhMTU4oLQ2G0Q6ULpbKMryq3YaFO6V1Kyq9oDZLKrssCKVlTg9PuQhfo8f7gX7Yiz0t+XjmxJwIWehTIUkycU4BlFDNYkyEKHosQSMK3avQp1PJPqqqCq0M3j/otFKhVYmxwvx+B2JU5LJnUPQnM+0qpnSkdf36Ur/lb+VX/ANLvfPf797SRJzR1MuGpycNT05bGh3wh1v67sB+t+PQdfggqFFd1ygUwfuCYAS0qag3ZyzOLnBL0UB0/cj+sBedJLKvj4XumlIWjZttmG1KvR+5v7vmzYsXXL99hR8naWy6gceXF0zjRBcjoZhSoBRffPEV//lnf0fTNiwWLZv1irpq6HymPT3HNA2j97SLlm67RSnF4mTD4w8+wP/1X/HNq1eknGmbhiePLlivN2w2GzbrDc9fvuLLFy+53W4ZfSBlMKZiCiNj2rP1hmHR8vRwz+n5Cb/85mthGmQxXDk5WWO1FfE3kMgcugOT70tit9QcTdOWwcWD61NKqZjTJPwkDBTJeoPFYsV6c85qKdEC1kkIpi1BhUMYeLu7gkJnOnT3YuRhHU3TsNvdy3BVZfw00R92KCSbI6eItZZ6saRdr6nbFnKi328Jo9h1zzIFYwx1I2YvNow8co6zegnbhqv9wPX9lvOTzGq1ICWPwRf2S8Joi/cjfT88sEuU5tAPuHHg408+5tGjJ3zve7/bE/0fIfzuyO8UD0qpI71DfM0lPMgag3Xm2CCY8nF0mSow2vz5PGWXF6ZQpfLDAZnSnB2QmMaJ4TDgpwjRYI3DLitAaB9KO5q2pS1Tq+QD+8Ne8jZSprKSlVGbmnpdE1JEaelCa2OwVhGjKry3QNAJv98z3FvSIpEKo1eEuYUjlxJm5k8jjkFkOUSev3xNXlh8ks1Wl9BCSVKcp0cRYxzWOMZxkkajQJUhCM0lhoDWYI1DWU2OmYvTJ9SNJTKglCVrqGuHS2KJaYwEhFmtityhhDaFwGq1ou8n/DQw+AFlDT50hXpgcMuafooYo2kXktWxWi1IObM79GInK8wPEQRZTU4RP03sd/tjgN84jg/Tbe8x2haeoXloRLS8HuPksa7mKKhN4khltDoW6kabQucBClexwdHzu3mB/1Qro1CVwyuZQqaU6bv+2DhrbXDaFEFZYgqTaCkKYuOcY7VaATLdmKlCKYrX49yEqZwIfsRYS11VRB/Y7/dYtEC3xT5XGUkzrXNGW8NquaIM3DHaUjdNoSdIKCbqwSYwAyEnJj8xxIkhenyMaOS6FdFfoq7euY9nTrzW5GJlawptS2tF7Rxd34nwf7bzTTJFWWhLi8YqKbqtrQlxEPRrnLh7e4ffD+Qs11uKnqgh2ghaxL5KZZk8+cJnrSvCXhxBqtqCNfiUGX1gCulIvdBzenCZpupj2f/+Umh0NpL4PASBi5WYEujSqGmjjy5RFCQDOP5+8rvFTiaXyfXRRKNw0bXWrJYtHzx6gjGC6mz3e/ZdJ5a9RYMh7mVzDsG7yJE84uO//R1aT54+JcQo2Q0EfEqkqMBU0tHl/KAry1KopkI3TCR0gdVtMriCbgYMcRRDD20lsE7omIZsQgmDdSyqmovFGZerC1ZVCzmz2+24Odxzu7/h8UePOf9syVi95uDvyDkCgYw09jGFI0p1pDE6hzO26BITKVEsqsWS82hRW6axVQnZm78Wj7oaQSwlYG+2aJVBjEIVkwBBMoyuMMaRYi6DKsjJsqhOaN0JjVlQ2wWVeUjvFvTCkLKCnIrzn2fyA/14YPKTICZa8JKYIj6NJQOjJ6tYGhwAyfpIxetpRjDEvvbhgpv3BqFVxiM6l7MI1q01GMPRznzWxCfmnI/3NR1iPBL/QRQi/5a/wa/rPH/z932X1g++930aa+l3By7OG5YuMR22jKO4Ou4PB3yIQhu0ruT7iI4hoqFqaZYbTLNiyJrufsc4jSUxXO7BKXhiQpzDjCC1ykgInR8n3r54zptXL3n98iU3b9/gxwHrLIvFEqVgu9/z9vqGs9UC3e2prCPkzPXNDYe+5263B6TTt9aw2HxObJb84R//cXlPhAoZ+gOLuuXs4pLf//FPIGequqJpWk7PTli0C0KIfPXiFV9+84Kr+wOTzyhd4SqHMWIkkLKhWqxYnG/Y+wFXNyzbxZFZE0KgrqqjZncYBkIWxsjQd3LmTePxDIUsBb4xHPYHpnHCjwOj70hTf7yEqsqx2ZyxaDa0zRrnRLsrTBlha0xhIiSPqyvSKBkmsx5zdu6anQr7YkYSYmQcxNLe2Ip2tcY2DaDROeK7wzGvQykj9r3K0VQNfryhjZ71osHhGEbDXRfIGU5PN1TO4g97jIqQBd2JKbPf7Y6NvNYS9PzlF18x/vILfvmLn/PJJ5/wwQcf/s7r91s3GevTVsSG1orPrytIg7NH+8XZylbPFJB34M38a05RKYo3cSxWuCHIxpHKnzk//NzcdIQQJItjkiLXOSsFGrIpLlZLmmYBKdN1HYTIsqrJ5fdaK5SLWOgqRkE39Ewx0taWpnZl+iITmZgi1jQ4p4kGRi9CZYGrDFrJBCuVi1MpR0xSAOoEq9MzXu6uiYYy3RG+fVUcG3wJWnPO4kxF8J4Q8vG5zw4b0oMpEoKUQGaIeywtjVtQG8dhPLBebiRYadmKlaZSD5Px0r2lkFktVkS/Zxj35CCQX1ss1nbdgWE4MAYpfBbtguADTV0zDCPjMDL5wMlmQz9MWCeFonj1D9S12GmOY3ek/ZSLgKoy7HcDmiJmKlO9nFLhrb8LgxeuvrVkK7oCZ9XRYlUZCYvKAaL/7kxoM9AHoQIprQnTJDWBkWslEjGFEpcRl5as8jEFPUZxBuv7TihyViYtfpTU97quyz+UCsohP9cfDkI/ayu5l7wEcpnyWuMs3k+0jaN2FcFnUhaN0zwU0FqTkMK4MICOIX/DOJSQxCyFfQKSLlN7Ja43OYm4tXDpc0pH62ofI5WRKfQsbj4WEClQAU0GfAArzfx+d5CirHLc3t9z6HvZX5wT5yAdBNnBk5HJ5jSO1FqTk4juY0yYusIaCSI6MYbV7sDdvnuPzy20lzmRmyPyIFQcmVIZq8mqEjtDbQhxwgdJWz4OWybhrhrzwD3XyiAyE0E65gZintwKTTQW5Kc0GRpaV/Phs6f88Hs/wGjD/W7L8xcvmUPOQpISVM9P4NhgPFBU5oTl2Qf9u7I26xO6aSQOB1KIZKVlz50iKpYGUmmMcWjjyNoUr1ZBtW3OqCSC5xyFbtm6JalR1MaDFpqtUD0sla1p6pZNu+CkXnHSbli6BeTEvttze9iy9R3rJ2c8+f6awb2hDztiDsTiAJPSRExBKBLIva4zpXkRmk/OukznzTHAUlADKZgFwSiUz+NgbUbFFSnF0lY8vJdaafnKTI9C8i+srUgpM00y+TempWnWLMwJlWmPCd5GNyhVFf6eaCtymhuMkX48MIydqCiskTMyS+swxZ4pdkRGYp6KXXihPqc5TV2K0wgPBghH9oIC5uyL95thkLdUa/BBkPGcZ1TvHTTknYFjKnq3d5uP37X+a6BE/bZ1dnrCwn7K/u6GED2H/Y5+mOiGUYY+2qGtI+U5Ywm0q6BpMaszbLNEkTgMI/siog4xMYZInvVc2gotfG5mleL5N19x/eY1b1++5O3z5yJG/v9S9x9LsmRbmib2babEmLNDg1+epKtvVnMUBhBg0tIDjCF4HgwgeAIM8DQQgXRDqgVVlVmZdTkJdrhTI6q6KQZrq7mfiJt5owfZGa0hHu7H3M3c3Ex177X+9ZPaKBYFKReMmmjbjpQK17sDp6sF/nDgzYuv2PnI5fVNpfLlqjtLjH7i9nDgb//dv+P5R59werIRsKrvuNvfkbJM5j/77DMur6+4vr5md9hzc9iz2+7Ybnfs9yP7caCgaLsFXdezWW/Y7/fc3d0R0x3JZT5sn/L27oqgZV9zVoKTYwhoFGPwbDYbfAgkH9Fa6Ndi2DLgXENOCevEcKWxjn3akYNYxKYYJY6gNsWgWC5OWPQb+pqroSstEYRiHEtkfXoitMQbsa/NOdUaS2QJxjiMVgzD7lgHS7aORllHt1jRtbJ+pTCJqD8n5j1GG0vT9IBiGreca48zHSpZdhNcbyVv7snjC9bLJTe7S6yRXS/EwjhFpikc821STlze7vnj168Yx4nPv/iCX/zyF1xcXPB/+3/83//J8/c7Nxk//ulnQB3nP7hmc7WczSkTQyancBQv5mp1ev/5wZizFtLAkWH1pzQax5F/RfjHyctkQEYDNEphG3dER4ZhYBxGhv0BTaZxhkSSZNQi0fDd7Mnu/XEEpm0D1uDHRChSGNmk6DBoU90tYsJ03YzX1PGt/Ak+TCLA0Zplv6Axlu1hT6xNgtESzNR13dFFpFDzIFDokjAVHRI0n8rTFgRIKciuiqSdRbeFiOfmcqBVPcplht2BoCLL1Tm2ooCllDqKnxuXxM3VO7IPbLpz3uW34u1sHCEWlHbEFJANTxaGvlmwWa6J4RprG5p2QdP2FGWwOXMYBkAcjebCynv/3kYQQ2LEM44eqzT9oidGaVgk8RVKikckRinJKSkVOTfW0jQaZw2mWiRmCoMXesH35QghSItapMFrGodVjsa1R2pU2zQSVFnT36EmfNYmSxoNTc6mFsqymDVNc7SEnfx01HSIzbGutnwRlGU6eLplX6vnTCliMWzbjq7vGfJE1/U1r2SmRYC2koKackUxg1jeHkZx9Djs9ti+raCAXNMxiWZAAVontJbrcJ5YiptcIpIZhnv6i0xkIip7Vsqy0BpNgZglsdYo9HpJrudYMQbVNmjrUKXgQ2Dyk6SgOkFLJ+8ldbkoYsgobVhvTtBWmjOXEXtFY9C6ghz5nvOtdamNOcxzZ11pH7rU7AsjAIpPmVAnehKYWRFmBS6LG5rRlQpTakMjo2BB4+dJh6pJ4EoJldTMFCtptoZBEKphGPDBcxgGDsNIrFSa+XW+n4To4/MvzCDNbLP7/ThKhBgSMUIppqa0J3IIpGkiRXFQca5FNwpjnaD8s66lCOwSQyDEROs6Fs2SJ2dntK6na1oRxVuNOr4HoldyGFLM3Ey37MYdd+MdhzSy+eCcsw8NO/uKMe5IZGKWvI6YppqPpI9rmirisOPkDSMnKEXVRlIcyO5pcTLZMEqyyh++J6LFqKnaFUwSCpxMya26nxwIfUCylPwU5XdmR+/W9M2GxixwShqMxi4xuqnZF2IyMIM4caZHDTtGP6ANaOOIJcvEhsgUBmLxQqktUfZBIrlOcqytGTrUvb2me8M9gHCkuiHntNQO+ciIkHwo0R7lIsWtOv6NcsyW6XPzonW1Ei0PwaV/ihr1j+8P/1toQL5++ZpULZhDkPDPcZyIMYmgWIlZR+ssbdtRXEuyDtX2oq3zE8N0IOZMVgaqkF+1HYUi1xaK4bDn5vId1+/e8uKrL3n15efs77YyQdf3NHal7LGuCCFiTKZbLghmQXv2mH6z4MvPP8djMa6hMOJci9IQgicja+nN5Tt+97vf8POf/w1TiCw7yY/wwdM3MtHfrDfEnHnz9i1fv37Nzc0tIYgmrSjNol/x4Qcf8/z5h3Rty/XNNVfXV+y2W/67/+O/oftswzYN7Osa2uqWoqDrOuDeQatfLrg97CTELnpKjkfQfK4tMZpD1VZSCou+43bcSfOcpWZxrmXRn9N3pzRtf5zWay2gg08BnwWcnXYTl1dvmca9UCidYxzH4+scvDhcGWWIIQqgpzVNL3oUKrCRwyT7ZpmBq1wtsR05jJg4crK2Qkv2METN2fkZ/Trx4x98hnOONDskZg3WoYzQQOf6Q6PYDVMVvkuMxWq5/E5byncXft8ejlOHYxpnfoA810bj3su6HJ/A/PWxacgPEjvzA94w37iP3Mgs5FNK0TQdqohAsGglnbgS8drkJ0pWjOPEME1i9aXAHikFmbZrWCxXNE4s3FwqdM5hG3Fwsi5T8KCK5IEA0Uv4jzWOxjaEVMgxCIpcEhlDygV0RpdMDJ67raftu2oNKHzeQiIGQbmlSJOmZ7c7cLpeibbDB9pWAvVC9Ed727ZtUCVjlEKrwmrZYeuCfhiu6VKP6gvDuD9Oko4bYnWrKVUz4zrHqDyvb1+wulhwO+whJlzTU1KkaztiEQGh9x7daN6+e8cQJharBUY3x0ZAz/Q3bXBWHTtf55rjqM37SMzgD55YC+0mZ/LsU5/BWCc+3FEdMyKEISQbsLMVldRSvImLiQhbddN+19P4n/0IIUia8NEdyqGLOaL7ri46rnGQhHt9zEKpR86Zs7MTbm9v5Xt1YdFabJnna8MYQ/ASLrlcSQhSUYKndOsenyMuZ3HDyEkSXyvKv16t6fr+OOmaRWmqutukjPC044T3E8FPlCgTwWmcZHMygiynLIJrXdvZ2aFG6znRPdeiAEyCuZGWjIfEQsOpcbTVaaykTN2JZNPxAyln2q6TTTPVJmQUu8ZMYrXuMdrhfcDHiHYtSluhgjlHUZoQIsMwHKmf1OZfq4qyziYDR2R5Bn+lMDTaIp7+gkgVpUQLFiM+ic5I9iJFKobGmprtgmzsPABpqptULFmQwVowOetw1uAMTGriyy++4u7mjuViQcqZ7W7Pdr9nP0xMdYJn9Oz2Uj8fDSL0/WRG3TsWfR+OMEb8GI+oXSkJneRc9n4QwMFokjGVAqAwUNESoVOWHElxIoVYedsL2r5l2XUsnHjoWyNOY8F7hunAbjpImGgKjMnjqwh8+WjJ2bMGb94xxduaZp9IyUvRQT5e01pJI2CVBIYKRUjWKWsdRYmo+d6UXR3XyKoueDCtNUfwR1Bk6prPfZOqa0Nem86SlTSYgKahdysW7QmNWWJVgzMLnO6xupP0biS9O+ZKQ80e7yfG6cAUBqTulHC9XBIhe0IZpcFIgVQCqCRaCFKlb4lBRFZiv0zlpM/Nw/EvV5KGfswHKuUInkkNIAJxxX0o3zz5mQGX+fWZG5gY5e+AB3XCe8c3lBn/G282braJXDSNOyUToQw447HVoa9tG/rVCa5pSTlxCJFQMml7Q4yZVCApwDQo26C1qYJgBdEz7e548/IFf/zd73j11Rfc3Vwdw//mrAZnmhqCt6Rtm4r2T3UNV0zDntevvuLTD8757Gc/5PXlNZdvrnj65BmPLh7x6s0b7u7uSElClKkTg68+/5xPP/2UrukoSEaG390Ro5wLH3zwnIuLcz7+8EN+eHPDq9evePXmDS9fv+UweLGsffyMk9NzQoi0/YoL23Lx5Bl/9d/9nL/7+hfcHfZIqnXGV0BOO8voJ0Y/4W/F7nmYBmKYiDFQiqw/WgvtsmhhoUQlgctGU53qqgGCFvDq4vwJy8UJXbfGuU6mOFrMOaboCQQu767Y7rfc3lyyvbthOAwsl2uogKEA0YqbwwGjLSXWDKqcsU1Hs1iQFOicIQZy8KDqulHNYoRhknDWY1xh2bQ0uoe84PzpZ/yffvaUrmv58OljuVa15TAVVgtobIvOjjBNNftMrrGf//zn/O9Pz5nGicNhXxkwiz97/n7nJuPqzfV7trXHpoEHXz9oHo6NR54XSNlc3/v88Jj5qBXp08eL/sHPFQQ5RH7fYUzkPNA1UthRZDFNWaYW2lo611Qv5MTt7Y6b3UjI1zSNg5Ixzhx1D6HSHtpWKCTr5YphuGMgSrIv4s40W86qImI/gVckmVGEPx1KwWGaGPE0Th3pM6UkQpyOGwbIaEsCCBPGwFSpKbaOL2e70MboGnIjz2PynrPuhGEciTg2pxekVI4TBZkqmMqUqiNoo6HrKGmi73rCIWCL5hACJEPjDNoZ/OFA3y+4ub4TWkkuDONE0y7QToR6uWj8OOGqDeMwjEeUT1e7M6FuSHJlrmFsqRR8itL4lIIyTja5KZAIR+pAFV8I53dOmE3xSLUSgXhA8/2x5mzm5qrU7IeiKkWgVNs5K/zX2oxJPkodSVaq1OyLTSm1OBGbTxBkAeSxVDGMhx0pRNRCChnbNmJ5a0oVYxZKTKQx0LUrZmMv27WCLilTC35BuKgamILQE1MM7PdbcpgwRTJphuirFbRoH0Bs+8hSiMUYH1irlkoBqdkn2RLCvHkZbMk0UWErSIvSgqPmREqBzjqG4SDWnGViGgfGw8Bht2cYBrbbLW3vaFpHax2uaSjaoGwVs2uhdMaU2W23vHr1ktubW3GUm0fLarbRriQOJSARFWHWSsl1rkt1TxM72ZDuJ1GqQFNdt+ZiNM/Qa70WbUWx5+/JGiJp9ylJ4RlCgCJ5Eaptjk2pNE+pFuEi8B2nalWrFEoHsXfWqurddNVlVV1cdSX7vhxp9DAGVEkYZ4SSVjTGNrQ5gUsYq1GuBSOFsqprJCSMymgNxmmysRijKDYwlh3RDwzRog5iGDFOE+M0MIY9sYygjeSVaIVtO54+ecriJDCWr/BxIuUotIYoFCmt55Oz7lsFnLZYPRfD8n3nhErnvRd6UJkpcFXzNO9xdS8R6u39xJhKPVKIQ5mueR+lAjNiKV2qNsugaemajUwwVI9THc52OL3Aqva9BkNE1jKVmaYDw7Aj5oS21T0qFzIRnwdyCaQi1DBxi4qUHJhNEQpCd/Z1mvnQllYxn/cPmQlze6tAFVLJ91MeVRun44iKY3PxnnuUUqL8yOUIEJQir9e3e+cHE45yfLnfO8rxmxwf//vaZjz78EPeXd6iai5UNg2tU2xO1jgnlumTjxyGA/thZH/YE1PA5yIaJ9OgXUvfzKBSIexumXY3jLs79pdvubm54ebrF1y/fUNOGW3u3Q+tsVgr579xjovHz1ClcHX5lnEYgEL2niF6rq5vsP2aDz77Eb/5/AWH6Q3Pnz/jxz/5Ke8ur3j99p2AYF3Hcr2ma1pur294+vgJKSWWmw1+OFDgaHzQuIbNesPzp0/55MMPudve8vLNW65udnT9hqfPPwZtOKgB5zt8LrgTw4vtG4Ioe+qepvCTWKqrori7vaHpWnSWXKocIn6SUM+cktRRxh7B1FQpzmSpY6ZhL7dVmlK36Dk9fcZicUrb9kcthphQFHbDHUMZubq55ur2HW/evOJw2Et6eM0AqaQCYpQ8EA3Hfbjkgmt7mq6roGWg+IHd7TU311c4o4/CcGctJXsO+2sWFFprMLkhpJ7l+SMunj+jb1vWqwV+2EnNEbRQU9EcDiPTOApNWBs2J2f89//D/8DZ+QVGqWN2xhw98E8d37nJOOwO903Gw4yMfM8pffgxNw1ShM+PMo9L/8Tl/OB6p1IQ6pfHRSrlzG4cmZLwwCW+3RITkL0USkWExPI8YPITai+PNfrAFBJlmFgbsSJbLDrapiFGz+3dLblE1uuek5MlfdPStYmkPVHN9qGCJCklJ1vKMvo1ppUUbOdQsbBYLNmGEacNiigjdx9YLFqscxz2U7UOlElDrPc1MRwzImYPcecMy0WHQbPf73BdS6uWON2w6h+R4ltc06HbBqvM0bZ2HsEL1aDSpXxgvNmx2+25udyyvOjRbsFqCdlI8VSyom8WpLqB7nYHVquFaAxiZJwE2Vu3Lb3W3A0Dtl9VRwJfC2xF3zp0TkQKNJI6HqpY2FfaT0oJox1WU5Gq+4CyWX+SkoT5aS080Nl3XVtD40Qj8H055rRuEmAQEWrNQxD9hIj6U87VMrXcI6T1s7OW7e2daBrq4ubMfRrwvAH7yeO0xThFmCaW3YKshUIiAuNCYyxhdyBNkWE7orFYJlYri3OuUm0q2qINWhtiEkGnDxMpC8reNg0xZVKRc9koBwbhozILkCuPmvm95EhxkNR6XamTCWuNoEBlwlQO8IhYFKtcyIjzRuNkNL8/HLi+vGUYJqEN+YkY5Frpl0tc12ObDoypCWW6UtXkdU0ls7NgVaZvNVo3R/MFNSPIZfb3kamMYqY86VoQZnloVY4NvNamirz1fSDbEZGtW5tCHlEpVC34FDKBUAigUuYgNgQHWK9a/uY//2s+/eQzFJovvvqKL79+IWN/5DlZLeLgXDIlglifqtrXVEei2nTMa9f35Tjcbiml0GpDpx1KK5JWBJsoxqIsKKvFojprcpHAtpgkwd41RkJYswRjCZ114JDEDSXGgB9HxmFg8hNQME4ceqxq6rlqOD17zPIsMfKSiBchaA5iDZ1DbRLMEThQcNx4heYmBW3X9SilqhvLfWFrjMZpafIkb+iempdLqZNdwYDEPETMLrSGWU+jFGjlyFlBlqwMp5f07RmtXUhzoZc0psOZFo04uJUstDwJN63p3GFgnPZiS1mddgS88SQCmEhMA6kIJQodyclDdUZ8XyNxP7F1TvRhIQQpiB4wF6jXClTjNLinuKp7+rW4XKX69X2DcU+7un/M/0WWzDN48Gd/Tv73/Zn3ydF2rSDURtP1PcvNgpPTDeuTNXe7O64uL9kNB253d7y7umGcArpxuK6ncT2r1YqTxYJWJa4u3/Af//ZvefH5H1h2jqfn55yuFzw5O6GzGlLizfUt2jjarsXZpmo9AtpIgO5hHLDGsT49p+0ODPs94yQuk5c3N7y7vuPjzz7jB19+zT/8w6/449ev+Olf/BU//euf8+T2juubW8ZpoO1aDtPI3/3Hf+Dk7IIPnj3GdB3dYkmZpmrRumR7GIhjZLPs2GzWrNcrnj59wugjbbcG3fDi9SWDB9dYfvjpJyw/WfL1zRuKlol86ywJqV9a19EvlrRdzzSNxyyr8bCV6INpQKVINhZrBQTuuq4GzlaaXolMQ9VB1v1hsz5js75gudjQNpJ4PrsyxZy53d6yS3uurq558eoFl5evyMmzXm/kZ2LANYaUPc4acgwYJROfkjK2aWiXS7QVhk3jDIfdKE6Sx3pCsrpkbdwRwp51I01SlxdMbkNbM0KMkSl+8J79YaRT8jCxSBB1UWJIobXm408/4/Gjx8f6frlc3k8n/8zxnZuMOMUjIifhPEfPlAc/pb7RP9xrFuABbYr7RXje1OVbdfF6gIDMX8/I32HyTDGCElRfaYOzTtwyKhjStNJ5x5jw1a42I41L21i6rqHr2hpmJo+76HuchndX7xjGic1ygW0LXW8xRWMoxFSYfMQad1xwc86UBH1riRGcbTnpT/ntb35Dc7ZE3DRSfVOtjK1DBIqkhmtHipkxBKYg6JG1MtkwlQdJETvXvqZBKq1o9AKrey7OnpJd5Pz8idgCa4dt3JHGZLU5Ps8YI7u7LYfLSzCKd5dXNE8/lCL0kDh9tqaQGfYHXNsxTYGu78ml0HULrG24vLphGEYR1C4XNNbhg6frhKM8B7+Rq3YEQdJlvF8LINQxuK1kkdnfvz4cpyGpCt9nJAKl8THgtMbkAlnRWcNd+v64S4F09zEKf7ZkKFo2xVSdZqapPt/6dzZNAwhiIb1rDTisDUsIgcbJz+Scq/BYCpZxHMkp0BuhEcYQj2JwnRJOwXAYsVjG/cRy0ZALNbHevGeZixLqwuxCFrzw0LtlS4yKcb8jK6H3pBqOJYmwWWgigI9ix6zqgleQv88Yw1jNAIwRobmioLM4sSlrGbL8fKs01tQgwnEk+MDddicUyJTQzrJoG9qukwlG1+Kamc8bmcaBtm1YblY4a48OUGdnJ+z3OyiCVN/rMSqD6cGapACj9LERQN2vRfI+3FNh5vuUPOse7kW7MskpgPDtzXFKp4711Ux7lAkurJcLfvKjT/nrv/xLTtanbPcHtLGMIRCr9sUaTd850qx/yzUR+rhWFpJCAJgwJ4Z/f7DaMIy0TUdvW3rT4ZQhJcdQMklZsopkalhCdQcsMaNSrDbojqZtKCnhx8Q0jTIBjrE2JKmKVOtm6jTtoqdZLKVpSIXN+QmrR4VDekkxwsMWgXc8AlW2FseSTSTHfVMqxfKM5smadt9AGqNr/kx109O6euDnaok7OylJgrLSuSKZNZj1eA1JWF7J1RHOntI3pzRmJXov3dHaJVZ1CKlMGhhKrPSoyBQ9+3FHCBPaSAOXSsJHEbUXlVAmEbMnlohSpU4yhCo1N+GzOw+oOuEpdVpeLeKr8DiX2ZVGHy1thTrJsVCZ9/1796gHTInaXMVYXaSq4cq9NXs+0nG/6/FnC6IKgH5/rhI5rm9vWCw7njx+zOOLM5Q1TCHy5t1bXr15xc3dljdv33GzvQNl6Jcbur4lThP74YpN5/jg/BkLk0l3bwi7a169eimPfXPHR88e8+TRBecX53xWoJgX7AfPYrni4uIRuWQury7p+wXPnn9AzorLy2s5t12DcYG+is/utgO/+u0f+NGPfsBf/OVf8PbtJbuD2Nzu9gOulRrm6vKSN2/eYJzFh8SLF294+uRJdclyBB/QtqFdbnh5N/DyxRserZd89PSU01WPDgZrMm3f0nQdq/WHvHz9jj9+/YLVkwWLp2v8b7/kcBBL62ANtmkgKIqGwU+iA8uZcRgYpwPjsIMcJQrzuCdK7ELOUsNZI+yM/e5ACBNKyXq76lacnVywXpzRNUucc9UMScC1adpzu7/j3e6KYRopec6ekjyxnLMYi1QK4TSIdjUFL8YYudB0rTScCgGoNfhhwA8DWqua22FouwVKF6Ifxdinb/C+gGq5ug38+8//LU8ePeK//a//C1Z9Q4yBGD26FVOG3XYgeKEzxpxR1vHRp5+yXCzQxhx1ocB3uga/c5NhbPOt2+Zt9OEUouSHjUN+bxJx30Dk44JyTKLm203F/Plbv68S0BTitmGco28WlJwYxwFFxFglfGyjSUHyHHwU+khbLMZkjBJeIarl7GTJR0/OgcTX796y3e45WbYYpDwolGPokhSHiAC08k3HYcTYFu8DN9MtJ2dnTC6SYsFHLydjEn783EBprRjGgZzEfnYYB0nLtJLWnXMhTEFCWZQSOpVyPHr8CKMb+vaUu90dKWSMEZqObmylvBwHwlDutTMpZ5S1wnvOCeMUb/bvePz0MdknmgKqaLk4S6ZfrIgpizAbVZ0LNCmLjWljHSUrDoMnek+MAaW0IFpZhIJRiZBv5v3rIjQASavWFcEqR6R+PnFTEmRPqVr4JkGLc85YpTGIW4Qx35+cjFynD7Hat6L0MZgoBE+I/lhogxSLBhFZS+Mq/PF5Q4wPJj7ee4y1EmBYJ1xQk6EJhMmDFipHyonVckXfdFz5yKJdURKcnJyxOTun7xfv6THm1OpShZohenwYSSVSVGbKnqgjtjHg1VFjkmKltdRCwR//NlWvGbEALGouxMXyWMGRZxqN5kARtndKNNQsHaUZwiSBUEaz2KyrLakUzNqI3kDX/BWtNXEYuLm5om0cTx6dsVh0DJMEVPV9y3LZs91aQpA07xnx19UkQcYY6riuqblgz6ITmVHqeQ+6147dNyAP6RoP0ViArB6Ct3OzUWdAqrBaLvnZT3/Cj3/wGW3bc3N3x9cvX/H1y1dsd3tSimgKy6YhKwi1aJ0bi/m5Hr8+os6SGv19OUpOQpFCo4sVqmtOUAw5C50w6UDIsYa2zZauoFyDaCQU1jWUHDnsI94Px+tlzj9xzrFcLWl6R9v3mK4jZ1htTlk90txNfwAyJYZKC3rfveiYn8L8npc6JRZ0fZ4Ye+8fIOw1SFaJJsZZabJTFtooCkKcn6M8pqLSo2rAq6ni7lKpRKWAUZbeXtC7E6xqsTQ0uqcxPUa1VeBd3aOKOHTFoz3tgZB8nWoZsevMkZAniopkZAKBLmhTxda5UqXIx/374RRBzzRL1BEMkRdKzvfj5PUBaDg313U3qbSYdDxH5XWem5lcablZAvmo11GtIY6P+U1s8/4de+/L7+JE9X08zs5P+eiD53zy4VOUKnz+1Qt+97vf8dXL11zd3PL29kZ0e22LwhCGLV/99pe8ffmS7W7Hj376M56cbjj/6BkX5+d8+Pw5f/jD51zd3PLy7SW7YeDd3Y7HFxfEWKDmJE0hcLfboYxG6YaiLPvDdMyzGsaROShYKcXm9JTHjx5zcfEUo1t+9KOfUErhb//uF2x3d6RcWJ+csF6tOT854/ryHX4o9MsV+92OKQS0Eo2sdg0QaJuGi7NzpgjXNze8/Ptf89GTUz55/hhnHeM0EKJnvVrz2YdPaDaWt3rH7nKkbTuGw4BSVL2nUNDHaSKlg2gjreUw7Nlur8jRy7qEAHmzaJuSGA81r8kYcpgYx0Hog4j74LJfse5OWLYrWtcKTXXWcwAhR3bDDh8Dfd+xWS+4vZa62jonUQZoqXk0jPs9KXim4UCuQX/OiLuVVZCi5+bujt3tDd5PGA3GKBaLBavVgr6NpHHB7bQTkCMbour56vUl/9O//098+uFz/nf/9b+u00CF1QprJOzTYnDVtjcVwBgub3f8p1/9imGc0Erx9Mlj+q47Wuz/U8d3D+M7pnzPDcA8ebinGeSHzUPO32oYjgvVNz6/T6GqSMK8Gqv3R6LWGk5PF5yebjBaMY0ju3GkySJIG/wIJR+5zMqIMKnBoq085Grd0zS2WljO9AbNcrni008+JZTCunGctD3bOGK1pQRPIUmzVWsR+Vsl58JYWVBXfc9weWAssYqMqFxaEYqXIoWjtQ4FtG0rmRzVGu709BxQjMNESpG+63BGLAx17WAnP1F0xi1WqNSS9mCV+KXP43Th9daJU32Pcs60XY969Ijb3/6KzilySSzPlmRduHpzy0m/BquJIZAV+KlqJ4zBe9Ff5LagdRZqimvQdmK728l7noS3KEV2RCHUFAnTqk2G0tgM05Sql3w5ekOLPkAobxQRShujiHFCZTDVxtY5h0HcLcp3HZv/r3CEEI7uEI1rSDFXzYrGV7QPOIrbS91M53yEUC2c+75nmiZC8DgnOotpmiQp3Im7EiSW6x4OEhw0TgNNIyF/zjqWXYcu4GxD3/eUKOe6q3Z88yTjYVZNLkkaDD/i/UhSQpva7bdkJU1DCLGm8IrjWk5ZuKPVPW4uqOdGxBjJ7ghebP+sbUjRQ/SYxpG14kDB54wJmQstOS85RQYvxYtSCuNqg4U0K9M0cjjsWa9XLFermsKtmPyAr6nFp5sN627B7nCApuFks2a7XbLbbWXiUlFpdZxiVArokaIhXcVcuN/XKd9MM5/pG/eFTK2Hjg3Jt5FUWePmyD+tJHsnhMir12948fI1V9e3XF5dsd3vCV54uX3XseoWgvSmREjituJTdWqrjcb8nI8Uw/+FyO8/56EQXdmQ9oz7gwhLXZ0cFXE5mhG8nDMhBbIq8v6rWqAX6LuezlqsAmtk9D+7EaFE4Gm7hqZrWS1XNIses2gwC88+vgKdKARSDuSSKjDCA9G8aChmx7HjtL067szTSJBJllJVdF/XMWfcEXSIlSoYs4A2cs0lOfmqNe1MrRPdn4YiAV/WLFk257R6I2noqqG1Sxrdo1WDmkMBS6aUWM0XPKMfOEwHSkk4Z4k54eNESBOpBLKO8nUWimVtUUTXSJI9vSKH0niZe1CiFkUgVDZ13MdV1WPVZuXYQFRt4gN61PvTC44T31LEIGVuJqjvQ65aNSpINV9+32ZV/Ikz7h/59p+/77/s8fOf/zUnqyX7u1t++etf8ovf/p43lzfcbQemENm0HY7C2zev+f3vf8/Lly8I3gtt1jq61Yar61s+ff4Y17Y8efyY50+f4H0gZEXG8PrdDa/f3dL3C5xruXh8BkVoqgRwTUcpcHu7FVC4iKOY1pqzR094/MHHfPTJZ5xs1jw+OyEoQ981/PSnP0Vpxz/88rfc3h148/oNbdfx7IMP+PGPf8JvfvMr3l6+5e7mlpev3vDJx8+FolNt/hsf0ED2gevLS969e83Lr77m7UfP+eFnH/H86WOs1bUmUjz/wXNefP1rbu5u2VVtxwwEDOOEbSRzY5qmY7Obc6w5STK9U2Rs24mmt2tlr0sSxJlzYhy2xDCyWa+YxhFnGi5OH7Puzlg1azplsVkdgdApRRKZ7bBHO81y2TMchMLbt504go3j/cQ7Cmh9fA9zQVvH8vQM07ZoJXoMPw74cRSgrVrQN20jAYHjHeNhR1EFTWJllqiyIanIX//sJ/yb/+6/4eLiQmrZIiG5zshr3bWOtjhyEa3Wq7dv+f/8P/9faC3hykLzT1ycnfHo4pz/8//l//pPnr/fucm4q8l/+eE04j2E4uGk4R5Bf7Dlvv9ZqftF9WGTMY8sj7oO9d6/l8teHAfOz8gpsr295W67rbqGyJRhjJEcA1oZLGJz2zaOxaKTTTnDfprTDQ158Ly7vmHR91gN667j0aZHkTlMB3IrhVNJdWwMlY9d8wIq3afkhEpwtj7lTnmS35Kil1wAVZE3K9ZiqlJTxskLiq+g7bpq/TnbnmlCjGiq+LcR2zCVM9oUzs7OUMFhssEPHm1BL+TEVvPrX+5Ti2OMhOFAnAZMjKz6FhUzja1p1LbgtUTNL6zFp8Tt7R1N0zGmEWOkEXNJPJRBM+SCbVr0VPUjTXNMxIyx0Hc9s4AbVYRjnTJUN5G2lemPiJ40xsj7fb/5CD1N0LyEVjU901Zxa9Z0iz/vcPC/1jE3S6bynWdr2vmYi3r5OSU8a6QJvHfmksJkmiYaJ9kY2+2WgoxrtZapltalfjzgOiNfd65n2g1EX7CmoeuX+FEMDNque6+5mHn8peSaKeNJ0ROSx2cpQIZxPHLIjTFH17Omae6RYyWWnkobcqqhRyGgFUfLydkJKaVyDMBLgEceu9Gazlgciu00kYoies9h2IGa0SV5/MN+z2G/Y73sjvQUlDQJ4zRye3PL04vHLBdLhmEkl0TfSfLsfr89FinztTIvVhnuO4P6miotNg2lPMj+KQ856u+vb/fuVDMvXR6pCBpTJ433a9s8dxwOA1988SVfa4UP6Sj2zilirKFtGhbLJV0nIXJNnt39xMErpvRe4xFzIqZcnYW+R0hu4yhaMyUJBdVJ09OxaFppfovDlIRBwAmMIis595Q2GDQOQ0+Dsg7VS+MZq6lCjCLMT0rQuBAyISTOVktie8c2vKZUUfPRqegBlYeKsivkGtZKHym7IWUBcOYGQykpBCqyr4uubntiDRpixIdATFHeg7qX6fl3KLl25JwzzGF5pUBOitau6dwpjVrhZvco21X3KIeaDTKyaOpyCsQcGaYD43SgqIIyktydSsTHCawUV6PfS4K3glJSXYNm0FAa1Pu9W2OUPU5AH4qzRWdSG7H64/P3ZzbC3ITkIpNb0afcaytyLV5F3D1P46TJOvLTKEjSeJKpU/l2hfF+LfHg+JNW59+613vX/vfhsNbwm9/9jt/8+le8ePGS0QecVuTpQNgfyCXw5uqSL75+wYvXb/BRnMoKRaiYuXBzu2c3emKSRni92dD11+iQWG5O6PoebQyLxZInj5/Rti2Xl++Ir14yDYOkeLuepu3QZs5HEtDMNh2Pnj7nhz/6CW1jSdHz+vKWvOk46Q3Pnz7mbnvAh6/YVsOOt2/eMq4GTk5OhWZ1e8vd7Q4+NsSUMQhd3DWOcX/L9eVrrt+9I/sIbcPb6x2j/4K73cinHz9n1XdkA4c84TrHcD2w2+3QRtdpZ0ZrW4vqcrxWnNU4Y0jWMvmDmJcYI6Y7tR7JMR2Bg+AHwrjHqsJmteQ6BJaLFZvVGatuzUI1tLsJnQyNbSmuMHnZe5quAaMJ4cBuf4fWRnKqqsA+J9nTo/fCevCeHKXOMu0Cu1ignCDlYZzY390QwyTUYiMhsMYZQprY311R4sSyNXTKoFPLwYsr3Weffsxf/sVfyDUcY73O5yn9fXOv0Izec7cfGKeJnAvjOIl2WCv++MVX/P4PX/z58/e7nujbUQSHD65Ejpvmn0IB1L0A8b6veNBgKHWk0PCNhb08+H8+NiqVux8mXl69Yx9GWifCTts23Nzdsd3vGfyIz4mkxfGm05Zc+aNGCFZMUXymnbVoZQghcZgmukXH45MVF5slJ51lHPcc/EhuRBfQ9StiUnUcXOr4W8SVKQecXfDB+VP+v//vf8vpTz6gpILRFqwDFSttxlSeqSFlsNZhjSKngLUi2ElJchCMdvR9B7Ola8rs9luefvgRqhiWzZr9Yc/po2do6/EpC9XK3nPt67tEyRISaPxImkY+/Pgzbv0t23SgNS39qmNvDTfbHYvSoKylrVxjrTXDINa6xhhUEoGuTCAyVksOBFmEV/NFPHOUoRx9/FNMlfOrjxqMh97z8+8rRZOSXAC++lYrRBBclCEVRQKSypC/P3SpmRrlvcc4e/+10bXIqLajxlRahZz7D3mO90JHsVGWhmOsFq7iLT8cDpIBk8OR/5xzriFDFq3hcHcgj4nN+oSu6zGmsFitqxGAqoGNFa1FfmdMET9O5OCZxgNJSQE2TUEa3vo+osVuFerUyor+JpKYzRdsFU37ccJYKbwaJ5kQs5f3HJiGthQmbIHedVinuTncoo1lqtoQrarTTlGUlElpYtYyCzVjzpcxDMPAzc0Nh8PAarmibVtSyTRNS99LSFIIMgHKcyM+Ax/yJhzXq/l8VpUmM982c8znxVmOb6+FpRSULpUOJwVpzuWY8i7ib7nr4CNTkKlgnDfDmLAK1s2K9XrNYrF4L1dFrMAzNmeaPLv6pUp5ScTacISUvvXc/qWO7nSDKxCngZQHUgmM4puMQ3jPSQPaoLQ0FClHyAWTFE0ydLnBRkPMkRIRUwOrsRaMjeiSSGRpNoDFyYbJvuPgL8UKlCTuSTOSrmYOtZhxKITy4ypnOtWm7agpeDDBMEqoF6pOxl0N4YpRJtoxSS7OcY2rDYmiBlkyW8BqUiw1v9PRN2uWzVOscmgaWrekMQu0crXBkDW6FMlOlloAAQAASURBVJkipxyYpkHCxKKnaKETZgrDdCARKDoS6pQjl4g2cv85SXw+3l+PyxH4ms+7meY0f2++TykctRsPQyeliUiEWClpSKjg/f0eajHlOeSqRZmpKTKWF12Y0UpMI45PuRxpjsev67//lJz7m7eUf+wb/8LHf/i7v+XNq9eUnPj004/ROfHV55/zm6/+gFaKbtkzHXYcdjsUYhwiE6FMCoGrN6/5+3/4e37wyRMen/R0fcvpZsOji1MOU+LiyQc8f/6cxWpF23R0XU8phabtKKXw5s0bpinUfISefrFkvV7TtA373U40D8NAGA8s+xPubu74+ovPebPo+NHHTzhddXzy/ILb6yt22ztQGms119dXiHuVobeW7c0Nw/5Ae7IiTiOuTh3WqxXr1YLz81NSyiyWi+Oe+cXLt9xsB842PesPVkTruLm5FtaGc/gYhX2hACWF+DAMpCTGBn4Ui2qlEKvYnNCuI+aMVUiWWp3iLRY922lLSYFcCm/fXUIprJcrVnbFgpb2bsRd36GaFvdDx/RIMfk9hzxgW8MUPLlE7u7uMEZyTWaa4UynHA8Hcbiqgm9lDM1iQbNayVQ9TPjxQPQjRitcnWK0bYvWipgmUvLokuX7qiHHJVe3A9pafvKTH3N6ekJO8ag1Ebt4qthbdKEhTIQgUQvr5ZpSCiFGMorgw1Hz9ueO79xk8ICbWqtsUDwIlJpv5wHV6QH1Sc1Cr3KkXOU5ObSUozXdkY41/1fKewuESordtOPdjaPvWqw1HA4HxmGqFA4RPGqnyTozpkBIMHloR03rGvqmoeuEJzuFxBg83sPryzssmY8u1qyXHdpAV1aUfEPJoLXFKi0hcVp+V0wJ2zhBJ2Pmt//wGz748CNu4oR1Bj/uZSHX4u3tfa7JplFe06IEhS6ZaYxMU8YYcf7RSuwQGyPuJsvFAqsLw+3Es4tPGK/2qKgoTSEmT7NaYq3wMh+6fHG0EgY/jgzTyOJkyXp5jj8ELAtJ1O5azDAyBk9Cy9jSWbLKdH3Lou8kCKdmM8yCv8P+wJwJAZJeTX2vJz9hTSMdstGCtEZBy4QWVR0KtKrjOaFBKCUbUlHmeLrlapeIUqRcmAqElDncfX+E31pXPUpMNMvmOEVSStfgsPBAcD2jj3ND0Yk7F2IB3DhH2zQysgZm+8hxGNjv98TGkRG72HnRjDHQNi1913CIkc51tG1LQRH8RNf3NI07FgXS60v7lkuqrk3SYITpgO2svF9KM01ezkutSBRiRRKNFR1QDEkoe0qa3aaxRMpRezHzwVOKNUVV0KKirVholkKDJk6eGAslFYqW+22Wi+M6UIowxVtn62TnQfBk1cAYYzjs9wwHyUVY9H2lJEpGyHq1EbQ7iM+51JjiH6gfFJAgCLkkmFcgpNJCY8yUPAMh9wFj98nh6thEHzM4KkUz10JMFYUz0NSG/m4K+JAJMZJKQgNL59hs1pyennJycvKeFe37bj/zWnrfeJRq+zqfZ9+Xo1staYDSGmyj8DEQpgmfPbEE2S9MoWgoWpGS6E9KSHTW0bYLWrUkT3CYDmynO3yJYOR8Vo2hMVYayFB4/PyC9sxzM71CxDUZpQsURSqzJqLavWY5j2ZHqFwkAyXlgnPN0XobqNNF80AgLhqM94vxyBxKl4pM0HMR1yzN7Ewm50SJmZwVSjsW7WN6t8bSYZSjsT3O9JhKj1JF1sZSsljuJs/kR4bDTiaHWqYlISXGMJKVCLxHfyCRhHZWM1pEbC7HrLugFvVCYRUENeZ0tNSdCxRT7Z2Lms9D9d7jaC3oeYqZKYQjTfHheXsM6T0+CV1vq/kYJZORvUEraN2Cru2/YT9d7tkT5b5+uAdDH/4c760n8+f5vt+n4/WLVzx+dMGzxxfkNPLL//AfuXn9mo+fP2ex7Lm7u2W3H5i86CFNrceMNsQoINz25i2H3Q1PfvwRHz57ws//5l/xm1//ll/85o/YxTnr9UaoOYhD2m63Y5om+n5B23ZMo+gjVssVpgbmWuP44PmHlJzYbu/4zT/8LecXF7JfF7jdHvjd5y/58adPWa56fvbjT0DBi9eXBD8SUyCnhFssOTs5Ydpu+e2vfs1f/6u/giTXycliwZOnzwi58OOf/UVdsz1XV1e8fvWaw2Hg9dtLxrzg5KdnBBXZ+ZFUsuxLNU9tmjxd72jalpgOFWjLXF+/pYSREqcj1XvW96FmMxaFURqrCmHckrO4a4YYOVmuOVlsWJkly7Fg3rwlbSN2syE9OjCtDTEPTHlkGAeGaWB7e8luu6PvFzRNw36/r/TwTAwRP43EyaNKbcStpV9vMNYQxhE/jUyHPVQd53ys1mvaVjPsR6GaG0WjwWXHbq948faGx88/5OMPP8JZy26/A1VTDZzGWcm9CgmGYeQw7KFkrNb0jeT/lEEmwhQxq1j2fz6j7LsLv9v2CNLNVpVwP4GcqVK52u7lUvm03F/kc+NwnFV8o4H4p46Hm34qmWka8dOEMqpupEDR1VIMnDZSXOXC6L3Y12rL403Hcrlg0XZip5k9xjpK0ezGwOXdgQ/PV5imFV0ChqKkSPB+wrmeY0JrEcH66D3GNJxtzrl+u2V9uqApwn2drURhRux1HY2L04hWpiY5h4p2WvlequJmIyizAvw0suh62oMiEvALz5urGz78oWU/3PJ4vToWOkev/llEnTPTNDEGiFnz5s07nv/wA7S3hMMoIqVW03UdN7sDIYOxYt025x6klNnt9pJz4SNaC2IyTuPR/SgGETyL/adhCCOUmjZbCt6HakerjiP3Y0NUqBtQxlldUeW6ISE2bMfRu1ZEJIzvbue/62n8z34IVSNinT2eJ0opDsOByU/HAliaq3vnLwng0YxjTTsPQeyQldAtXNNQFAQ/MU1jPS9qwZrvUcYYI1oVjBInns3ZhsViVQXajr6G+s36AYVodnIpkDJ+moT/ruWcKd4T4TgZ01oTcxJEo4C1jVzVqVTthNjizdxrsSgWnvqc/xGzrwWcNIsamQjoDL0RF58w+48XVQPq3HESVCrM6VpHoyxNKwtdzrlOAx2Nc6SY2O/3hBDouo7GOWKM9E3LerVmu9sxjlO9RhRHfjy8X7Sne9vkh5OKeYorBdlD6lnNEsjCZc9F0tSPdJBCncgkWqO4WK9ZLRfs957L7cB29PiY0Ar6xrJcLjg7P+XkZEPTNEdaHTy0Ci5Hit63Go+54fgeFU+lZErVTHSqRycDKjMeBkYfKAq0M5LjkCH6iTBNkDKb9oJlt6F1nYTFJYVCpobGGazT4KRITjFzct6jFzu2/i0F0XpR6qd5D1Jzirfoo6yds04E3EAbSfZGyJ/z9NBoI8F0Zba2nalVIogV04/6eEmaSlnqCrkCTdJ41z00Q2eXdM05vT3DKIvTHY3pcaatDUYNAAShNxaZTExhZPSDTIqtQqlMLImQA0UHUhmJSYwc5LcltOYezHtQbB/pfvr+nJbGWiabSt1PoO8nO7mem7Lez9o6TcE1ViY0ZU4Fr01YrRPm6UOujlvUV1peq+q2RcGZhtb1WOOkyZqvQY5Y5nzXb9GfZhz0wbjjG/VH+cbn78fxyccf8+h0Qw4Tf/jVr/nq8z/y6NE5fd9zeXXNy7fX3O4HbNNhW133WHH56rqOtl/QNQ3LrqOx4oy5WZ/w13/9V+Sc+Z/+7X/gFzc7yepB8r6apkFrWx+nsNlsWC6XR33dYb8jhUDJUegzNQT08t3boy6xcQ1328yv//CCi9MVp4uev/zxJyxay6s31+SomHwWmpBCKLLXN9xcXnF6tmG337Ppe05ONhzGif3ksa6pE0eFNYrz0yVnZxuefPqY5lHHH774DZfXl7imlbpOibFM0zRHKnfKRa7Hkik5CD3Yj8TkUcg+tVgsKbUOCzVYdnd3RfBD5cMITXm92tDaBevS0Lzekl7vMf0a1Tp8o9mFA4c8sAt7Xr15hTVwe/2WkhOugn1h1vsajT9MEvIXAyXJftE0LU3fixYmR6IfSWGELHonbWS/M9ZQSiCFAUrBOWHyrNgwbBNKaT764Dmb9eqoETNGpokhJJLKxCQi9WnyR62wVoW+c+KMZy0lJXSB1XrDp598/GfP3+8u/J4dH46Thnz8/N4lWb552f7TF+w/tvEJhfl+cVBzVmq5v0VpBUksZCni5mGtoCqNbVi4hpwhq0QqYnsbC4w+0piI02KBqjqDL4pEYtEu2KxPiMXw+nLLLkyw0Ef0ci7iKxQiz09rGttik+WwnwiVCiHce/k+OuO9x1pXPacbrJGEYmsz1mqKEh5cyrIBGiuLsUL0Gq1z+EOgPXnEyekjFoslp08+JJo9qj3BuV6Ct6w+0j1KKQzDcLRrO3n0iBxaXnz1BW8uv0SvLFf7a9yoyNZgNpKUe9jtoU4nZvFj8CPjOErieS4YI4WLtaai4ZB8FnvEB1kmuQoigxcLzpIrV7Ra++a6Ic0ndCkKSk0uVuIbX2pBPvPXcy5kLW49i2X3XU/jf/bDVC/8uZGYEc1ZvNz3/ZFmME9yZhF2CF428ZJRrXhhb7dbpmnCWIvSimkacM6gij4ufkZrjJUNXXicieQll8WPHtdG2nbB5nSDa5qK/knxVEyRQiWJ5e40DPg0kopY5CVq+LYG20pTGX2UxscJlct7X3U4BefkGiwlSZM+i2Hr35pSkOLainC0ZKFN6pxZaovLUEiIvsMQa5jkOIUajpbvixmlafsG49r6PKWAp4iFaAyB6+trnj17xmq1omkaJi9C+uViQdu23N5tCT4eC5IZ+byndVeKU20myjE5Wx1fwyQICjlFarUJaCiQotBDpnQvxJZiMrPsDB8/uuA//8lnFDS/+/IVIUamKNz91aLj0cmap48ecbbZ0LSifwk+vFf83esI7gGG+W/55sf35djtbumMo3UGZyt/OUv2S5xGfPToqHGNE4qAn0jBY7VjsVjRtguUlg2vXS5p3RJjLa6VCXUmEUKkWWkO7g27cEUiklKoQ3hVAY1aolaajlKqmoaIkFqmrjVs8sGhtbgXHmlTZT4r5H1IKeGDJ5eENebejjY/KHiZJ2OI5sRDZzesuic0aomlwer2aE9rlOg15gK9FCkmQ/SMYSCESYr4So8K2ZOJIu6OQ03upgrcxUZdrGDjcZ82dSIzayxgzq/wRyrTbEGttcJ7X6eI943vPMGbdWZFVbrYg+ZYTsX7Ke5Mn54zkuQx75shoxVds6ZvVtXONwnV8uFRZiAA7qcXMEOg3zz9H4DA8y3f+Pz9OJ49fUIadvzhN7/i1ddfc3qyoe873r55w2/++Dm//+Jr7g5TLZ4Vi+Uaqw0hCS15tTnhk08+5dmzZzRNx36/QwHL5Yqf/fSnvHjxkt//7rfcbA81F8GyXK356KMPeXR2SskrjNGcn52jteHNu2uUsmxOViz6jvn1SjGjtaHrzDFUVivF7d2eaZjYLlrONg0fPH/CatHz+u01l1d3VR8nVNwpRF6/OmNzuiHExGEYOdussRS+/uMfiUU0Ugun+Zu/+hGPzjYsT3tum8ivLr/m7dWN2P/nQq5RBzHKHpurxXKMgZw8KQzkJBMEq8CnhHKiA1m0ndDPNUcH1N3dldCQtBhrdF3HZrli1SxZ06L2I8oYFuen8PiMadVys3/HVbjjzfaSm6t3bFY9h+2t0NzaVvS6RYTUTd8ybONxPy4lo7TBdr3oNgSFxVDQJdfwW4NrG7S1xOjJ7EhxBArWKDptafOKEcOzZ494/OiCvu+FCZHzkZEUYiJq2VtjDlKLoTlZLPj4w4+xbccXX7/kdrtju4WuWfPBBx+wXi//7Pn7nZuMXdx/p597uJF961It73/nvebhuDx/874Pby087FlUkTF6CiIgdTXZtiCdoPfiQbxctFgtXNftQcZ0msyqEwS0dZpGG7RpuDg7QWnHy8tb/vjVO9JJIPeCoqScmLyv4mNJcSRldFGo0nD9akfjGnSniIO4lcQUiXGi78Xhx09ecjCSjKKl6JRk1ZwjxslUBaUYpoEmO0zXHouE1i159+KGr3/5Sz777FM+/S//DXHao4sERD106ZDPQh8Zq3A/+onD4Y6kJxmt+YlmoWnHwtVupFm2xCxNzThMBJ9YrVb4Yc80Dg9W5vtCSzYumfTIJp6PTmNKmZoOeT9ZkU1FHkNrTci5Bu/dnz+pRLFls/c5DrrS8GbHIkOmcw2bi+9Pk2GtqzkThWgSSiW22y2oKgKv9DDn5NKbQ6zuUcBC2wonXaMl+LCKrXMW+kDfLQh+PI4PrbU4Z4VmFhLFT0ylEKbIME64deFktWK13tSFH2xF/XSMlBBJ3jOOgxgDELBOo7ISvm0JlfInmgejLZqE1RpVRNxNKTykiMQQZBJBRdsLNTfEV32UlUlnpUHYXFgUi0mFrKQ5axuLL7A/DPgQ0MxWuxZtClpb+n4lblVZxOXTNOHHiTBKcNLN7S23t7ecnp7imoamaQgxslguOT09Zbfbs02z85JMGCuLhrZxLPuemAp3u4HRe1JOcr5n4aeKuFqcVqRQvU9A75qOmAqDD/iQ6qS36qMUnJqen372Mf/Nf/7X3GwPXG1H1FevAeic4/n5Gc8enXF6dkLbdqQY2e8Hpkk0PvOEaA6DmnU2St83HN9sOr4vx/XdK1rdsupXrFeSZ+JcQ9N0hCmSQoYEtlgsikjBOkPT9jS9I1vPIXt26QBOSSil0ShljwJV1UzcpD9yO7wkMxKDRxt1NCyZm9/qz12T3XWly1HFrbPe537yKlk1ClUpsxR5v5WS8LsUEz6MUB1rpjAel82U5/wIeUyKTC9UMWz6R/T2AotkXzizwJkOq4UCS5ntbHPV3HimMOHjhI9Cs5ybCJ89qYiD1GHay5TcKmlKkjQYxijJi5nPWWsrDYJKhRUq7zw50zUkUKyzVW3AdNUXPZziyaQnxXtheNTlOOGR1zDKVIlcqYWz26OsS6XIWqdUobEti25Fa5aQQemCacRp7uFuNNcG7/UW3/pe+Ue+5sg4+B5dJgBMd9f85h/+jl/+/d/jpwltLdvtlpdvL/nyzTU3u4FYJNDUp0QcDuIuuFxJvlXbMoXM7jDhk1Bcc8p0yrJcn/L8gw9Z9B2Tn3jy7CNSKgyHicPhwHq95vmzZ5ycbmido2ta+s7x5t0VOU94bzDWgZKpiWQizcGjc5CkXEuHMbDfDzSusF52/PDTp2yWjl/8+ve8fvkOHyIYg2osj549ZbVo2e62nCw7Lk6XnK9Fc/DkyQWnJyvIkcPhwMs3X/HKeS79nm65IA+qOrlFrGuO9tLWOXKpLp3RMx32lODRWWqv2XY5psI0eVarFZc3t2gFMYykuEcrAZKsLpxu1pws1mzsEhsK+smG7uQCffaIdLJh7BQ3t3dc7i95+eprop8YdmJL21SAbhwPgDwnchJdSAwCAOaM6xf0dX0sKZKmEZ2lETHW0jgBRKy1aJNJowQEtm1D2zg6LAt3Snm8QTeLo95mplY7K4G3fdcQwwFVMuu+46aRa+/ibMNf/OVPCCnzn375S3Z3W9aLJR988AGr1ZLr29s/e/5+5ybjmxvUsU0o79+mHvx/vnUG/u/v96d+AfeI0Iy8wXGFmAHGowDNqjro0JWWkJgyJKPoW8PJakPXNoSUmFI5LszLruXpxQmbvkUV2E0j3gfapuPp0yesFy3bw8D1dodxFt1kPOFIjyq1u7XW0LaKUuktm8WG7duBbAqvb96QjeQBaKPpXSfIbhRkQaFxTYOPciGgioTmGUM82mRm+r7HGqFTzS4+hzc3bNoVmw+fkRtLKZmwP0j68aPK79WCds0j61nMqAq8/PVv6B61LJ+eEdXEtB1RU0TrDR9/8gNeT28w1jAcRimoiiDREUWzWGFSxobETNPJOWNLqd7TsnmFGAghVbeWmdKhjkjhUUBUqohXzc4KwsNViDWqa6ogNgvlTBuDqanREcgOuX/4/ghaBeVzxJCPEwzvR9pWzjeZAEkTOU86Yqx5LdSE4MbixyiLN/KaSSgcdG0v04P6+ySMbMJqCf7SztEai1WGrutZLFcsV2tc02KdxVQOprCtMvhAvt7ib295e/mOadGQW02/6Njf7kk6U7rZnjqila0FrlCfUMJXRUkwXyniSZ5nke5sL/wA4BfOsEZhxBHIRxbasrQGl+V8yVGoT34Yub6+ZLvb0TiHaxxN09I2Ha7t6fulIKAhHosa5yyLxeKY0LrdbhnGkdO6CY7TiLGG1WpF13Vs9yNTjCLALQpdeajPzi740WefMHrPbz//ipsXBw5egv1SzmKfXBFVredAMeRcVYW+7/AhMcZUJ7+qToOpGQqyEV/dbdnuPbthIpXCsms5X654enHO6WaNs5YQAsPgeXd1zeQFqHD1w1qLrXQ0XdO99Z+YdHzbQvdf7phioGiFCRNmdDibULlA0VjdsnQykeialsZoyiKhnMb0lmatCWZgCiPX6ZqUQE8Kpzuc7dmsz3m6vuAu/ZHr8UsKgVy8aDCOfJlc9QxCGdTVbU3XIjlFoc7N2imFImVPqc2OUHukyLbmXuOUUiZW1F8bCKFaOlf7y0xF6ZWYFygUjelZukc0Zo0tDY3p6GyPrfa0GgeVelnIVcwfCGFgnAYJm9SA0qQSSVn0F6GMDH6QoZoqlZYxTy0KMcEcOjibhMyHNAf6OBm4P6e4twjmwXlVSwG5BmRSmyrIoKql+rxfCFgilFnQhFCAeNT4yZRSggm7ZknfrjCqARTGKVyjaZ06Tk/+CS7E8bgvX9T9fR64TT1sRL5vxy/+9n/m1//xP/Lu7VvGcSKhuTsMvLrZcXvw5FLo2wbTCLV5NumYvMfYBp8zX798xS9+8weWywWPTldiPGIMy/WaR4+f4pzFVUBvtVlxen6O6xYY27A9TLRLyaTZDgFlGzanp9xtt+yHO7p+yXK5qflNkcPoASXNxpGyKSnSOUeu7w588fXAk/MNT8/P+Ou/+DFX17fsDiMhFoYw8errL/iLn/4IDRhVeHRxwt/8q5+Sksf7icP2WuymNURbeLe95e3uTsAeAAWzTs85abhQCkXEaCXTv8MOnRKl1DA6a4QJYjSHcUDsfgoaCHlEqSQ5ZnUJOVmuOGlPWdsNhob20WPax0/ItiO2jjFsmeLI5dU7tne3lJzY7Ua0tiyWK5kaxIDVMi3PPpB9IE4TqogFd7tc0fbLSneNpGlCxUAKtZasEyNnNRrJt8o5YY2l1YpFafHe8PYucH6uWS6XQhmrU3fRY92DCqXIhBaUTE5LoWksw92eRdcxjRMfPnvO2eaE292Wu7vtnz1/v3OToYt+77IVN5b6Zs7f+ZNwAiKKrg1C/kYjMf/st+76rdHm/SgzZ4Qno4XTnREaUyoZle+D38RxI9E3LSYX9uVA08ioN+RMDInDODL5yOnpOc+fXNA6IxzutuH8fM3O3jJREagCUr+LFWDyMupqXUtjlyjlOXt6yo06YBT4MFV7UVH5G2MYo5fEbyX5GtI0CSXFTwG0oe06dEXNrJaxsaawXq24PVxx67/ipz/7G158ecWT3S13794y7ScuPvvsSG+aX6+HYrqUA+1mQTFCW1GtleLK72m7NfvbG3weSMZgEDeFaQwMw8h+d6DvxXnC+31F7IVvbKyFaapiMGn6YozEkARt0lpcQpDJhnDxxYNZGtBSdR/uiKbFnI7ngDaGVEW7s/+61pqSEsVGXPvd/Qv+uQ9xeegJJki6rlZ0XXdMAc9Hi8jCHNo1TRPT5FkuFwQv6Ezr+roYpPfsZu+jGKqmIRXC4cCia2kbR8kRp2E8BDYn53TLJW3XiRZEy7UhQXfItZtEq3PYbtntttBuCJN0BBbLetNzYMLHxJAHYi5o7Y70p9muN8Z4RHNTScQarGNnHrtRGONIIRyDJtUc4jd4rIJGK3G6yUU4+VqxP+y5vr5kHCcGI5Z/q9UJJ92athPrYj8O1eY1YIGT9ZrNalltXVOleAWh1jQNjWvwIQg/WWuGyXO7OzAFEd3qXOic4el5ZtUthHrZ9RQUPlYnr1KqC4cEGYntdNVd5OoeRsFpqf+o/H553+Y058yrN29AKbaHiS9eviLnzMlqxaPTExZ9j1IaHxLbw8DV7R1v3l1KI2U0zpqqV6kNR71+XA2SsnPDUdH5ecLxfTjakwsUhYhin0dMUJgkNuEgkwFnHE47nDW0S0e7bikuE5Vn8HsOYU/Me7z3pJgxNKzWF5j+lJvye66HL8kEyPGoKSo5k4UdJVOn2XZW36+Zcs6I+x36fh29X3/uN6eSS20gKmJfDRjgXr9gbXXGmidN1fCDomndmnXzBMcSssGalsYu7u1pHwibcy3gQwp4PzH5sT6ufC9EDyaRVGA/3hGKgD6S6ZGro9Y9RWk23bBWmlOFpCHPlOT5Z6A2/uX+fvMkyBrR4pVasKS69r/X2JZ7t6lcZHqh9JwzJaBbKUI9nCeKjW1YLda0tpfARq0EtNMKZxVGl2Oh9O3m+U9wIv7Uqa++9cX3ss/4zd//Hdfv3jLsdxzGyNYnLvcHdmOs+FthGEZUiHXaJUXjHGLpnGOaJn796z+waBr+9c//ktPTNRhN03WcXVyw2mz4/IuvOIwe61qWmxPOLh7TuI7DfmK329O6VjQ2RqYWzjnJ9ZlGroeBpu2wxkoAHqA0+GmqzmsOrWXfGwaxlx2HCYrhdLPgh599hJ88d9s9+3Hgw7MVH16csFh05BC5ubxmt79jnAacc5ydn7HZnBDawos//D1f/+E1++Al9LIUjLPMeqemEcbKNI1CDZpG/LhHk2kbjR+iuDK2bWWoQCowTJ4f//BHvHn9FYe7A+SIMoXTkxU5Jtb9imV7Su/W9CenLB49wrQtU1aEkhjjgDKKwzDQdS1jDuy3B6y22Mbhg4BgqWTaxtEaQ/KeHKIYHDhHv16LHjMn0WrkQJoOpByx1UVUqGka0kgKQaiFbUOnFYvUcXO348WLgRREyD+vJ1BIsYK7pdZodQ0LKYERF8/tnTB0nj95xGq5xFrD12/esj3smaY/b7rz3YXf82gX5hWa+Yb8sGk4fg3wcBrxp69yWR/m8b58rWvjot77LOPsWbDqk7g05ZLBCBKl0MSc2YXAcH2D1ZqzVc+jVY/qHW9V4Wa7Yz+MdG3LatHTtD2PH2/49MMPOdts2Kx6UhDaxXgzcpgOqFNpYlrXoJ0lJimCckrioOMjC7vkRXhN0/akUZJKnXOEGCilorLeE3OmXy1Fq4EUZ6mIzVrTSdBf14hoVZlqiViQsdrhwOqi4fzxGV+9+j2PHv2UvnGYp8/JxsrPa1UFiPcbZ4yRlAvjMHFImQ6FKoJEN8uOdtmT95kcBqzT7IYB17ZoY2g3PdutWOPlGrZmnQQJCi/XikVjLCICzpE5DyTVVFttzIMNPB83LFWq7z2VmlCbTmPEwjbkSAlywauSydVv3imNO22lUFOapL4/W4PY8oqjzMzbzrkVmoBPmFzF3iTatuU+nViQA180Rrc413K7vwXFcZHMWYLynDH4aRJtBoZYxXOt7dgPkXE/YFjw4cefMCWwTSNNhpLILgOVtmXIFsqix55uuOgsey0LmWkcq0cnHPyB7d2WWDLJF6YwsVwKXXDWlkA5jpq11mg0wddZS51eKC10Rq26o9CzKAVJsjOctYQkt5uScNrip8Buf4CCNAddR9v2rNan9N2SnArbw46768vj+SiOXE6cqxA/d1uboOADbdcK5x4p+Jqmp2TE9S0JjSDmzJgSv/76BbEkFm3Hi3eXDJOXAot7KpLS91bOM7hhjQgTS/ScrRZYU/j68paU7zVFpmaEXG0PhPya693A3WFktVjyaHPCZrVCac3gI/th5MW7Sy7vtuwOBxRyjVitpdkw0jg2darhvvlRiwEz+/1+D45utSJ6L85jKqKVcI1RmaIzKkNMihgcE4YYewgFVTTb4Y6b/SU+DVAS3kdK1jz78GMeffSUqXnN9fCOXGrAnBHjiJJkOqER7r4Yxuojcje7BSql0KZuOlmakVlYr9Q8cRdbCq0VGeF/p0pnlJTqVJH2QgozsCAXQ0oZjaNxCxbNExq1QheLdZ00GKpFMedfzFNE+RDr2ZEQJnleSrRIIU8knUglMEx70fcpRUyBUiIqQyEf1ybJGrrPvHhIZZWsikpmrhO6NNNsmPUTqk70JGsml3IUCX/L4rfcNzapOgRKCVFZD1pVekipBdKCZb/BosQhp5k1LQUQdysfA/lPWpc/mMioP3Xbt6DSP3n79+m4fvWSw/5ATAWf4eATsQjIqjNicdr1NN3i6EpZoXxOTk9ZLlcs1ivWqzU+ZCYfmEOOrbWcnJ7w/IPn/OI//YKcMqa1LLs155tHnJ6eoZXm6vIddze39Iuevl/dp9jHQNGJab/l7cuv0cayWor2T4IxI+vlkpw8mIaz0zO0uWOstK+73YH9bsdHH5zzwbMnnJ2uWC7XrDdrlB+4vH1HDCIuf3TxiOVqyXK5oF8smHLg33/1S67TSLdsGW5HfIgUpWX9V/d5VeM4MkwDkAjDjjCNKGSqJjTvdASDUs7kIuDM1e0NWheaRlGSJsVASJmT1Snr/oJld8oid6hiyUXCM5NWTDkQdWQ/HHCNpVWG/e0lMQS6VY91luHuIPswGWt7NuslXx/rICW2tf0CrQpxOuDHPSkFQvBHhssc/AuZ6EcUhbZtaa2modCxQZ0850PteXJxIuLyasubU6IYYY9gWpJyJAy6mOP5MXnPF19+xePHj3HWkErmt19+wbubO4KXuvXPHd+5yYhjPHIYpZco32oeHk4b5NDHjna+TavaRChVN/r72ySo637TdLVDE+RVHXnIPmW+vLxhNwmn7Px0Sd817KbA9f4gC11tRqYY2fvA2WLBxemppDCXwnK5ZLNes+h6+rZjnDyv313y5rKw3W15e30j1rZtPj5f6nMslb9bI+UwtuWrz79iypExTJXalIhxIuWE0ZmCjN1b5whTIISMNhZt7h0yZl57Tolp8vJ3mwbXOjarHh08i7awPlnSbwy3X33Ju7bw5OMfkKy7z8f4Ru5EzrkihIWPPvuMKd1wGEYR6A53oBzd+oSYNId8S5lgmMQJadE3LLqO0/WalBM3t3eSiVB5gDEVfJjzE2TDy7XLHhlJsdC0tmYMwMxTJst0xiiq6DkSg0wzBHlT4n2vlAjKELG4rudFYy2NFVeW/fD9yckopQiymiJd1xKCR2mIPqKNIhURVKWaYzBfM01tBIZhwGhXG2hxbzLGkEuunt2JWAo+TFjXHoWsMXhCcOSUubvdsep7QiyYqvkwxqCVODkBoMQ6NjlNXq9QRqOuCzoNWK3JuoBShEPg1avXrDYbKZYKx+edaoKxiNcdsyGCnZ2oauMxj4VnxLJkuW5yAYsSHZOW3JhUMqbS9Lwv3G63eJ/o+pbN+pTNyRn9Yo2PiZev3/Li9WvevHtLYy2rvuPR2YaL0xOW1qFtnTAoEaiOfsK1zT33HFgtOp49vqDremKG4TBxt9sxhcDu4PnFH7+GUphClCLxaJU7I6Ry3eaSUZW1p2uw2nrR8l/9Zz9hCpF/+w+/4bdfvSUVBboKh7U4e8RYGHwkFeiNkzVBKaYQud0NXN7c8Ob6hsELDaLUXyugi1DpbF075/XTGRFUO2MqFcJWi+nvxzFNgRQqcl0iioDJERUzKlc7YDQ+TeiiCFtPDhlrG8YxMo2eqKoIc8oUZVg9OWPUbxinS5Qqx48yrzkVpc/HBsEetREPkf2HuT1z7oVM/iqwhpSnc1ZJiJKwnXI47j26WnKXMpuFiAlIKQWdHb27YGFOcaVF64bW9hjTYnWPUg5V9HvTf9H2BcbpQIxBGgYlE9+YPVkHcZcKI4UEWsL2UqkauYpSgmgj5iwFrQX5PgbnzesDc2r3fZPxUHcBM2CkyKkQ8+w6VelIde95mKVx33yoBw5S5TghatqWvulpbC80GQ1aZyCJ81HOtbdJMhH5k9jSA8fKb5Aqvl+tw3c/xsETsmLSFr3oeHq64CJHbu7uCEFotYvVhpPzC87PH9N1C1LKDMNApmAbx3K1rNPYzDhJoFop8h6enp7yV3/5V/z217/B2J4PP/iM04sndF0vstMQUWcXdO0etDioxVQoRtEtVyxyx7KT0Nhx9Cz6jrbvGSdLyopPf/hDmrZlmiasMZycnnNx8QiVPM+fnHOyWfLobE3bWN68fs3d3RXDsKNtWx4/ecLjJ09YrZYsFkL1CSHgQ+D3ty/5n37199ymgTkg2jlHSFlMBkplUdRmWCsYDnvCuCP6CUOCUs1JtATwpZTJKovrobHc7bb43TuWXUOJDUOM7PcjT08/ZmlPaL2iubom7t6RhkJ+8ohyviTpTFSJSKLtWpIfGQ57lFIVTC7VLUrYKjF4fvmLz9lvt6IJpOCWS7RzYk8dPX4aKVHqJK00jZW9fdYwpTRRcqR1C1qt6IvFqgUH3fL02Rk/+vSjo7GCTBbzkUHinCEpTUxI0GmdkKeU2O8P9MuBN9c3/P7rl2y3B3wUOvx3oap/5yZDFoWKPFAb/5nHWf83b3zmwYeEtcqGaueNz+rqKGKOjcSMwIumQMlCXRGTnLOklSb5jM8oEtYoTlYLPnn2GKcVr29u2E2KkCrrVGlCUfhUcP2C9WlHtzjIz/mJuEWK5Ci+6U5lkp+42d5yO8nUoXORDodSCUg1qVR0BFpLuNyjs0dcbhPdqgWnquBVNAQl1tFyRby0VoQpShOkJFhNFVDVNWeagrghGCe2bs5ijMKHkVXTUKLn5u6OZ89+TO7uIGdc2zIMAwu1mt+MutCq48YSY2DcDjijGMpAUgMpqCOV6c3uHT7C4nRB17XsDgOH/aHmLDTCwY+C9PlpQitpgEKIjCGy7HtyisSgmCZB8dvWMU2xnj+5bi7pSLOZx/TGGgkOyrJp6qJwzmBcnWBkKPV80FajnREnH2PwQbG7/v5Y2M6hes5ZcpZQRW30MTsE7jf0EMLx9pnTPSOL2+32aAWokGtnTn32wddplcangDEy5UghkHOiaxes1yfkXGiNFJjG6NrUyzUm4XeaokFpQ1KKm+0dzaZFW83+sCNr2B8OEp5VqrgTjs97TmkvFcWcn78UMrMeSNfXJFXPdqnVirpvqk3RhJAY6sLbpkxToKC4ud1RsJydPeLs/EKSy0Piq5ev+eVv/8Cry0sO4yjno9IsX73j8dkpTy5OODtdc7pZ01V6lPee2c2raRrMOLJeLPj0w2d8jMa6lugT13d3vLu+5uZux83dlinU3IYCzBa0IjB6r+iaC8qMgCGPzjb8t//F33C7PbAbE1++vmLnEwZNYwytc7TOkYGYoaDxPrI9TOKmljK3tzdcb3eCPiGBSXNmWspF6HIVtZ7XX1vXWmMUVmsaa46gzfflGA8HcqpOR2kgpQGVAkYpnLF0tpG/QWlUTfKOPuGUZmGWeHPgUM8r1zR89rOfoFbX+HgnG26eamFbP+BIM4R8pCoK/XbOitBYXemmujYRM9W3aiFKUaSUMUZoUjFKunYuUvjOzkuFTImlUlc1KcnjaFqW7SMW5hytHU41tGZR7WkdGofifSvimCM+CD3Kh0kmMwp8CkKXMpnBD4QUKNUFUhCaBNX2OWeO16OpBUpB0MxKHSBTjs54QrMTcCOGWVtBBYvm55br3yUOg/dp3fJa5xoKed9czNMLXRvze5e91WJF55YSJFpKDe+Up5bTnKk1a2qEavb+MU9N4B9tJ/5cl/FPMKv+JY9oHF510C/52c/+mo+ePefm6i2/+uUvmXyg6xesNhvOHj3i9OyCxWotqdW2wboG2zTkFNltb8T6P0ZiKrSNmLKcnZ3x0cef8PO/+dcs+lMWyzPmXJRpHAgo1qu1ZGQ4i3KOg5+IpdCtlpQUGa8DpmlxRcxCbBKNjXEOZRu0ayFEuq6htYofffyYi7MVF+cb0uS5227xIXB2fs7jJ0/Y7bZcXV6RS6HthFWx3W6Pe+etP/DvP/81L28vud3eSk5UpYeWkEhZqLe2aVBGS9xBBSqnlEgxolS18URhnaPrFngvkzmpSyx+Gtnv7ghDwJmMsxKgt2pP6M2Sbp/JL6/RqiHdHnCbRCqZoAKHMKGspmkbdvstw37HYrOi6Zr7PTF4rHP4w4E4jFLzloJ2jsXmBNc44nQQkDiJMFwV6JuWzrVgDZAhe7SKKCf5VKZETHAE1aCM5cljcZaKMcprWGnYKQmjwhhbdYYJmxJta3FNpfMbQ1aKUCRDJReZlvRN/40J4J8+vnOT0dcQLqM17oieySZmKirn6gLr6seMrKnZ3aQ+VuHIjBGUJksqa4xJwtqSOLbMhWdK89f3/56mQMxws93x+WuNdpqtH9mnRApJzp0s1mS6FM7PH2E6y23MvLiTsKLzfokYGgw8Otvw8ZOndAbevX3Lv//t73m3vePTZydCiVCJGCKmeIxpgUzXNZBA0WJ1ZCo7puihoofRTzTOoIxkAygsqiSariNUL2ulZiGRbFimeh7HmOkXvYzftcHoAkSWJ2s2y0ds1o/xC4VtO9E+oMWDnZnDK5mxswgvxMDu5hJTPOUcsi1MJeJDYrnaoNuJdDiw2+8xrmO5lAszZk/ygWmKjNMkGQkhSOgavoaKKXwI4jtdxGFJaFIWa2Hyk/ztyghFJ0cKmcZZcWghk1UBrWv6svBzTbXFtdZgNTRVdKURJ3Zd6Xmb8/Pvehr/sx8xxuquAZMfBb1x9nhBL5dLcUDynsPhwPn5OXPSdkzzJCcxTkOlccA0TZSSuLm84vzinBjC0T1ivy0EP4l4jBY/eRb9mtXqBONkobBWRujSvCsyleZTFEnDlCOHYc/l5VuenH7A/nDgMB5wrdgtd4ueohXtomMcB4pK5GIqb90cedsSWCcUOKPv04FLLuRUROysNSXKOamK6G1yLPiYpICJkRZNSYWYCmePHvPskwWr5RJtLPv9gS9fveKXv/+cl28uOUyhUu8KgcwUIrvB8+LtOxat43yz5nSz4fmTC6xzRytb8YGX5993nWwcq7Vojaqoe5gmbu7uuLm94+p2y9X1LfvDwDh5pqoD0BSZAilQFFSRIivlLCYOylCUoWs7NqsV/naHUrKerpoOZy3bcRQaogJVEuMwij97iByqs1bvLMuuEweZGJjmJOk8ZwuI6DxTiAoI6R70MbJGW/3Nwuxf7ojTSMylOusFxLZYpHbKaIKpBaa0wkK5KRljG3rbkFUk7jzFJT786Se4s4nRXwOZlCdyqaGWs9ag3O850mCYaq9dKsXJYLQ09PdhmYqs7hG/ef+y1qJUZvIjhULKYmKhtEIbyVQ6BocCMWVKFlRx3Tyi0RsMjka3NK7HqQ5Dg64OUtTpRSpiDOLDeK+/0EJZyjkS80QoHj+OFJXAiOVuzhMocYdJedaymaq/sBhlKmh4D0SlVClh2mC0rFUzQCDTeIfSuoJ9965RDzMy5vfoyHaolCvxh6jvAWLykXNGK0Pf9mwWG2ylmc6GBdQsqVTftMY195RscqWhzja8f/r4025q37ay/dO3fX+OmykzZMXZ6YYf/vgvePLoQswrXMuzR094/PQZZxcXtF2PNgbnxNLUugbXitlFTKLHES0MjOPIcrGo2rrC8w8/5JNPf0DwVJG90PrapqVrO7yXRmAaBlZty+nZBdoa2mVPionJT+wPe2zTCVski2OmI5P8gdWm5dOnT/jkw8csnCX4iRACd9fXWGM5Ozvj7OyMzWaD1ophHHj16iUvX7zkl7/8JWdnZ5ycnECBkCL/4fNf8f/75d8TTSbnQCZRkgCTTduBbapTZyGME8FPmDrJ1wphiZQkwFORMNScKqWxQNd0qFyYDjtilPvaGvS5WZywNCsWuaUZEiVm3LML1OkJadURXGYXDlzeXTOFifGwY7e9Ffp51+Eax7AfxH0LRY6R8bDDD+Mxs6pbrVksljhjKBqxw07iPKW0uKau12v2fhBWRPaU+n4ZY3AEbGlJZs0wBt6+e8ujsw19JynuThuwLT6PsmfrqpNME4aI0aZaeQu9KuXCDz75jK7pePX2kn3NVrPuz0/Hv3OT8bPn58fiQWg899aJMyfzmx9TEfvGULn8MWUZ76b7hiEfP9dwu3nDLOW4MZTKoX3oR16yBF4lH3l9t0c3mlwdNgo1F6N62L+7vWP/29+hrWPy4ltvtOZGTYwoFl3LSZYFrm0aNqsVj9drfKjR7lnQfpStRbTw2FJA8gfWT/jd3/0Hnv74EbdZTtpY8wBEnCYajVKiUDemA8bYI+qrKHURqGPoqmugXhApBtq+ZdFawi4SioXNiuc/PCWnHcP1ltubSzYXZ0f7uBnwkUCpKjRVgRj3LNozLrdbilVMMTPeXrJer3DOsdttWbhWUmyXC66vbwgh4mxDSoHVcokExGXGwUt+Q1b4caqc70Iu+sjVnZGvXNIRIZJ9oooZRT3LQ8qC1oaQI7ZrpElVoiOwWtNqRas1rhRMSmKrt/7+0EBmFxbvJ6axIo9aHRH0rusYhuG9QLX563nCM00js81crg4q3k8cDnvWaxE0a22JFcVNMVRnJ4UfFW3fgLIYI4FIs1+50lZAwJrgW5JMB6cQGPZ3EkBvNRjQTnOYDoxhRFWzshg9lFwnbAZopSCqTcbswCauO+pI89JaEXwma1NTgcFVQWjJglSmAkUblM7YQnUjMTx+8gxtRVNxdbPl86++5vdffs2ryyvGKdRwRsWMcZYCPkRCgsMUuD1MtJe3vL25wTjLerWkaZr3hKlz4rA0iAKQtI1jtVhwfnJC/qgwhcDddsf1zS3XN3e8u7ri7m4rtJ8kDUWaEfFSCDHx7mbL//zv/w6lDW8uL9FK0VpzDNlr67RLHEYyj86WbJZLRg+HULidRoyCReuw1tA1grJ3dfNMMziTEz5GfLxfY6ujbgVlxHZXfwfU6X+tQ5WAyhmNwjUdxi2kqI6TWKOGiVgmUSYUcErTNAtoFLZvWDRnpAZWzzRqs+WQ7qBkUvGkucHQquoQJNBPpuPihFZykdTrQhV+myOqPuvYgHtUXxspts3993OWPJPCg2Ib2b9A9q2UCjlBq5esmqd0ZokqGmccjeuxWhoMxb0upDCLLz2Tn/BhlCIKmWooDehMCCNjHijkCsx50bQgdMM0U5i0Poa+ai05PjEJxbSUQmTOO7JHU4ZcijTSRaYxKPXAEfCeWgZULUo+MhrKTEdTWvb2UqeXpTpy5YIzlnV/Qt8tjq+dmCfoOiXM98F9dQIyC/QpGa2z7Pf/yPGPNRjyvW/f9v7t36+O483tDm1bNimhjZX3xFi65YLFes3m7JzN2QVN0wpVWhuUtUdqYKx22z54ptHjh5G7kzWPH19IQGrJnJyc8ejJU77+6hWKUumVYgXrfWA7DOwPI8vNhn65ou17bNtgasMQ/ci7t69pXMvTp894cnZOSSM/+ORDfviDz1gte9rGUFJiGA7knNlsTni2XLBarlgsFrJ2e88wDEzTxHK55MnTJ1xdXvL2zWvubqRQVwvD64Pk3sznclGKQkJrRZTCgznwOASJEwjTSJ4GSJKGnULN0mlaUJrDMGGbDqPlWhn3O8J0oOSEDzKdd9awcAuWqqXdesptJBuNvThDnZ8wLQxbv+XNzVu2uzt8nBiHA7vtHa5pcK6BXPDTRE4ZZyzPTze8GQf2iNYOrWhWS3l9VaFRhaFIxk+KEStdEsXUaWsYhTZdxFzFKGiSptUnvHp34B9+82vCNHJ5ecm/+a/+RqjBRd8byiDNjtGaFAaSnzB0LNqG9aLj6m7Hb37/e4qybNYn/PCTz9DGEWJkfzj82fP3u08ylv1xmuBTrHzaUhuGeXPLD6YOsxvGtz/LJOP9JqLc0115L0b8+O8a0na8qVS7RtmEShSO6lzwGCM2gSAN0G4cKHEgpYIummSkaBq9x4eO065ju92hS0+7WPHjH/6IfrPgRr2rwlx5Og8954cQULpn3Ad2hy0XnBGS2FVaC1kVCrEmyDrACE8QRSnVHSgEXOtQSnQJ8+NLwnaibzsJ4SoZ13VsFgumuy2f//oX/NW/+i+5vd3hd8IFnj2qjdHHxwHZUA2KTb9gDFspWLqOUBLr5ZLDNLLdbum6Htc2HEbpbruur02bJuXMRx98wFg7fxMSShmMEYHuNMYjZSZXulgI91qJWbgoBaE0GMM0HkWXR4cXXd2lfCRZQ9PJlIycsNrgtKIBWqBD4RTo79Gm4JytzaWEccUYMUtbgxgt0zQdC5jZ9cN7T9u2FW2UTdtWznSMkRBGmsax2qyItdAxRkTNi8WCGCasM4Qx06oFKjvhmFqZYshUoVQxq0EZhzIWsmRwFB/w+z120ZKUCAmNsxy212QtiKqeXX+sxlJorFCcvtkgzeJP5xoxANAWqONqJVSTnDLONShlkUdL0Fiy0TSlYKsVbTYNzjZc393x4s1bXrx+y9ev3nB1t2WaYi1G4D0BZz1KERR8CrX4Loln797yyYfPON1sjgLpuck47A8y3jf3UycxOBNaVNe0tBcdj88vSClxt91yfXPD7d0dt7dboRcOo2R6eKFXvbve8T/+u39g2bXsJsk1WbQtRsOya2hai7GKR2cnPHt2wemyw2DZHhKXtwPbfWbZW87WZywqAjVME6MPR2CmyfaY+yCCxSK23THgY6rUiHwEgr4vhzYi7le2xzpJu5/CoVo4SnhoLIWkqw7OWkY14u2AaTR20fLsw2eM7Zcc4rY2ihMyWq4he1UsLAWnxui63ak5q0ThXIMx4vxW6v4kGoaENQ5rJAwwq4wyojnzfhIga6Z+Ho0tVC226/sRMyVrFs0Fy+YJTi3RxeBsh9MdWjUoJfuC4v655hzxfmDwkumUimgsUklMaUIrmMaB0Y8oJzqvmKTB0ApCDIj2TRp544QeWGrDOWuqCgLyiJOb7BexNtsgzcnsgJhKrkAY71EEgWPeDcdJuqzpcl7WnVPVpHUyi3bFyeIM59pKyUpI3muu7kViHpHJx71TNDTSgMxhohTJE5KvZ4rwnzjU+19+q9f+/vTef/Jou571ao3Ogd//+j/x+PFTdtsDTdNjXYt1LU3b0y9XNDXpevQeX6dvpVow+2Hg8s1rlov++P71fUtBs+iW/PRnPyMXjffI+54Kd7sdYQrYpqNba5rFAusaDoc98e4WYw2H/ZY3X31O2N9y8fgJHz9Z86/+s7/k6aMLzk7XTNPIMIxsb7f0/YJHjx5xcnrK6ekZOWf8KPWH9/5IN04pVp1mgqLY3W55tX+FaizP/+oTXu3esdvfkrJMQIXx0OB9QLuOtuswxhKCr/VbEfAujELLNFRL5yK1mRITCACUxk8eP+xJwaOUWPPGJFreZX/Gqj2h3RtQE+58gzpZwWbBgYmX12/5/MXnhBwgJ/w4MBz2NIuepnHklFB1Le5bx/lmw4s//lEYHDnT9T39ao2xlnDYoWKQaW5K1ejIoazmMI2okmSSkwKNlQmH1Z4maLZbzb/7u1/yhy9fiDYyZx6fn/Gzn/xIcrWsZL3NU0utLCUDcUKpRjSzZEzJHHZ7vnr9FmMd6+UJi8WSs9Mzzk5O/+z5+52bjN++eHNsMnK+nyzME4f3Jw8cYYG5eZh5mscruq4HqvJk75GHe2vbb6IRD/+tROwhSLqCUqE7RRInLKUoNY8AIAYpgnPIpKxqEyJTj5xHvuaSYb9n2XWs1ytyjtzud6Q+0SgljXGld8hmLsa569UFX794wZMPnxBSwbkW70O1Hw218MrEKGNeQW+FLz03XrE6LqGEzygXWWHRSQpuDoFiDIfdgTQNbLpTNo/O0G1mN91yd3XLZz/7K9ExmJmaNmO78rp578k+EUfPcNjRr5aMd7dHusjby3d4HzBNR6nCqVwy6/WaGKUIG6cJH+JR4Ns2LQVwthCNWN2WSvua0XvxXxf7wRzl3JERbZ10PDgd9PyzWoO1hBQwQdE3RmiHWXyqZ2TRGosuirvb3Xc9jf/ZD9GcRBHd5YzR5pj2rbV+T8cAHHUXc0ZICAE/icZEV/vi+b7SRIqAu3GmTtSk0I4xs9/vmW4Cm0/PcY2jbdvqNlLzRrQCrdFWrDlz5S3u726Z/ER/umaKUw3SioyTP56X0xSkcVCOrBT7w1QpFu/rSfyUKyqpK12n1L/R1HNCxPvKWHEGE74d2hmKVjVlvMho2MDby0t++8WX/OHrl2LGMPgHolGgfLtoKFTklDrJA3zKbPd7xmkieLE6bNsGe5DX+PW7K37/1UvOzy843azomrZa8s6li77XchjD6ckJZ6enpJQZx5Htbsfddsvl9RVX1zccamje3U40LVStgUbTWjhZ9Vycn9AtWpyz9G2DJrPbH9iPI3eHHVMKqFw4eM9ms+Z0tcRpwxQ8kw9M3rMfRkJNFQ8pkXKhLZZlaZmdguZmY6rF4/fhUKVgrEW7BtM0UkwGEdZLA0rtFGWqqztHcpGbeAkGLh43jLxijLdQJJhOLGll3VMzKlSPOZ07VYcpkOJ1tl/OuQYqKtDK4KxkFFEnFXNBPqXxCJLkInomKXLysdCd7c6N6ll1j1g0j1DZYpUVepSuAXvK1gIGYpH1NqfI5AdGPxCzTC8SohnMBDCe/STUKZ892We0KSQCulA1EqIvocz5H0Zc0+r7n+rkZZ7czJOJ+OD8mNftWfQ9v0az2P3hXjy7bZVS991SjgUTUM0uMs44VqsTercQe14ttChdJ7b3wFjNwioCPBl9b4tureE+8NLVHe5Pdwn3g4ny4N//WFPyfi7X9+k47PfkFIDEH379n/jdr39BMQ3nZ+cY29ItVrTdAq0N3kdu3lySijhgKjR+v2V7+45XX33Bu8t3/Ov/4m949OiCpnG4pjk21h988Iy3b9/y+89f4ksghsj+9oZpHLm+vmYYJppty9W7l4irm/DzT1ZLfv6XP+KHn/4f+Iuf/ZTVqqfkzDgM3FxfY53l9OSEJz/5iYBpRhNTYre7Yxwnovd474+A226/Z7fdc3NzzatXL9lv96C1uCQ2Df/u13/HbtiKI52BwzDgWrGJD0XyPNqmIRdIMR6n75RCygGTg9BRvUerKg4vpRbeFqMNvVUkHTnkiAzTxLp91T9is/qAxfopxhlMv8atzinna4amcLW95suXX/DizUuss9iSOWzvqiunnM+x1gBt47Ba8erlS25ub1FaJiWPnz6hWS6J1QErTCPBT+SUsNYIjaqRYEGVEyVOaDJN04tUgYzympvbzOX1bf3dHT4Z/sf/+e/YbE756IMntV4Xna3WYketksaqRDGZ1mharTGqsF60PH32VJy7rFx3N9trrm6v/uz5+52bjKvtcBwnlm9NGr5xbf6JZuJPNRHv3/7+8XABKMflYe5MqMJjQzHzJGTucFTlswL6Plfh/vfVALgsBGCN2IAepoiPe9TdDvX2SjiFKvLJj5eCslT/81TfaEGJFLa0LHvN1MCkpJjXdVSXojhvWGdBabRyONdS0iz+FScSYx0pJSYvBWfbiFOD07qGrCRabTntVuhoKAMEHRj8HrfsWFwUvEkoI3/rvFgf01dzJsbErc98+JO/5OXwFTaJj8hue0cqma7tOOwONO2y0k4U4zBhrKNxLW3bsh8mgg/H99pUZ5ZQwpFLO7+f84ZujRGdQX3MmBO5OiJJwSy825wTRQmNwFhNyZpSPd1jzKiiyEVJOrgttSCtEAaZ78shXGXRZnR9S6j6A1cpLg836DkDQylxP/LcIzmzmLIUcLY9BlsBdbphaJoFwzAQQ6JvGlJIKK1oF0usExtca9yxMZudcpTWtVGGmBOqNSyfnnMgEJPHOSfC7wKdazFG+NbzvMCHe6vK2SLwPi1YHSctqqptxf6znpNarHoxmlT52bM5REE0DSlnQXFC5IuvvuKLr77m8vpW0s/LffWo6hRjPr7ll18efCqF3X5gt99LQ7VYVOs/uV4GP/GLP3zJ+OvPWS861osFy76jcZbGitvGou/YrNeslksWi2oXqTVd19L3HY8uLvjgg+fc3W3Z7rbc3tyyu9uScsKHRIgThcyia/nJDz7lpz/+Ef2i5+rmhsvrG65vbrm63fPi8prr3cAQJVMk5ANTylzebenblkXb0LcNp/2Gk/X6SPcapolx8owhMHnZSHMWwXffNP/oWvsvcaQYgYBWkxTwpaBCEIvlxlVXOaHnGKOqDa2AMeuTBUN6xZRuiSUeOdlKzSJjLSnDBVQRF6l5YiVUUn1870MIx+vNzDbApj06ceVq91qCF1MKrYk51qn2HGJXjntQqYh+Z9cs3GNas4FkMMrR2B5rWkydYByzjOr6F+KE9yPjNJBUlgajCFPANuDDyH66Q1nIuuDjiNYFoy3OCnAzTxYlAV6LA1VKhOrYprVBackCmEPSAJnWlHLMuimlVJrz/cRQHLPy8XcISKSYA3hn/ZXoYmbRt1ynTdOx6tcs3FJ0QlbVLKTaaOiHkwpVwYMH05JSmMMARRsbKy1N/fl14E9NO9U3b1Hf+Pw9OhQoZbi727HfD4QUmULi5uYWmhXnH2TOtENpx7Df8u7ta+7u/v/U/dmTZFme34d9znrv9SXW3Cpr7ep1enowPQswAAQDQGAMNCP1KNMrH6T/Su8ySjSRkowGkDSTaABJkBwQYwBmutFrda25Z2Qs7n6Xs+nhd657ZHVPdw2NwKRuWVREuHtEerjfe87v9/tul2y3G3bXN2yvr9jtNjLtboTtsFyuWHQL0cJU17W29Ty4d4f/6X/6H/nxT35BKZphc8P2ekNWsD465uhozfr8hIcP7tB4w907p7zz8CH37p7SeAkNHfodKMVyveLBwzVdt6BtZOgRQ2S72zLWxmIYBobdyPX1NZeXr8TZ88Vzrq62bDZbri6vKNpw7933eO+dhxw/aHj0s3/FMOzEUnVuIqoGcObQpRTF9S0GUhwpKYq7YmHvNhijCNFzzqAlV8Naj9YW7xSUiVICpUij651nvTpjsboP6zvkE8lfy+2KsuoYieziwGbcMoZJnL2sYhok/FVrwzgOhCmiSsFpRRgGXjx/sUfokrFk36CMYRp3xGFL6He1sa7DEefqRZDRSmiRtmpxLBk9FcrQ8fJVwBjDctHtr+tHz1/xL//1n3Fy/Lc4PztBW0ecJjntrSXsIjns0GaBbxzOaiyZpTNE7fCLJSenpxjjmMaJ3a7/jafvV24yUlD7TXs/Bbi1Z32VxmF//5eahtc+VzxTzbjmre/FqQPxh9Ya5TVJJ3LINayjcpArJUspKUSVonL/5SSbNW8lZpSFkiHETMhUnm2q9nwZbdbMb24uClsFdPKeeBq75HJ3SW5gCBPGCN87hGHffMlmJwVdLgGjhOATKzewpMg49DS+QVdXGVWoQupM41s6ZTExS7BrUXSLpfghLxcsV6csj88xRjjb8wV3exMrFO4+eBvTZhZqzYubK4qGzW6LNorlYglFkRI415CzbMAxTiiERpLSRN8P+9GxdyIam6apFlst0zSglDge6LqRaWMkUAlJgE4xo61s9DMV7Ta9i/p9rC5hKckGk7UUpglFViIA09kwTW9OkyHQo7hTzJOCeVo6DEPV4bCnQ7Vte5ik5kysFDNjDF3XMU09KY5QhCYVJxGCGgPeNRgt0/XGN2wZaJctvl1grFihip2xpmhNVrqevyK+zjkxxompBIozDJsNaAnIGoYAmLrAOoqOe0RlHHeSYH67cKO+1wqMroVXlkJJVZ63vJs1J0SYc9Xu04BxpBhwSgh1xlqur254/vwZYy8iOeHYywWc5+npfvCg9o3P64cSOl0pbLYDr66u6aeRdrHAmDnAzrDsWpx1XG6u2fU9z15e7fUZViu8sywaz9FqwZ3TUx7cu8vZ6TFN09SCVdaExjrunJ1ydnbC9NYDQQCHge12y8uXr+i3W85PFnznW9/gm9/4BtZ7/OOnXNyMPL98wqPn1zy72rAbAzFnjFIEk+inkYubG8nTsYbGeRZtw7Jt6JqGzntWyyVHq1VNtI3shpF+GCVwNMxF2ZtxpFjPc1XIRXzq4yRoxFy8xxBJYSIJZ4qmW3Dn/jnFXTCma1IJexOJStWXCWHTCD1knGqxbeo6LBNy56TgmcMugZojI8FwKaZ9UQtFUKM4Sn5ezb/QWihOwmcWZCaVDFnh7REr/wCn16giieDezvoLh1a1kEcJhananffDjhAnkngpEVOUr0xiMw5MoWeMAWoAbVFivTmHzs7X54w+UumWshcAHJqF/VZ+ayjk52yZIoL8mUKmlFAzU0mHgV6luII+6CWlct+vZcLt9ywXa5zxMkAyGqoF7awHmA0Ycl0XtJE9cLbFTilWVzx5n3OSoNMUBfG9fVbvQ4JvNR/zmqAqw0FuVvvHvvZ5/3Nv0lFE4zcK5RajGMeJR59/ysXVllebiT/4wz/k4dsPCdPIo88/4eOf/oS+3+GtlT3FGB48fMDx0Ypl1VUqJQgRMxslBt579yF/93/31/n5v/1znjx+LvoEYzlar3n48JQP3n/Ad7/7LR68dZ+7p6coNP04MoXAdjuwWq04OT3l+PikmpjIgLMfBmKI9P2OYRjZbDZst1uurq55+fwVz1+84Ob6ms1uy+XNNX0/ARZjHdc3W8zqhm/8zpKt7nl6fcGry1f761MbzRQTaQrYdo11NSCynoP7PJ4QUSVLtEASdoH3njm/JhfISayTtzcyodfKkmPCekPnVxyt7tEuzlHdgtwuKdaTfSt6wjwyEpmSaEVyjIScGPoe48U4YRxHEVorQf7COLLbzk2EpekW2GZBzmLoEiahruckQz41u3HWpqlrLDoJ7clqTacKZyy46Zdc3gyEONbLPrFaWBrf8Pmjx/zwxz/lj/7672ONw9g6RNSGEBNT3+NclkFW64jLhrILfPz8gstHTzk/u8O9u3c5Pj7h3v3j33j2/iWajNf9cH8V//G1224DGTPlQK7hfQOh5knQzPHUB77n/j6tDk3GvADIKEPoT0kKGbQs2FkAhvocCmpuANM8tampq7WoTTGhsmShlhrqVnS1nFWmyu3k0BV1UEpBAophHAuvrm84e3eNCpHZsk/cLw7CUqXAWUupiZwpixjTOoszmlLpDU3jpaONkXYhzhDaWpq2IQfF2/e+xc3LK1zbCS9ymChaY5zdU8dyvoXoVB7uOA5Y77h8+SnRB6ZhJJnMar1GaxiGkfXpMds+YL3db9bb7Y7tdrsvio1xjGOonXcUR7AYcU5OJaU13jhSEorMHL4X4xxff9C01BYMioQH1l2ckuSyd8ZiNcz84qI0CXFQiSVgtQTgpPTmNBkxBVSmBjFK8zA3FuM47rUL8+0z4lOKBAblnOi6DmdEfBxDzzBJcJEq0nwYHM60VUOgOT05QUUwRx3Hx2csVqt98TtTy4y2KGPAGDJCy5tioB+lcCm6sOt7tIEYDSFFKEIzNFqT65TxULSoPbf7UNiXCruKs9wY5PyYL/wyU+UK9TqQ67sYxezdoxREVQ0dXj4nxZFF68S/v0emqxTIeY+ovbYSvUap1NXqV66LYZx4/OwF7z58i/XqSJ6rdVijWS1aWm/2Lhu5FHIVUmulGKbEMCWudz2Pn1/w8eeP+dp7D3n7wT1OT47xXhy8Zh9ylNoHXR1zTEyJs7t3GLcbvFYMMfHs4hUpFx4/e8nnT57z5MUlF9dbhmozWHImFAjhMDXXekJCHmW6Zqo1bdf4inLMTYejaRuOVyu0VoyTUKzelGM2tshlQiVFjBI0J+L0Kk6OkWkMJK05Pjvnw2+/jz/quekvSXkiF7GhLFXk7OoAaEYLJXDO1yI+1qKi2dNH56bD1IT0Um1mFaVmIyWxjg0DhVuCZxS6ZEHrAKVEi1hwNO6MhT/D6gUq60OCtxKLWtGFCEUqlZl7PjCMO6Yw1XC9QkiBrCR7Yxp7pigZKVOeZK1VVSCeazNqBJN3zu3dn4wyh6KaUocOlbYZozz3OoSYC/IZ2Qlhfn1UdSSSwdvMIpDU8vlanlENoBp8NNbT+o62XWKNrTkuipwFxXbO1etS1hGtZH3wrqacK6HDFrGmQqlEKZFpGPdmEtb9cvnyqynWB6JUyb/q/vlr4FfUNX/Vh7PCGLBW0zZCcYpTIKSJuH3FR3/2Jzz97COOTs4wKrJ59ZLt9RW+aTl+cJ+TB/clC8F77t+7x6Lr+PgXv6CUxOnpCdYICtb3idV6zXd/+7f5D//RP+Qf/xf/OVrBe+895O/8nT/it//at3n4/jt03pOnwOWrG65vtljXsD455vTsHGscJWfGceT6WnQWMqyM7HY7nj59yvOnz7m4eEXfD7x6dcnV1RV9PxJTdQ1DE6OSc1CNXN9smfKn3Hl0xAWvuNzeSJOgrVgwq0p9VxrjDkGxVJrhfD3HEilF7GslU8PvXRZFeyroWqs0uSQJDNSGNEV0sayWdzhe36fplpjGg3UU11CMJ6ZAYKLYTLsQ6pYriWm7qTTOahgRwj73reTI5uqKaRLTnAL4hbgoxjARxp5x6LFKrKaVlkwpyWpTsseOV8Q4slwsUCRcjvhoefJ0YpgiWjlK7kEZmsbROsuL56/47/6Hf463ht/7a78jY7iSQBsKDbsxsEjQ+IZF/ZmugdYZNi9ecXWz49HTZ6wWS46P/rdsMrjVZOwRhvn72x+1IZinJ7cahgMicfu2W43F/lffniz8MoCpSg19SxmVhP+aVW0ODKisRAieZVFRtcApRfzFlTKYysedLThnqz5lDNobmb6bwjhGfDbCv82F3a6naRpSTHSLlovn16RU2PQblLVSOKn5ZVK1jK5weAioygeW+6uFoip7BGKagizK1kJRuKbBeoNqLVMMbKeeFy+2LM4UjD3DiysefHiGccJ5n5s4cSk5LKI5ZlTRaO0Ydlc03nMz7vBdAyqTYk/2UnymYcDUJElrLdMU9uIgCX8Rf+04C3RnilBK8jprmQBYK85Qsb4XUpRq8X6OYW+bKJSZ2SGqNkcxYo1QrLTRVFMYlJEALa1E8G+N4uRs+VVP43/nR6qWwdM0oefws3rej1X8PAfvzTSXEEJFLSZSDkDBeYem4IxkmZQMu+3AYrXA2wa8IatM2zhKUFxdbjle36VbHWHtHMBnK6fZMPv1ow4heuM0EtJEu2i52V0zjAOZXFM8xZljdnXZn0dZ7o8x7iuLUieme+4rFa4OoWpwDsWfUpJ9ANV5RhVKLOJohdjakguRwrOLC0IKOKNZeQexsC2RqWQpcOYBwC8hp3LVKcAayQhBwRQjj5695OLVFeenp7RtK9Cztmhr6FqHM4YwU9MVlbIiFrxS5Itj1subG7Y//YinLy54eP8Ob92/x8nREd7WRkW9npSMUiwWC1bLBapkroeJ7WeP2Gx3PHn2gkePn3K9uRGecAFvNEHNHPvZsaiQEvs1lNq0G63Y9CPGbCQJ1lpa72mcY9F6aTy8p238v8tT/y93aC0T+3n9zmJVLYMFI4GkOZO15uj4hK99+z1YbLgZXxJzT67XiVDsMs5UilQulTaoK2df7dEK7z1QCCHuETgxalBQZK0SaqPkXKQUGKYeqOGgdQKpkGmn0TKVjzFTkqV1J3TuDKdacZCyLc4s0dqhlUdjK/rG3hVnnHrGsSekaY4/kYKlDMQyEOLAGCf5mboGxjShzWGfmR3tTDXPEJMJja4NmNx/2OpLRY9tDX3MNftDKEi5WquXPRorpuFS6M8TcJC9a6+fpECRjCNvGhbdCd62tUkpaC1Bf3oefBhTC9ICmr2OpeSCNkizUoQip2oeSSmSA6TqIvPlhuLLgvT5tv9/P+4eLdiOE33J1SlpXos01llaC8Orp2xfPaZpO7q25cHDByyXC5bLpWQsZXHJdEYx7jb88M//jGEc+f73f5eT45XQo4eR7fUNR0dr/t7f/zt8+O4J9++fcXLnLnfOj3G6kKZM3I1kbelO7rK+J5asuhTCEOh3O/q+p+8HhmGi73e8fPmSV68uub6+4vHjx7x8eUGYUhWQ9/T9DmMc7aKTYdAwEWMghEi3XnF3seKqv+Lf/PzPyUup/YyV9O2cEu3iiKicCNwLhGlknAJOK1KYBFkvhVyHx6EWq0L1BRCNoG87coHjo5arF0XQ1gLWKrqu43h9h0V3UrWJlTJf17ExT1xOV4xlwjWepnGYmNj2g2RwdG1tborsOSkSp4lxGOS9VAbtGnTTyhowDaQgbo4zDVEbjW+aKnZXWKPY3mzR1DBfBuK44WZY07UnvH2n8NbpkUC8gDHQeFi/fQ4pc/X8Kc+f3uXs/Hw/KAiqYewnSh9AGXYZrsdIRnO0XHJ2mglJiszrmw3PXrz4jefvV24yVGsODcGXUQZ9aB7gVtNwu+ng0ERw++vb68Tt0WSdKB3urwVIfYgqBZ0UcaowtRWYFaOgulSoKJs9IE5TVbxt6qL8Gq2oiKtHSZEcEUGfVkxjJCWDZE5UwVyWEsbZJa5b0zyw3JgbUoX4u64VEVOY8I49V9c3FtnvhBMvjhmyEcpGK2nJMxStjSGEhFp6hhhRDm7SY5bnxyyPFkzjgLUtvl1SkB3IaCMaEkT8V+e9NI2lf/aCob9md73Dnx7R2IYcMyH0OARJsNbT7wZytZAT6oE832mcsM5gnaHTLTEmrHL7IqpUjmyYRKMxIxMppkP6rToEVMUKAeZKe9HG7gu7uVGaRUlq1n+kzJgzTmm61qOUxvs3J2RsmiZBr0qhaxo225vaECeM1XTt4pAUHMIti8zalBcpyhvn91MYhVgGT1OgKzCnFMcQUd5y8eIlV88HjhZ3aZtFRTBsbTJsDX5kvviqK5y4X4UgfPYpJtCaEgvDGJhCFI2QKfhG73UXxhiZAue8b5RyFqG4aJVERBeD8G2tdTINSrcbFih5nmAKOlMQr+7OeNwUuNxe8fLyklfXPc46QUeswaSMzjVXhTpFrV98uZyQ3z2nL4uV6PWmZ3OzZexHuqYVXUWdtK4XHa33DGEQQfqtoxSxgdRKHLZyLtxsezb9wOMXL7j/+BnvPLjH/TtnHB+tabsFjXP7XIEU5XXKyPo4Rigkkjasjo95qDXtouPp8+dsdz0hJmyS3I8Y4mvOUDMND2TCleahhlb7dc3oXuzGrak6A9FlvClHqoYYKYbq027wvsM7J01G1fqs1se8+423UMtXjHFDiD25WrXO+4ix4jI0O0bJ8MhBEf1QzoKcHBykDsF0Ys7g63BINp5MIoSJmKteA9E9WGOgFOzc0JRESgVVViz8EY09wtBiSiO6DtNidXVR20/+C6UkQgyMY88YhkqLQlyklCKqyBh7hmlDLJPQar0XZK5OkcRURFC3lOXanOlfplpWl2p/bZ2VNTwd0IiDfbNooGb0A9i/LjPBcb4NZipU2jdk84dSQoXtmhWtXyMuU9IQyJRW1v2ZyhJTxs4IQ4ZZ2SLoUJF3IU+kNLsWyv48O4PN6O98/Kpm4qvc9lV/7q/y+KPvf5sf/uwTfvSLz9nupmpA0UhT7hvuvvUOIQSePX+Kaxq+9vWv8/Ct+2gF0zgyjgPOGI6O1hwtl0xDz8WL5/zi5z/j61//GnfvnuGsomslkG5xdMT5gxO+/p13UdOGkhN5GEilwSyPsW5RB2iJEgIljky7DZvNjs12ZLsThOLlywsuLl7x+MkT0ZLEwDCMPH78nO12x2KxwjlPSgVbMiEP9Lsd4ziRS+Ho6Jhvfvd3uP/OW9zkC/77n/1zYpbka13P4VKEKR+LaEqgVB2GNColScNNCpAiIUwoapaTqWeg0njf4tuOFCYalVh4xaXSRJVxbcP6+IzV6ozGL6uJhDTaRSliClz1Gx69esLNeE0MgdWy4/LxS3bbLUdnZ7SdZEztr6OUmAbRuGpAWYNbdPi2JedEnCS9m5iINQ/GO6FFpyxt0tgPhBBYLpYY3aDTFp0izhzx/rvvklMRkxOtcTXAuFA1TykTQ+Tpk0cs1ksaL6GNzXLJGHtSjGhrML6V5xQyy6blbK1J1tN1C8Zx5MmTJ7/x/P3qFrZH3aFp4HZDsZ/L/xKwsT9kpC5f51pE1ttv/8y8on1pGajf630TUmpBrpJCZSVcWi3p0VnX2taYfaqwAnTRAq1nWax0nQ4aJB1XaUNEeP4qZ0qM2JXHmKY+20PTVEpBaUvbnLC52GEXIsZNSixMcwmgK/+1NlXCAz6gF7oW2qUoQpTphDESbiJBhkbcH5xYj3nfsDQGkzRGN4xlpD06RY0wYVjUwhNVqUe1wJqCIAzjNPH8o5/TLhv01nNy/y678BljnIhxQqMZhx3GtRirUZlqrdrRdo4URaQ31HA5QTW8THiRKf0sEhQHsvn90+KSUjf2GGM9QbRAncgGqWrjJ+m8wknORZwdZi/nveWidWCrX7iCOL05rjmzVW3XdcQU91PUcRzpug7vRLMjAXuFtvGM40AMgZQTzjdSaFlDKZG+H0lV9zL0PWd3z6QRiwntgBS4ubiC0Ajv2TV1A5qpUlVQXYsvELelECdCGEFlsURFsehWbK6vCWMgU+p5NNN09GvuM9qYfcEC7IsNKh881amv1bNLDfJv51xDuuZU8OomVue4hcJi0TKF51jd0I8bboZBgj+tQ65DGWzoLALYUvVYVeaxTxt3FTrPudwSuMoEZhoHclxhtcZZoZ11XmhG1/20zwO4fUjTmysFS4YQqWS2Q+Bnnz/l0YsLzo/X3L9zzv3zc85Pjlmvl7Rtg21aJC06Ce0lRaF9acNiuaTtOo6Pjjg/O+Hq6orrmxtxmuoHCf8L8bVcodtPbf66pFJDMmdai7rVeMyv85txeONIRrRwpeZGuKYV5zNV0Mrw1sO7PPzgnKBfMkzXlDJRCPvAN7GLr+YROVZXqAZrfc15GJnd2YB6/sokfjZimO8T/VCCUhgG0YZk8n5d1kpTSqw5UYYYJlCaxh7jzTmGBrLFqgbvlxjt0YiIVCPr/Gx5G8JY6VEjqeJxmULWiVACQ9gyxA2hTLKHGU0qicZa+mGDMbIfpZSxVtCGaQxi9c2MoItNujT4FWG9RTHUSvYFYI8ow0xjm7Vwc7q92PkCewQol1SnrOwpievFMVZ3dW/L2Op2mFLEGLcXds80tVRRUUHCkwyLqtA9x7TX28h7KH9XTHOjeBCg/0XHr2sW/qL73rQGA+D/+H/4j/kXf/qvsf/f/5F/86NPGKaI946z1UqoRaWwPD6l3WwEzVKiK9LWSr5Sv+Xdh+9wfrJmvLkk5cAHb9/l3tmS9cJwenqCbxuc05ATJfWUaUsaN2jTovwav3xbBpklQpqgvyKPPWEcGKeJzWbk5cUNT56+5PHT5zx5+ozLV6+4udmx3YkmTFvH0E9cXGwk8HUXuHv3DijFs2fP2e12+EZC5s5PT/n61z/kt37nO6zvrPnZxY7y80yaJjRzGKQMGGKWQNSu7VDGkXPEkBlzIOZCDCPkgDUQSgKVXkPXMdL8ppTJYeLRsy2XFy+JMbJYtDS+5eT4DovFCU2zwFqPmpGMXBjDxCdf/IJn26f0047GaGySnLbVek23WMg+LHZ0xCQU/WG7ZQ5b1tbRrtfC8pikJsuVik7JMizyzX4v1mTGfgdqfu4BMw2sdEfLOWkShFcazYFpkgZeo6rRTiZMgU8+/gW5ZD74+tdlkNe0DMYSw4h3nsVySeNbIoFFmzkvMGSNNtAdravr2a8/vnKT4a1Mi9WXG4F54lde//xlqpMq83eVLnRrk9wDGhWymX3fpTfJr1F/ZHI5u0mJ0FLV5iJFgVZ1URJGo/Wej0oulKAoU4WEkYJfMTuCyMRYVy2DIlFyoml8pSVIkZbqNJKiiGNhGHcsl+IGMAud4yQ2iY33WFukM68Fggz7Nc5YFIjTgK48fQoxJywKo50klhtN6z0qwVIfMYaJbrWuFm2a9XpNKbcTWA+T3ZSS8BAUNF1He7xkfXyE7QQe1MUSh8BCdVgsGwI5K1bLJQVJBZ2mEWsblAZtZHOZpoLb2z+GysNXUEx9HgaFTN4LSuLpa+bATB85OCjJdFwh3b01Mx1BkBCj5o0PcZqptDsqNUCT2Y5vjiYDalOkJQNFLE+FXmQrZWHmjM46lsZ7NpsNSimapt2H9Ww2V2yHHdpKENjx+TFKQz8MlBjpzteMw8D1qxvunZ6zWq9xs81tRegOlES9v86EzjUSKw1jN+yYYkQbw9APjGHCdU21Nzy8tnOTMRf7dQRJqoWcaKLmKZERrVDluiqMNJZZggRFtyD87pRSteGsfvva0XjH0aLDGs1uTAwh4+LBYUb+RmrzUPNxZiqKqtQba/cI2m0t0K4f6oS7TtCtxVlP10qTYZSYC1CRJZA/VxDHGhhZF/sKTVBKYjuMbPuBR89ecrRa8eDOGe88uMP98zNOjk9YLJa0TUPXtkwxiOtPjEKTKwXrHafn5xyfnDKOPdfXl+y2O6YpsOsHdv1AP4z04yQWjFUzkuta+FpLVNdRcqlr3ZtVQL21Oqe4yFQCY04UhOdfVKGoxPHxmgfvrknmOTHuEN3DgeYEMOeagDiwScaJo2QJrxTuvvzts+h91svJgCeLsDMJR9sYVZ2jDjN8XV3Scg1adEbQ6JItrT/G62NMaSnFYnWDM0usalA4QRHRNRhRqGEhTvTDtgbsCV1QV1fAkCa2wzWxTIxxoCCuTGEUx7cQRiBjrUxs5Tq6tY7WdVIcEGVKK9a8UtyoygvPudS09S+tm0rQlPl3ymssDnBjzPvXD+T1UCictTRugdcdZF1Tz1XVwxxcvfZDtSriiGnCN+2tsM6aUJ7SvnbIt/Z9yRXIt+i5Za91+8u4pv1F9vhfvv9NOk7Ojvi7f/t7vHNvxX/6//yn/M9/9nNSzty/f4/79+6wud7yxbPHpKnHG9FghXHHtJP99MH5Ce++dcbpUYtXLad37nP3/Q+4d/8hJ3fu4n0LJZLHK0oUXSDGY47fF5OCEon9FUw7SpwoUUKKQ8jsdjuevbzi88cv+OLRcz797BHPX0oi9DRNTHU4sutHCoK8+EXH0ekpRimaxpNL4uz8hHv3zlmtliyWC+7fv8+3v/Ut3v/gLZ71z/nBL35AzhHnNLk4drst1nqKMjIEVophmnBeUZKY6xitZJgTA0YVFq0nTZZUZLAhhihmz5IoKRLGnt1wI9c4isViSeMXLBcntO0RxrnKcqnW0Dlxs73myYtHDGVgu7vBLjumfocqZW/3Sq70ypIF/ZkmwjgKiqE1vu1oFkL7jmGSEOhak1JtY71rbg2/kjQWrq0o7UCbM16vcIiwP5aEUQXlTEXT636REzfbnn6cCFPk4urfEtF8+9vfxLULpgxhHLDtEte0YC1lCnjvUNuesBvJuw0FzdCPv/H8/cpNhonzJFA+HZqIL1nD1QbiFstJPpXDtHN+oV5vGuTB8/fyM+X2r7j9L4ASAffMQ82VlpOKQM/KarRVaFut/FImlwhZCmCdNIpMShMq6zqRqYULBVSWhU8XwJJz5OBOIY47/WZgHHtsRKwCS8Fqi9aKFATimoIIk7TS0mXHGkyoC84YvPNMYUdOWXyVnd0Xic65fRFF8bSLh5hmy9K1jNstr55JUvfqaImvdpqzY4mEGx343GWKdCcn6G6B9ws++viHuIdGErw3mWNzn+3uKWpRN7YojlF93zNOYV9sKgUhREoBm8SBSkRUIoiPsfqd181qnALW2ToZSyJsrDQpawxWG6EA1HNCOSeTqyKbzkwjmwWL89lmSqLBYEqibd4cTcZc3G+3O4yVYlu0GEaE17MjRs0Rma30xnHEd50UMSFy1W/Z7G4EEagBl8vVEmMlpLFEEZClKbJcr3Ftg+/aX2owylwczwtpRc76fkeIgSmJ81FIkaZpwGhU9advmobdblff4zmN/TANN9aiZiObIoWURuxos1ZEqIFotVavqN6cDWMqJ1xod4AW3+8wBhqnWHrNojFsp0Cq1BetwRotGSmVChUQDYfUTDKxN9ocmtp8aGZzDGyHgd0wSDGmDVaLN/qibWi8mA1M8yJ2e/GZF7o9RUQxZ75orSALShRT4dXVhs124MnzC+7fOeXte3d4+8EDTo6P6LoWayzOWKEyKc0QRsYgww/jDCu/YrXqSFFCqaZq+dj3A9vtjt2uZ7vr2Q2SXTOGuN/QD0OZw1O/TbF6E45vPfwGQQcGRq7HLZtxZAyBmAOroxUPHq7I+iVT2FYKXqwIuNioWmtFGDxPxo24NqWU9yjhnrJbUehZ6C/rea7UvTQDwHvk0VSBdKjuRVUOUzNvMkY1NO6YxqzRpUEVi9Uea8RBStf8C41o+XKRgmAcR4ahZ8oVKSkFTKmhkQP9tGNKEzGPsk4UKmoQSLG8NtU31tZiMmKN3tMUVV1XUj7ssbNt72E/yISadzQ7/MlxCLM95GfseQcHtBIw2tL6Fqc9zgg9TOksWQNzA15/xhhLTBFvPKpa20rGz8FVD0rdVw5IR6GaMORCKYLUqKyw2qEronlwufxVtcKX7WleRwC/fP+vMrN5E46mW2I0fOMbhr/1/c/44vFTPn+5ox9H7t1/wPd/55xnT5/w459+xGdfPOX61XPefeu3+OC9dzg7WXD//jn37t3h/sO3JUyvWePaDkWkpC0lvqQkqXO0W6PdAlSlGMUb4uY5YXctNvIVRe2HgYtXN/z848/52S8+44vHz3l1ueXqesO278kITW6324p98fqIKUiOD0oE1r7xxBiJMdB2LV3bVJc3w83VNV988Yib/oI/e/QDPn76iQTOFpB5vJwfqSBhw0r0pMQJlTOqmiqULOLvFCd2SSyVrXFMQZ6H0hbnG3JJlJRIQZqsmGT4G6aJ++fvsFic0LZrtHUULTSppAohRa53V/RTz5il+bq+uiQNW3a7Ha7rhBpe7chLLhAjBkhBmiHbNLSrFdZ5Sn2uJUXJR8sJXe1pldbEFNBkUh6BUk0BKpqfFNoegzJoZfHFEEPg+vqKYZAQ1xevrtj2PZebgSFk0cJ4g+4+4u69e5ydnqKth2rwYqzFOLGnbxuP1tBPE7GYumb+ejQR/jJNRj5MDeZJeSnihEG9bY9A7JuJA+IAry8Dv9Q4/Aqu5G0h15c/z88l5oSB6r+vyUmJ88xs++U02ll5g42heA26kCdxGYgpVv2DBatqsQCljsBCiJhci4kkfHmUwtmO9+59jY92P6JYUEnChkRnUECZOu2RHWqe1CklTiClFMZpAgcKSf41gM5glK3IT8b5lqIlROaHf/YvOVouUaca21hcBdqHcWJl3YHXX2ldMrFCUjOVpju+w+7yKReXX6BPCpfbK85OTknbCz769M9YfXCXaC39dkvIYV+YxOoOgVK0bYPWYi849GIFJ+4Jwg2TwbnYMlpnCDFW8b1MsSS6PpJLwrkDBD9PpVKMGKPEbs4qsV4tCs0sHNYYLSJhp0EVvU+ifROOOXAv5MRiKTkWglqIfmHoe7y1KDLjIG46m80GlDRdxhjIidBLZkoOgZyEGmCs3gt7pzgSU8RYw7233uLk6AHO+32DcbCypE4xDRlBy6btlu3Ll9BodpNwZacgAZLaaPKUDkX0jBzB3iQhp7xvHqx25EozkYZf1VBFmQLnXEO6EPqF0uwdXrRW+2JLYSBnuQZKxGg4Xnecn6zZhkzYTqRSG2hVsEYs+5zSOG0I1X2ncPDbF8OCwwRW6BaJi6sbLq6uuXN2ytGeViavbdN4vLWMMe+f9+3ianZsKwUELBWXJ6og2wgAR86FKQReXUe2/cCTp8/57ItHvPfwPg/uif1fW1NpnZWGyTlHSImQYi0SFdp6WudpF4uKTkYZpqTENI5sdz193++bjn6cRHA5TkzVmCHlQ2jqm3Icn9xjl3aUcIOPGZUDKRRO75zx1rstsTyuG6kU+0KzkyK6MRJgOE/mjLEYLfkVUw1aPAy16vtyi0dNUeQ8I3ByfuSUiFVMLp7yoNNcdEvGkVIWo1oae0RjV6hi0cVjbYdRHq19fZxBVWF0ylG46GNPP/ZCW1IIyq4hlYnt7prExBAHUkkYa4WPTSHGqYZZatrWy16lq6FGiBgtOqe0d2GSfKFQaamm2liXam4yNw57bnjJommsx0whkeZ8f+nXAlwQCW87GtfR+I4YItZ6vLOVslaHQTWVWyHNW9N48kw1NIII7vp+35SU2sjNjnWzrTeVAWGUxWBxrqFpFrSurcnfc1M91yH59e9fu+9Xf3/4HXl/+5t0qGYpTWxpee/DD/jg3Y/4+OlP+eLRY376s49YdB3f/e5v8Qff/y7Pnj7l1c2Wd97/Gn/wh7/PW++9R9Ot0b5BrOUjpUyoeAklUbRFmSO09fJXp4mye0HcXkLOwuhIExrquZP46Bef8/Fnj/jo4y/4+Udf8OjZC643W0qRonQMgZRlbQ9hIqUtbdOxWK329EPnHF0roX2qDm63u54nT5/WuqDwg3/7Q779u+/x2e4zYhzZ9RO2kbwfZcQkxzULjG9xvkVbcbUsOTEOQ6XyCGUohImmdRydrLjZ9dLQotDW7VG/OO4oSTRwJWecUSzbjpOjOyy7U7pmuc8GU7UJjvU/4zRxK0LtadpRghg5aCumInkMGFut4UNku5GAPqct7WpJs1rRtg3j7oYURsn2qJREYxxN1+KcvH+q3Aq4JRFDoPXwYP0W3/7w7/M7v/336HdbpmEgp0Tf7/ji88/58U9+yqPLH7MLA1OCIUQWVjSJYwhcXFxytF7TNC0pDZQcsM6xXK0YQwQlLoz6qicn0fstXfcbz9+v3GQM1bZ0f6G+hkDA7bbhteHfnq5xC/u41Sj82ibiVzyPeQkQJkBNAdUZY0X0rbRFVd/wHMXGzCBvttMzlzVWL/IMxlBag1SsoKLG1HwG5yXsRetGOKTVqYNcWC+PuLneoqyq3D+B5p21IjxKSXzMi1CejNYUpEBOtYBz3stkLksBZuYmR0HTerxzdXqncY3lwQdnLP2K3XXPg7tvc3T2Fi+fPyPGOfSoOn/UTkO8lzM5R2LKNN2Svlfkpse2Gt1LGF+7ULi3DX4Fpmm4vngJSqhdbdtVxpUmhEFsA8tI4x1ksZlNOUghECMxCu3AGEOsU8EQUqWZlD2cHmMhlwqN12JOBNHSIMYx0LpGxPzMk3CxJHVaS95JKaSioLw5TYZxllhzQ4B92vfeNjMKopTzoRAS4TOMw0B71DCVTFGwGwZKLjWYUWGqSLnpGnKeGKZAoy3rozPWR8fYqkF4rcGgWjbPvPQQuL665PmTx3R3jgkm4rwXi9NxRBsjaNScUm4O3NWZBz27tcUiacwpJaqZpzQNeeZuz4XGrGeS8Mkcqze+NjXsTN5PUxKGADnI8MB7To/WPL/acbWb9hPVnKlZOGVfZGmtMNbUwg5xSatOXwJXJ2aTgc1u5MXFK955cI/ValmDkoTqsWgcy86xGV8PHJyFppIXIG57GbBGhODWSPFqjKYowzTVpqfItGuYMje7nmcvLpjGicWLC3zbsFqtRSjetvhKMXHJEqLkFOgqgE41/VnyTxyeQtt1rI6OKDkRguSwjMNIP1S0o9Krtv3AOMWvNHX693VcDwPbacd22HKz29D3W1ZHSx48bMhcVIvaTOFAjzLaVP2MuE/lat06Gy1IIrSt1KID+ja/h6VOYoVtKedqQVK254m6MZpxHCqHOlWaoUZhMCzo/Am+2tMaVRsM3Qo9qjYY1L0xJkEo+2HHGEdSSdWEQZLtIxP9eMMYd2SVxIAhTDicWPI6U606BQ3Z7nY464kxYIqg7zEXdEl1/3By/qdcm305J1PM+9TuUhAaV7VbTlFS0mczihjF7U6OOetHkAZxLVvT2A5VDKpo2qbDe8/svGaNoeQoGpZcyCmy6LyIt0uuzy+htMFZh0LWqhSjaECyIFWoTEngrJcsINvgTYOzDa7SNefGf18yKPjlquFXVxG/+TFvztGuzknTgHYLTu9/yPmDH7FafsbLVxf8i3/xJ2xuLjk9+gf89e9/j+9851t0p3c5ufsWi/UJqoagljxR4k1lCBjQjlJaUsgMw45h8xjvHSYNEDaoHGUv8ZaE5dmzJ3z+2Rd89tkTfvjTz3j87CWffvGUpy8u2PYDbdPytQ/e5+7du3z88SdsXm2kEC+QimIMkbaUmktkxWa767AV6S+lsFg0SJK4aFTXRyu+94ff44v/5RnNGEklSG6E0oI+kNDG0bRtpTxJ8zg3syEGtCqUnLBG4xtHUYWQZAicav0iOtlEigO5RKEhadF7rVZrlosjFu260hQlaJlqjoAuaK+IWZqbaewpYUSljPXyt+Zy0BuGaSD1A7vtVkjE1mLbDu0cbdMQhhtiGCpzRmynrZWGLGX5e1KciCnQOIdRCa0yOmYWi1Punb9P2604Or1DW4MXwxT4zve+z1//25f8/Oc/59NPPuXJk6e8fHlBDIFl6/lbf/MPuHN+TpwCu+tLUilQkgQptq3QuJVidXTE+WS5GQuUvK/Pft3xlZuMsYYn7ZUW9cKe7eT2BcWvaSBuH4fepOxZCdI85P3s/8BWeL2ZKfsfzSSSOBBhMN6iXUUMssJEmapqq7G+enKHRIp16u4MNA7dOTCKEhOUWWis6RaSdC0WYAe42RrN/Ttv8ZM/+wK/1MSSoVpbqpyxRhFD3SCRia51lhjVnnJScpYpPbP7h7jrCMqRaxiS/KxWC5qmFTTJKpIbsF3DuAmcnd8lNXZfzO43ZHOwHS0ps91syU3HbhjJxRCnCWs0IYwo7/B3VgwachR7RGMd282OxonjS0wR6xoRNlf3EudMfb0KhsLNbiRMkQkRJAr/r3L1qyal5LwXokoBkNHKHLzqS5bU6c7vdw+FIqdMDgnthf9uvCcZEf8uF2+OoNXWfIzZFzzGSNd1DLu+JmGbSlEQ3nRKCe+92GoWEYFudlumSYSlzhnIsjhrZaqYeUkIAwbLcB046jzaumpVq/b5GyCv3Sxyk+n6SFSZ7vQI5Q1WgQ5h74pV12mmKeKsEb3TLZGlqRSVVB1mwlSqoFi45SVLoKBQiAwli8XtrAuhFi3GKKw1hBzrxCvSmYIpgRhHxjihtKabw+7KQSKRYE8L2rsM6VINICDPr+UtuqXYPko/G3Lm1dU1u10vUyvFnk7lnMVZs0dYdL3u9yjOnvvFwZFHGRpn8dqyXi7RxnB5s2XTD4Tq6BFyZhgCm90EpeficsMYpHE6Pl5z5/yMO2cnnJwc4bxMhhvv8Y2vdqeprgmJlFM1V5DJMsZgnKftOqBUlEMm4NM07elVu/43p7P++zq+uHzBdnfNOG4JsWd90vHOhyuifkkIuxroKJTWmTLqnKmpwomcRE+TSqXfxryf2k8hHibgVfs2IxJCCUq1cc7kHOq5jJhsVOrNnOmisFAsVnd07hhXtQdGNVjTiauL8nuK1Dx8yykzThPbYcMwDQhjUcxItFVs+htC7rneXoLOaFOqXbig1tJcmKoJlHUhRHGVMbdoYoUaB1gNRVJNKNcVaZwHUKmabOi6v4RU9qj3nFWRqzB91lGUGgZrtaVtlnjToIoTepgV90NXaVspJZqmJaeCNS0pBVDI+Vsy4zjV51QEoavax1IiJZR9Aw9UBNVinWfRrnG2kwZGOXGHRO+vz199/CWaBvWXeOxf0bE6vU8YtuiS+K22Y4iZcUr8d//8X/Ly8obHjx9zcXlJd3rOe7/1PdziCKWr4xoRcp2Kaws0gGW8ueT540/ZXDwlDQO+7ViuOjpv6FYdrm1JIfHs+Qs+/ewxP//F5zx69IQf/fjn/Nuffsrl9ZbtbqAfR2LOeN+yWJ2gbSNaIRIlCVXu6OgY5zyQKmXR7hkS5tYwbrtLLFcr/DRhrOLB1+7zdHfJLk4oLVayY5iwtoGi0MaTUVUjmyBF0TJkqaVKrqPkMNI2ljBNbLeBKWu0sRhdM1mKIo5DHQ4HcppwztC2LUfrU7p2TduuKiVc12yNwhAGRtUT8iTXZoHddoNXWXx/Zg1UypWVMEFK9JsNKSYMCtN6XLegKLi8fMlwc0WO4t6oCjV8T+qFcexxRuycFWKEokvCWFhkjWXJxVWP/uIRx6cnnJ4e0XjJ7OispVssODs/5/d+//crjWpDv9thDByvlwzbHa8uX9Esj9hdvWSz7VmdLFmvj7i62aC1pm0ajJb12TfLQybdrzm+cpMxi7heO/boxPz9gQdcKDWE+0Cnuu2pvW8qfukiV7OsY/4nKun7YJmr1aHJIaUq3IOkEfqRVqiiUV5hlMJ4i3JGhHchEUuu1q4KYqKMUIzQOKSf0KLNUBFrWyiIF3rlijq/4NGjl2x2O9atJqsMutJ4tDgwlJKkG9SQsyJMmZRlAY3VunQOiFLaQk5o5IKzxmCsoetafCvc8u12RzMZ2u6Y9+59jf5qYtwObMctZ9/4GkpbilJkJfzEuQAqpRBLYru9gZAJk9ioRUkT5LhbSvFlDVPRDP2ANYLGlJKJJdZNJzAMQ51yKXKBFAs5G6YxoMjEVOrUV3jRIUouQk5CGkspk3LYTx91/Zg3wdlKmKzAINB3Eg5KTBGrEVqbLhQjftfeKBaLN8eac15E5yYDhAKmgEUnQubGS9iOcD/T3vfcO7d3gZkbBY0Sl4mQKDGTVCAXgXTjqBiuJrhr0XN+yC1bZq1EWD3Th2JKDNPAVCLLkyOGOJBr8JtkBjhSZt+UGCMUCKHoCC2FymH33okdoFKVX52qu1im5GpXS10PalNJtZItt1YApYo45GQ4WTZ0w0jYJvohVvhdQrmM1hJgCcjFr/ezjhlRLdVYIdfi6Paxn3oia0s/iMXuTGVrfYOzFuekaNJIIVbUgSM+IztzszxzPEqWJHXvHCcrMU0Yx8A4hdrgCJLXTwG92RGr+HUKYun47OKKTx4/Y71a8vD+GV97/13unJ+xWi32Lkj7gMCURTsQU2085CPWsLRSMsYZFnPqbcmcRlkjJRjxzTiebC8ZdxvIE/fvr3j36wum8pQpDNV5SM6nVPUuptJPxzFRsoSCqpqnIfxpTSpVv6UUJc36KF1zWaQhnTn+ua6LqaLhzglFNSeh6jknpgc5Wrw5onVHGNXcajAWGO1RCHohImy1p0eN00jfbyWcUyvRCBoxcNgNG4a4YYo9Y9yhdGbZLCiIAQIKuoUU6tMkNtAxRrz3eOtq/gz74L0DRTnvs3Hm9X8WgcsaUDUO8xivHBz/ZtqQXJOHYVXrFiybI7zpyEXc/7razKKKOCmmJHqkyuMWm+FEyoFdSGKDXqnH1nqmMGL0fO2IxqQkcKZakrsWZxta32G1q82mQpWqAM2Sw2RuOWFBffr7seTt4xbLonzp3vLab3gjD9ss0NajKPjFEX/4N5ccHR9xtHJ8+vlzfvv7f8h/8n/+P3F27z7Gd0I9RRy7IKFoSXFi3G24uXzOq8cf8+LxF6w6sew+Xq8kwHXR0Sxa+n7g6bPHfPHpIz79/DEBx8P3v8tv/+F/wP1/9a/48S/+L1xd3wga5RxMgV2/4Uc/+REfffIxi27JctHRNo7T4yMePnxIiIlnz59zcXGB1po7Z6e0znF5eUnOGds2HJ3d4c6dM46PVhyfrXk8POEHn/yQPkq+WDUApyBW9sq46qA14HxLToEYA5QsifFGU1JEGzg9Oebm5oo8zRbwIkIvBVIKhHFHjhUpKQnvG9brNavuGG+X4ihV82LQQtF+cf2Cm+ma3XRDrPoJo8Ra1mpD27XiAjVOtF1DiIE0TaQQsJV2b7sFfllrsGkijT2EWC16JVOjbVsZhCANRs4RZ2UtyDFgSmZlDC8vXvFP//n/laOje3z49a/xja9/jYdvvcWdO+ccHa3x1qGVwrqGpl2wOjoRRoHRwnaZAudvvcP5+X3+Vd9z9fxz3DjshzKUwul6yZNnF3z8/DEvrjf7UOtfe/5+1RNdOGgwL06v8Rthf5s84tbXM+IxNwa3ON6oW1katYGQr2FfQewffvhe5rN1wUgKndTeni/f/vVGo5yhOE1SmTgFpn4i1Y2qFEVJUgBgNcZqtNdoZ0RXkEbK5PHrNX2QcBIwWNtgsiHFgVgcuUS8bcUKV8E4xgr5lnpOVn/wOHPpRCMi/u4I7KREaGsq5Nx4jzYSRNd4hwqZm+sNx50nJ83R0YpoW15dCZxunamUtIMUf6a5GOtoS+Li2c/ojj0qqbpxTfiuBQrbYaBozzgMNDUQpmkaSImYCsM4MIxjDeUzOFfqxHtkmEacNZJKrQqZWNWS4uKgnZPXmkIKIkrUiAOQ3hcHstmbqitRSqNrA3poxmZvd80wZZzLKO1wb05Mxp6iMX+eN/jl0UpsbYOISSVUSehVOUih23XtfgIvGgErbvNKywJVqUUpJ4wyqKzpFkuMb0RAf6vB2CMZ9fuUswi+h51sPgbSJEnwSklAYEEWtvl3GGPIJVX4uYrui0x8tdGkNCNvh78dJFhLKbHKKxR0mS2NazZCkvc5RUFxNJmSIl5DiYF+mBhjIVXq397JSeX9YqeUWOAaVe06ORRa0turfUbMa9QKChRdU6DDHknyzuG9uFo1XiyEQ0rS896asO5f2xkulzsEXQGGSTzeZ3rI7B5SirhnjTGgB1WtjAV6H8PE9lrOh3ce3KHxnqYRFHVGJG+bOPji6hS+7LMPUpKmYxYvx33ugcI6TbEO17w5xdSkI9kV7p4d8faHDUm9IoYJpcSgQ7QksTqVSSJtjIWM3vOi5e8+5O5QZnTrgEzBYVhdkOl9LqJ5iTMaVMX74stQNRloVHG0bk1rj9D4KvBucbqTBqPqNBQyWBFbyIlh6hnDSMqRao8HBobYM4aeIeyYYk/RGd/KOgyFYRgAaeAVonGq5oB1XXx9XZ8pXl92zJqzLF5vKg8/Q22WgdfOrf3OPfPmzYLWrGhMJ0nlRmHtwbEupVidbQJGKcbQU3KSv7vYGshq97RDpSQokKKYpkmQUopoLXxL45ZY40Qgrq0MSDBzFKC8J3WIM18/t4Xf8ulWFbKvSWYmRNn/zfszovDL979hTYdcxkb0o8rQrU/49vf+gP/kzn122y33H77LnXt3UVbcMsXyTn5w2FyzuXrF5fOnjNtriAOtV7z/7n2WyxXOOJquQRnHNCY++fgLPv/8KU+ePiPnwvHZA0y75O5b73B8csLv/40/4j/89DP+s//s/8GLi1c0bYP3DjsJPVoRyXkQ7ZK3nJwc4Z3l4tVLLq8uGIZRNGXTQAqB5WLB+uiI9z58n/M755ydnZNK5vnVE/7lT/6UG7VlGHphL9i6XxYxAWlsU+3vhSollD1FCImSIo2zZJXEkME6wpRAWUCCIJ2RINZx3JHjSM4BrcB3Ld4Z1ss1jVvSuCVOWzlH6mA9psjzVy+46S9JTDSNZ5gGGmMZQkR7Xa3iJeFe5Uzse+IwisBcFXzX0azWoC05jPKaTJNkwFWWi28avPekOMkul2uQppVMsVgSi1Q4XR/Rnpwz/NlP+Mm//FP+7M9/yN27d7l37y5HR2sevvWAb337m7z98AHnpye0TVNRSL1nWChj8dZxdOcOd995n8uLZ6TKqDBaSwZc03CyWnCybNn2Pdt++I3n71fXZFQh2u3LryLSddPl0CTcah60ogqCa/WvD0ml1J//8tdzMbO/cf46K+aAPlVUTWERSDhTwAnNKdeJHsZQnCFbDTGRAuRUEPsymYKkXCCJboNapM10iakfiOOENlZsx2rwUY6a9eqIkiaadkmOMjEchmHvYFJIxDxRSkIrcdCZKhddKwWVIqLq1JQCQz/g3XJPLdVaE0MiqMDRouPovTXWQZ+3EDxGG5an55JtoR1GzVjIQaQLYKzm7L238BvNMPZsnj5DHwtMOAaB5vpxRFddyjSN+MaDhTCGvaj2MBGTwl/cXILkelhpcsZxrK4EhlI0MVVKXZb3UaB5oZRZK5QFXRvLuWO2ir1AUFVXFJkiC91m2gbSNLK6f1KTd7/qWfzv/pgni7NrizGG1jtWyw4K3Ox6Wt9KIeQswzRhlKGpwXDDMNSfc6JfCJG28UxxYgoTTeuFFhQz/c2W8wfv0iw6nBf9ysH9Se2Lr7lQnsJYLYkNcRKL4t1uR7eQAL++75ltZqVBOqBtFKrzjq4FvZxbKUaJEkXoc2PVkRhrXkMv51qgFDBqdhRLGKUJMeFUIQ07xqHn4vqGUFZCc7SWRdfgrJYAu1LQqkjQnlJ4YxAqo1CISirVaEAaEOpzyHMxoSCkzDAGNpst4zjSNE1dbIXK1tSmYwplT8u6bX35WiNXnXpyTow1qLDxYntta76BvB2Hxq8UJd7jKTHFgi2JVdPwra9/wDc/fJ8752es1+u9Y9vtQvCXPyxz8vJc6OYsaEesAnFpPHLlBr8ZhzWRO28tefthQ+IVYRrE4YVUXYfSXmszv+bGSjr37JyUU5HbqDy4IuemNXPOjNCs5oDCmDVhGglJEIycxGFKq0RBUBOrLRSDyp6FPcabpRTMeKxuJQdCN2hlZehUA/bEsSmw7TeMYaCoIkVf1UZt+itCnkglsJ2uKSXTNQuIkgs0TdN+KGFqUwqHvXC2ejb60HTeDvO01hCqQcfeAcoIZUryOebk+UMWhgTdlbq+ItdoyTjrWLbHkD1GNWJxyuzwdxikQKn0WcUUxO3GOot3DTGW/XOGmiOVkqAVgLYOZyyNa7C6o3ULrBa2hCqyhmlloe7Vzjps/RChv+VQPPyK5uAWVfJQQJT9OvQ61nFoUL58z5twjONQMxK02PSjabol777/DWZqXhinum9aSgxsXj3j81/8jD//X/45Xivefe9d7t07p+uOaNqGpuuEchwSV6+uefb8go8++oKnLy9Zntzh/OHXOT8/pmksLy5e8eiLTxmnkdOTU/7BH/8xTx494p/9s39GTKLj8V1H0zasj45kMGplSPLixTM+++wTpphYrdcsF92eJfHwnQf81nd+i3v37nFyfkKYJi6vb/jFZx+Tmp4+7gjEimBEUpYBQ4oivDbG7vWABfbXOSAJ3zmhNBwdHROTaOms9YQodUgGrFboFNAlMYaR5XLBnfM1peRK1VvhbCv/RhbDk5QTQxzYjVtSkeGfBkqONftLYX2Dbxv6vsd7MXIY+77ujxlttAwHm04GHUUC+CiHRHttHMY1EtSZEzlEYhjRCtqmQRvIY8aWTJk8x3fu8L3vTly82HBzM/D02TNevrwAoFt0/PjHP+XBvTus10v+2ve+y3vvvVuDHT1N47HWCR3bWu48fJvHn3/M7sVjXLugbTs20zWgWK+WnB0txNhF/eYW4is3GTQS8LZ3m7nVSPxSo/ErjrlwZv9ZofbDkzqhKexvqyDA4ft9s/G6aW7MRRKjNSLgtIZpiuQa0OWUlgJ3gjxllLbYRorbmBIq6f1TLjFRJvYoRE4Z07ZMUcLkZuTh5PgOX3z0COegH3ckpWnbBggVFhbbTKjpipXDXsqhCbPWS/xYmr36DY0XjutyscSoQte0GKtonMxyumXL9dUT1v6cMDqm3Y5m4Vk+uHNIYd97oR8sDClIomTbMpQtdq1QxqBMYDvsWC1X2NwyJegWS/rtRig7zoMWEbL3XmC7KiCMUVKeYRY3F0Dvp2iis5DNJackbhPM4VdzoUYVCNawpepMJFS7OclWV12KnFqxKPyiQbcQ60mleHOKpxACRhu6VhYPawxnZ2c4o7l+dYVOh8mUIjMNI6vlGu9sFYn2Ipj3npjFXSIjqfZZFVJJsjBWJK5tF3gnRfFMQzt8zE3GzNPvSSlinaYfdnWan/YL8xQm2q7FN1YadeqUmMIUolB3mBsHtUecFKpq4eS9JOeaOCwTwrzXNLF/Xt46Gm/F4W0MOCJei5ZgKhqsw6SC95b1qqXzmmGS88KgaIylsRZvBA1IFKZYagHKAYnZi9WhKFWXkMK2H7m4vGEYRxb1fl3FqF3jaZxlq2QKdbvBgEMgmVIKbSVALOfElAQdmerExxrRDEyh2q9qsbKW96shpQmU4u379/j219/ng/ff5Wi9ZrGUDXsPRe/597e+/hUfed8QZXL2+9v2lKo3SPj91r0ld+4pMhe1wRAaYClCuZsnbIKGQs6ij8glk4tM7FEHJ7FSBGnfh/MlMb0A0SFMIRCSDExiRS/arqkDnkIuRrQVNBgWNHaFVS1kIwJvLQJvrcUqV1F1EVn85/tpYJgGQhxIpVrMWs0YA2PYMeWBKQ9QczEkKA9yFlTFOYvzbu+sE6Zxj8rM12esWq95bfc1E2ducAQdLXsK6vz+z43q3LDlfKBYzddjzhFrrCA37ghVDKai4+i6cSsZ6JWSalCqcP5lv020zQKtFCkGFJpx2KK0k8GGMVgt1DWrPd51ovNwDRpbqVAISlmF9hqL8xIw6pzHWl91Z1oS1LnVEOzRiVvNRnntOw4dxpdu29/1prUXcpQkGS3WOnJRQg9XMjApJWN8Q0yJ62fPuHr5nJ/+4N/w0Y9+yKvnz/nbf+uv8+77b3Hnzl0WywXGOzCGkDNXL1/x8S++4LPPnnO1GenWx6zOH3J6fpeHbz9kfbSQ4U2B6fETLp4/wRjHyZ17/MN/9I8IY8/m5obTO/fIRbHb3uCc5fj4iBQTFxeXGAWtd9jGc3xyyv17d3l4/x7nd85YLFa03YJ+6PnsFx8zjiMff/YZjy6e8vv/4DssrlvCLtEoh3Oey6trvHfMDoI5C3W3qIQxttYdCmeMaGDDSMlIxtBuC8qIU6WueE8ppDASw7C3Uy4l8erqirOjE5bG0wwBrq4IIaOaBdo3JJ2IRFZHS15ebAQ1HHvC0Au9sUYRaKWr7qQwTCMGRdu2bGNCW4Nfr8BaprFHh544VXc5I3uqa1qc97Kn5YRGLkVrXWV+THit8EHxb/71Z6xPv8aHX7/HLz65w09+/IIUEyWX6m43oJVit9lyerzgGx++/9q6kWa2iJIGzndLTu69xfXFc2zJHC2X5BBom4bjozXHqwVd1/K93/2D33j+fnUL24XbU5UO/+cAZ4Bc6EW91ijcbhBkEVH75mHfeJRf+q37n7kFbB7+CQ63K22wxuOtQjlBCFIWbq4u1HyMQg4BNOhG/uScEPcnXa1DlaAk8kbK4rtcLSgzdK6EU2tweNPx6tVHnD1Y05ct3q/w3jNNE23TMU6DUGGqv7vSBqMcKcjGKLz0SvsoYKiwvpoF2yKe3VxfCs2m6WibhhQTw26gKYGWSLNqOLl7jq58X1UXnVIOHuVz0d/vNtxcvySZkaZpGWPAGsNUMqoK03fjiPcyFbfOMcVYHRUkT2TelLz3WFMYkcZJ+LepTihKDVian4NcIDlXZxdURXpyRTTE9dpbRyrIJL2+ZwbqZ2lelKnZZ87gjUV7Cbx6HQ77qz1yzPjG7zNAvHPkJM5C11cbvPOESSaO0zQJFcLIazhNo1jvZaHwxSA0hH4aawJ6ZrfbcrRY4Kzj+P4Zi6P1Ptl61l/Mxzw5z1lCwOZpY4jj3nlJeO4jfd+Ta97JvqjOopXISYTncu4muaayLEhGa9EcJHFZksChsv+Y6XBwyNnw2rKs9I4xRiiJVetY6MzgHc3SMo01z0ZpnDF03tH7QMqCYDTeSrKqFqcPh2TD7AmD6tBogFC4ZkoVwBQzlxsRfscY6vTb46yl9Z7GObQeqyj40LgdCjNpludrVitxtsoxE2NiYMJbh7cecg0yzKVO3LQgsaXgreI73/iA73zja6zXR+I24m2lh9XxsjoMVkqFg2aayK9HOebmw+wLzjfluH/fkdUrcpzIOSLpznJOzs3yLDyWc/qQGi8Fs9k3GDnLOjrrBqUhq02GgimIuDshFKnDUc0AisKojpId2izwRuhRZIPRTW0wKnpRBE3JRZ7rFCbRXwx9dVuTZkcZTT/uCGUk5J4h9qQchV5CQ0yBKQykPNVdRzZ3oTlFlBJKYEpZrJvrez6jOvNHzGmP3EuBIgYQuURKkr9fGVPXUBGVC8KjKpIjAWFd09HYJc4sUEXWLest88tVSiKECWMN09SDSnWwJWjNou0YhyB6vqRE+F0KOQa8bXC2xdmWxnY0rsUoizWit6Comn2ganPpMcbhrMc5jzFCGzTa7LNxfkkfeqtWeL1xuP2YX4FU7B9a+OU734zDGY3KSfSJZLEMR5aHaQo8++xTfvGjH/PDP/9XXF2+5O7ZCQ8f3OXv/Z2/wQcfvItrXc0VMvTDyIuXz/j4k0d88cVzXrzqaZfHnN55i/XJqbjXKbFaXSxF+9Q0Hev1kqvLDa9ePMM9eJsPvvENfuf3/4D/13/+XzBMmW986zv8zu/+HsvVEig0jcco2O22khllLN2iQwH99pqri5fcXF5SgBcvnhPGSD8GPn30hPae52V/iWk8dtwRQmYaM9Z4QTJjqlpXyZAwVZtVchLzHy2DSucc/XZkE8RIRRsrWS6+FQqQ0gy7K1Ia6/kqbBSfLa1rcX1kePkI5Xv86gh/fo9iG9LCkZAB7eXVJZpEv93IupwzTeNpGkdOcW+zHqZxzzKx1uAXC9r1WtgZaSRO8mGqfrFk0U6gNQSh3qrK+7TWo5XUe0ulWZYFn283PHr6gm//1ruc3lnhP7kkJ2lIbBTtVgyi8Vqv73F2dob3Tl6XumenlNhutzx7/pTdbkcadijrGYYeq83eZXHZNtw5XvP86oa+3/3G8/erazKKQVV0QP3KRgJZMDhwYF+nPdXjS3L0+bLPt2DMMv+/Thf2gMe+0ThoQbRS4sqEgiCBPjlIh5tDJMxQcKhCTVPACr/TJi9NilKokNBJCtqZ4uW9E/9oJc0MRbNcHkFUhDCwmxKlETg8hID4lYs/PyTQBaOkUM4xIpx06bZTEoGvr8nZbeMwRorwUgqLdUe38Git2G42nHQLVDC8ffdDri+ueXH5iHv370uzgqRbziDT/BrNE8ySM2kYKMOW1IH1llAyhkLXGKZxRFuPtWK92TStJC33A23rxamhCBWklMKi68gp3drsVM1ZEIHzTCROaV64D++sBLaJ+DBXxIK54VJq75qTi7hvzXB7KRmnNclkila1oBT0BN4cUUZOB91A17Z477jZbMVeNEe868jqQK+YPcNDkLCucRpAHZKHrfeV16lkUkmhtB2+61gdnUpDaOy+wTjoMm5Ze6a0D/1DCU8U2NNopjAJba6wp9jA3PhMezF7qFqQGBKaUm1sAQqlJKbx9SCvOItOlYhOdS0EvTY0yDWQihgVrBtLmXaYrsGMBqZcJ9tChWm8Y9F4gsQn4zRYo/ZUOW/ERlZMH+Q55dcKSnE5q2cbWSk2Qy0OwwpjZCM2xuKtofWaxmliSq8tYXsEQ1eQPkv2x6LruHN0hDWO568uud5sGUOg8U7oblpXJOFAHTxZL7n34CHf+fa3WK8WUmC5w/v2S5q6wh49rsTRuv7eWhd/w8ebcoT8jDFsK8oZSWlCqTlNfm6Oci1kDXPeilJ6T80EaaC1MnjXVIqmNOepNhA5iyg+l7x3Z6IOY1KaUMai8FAczixxukUVA0VhbIPTC7Rq9va0pWgxF0iJEAO7fscUJhIJZRTKOEwp9MOWMfeMqSdlmVDGmGhKQ4hjLdhL1aXJ8w5hrOhutR8vCtF7lIrOmdcK7FzyXuA9N2I5JwoyWFIoKawqRVUGTnODWqm02rBo1zS2JQVo/aIi7dVFLgWUSsTUSwhYhBiEvpOiuPgoYxj6EWe92FMr+XdLVhjtWS+O5bW1XhyiKlZBlvdWKSUceSehfq46FBltxZa7NpTiHkZtwA5UyF93/K+5/w26TACqMDeRigz1Sk5sNze8fPKEH/6bf82PfvBnqJy4c37C9/7oD/nWt77O+mjFomswTvRnQxi5eHrJpx9/wY9/+jE//NFHvHjV063P+dZ31zRTptzsBIF1TtyErKPrGnLW+GZB141cXr/k+VPFvbce8od/9Ld49OgJ/+y//W+53my53m344MOvc3J8jDIO5yyL9Skn5/dFM1rkuhvXS64vLxn7HgXcv/8W0zjy5OkzjNVEM/KLzz9jmAZiHlBkhmFEGw9FbMOljJR96eT4hM3NNcMQiCGikUZE2/m1O9gmGy37xD5OIM4GLAEq0rdcLDnujmmSo/QT/dVL4tWWNCnGZsEUHC+GSx4/fiTNRZoIw1CNaTTWO7z3DH1P0zSkcaDf7oh9z267wTmHXy6xvqkD90KcRry1OFsIMYNxGO/FqjtF0jThrAJtsdaTcqIxjiYOxF3DLow8uxj5MBdW65amM4y9OHm+9c47OOu4vr6iHwaOj49YLhb7msB7zziObLfbyngY+OyjnxL6DWdHK8Tl0jGOI7vdjqbxrFZLduPEz370w994/n7lJqPppY3Yi4r396gZgeTWJygS1Pdac0CdbN++rRyaiNcfOS8Ah9v23NH9P11kIcOgikwSxchFU3KkDJmi895yDJXRDvSiYbapVVlR+ihe6VOmKIWaCtlAcYpCgmylc9SaGDI3V5es1x1GR8Y0hxzVbIhqJYsySC6AdNoKQxinfQGGEdhXUA0RV7etwMcSDlPIObJaLOlcx7gbWfkT1st7XN9s6M4dry5e0pweszw72fOX58VX2M2ZkANJZWzj6I5WoCaGJBkC/dDTdR1TCJSQaf2CmzrtnsIERTi3OUmmhaYwjCPbcRL3lSI8YJRMFrvOVmGf8CXHPEpfZw05yesPufrPKxHPKpnUiKVtPT8U5KSIGZyr4l/ks9GKVDKFCpeWRJzeHCSj69o9N7TrWkop9H1PjFH8vI1+zc1JpjCZ7XbDZnsjNsjVWartxIM+bMUfO4eI8zL9M95hfVPD3OYgxluC73nyjmgpQgzi5KbEv3+2fywUQuVLp5TYbDYHLVAQOlzTNNLwWINWkMK0D96TwkboiSGmWmCI7e6MOgJ1ii6oYdGa6xSIKZBypjMQwsCrfsBkTVYObQqpRIYpMI7TvjgqOUlY5sxFn4XRSvQUEBBXlde1DOkArtRKXcI1L682nJwcY3yzp99ImrSpVD1FiZmM2iOc8zGHJ2oFnXN8892HnJ3f4cmLl/zoZz/j4vKalAKNa3GuZawhT5BwDr7xzff54IN3OD09IWXRZ83XvYjyaubC/DrePs1n9Lc2HfLqqv2Ahze8ydgNN8zuN6VErK3OLczNUg2Sq8F2Wmm0tbWALofHaEfbdnjbSHBdHClUy8gcq9vTtG/o5SzKGG3RqoVsMarBmQVWN+hiMcrjTIupCIbCQkUCchbka5hGxmki1CBQbSzGOUIO4trGxJB2ZAKZXK/PJA1GHCgklLK1wBYve6M11upKZxJDgxyrc6GRAklQYdkXUx3mSIMx06EOWTZKu/q7qsvgrNcogpIs2iOW7TEahyqKthNHMmOMiNBVJsaBnCfEDEf2/65rJQjNemJMOOVwrpV1oRiMdljd4bslrW2xxqG1gzKnNQvqarSR9ct5nGuxRsIGrfW1Oap/t1G31jd+qfl+XYvxF5xw5UuP+zWPf9NoU7nSpVCF7eaGTz/+mJ/8+Z/xsx/+gOvrKx68/Q7f/73f47333+b0eMVq0aC0DJEuLq948ug5n3z+iJ/+/FM++fgLfvbzT/js0RN2QyYWy5/86Z/z4Ydf4xtf/5D7985R1tJ2Lffu3uHhw7dYLjus7+gWEzEGri9fYJzj3oOH/IM//mMeff45f/qnf0qIgavLVxyfnNTcmsS9e/d56+136dqGnAJWg3ciuF4en+K821Om3/ngA777uxv+6x/8v9lGoQPNJhDOW2LKaO1ovQfliFmTswz2vPeCyg+9uIkCm82GksROHea3WtXwVxj6HZRAzmE/GTfWcHp8xunRW5y6U2gDw8sNBo1qLP3Y88nlp7wabhiGLaUkdtsbvFIM40BMkba+ZyEEvLXsdjvG3Y40jRitaZoWv1qRtUGnSA6jOFvlgMwWDK5phZ6fJ+ZqLoQs9r1Kk2IPJaLGwvOXmVdXAfvZBS++dZ97D1fcuXdEiUvOz+/y4Qcfsug6nj19zNPHn/Pee+/gvaPf7jDVCXPoe8ZhZLVa0TQNXdcSdzdizuKsDN2bZk/nds6xXi3Ezes3HF9dk1FqdvWtwqHM/83TzP1tVEh/nl6/1jrIDx92Q/l/ef37L399YGq99gT2z0mKWPaToEwN5zNaut4ieRm60ei6oamsEGujKgifbvGWnUJPei8ilQm8oXNLNs9viGGk9S1RZbSx5FIIU6iq/4NKwCgrrig5SgddZu562eszcj5oN6gUFus8VivhdSVZmFN0DGPEeCsLcrPGd22lh6j5BZIFOc+va6WNtJ7GrwjTlu2LC5TVNZuhRxvLrp9oabBW0/dbQFVoXE78GAOrzqM8TH2PQnQYKctF3DSeUqpd6xzgVt8PpTWq5D1kX/J8zggOoZVM1krRew7xTPsxxsx1lPCcjRQdgvgrUIUwTF/1LP53flhvUEXg4pQz4zAwjiNd13GwlpyDxAwKddANKCXnYjm4Uu0dt7xj7CONE8i47RaVq+z2jz2kfZs93UaSfgUmLaUw9D3D2B/429VKeab7zV8LqhH3dKM5l0BgWwlUNNqIq1vVAAEoY0Fpisroei3M6Fwp0nSnkhmzwLfOKqyDXRxJYcIl2UCcU+wYiLEwTBP9ODKNU3UTkobfO4u3giQ6pemjA/r9JgLs6TS3mUIz93s3TNxsZXFt28W+YGcugLTGaUXRqqaU39a7CKxtlBY6A3C13XJyesbxcsG9kxOIkpWQYqSoVNPKwXnFO+/c41vf/BrL1aJqPOraZcQS2NpbWrHbjca85r121t1SqSnmi36PdsyL5JvUZOQi6dqFg5BejlLXSIMxvg4sZCBTqEj1bGihnQxljCHGgSlMe8vYXN3DYhTNg7GSki30RGksVGmwyuPNQhK7i6nuUYvaXEj+hTTShdkBb9tv6ceBVJ+7c56iClPs6WPPlEa0LWiLUIislmYnDejk8N4Q4wHlLbkIRa9piDHSp54YBcmgogp7+imy5s0F//yazbkUc7MhmpFcbY1rc12EmNV4Setu7IqSBD1z1pGLFPDDsJWhRJlQOqGNrmtudQgsEWcUlETXOMgFU4Qz7kxD15zi3ao2h7Jeq1KvG3RNCG9wpjkIuY0VRFZL5stsow1U95tDkyHuk3/xufzrzvNfew38RY3IX/Eh6/fIMPQ8e/qUn/zgz/ns5z/j5Pyc7/3h3+DhOzKoaLsG4x2hFPqbHU+fPOHjjz/hJz/7lI8/e8xHnz7m1atrrq9v6KcsQ4+Subq44OdxIvQbtu+/w6ubDWNMPHhwn9/73d/hW9/6BuvlAmM7FstM3z/n6vIZq9WStx4+5O/9/b/H08ef8+LZCz4ZdqAqaqs1H37zW5zeuUvOiSdffMb1xTOMFi2hNqKRUMYQUmS56Lj33pJsgwwBYmEc6/VrLI11hCQoWSoGYYVXCvHRGucs09ATp0CYA+1uXRNaa8SIStDnFAeUOphlQKHrFpys73C0fouuOUa1E/7ohGwaWJ2xzRObqx2+sSxyw247ivlHjgyD1FKlFMZhqBrjQhhH4hRIIdC0HX69xnVLQExrYhwoRWIAUgFtPL5t0VQXyihrpdLQdC1KiWOjz5HdZeKzRxf0w8TL55GXzy54/4N7nJ6uePzFxGYzMEbQIdMuj/ju936b8/Nzhl7iCPy+3nS0XScmRVVT3CwWYtDgPVBouha9FZet+fHHXyEo46uH8eVU96rXkYXbiMS+CeBA2zmM3Mphw3ttp/x1F3U5/Djyhv3yIyToKs+TLi1UBKU1yilUdbkRzqs8rxwTqtrX6kgN3Koi8iiUnhlaU0aRKOQsSalHyxPc6BnDDbupJ3tPo41wfZVMc2NKM5AhJzazw09Nm9VappT1+RtjaZuWZdtUfr2u7jtAEi6eNZ7QZ3puMAURqauC9U6mrUroR0rtsaX6PlRXEKvpd5V/7ixTjKA1wziwXh+z6ESD0bYd49jXRV2jdSGVIlC3tvjGUKaRpvHEUAW+GGmmUqic4Mo3d5aJXPnw1PAl6kkqBaszGvNLlZMIwK2pORFZNjpqQ4YWQTJKkRWk9OYgGZLpIIiMJJIXfNuwPj5i2PU1m0FEVt6LPkPrQzVZKPtQvWmaMFbjG8/YJ6wxtE0r50u7EA2B8/vH32404GALPE6TIEy6hvGlxDAOpJxrFoGIClPq9xNiONCeUhL6IUlc0EzVMc2JyeZX2HsZK/a7ec6eQdxmtIIp1gwXhPKkVKIPU6UDwMJKcSnuSuJcVXKpFqZgK1XKG4W3YkiRlMHbdFiCXkM85Vqcb1aIvmU7Dby8vmLb32WxSmJ5XVEBXYvaoqiWqfO5exgOaG0wVrM+WnOyXnMzTPz4o0/wWkPMPDg5pii4HnZc7wbCONF6zzsPH/Dd73yLO3fOmaJsiLN+xDnh2s7nyGtNzZ4icmsZLfMg5/W/d/5Czevya0XpX/2hUPuh0LxOHhAMW7VWs3OSCB3DFOp+oLDG4n27z7aIcdwXFbM7VUqSmrtoPTkHUprXMQmVM6rF6haNOzQYZlETvD37cL1SHXzSxK7fMUziHmWNw7pm32CENBJKzxgHoe8quQZTFkTAGvCN3Tfvcl0plJW1IKXEOI1Q9wpKwdek3ZQiMzqHYk8LlIGFWKYbPWfHKObk7z2KVQdZR8tjSjY45VFZhKhT3KGsQiWIKTGGLbo+99Y3jKNwxWMQhI2cyQYa5/DaUbLGqZZmWZs15QStqBQuXREJazzWNaK1sDMtyuxReNFcGIy1de+Zh2a31zZQuvzKc+rXNhfygL/4/jeoAf/y8fTZU2wd9rRNw4OH73D3wQNOz+/SdgusFUQ1ZsWrm57t1TVffP45H/385/zopx/x2RdPePnqmsvdFmc9q+NjtPPoXV/1rA7IbLbXTMOO3fUF//rf/piQEh9//BH/+//4P+IPfu/7tIsV1llCnLi4eMnTx5/x8O0P+P7v/T4vnz3jv/kn/yUpRqGNO0vIhd12y+MvvuDi1Ut+9MMfMu6ueffhWzy4d48QI8MwstmNPH95yYfffo/lux/QLpeM/Sj7U0niAApMMaK0ZxwzmYiyZq9nHIahUkmLhOrFINlapg6hnMVYSZbXVhK6U+yJUaymS05YazhaHXG0vkPbHOH8gikk1OqI7vQeybWY/hVn+ZSsCsOwEbtZJPNIFWisgVIqiuGI/UCeAikI28U6T7NaY6ygjKSJqb8mxyB0S4w0Ir4hxYmSItT0b6H0Gkoa0QYWJXGxawk5gApiwBDhaNWxXDUoE7nZ9Xz6xSMevvM2d45OePfhqVC5BtlzYox407BYSFbHru+56Xe8vLyi85acR8lsazxWa7qu4/pmQ9Mt8E2hqP8NczLGNL5OVarV/74BqLv4vgGZR/m/4uJ9HfW/hUzMv7e8fv8vT+7mX1KfgNEUo2sToci1odBOrFRz5bfWOZCoh3OBMRH7JImjURCNGU6XdGVTLQNVRSEUx8tzXnzyAu3l1ZPNUTQESim8tWiVJOlXFcRyUZqUefoJ0j1KZy2FfKkpvkRJ1gbouoUEQ7Ud24sbLj99zp23ToDMnbfepz06RzvDnKA9ZyLIGzXTy+aiU6bNu52IsIbthrZpWC4WqKJYrNdcXm1JOQk31lp225HFYlWn6QqVJplQOE9xnhynWpyOAq/XrpgauOetIaZCDiKIKlmEvLqKi61S+ArgGN8QJ6EezC4PKClkjTkEyhUqDU9RJyHQT78Zsvv3dcSYKFpJOmcrIVTOewqFMY3shi1k8DUIaOY/7ye5tVmYnWTabsWiazFoorZY5SljwShfF51fTZUqVJC1iD0mFEKYRAA+TWx3O9pFJ81mAaUyCoP3VlyQdK70I2qjEVFJbFl1pS/MKcKq0tjIBV1E/Gy9FS58LrUhOdDEwhRwzmK9xupMjiNTGClZkbPFuhatCl3bYf0Nxrr6EauNYMFb0WE03srlXCfNucyrxaE4F7eAfFib9l8pLq83bHcDxyHglEObOadGUJK+/jaj5PFFzaJk6jpjuXP3Pn/w/e9TUubnP/spjz/7lDgOKGCxajk7PaJbdtzsBh7cf8Dv/s5v8+DBfYBaPIp7m3O63nYIE5TLWd36XMW2dY0rtyZJc/Oxn1zfntCgfm2R9e//0MDB7WqP5KExWrzvY4hkpff35ywJ7J1vaNtW9BxRim9BlapuKYsD0pwCTxYRdONaGr9GZSeWtKqFLHkYsz3tPv8CUwdDgjJO00Q/DYxBNFPWObQ2xDKx7bdMeUSZRMhC8XBaxN2liJVw0/jX/tbZoUwbCVHdTSPjKO5TYnFpcdbvG4yDw5k0yXPezDyYmFO3QZq0XCRnRFUL2M4vaJslCnFim9PEY+5RZmKcAnGC2bnJWoNViTRF0SkWxcKJ+UjXrqAovF7QmiXed5RS37f5jyzVHco1tI3kFBjrsLZBa1dpUAcE9jDU0of9bD7XZ2tSleu2r/bp4MD+HH9dDP56Q/1VXc7fpCtkPv7r/+b/w9/9u3+X0+M1y/URH377SOhvtSmP08Srq2s2N9dcvHjB0ydPuXj+gmdPn/Pjn33K5c2GDCy7FW3Xsr3ZMvSDUHN0oh/FXagfe7xz3L93ysOzU374s5/zJ3/yJwDcvXuXb3z4Iev1CYrENPRcXFzwSci89fAD/tof/CFPnz7mJz/6Ed53LI+OaRdLGZDtNly/ekWJkVmnG0Ngt+25vtlwcXnF05cXfPf33+E6XlKMgZIoSgwK5nUhhIhrFTFlsbCt6+AwCU2J/TUiInBdEuQkVte6hlRmsXcMU09KEzGMol9S0LYN5yd3WC3v4rojMA4VEZvZZkEyoLLGNo6b7TW7fsM07tAUUgisl0uaxrObJE+sMYZ+t9nb2jvv8W1H0y1F06oy07glhopUKIPSFt8uUWRKHIUmTSYXVa2kZT/2ZaJJis2upVt2ZOUwRhgw4tQWuNntuH/vDN86xmGLP1tzvFpiKHsKZS5iA55LYewlwX27G/ji6XOOFi3vPXwAxiJRgEWS4K+vudnc7Oncv+n46sJvJXDSa1dheX2CdiDslF966O3b5i3+8H8OX9fNdE9dqOOu/foxFw77x0kgGEpEw6l2hNZZTCMT3tkLXGsjxVBKxDEy9YE0JEhFqFMIXKyNw7ce5y3Gegmg1hajDCkmtrsb9FFNDa8aAmusZGFME7lUS0xk2jS7hmh1CDmbiwClCs5brBXRuHWmCs0VU5Rc7tVCUxys7npUkxk3E91qQbNc1EJVV46rrcFVheonXDm4IgT0TjzlN9tt3SS1NEWVcwyKYRhpGkeMac+3mzMfYpzkAneepCzKFHRGtCkhQJYQHK0FdSrVUWcujow2e3tTrZQI7osUSlHi0AVpKgVVEsxWlZjX6HQaaagoEs6FfXOE39u+RyGFQVdmpxyhHoVJhGklFwk8LEUmLEYBGWMrtaAW8KWItaW1FtU0KOcJm5Eygr5nxDlin/Rt9tei1kbMO2tewhQmeU5xJKfIZid0D+PdPsSSIgnCe80Qt8Wf6UAjUOIoNYfAzdel0QLdlSJFveTYCNc2a1Wb6YN7znq9kmsnbBgncbbSRWFwYk+pC8bNzUV9fxV14gmNsfswR60UsQjKcojrmSl3QnWcxfilKNFd1V48JLE4jNU5Z7ZRtkbTOU9vIqEkQBNLqanHIvqWtGlDTJn7D95m2XU42xCHietXL9n1W65uNhhrWHjLw/vv8c1vfZt33n4HpWCcRkoWRy/vHaiDveh+Jb3dMDBr0vKtv1HWyNtox3we3G46KOXLnht/pYeqyNacjwOq0qLEonIOjZP1u7pOaYO3DYtuibOOIW0pSoLorNZs+xtySqgieQ2S8xJIMdO4Du+WOL2QJiJbclIYLFZ3kn+hGsBCkdcwxIDkywT6cRDDBCPBqrlkQp7Y9BuyToIGIParuSRSnhinHRAr0idrwqyLmItrEErEvOkryj4DIO/ps1JQW2sEpSlibT27ZwlDruwbF0FygJKx2tH5FSVZVHaknOjalpRHxngtP5whZ4UznpQiTlvCJM44ZGn2yQWnZADh7RKlHI3rUPX1kvNOdj2ttBRUrsX7Bd63e0qUsU4KPnNAJ6SpMPthieQjVR1GvYZlbamUv5KIOezPpNfPK3X7m9fuV7cf/0vXwpuE833pyIphmDDnQqGWPJREDBPjOPLq4gXPnjzm1cUFL58/Z9f3LLoldx484GtFcfHqkifPXjCNgavLK26uN/T9gHOOGPM+m6lpGr549AhjCt/48AO2Q88nXzzmX/zJn/D2w4e4/+g/4htf/xptt2a1OmaaAi8uXhIT3H/wkL/9d/8+Qz/xwx/9iKkozlyDXyxZdiu+9a0zvvH177DZXIlOIk2YSRzKQpxYLBXtauLJxTMubnb0k2Q2FZTY9paCMo6CDFVtzXMA2bdyzmKVrKThtlaupxDEbr9pJOvFaLGdmcJAjBOl1NBUpThaH7Ne36FpT1GuI1uHdi04T1SQdGY3bhmnkc3NDSkIBco5R4hR8izq2qUVTKNQpUEE4b5tcMsFVEt+q2DX727RQy3GNRjrSGEkhYGSEyUJrbltupqVo7Eh8MWjgc8eB1C2ouCipUxJEZNmGEc2mw3tYsnJsuH0WKhWKWWctTI4NBZlxFl0u92SY2aaRMtz+eqS89NTuq7DtwtiGNDWoo1ob/2tferXHV+9ycj5lyZh5UvNxGFGyJcex74D2U/a56kch6Zhhnr38P6ha7n1j9z6N+ZFOAn9YYaYdU1DzDHLtCukaoUpjgJxysQxCnqhNNVFT3yKtMI6g28d2mhCSnViXvDG8/Evfs5musHmTDLgna3Troi3npDmxT7Xwt+B0hhzeM4pZayrcFmpk61y0CJoXQXhpeAbLwLtVYtqoStrxqsbpjFhfMT6tnbptqa+Cnohk3Ap6OYUaYFqxIqQ+m9EbbCmIVVaVUwBlzUpBUkKRjj91K53CkE2oRjr1DDjnCeEiZwiQmlKJAUhRVJWKGXFjUhJCnOqYTTVIgpQjFMgqcObrdXBwUzSeA/2lGhNyoVQMkmrN6nH2KcvSyhbg7eOnCPDrmfsh0pxKbVoUiwWLSGOoColrCJpopGQFyDNQYgZpjSwXK7FjcXaffrxPvWYOWdEKBPTFIhRhOMxTKClIFdVTOq9Z7fryXpOPpbnH0IQZ4wk9sRKVxc3o/fFbQjSBM0WeHv9QyoUGuaLOkwiLJciKd9qNiZMEdMFrUAXjc5Gwvy0EUGob+i6BU3jceNESAlnJFfGGCPnW62mFQWrDXkWqdbzBAqz3cSsLaNAKoo+RLaDhBS6VqYySkvCcuscy65lmES/ooIEakKlcChFTonLyyuePH3Ke+9KMGLRhk0/CEKnLRQ4Oz3lm9/6Ju+++y7KWLabG0rOWC+ampRl4ACq6o34EnJ8aDrkcz030q9COg6aEWmyeO1n34RDm9cbKbHK1sCc7ZKp7J99US7uX6LPUEXhtMObFm00N/0lYZxkaONc1WAI2mTdEmeFBqWLo8bPYIrFmgVWL9BKEIxS2K+9KWf6YdhTDJUW5xjjHLv+mpBHlM814E/cYWZHpt1ukIGVVhhtqx+9aMckC0OO2f2vIIifdXaPYh2Q6ENzLta5af9+z48DGUyViugZrVh0CxbtGXGc0fRC2zq0yYxhxOCQ800KsxgDCkVMUYZEudD4DlMkHblzK6GWKVNTlmetRk0Id201LhE7aGu9OHRV1MfMRgmvoRU1L2lOHdYHi9pDw5z3yMy8boQ4HpqGuW7gFpqhDhY16lazoV4rKnjtvv1tb1i78cd//A85Pj7BOkOIQRwBp4nrq2tevbrgyeNHPH/6hBQC3nkZVnrH6fkZjdO4MvL5Jzc8fXmJNVIQl3o+eCfGCSGI85pzjs1mhzeOd99+yNVmy7OXL/mn//Sfsl6tWa+WnJ6sSRi6xYrjMHJ184KXLzR337rPH/zNv8EPf/oTfvCDH+DbhqPTU85O73B8fMJyecRysabrWqwzHJ9uOd1ccnbnHq7bEMzAdrCMQZA1oR67ytIVQwB03R/qcC1lcTDsdzvRQXiDKhGjq3NlTjTesVou6UdxsCs5oWfEkNrsKzg+OqVrT7B+BdaRq76QOqzYDhsePXnEdtyxvblCZRkmT1WLq/StIFutGIZ+T91EK1zX0SyXKFVovCMNO0I/YLSuRgcGaxuhQNaQ5JyEaWC0FYe4lFiaxDplXlwadrtBHFKtZblasFwsaVzH2GdULly8eAE58+1373J6vCbX125u3ppWsjim3Y5UpGbb7Lbs+pGb62tOP3/EolvQtQtcsyRnTdutuLl5hvdxT/v/dcdXbjJSvhXkdBuC17dvm+k6h2bidVTil4YLdRc5bJqz+8V++lbmRuZw+/zYudvQxqCM2iMAqXJoVdRihTlFtNJkU517kNRhTA1EKofgMbQEbBWkw5+Cw7sOYx0nJ2fcjDtCniipoIw9/PlZ6Fa6UpVikm52tg3VWhNrIxJTqifOgXohLhviCmGtoek8XetwBgwF7wxON9h4hqHw8tOnnL5tOb7f1o334DCTayBZDFPVn2RKmuivd+hoWS2WjDGwGwZKymjjJZClcBAbG5mO5yzuC3Gc0DP6VKRgnXMWci1ClRHRc0yiTZmq7aTRGj27wuRMzhGNAWtk4k21U0XtJ1yqJumafQGVcW4OdBPOvMRsFo7WjjfpkNR4ETLGIM3YMPTEKeKMo1gt3OS2qZPcWMtgaaDnCae1hhIlY0R7z7gdsK6hPToSq1Vt95s2vD69B2l4QhiBzPbmiuvrK5ITjvti74ykSTERtWgA5rAvMSSQYqdthPpx4EbLOZ5SxHuZIpVKbWC201QapQvlFi88xlhDtSxDP6CI+EYcXXNWNMoRhsBYRhZLcblYLVccrXuOVzeSljoKDO2d0MVk04iUkiTA0klA3+yVPqXMBOQIMcMs/pXmFaYQ2ewEJu7SAqVqqKcWzcfC1XM6y7WV8lgnyYfk5evra/6Hf/4/8Ok77wLw8RdfcPHqEoziuGt47+ycb3/nu7zzzjsYa7nZbAlBcmqkgKxmCFo2wJkKoveNwxyCervxOCyir62JHJCcw+dDY/imHIeMi4y1Vf+QZQ02ypLVIddEUaoQX0TCOYm+YuHXtcF4RT+IjmC5lNt2/Y3QK+wCb1dY3VKKJU4ZisXrFms6jO7QynO7GZvRi2HqGaeJTME2nlQyaMXF9Qusg+10QypzXoS8DyH0ohkocv3WMRrO1nO1FKy1xIqSzGuos04KxJSqaYg8GVebDqE2pNfez/l9l7R7QRsVYJVm6Ve0/pirVzuM0Rwdr/dZR+Og0KojhlHsMGuTLzlPMrRy1qOLprELdHaSbYGWdRtBKRWCuLhWKFHet5JYbma0Qj7ktrm5OGgrXtNamNsZP8KayOVAnQ1RnI1SCoQ41cf8rz2+1JDcakTk05tznQA8eOsBOWaGaWC729L3PTc3Nzz64hHPnj3j5uoKoxXHp6csug5bJhqfca7j7odn9N9Y8M7RwH/13/+ET55tSTFjnef07j3Oz+4Qxp6Xz5/RNJbf+q1vY43m+vIVi2bJtz/8kBAmHj96xH/1T/4Jx8dr/s7f/ps4a7C243h9Tg7PuHj2KSkH3nn/A/7BH/9D/vF/+U/4+JNPeHHxio/4BV234PzsnLvndzg9O2a5WOKbFuOXvP/tB7zzIfzPH/0vlKLrcDSRs9CoMU6oXbPhC+zDRbVRQg/KAUMgx0iOA6enHa9ebbFGcf/uCZt+ZJoSWityCjUgljp0yjSu4ez4PsvFXRq/lHNXO9CKhKIfB17evOTFyxds+xtUmlApUlJit+uldqtZSVppckrstluo1tHOe7r1CttIE7G9vmLcXtc9VLRIynpc1wGporulDiq0mLGQsSpx7gpOL3n56oaYE611dKuGhx/c5/7DBwxjZhgVrW+gKL729j0+eOdtWttQtJKctHGs9K1WdFDGVIr8lufPn7Pdbtn1PZ989gX3795hsewwboX1Dc435ALb3cBqvfyN5+9XRzKcuYUu3KIs/YXw422UY+aAcWgcYN9AyP3zfYef/RW/7lffp4qINq0SvpMxGOdQGSlyQChDKGaPbV3mgC72zYmuLjGpFOIYSOWQRq21xvkWZXuOTlaMZke6NZFW1pFKIeUom7kSSM9ZJ0gLM2oiAWK5ZHSSzctXmspsDTaOI6iMMyJKXy4W6Fww2bBanWPeO+PVs0/2+Qggi/EcaT+/trl+iBmH4smPPicWy9HXz5hiFMpOzlhrCLkwDSPOWUiBFJNYCQJWW8ahx3lJDc85E7NwyWMSyNEYcdEyWmO1RWXQMYqoE/DWEEIh7RGs+p4kRVZa9Cu1jVFFKANK1zcHhdZy0WslonhnLU6ByRn3FwgB/yqOYRhomkYCC62keAtsW6kXMeDbDm2EHrcbBrbbjUyytUZl0ULMeodxGDBtRxgnXj29YNEeY88qVag2l3tqQf26lLnBkOyNGEb6fssUAwlN2zQ116Qutmqemqp9gwEHdylthJMtl7wUfNJ0HHJM1EzXqsYLuXaDOZeK5NnakEqR5av+wOhMAHHTyYqLFy/hzLJYLmv6dsuy6+jaVia9StFYQWCsl8ItFkECjVYsG4cqmUXXoI1mCIHdENhMkTFEYsrEdEA9Y0xsdjuGoSdMy721tFw/NYehFKzW+K5l4R27YWKIaX+N9cPAz3/xCz7+9FOctQzDQIiRzlhOzk742ocfcv/hO2jrpNkMUzVjqE50dYiSwqztknMpzfQZagP5l246qOhI3v/cm3LMDZrQ3QwgVDVnXU2VPuwTMx1wX6yWjLcWSAzTQD/eYHRm0R2xbJeMoUcDnV/hzBqNpySxgzXFY/VCBN/ao5SvNB85b1OWKX8/9ExxQhlJp9fGEsaBm/6GKe8Yx8QUB5S26KIIYSImQVJkUFKNPXKmFLWf1M+N1WzHbozGOyfJvHWNQKv9GjCOA5D3g4j53CyVHjDnYmgtegWvW1btKWFIbK43rFdiqe2tYYgalAEkpdxqTwqRxnvIhUUj15zTLUY1WG2xykFW9fqfhdxC7fC+pWk6nOsqddPtJ8xztoUIuQ/ibgm11RXhuWVUMb8Fc+NE2qPCKQWxM82VKkb+X90w327GbxcSe7Tv9ZvfiCOXzBhHdn3P1fU1282Gly9e8ujzz9nteo6O1ixXKwrgvOWD+3f54O2Wxlb3O3XC97655M6p4z/7b37Ezz+/JhZJto0psRsnYoF7J2d8+OGHWANPHjVcX11x5+yUb3/4dX7685/z5PEX/JN//I85OVrzW7/1HdrGY63iuJwyhYHLl09xtuFv/tHfIsXIf/p/+7/z7MVLSlEMw8CLFy8oOdC2GmuKhPJd3/Dht99ik9dMFMaaN6ZQxKyIURz3MHJt5jTTryX7prWernGEQWi0OQaMCtR4Vqyx/z/y/rPJtizN78N+y21zTLrry3ZVm/GDHvgZDAACpAAOSIKIIEVSlBShCH0UfQV9Ar0Q9YIKkpAEBEUYgsQ0gAEGM5iZ7mlvqqqr6to0x2yznF48a+9z8lZVdw2J4FxQuyLr5M08mXnM3ms9z/N37DrPENRcv8bgJTU9CyVTa81yfcJieU7TnJSGoVD1tCEmz9XuiifPnxCTx/cdjiQJ3V5CiJu6npk51lj6rpOpVnEnrZoaWzliKnb0cST4TmrHMhgUupQl+jLIAhQabVzR20JFYJUiz7eOEDXNoqJeWe58+Q7Nl8554gbUPtNFyala1Jav/vLP8ejhfVnL6gql5XprFwsxDCislFhunz17xm63I/jA5fUN7334MXcu7qD0QNtW2KqmqivCFOT3U47Pn/hdWeZmAJgIvxMKcNxA5OMrdqI3lc85+vFPPT4Ppv/SXaQplcUvW4OqnaRBh0waPaksSBnRe5tJSEYR4FmNcUb0DEAMCTQoZ0VIo8BgOTu5y/vf+zHaZbTOaCdvWIwBo6sCdQdilI0mlxRsY2RSFmIRripZYK2bvM+TWGRqoRFZWzz4tZFuNCaM0uy3e6wKuHrJ6AOZ4ynlbZ/5icc8TcBygqo+48Frb9PZ55goKcVkiZ1HWYaxx5qaHEdEqJskYImIqh1VZXFWoLsXwHU3FuTGzNO2MXhQB3euEAXe14XH7qzBjxGDIoSErhxJGVRO4qhFCc7JWZzCENhcwpuyDNGymps/RWKMr86uYIySRo1MLBO4nGIRemn6YaRZLtFaMQwD3nfsur4sUHKtGCP5IzlFfEx4Y7FGsVqdcHJ6RyZAhVpwLHac0MOUBXkcxh4fBmkELeAEpVo0SzbbrYjlVOHCazlnJ1RsajZkkizFECkhDoBixzoJw2UKLMWUIGp5pv/NSJ115DChUNNtZhw6mdxHRRyTpMPaa87Oz6nqClc5adYLQpGsYVFXVM7O1C1jLBCEu5ojzmoe3D1ltVyw23fsdj39mOhDYOcDu/0gHPuUJI19t+fy6pqmrqnqhhTkeswxFQvgDETOVgvuXZzTD4GPn19y1fX4MsRQSjRh474jZQnne+et1/gTv/jzvPPuu7SLBd1uhx9HcYoxUoDl8nOTy9cUpEjBJWcKapamg9J0TA3HceNxu5GY1gKObl+d6yTGOFOfwMyF6ySKngLmZlvm8prEEKnrBcpqNrtLRt+jdWLZtuScuNo9w/uA1i3WLFBYYoQcFVpVVHaJUQ2qhOuJ7ksoijFG+rGcG2Es6etC9dl3ewIjXbgmIsWuLq5qPozkQvGcUAryZJk7FbUSiAeSUaTIB3e4wnEehqHo9vTchIgWQZwLFZBznBFGVSA5ceGzLKpT8mjw3SjuV07Eot57xkFS7btuEKpuaS580LR2AUmLUFs3VLY5spw95C8ZbcXjv6qxpjz2QouS8Dxz24hCq2LJbGd9xfye6iPUQClgQjwlJHH046xfkTyVLHa6iCnCFDZ4ONTcZ3/i69NXbzXln3W8Qp14ObpOXAl3+x2b6xuePnnCxx99xNj3xd7XUtVVsSS3eL3g6bbCqZHWZpRZceXf4o13r/krv6oY/4dv8fTaQxi4fv6E7W4rQxeEtrZYtpycnBJGCZu8OD3htQf3+fjxEz764H3++3/4D6mc40tf/hLLRcP6xEjO2NPHXD77CPfoLf7kn/zTfPDBh/x//97fY7cTYXboItVWssQWTYNRmu32mqAu+e6Pn3J5I82PmOVAKCiWJWKdLQ6egIKQJPh36DtUHEnRi7YxRtaNodvtsVpT1wtCsoRCCZTsnBI4m7PUW05zcnJGVZ3iqqUMzFDEsv/thz2XNy9wzrJeLei3V8TeF6tcTy70xGlfC2MkjOOMYmitqdoWbUXQrlBE3xP8UDSEWihPVUWOgRw9qtRw035gigtnqzq6q4Ef/ijhfeSNL73O/a/cZ/XmBXpd85xMHBK+0SgDX3r3C7zx2qNZZ+icpe/Hg2Vt0fiM4yD5P32PH8dinZsY+oEPfvwhj+4/5PVHDhRUTctiueZyeMZ+/68x8dsPw60J2e3Wn/nzz0QbPus4vt8Rl0rd/uK8IM1T8KNbWbTMzCc32SJBwZmkBYXJKRNTls4zyuI/uRVNf2tCVrRR5MpRnVXoSjQXlat5+uQ5m5sbqtVATKOcGLUmR+HihXEQbrnSyLRFQviGIchER01CZoVCl0mWoqlrrLPUlcMahasMVe2IKeHHkf3Nhjt3LtjvBh5/+CN+4Rd/ibpZFstNAW+UyqCOLAuzFLakxNB1bF9c4lrNdf+UftySTSYECaja73e4dkXbVBIstlrhQ2Sz7XBa4WOkXrUiRNoNnLbLgqII5YOsi7uUnBYpRVKIxVpWM4bCS1RF/A1CpymuBWl6H9FF2Ci2xCpqyKlM+iLjMJRgw4Fk4tzdk14dUYa4BNkC5wq8n0pOhaQGa0yZUoYQGIaRYfAlkEo25Mltqu/3xRktMfYjVbPg7OKctmmpTTVPC495+Cmr0k0n/FDSUn2Prix+K1Sovu+5ur5Ca01d1zRNXRbD4liUpOEgC40tRDlPJ1qI917OvULNI2VSiNK0qkkAKs2F1kYQqlJr1bWjrmxpEBX9Vqz3bAKT5LnsdltJm1+sadqWxUK4ppWzqFxRN1UJI6yEHpITWo8Yq7BJCrTdvgMF3TDSjSNkw9lyyb2CxO2HgX3Xc73ZkJJnt9tzeXlFVTeEkBiGgRgChsyqkayEaeE3OrNsK/GjL8LCqdkPOmA1vP7oPl/+4js8evgQ5ySDJMYwT3dzmdrGyRFLSRKtNa68j4ei66BCm3Fh4tHQRlGssTk0G8fNx2ExfXUKKKFIach6RiinQMgJ4ZgaXpBhli8uaTkHIDH6HRCx2jLmIALWqGncEqsbVHakNDUYNZVbYmjRFP1HEXinlAlRxN392JNyxDhbXFcS3dCz6V6gq8gQOjKi+4gxCH3Hj+LGVITZuSBgU4jc5M4ma2AuYLub0T/v/VHThWgPQkk7L9QhpY6RHaF4kCNGG2rTYGJLGiy77Y52UZOT4vTkTLQhRtbgHMVWM8fE2eoUjaW1DlsE3RJQaNB5conSRWxfUdUNddVIfpOtZuqaDCgOidyTi4+eXKGmwcXsEDW5BWUmhkNKiRBHQhiLON4f1jStSCRyCigdD5ajJXDzE9XCrS5i+u6nNR2f8XV1+z6vwiF0255nT5/w3W9+h2/+4Td5//33+JmvfJkHj14jxUzfjVRNjTKW7ZDpU4SYCOOejKJuW/TqLd55N/FLT3p+++sfsNkPxFhC71JmsWxpFy3WObJWPL++5vHjj7k4P+funTu8eHHJvu/5g9///bmh/tKXv8h6vWTFPXwYePbkY55++H3efOfn+Kt/9a/yve99n69/4w+JQYpreS5SJyUSkcg2XnNz5dl3I6lkaUm+jViEO1sJ5dDoMryaaN0ebWSf9GOP0dDWhrqxPPn4Bc5WxFqsbzMW6yxxlLBWRSq1WmLZrrk4f0CzOMNUzcyGQeuSHK5QRlFXjqHXVMawKajjMAzFal0W9JRl3/XjUIYMCeMamuWKqmmJfmTo9ox9D1n0HsY6rGskUDAGUijD6Axt3ZRhXobY0ZIxac3Q79jvrjl5eML5F+7BoiIgw4qgI3ffXvOgqvmzX/1qydbKNE1TDAM8i9VaNJnOYrTm6vKFWIF7ccaa8rp0yjx//pzv/fAH3L1/gQ7i7nd6cY9+9IQw/NTz9/NrMvzEYfuc3cMn7nZ7yjZfy5/SNKiXPp/vV3bMaePMHL5HWYwQhAuVImH0pfiRHIkYImQlImwFSSm0K7BYTKQgk3JlNdoalJXpU1VVrFZnhCEUX36ZzjfOYpQmKSXJiSmRyslX1tNZFCc1QeEcT1B6FkhrmoRqU3QGJBSJuqoJfmRxshLRklbcu3/BbrOhWZ1QVbVQZvRhijNtcBOVI6fM8P5Trr75Hfxpxi0uSDkQxsjovdBOjCEMA85UUtTbipRGVBZ+b8wFeUjw7INrfBvwdxci8C7+60rrguKk+XkHH9DKYYIUUskwix+Dks0ylY0+ZpnkKy0J7ikWGg+SUG21onKKylkJrjIKkyNOGfGmfkUO6+xMe+q7XgLkwoic84rlSmwEh2FPTjLxyDGRjUz+J0oIHAIarRbUoinwpjFWpiLqNp1ElZNugj/H8RghSYSZay42ttY5moJkeC9uLTnluQgIBVLOWcIgrRV0KiYRjku6O8Uyr7TOavLq12Vyy4xoVZWjaeqyISi0mpJsodIVBim0YwoMfYdW4uPfNA2LRSu0jhJUaIxFm2niq7DWsF62nD26R+0q+mHg2dUNH7+4Yd97lDIs25qT1ZLT1ZI7p2seXJwxjGfs+w6lYPSRmDq8j7NYXYPY/mnN1W7P997/SKh7pcmqtMboQxtgrOHu2Zr752eQE9dXV9TWsFy0gnAlsdSOU1BaoZJVtsLqkpQOxbawFGHlY8olOlA+Dk1HzhS3u0PTIe/H7abjVTm0qoS/rA3W2LnQloL6Nv0PDtz8nBNh6KUJVrKph7EnxYTWLXW9pDINOUKMoLOjMgu0biWADyebO6o0F4I2jn5gKMYI1lQSEBYiY+gY4p7IQEoikvZxPNJKyDUijWYu4uQ0W7Ki1LweqyIEn5GZrBhHsdytKqGJie5CqCAifJ7WwXS0xgt9qq0bLC3JO7abAWsz1jaz1eV+31NVNZN7TkiRylQY63CqxiiLQlwTVRYmwGRha4pGRAI/q6KlqiQbZE7kLpSnI73F1HBMzmFqslZHztOpfsjIayXFZBDnu2JPrazsw1kVRF4lYh4Io6SlixtdPLQQ5RyZ6CrT5z/1e/KPl77+cvPxx39srq/56Mc/5mu/+TV+65//C3703vvc3Gx48uwFv/7rv86bb75ZCvOErUSTuqhqLk7PWFQjYdhhrONk+SXiF9ecLXrG/RVf+71rnr64IqTMcrXm5OyMxWrNMPR8+Pgx/+rrX2e/25HQvP3229x7sOUHP/oh2/2e733/B/z2b/82q9WKxeIL1M2C5foOMY5cPn/O04/f5/6DN/mbf+tvcn1zw/sf/BgfIt04cnl9zTAMYrDReLaxJ6mWnEVHGlMCNNoWm+gQaZqGGEdhBGhxcCNFNJL1lXOCFHGVYtslEYv7jB4CGUPWZT9LUsSrssoaYzk9Oedk9YCmPkNrSywU81xo4T55cTPLXpxJx0GGh2Wo3batMFqQ+m/seqIXNMIYg21qbN2QstSTYRyJfiw1rSFmhdOSyxTCSAzCYnDmoGXKKWLygOo9d06+xFsPr3l61XHddZzFiAmRrh+4udoybLe8Vi/4uZ//Cg/v3SWlSLtYEhH3S5gyqJh/d45BxPDF8l4yviI5aXIMfP9HP+Ldd77A6689wsfIcr3kbDjj+bOnP/X8/SMkfn8KcgHM04LSNdy6/YwGQj5V5d/MkOnLIvF8+PWzdiLPfzMf3UehLKJ3qC2utqQhkDop4Kxz4jSlc+HIQTZgm7JYxkz2gexFGGRri11WwhtXClfVNM2a/X6ANBKjByNQWoryRkhAnMIHjy0Ig0KoK6pMqES9JJkYypmyAAsVxTlx8Jj+XTmZJmUFrq7RHq62e04eNKSwpz5x4IwU+BxtZOX1SilJRxwC7HvUvqO6tyYQaeqaXd+RKGLcrElhei01fSd5GJWxEtoWIkEpfB9JacV20OL9iSR8T0qQW+8lBRlKGdVlKmPwWjiXIEWEn+FAedCxWL8JwlOsVMvGPDVD0loWoWyhOSj36mwK2ggc3O12MlUotCdnHdErmrbFWkPfRXIKmILgmCkfIJck7YLghHGkrhq0tZKbYizOVUd6jJKYzIEuN6UdKwXaHjb7qmgxJghXaFFSrB7saFWx0PWlmNdF63MwKiixE4XeIuedVqLdMKUAj6nQQ5QqVBJxLum6nhhGnANSBzmhyFTKoHOmrg1dPzD0O4LvaRdr6rqmbRrati3URDPb2k7TXWM069UpP//FdzhdLxmGke/86H360bPZD+zGke3Qc73bc7PZcrpacLpasVi23FsuMEYaIe8DUyhhKkMAOU8LdN71DD5SVRVt22KtEgG+kpTu1XrJ2XqJSYHdi2dY39HqhNF3qZsGErJ4F9tOa8RBy5kKguQ+6FK8TWisnOWl4aAk1HLwOhd09IDJzvRVPqnreFUOraa1zry0dqn5PFMU17JyzcvTk1dDzlMFEWLIWLOgqc4AR4qpDJdaKrPGmhZNDQVRmxB5HwL90DN6CabEaExxC+z6jt7vyWpgP3RoU4oWrXHaMY4js7uqmjJaQKmEsTIMzUixMxljHATPmhjSjNhYa8rAZiTniLEKcfsWvYWEbcqaPr2Xla2p1AnDDnbbjtPTU1KCRbsgxrEgvILitNUCMlQVaF1hlMOqqjQZYrsrTYKlqqSpqFxD5ZrbidxF1K2P8i1mOluhQKEOjZQqrw2Tt1vKszuWD4GQDgM5VGkuyKTSrImOMuKHDh97/NgxhkHc+AjlxZdz5jC/fAndUMffffl7t/+tjr7+Kh1/57/5b/jt3/5tvvmd7/LsxRXdOBJC5Bvf+jZow2/8uye89fZbhW4p2iVrFKtly8O7J+hUk6LH1g1cvMGfX4ycLgPRd/ztf/SUwQesc1xvNjx7cc12c8U3vvUtnjx7TgiBDx8/5dHD13n02ut8/PQZT54+xYeP+K1//i9YrQRtvnf/DvVizRqhuD19+hRlHD//Cz/HX/yLv8p/9V//HcJmR4qZm+2O6+sNrz26y7tvvsEPdt/Hx4RxjtGPMlizllT2BD/0xdxD3m9hTSWMyqQgYm+AEHekpmLfx/I6OLS2oqvIiMV+EvOEk5M1m80V2hjWqwva+kyGC1OumBJ6+3bYsBmu2Hc7gt+Tuj115dghtY8wF8R4JoZAGAZxcUSsCXRxldLWze5QKfjCIqkEAS26pRgCMYzl+US0s8UcQQZHdfSsXMP52X3efmPBB0+v2Xy84fLxNc2jk+JSGtjcbNlWsH60ksZeZ5qmZt8P+BBZrdqZ0u39wHa7ETMePe3ZU77ctL/Dfrfnu9/+DhdnZxijiFjWp6ezRe9POj53k6GVuDIpfSgiP9k0HKYEc9U5Nxu3v3ZMADiEY3ELqbzdzxz/6yVnCYXoJxYNddtgUfRdIA0epSwJ2cimP6C0wjQWt6xRKMLOE8coYWLOUrU11bqibcXyVsKDaq6uHzOGDqsytbPUrhQ6xQddRdkAUo6l0ZCTb9pMQogs2maeFltraCpJ3LRK3F9EeyD2u14lalsRQqbqIe8y/a7jwd0Toil2oUgjMglwji1I41SMOE1cNizuntDjsTkXtwKN05rYeRZtyy4EMpnee7wfUDHPC+5+s6FKGhNGhp0nLmqohOMXQsAHoToopu4YrFUYZWnXa/a7HapkheTS4Ss1ZYaUEL+j99VaQTimCz7nTEgJp5Q4hxmZuGkkuf1VOZRS4qO93R6mdnkqqiQTZRwlr2KiQEQfSMqSxwS1lWR1bfBKMWQwSFFitRXxsz3e5AuvXTEjVyFI2rFYHnYiZi380VTsMuu6FuODJCmf3nusMywXSzKZYYjFR93PwwDx4I/FhnYq8KVMSYhO45DGe5jua6XQxcu87z3GSnMdfJSfjVDpmpz8XLT0fcd+v6OqW+q6YrlacXJ2RgijLNxlkZx0Izkn2tqxXDTcOT8DpeiHns1my37XYbWmD5F+FCTn+WbLenHDxdkJd85OOVktqKuGula07YKmabi+ueHF9Q3Pbm7QWswRAhByIhXxdovQ41a147VHd3n08C7eZ148e0rcbvC558rK61Yvlriqpq5b2uUCZxxOOVQ2xC4x7HuhaBkj4mEziWS1hAEqSTfPtlh2T41Hgenz/HFsJp4Pa+yrI8kozmCq0AZ9KVTL0KTsF0pJcZ2L20pMsRhryD4UQiAGcOYEZ5eCEoUAEaxZ4swSrRcoVcs0szSOKSWCl3TtwQ/SBDsDxjBG4Sf7PBLp8XEUlzTUATlUmmHosVYTwiCCdSPNgioodSwNo5qckwpVNsZEUhO9TpZXsV/3KBWZrF1rVzH6Ue5f0BENkk2Ra5LXvHi2pWlaFq04xGgDw9DRuAqdFa6ucKaGKLTdic6kSqYSWZBDZ50kP1eSwi3BeRXOVphiky3nYRFwl+mqouxZ2jC5l2V1QEJVQaJT0aSlFAkxiGNhyTPQZgqelAYqpEBE0I1h6BnGnphE9D1R01IKR3XCTz+p1fy/6d/q6N+fwbB4hY7/8v/xX3B5fcPVvmPXexFkAWEf+b0/+AbWVfyHf/Pf5+LuHdH7FHRUwk1lqJXyc/ywxdY1zZ3X+aU/q/k/RXjyYsvX/uAj/Djy5MlT3nvvffbbGy5fXIqzWspc3dzQjyOvPXrIo0ePePr8Oft+4Ac/fI+/83f/W7a7jr/wl36NL7z9JrZeszqFHBNPnn7A0O/5xV/8Rb7/w/f43d/9Ov3g6YbAj378mJ/9xbew9zvc4yX7fSRlT1ZKbGrRGK3nIVeKQRDPEAsFMVLV4t4oyGDC6MgwBDabDlc3GOfm0YtQFkeiH/DRc3XjySlzvlxzdvKAxeIC62qhMGpLVpp+7Pj4xWN6v+Xq6gU6eWorrnFaCZJfVRW6oPrCTBCUg7IWV+2S9dkZ2oorXvCiH5kaC7F+lgFqSkEaJxVl2HrkxNYaWMRMtVhjFw1feGPJk+sd/+oHP+bZd57wYKFx65rVWQPqDLdX7Ieevu+om5YxRLa73UyRnvZNHwJ9J7RsayxjSGjX4JoF0JNSL1pLNM9fXHJ5dc3Z2Sm7bcdyteL8zr2fev5+7iajqutDE6GOqEpwaCbK5y+XGfMyoI6/enx8xk9M47jyc+SX7zN9XwmvrWkwdU0ag3j1Z7BKkUPED2MRuznqVQMWkg8kL6mmOQWZ6saM7hVsoDU17sRglWG/63n69GOsGchaBKM5CdUp5VQ6P+EKU5wxFJqcpRiWnAAr3ESlMEo0GikljC0i8ELjmigxTS2cc2cd/eWe5cVDTu/cg+zJ44DO3HbomF7F6XVLWQrUYSA7CCphyoQtpCScw5zxRibe0QtUVlmxkPVDT1OgwDH1JO+p9YBiJKiKQJJcArJMndJB5JhSLHqCyPX+qvjBi9d9TIfE28ltRd5mofZolctGoki56F1iRGkL2padOZZN7hBC9yocuRT6Ruti2eogS1idbS25TA9SFugoJRj6kUoLxSPFRCx8bmct1WJN6AO+j9g7BmfsHPIoh7r13qckOSgheHIM3Fxdst3tSOUcCaHog4wtzmCT85BQQVzRIKXkgDyjHvK8kkwgQ5ib2glBiVEMFMQK+rjoVfLeFUHvJCQHDg1LFsew3kdxIAuZvhvoup6TU4G067phtVyz22zQSibDx+97VTnuXpyyXFRIMrAUfc46Fm1LUpY6iH4ipkTMmX4cefziku1+z/lqzYN7d1gsWqy1nJycUDc1VVPz4vKa7b6XZqjwb70P9IM0i/W65e7FBW8+vMtq2XBzfUOrI8lmLJF+tyWbhiYkzk4rqkVNYxdiVOET/a6j3w2yUWUJcNRGY6xssnq6NRMlBaFWKQ7as2KBnPJtmtWE9t121fnjP7QqTSIJI11DWcum3AaZRCoFMY70UQp+H7xQpqMhhYQzC6yp0VmTQ0ZnizFNaTBqUBUoXWikojHy48joPWFqAor2wvuBbtiByYTssZUljZHRD0Xkncq6NeksZA1yZWAyGR7FGGUdL65Kk8tfKqifcxN9VugYWikOQ6IgzZUWg5KUFORE7Soq01CpFfudZ3ezZ7lcAYIQ+n5g0S6wVUVla0hiOKuSwSgnDjXI0EdrjXO1oCHO4VyNMQd3KDO5RB1ZWyp9SN6e6VBTQzghF1AaOaG2TRk7KUtzoad1SgmdTFA5j7Ga0Q8FUfKMoZMgxBgJcRRUA0TvMrnfKfW5T+fbp/6n1R+H771K18h0+HHEaU1jLaNNjCGWUkjodt/+1nf5zX/8T/n1v/zrPHr9UXkPFP3o6foR3Rq0rqVZCwHjGuzZI37mV36e/+xvPeHxix3f+/CG3c0NTz7+mN32Bj9OuhixNr68ueYL77zNl774Rd7/8Y95+uwZgw98+PgJv/lP/il1W7Ner1kvF1i34Oz8AaTE8xdXtKu7/Af/3r9HSvBb/+J3GX3g6fPn4DxPby7Z955+EC2TNuLSidKFCl40sjlT1xUpCbU1hMA4hEItCrgGaltzeT0SE6yqFoURdDGBUZkxDMQYoOjg6qri9OSC5eIudX0yN+CUgfCu2/L0xVOhTO73LGoRlEfvZTBRCnZjjLhIRk8YB0gRqzSBTL1owShi9oSxZxxK8GthqzR1RdO2xCQW7P04kFNAu0qc3pzkbKmwx6hMvlizaTrO2xU/++VHXO87fvDRU56rj3j48w9Z31vTnKxZV5kw9uz3e5arM7bbLSEElstlqbuEVTOOcs0ZKQwlgf16y773+H5E5YQzQvetmprdbgeITqbvBk7W6596/n7uJiPX5tOpStPtJyYLL1+sR9O1nG//++g+n/p5+QO3E2sVE+dVKSUuF1WDMo4wemLnBVF1mRxloTO1plm3LE8XZDLBe8acqIzDrIptGeB9oHvR0VbSIDjbklNit99x7/4UZiZhfUoZxmjwoy/uR5PFnlwg00uTstBLtBLnqKlvEitS0ZGIUNBSV5UswjlhSOSkqVaOPnjqxjBsN7SnCxHfan1LAByjFOTByyKtUuDkwZJ0dp+tCdSuYQxRpulZUZeOervv0ErTNoXDm8GsFljrGIJHNRVRDTTrilVTsaktm+SFEhRC8X2P5e2V4jIlETF6E1EGxMwqEVJEJaFFTPyFXHiQ08ImnFsResWI0IqUoaoadE6o6NE5Tar3n3L2/i93jIMUL6aItyd3CFfJpDCVgjCkAKUAd87RtPVcOIcQ0FmKFlOm16uzE5w16AwqJ4xSWIkSEu52+fshSJMRUyhTP0ExIlA7SUY+4nkUGpWT6yH4Gf48GAhMgWJ6fpmPHeRSSdo+3P8gUpX3Ls2I1ET3ALERFDFsosIQhsDV1RUvXlyJPkRp1ien3L17H1sCvqpiDawo9n7q8BzWiyVfePN1Hj64izW2UADsEUdeUSuLM8VKWwmJw6fEMI5c3dzQOIcGsc8tSeuuEheOm82Gq+st+/1AMBZvFD4kjM7cOV/x5mt3WS0qxq5j3G+odUI1FViHbVrquuZsfc7Z6pzKteA1w+Dp9z39vsePcj4oRZnOyWktaIY6NB5GoGxj5d9CuVSfaDqktbiNcqRXqBuPMTI5jwnVTrQZOWcwGWvLORk9PvSMY0dCQrYok7WmXuJ0i0qGHBNGtRjTYlSD0eIglTEi/k6JECL90JW1L6OMQTtLzGKFG/JAwOOHoZwfRlC+MMo1UgICUypaJcQt7xBiOVkQC70z5WLlTC5ubKLHySoWO9biNGiqUpCH0lQFxlGQQU2maVboXOP7xPV+i1Ii2ARQWVGZioWW9HKdDCooaRi0RSF2oBolCGnVUFeSaeFK1owteRazcLsMIY6zLaYm42XLbKBc77KuxxCKU5oXDrySphklaJDsiZmQZcARYs9mv2cIo0yaS1MRQ9Gl6MnpTpquWP6eUp92Lv+EfeDW3dUnKo/DfV6dvWQ6fuFX/gTf+9a3sds9zo682O2l0VAyMLy+ueZr/+Sfop3lb/x7v8HJySmTOUQ3BIyBxlYY3ZDiQNQJ26xYPXyHv/RvXfPBjx7zf/vb3+Dy+gXv/wB2uy27my1qXrcj773/Hg/v3+etN1/n4YN7vLh8QQiRYRz54Xvv8ff+3j/g9PSEr371T3Bxfkq1OOEcQdQ/fPKYennGn/yVP8F3v/d9ri43LBeOpHc8ubmm92IKM2VjKGVK42uxVoZ0Ev4rxg/aKHRSDGMv+golFvo+KsaY5Dy2FRkjQzClqR2EAaKSOoucWbQVZyf3aJozzKQzKnVlSCO7fkvfd+x2V6gUSWNkv9mKLiQn7l5coK2ZraYrrQjeo8raq62lWS5lXw8e320Jw56ck/w9Z3CVQ1uN78RqPhU6l9CwKhm2qMAy9pw1C9r1KXEFqTa8fn6PP6MzQ7fB95H6+ciDewtOHq4Yr3aMjztyS6Fsiv62rmu89yVEV9Hv9wz9vljSJq5vbvj4o4/p+z2VhkXTslq0nJytWa1XDMFzs91wcXbOZrNhb396C/H5hd/zRf1p3f7tBiLfus9nbGy3cMkJCdG3/z3TsWTH1dPOC+X2cL9sHEpbYh8YNz1hH4rwNMrkr6lolw3tekndNKicCFpLMkPKGGexVU2OibTZ4/cDYZSCcd2ccvn0mmG7I9xPKF3hjIEs1pOqbJIR4Q3maSEmF6pPmRYjC64kWOvSpZtShGkR6aWMRklSeJap3c31FWfrc7qww8eO3GZCBZWeEpg5QgRkS5GAr8i4vRaIzinGGAk+opRMqOIYMHWN0Zq070gkmWTnTMgRlSFH8U/OWZLUQ41wY/uIrRw+p8JzFN50yiK4lGl4nnUVMWdyDHOugkY8vGcebC6885CIShLTjVUFwMrz89Nao1ImK0lGTlk4h6/KMfS9vL9O7C9TsUk1zpC0ZCpYV8gBWZ5H1TbUy2amgIhuB+q6YdwPmKyorMWkjPYB7cTuV5XNP2egaAZCEEpBjIF9t8fHILbCSKGVuhHVNuQsCcOT9sU5aXyHfhSHqTwJcIuFsCoGu0cN3USLmOwPJwRuQrJiKMYAerKaFUgYYnmckegDS9WSQuLmZsPmZkM/9KQMy+UJb771LnUt9KW6bnBVDTlgjOMQQgZow7Prjv3wsUyqUuDjp8+42uwYvMdPWQhzoVMaVy2oUGMNIYz0fY+1Fj8KHcpYw8l6zXq94uJ84Prqis1mSzcMaG24OD3hZ955nbOTBcMwFCEviMGiZrE45dEbX+Ts/B6Na9FYhj6y2V0x9qFYPE/i/aJBmIrTksqLT6iyjqlCp/m0hmNqSKbC0CjRdaCzoB2vUJNxyPFQhRZhCiope0dKsSAXPaPvSFn85cXxqC4IRgvRkKLCqQprlmjVoFWNUhayDMYmdG8cB+F8lxyKrDQhBXrfERgZUkdIAVM5um5HGieUz+C9OBppo1AqoY00DUppYp70FQpnhfqQQZxicnFp0ZCKSDyGSC5KtilzJhe6qJJFlxwNVjuaasnYaboukEKUoguFcxVtvaSuakjgdz27vuPs7A7O1GJOoMQGvXJ1aSqKiHtK4zbFenYK5rQvJXJPDlElM0Ad7ceT1iLlSPAyZApRBluCZqZiqapJ+JLHpBnDSEyemAb23ZZxHDBG9qacxRo4BHHNmtYmrTWZQCai9WR+IHvdpx7qE5/Mn5a26NN/8lXkSgH/4X/6n/Ob//Af8PXf+R3O9j2rXcfjFy/Yd+KEFlPmZnvF7/zOb3Pv/l3+rb/6V6jqim7w1HVNnS2ta9G5Ivvn5LEnO4Ou19x56yv8Z//Rhk0f+b//f77O9eUlSQl9jXxwctrutnz3B99jvV5ycXGOMZrRi24mBs93f/BD/qv/+m+TMvz5P/dnuHNxRmM051nRD4HLqxc8unfKr/6ZX+Eb3/wWX/7yHW6GF+zGgLaO5HtSSlhTA4aqblBA1/WCXpY8B6DUU+VWi0NU8APDIOtDVTtSylhn0bpi9L1Qy5MwLhRgreb89JT14py6OcOU60ppMboZxx6MaAl1jpDERCh4TwxiX3v37l2GIAX7nfNzrl88J4YguR0h4toFylTitOl7wtBhdZa8trJ362JfPfqeOPaArCtiE20xGurcs1KKi/oB+crgNiPpdICzli/8zGuYBjbbLSd3VuzDjvv1BVem5waxd49FcNu2bTF5GQGh7W9vrtncvODuvfuM3rPf73FO0zZL7pyecrI+oW0b2kUjLqjWsNlsuXfnLnVdc319/VPP38+PZOTAAcH47AYiH3MclWy00+cHLmRpFo4ahuNm4nCfo9t5cTv63eX7SiEp3Snj9z1xP0DMpSuVN9RYS8bgx4zyAypluq6bw45M5XCtOPr4mMDIG2S1w9mGYbxitV5g6NBkrAJnLENxUcpKiWVpcRYBhY9gFFgt4X8pRnwOOGfnxmDy5Rm9R3WwXq5k4l1EStpkFotGCr000PXPac/PsI1DqTxD9McBh5M1LymR+57d00v8WuFWlq7rxD+9TLFS8Yy2zuB9LAnl5XcpJBU8JVRW1LYiLh1jFrQkxywXnPdT/VaeT5q5z/N7dfT4jh/n7XNI+P3q6KvHLetkgyskCxEgx1v88z/+IxZXCKUk6AikYEwqC18zeJZtw644aChd6DCVK0mkAa0qYoiYWmEytFVFpRWV99g8oOumXD4HHQ5IovxYPK5j9gxppM8BHzyrZkF3s2HoB7QzM81jat6WiyV13fLkyWNx/iiNhbPyXIT+dmgyblG08sHCVXjAYheds9C/cIeGxJipMUmzhsRZSxwjfd8Xjn4kxCSi3GFEneh5ClM3LdEPoMxcaISY+PjZNS9uRkiZfr9FZ3EQ2ex6Ys4Moy+hd1KEm2K6oFUWdEhR9CxB1oVxIISItpp2saBqapwz3L17wXrRsN/vOV2veHjvHqfLlq7fC7LhHKZe0AdF1bbcufc6d+8+oq6WDHuxouyHkdFnclJF7yUDi0xBL6Yzekb5DjS8nMrZr6YC2M/6jds0K3Or8VBKCYr1ihxqptuUYjWV564MOUdG39P7vYihkdwdBVjTUpkTtHLkqFDRYHWL04sZvVCzwDsTU2T0I8PQiWmAdcWJEMY4iJA4DvShJySx9O77bkZagHn6DkKHt0WLN2lKJo2Zc0JJEuewSExSoGkyiXFuMkCaSpC1QVGKJUBrccxZuBNUrOm3if1uD8VooXYNRlU09QKTK3SSxnR1dlryonSZAB80FhNqIXQoUxqL6WPSWEy6i2Mx923kYjpSCiV9O0gWkB8LRUyCBEWkn1FGEfMIWQSp3X5fEFZxiNJGS2OCCN+FOmxxlSlrfXndcxIqMZPuLB3tCp9y/ITt4LO+9ao5Sh0fr7/1Dn/p3/lrnJ6d8we/8ztUV9e4quJmv2cYR3wIos1MkW998w957bXX+BNf/SpN3TL4xBgyY9TUpkWphhj2+O0G21TgFly89QX+xr/zgt/+xo/5nW+/KFQluTZFypqIQd6/q6srjLXUdUXX92UNE+rRfr/nO9/+Nq+/9oiT1ZK6qqjbNXfuPSDGxM12x89/5R3efP0eJ3cG/vDpN+caKBXRumB3mtH70oCH2c1QaLtJgvRSmAM565JNE2Y3w4qYFDlmnBYL+O1mVwZcCjS0i4az0zusVvdxri1uaZqsFOPYk3UsKJxitWgZYy+auXFkjJ4QI7tuX3SNoqcbBmn6rBV3OtuKxCCnxNh3jN2+ZLQZjBY7+9GHUkONUv0oJYJ1pTAmo4kY37E2K95585fY32Qunz5m6DZcX42sT894eHHOyXmFMp5mjLB/zElr0XdqdCVWv009NRgeP3oMim7Yc7W5ou92dP2em/2OIdxw996S1XLJ/TsPOTk9E6QTGSYbhH2DgtPTU3GY/CnH524ypLudjiMe+K3pxkRpmhqII/eon9JAKKb7TV8+bi4+OWQ41Djlfjnh9x3hek/aD+SYpMkozhkqK0I/EvcjI8L7HQvFR6lMGCNxTAVZSGAy9aKmaRb4kNhstiIHKE5R1pgS0mVZtAuGEAgxF2eYQ8hUzkpyOVRGY6a6YYb8hQdoyYj13OAHhNGSaWuLShKaVBnH+nyBdiOh35OayT9ZjmnyPBWNMUroU9hs2D67IdNgVwucEc79ZGdqdSbEjDE1MWsRVSuIWS5sQWWK05OSCdeQZSqQmdKTp83lsIgfA9LHy/dBqDshX582O1LzT03FAjOnuWBpStQvKfNpv+CP7aidQyvwRcwKh/dmHAcUGT+O5BjnhbNtW5wzbIc9IXjGoWd/tWXtWlQCpw0uJfQ4SLE1XxryOuVSwIcgotUYAz6NBcUQN6blcoEfB8ZdRntP5ZxMWDPlPFKzje185MObE1KELNqS2onYzcfAJP6W91UJRapw6nMOEjKZmSlxxgJl08o5Y5XBYhjCAJnC9ZaiexxGhmGP2DlbmqZmuVww9uK/PzedSvPi5ppnlx/jfaQxiotlzfmyZd02ZX3o2XYjex/JpYByVok1stYzrSgEERL6MbDbCzfcVluqpqJpGlaLhqZxnJ/c5c75OY1r6HZbbrY7bFWRomffj2hbc//+65yf3yeOsNnv2W2HwqdWoCXdVRWEKCZ5jaYlb+a7q8O1JNk+zM5qkwZKxYxSMuXTR0jHp+k6XpVjSoCW6z/P4WwSlDUwjNJgUAYpSlmsrqnMCk1D8pIQ78wCUxoMrST0NJHnwK3RjwzjQE5CX1DWEmKgn/j/qcfHnoy4Ho2jl0m6MWX6KaFdSsvmaqwqLiwHXdmUESHnvtDz5I2Tc0qaqMgkboeD+xfI+mB0GUiZBbVZEXsj5iUxY3RVpogVbbOCaLBUsvkXfYRGbNetrSQwz9U4Jz9jbIUpiIW2L6Vxl9vpecxhkHrau8u5VnQ9MUbGsSu6MgkJjDPCI2i00pkUPbmgE+PY44O8xiGMxYhiwJZATR/HMgxErEEnKiaieTHld5eV5taA43/aMQ26jr/y6gyqXj6Mdrz25hdYn55TN0u+/c1vcrbZMkahIxmjubq+5urqiv1uy+/8y9+GnPlzf/5XaRct/RCpXMI2FmvWqLwjds9J41bOB3fCz/zsF/g//0e/xP/l//o1nu8FPaLkfaUsbm2yHg/UtWPRtNzcbEAp1qslFxd3OD094aOPH/M//I//mMViwbvvvI2tW+rlGRf3MqiPyfGad999lx+++D020ZNR+GGUfULJNRdJ8zpY1TUmHc49yGhS0VUErErcOVvw4cfPpamw1fzYp9pAru3S4GexSW6amkV7RlOfl4L/MPjuh55kpVGunGMcM13Xs9tu8d4z+BFXVQxF+D2OI+PYiWmHNsSUsXXN+Z07DD6Rs5d0bFXqUePQVsJAY3kPFaI9iUH246pygn6GPU0KXJy8ydvv/hLkmq//9m9x/fwxg5eB5qI+IRvH892O4eYGw1MevHWHsBx53o2c8DrKnpN2QpMPMfAi3PDk6hnf++DbXF89pXm/ovcjHww/JJ9HclURmwhOkXLEac3p+ox2UdM0Dc466rrm/Pz8p56/f4TE74aXUYXbqIR8ro5vX2oojlGI202DOtzt1tfzZ48eSuEy2cKmIUAfiNd78hhQCQnyiZGEcOiUApsk7yFnZseprMRqNsWxbMYK7eQB1dUKlRXDfoutEj4FnCglhOcbEz72YrWqJI1a/L4llVorRUSyOkIu3sfaFp90eRzCwTa0rcS1WycTZG0UzjrhI+63DF3AxhvqRhNXa6jr+eVQSh0EhkmKpZQyu6vnVCvFTnX024Fmecb1bocPkhjZrhpS8JKx4Axd6GcqTkqpZBGU1zilErZkiGUDODSRLx9qBjBe3hSO+fvT+fCpb/HcOE2Ihmz6WhUkQ5XJ1iu0QVgjk9gcBcZGG9p2MWsTjIa+76XYKNQvYzTBB/a7PUZTQuCge3ENIXNer3DKYlCYyqGdPfjPC549v+e+0BG22xu6fo/SitVqRT8ODGSyFU2GdZZh6EXvUoRr4hp1KG5NGR9OCcyK4u+vS25BQVCMPgwZKEnB1iqsjaWZLgFiZWqbp/yNlLBKo4rgfb1a44zD6B1d3zN2HX23J0aBpJfLBcvVSoq8INS7HKW5GcbAtusZR89oDavWUdWOZSNhg5VxOL2HXc9umGhKWgL91GEYMI5CefQhirYpJnw3sO97tL7Bn6x45+03uX/3DotmwdWLS54+fSJp43Zk33VU7ZpHD19ntb7PMGr2u54YNTFAmvNMxMpWZ5HOp3KNAdJB81LWxfT6KlDmIJ6fGvAZ7YiZGDN42bgmetUUjPaqHJOrHKhiRxzxvmcc90WbkIrDnEIri7MrrG4hKsIQMKou6d2r4lSlmUR7KSV80ReFKCirqRxZaQYviEXE04c9MQdhUMc401qbtsaPozg+aXBWobTBGn37vrMAWqgbMU1NhSrviTTZmYlOqo6m8OV9ASi6wMaJJe1+yOTsAcOyXaCSxtkarRw2VyLERqhySske0biWqqpLcyEotVYTUnEQcc+3x9azanKJ0vPenIiinVOQC4UphCkssaDdBYUSu92AQpyzhn4nIuM8ikuhYi5uQow4a6mbWnR8WahVcTYCkUZT0EZb9o5CvVK60Mxu7yk5/1HX/zK4fHUuh594xBLIuDxZ8yd/7ddoT075/d/9PT768Ufsur5QqjfstztxN4iRXES+f/7X/wJ17eiGIMWrWaCbe1idIW3IsScbRXvnTX7tL/4p/nc/uuJv/8MfctUveX695XqzJYRJaymvs7OO89NTQgjUTcNyuSblxOPHj9lstnznO99lGAb+2l//3/AzX/4yrl6wOMlFf5p5vv0x3338Ads+MoxJXNSyZIhRmCeTzmmi4gLla3H+UCQWi4qbmz2DD2QQ50JlUEb0SDojdHgjjperZUvbKk7XJ6zb+7hqPTulKWPwKbDvO5ITJN0ZxW4c2O93DH0/U4anAW+Kkeg9Yz/MNK4xJmGjoEk5iFA8hnn/dCUAz1pLKK5r5ERO0tTUVYPRlkzCxp42ak7Wb2CqU5btmjv3H3Hz/CPSGBi2e6y2nJ+ccvf8Db579U2+94NvcH1VcfrgDsoGdsMLkhrorgeebl/w8e6SbYhcbjZcXj1n7PaMQ49Smdoass1c7X/Me5v3WNVr7i/O+ZnXvsIbr/8MWUmY7/XmRihaJ/8ahd9U1acgDi81C5/4t/zvk81DOebFIR9tsOV/ZbI3j67T0ef56MfL13LKxMEXF1SFMuWkLCeFccVrPCZySOQok8BJFKe1JgUR4xllaeuGdrFgtThl3A/UDnQjgSta14AjJPAZyAmndWEZ5XnyL/7oBy7rJHSeOKVV3dx6TWaxbMpYEMpGFmFs7hRnq4e0zSlucULMcsJOhWAs1KQJyZCMCtBVRdMkBi0hY1pNeMPE0VZlTzxw5yX3QJAVrXRZ5JgnTNpoJgChkOBmqgd5msJO97i9ARxP92deNgeEA46sa+ez40CaSjGCtaLJoKAZr1CTobWi74Wy5EOibluctSLCz+IGNsYJGpbXJ+dcKBqB5WKFQhaby/c/ZlG16HuPDoVDs5ApSLGSVMYUHYzoHGLx/n/6/CmeyPJkhascz1+8EHQFTQoiKgVomoZx9PgxFI6/xRWdjSnNRi4NjDNufs9CcYaa0nynQj1FKb6g2BOnqUmRQsYW/rVMpESMbZIEhxljWK+W1NbSdRU+RrrtRqZnTUNVSzCf96MYAxiNirqgO+JOlHNmCJGrXcf5oqa2lto41gvRoSitcLrHp1wmv1bojEoKwKmhilHQvpCluTJKs2xr7t+7x4P792hczc3VhqdPn7Hfb6ldw7ALdENgfecUXa3pvCnOaKL/UMaK3bSiFKFFn6QNRhVEamqo5+VO8hempl29fFveo59EsYozxep/8cvhM49pjRK+fSTGkTH0RMR62VknFFJMSepuiKOgmVatcGaF1fWMXuSsxMkoJsYgE1fRBDiUURKqFQd89oQ0ErNYpYbs8UFcvWwxa4jRkxFNmHXSXChySfOWgk+XRpF5JZycRQVhE6G9IIOTHm9qCOXORfSNonELDA15qPD7HmclO0WrCo1oE6wW6q5C7DONtlROdEp1VVPZRuhQ1kmeRRkGCe/7NmrxcoMxPY9cbKjFLjwwjEIlPuSxZOGsq8Pk1QfJAoLA6DtylkFHCGOx1B1Qqgy9MljrxFp96MVvPyYyCW0sU38mOsNpH7iN6h2HSv5Rm4s/ejPyahxd19E0DTnDcr3myz/3M1xdX/Ht73ybb33rWwzdnuViwWqxIKfMbrvhwx+/zz//p1/jzp0Lfv6XfgmjDf0womtHZZbo5i4qWXK6JuNRdsHpa1/kN/76Ddsu8/f/xcfUixXaPOP5i8v5WjXWslytubi4g9YSWHl1ecl2vxO3vSxT/6997Z+SEQHzW2++gbENtk60qxP+8Pt/wPvPX7AdI2hLzEEslRHmxFTTiD5xGkJMNsfiAtfUFX4Y6fcbvA+kKCwTsOSikc0x4Ueh9YH4nTRNxdmp42x1h6a5EGc6LbaeSmkJewwDm92GMfZ03QY/DPN1MTXAqkxQU7Gqzkl0REJxd9TtYh6Ophhk/0cohMc0RRUDVilCymSVqNoWY2RNU9FzRw2c2zV9aNl1keW6YnlyxjD0hNCDAb0TMbsJATNGWnOPxjzkVD+isrJGKJ0J/VPurS4IOrN5/iExDxinUdEI9VK2H9EWK1k7htjzdPch1bOB1bJhVd+h3w8E71mtVqzWq596/v4RkIzDXW9RlY5ubh9TQ5COUIejrx83DcefMzUPh18z/5EjFGUWoWn5XiZLkrYKmCCCJG2kqE9kSFncGDKzxaOgwXkOxdOV8FJP1yve/eIXYAGres2L3TWrhWMbe6FyKI2P4t4gxZTYMeajx3tMI9GleEgpY5xAkGiNUpMw3RVbwyQ+8FZOUK1lCmpUzc37G+783M9i3RLjGsbQl97ssHlNL9XMoVUKUzfEfl+4wQLxa6VRZToi02X5+YnjnzMoM+VZiBXbNK0DSmL5NE1Vh+7ipWNCMj7j7DhCID7lBMrMm0w+ep4xHQR/suTkW9OOP+4jFRrFpDdQWRojCd0rfOIsItGU85zOrVQuDSkYpWnXa9xF5nR9RrNao6sa7WpM3aJMKSDUZB8bGIZhFp2HIH7jsTTS22HPzeZGnLkQ1CJUIg611rHfdwd0aRLXk2dL0ZSSuFwh1441hlw81I05FAG5iOuEFqVnVGNCDZ2Vc5zSxFbGUWVHGuFHH3xE4yynywV1I+5qfhzZbrdcXr6gaRc4JynEt4vlqRgRv39jZdp6vfd8dLVDKcPZcoWxjqZJJMQsIaZMSJkxRsYg+S5Tdotc1mq2TjYoTtcr3vnCG7z1+iPWiwXXV9c8e/qUbr9j0TbUzZJ+yFTrBe3pPaJpGBIoZQVyLg3l4UopxZuSTIWchSo20V9Q03Kp5uZB5gapDDOOmg0+WYzNFKsZNXy1iixx/JLzwQcvab45YK1kN5AVVrcYVWGyI4wJksGZGmdOMLqWtTgXO9kcGYahJIcLR10bR9aHBiPmEninEiGKUDkUGlMqFuaxNAgSrmjLeSwNxpTCLYnDicmQ4rB+FfQCL7kxpTCTtXmyXs2oLBtvZWpqfQrBEvqMUZZFXWO1AzTOVHNQp6zfYh1ZVUVnUbVFIFrNDlHSaBycoYCZGjUJuoWaVoZLSop8ef5iNRtDLEF5EWsFvVGFPhbjKFqLKJacKXvG0COWteOcxTNZtucsjnfT6+C9ZASgZK3QRh6L2AEfHidATsfnNvLalWLwj3L8pPP+VbomPuvYbbeAGIHkBOv1GX/mz/45xnHg2bOPubpMrJbLQuEOpcnN/OB73+e///v/kJzg53/5F0EtRDtkLUo3ZJYoHVFpI+f86ox3f/lP8J9qx83mH/BPvv6cu2cnjOPArutwlWOxWNIullRNy83mAy6vryRgtVBXp/fm6uqa3/qtf85yteRv/MZf5+H9u5iqYZ9G3nv2MdsxQLFqVkoGRTmrQlfP9H1f9k1Tqjuh2tbOMvaBcQysW0MaB/YhFDqjWDVn46ThSAk/DsVyNuCsZbffc/fshHVzQW2WGCbVsFD9xzBytbniqrsiZ0+/3TB0XUEv5ZytnMNoR86K0Q/0neyf1liSQsJV60YedfREPxZqqDxPW7n5eU4+gKoMnionTU9WCj3sWKiEq8749nuXnD98ysWd+1w8eI0Hb3+JH3zzX8J+Qwgj+24DyuKT5e6911iePqRyCxkg+j11VbGuz3nrzdf50nhD9Z3f5p9d/14xLlK4psJVlWi+soaYBaHZ7wjdNU82H/H19/4Fr599mUd33ub+g/u0Tfvppf9Lx+duMm5t7HPTcNxA5MPnMwrBvDnerkHVp9zqQxNRkkOP/bDz/Ic59C9wyAsoGoegRE9hCj3AGFucSsTlJ/lILnwplYVOkC2o2mCsxRrNycVZ8TFuGYdI8r4ExSRU0VUkRMwLyDRGwxAi5IBTiswBvqc0DDFFgT6yCERjDAfuXYrAhHrIwq6SXLHVAAEAAElEQVSLvztGyYlebBgrLdqJaTF5eaGcmwytMXVL2CW0K4hDisWXXgqUmAStCDmhyUxWo7pkeKiSZilFV5ZJ0+RoxDSlOzQEx+fK8SkzIWAvIxkTJepTzjjkRFLzqQTi2JJVLRQ3Jejwq+Sac3V5SdM2GOswtjgqxUC7WJbpwyBNqdIlNdtQ1ZU4PiiZ3ixXa5btikW94nR9jmuWKG3RzQJVOQnELHByzpBiZux6rp+/IOlIIOLqmq4L9KNnt9vSDwNV1dIuWlxVEYPkkFxfbcv7KnahB4ejhCvc7WnKO4wjISV8UKVRZ15cQZrR40Y3T80pMAXMhRAYY2LsByqEH3513fHB4+ecLRf4fsRZmd46axiGPVcvnnJ2fs7anVPVwjkXwwYAVbI7ROswuYSEGHlyvSOXBPX1ekVV1+LpoxUhJPbjiO87+tHjrcNZQ+0cRil8aaqNUpyfnfKVL77DO2+9gdWa66trPvzxh+x3e84uTlmt1yRVU6kKdI2rljKhQxyexO9dC484FEeskhsQciSMIzlJsrN8TJPnQ+gZJagzT03HhHZMAZZZpuWfRDkOTccrBGTMDV2cwtlymBvSECKVWVKbluhhHDJaVTi7xpnlwc8e4V2HJFkWfS8ONWpK0M1REu4JhCToF2WQM2sKmNZRWVtRaQ7bgkTwMoxRqgxXVBmOqOMU8lTW7wy5TCynrWrOdYBMwCiNM46FW2FZ43sDyWByxignaKI2kmehxELdakNd1TR1g7NCh7KuQpnqVlMx5VuYyXK2rM3KHFALQZgne+koiE4KRSsRCxJNSfVWJCTHqR8l9TwwsNtcYbQuLlFiD++9rB2j94hbnZX1xCi0Be9HcbPTmhh9cW6T8kOGWeKGNQX+TXkv02MlH96HT7ev/ezjJ2k4Pu17//M1H/96D0tm6DppOrUIo09Oz/krf/Xf5p233+C3/tk/4/f+5e/w5PEzhsHTtrUg/lnxrT/8Jt4HbFXxS7/yy+wHL25ubTsPGpVJEHt539ZnfOFnv8x//B/csO3+OT94GlgsFzx9ccnZ2Smnp6csl0uMMWx2W3b7/WHIVOoihVCerq6u+Uf/6H/k/PSUv/Brf5679054svuY58M1XfQs2oau35fh4eG9DV4QSV3WQorzWmUqYiw2tipR15kX+56QJZxVGw3KQaGiW60YoxgWCdIfWLeKVtU0vcXe9NgqYGpN1oZu7Bn9wM1uQ+/FijxsNux3O/zoyVk0buJ0WM+DvegDVktytwdcU2NcyUTLiehHSBJ2VzUtttRUE1VKGC8Koyu0cyijISceVjXN2PDjZ5b3XlyzWH2Pe3fv8sV33+RP/4W/xqJd8ge/85s8efoB2hjO79zjzqN3sMuHZNMyjiP90MtQQ2tOL86LXsvyq2/9MvnJNd+OH/L++JSbYYcis1yuWK1OUMlJbtp2x7hbMHZXfHizIdmPqS5WDENA95aw95994s7n7+c99uNtdGGajB1/7VaVWbiqEwJREIdDX/FSCToVinM1edRYTAXtS+iGfmkxUFkf+KrmwEUGcelhjBAzKZTwNyU8PFU5bOOoKkvjHFkF9sOO1Z0zUkrsdzeE0JNkEEUok5qUEf6csuQ8+b4X6kgSCovWYus5TUhjTKLdsLd1CcfTxpzTbMqltVgkGqcJ44CtFvPrH2Pi5SZjctOaBHymbsgxiTAwC5SviyWVUoqYEs5IASSvqSa9zHstSMVEWtLmGMlghg7llc6HU6H83KFZPNocpubz5UOpuTk7nBKTY1YutsTHDlMTovRqHH4YWK9X5BCp65YxSEbFGIXfbaxAzMZamRJmCSMLSibs1loW7RJra0BRVwts1WCdQ1d1mdJIk5IRLVHwgd1mw367IdeKaJO4rZXJobiHOSjvt+gv4gxLT9kWcv4KVUorTcqqhEdSGhEpVmTBLvkXiUI3FGpQzEIRTPGQnzEVvNLIiBe6D5HGWhpT8dHNU3zM9L5Ax1FSxitnWSwW4K44Pb+iblcYV2GscPCFglia/pSLzWiB9cnkFPFepl7yWjYobVFqADVSA21BMuR6TodrKQvycu/sgrfffos3X39E2zQ8f/acp0+fMQwjF3fvc+fBXUI2uOUZVbtmGEb6ruhFyCQjky9tLDGKhWpOUTbOLO5sfpSGaXo+wkeXDdaUomu6Fc1MEecqyNO1MjUdGabF8xPUqleozXDG4sNAiAMgSJJYrlqcqVHZEUdF9KBpqMwKo1u0rkuDIVPFEAL92MvrmhFxtzGEJI1FSCMhB2KarJklj6JMXEgxoPSU5aAQY0A5d8T5Sc0NETAjGLK2FZOMJPaqgLwnKc/r+OxQVUIHW7um1iekwTEGJXqLKXNJS4MgKJ+gExNy4VwlQu4pLM86lCnUqEnnpyd3KDVbz5YXtqzdJTm9TLtD8nPQ3ZTrpERYSFIBVML7HlJmDDvGfQcEtvtrnGsgC93JlLUmp4xzTixDs6x3Ifg5eExxZK9c0H+YtjOZKeeyr006Eea1X817xiddCctL/xnNwb8JaMVPOiYkM6WEc07MKVDYquXNd75CyorLxx/z+KOP6YYOraGydrZFfv9HP+Tv/L/+32hn+JmvfFkyU0xNWzVlOhiKxntPjhFTL/n5X/oS/+7jDf/lf/ddnm4jj+7dw1aSoWW0FqrMas12txPKqbUMw4gvQYGTKcn15TV//+/9A7z3/MW/+It8/Pw9kspUVS3ayjmgVWoEaTQLMu1ccdkUZDGnTN/15JyojCKMIz7mOb+FrEkIwi86Iml4p3Vdq8y6sixGh9pv8fpDaM5J6zOSgn4YCFnyR26ur8ndBsYePxSHTYQqbktTH7yX/TVN1tJgXMnGUKJTisELmyEldHVAMbz38viSWFo7a3BVVai/CpcSp3rJx88jX//+Yy43gd12z9nJkos7Z9w5O+cX/vSvg3N843d/i83VE3TOhN0NSrd4A7uCMDV1Rd3UnJycoJViGEeuX1xyahr+ylf+FO9dPeYbH36Pp/0V0W8Yx0gI4AfJ/dBaY6tTMJGrfccffP9bgMKPnuTDTz1/P7+FrYcCL8yTmamAny+Eo2v8k0iDfKiX14fM4QtHXz9eMObPPxUlPfxQLi5HYtUnIiChIJXfkxXZQw7lZFYK11ZUy4rFSUtdGSygUyTlkbquJCE2jKAPQUuxQOEC1ORixVeajE9APlIA3P7qocE4fBxvTnl+skrLQm4ry9B3LE7uCL9vpqek+bEcv14TkqHrpoQ6FUFfSkehM6LlqJ2DIu5SWkEZyk06CXV4m2fk4bB5vtQsqoMt7/HESR29U1PDdYxkHDQZn/UW57LQFhEaBcng1UIy7Jz+K+/fFHyTsvh2+7FM/azDGkOKhXNtDdlVNFVDVbXobLDOSRBdVWNcJWI2Y1FGPk8oUhCf8qvLFxTig6BNdpoaJipXk1JmHAeqqpnRquPiyRaP/K7bYY0RK9EyRbRaEn+dFuh6GEZCLGnvE/1ubkhzmQrL4pNyLDkISqgkOc9T9UoZbNZcXm6KPkqewRAjQ4iYMTBECFmzWj9ldXJG1RyZHWQlqcbIBGwS5SqliwWgTLz3Y2TRB1YrQUFyLhQrrYvbkLw2IF+LSHjfg/t3eeedL/Daa4+wxcHl8ZMnxBB4+PrrrE/vkJQmRsPp2UNWJyd0uw3RP2Mo+SgJMCW8bdqQ8iT0iyW/oVgGH3/MxZjW80RPz0jHkUNQoc3paVpeFuJD0yHlpcqvVpORSYQwiGBYZQk9NQ3OLMhB4YdIjhZrFjjTYnSDMUIjkqZSrqNhGAgpFGG7Fb5/jvg4pUePck2QyvoqzV9WQu/JWSa+dTHRyFk41CDnginT94kuARO4nspjh6nZOAyJpgajuApqTWUqVvUFsasZR7HjNcpQ2boEagoS4axQAmsnDi62fJhCkZwCykRrcsgXOZwPmtkYiJIAn1KxKpeAvAm5QeWSppxkeqqUaCmUoh+2+Nihdabvd2ij2O/3B3t273GuBiWuec45cYZKEWGqFN3VrPuYGuMplJPi2ZJAHQJlP/U43jzyJK7/CWu++pxn+ue93x/zkXPRbc1mCYAS1KCqG157801+7a/8JbSB3/+9b3B9syXmxGa3YwwJ5yre++DHbPuO/+Q/+d/y1a/+MvteY3VFZVsyQdAM5clhICtNs77Lr/zy2/zog4/5b//5U9HqGU2329DVFZU1rFZL8seZcRzLUKVo2+Zph7itffDhh3zta/+IB496vvvkezJkU5IPYa0jxoSPEaNcQa3kOhLBuQxl68ox9j0heKzKhGHgupN0bwEuNKnYV2sFwY/kUcTYMUb5HTZzVjvasUJ3I7naCT1dC5NjP+yJWdbn/WYD4wYTw6x1VLrsKRqs0XMDoUsocgZc5ajqStLq/Uj0MuDSxkpMQt0gbKQJgZ6ctMS6Vhy2wMWRYVzyo4/3/OjDp8SU2GyvaRvDl770Fk1VsT674M/9pd/g/qM3+af/43/L84/eZwiBuu+J9UOiqnCVuEAtl0uapibGyH634+MPf0zlKu6d3GFdrzizS753+WMu845eB5RNDN2ertsQ9iNqFDpn7SqGcS9OlaMnT8X1Tzg+P5Ix0WbyoYGY0eL80ucc9xsvX8h5/u5h2n0EbKjDvW7BJLJLcpSpNfU8ZWqjUFhMtlTaUNsyzVSJXT+w3wuslXMmGrHZM86xOm1oT1rWpytS9IR+lBMkSECSttPkTLIFDoWw3E5ZEMfWescUoFtoz7RaHjUXc5YExxvU4dlro4khYmvL0O/mDW8qFCcrRcrfnKYIU9iLqZrirV9oTTFibFVeO1UchTTkcsEcNUkTVWZajDPTREAV4XL5W7z0Ht5+K29/7eh1+ewJ01Hzmpm1NFNzJtzo0mjwajUZugixtbbF6SvPSE+KsUzyJVeCnIs9sUWlhDaRRbOgso7staSeWjc3Fxg7v6+UczHGwOhHNv2W1brFq0A/dLMY3ntP0zRUqWLTb7AmUlUHAfdEbQBBPXI+NKnTuTV71JcFJcWMM1boD0oMFUQIHtHGMIyeHGU6bIymriuMgVgsnvtilVsry9CNPHn2AgXYYjvoY2Q/juKwoQyuGrm+vub65po1J8yLkBJzAoWkGTdFYB8K9UYby5jh2XaPz5m7ZM5OVrhKROVJQW0M6+WSPcyBg9YY7j98yMNHD7l796JYRF5xeXlJ1dTcu/cGZ+f3uL4Z6PYj2ViUqnH1Eq00/a4n5j0pi7Od9yNG6bkIS1FSkcd+TxhHwjhKo6APH5/WcEyf/3S0Q5epMUxF+e0xxB//EeM4O5YpLM4sqExLHGHsEzo3VPYEaxoJjVNF95Yh+IgPo7jSxIiyFowiEfDZE5Nn8J04u+RiH6vn1kuE3wVZdEWEOYn+J3OAadI+O6upA3qRciii7jSvcRlBOWI+JFUrpEFvzAmtPqO/VBhlsaWotsqInkIbrHXUdSvuULbCmePk7cOHJKM7WQP0JIYut8VJLHPYE0IUPYpQxQ6UAGsK5ZFIxjOGjpg9NzcvME6yD2QSHOmHAWebmdphnHD/+0EGEiEOJAacteQwheDKNHqiAdui6ZA9X85JbYTyJv5q6mgvPDTISsWjjWR6vD/lXM6f82x/hfaNn3RkpqDTQ5OR8pHDHDLAOj9Z8fDOGXEcid6T0Dx78Vwm+2h+8x//Jvv9nv/D//F/z6989ZeJoeLstKFyrVDBLejgiaFDWcf911/nL/7Zd/nuBzf8/ne3pDFwqSDHQIgJZ6QmCllCfnV5H6chm9bCFMkpM4zXvPfse9zst/js8NnjQ8DaWuqcMjBJZUigi9V+jgFl5Xf2w0BKiUVjiAP4IH+7qWq0qgFbaKVJaIAxiKOZ91ibaC200WAHTW0q6pMz1HJJ0prNbsPzqxdkndlsN+TkyWEkjQMEDzGiCh1RlWZcpQCpoLBaaq9msRDBdN8x9jtikEbHVRXtYoGxlr7vCTGjUi55PJq6btDa4pxDpz1t7NnuWq42IyGkmf72ne98n9/9nd/j/OQE5yoWywVf+rmvslyf83f/9n/B+z/6Dv7ZU2iesTx5KFkgy5a6qiBluv2WJz9+n+cff8xbX/wCGYX3iVV1wldfv4txFTdpz4v+ig/1R7w3vM9uvKEfdvTdnn1O2HmIkT7XNfT5mwx/61r/JFVpptS8XGyqWw3Ecb0tQ7fiivRS8zB9CEdVbDLt9Hm5pSywpkz8jFLYLN73RhlUgn7sSDHR545cwtEOD+8gVL01UUe48TEGXCMTJK0kayMVkfrMjC7w+WG6X7joHJya8tHrMjX56bPQjDwJmeV3aa3xyeMqw9hPAUbFWracpJ9WrOvSaKA12lakYul7SB+Xx5NicXgpnfUxOjUjGQWhkOeboRREKcZ5gno8bGI6B9Txv9UnTsiDcPJ2Kzr/rnx836MmLCWyFtToVWsyxKFGY61jLJkLIMV+8GNxcbK4wkfWSpFCxChN0obKVUwCOOuqMrEUu9vjFzXBLEz20XNx7w7awrC5ZOh7rHMCdQJGq5k2FULAWlcmjzLRzCVvgUyha8hkPBQ6SkqJqqrk76aEMbYs7OK6ZJTGFyvQyZ45qVQK53IepYD3o6BnJSiv1pb9fhDfcSuCxJRhiJkxiR+6Llkfg+/Z73ZUVS3XlrYonch4QNaAxpXmIYZSQEFSmTEnLnc7sJZmseBk0crLOEiTTZtRSRxCnLPcu3uXd955h/Pzc3LOXN1cst3uadoVdy7OWSzWBA83Vz2jV7hGM3aBmDSuXbE8HQg5gxqISa7DnCYtgMDv49gxDltUlqDLnBQEoVpO1qhzw6DUrcbj+Gsvox2m8NrNsaZDTR+vztxWMlkURtdYXWNyzdhlwhDRakHlVlizmNEo8jRUEdej0Y9SnDhLVqVxyB6fRIgcs595/VnlMjHMxOQJQRAMY+2sPZsyL6y187QspiTIh5oKOkFCUvIYned9bUKglZhWynWgNI1uWbh7xK4iUuG0BPMZLRPBqaGY0ApbNBbOujlMURDJgmSUIQMU8bae0OJAygGSJiYljU6KiLg6illA2YWUKbbuOQt9b+gwLjGMe7IKxNyTo8JkR9d1VJXDWcsw7MtgSYYRgmhIw2WsvL6xrCPaqJJ7wGzVniZDCVWoXEegRSZDjocZ3NHemPKxK9oBwXiZIvy/5kMphS3F7dSIzc1GkhyS/XbDfrul74dZO5lyCQpGnO200vyrf/UHGPf/ZLFc88UvvIG1hrPTtrDZNdQZlZ4R0w7Ttnzhi2/z13/tig8+/gOebzzb7RafpDAeh4HVoiVEaUSnMDythepEhhgS1ihOTx0v+huGlMk644NYvKuUCKEYhcBcz2glFt85J7QSXaPQHCOnTcWLoMgabEEBwaKNICHRB7GuLcPpqjJULrB2moWvYUjkJaSqhsWKqGDnO663V2Ufiyyain0nLoNTir1QpRzkTN91RU82USYjxlU0y4XsnaMvLo7CLFBGozCkEFA5YZQ4uMUg1sKualgsFyxrRe73LPLI86s915dXnK4WaAX9OLBeVdJgGMe+6zDWsli0vP3uV/iNv/Wf84//wd/l937/t/jhj79N9+F3WCzPuDi9w9Prn+WNR6+jes8H3/k2OicqWxFCZNd1+Jhpm4aqWXDPnHDeXPBa+5A3m4e8//g9Psof8HR4RjfuSDpindTbztSfOF9fPj6/u9TE77x1vMR7KshCVod/o/LcQBxoVswNgjUimHHG4IyeP5/FyarMOaYNdprw8SmLS85M3ChVJvC6WFtOE/dcHte8kKXDx2znpyhcOS/TIWMQs8HjglYW1Kk4Z8YKSjF93JFxQDeOUaD0MnLx0r9BFumYE21l6TbiEpXGEWXtjIS8LKA+1mVEpTFVTc69PMICY07PdZqITI9sEnBNn0+b70QDE/pMmXSHwORwNB3HzcYB47h9TL93asDmHzz+LTPgNcGn03s2CQJFk5AVExv6lThCl9FLyaHovYjU5LmKv3QMibZdYLQU1d4PBTEIxdnJkKKkxk/JvFpPrkfTuXsINMzFQUMXRG8YR4ZhRBenEXIiFYu9qQGamtiJ2z6OI8ZMFCpdLDsnXq942Nd1jTGG7XaLVoeNbrIzDgXFkPepXDNGlYRT8KNwUKWGy1TaYpPmcrtD5UTbCDLSe9GwYCxZa6ICn8SBa7e9oW3qcj2qGT2criOty8SvUJGOBwfeB643W+5dnGPOTmmdA60ZhkEGGFrWjPsP7vP6a69zcXGB1prNZkO372maBRcXFyyXCzabnqtne/ptQmtHJLJ5doVxDes7p9hmSbtKoDvCKPkCYwzEOBL8wDjsSWFHbUdqp8lZEWImRorLj8JHVQYVZkY5Pg/aMYezzUjHkZi8pEy/CkfOCWMqnG4gWoYhEEeweknlllizQGuLuEdNOTCeYRTKBGVdjqQSPjkQ0oiPXhCkJMV+LBqjWeSdPTJ7mUTHkwuUEsG3Nvjg56A5WSZluioDmoQ2aVqQynI/8bUTKicqa1hU91D9mtRZdJQ9yJZJaF00FpWtimjbzo2ELXSoucmYmwux2czT8IgMZaqfUphtOgFSWTcn9IacxMbXewlpzZ59d43SnnHscEkSk52rZGoawGpZa4ehk+mqQZqrMpmekGThv0+DtpJjkZkNJKwt5yoT+prE6XGeJOaCOuqSgyHywEwuQvTMhNp+VpPxR9Vc/BvXlBTq53FtkErdkVJk6Dt2Nzfsdx3DMIpOxjmxVmU6TWWH3+12/O6/+lf8d3/vH7L4m3+D1WrBMCbsopX3Uyd0Hct1t2F5ds6f+9Nf5tmLjr/7tY94to3stnvqpiHGgDVa3PUqx81mVxKwBWmUIanltdfu8OjdNTvtGUJCO1EwJWTfoAxUyGLYI3pDGeQ2bU3tLLvthkyg1pHWGYYcpeg3moxBaYd1lbibxYA1FL1R5t69NXfWS9zlQL1vUEmhXIVenZDrBp88Po1cby9JOlNVmuw0+1xCY9OhwdBGy6Cj727VjFkpmsWCqm6kBp5ypDJlYFgXwxEva3z0pOgBMT1wTmyofX+N3t0wbCyrxQX/8d/6kyilaZoapaBdtPypP/WnuHf/AcM4sttJ879YWN5668v8pX/bEkJkCP+M7zz5gPc23+e9xz/k2+9/k+V6zbJusIPnYnWGerLgbHXBbttjXc3ayoBDGBiaOCpcaLlwD6jWDWpned49JeNpneVsdcZJe/FTT9/Pj2TYQsB4CWmYRWZHH/O0Qgn64IzB6kMDYctmOP26z762/qcvBtOFpZQIavVRkyS0p4IoTN74OWEn/mhpRqbIdAl7MmgkiXjiGwIz/1A2ez1/bZrUzHqJoyaAfLuhOG4UJp7qvDhoYaprp/HDToqqGLHKSQE40aVeOiarRbRGVzWMPcocoJQ5CEohyEihRqkSLjWhVeH4cSOPjfKajhzRq6ab8rPq8MmtBujWe5QP4u9Pfafz4ebWdCslMKZoMhSffPZ/fIdRdl48cwjS1CUR+CrULJIzs4A6UC9aVKSkCUuhrgsa8kkrSi1p5+W89ePIbrthDB0Gw+iHGTmz1tFtOzQjtRXv7X6Qxd+5ai4QALwPUmgZA5mSfK2Lo85EzZLHO70Hk3Bv4q7HdOCaTj2iVuIEMnG0/ejRSrNwFU6eCBenS3LwaBKJhM/F4llM8fEhMPrAOI4MfUdd1+hpm1JqtgEWV6LJlCDPC31VVeLypEQoL0J6S1a6TF+hXjnu3rngtUePOD09R2nFzWbDbrtFac3Z2RknJycMg+f6+Q3bFwOxV0SVMNoT9gPDbke3vcfyzhm2WrDQkgbbdx0+9Kgc0HmkMoGmVjK5trmsQ5L6Lc2GZGvEKCLlGCHEMsFGgzJzI3HceHwW0jE1HuazOO9/DIdWDqsWRK8Zu0gORjzdqxOsrQs9akJ2xaLZB6FLaCt5IyHHWdg9hh4fx3mABBPSN87aCW2ES6304fuoTFU7oJzfXihtysgaGQvCJUV0LrQpAXYnFHdCpXVQtHaF5S7jxkrGBdJcLKq2IIiVpHAb85Jou6wLR9e8WHsKLSqraY/JoIQGNhUsYlOcDkLp8jhjFAQjpJHsA4Pv5HOV6IcOVxkG36FMS0yJfnsDRcflU+LkZEUInnHsy7BjMoZIZK3LviN7fUriTig0s8PeLTdlmiuxk+TiGjgj/Rlykiu6LJfznjidA5O+Txe06eX95FbTcfS//NIXjxHyPP3/M/79qhxKmzn8DSZUX/4XgxS826sr9vsO78vgT6niuFes6UsYqgxk1OyQlBL0w4hzuqDVDbgyPNIBxcjpg3v85V//IvtR8Xe/9iEfPX6OcVvati25RZ66bljEzH4vblEhicGHs/Crf+EXGE6uudw8JWVQESyWqMS6ewr+zQmcE/fEkFLZi5KgJ37E6sxJa9gHL5lfJDA1Pgpab8qQmzKgJkv4bfAd403kPK1xucYtF1TnF9iLuyhn8WFP7zuSFgF2jWaInugDfhzRSDiymApR1og0s0JQGesc7XJJiombzSV+3BOLPbZ1Fa6uQEMYhB5Ljqg8NRgVSouZS3ez4cKDDiec33+Dd979IjlERh84PV3x7hff5fTiolCytdAW+x7nHE3T8ubb7/LX//3/hOX6DPVP/j5/8KNv86zf04+em24nFEsy+dkH/JMf/QGLpuHO+oK37r8FjeWUC8YhsN12bK42XF9dc319zW63QQ2GB6s3WK/WLNeL0gD+a0Qylmf1gZZkpBB9mao0fS6Tiz+micHtUfrMDdTqUFTLkcsUKM/+/thylpb7eD+gyAKrayPBX5RFryx803+y4UwNym2dBfOkVc/ff5kqNd13pksdoSGSdJnlJPVDQSTUnO79MvpxrMnISpoM1RddxhQmVR6rQsTfYkkoNKwJceH4/Zv7I5lBSVMyuQ0foUTHb8WEbL20aH+6LuNl8ffUyU6vI4fXLSUm+fCrRpeqluJ8lFMW+9qSUB6DpGNL0yuUGF/ExsZYog8YVxFDOtAoSnMrEyEJ7xE+s2wW3ktxba1hsx8K7OrYjwM+Bsgw9CM5ZU7O1oSUyNnPDQMgk0Zj8H6kstUc1ihNt1iBkmAcR0IIBB+IPqBqRCyrZEOICXGcUtPEUjaZrBU5l4YhZ/zQo3KmNg6VFadnK7787lvsNjdsbnZs+kHClcrPKJPpoqYfiwd/nBb2yVFEWgpfgjS11jTGYVAMfiRH4f031bR+2YJKmjJl0rSu5fz0hEcPH7Ber1HKsNls2e72pAyLxWK2bdxvbuhuOsatx3fS6BmtqZqaMYxcJs9+7Dm9e4fFcsmyrqmcJvsNcTdirMc4cFqX116uv5Qm/v/tpiOmXBqOdIR2KFLWxKAgT43GMc3q5TTnw+2rcqjYMvbgfYZoad2SyrVY26BmcXcotFUReSclAYoRJOMCsaf1yeOLqFlpitg5EpMnp4BCUqZnkXOZ6ioo9NA05zsIcp1BpbIWi35IT2sZ01CpjKJSRmeF1RU1K9SwJPkKi5KwvCmFu6AYc2NRmgxrXEEsDVrbW2F56mivkv+HmTKWkrg/TQMjNMX0oYQGEghxIKaR0XcoXX5OCV0rxoiJCqMtQ99LflOxUnfOQpLPQ7GHnrRl1jpMoUBaayRdvjRcWk2BhIWahZ6bCAmDzEzOLzkzP8fJJQxKZFY6INzHaN20nx8bj8zn079p6MQf4XDWHfSRTK2S7J2jH+j2O3abG7qux4cg5hXpWO85Ib4iID89O+XBg/ucrNfieFgCVVGZjCFnh1YO1SxRDEDHwzfu8ht/OXLdJZ48veTDp8/ZuA3n5+d47+n7gZP1CmsM2/1O3kgFi9bypZ97jf/he++zHwZQxXVzCksWgFHiAJS4H5ImK1wxrIjl3KisRaWOy42ERFprQFnASeBpEkQt5UQYPeRMVRu0GmmjoQ4N1jXUZ+fo87vos7uyPyUPObJarOi2G9CJft8V0TagFcZJk00W5gBH5y9KUTULqroV7VMWZkLKSfRVTYOtKlnf46SviGUd0eiqAa0Z+y163LNKFagzrvcj3/zuDzBKmqWLi5/j9PQMUPgoe7H3Y9HVCkXWOcfD117nT//ZXyeOYun9h8/e42bs8SFB1rN9tdaKkDq69Jhnw3O+d/Vd3rr/Fmf1BTY29DvPsxcv2G5FO1hVDudquiGw2V8xjiPj+K/Rwva1i7OfTFV6ZY7jLgM4muhN03VZ2EqRO9OlDip/OXNkSjzBWUqJ4w7zojn9jUmIbEpRfUQdmiY1lOJ8KtTLsGQqjqe8gxldyZNsVwptrbVssAb6/R7XLpkWmU9zmDpMNAV6NK5GpYzKqqzxuSzWcv8YxaM/5IhSrjzuVDZg+X2JqWGQvzO5J4le49bLffuWCdnRL78zZSJTGo1PQzrKa3XrdTuyGc2q0KVenR4D5YQ/i8pkKw4aEranbp0PKLF3tFrsXod+oLEtwQs1zmhXCuLD9DojzhOU92GyoswZPvr4Mfdfv4suGRPel0AyZ3CNmBfEGKmrmjhR4HLCWi2uPclLCBqy4Q/DSLUSalIc4qzpmKY30zWVcmLwkZgUwzDgbCWivYxwWbUu1rIJrWWDMShclvtEZ1jfPePs/IRh12ErRx8jV7uREMUtKyrY9z1jDBISCXNjL+dkKSpzkAm5FiE4SPZB9J7aWqzW+CAboh5Htjdbqspw/+5d7t69w8nJihTherNlu9uhtKFdtrRtTVUJlWRz09HtPGmMqBBIfiQrhTPgKo1JnrTfsH+RyL4Te8/YoeKehYuY8nprVVHXMrWeBIoxhoJeFC7wcdORMylJwGKIgpRJ86FICVJWJC+0lKnZUMrcWvtepSaj30McE9YuaOoFtVtgtCtUg5Kn4vuSsp3RBf0LORQx80jEE/I4OwCmFCTlN45lTRaBs7FiizlP4aFQkeS198V731pxeZO/W65ZDlP0W+5SMRJSxBjHwqyo1An9zqKzo60kz6KumiLYtWjtDo3FnGthZhRjordOaIQcWQYriTIZFvrHND1VJJSGWASYKUdiDPR+AyoRwogxml2/wTpxrwo+oqoMytMPnrquyGRhHFjDMI4SIBbF9csXk4ZJwwW5WNZGZG+aXhtmpEf0KQX1LqyByc1Q6dumKHJupoOByjTkK5CDLvuYLmvTZL7yR6VIzb/738BjQjGOh5Fym0SPsblmv9sXtE/CfSd2hkBIZXAYpUm/e+cO9+7epa5cQYZ0GRZO9O/yUbpGZTVu1XD/jTP+2q894MOPXvB3fvOGZzc3jMFz5+IO9+7dZRgGKicJ3pvtHqM1b791l5twyfPrS3zKkAWJz0k+lJLrIhsZpk17kxy5WKgLGn6+rvD9nn4YZNCNJmWNMRUYVyAw0RV6L/uN0WBzZpFqTO+IJuF1EX03TUEsemyKpBDwfQc50O+7YnQir58utH4/dIRhKEMBVZgFiqptqduWbnNNHGWwZ4qhg3WCYI59L41FluGRDKcW1M0SYx1hc8VZhDqvuAyO0I10foOzhp/90tu89fab1FXF3o+QM/3o+cEPf8R6teSNR48KpUoyQ9546x3MX/53cI2j/fq/4KPdJR9trtlud6ILdeJAOWltfYTrruM7T3/AevURp/UKkx0vtjdcPtnjRzGY6XppalIWuro2P52C+7mbDPc5ftmreAhlQ0uy6HzyFlg5H6aHUw7AvABCsbUUJENpoUtNRTPHSEZKJUuwFJJp+g1yHGhBhwV0bnBeQjKmpGgy5NK0aC22mtoouv2WdnVKnBqSI1cUODQ28wRzokuVhf6Aqhy6gRCjCI7HKFa35TkcO2ZN1X4uj12VDTGXhuVYF6GOIKNbC3uBNT4NyTi+23GDNU/xjpq1VOgLx1kZr8qRUYQYqCo7FzEpJZqmIaWSUZFE5BhiwJmazfWGpx89pn1zid9lWrfGLA7c7ONpXirnXooRPw4MQ892v2H0g6RTV4aUM+Mo9CxVPPIH7xnHgCrcXq112bzkPK4qN09rQRbqlCaK5OE8mLQW2srjErcsOb9jjBgtYllyFojZ5JLFYrhzfo8fbTfYLEQSn2EXA1nBoq5o23PeWbQsT9Z8+NFznl1t2I/CK94PA/txmNG7eRRNaWZIBQEEpWVK1ppaoO0ogUhWIzaehXbjKsP9+3d58OA+bbsgRtjuerb7EVPVnJ+dFH//TFaG7W7L1dUGP0ZsZUEpTBbxq08DJmlM1DAkIv1c7JEGdBppjZLJdi3pqkZbZp1RmVBPH8dNx+TcNZlUzK93EmRD0I5EiIkYVUE7ICcNsfDhlZ4HA6/C4QdF5ZYs6jWVq+fMlhSFBjT6UfjdFHG3VpLrkD1jHhmLQ5QPQpfKRTMhyeElBK7k0jhn5+n/FHIIQisKMRQXNEtG6FcpBVQJQ43pYF0+I2cxYNA4vabRF+SxJiXNqllQF9RCayMp3HrSVRyajIkONVsQ60MBPuVtZCS4MeXJLl0KRKH8pbIWlJTt2IMW/njCF5G2UCnEe18R4ggqknJgHHMZEERSmjakyDh6KleSjIv+wTk77xdKmRndyQURz8TSKMgAZNLwmVI0Ttck09qSD3qCnPOt1wPKQKvQgHNBjCYmwrT3TCjsy8dPaiJ+WoPxKjcg1k6Dv6MmIwvSNA4d2+srdrs9wzCWbVqCEmftXXE+SjlTWcf9+/e4f/+uNNXFAVAXRE8+IqgI0ZOTRxFnSuCdE8tbD2tWteFSGfZdz/jxE84vTrlzccFiuaBetHz44cdUTvHG2wu+88F38EncpyLpYIQRwVp1hLwI9bue3A/n2iYVVC2x6UeSYqa+xqxQxa49TyLsKBTHqrKoPLDSNW0+RdsFdrHEnl1gTs7oU+T5zTP2/SX7bs+LF88wYaTfbRn7QQowbdDOYSoHWhD9lNPsnuicBWdZrVacnqwg9FxfSmSAVgZbiQV9yjK8y2V4RM5YV9EuViwWa1QaYdxxT6+o7CNqe0KO8t6vljW/9As/w/3798hKqM1T3tUffvOb+G7Pr/3qn6Nthboke1vDG1/4CkprKlfxw49/xLcvP+JHzz7mxfNL+k5MhFxdz02s0oroFS8uPdvqitoq9L2ETZ7L9264uRoIXoaaulD4dPrX2GT8G3NMdal0A/PmMIUczfcpR84cRDowF1QZSSlVuTQZqlAsys8wl7yHRfMgLmcu9NPk3FN+cJJC55w/4TA1wcgHJKOU2kYKaWWg73aF/x5uIRkv6zKOKVNoaZLEyWZqkI6QjEL5yNnPaMy0wM+vE8Xis0DZE2c4Hb3G5IMLywTRHoJSmJGi2/zZafJ1my41vY3ybzW/2rOGpfx8UgdM6VU4hFowzFPAlLIUpCVgiKlRoDiwADkmGtfidEVlFzhdFx3QyyicHKLLSYzDUAR2sFwsIcrruN/viTEX321V9BWShn1Az6Ro1SaLrbHKKDs1NHoWGk7o5XQ+zwJExH3KxywUDzTOVYVWkYQjqxVaZaFpAY8fPyGmxMKI+G4MQTjgKXIz9Oy1pq0sD958yMXFKS+eX/H4yQsur/fshoFx8GQlE6CoNaEk3msjk6Y0jOQiQNfT+WgMuVA8l4uG8/NTTk5W5JRYLlouLs5ZLJbEkNnse3Z9BNvSLBuaxZLaWbEpNJrRR8IwiuCxslht0VpoTbbSmDqh7VgEwCNx2AOJ2iraupJQpKqmampizPSDuG1ZKwWpNaINyJQ05uKoEqO4kITytRAlEXdquFLKhcdeKFbxQLGSJkXcq1J+dQqpRXVCU69wtkYpU4qmxDiKuDtn0V4Ya0hkfPSCXmTPWEINYxIkL2VBsVKSqaczglykuXmTc90YjbGglCDHKQacFYqvj2J9KwW8NMk5httrmpLizmA5cfcxcUUaDVYL59qY6ZwQlOK4yTC2WNIWXdXtBO40N+mTwHzaX6BMspUolmJJLR9LczGMHahEJpbJsFgmO+fk3OkD1opJR9aS3j0MowzfjFBOR+/RukUbQ9cJ+ibBofLMBSkTkaoMwuTxqUKNEtF5AsytzJxjijDTcKBQzuZxXxl2TC490+BsOqZhiKz7sayvn9zrftLxP6f5eBWOY6oUMNcKwQ/0nYi+u33P6MNcu0xhoDJgKGYuSrFarbh//z4X5+ezxbjWR+chGUUEIqQAWcxDcook7+l7zwcfb+mGMDc7MWQuX1yjlOLBg3vcPT/DKs1qDW+8e8rXX3zIRCHPOZPLeiTp3ErMGfJhKBn8iHMWU1m8j6SQqG2i60f2YyZrNddcKCPo7RH6N5vbkGkrzWl7wsKf4+olzdldqvuPSE3Lfuy4vLmk9xseP3tMt91Sq8zu+prkRfBtnMWVoRAxylBCG2mujVzLtm7QGq5fPOfy+VMxWskZjBaHSG1IIeOUoT09ZXNzTYgRV7W4uoGciN01JyhO6jsM+pycFFpFKqN489EDXnv4CFdVdL1kKsUEV9c3XD97xtOPP2S1qLl37y5VJXsISuGqioeP3uLnf6ETq/a6xhH51rjD2FDuo2naBVodcnhikpwoq0fqVcfJueLsIvPetzVPP9wTRqF8TS5jP+34X1+T8Wl0KVUWdnXb7eggtj5Y2R7oUswb/RR4pJUWGiwZZlepY5s9+dl8+NPz35lvFZBvC88PjQYz0jAV1xNdKlDoUt0OYy0MYW6QjpGMw9M+IBmSr2DRxe6TaTJV7nuc5XCg9XzKAqwOepL5fkUAXHaPT7z+n7aE36IOzU3Fy/eU35kPa8cMoU+TgMlI+FUSfmekaRvGkeBHcawxmpBCoRIJbckXlCynTF3VnL5+itWOum5omhbnqltiXo4asEnwHYKItX0Ypw6OcXKcMA6lLdZVkGXSPVEdhQsrNpfWWbG6tTJNjCWDZZqEhonnWorZKewLdKEcUgSDSiZplAmPUdS1A+XJY2YYB/q+Q2tDpQwpRoYchO+KhiTozKYgDlWtufPgnLOTFddXGx4/f0HbFOMFLdaeKoqgt60r6spJFk48ZLnkQg/UWrNoWx49esijRw9ZLddopWnqmrZdkJNmv+u42fRE03ByepfV+RptPFYnmkUDWrGtt2VYIc1Z27YY06BMwjqFcQp0YghCDzNaS2jScknTLmbqTAyRy6sbbraSM1BVVix8nTiOGaMwxmFthVLSEEqhPDUZR4hHkKlWKg1FnNCOjKxrxblKPl6dK6WtVlhTz9PxGEUX4f1ILoMdjBjCxpzmJmMMPSEdhJcpBWkwciyhlg6VBdk6LEPTxBymDInZmCKLna5PUijnYvc6FcUTfUflRKVrrG6p1Tl6XGK1w1RCf5t0FtNQwFp30Mlog7aHJG5ZLgXBCiVxm4JWZC2mGhO9VsIhy/udPTENaA1D7PBxFEGsdTPCpVQm5UDXj8VmVkLSlIn4kIgxz9SnID2U0DmZ6I9ZbK9voc3SVMw5IurABFBl7ZdBnjihHYZear6Vd0GGIJM5zIRKjPloEIeazUykScmAkdcqRnxBho+RzKPxy+3P1O2v39ph5p/9N6vJmDSgAKMfxbp2sxU9hvfSjGZBj6d6RJVcEhScnJ7w4OED2raejXn0rMc4QjJI0mSUINHkI2H0XG8H3v9ow35uMhQTfTelhLWSU/bg3gVf/bNv8tH4Ha67rgymEqoYmwjCYog5k+NhaChZRWpmSigFzilarbjcdUQyThtyVqRYhqfkOTvMOkdTW3abARhZ1Q2rak1tz3B2gbv7EL0+Z1TiWrjvdyQSVhlqwO87/DgyBVg64zDWklMm+BFSLJSuMgCoauq6RuVEt98z9mVAog1VXeMqaTJiQf+MkX1do7B1i3YVmYQZ9iyjJdgFQzZoq1jWNffvnPGzX/kSbbsgFY2eMYY4eJ48fsrN5SVjt+NH3/se733pi9y5exdX1fggdE/XtLzx9peI5bE3xnGWKr7x3nfoVY+to2jbosZa2Q+dq8k501Ydp0sgJcKJ5sEDw/e+0fDhDyO7mwBoTk9Pf+r5+7++JmMq7DlMziX9V88ag4mJM03KU8qkUpwwTfLLIjgMHbZeiy5jDuSTvzDP1/PBLeMgRi1TBI6pPrKoTUDzp4m/JzvOyUEJpscjiMbQ7Q76humxfwaSMTlMqdJkmOxL1kdEFQh24uanyZZwdinh1nOSTU8VuDvPDmGhCIjUxASbbilNljo0K1Mjc3x8Kr/2uE+5tbgeFrP52+W1eVUOZYRSF1Mk5ixBdFbPbk26iLN8EI1Dv+9ZuAatFU+fPubNtxdUtf1EgzEducCuQ9/z5PFjmlVDItPt97SLmi6OBaFgbhqGksgqzUBxnVFiwuFHCZ9MRmFMhfciGBdhmNBFYjpQdSakQysRfabEPF2ckZmcim2fousiPgoVSCEwss3ye3sSUctU02ZFlWXTCCrR54g1mWbVcLe2rE9qUpZifNYFzQWdYVHV7GyP9xEfM9aKk1DImco5Hty/z5tvvsF6fUJTF6cf64gRNtueq5uOYYyszpecnF5wenFBGDYM3Qv02NPUNctlw8W9E/a1wbmK5cmKqjIog1CmwkDwntrIVHu5bGmLq1DKin0/4r0UBI8fP+N6s6VyjrquqJylqhx1ZXGVlX87W5LYxaHIuVqK33xEIXi54TiiWB3QjqMhxityWNNAVsQQ8cHPeSwosFUFWvIeYopSTKdRboMHVfIu4lg2bmQ9KpbJMv/ROFdoUTnPQsypwBXBpGgcjktckJWdfDCZMNpgaVnyAJ1aiFZcEo9D8qaAxKK10Nqg5jTu22hkyhFiWccKGiBcaieOeSoBgVCsm3MK8lwJ4lKnJJLusHaL4N2HAecM1kk+QUaeX0pi1VzVNRKyF+RvJdm7rNWgIkqLPTnEYjpwvD5PlMlJkH5A6adppiQ0C5Vpei3EyvYwI1JqKmopdLAyxT56Aw4U4ETKijGILmSiBcpff+lN+5TjM7cF9enffYW2kVvHRCGDg44z54Qfe/abG7bbbaHhZpQyRdg7Tfr1/HNKa87Pz3nt0SMq5wRttqYMHKdBZRQkIwdIHvLUZATGfuSDj7Y8u+oYvJxbYECJeLypa5qqIqfM8qTl5E7N73/7utCDFSEmbGUpcp5DHZYm+l85R4ygayEKh2FRV0Q/4OOkBzSEoEjJoRFNozaiifVeUqgrp2idYq0d1VhjXEO1PsNdPEAv1ngCSUWaZcvV1XP6bo/Vik23I/pADHGuK4SGGQh+LBRxedraZHTt0JVju9sy7Lf44DEotHUYV4mmMQTGYWDs9vT9FlLG1W2hKjmS31P3PU1c4S7uc2d1D7TFGcubbzzg9TdeRxnDOAozIsZEt9vzwfs/ZHP9QrRqwfONb/whq7MLfvHnf0EGCUGGcM1iyZvv/ow0YT/4Q4b9wObxDZ0PhF7xnQ+fc7W/5PTsjHv3HX327HY7gu8wuadpMsFn4tiwbO7yC794Stuc0dRr1uv/f2syPlHEZsTR52DjeOu4hWQIZK2PirqcM+PQU7Wn5SQWWkgqMOG0yk2c2UNBLr97amomeHNCCsq3ZUL8UpMxFQOyqNiyMJfHZJRM7kKYr9GfimQYXdKiDTqVv50SRk0NxASHp0KHOvCP89HjPW6eRHR7CBvUxQEJjtbv8nAmwd+nPb7bKM6BSjb/rqyOLvTpNRPoNudMVvqVs7CdqEllb2X0nsZImuckntZakWJm6Af6IVKfOMYw4odA3SxuTUWBTzYZo6fb7vDjQKNlamGd2DpGL/qayUhWlcZx4v1PFAdrJVgrhoxzpjjGqTmsr65r6qZmsyve55OIME9WzdOUtJy3STYxZyw5iX96TkmKx8IrJydMVjgUOcg0SGtFUpnBZCzQYGhsTdbgk6ePEW0yZtFQm4b/H3tvHq7bUdX5f6pqD+90hjtnIAMJIAlBUDQqCZMNoqCijWPbKLQKtAOOiG0/PwnYDogDNgjONo3irNg28kC6G5UGG8VuEQEHIARCcuczvdMequr3x6rae7/nnHtzEwO5JO/Kc3LO3e9+965du2qt9V1jng8EybrWwqdR5GlGnqYUZSVNjpyWsoI9w9raGpdeeoxjxy5hdWW1k0Dt2JnMGE8LrNf0Bmv0BysST64M+WCV0s6ZTU9jK0k2PHjJAVbWpM9JkqZSyaSu8LU0YEt6PZKsF7o3Z9jaM53XlGXNeDJmPBlzZvMsJ06cpJgX5FkuIVRZFkCG/Ja/0wA+kuDtSEgSSdCN4TiJEeDYVFRqQEbVeGJjhSbnLiKUgVi8y7oMnebFQqeSUMzBWWpXULmSsi6pXd000fPeYl2BJzSFMhrJyalw0aoeEjPrWsKqlGrzjMqywHuLU63hJIZ1uuhsDgmwqc7pm3VSRph6BaNMSKJOQqhJJ7m+81sFMIMOyzX00sDH6oO++Tx+32Jx1DhXYl0poNVWoYRuACRKwiBdWaANeEpRzqz073BehRBfTVmKNid5XYnsXR0rIYoPWAUDHNDkOjTGjUDCe2OILCwYnxpPR6z8pBuAEb4dPP8RGFi8U42RrTkjGA6UpwE/3tN4Jh1eEoYbGbF3LV8wSOjI7va7FyvEEFoMv5a8g6KYMR1vMx138jG0ktA4H6oZdnSQXq/PkcOHOXrkMFmolhRDWtt8DIfkY1hwFSrIDVfXlIWESm1PJS9B3qlc3ySavJeHsuaetfUBVs3Zmk2JEQlNOLmn6fsCYBB9RxNKt+uk8UykGtJEMZ5UeK+b61sreUAmSSHoH947ymqOM56Do4yRhlGd06NP1u+RDA+ghytYrZgVBeP5mMpVFMUc5R11VUoTvSDvTMgXUirkeYSGkbFVg0lSdDDWllVJFapgmTQlyTKpSGUMVTnHWSnRnmiF15q0JyBDe4+a77BmEkb5QQ4evQKV9fEe8izl0MGDZL1+ANi28f5tbW2xcea0hJb1eszmJe/+m7/l+NkdhsMVrr7yCpIkoSor8DAYrnDFtZ+BdTVlWbG1NeaOk2c5eXaH6WbB9pkxxdkaPUtI0pSNjS28swyHOQz65HnGoUNrrAzXWD9wkPX1I5gkJ7kvS9h+WlHXEh4s6Ua3FpRI0TLeJlP64F5sXYBFMWfNaHHfx7wMXwWvhGu9Ga7jzaAt59qETEHrDQgHYrhTN1zKuy7ICI8QhJEyUhq0LOYCGkJjtcaTsVuRD8KrCZdyUvqWBkgEXAbBkyHVHZrmby4kdYd6z5FRRI9P2+tkkUWr7riDi3zh2TsU30H3XS0CknjfeG4ncVAFT8b5V8OnlNpuuGJhz7IcrXXTx8EYQ5alUvt6Pqdncnq9HqpUHDl2lNHKKIRa7N+h2TnJxSiLOcYoimqOTjX9lT6FrXA40iwN3ouaNE2oa2GW3sdurBne11S1C71rZG/ESlhZmjd11KezOVZHgNJ2jo5llX2jFMRwCRUqQEnOQYyLj0l9CQmJh83NHeZ1RW91gEoNXisK7ah9TY6ml+T0077E49cldVGRkkruhfXN2tNKvHpGqyA4Jbnb2YSkn7C2OuLSSy7hmmuu4dLLH0KaCkPe2hozmY6ZzkuUzlhZWw3lORXVfE4x2SbvJZI4W2fS40JrVlZGVL08WLskXhkgTXOSnsTeZ70eSZozn5fsTEUBmE5nnDl7lhOnjnPy9Ekm07EIspAgnKcZWSY5G3maB5CRLwKOCDrylCyEVkmIVdvlO0lysXQ34VWWbkL5xURtvkSwUBqNV4GfISFSFkvtKmJMvvc+5KNZkkQq40T+K4qp7DvnQtlbbxuloKrKUCpVqjJ1leRYxMI5i3cW7S2DbIW+OkziBlK1LPS0aL0V3X4koaFcJ/TEC1rCKppw26iox3AoaSZaiefTVSEUTMKiCGDLOSu5UM5S1QWoGuvKkJNkSUMTsuhNttajVCpW7ODFMUaFUKq2rCn4xjIb5V/bL6mtRtYYeBpDWPsOu3ljEKrh7QEp0eMfv9u9gEgIF96DszTFLeJ3G4ARvrvH892hCILu6ecXkwzZTV0wFsGqtRXz6YTJ9g6z2YyyrIhhSAIWg1QOJcWd9wwGAy655BJWV0YhJLNtR+CbUMHgjfJ1KO0qjU1tWTKZlnz8rh12JmWTVwgyp4kx0rBVaWpqjh5b5ez4JNOiCt4K8WI1oVLBQNjUnIzv1Es3bOcttoIkqRlPKuZVFfaQwtYe74yUjtJxnQYjQehwP5uVHBj2WeMga36Nnh7i8xE+zZmVczZ3NhjXO+zMxsyKGVVdMp1MsLWEQzk8aag2h3NUTpr8eR/6wWhD1h9IuHHwVEh3cmRMaRLARkIxD6W0lcyZSVOygZS8raYT8vkOORnWDJjOS+ZbY8qq5MCBA6TZQ0FJifYq5HpYJyBjOhmTJilpnlN7xcfvOMHtHz/ByqDPV3zZM3nIQ66g3++FsGrxaFx65TVUZcl8OmMyK/jIx88wL8RTWBRzTp08yfrBAxw4sMZwOGI4HLK2us5oNGpK2ObZAEVOWTqsK+92/T4wQUZYuHEbdEOHtFLYaDX3vg0nsBLuoZqwKkHGRTGTjrlNGVvd+n6Dsu3DdbSKG1s1jBU6SrRvxxdzG5xfPKcFPTacpxrFjkSSs4v5jN5wBaMNsfZyDCOKFqT4zCqGS5kEXYXnCr0bYlIvAdTo0ARHd0rmKR1K32kt9Z0by3gAGY27f9FL1AINApPxoVMtzfia542ArMP8Oyys+Vc8N6L5RIcOsReRFaot2+hDdSgdGt3pEBeuyfMM60tGgyGHDxzmwMo63mqGg3WyPJd8A9UR1p25stayvbXJZLxN7WucBZMZfAnT6VQSKVPDvGjrpKdpSl3boGCJxbisQvfeEBYFUpGq8Z54z3QywVuLq2pJvnQKExqExcpoMT/EmKwJ3/BITHBdV02yMkg31x4pqoI7P3GcqrKsra+QDFJIDeQJLjEUrmbmKnKXMxiMOHTgEKp2+FmFL2qwlQBoIE9ljnWiyDJDHnJMwDMaDTl29ChXXnklV1xxNWmWUxQ1k/Gc8faE6axAm4TBYIVemmESB1SkmSfDkdQGrQS0uVpJCIID5UOHWgPGKNJUOtuClgRsn5HkQxKfMZlvcvzkCY6fPMGZM2fYHm+KJT2sXG8rdKWYFNOmIkmaJGRp1vzkWRY8HBGIZMG7scvbkSakaRLKEse66XrBk/XpQpEntBqtb4wN+6mEu406UsJTeHATpuRiA61d3/Xtd6QyjSR39swKulzpgAjVhD5Fins08kLfAB7ASFEEpQVE6zSRe/safEXt6xASVmGtNBuUi8pY6roWXuFKlK6YFVOSRDMe70hll+CpqRPVADBjDM5LgrjSqvEkS/+QGOISjENaKtzJLbvNHVvvSpwzIORixedVRGUxAhMZQ+hBYltg0oZbmQ74iDyd4IUKoX120buvPNJIDukD0kYFcDeuC7X41wWIiIs1CbwbSi3L31NVohSPt6U/huTciTyUJnxxbYYQbGA0WuGyyy5lNBwEYBCrbkKbj1GDt02oFN7iaktdlpw4PeXOUxMmRagu5nVj2c/ynF6eo5DMpsPHRvztnR/ENmOXstGS4B3WTvgrvu+4rmQdiVTv5wnbO2O8D5XOnKMsHagUpY2UaQ95cs7GMMQS1dMcWD/CanoF/Xod3R9S9foU3rE93ebs9hnmbsapE3fhqxJXzJnP5xLG7KyEkSVJiPSwuKoMRmUxaCmlyAfi0S5mc9HXvMy7lLwVHWq8s01dlThn0V56SfX6PbI0oy5L5uMNVmyB8gN2Ss/Wxz9OMZ9R1yWjQY/BoC8RBmF/KAVlUXL2zGkmOzvoNCPJetg6FISYbHHyQ+/j/71rQPKEL+SSy4NHo7JkyrC6dpgrH3YdVTXnxKlTZFpSAmorXhaUJ88yjh09xsGDh8myHv3+gF7ek95etuL02TOcOHGKM6fPMp1O+Ykf/aHzrt8HKMjokm/DpaILmwgOCCA65DZ4qZDRxAp6TxlqMmuTCCNeaDDUoA3ZFKE7clcQRg9Ak/RNo5cvMGFRAFqPRmtxolE0xUIsngwBGZoiJMLtFzJFDJnSGpWk4BHLgfMN+IoqvHNSJ967Nm7ZeakSBCG+n7q1/tGtHELwigSPRXjIyLObkKuFoUWPjm/mYS+TD+PrfBY9Qs5aSDOxgl1EskFKZVpJBlOqcffHCipJYiQXgJIsTenlOXVt0dqQ5lljdZWl5BuA1qzHsuT0yZMkRpFkAnwlJMlT1ZV0ce0A1VjhKioE4lGRBn5KhcZkAeyqUDWjCIlvBFBjEnFL29IGJcuExDJ55ijQnJNmjlmaUtdzameRijyxgaOhR0ZRlGxs72CtYjwtsd6iM81g1Ge4OiQb9XG5paxrpmVFWdeM8h7DtI+rPUpbtHOYNKN/MMd7x7yYMhlDL02okfCp1dU1HnLFlVxz7cMZDEdMp3O2tncY7+xQVyVZougP+gyHOcN+xtp6D6WcWI3KCldLkrW3NvTSoRGSWqeg8hBqKE3lqkrON6klyUf0hkNqPHecuIvbP/YxZrNZs0/a3BbfrmnvwVVUZcWsnKOUIgmejjRJydKULM3JY5WqNNsbXhXzOcLfaWKkelUifRIuJjqv9XjXh13WFo2od68UdtzZXTrP19r7KBYZ9m5/7V6KvEr4YxAwwUOjlOqErlg8FucrKTlbzXCuDgqWo65qsqxHURbUtkRpyV0oiglK9TBGN57FKDuitzSCHfncEEs7e6RvgCRmx0pcbXNQaeqoiFV+okEjyiV5wBZktUBLNWMQXgetfOyCMen27YgGuLZSoaPNF3IdmRhDmQOD6dxv1+u9G/LnO3HhlV6c/oxoHGjAhrOU5ZzZZIfJzpj5vJBE72h0bCplxsaoYvA6dOggx44eZTDoyXsP/TEgNK2InowGZFgBzLVU1Tt5dsbpzXlIKqfBq1rrJq/MWUd/kDNYSTi9vdEAnLhfXWi45RtjbPdJfbO2Qcrbgm/ul2Up81kh3bGRXkM+VDSzdUFdlVJyN7Gsra6wevAK1OhKrFmFpIdaXcMBla2YzMac3TrDbDIl8TV2PqWuSvEcKk/ey0jzNOwfySdMtCbPpAeJT1J0IqHBdTlvipDoEDUistRLuGZt0dEInKTkvQFpklLMxph6TN9r0nTE1BrqqsQYw+rqQS6/XHpfxDUQ9818Pmdr8yxFMafXy0myDJXA0UMHGB7KOTL0nLj9g/zTwTWSLOXYscvwSlGUBUliGK0d4BHXfxabZ7f42MdP8pHbP85kPEdlCQfW1jly+Aira+v0ByPyvI/Wmsl0yvbWDidO3sknPvEJNs6eZTIZN3mY56MHJshojd9BAW4tLjpY7uMpYnkKSpmN3o9WQ67rWBVAcjIUesG1p1SoSRLL2BKrLkHLtNqY02AM6rh+uxWm4unBuxIfJwKXpA2XalB/vX/X7/g9rVRw32VYDyY4KKUTdVvGNqJkqRbVNu9RqWmU/OZ3WFiN678BAVGw0pVL+4KL3Z6b5r3t8zK75wYp1vSaWIzTvThIQpKEGVXBY6CUakKTDJCahDqV5GPlNVmWk6ZpE6oWlZIIreIUVUWBrWvyvEfhKuqiorAF0/kUCOVLyxpjIM3EtRyrfoCnrgmhMxV5npLo0J/ACciQfjEeAxL+RCxd7Jo9FNF57E6sQ9O3JMTGKwTg6HjdwGAVikwlbEzH4BRl6ShtxXQ+o3QS2rU6HLJ+cIXVA0PyQZ8qKZlt77CZZjzk4GUMdCaJdVqT9zLW19bIUsP29gZbm5v0sgSdZ4xW1zh27FKuuPJq1tYPUNuaopiTGlgZZeSZdJBNs4QsUwxGmoMH1+j1esxmc06dPM3OZJu6tgteJd/sWWlgVFYS4iE9KhzzQhq5aWM4mB5iZW0FnSbszKaUZYmJc4jk7WilGsuYbCEf33ioElNR2ApVzkK8sglNniTEKuZzSG5H8H40uR1J4/HIsoQsudjYvd8LJvaccV8pfvfsOtHO2qq2nIM/nf8qd0975wCC+Gm84Yve7m4icLxLF3A1oa3xuyo2xxMlrvESdABvV/60bDbINB2NBMKTYphY9LbEnhbe7w2Tao1DUiXM2ggeZA8pJSEv3fXvA6hwPmSvBJHSRApw/pCpfWZz/6MdOfXpQFHHcK6mLOZMtreZTqUJn7Uek0qBkbBKGuOkc448Tzl27CgHDqyTJkkohmOajvcyEaE/hrOirMdQ16piPi+56+SEM5uzNh8jvDNjNFmWkSbSuPWKyw6yOd1gZzbrhFXJj/eEiIaubOuuRQHBAFmiqaq5hIhp1XjQFankmQJBI5P1aqUownCQc2D1EP3eEVT/ADZfwaUZPk2p6oKiLphMx8znM7I0Yb69QzmZSJ8Za9GJCnlXGluXeGdFhlUOrzUYQ9brgZeKU7YoUF70plD7GZSEDNN4T6VxXW8wJM2kAWYxnzKyBQMzIO2tsXOixNaQp4YjRw5z6NAhtNJNUQyJOvHsTMZsbGygkD4aWd4jzTKuuPwYR9OSQepJe33qsmB74wwHDxwky3ugFHUlSfL90RrXf+ZnMRvvcHZjg+LvPoJJMw4fPsrq6jr93gCtNRsbm5w8eYKzZ04xHu8wnYyZTieU8zmurriQbXixSZ1PCqkgyJu8DDlIXOBOYhykw2NgcEpJhSnnHFUxD0lACbparDAVXRJxIUVlOwKYloFHDg7thtvbK0O8GJERO5ooJK1QRkHwZIBUVGla1TfhAe0zN8nfWqPSHO+lNKFC4axYpSMoit+NI48en9hbRIfQJIUKfTy8hIw03gvdMO3WPxKYi2qFzW6+7mmBhlxjb05GK2Rbkeua+HKFu6jc3G0Dq2hVStNU+pBYi/YOgyJLUipVMZvOmE8KrrhyrUn4XgiVQsLzHAJ4y3lBkkpJTDurmdcF82pOWZUkxjCfzzAqpT8aopRnHGJ1XXCn53nGfG6DghuSva1t3O1NspvWVMGSqbXU2Tc6QRtFVdbRdSVrwEsIHkaTGCk36R0YleCpqcsSjaef9klcQi/JWV1dZfPOk0znFUVdU3nPvKqYTrfY2JqwcnrAgQMrrKwPyfIUM0hEq8+kT0aeJqyurjAaDVDAwQMHOHvmNL08J8/6jFYPsLK6ijIp0+mU0bDHlZcfYtjvY7RnY3OLnZ0JZVXiUVRlxcmTpxgOV1BKUcwKylIqbYkXT1FVlrpyeAvWKZzTOGeonWc6nTCZ7rC9fZad8SY747Nkves4duQID3votdx1512c2TjdJGzHCjDWOuraBUWREMYIsY+NUsEg6R02gA5siaoU47n4Vo3WwdMRwqvSjDzPA+DoejsuHnbf6M+BYh5c8/m+2t9eE7ZqDDb/Amqcqov8c3/l9J7xmr2sqfvgLaC8u/ssKOyeXXxyN8/c7757r7l7VGrPkc5vtfBrwQPfAh619+u0gKX2SEnsJn1QDF7aadAx2bv1yosTo23S100yvy/oX7xuPoUkclL+sLZmPpsy3txkNp0JnwrMwtahP0YAbzHqIMtzLr3sUg4cWENrFUIqhdfsycdwVfixeOuwZcnGdsHHj4/ZmhRY7widglEK0iyl3+tJR2xbcfnlh7jr7G2UNoZ8ExZkXB8hAiIYJbuhUt11nCaayaTCI5EAtrYhHFWSwwneeeW99PGwUmVtdThifXCUJBmhdY7TCTpJqfHM6jmzckqWJQzyDFNXzEIuovIeoxRZmpIGee2ta7pwWG+prBgQTWKkvG8l8wQKryQ0XSfSqNXVNXVdNc+oTUKSD8Bo5rMdKCesekum+kynilMnNrCVJ88SLr/scoaDYQPmoz5QVhWbm1tsbmyQmJS816fX67G6ssJK6hjUW1RlyZFjl3P4yCVoBZPxlrynPAekMADGcOSSh/C4z7+Jzc1NZpXn5OaMJM1Ikwzl4c477uD9738/48lOKC0uQMpoTb/Xx9nsnI0xu3TxSJ37ioKnYkEQ0Xoy2pAe1ZzWZZiCMVpPhnOOsipIjCSdogzKd5vjBDjRYfgRcbIgDNrcg6g3R4vRbk+ED9+NCp5HErAdDp0a6qpokmjxMQbYtw0Fm6nodP1OM7wHjZYKHtaiQx1+raU8IGFWYshUFF7dZG9ohaIOIAXfacjXEVeNkhRnSqTj4vm+zbPYpXWIZYyO44g2tMRa17hdL6acjDaW2YZSsVKaMklTXEzAjfkRHopZQV3UJCYhS1KxdIdk5mb9hJAjG5hW3s+xylK5KtTJT2Du0YnGW89gmJHmitmsACseBOscWZZitKGu5m2HZS9NA2srjDzLsmYtSi19ySfRXixWsYO5DwINVBOmUdeewaAvgBvf5G/IGoEU6Y8xWllhuDLCq5PUzjalC2O3ezsvKSrLZDJnZWvMwQMjhpf0MV5hlCLNUkbDAaPRCJSi3+9z+PAhZrMJRVHivCFJ+sxnJSdPnkIdOcTllx/h0qMHWR0OSI3h2NFDnDm7ycnTZ5lM58znJePtCePtCUZr5vNSEmjR1NaJ16KosbVDqwSvlDSOmxeMxzvcefxjjMfblNUMpSzGOGbTKzl85AgPveoKNjau46O3f6gBElVtqWqpOlVWNVVVU9VWEg89gEP5uIcFEDYd2VXYM0iCZG2teISKWah9L+UPkxBi1VSwSrP7a1uck/boeZF9NMz5XN/Z6/OIdE9j6895tlfn+fACLrLr2F4DSvezcMuuDFgczP5/3wvWtxdMXTx0bg/Fp5nb4T6mRvJ5R1UWzGcTacI3m1MFHi3NOFvAJ8ZDCVNdXV3j2LFjrK2soJQ0AO1WGWv6Y3gXAEYoXWslH2Fru+SuUxOKOiTbNDJeiec0z3C1lKg9fGSFD3zoBJUVncE7pGhNMM5q1a0aubgWI4g0oUFgHXsOmQxb1Xg0SgnAQEXvlhQ38DgyIz2RBvkBjOlL2JIS+DQtZpw8c5yd6Taz+QxsLd29y5KqLAQwKMjzFKMUbbW1EKmiwBmFylJpIhvCan3wuCllyNIMZYyUrS8kz9cokVtJmpH2JG+lno3J6hkDnVDOFR+543Y+8bETKDSHjxyil6ckqajnTWEMrZnNpHT9dDoJ3vw+/f6AtZUhKplTbG5jhgOOXXYZ6+vr9Pt96rLkzJnTjFZXWVlZRSkt+pNWrB66lOse81hOnDrFB/75DnYqy2w6Y2Njg7vuuoud7S1pUhoMjk5pnNaNRz7VD8aO3/tRtBBq1Zax7SjMjeUkxp+qqNwFT0ZZkPd7ksQnarokNHXAjCd6M7pWsHYD7bXOt+Cm+wMh9pvoHtXBxSjgKMlT6mouFR9CDfdu8vfCXSLIUC3IMMGK4GxNkvWa81pPBuBjidrWguZ9yMEIPMx5T6LEfS7lSKNlQiyv3afvyrHdIi16Ms71eWPxIFpyROF2gQF4uKhyMroJk7GxXaz0ExtzEXIt+oMBucnJDvXI+v2QGG4aDxOBKYvK7qnKSvpNJJq6LqithRAPCyN5j7UjyxNQoryidGDqXhKxafNpmoRNr+S6qhUcu0GvMUkIAZNmg2Vdo0wSrJISBiFVCaXUnjZGwCSQpyIgVCmVSlZW1zh04AB5njKezhtBRGdL1bVlYh1FWVEUJcPeCldcqjqduw+Q93ImkzF1bTlw4ADeO06cOMV0VlFbx9mNTdCao4fWydOELM8kzCjPGY5WOHTwKOsHTnPq9AanT29Q15sUZUVZWqwFa7X8DnkXIImAZVUzLaZsbp5lc/MMm5tn2dg4hfeOXi+j188oqoLTZ05z4NAhRqMh115zNVU9w1YVVVlQhwRDax1VLUChqmuKoqasqgZ8eOepQ0lPBeiGl4V46gA6ZNo8tffUtmRel6gCTOjeHnM7Lh7yDec81+fds86pZO86tJhY3PnY7z12vvuqDt8JBxZ/X8BVWt/t3nE2i/0CPA6KuP7OQReof58XT/i7O+FfRjL99w4kXGxA6P6glhc7ylJCpSaTCfN5ISGdOg3JwbEJXzCoOok4OHz4EEcPHyYPeX9JIgn+0h+jk48ROn0rL3lArq6pipLTGzPuOj2hrKPlOij5WpFlGb08w9aOA4dG1GrO5mSH2jkIeUNaxaplJninlKTrxaupWJI85GMYsbiLci+hXcWsAJ8EkAFNQRxCwQbvyfOEQT4gSwZok4GW0CXrLFvjLc5snMaqkrosqKZTiumUaj6TLt3OYhKx1AvAsBhFkI1ieDVJQpJJU12CocgiHv0kzUJzQMA5bC0FSPBgPQz6fbIkpS5mZL5ipD3DZI2yHlLXM4aDnEG/zyVHD3Lo4DpamcYQHXWx6XzGxtkzgCfr9RkORgwHQ3p5Sj2t0SZh/chRDh85wsrKkLzfp6wcx48fZ3Nrk4decy2j0Zp40K0Fbbjsymu5/vq72BlP+cePnebsqZOcPnuGs2fPUldz8Vg1OqrombbTD+fu6GKSOvcdNQCiZfTd5G/pBkzw1rUJZs52e2XINaRk6JzByqGmIZ9GFq1cOaB13+mEHTZgN9YwLhaQBROjIBsLbidcajEZXAailabyHpMnVOM51tZoK0qpWDBs8z3pmin3VY0nI8d7hUGclZW1bUKiklj+OGs+xEBCZFK69aoEVO29A51gtKHCEquY7C+o2gCq7ufRFdgotOcRdHFum0aGhApTwZtxsVCapg2464KMqAk463DGUZUVw7xHmvboD1bI0jxUMIuu5KBcRKBb1cync2bFnMl8QtoPIVHFnKpqAUIaSupVVUlVOayLHidPbWtiQbDoSWo8FZ2fZu1ZSVhLQjK3MZKYZq2lLEtQNSY0nlNakaa6qc6hlWdazPBWvC09lbCSDTClot8bcNUll3H2IWex1e2c2R5TRi9i9DDiwXmqyjGd1xSlxXvI04T11RXWVldQWrNxdpPpZMJgOODAgUOcObNFWc2ZTGdYB71ezmw249Sps1hbM+gPWBkOGfQHmCTFmJyV0Spl4RlPaublGGsNtZVKUdb7kMMi+TWxFO3ZjTNsbp2mKCdYW5Dlhl4+kDClPCNJEza3ttja2uTo0Uu47NJLqaqCnZ0dptMpZSFAo64r6qoKTfUsdQAe0kRRgEZZVszLClu7Rjj4OoIO1QmzastSo4Xh1F6SDwu6fWguFtqtdLba8m59tCtsI2Pfnd/Vnuv3fP+ekAIRrO2/6Bo7/iXk9/y/lRPN/Rs3ZufWHU/5nrHS8sfz3/lie//3kB68joxOdIOlKOZMtjaZTmYUZSXeCqXF4twU+QgVuZwnyxKOHD3CkaOHQ5iUDj1eREGXiQ35GLbGuxIVkr5dWTKdVdx+5w5nt+ZU1oalKfsjSRN6uZTaricVBw+tsjk7w6yScOao4yilcZaFCpPxuVrjFsQ+IIlR1LaS4jOh55Lsa93kY0jOaVtsBaCXpwx6KxjTQ5lMwJYWo/BkNsF5af7p6opyPsMWBa6SUr0m0WR5hldQ1aX0tMCBtxgNymiyXg+T5mRpgld1q7soRZLlKG0wSmMrS121uRS9PKfXH+KdI6Em0Y41nZCoASd2agajNVZXD5AYzTXXXs3ll19KFsKbYg+3qqqZTefs7IyRZqMZeZ4x6hlyVTIvZ/RGK1x6+VWsrR8g7w8wxrC9s818ss1kvMVt1nLlQx/GaHUNr8UoOVo9wCMf8zlSmIS/5/9+4DZ2ts4wn00kpzIIFa0WeaDzPlSsPD89MEEGNPIqslZJsAzhG8FSG+WVhCy1CeDEUB6lQoWeQuqiG+mTESvyxC8rFRO7Q5fv8DIkzCkOqBMW1DG27fVktEKyqSpB9GSAyRLmVRFiEB0m1IRvPBmNJA7TEBRetEZnGbhCruUsmlZBqZqu5YRyvJ15ip4MpbEsdh5tczVk0lswIX+IMttA8QUx11USmqRGWkt6tOTvTiaMruPYFd1fRJYurU2znoDQp8AGN3cpORm9HoP+gCzJcc5jjNTgl+Q20wDDmJDjvacqSmazGS5YmKpayrhaPGVdoVVsNmaZTkuxwNehCZiKYxMLVrNew0+s+R/fgXMO5X1TAjM1GqMlj8c6F15STF4W70KvnwM1s/mcaFmq6grlLdbVZHmPRCdUXtzahw+u8/CrrmQynbIzmzOtd8V2+uChCoMf9HLyNKHf77GyssJgMKQoC2xt2d4ek2U5o9E6hw4d4cTJs+zsbJHlfby3bO3scMcnjrO5uU2WZ/R6PXqh6SGBeU8mBZNJhbUGj1jLrK8pyoLZZMxkssP2zjYbGxucOn2aypakqSJLDWS9kPyYNk0RPQRQMg2lSHOOHTvGYCjjLuYFZVlQFCVlUUgPh6qiKqWXg3V1KP8bul5XUm2rqmqKMoRXVcGSZl3wrPqG18VKQlrFZdQJ17xIKXCD8K/9xiqx5vf0Kc7HHs4ZvnQ3oKIND/2XWdrP6cfZB2TJvbqfRViuFt7tbp55bro34178zj1LwF7SvaU4z3VdMp9PmexsM53OqMqq4TfWulYH0a0hdTgacfToUQ4dOIAJBTp0CEdiIR/DdUrXhqa3VcVsXvHxu3aYFlX7vkOoVZom5L1cKlZqOHh4xMb0YwFkBP1Bt1WutNLB3NF6y7t7KV7aaMW8FFlhdBIqlymkmpRpgItWUIb+FUYrenlKPx+iTY7WqegGSkJ6p/MJKE9dSeVA8TaExoXOYzJpnicG5JB34kXmeSDr9cn6Q5RJmOyMcVWJrWvRLZNUetkE705ZFK1xUSdk/SFZ1qMsZtTTHdbqOQPdYzJ1/M17/4mykmbIRw6tcf0N17Oytk6aSrGWRocD6eVhHVnWI00z+nnO6iBD1WOU0aysrXPgyGHyQR+tDDs7E8Y7Owz6KUVR8Xf/7/9x5swGn/W5N7Kytk4NOKc4cOQSPvNzvgCTJGyPZ2xubTGbzxdAhIj9NjrGN6EH56cHLshoIUQADW11qbiem0oVtM34XAhBInozPNRVJcI79MpQ7M7JaD0ZWrcCqFGc498hnKkJhWFvuFT0ZOBjDw0FXpR5h8dkKXW1E4CFxeS5WEFDs7OudIrVpaSsocJkPWw5k3lAFF8dSgtCTL4OyoqJACDWt/byu+O5AUJsfyiJSzSj7vUtLArHRfJ0wyL2EXy7rJhxjpy1YJKLSnXqJmrFvIdupancSOJYkmVoL2X48tCwL7q4Y9M7HzxGzlnGkx2m8wlJKiWWy6qi8pbJeIKtS2FIiaEoC7ROcB5J4iZUetIK5xcrddWhuU8XYEi1mLqpPqIV0oTMGMpSLDOEEBxoK4wlxqA0zOce6y11XRExglKQERLEtaKoSw6urnL5Zcc4s7XFh++4C62kY22LWGX/qdCVdmU0JM9zBr0BvV6PNEulWpORJPvt7R1WVkZcfvml3HnnJ9g4e4bcAHXJbLzDpNcTUG4MSTrFJBOcl7rliU7QKsH60DlWSTng8XiHjc0zbJw5wWw2pSznjMc7VPUEDwwGa6ysjECJ8Je+NC2wl86s2wwGpzl06BDD4ZCslwdPUyW/y5J5UVCWAjaKoqAsJBGxKorQJb4Ono46JOmHn9oGT4d4PIpSGj6KZ7MbYtXmdVxU1Nm4MfF7r3K9P9i4Nze7O314z738PrzonHSOc897CX8OprjflxbPi7mF957u/tn2elg+2cac/Txb5/v8wUHRcw+eqiqYjcehdO2csqpA6VCJLii1QYaI+qBYW1vjkmNHGfR7YmhaaBopQINOqFSTj1FbqrJiZ1zy8eNjZkUddBPVeBKTJKWXZ+A8WS+jPzJ87OyGhFUpJY1TEx3KsIvFw3uJpugWqokFebz3oWy+eHM9omPYqka+FRO+g+eW2I3bkaaaQW9AngzROkebFBcS2eblnKIKDS7rOoRHOeq6bPZ9jHQRvUiYUfSgKJ2S5EPQKTiHqyvms1kT4WFMCqG6mrUWW0siuTKSk5nlPQlrr0t8NafvHHnS4xOnJ2xs7FBZKTE9HGQcPXKU4WC0EAURow62t7dRQN7rkaQpg17GyiBnZ3OL0coaR45dwuraOlnWYz4vmEzGaOVJk4Qzp89yxx2f4BN3ncJkOY993OPo9wcAOK05ePRSHv3ZNzKdFezM5iK/dsZUVcjDUeC85PnETNgL4QkPYJCxSCqGSukYx+eD1Z6wmGLIlIe0U7JStYpXYhK0NlINA1qlXP7VWN/bePpuInYbg7zHMu+7VTqCNbnj5aBjVTOZoa4FJSvnyI1hVkqCVtcj0Dy3kjrtaI3p9amnZ9CJjNCFRmwi3xU2dvj2jrbqlAudxaVKUrymC4vOaN3IyQaXdZwpLaDrjCl8sOjJ2Hve4jfE0xLDpUC8BL5j7b4YKL7HLMsWugJPpxPqqqSf9tFKk5oMVyvSJA0dvs1iOItqV5ZzYs1OcoP1FaWrqGyFV0gFi6qil6ZURUlRFHhqHIo0yxtvldESny8hXFKetogdvrM2IVgsXFImUSMNiZIkCT1gQq4FGuNkHWRZEnKCLHVRUVd1cDF7RsM+zlaoqiTzhjzJSLMek7pkUs05cGidSy+7hCOHDrI9m1NVDh+tsuG9KqXo93JWRyPSJAmARwSNJzDwLGN7e5vDh9c5eHCdK6+4nJ3tbel1Uc2xZUGWpAz7I/JeXwQdknOlVUqSZKRpjslyiqLi9OnTbNx1mrvu+jg7OxtU1Zw0TVhZ7WOMJzGKaVHIOtcJ/X6Gcxl1XYWa6uLG1zhm4022NxP6/ZTh6lrTJC/Ppf559HTFJPuyLJuf+XxOVZaU4b2KlyOGVwmgsK7j7ahtCziKirIK3pDaSVWf+7Ayz31BDefcR9Fe8Pjeg2vdVxRzzOIQPpUcRqmu0SUaBbqe39bgEunCPAr31nOx/7XvqRdjfzh18fDui5VaZdxTlnOmO9sBZJRYJ3kO0siw2x8jlqXXrB9Y57LLLg2FP5Q0mtOKNh/DiifD140nw3uHq2rKouTjd405eXbKvIrNHMXQZYyh18vp5RneenorKSa3bEwmC6tX6RAqpaQZnxR8WVw/XUOXjtX0nG10CgEcIR9DtV4MKbAimYZZqhn2B6TJEG0yvDKB18OsmFHbCustrm49GXVVBhChmjK51tekWsq2R0NvkmYkaQ+lElxV4K0NnmONNinaiCcjz1Nm0x0paYsHB3kuXgdbV9hqTuoq+tYx27bcfsfZBlgpHJdfdilXXnkl/cEApTV1XYrRyNbs7Oxw6tQpnPf0ej3WVkYcPjgiywy1tRw8dJTDRy+h1x/gnGM6HTOebJElhvms4OzGFvN5wdZ4gz/4w//Gxz5xnCc96QkcPXpUmgNqzZFLr+ApX/JlZMN1yvrN/OOHbmM8ETmEUtLvy0PMZX7wejK6HDj8Ga2LuqPcRtOZp63w1DayiVZ5QZDOVpigbClM6DEWQUYbLiVfbX0k8d/RUyL7qLXaeb+7AdFiCJXzDhMVda2w3kk97KogyfrCoj1N07eFJGqlArgKyd9ZT3Is0CgvoWCx2Z4olk56HThJNVZKNYneagE1xOclKJ3Rc9GprEX01cRpjMBO7XVrdJ53ARkr1VoT/a5zWeyKfrFQdyRxLZVVSTmfkyjf9FtJTEpVS8Un6d5rmh4ZcR36zt/9fg9tPFvjDQBxIyeGPE9IErGg28pikpS6Fi3Ee+lgn2hDmkCaGMaTqnnnrhavXdvZ1wehE11H4qHQOggx54hpQhE81bWsoaqSPhTSdV4aBQ77GbNxTT/pkZHQy3rkqyM+duITnBpvsrI24rLLj/Ho6x7B1njMqbNb1C6WPBTHv/fQy3MBOuHJlRKhU1diWZPO1gnjnQmXXnIJV17xEHa2dzh+/ATOQ1k7ispSOY22BqMTklQqhKASdGKwCikLuTPm1KkT3HXX7WxtnkQbGK30GAwGoeN2TmU946JiXlT0ioIsS4IwFGGRJ+FZ8yx05FY45kxr4R1GJ6GCmArx0eLx6hobYt5LVVVUVdV4OMom1KqUvJuyanI7bMzr2BViFb0dVXX35QY/tXRh7vZOEOZ5rfd7bQ33Hnp0w6XuW6ARn9k3MuBcp0WHXnNg/4HuMzB/jr/Dkd189rzTdG+568XDkz/dKfbHqOuKYh5AxmRCWZbB0BGTpIORs+MV6PV7HD58mKNHjpClAi5i5aa2qpRD8jGkfG3bH6OmLCruODFmZ1q2/TGiwdNo8jwPRkjP6toQpwu2p1MghmvF0CiafIwubI0GX+leL/wpNRrrCgEZzbOA9zo0uev0agmhyEohZWl7QxLTR5tcGELQmWbFjNpJGKoPhVhc6IuB9zSNmqO+SOtBUgqMkQ7jMhgbvhf1ygSQMuKjwYDZzob01lCKJOuRZX2cU2At3lYMtKLnMj7ysTOcPrNDmiUYk9LvpVxzzTVkvb7k2gZdR2tNWVZsbm6ys7ODdZZeL+fokQMcPrhOOR+TZn1W1g/TG6zirGc2H3Pq5Emm0zH0e4wnE6bTOXmekxY1t3/iFG96039nZzLhy7/smRw5fFjuqRS9wYjP/OzP5uz2Nv/woY9Izov4xNEmITNpMNC7pgDP+eiBCTJglwHGB+tiDJkiehWbkKUmJ8O1uQnxOjFUwQSFK1aYimFNSnkJ3/OLAMVHYUL72+9h2ucImXLtvwmbU0IwHCZLKOczBisHmzKp3nWa8nWnIQANtMbkPbx1KBJpYOMcWieNZ8E6R5amwmya+9FsppjHEh+gsa6pBmJ0pl8hTaCCRVB1wA+LTEacSYvxmXuSOXfNIh3LzcUEMpIkoZzNqKpQWQKPcxXeWZIsFcUyVI1IkoQ0DR4PZRYEf7RexTAr66yUMDaSyOYqhyuthP8khnkxB2NIVEJ0gxuTSC6Fk/NqW6MQ4FCVNSbe0wEhvMY53wGJCqMl/rWua+raNmUJu+/JK6htJZU5kpy6lvyC6URKsuZJirGGvD9guLIKp+5iY7rDxmSHw2sHePRnXsfpzS3K9/8TG+NpsGJrCOFdeZaTppmAG6Oa8D0JDXJN74miKNBaceySY0wmkvg9ns7Ynsz40EfvYHBqhzTtoXUiDQQTmauqKmSLOcv25hlOnzzOdLpDmhlWVtdYWV0FpE/GzmzGme1ttsY7pEajtQNnWV9fpd8fMOhljEY9Bv1hABgpSd9gMxiX29TOY7Qh1RmpTkl1itFJM5/R05GmKXmeN8AjhlfVdS2AoxTvRsztqMoq5Ha0no4u6Ig/FxvtDxoWQYXw6OYLF3xlWLT+3xd0TziNarzau+ncIKD1XO8+3h1BOxn3lvPdn87fRUmw9+iSFskFuWttJaVrd3aYTecUAWSAkpKkyN/ROOq8ZzAYcMmxY6yurkiyd/xRsJiPYYMHI+RjWIutSqbTijvuiiAjrk25hUkMvTzHKE1NzZFjK2xMzzAtSwHQjlBVSsallMbFPbFL3ndlfmKgKMQ7YbRubF7ei+4lNku1Jx9D8vaGGJMHT4bMRVmVzIoZxJK4VoCGNFoW3iKl/gPgUTS6HcHLoRMBGd45XEg0955Q7i+Uc00SnKtDVSkBJlk2kPDl2mGrOa6ckbmSTK2Trwy5+tqjHDxwGG0UWap41A03MBgM0Mbg6ppYNEhCb7eYzaQp67Df49KjhxkOekwnW6yurTNaXUMpzXQ64/jxO6mKAlfXTKczNrd2OHv2LLPpFI+ndo67Tp7mT/77rZSF5auf/eUcPHQQY6T58qFDR3jq057GbD7n7f/zL7jtto+JJ8v7JjRfqRAmdjek/DJza0lLWtKSlrSkJS1pSUta0n1IF1km4JKWtKQlLWlJS1rSkpa0pE93WoKMJS1pSUta0pKWtKQlLWlJ9yktQcaSlrSkJS1pSUta0pKWtKT7lJYgY0lLWtKSlrSkJS1pSUta0n1KS5CxpCUtaUlLWtKSlrSkJS3pPqUlyFjSkpa0pCUtaUlLWtKSlnSf0hJkLGlJS1rSkpa0pCUtaUlLuk9pCTKWtKQlLWlJS1rSkpa0pCXdp7QEGUta0pKWtKQlLWlJS1rSku5TWoKMJS1pSUta0pKWtKQlLWlJ9yktQcaSlrSkJS1pSUta0pKWtKT7lD6tQcbVV1/Nc5/73Pt7GJ829OQnP5knP/nJF3zuDTfc8Mkd0JIualruryUtSejBuBduueUWlFILxx6M87Ckc9NyPexPz33uc7n66qvv72FcFHRRgowPf/jDvOAFL+Caa66h1+uxurrKTTfdxM/93M8xm83u7+HdK3ruc5/LaDQ65+dKKb7jO77jUzgiuPPOO7nlllv427/920/pfZd0/9IDdX8ppZqfPM95xCMewQ//8A8zn88/aff90z/9U2655ZZP2vWX9MmlB9Je2Nzc5NJLL+Wmm27Ce7/n8//zf/4PWmte/OIX3w+jW9KnEz2Q9kWk+0tGROreWynF6uoqT3rSk3jzm998r643nU655ZZb+LM/+7P7dqD3MSX39wB205vf/Ga++qu/mjzP+cZv/EZuuOEGyrLkf//v/82LX/xi3v/+9/NLv/RL9/cwHxB055138rKXvYyrr76axz72sff3cJb0KaAH8v7K85xf+ZVfAWBra4s//uM/5kd+5Ef48Ic/zG/+5m9+Uu75p3/6p/z8z//8Emh8GtIDbS+sr6/zqle9iq/7uq/jl3/5l3n+85/ffFbXNS984Qu56qqreNnLXnY/jnJJFzs90PZFl+4PGdGlpz3taXzjN34j3ntuv/12Xve61/FlX/ZlvOUtb+HpT3/6PbrWdDpt9vKFRqjcH3RRgYzbbruNr/u6r+Oqq67if/2v/8Wll17afPbt3/7tfOhDH7rXqG9JS3qw0wN9fyVJwr/9t/+2+fe3fdu38fjHP57f+q3f4md+5mc4duzY/Ti6JV1M9EDdC1/7tV/L61//en7wB3+QZz3rWc2a/7mf+zne+9738qd/+qcMBoP7eZRLuljpgbovIt3fMuIRj3jEwv2f/exnc/311/NzP/dz9xhkfLrQRRUu9ZM/+ZOMx2N+9Vd/dWFxR3rYwx7Gd33Xd53z+2fPnuX7v//7efSjH81oNGJ1dZUv+ZIv4b3vfe+ec1/96lfzqEc9isFgwIEDB/icz/kc3vjGNzaf7+zs8N3f/d1cffXV5HnO0aNHedrTnsb//b//tzlnOp3yD//wD5w+ffpf+OT7U1EUvPSlL+VhD3sYeZ5zxRVX8AM/8AMURbFw3q//+q/zhV/4hRw9epQ8z7n++ut53eted95r/9mf/Rmf+7mfC8Dznve8xoX3X/7Lf1k47wMf+ABPecpTGAwGXH755fzkT/5k89l4PGY4HO77Tu644w6MMfz4j//4vXz6Jd3X9GDbX0opbr75Zrz3fOQjH1k4vp/nYXd8cVVVvOxlL+PhD384vV6PQ4cOcfPNN3PrrbcC4n7/+Z//+eaa8WdJFz89kPfCa1/7Woqi4Hu/93sB+PjHP84tt9zC137t1/IlX/IlALzlLW/hCU94AsPhkJWVFZ75zGfy/ve//26vvR995CMf4au/+qs5ePAgg8GAz//8z19QRL33HD58uBkPgHOO9fV1jDFsbm42x1/xileQJAnj8fhejWVJ/zJ6IO+L/ehcMgIufI+86U1v4oYbbqDX63HDDTfwR3/0Rxd8/+uuu47Dhw/z4Q9/eOH4yZMn+eZv/maOHTtGr9fjMY95DK9//eubzz/60Y9y5MgRAF72spc1sudi9KhfVCDjT/7kT7jmmmt4/OMff6++/5GPfIQ3velNfOmXfik/8zM/w4tf/GLe97738aQnPYk777yzOe+Xf/mXedGLXsT111/Pq171Kl72spfx2Mc+lne/+93NOS984Qt53etex7Of/Wxe+9rX8v3f//30+30++MEPNuf81V/9Fddddx2vec1rLniMp0+f3vdnNznn+PIv/3J+6qd+ii/7si/j1a9+NV/xFV/Bz/7sz/K1X/u1C+e+7nWv46qrruKHfuiH+Omf/mmuuOIKvu3bvq1RgPaj6667jpe//OUAPP/5z+cNb3gDb3jDG3jiE5/YnLOxscEXf/EX85jHPIaf/umf5pGPfCQveclLeMtb3gLAaDTiK7/yK/md3/kdrLUL1/+t3/otvPd8wzd8wwXPzZI+ufRg2F+76aMf/SgABw4cuMffveWWW3jZy17GU57yFF7zmtfwH//jf+TKK69shNwLXvACnva0pwE0++cNb3jDvR7rkj519EDeC1dffTUve9nLeOMb38itt97Ki170IpIk4VWvehUga/WZz3wmo9GIV7ziFfx//9//xwc+8AFuvvnmZr9cKJ04cYLHP/7xvPWtb+Xbvu3b+NEf/VHm8zlf/uVf3ihbSiluuukm/uIv/qL53t/93d+xtbUFwDvf+c7m+Dve8Q4+67M+67z5i0v65NEDeV+ci/aTERe6R972trfx7Gc/G6UUP/7jP85XfMVX8LznPY/3vOc9F3Tvra0tNjY2Fu49m8148pOfzBve8Aa+4Ru+gVe+8pWsra3x3Oc+l5/7uZ8D4MiRI40h+Su/8isb2fOv//W/vtfz8Ekjf5HQ1taWB/yznvWsC/7OVVdd5b/pm76p+fd8PvfW2oVzbrvtNp/nuX/5y1/eHHvWs57lH/WoR5332mtra/7bv/3bz3vO29/+dg/4l770pXc71m/6pm/ywHl/uvd7wxve4LXW/h3veMfCdX7hF37BA/6d73xnc2w6ne6539Of/nR/zTXXLBx70pOe5J/0pCc1//7rv/5rD/hf//Vf3/P9Jz3pSR7w//W//tfmWFEU/pJLLvHPfvazm2NvfetbPeDf8pa3LHz/Mz/zMxfutaT7lx4M+2s4HPpTp075U6dO+Q996EP+p37qp7xSyt9www3eOdece65r7n7exzzmMf6Zz3zmee/77d/+7f4iYqNLugB6oO8F772vqso/9rGP9QcPHvSA/8Vf/EXvvfc7Ozt+fX3df+u3fuvC+cePH/dra2sLx1/60pfuWdu75+G7v/u7PbAgp3Z2dvxDH/pQf/XVVzdz9MpXvtIbY/z29rb33vv//J//s7/qqqv8jTfe6F/ykpd477231vr19XX/Pd/zPRf0jEu6b+mBvi8uVEbckz3y2Mc+1l966aV+c3OzOfa2t73NA/6qq65a+D7gv/mbv9mfOnXKnzx50r/nPe/xX/zFX+wB/8pXvrI571WvepUH/G/8xm80x8qy9F/wBV/gR6NRs4dOnTp1j3jC/UUXTU7G9vY2ACsrK/f6GnmeN39ba9nc3GQ0GvEZn/EZCy629fV17rjjDv76r/+6CRnaTevr67z73e/mzjvv5LLLLtv3nCc/+cn7VvE4F/V6Pf7kT/5k38+iRTTS7/3e73HdddfxyEc+csHT8YVf+IUAvP3tb2+sDf1+v/l8a2uLqqp40pOexFvf+la2trZYW1u74DF2aTQaLcQPZlnGjTfeuOBWfOpTn8pll13Gb/7mb/LFX/zFAPz93/89f/d3f8cv//Iv36v7Lum+pwfD/ppMJo0LOdLNN9/M61//+nsVxrS+vs773/9+/vmf/5mHP/zh9/j7S7o46cGwF5Ik4Zd+6Ze48cYb+fzP/3y+9Vu/FYBbb72Vzc1Nvv7rv35Brhhj+LzP+zze/va3X/A9QAof3Hjjjdx8883NsdFoxPOf/3z+w3/4D3zgAx/ghhtu4AlPeALWWt71rnfx9Kc/nXe84x084QlP4NixY7zjHe8ARG5sbm7yhCc84R6NYUn3DT0Y9sWFyIgL3SN33XUXf/u3f8sP/uAPLuhYT3va07j++uuZTCZ77v+rv/qr/Oqv/mrz7zRN+YEf+IGFUMI//dM/5ZJLLuHrv/7rF8570YtexNd//dfz53/+53zpl37pBT/z/U0XTbjU6uoqIHF495acc/zsz/4sD3/4w8nznMOHD3PkyJEF1yzAS17yEkajETfeeCMPf/jD+fZv//YFly1IbOLf//3fc8UVV3DjjTdyyy237InZu6dkjOGpT33qvj+76Z//+Z95//vfz5EjRxZ+HvGIRwASsxfpne98J0996lMZDoesr69z5MgRfuiHfghg4bnvKT3kIQ/Zo5wdOHCAjY2N5t9aa77hG76BN73pTUynUwB+8zd/k16vx1d/9Vff63sv6b6lB8P+6vV63Hrrrdx66638+q//Otdddx0nT55cAOH3hF7+8pezubnJIx7xCB796Efz4he/mL/7u7/7F41xSfc/PRj2AtAob4973OMaPv7P//zPgBirdsuWt73tbQty5ULo9ttv5zM+4zP2HL/uuuuazwE++7M/m8Fg0ACKCDKe+MQn8p73vIf5fN581gUsS/rU0YNhX1yIjLjQPRLX9n4GqP32BMCznvUsbr31Vt785jc3fWim0ylat6r47bffzsMf/vCFY7B3T3260EUFMi677DL+/u///l5f48d+7Mf43u/9Xp74xCfyG7/xG7z1rW/l1ltv5VGPehTOuea86667jn/8x3/kt3/7t7n55pv5gz/4A26++WZe+tKXNud8zdd8DR/5yEd49atfzWWXXcYrX/lKHvWoRzX5CJ9scs7x6Ec/utkQu3++7du+DZB61v/qX/0rTp8+zc/8zM/w5je/mVtvvZXv+Z7vaa5zb8kYs+/x3ZaDb/zGb2Q8HvOmN70J7z1vfOMb+dIv/dJ77UFZ0n1PD4b91QXxz33uc/mf//N/cvz4cV7wghdc0Pd35xU98YlP5MMf/jC/9mu/xg033MCv/Mqv8Nmf/dlNCcQlfXrSg2EvnIvi2N7whjfsK1f++I//+D6/J4gl9vM+7/P4i7/4Cz70oQ9x/PhxnvCEJ3DzzTdTVRXvfve7ecc73sEjH/nIPZbmJX1q6MGwLy5ERnwy98hDHvIQnvrUp/KMZzyDl770pfzMz/wMr3nNa/jDP/zDe33Ni57uz1it3fT85z/fA/5d73rXBZ2/Xwz1U57ylD3nXX755efNDyiKwj/zmc/0xhg/m832PefEiRP+8ssv9zfddNMFjW03xXjAcxG7cjKe8Yxn+Msvv3whlnw/+tmf/VkP+Ntvv33h+A/90A95wN92223Nsd05Ge95z3vOm5OxX8zkN33TN+2JNfTe+8/6rM/yz3jGM/yf//mfe8D/8R//8XnHvaRPPT0Y91eMK//Lv/zL5tiBAwf8d33Xd+0ZozFm4Xl3087Ojv+sz/osf/nllzfHvuM7vmOZk/FpSA/kvdCl3XLld3/3dz3g3/rWt97tdy8kJ+MRj3iEv/HGG/d89yd+4ic84N/3vvc1x374h3/Y53nuX/e61/nDhw83su2GG27wP/IjP+Ivu+wy//znP/+ePuKS7kN6IO+LC5URF7pH7rzzTg/4H/zBH9zz2fXXX79vTsbuHJOqqvy1117rr7vuumY/fNEXfZG/5JJL9uS2/PZv/7YH/J/8yZ94770/ffr0p0VOxkXjyQD4gR/4AYbDId/yLd/CiRMn9nz+4Q9/uMmu34+MMXus7L/3e7/HJz7xiYVjZ86cWfh3lmVcf/31eO+pqgpr7Z4wo6NHj3LZZZctlI/9ZJaw/Zqv+Ro+8YlP7JvXMJvNmni/6G3oPvfW1ha//uu/frf3GA6HAAslBO8tPec5z+Ftb3sbr3rVqzh06FBTKnFJFw89GPfXd37ndzIYDPiJn/iJ5ti11167UOkG4Jd+6Zf2eDJ2P8doNOJhD3vYwhjvyz20pE8dPRj3AsDTn/50VldX+bEf+zGqqtrz+alTp+7R9Z7xjGfwV3/1V/zlX/5lc2wymfBLv/RLXH311Vx//fXN8Sc84QkURcGrXvUqbr755iaE6wlPeAJveMMbuPPOO5f5GPczPRj3xW4ZcaF75NJLL+Wxj30sr3/96xfGeuutt/KBD3zggu6dJAnf933fxwc/+MHGQ/KMZzyD48eP8zu/8zvNeXVd8+pXv5rRaMSTnvQkgKbfzcUuey6axG8Q4f/GN76Rr/3ar+W6665b6Db5rne9i9/7vd9bqGO/m770S7+Ul7/85Tzvec/j8Y9/PO973/v4zd/8Ta655pqF877oi76ISy65hJtuuoljx47xwQ9+kNe85jU885nPZGVlhc3NTR7ykIfwVV/1VTzmMY9hNBrxP/7H/+Cv//qv+emf/unmOn/1V3/FU57yFF760pfe5/WJn/Oc5/C7v/u7vPCFL+Ttb387N910E9Za/uEf/oHf/d3f5a1vfSuf8zmfwxd90ReRZRlf9mVfxgte8ALG4zG//Mu/zNGjR7nrrrvOe49rr72W9fV1fuEXfoGVlRWGwyGf93mfx0Mf+tB7PN5/82/+DT/wAz/AH/3RH/Hv//2/J03Te/voS/ok0YNxfx06dIjnPe95vPa1r+WDH/wg1113Hd/yLd/CC1/4Qp797GfztKc9jfe+97289a1v5fDhwwvfvf7663nyk5/M4x73OA4ePMh73vMefv/3f5/v+I7vaM553OMeB8CLXvQinv70p2OM4eu+7uvu1ViX9KmjB+NeAAmJed3rXsdznvMcPvuzP5uv+7qv48iRI3zsYx/jzW9+MzfddNM9Kgf6gz/4g/zWb/0WX/IlX8KLXvQiDh48yOtf/3puu+02/uAP/mAhrvwLvuALSJKEf/zHf1zoRv7EJz6xKce5BBn3Lz0Y98V+MuJC98iP//iP88xnPpObb76Zf/fv/h1nz55t+n9caK+X5z73ufzwD/8wr3jFK/iKr/gKnv/85/OLv/iLPPe5z+Vv/uZvuPrqq/n93/993vnOd/KqV72qSczv9/tcf/31/M7v/A6PeMQjOHjwIDfccAM33HDDvZqHTxrdbz6U89A//dM/+W/91m/1V199tc+yzK+srPibbrrJv/rVr/bz+bw5b7/yad/3fd/nL730Ut/v9/1NN93k//Iv/3JPmNAv/uIv+ic+8Yn+0KFDPs9zf+211/oXv/jFfmtry3svrrsXv/jF/jGPeYxfWVnxw+HQP+Yxj/Gvfe1rF8Z5b8qnnYvYx5VWlqV/xSte4R/1qEf5PM/9gQMH/OMe9zj/spe9rBmr997/t//23/xnfuZn+l6v56+++mr/ile8wv/ar/3a3YZLee/9H//xH/vrr7/eJ0myEDp1T8OlvJcQL+6Bq3VJ9w892PbXhz/84YVQKGutf8lLXuIPHz7sB4OBf/rTn+4/9KEP7Xne//Sf/pO/8cYb/fr6uu/3+/6Rj3yk/9Ef/VFflmVzTl3X/ju/8zv9kSNHvFJqGTr1aUYPxL3Qpf3kSrze05/+dL+2tuZ7vZ6/9tpr/XOf+1z/nve8pznnQsKlvJf99VVf9VV+fX3d93o9f+ONN/r//t//+77j+dzP/VwP+He/+93NsTvuuMMD/oorrrhHz7akTx49EPfFPZER8dp3t0e89/4P/uAP/HXXXefzPPfXX3+9/8M//MN99aRz7UXvvb/llls84N/+9rd77yU07HnPe54/fPiwz7LMP/rRj943rP1d73qXf9zjHuezLLtoQ6eU9/eg/teSlnQe+sqv/Ere97738aEPfej+HsqSlrSkJS1pSUta0pLuR7qocjKW9OlLd911F29+85t5znOec38PZUlLWtKSlrSkJS1pSfczXVQ5GUv69KPbbruNd77znfzKr/wKaZpecLnQJS1pSUta0pKWtKQlPXBp6clY0r+I/vzP/5znPOc53Hbbbbz+9a/nkksuub+HtKQlLWlJS1rSkpa0pPuZljkZS1rSkpa0pCUtaUlLWtKS7lNaejKWtKQlLWlJS1rSkpa0pCXdp7QEGUta0pKWtKQlLWlJS1rSku5TWoKMJS1pSUta0pKWtKQlLWlJ9yldcHWpR33GNSgAhfwGlFLtz65/64Xf4TPkb8LfWWZYGWXUVc32rMAqRZpovHUoD0cODjHK86GP3MVkbgFNbS3WWbz3KAVpYrAOPBrlHUZ5tPJorfHeY52Xz5Xi4PoqB9aGKDzWK4qioKoqyrJkPCuZV2BdfDYwxmC0xiiwzuGcJ9GKYT8l0VBWFbPCYn14Vr04D1prBr2MSw6scPVDDnPN1ZdxYH2Vq6+6mkOHj6FTw3Q6ZTIes7O9TVVVDIdDDh06xMGDB0iznNHKCkZ7JjsbGBSbp05zx8fvYDafMhoNGAwH3HHHcT56221oX5P1DNZYJlVB7RJcnXP8jk2qymGMIvUFq/2ExGgqa9ncmVGUlksOHuShV1/C+qEVyrLmo//0zxQbGyhVMXYlZ6uKsXfMKkvhLNZDVXucB7RiOBrgHVTTKSupZi3LsGXNpHLM8ZieIUk1pzcLSuswJsE7hbWKqnKAI0thkKRsn60Yjz0WeW8ehbOSOqS1aeY3viiv4KO3f/w+2A7/cvqz//2Xzd9aa4wxJEmCMTJu5xxFUTCZTNja2uLM1g5b21Mm0xlVZamdw1pZ36CQjClZ69ooksRgtAHkWvEnvAbyNEVrhTGaldGIfr9Plib0ezmJkf2Y5zl5nqO1RimF957pdMpsNqMsS2KaVllWzMuSoigZT6ZMp1PG0yl1bVFa47zFuQpnLd55lPf0M836MGOtb3F+zlYxZqsssHFSvMc7j8eH+zhQMnalxerhvMM52zy3UpAoRZ4YUB5rHd67sEc1Wnu8tzhXo32N8Zo8SRn1hwyyAVk+wCQ5SicUVcF4ts1kPqa0JdZbGQMe7+W3wqMBE3iX87LOnQ/jDo9iXSedTcl78g689zg83quG18Xl6r1qv+Dl/VZ1TV3XeE9Y1yqc4YWnKN2sHTmu0GhyY1hNcvoqpyoS7toouGNjxrQOawdACR+Urmqav3jL2+6DVf4vp1f/txfinUVrSMLc2dqjtMJToZWXuVMahca6iiQxaA11XeK8k3l2HqUM3gE40sww6A0YT2aUpScxA3rZADB4b+hnPYb9IWVRM+gPydKk2WNZmrM6Wm32KtbKOPD4sEack3VW2ZKynlBWE8p6TFUVlHVF7Sy1q5mVE7YmGxTVnMrWpGmGc054glKkaUqWZRRlRVFalDZobcLeTWSdBLlSVnOqag4I31Rak5gcYzTWFhjj0NpT2ZqqqgGNVgpna7QJe4iExAwxJsVoh1YF1k4Bg7OGXq9HlqcooCgqvBf+laU5D7n0c7j8kps5c2bKxsYZJtMpeMtoOGDt4AEOHzrG4bWjJCqj9o7tyTaTyYSD60dYzQ7hgeMbd/CxOz6MRpF6zWxnysadZ7ClJUtTVG9GnXwMm72XtDdGJTXOOerKU9dQlR7nDtFLr8JkR7CkzOcl1nqyJCcxqfBB79Ha0O+PGPRXZM/4iu3tk+AKlKuxtkQpi/U1pa1x3qBVD6NzPAl4wwue9Z/uj22xL73t996473GlFMYYdKLQKAwAGq8UGuGhVV1TVzXeCs/WWpOmKXmWNetcKU1U7lSQp1E2KG1QWmOMyDAdrrGg+wUZAgT+7vDOY63FOdmjca+6hmf68EOjK8XrRrkn33HNe438uTMDeI+sE2uDjhbOdQ7vIl8Pe9h5woXlmHPN5eI58YCP5wDKw36py0orYkP7uK91eBalfKMDg0JpHeaXIEHk2eJcyZgt3rcyvbY+rF95ryDXNqm8C2MMJkkwqWnGAwrnHXVdU1VVM26NIkkSsiwjSRJSk2Aa+U8zby7ILiDMT5wPcMjnIt9cM0ef/6yvPu/6vWCQYZ2TCfPx9YbZR3VAxy4AEg4uKN6dhem8wdlKFp/MYVA+HNZ6xtM5mdZYr3BK0RXxQS6JwoEKCooC5dsFohBmq33zDC4wT7xvFrXWJqyvdtFHMsZglMb7Go/FebBeYVTn3M76axZjeHneQWVha2fG6TOb9PKcjc2zjFZWWMnXWBmNMEqB92xtbTGdThuAdODQQbI6ZzQckPeHlPMZK2trjDa3KKuSnZ0xJtFc/pDL2NzaZOPMKabWMp7N8aQcPXIZ5cxznG2cq8F7Ut2OUQWm4hygFb1+jzTrY31FbzCi3tnCO9BKGIC2DqMVxithZMrhvA8biLBZFM4p6tpR1QLMlJa5FeXQo7zCW4f3WnRMJ6qd8l7eoQcfES3gnDAQ7z3UduH9oFVz/4uBVocjrLPCzJMUkwTlwWisc1RVRVVVOO+praWYC9B1gSHKswmTEqYhinSepmRZSpZnJMagkPVcFiV1XQfGZIPg0SjAe0eepfR6OSujISvDAUYL6EmSRKbXg3Ui6LMsoyqrhknlec3AWqbTGco7MqNYWxmR93oobYQpOouzlrKq8Th6mSY3FlVtMJuVeBDhRhREThRJH1mZBiXKdGS/KB2U8pbpa61RWgdBEwVTfFbZ10qJ8m3QGB0MBOG31hqiMAvf1V6BExArd4tIIE5N2MMovPI41bCIhr9EUkr2iTDpAJaaT1tG3flGw6scgbGrILgiI7W7BZuWOfIapQ2ZTsl1DjZlMndszWoqT7sfg3Bsdnt339zPlChNrUSI+bDuVVgDBIGG9xitQAt4s9aidUKWZ8znc0Dm3TsX5KFHW48Na8TamtTIPjLaYK2iLAv6vT5a6QAINWAbhUauqeRztajUdN9fYyzTBqWCkBdJh1aaRKWkJmVezcN35Tmds2htmvvF3yrs+QigtUpBmUZOEQx1Houz4Xyd4oKyJEvG410d+HlCmiZoA9ZWqObeIluUAeWE1xhjgnKuyNKMurbUdR2e05NlQ5RKA58R+ZwExTNJUrIkQyuD7G4v31WQJjkKTe0qZvMJHo9G452nLuvwHAo0eGVxagK6EHmBj/pgkOcGrXKUykAZfKOwBiWZ7rvRwRAjL825GucspmvYQIwZUYORa2jwYMynR2V/2TOwYJZQjXmhXdOdhRsV+nPyAtXqP63BYy/vWDD0dSmw7KiDdfnluUoMdcHKnss1yv656xN1AUE4sJvZLlzDNwtrv8Hv90j7H2/tnKp5B83cLZwY/tc52J2f7jPG5/AdfXT3TRcAnl58V777jAtfa9+7Vq3OHu+/51l3z19nFnzn+hdSNuqCd1NVVc1gu4twcUHS+du3LyEeDxMdwYe1mkortNHo1KB0fHiZ7PG0IDcJtXV7XnMzSURPiheFExMULDnWAB+vsNZirRNQAQ16blA09QLDUkqEk+4ufk9AyO1TiTVNFp1zHq1BO4/XIvCch9nMcuLEFr0sZ9Dvc6Z/msSkjFZW6Pf7VFVFXdfs7Owwm00BT5KLUpmlCTrJ0Knc9/Cxo5R1xcaZ02yc2eLw0ZTrrrue977vvdx15hSzynPF5Q/hykuv4KMf+VijkIIP1kB5fufjuD0mSVBGk2Y51imyPMeh0V6RKk2uNaUTsGeVbpS6qJq1QlQUgrquqa0PYMuhvAcX3q5vN3pUDuJ7MsrINUSMijiIjMuJ4rzAVOLEXyQ0HA6bzRytDaIcQFGVFEXBbDZjc3OTrZ0dHJ48T1BaUdUW55UAesAkpgEYg35fPCJBsU6MoapryrLE1jVVABoN7wzWnNl0isKTGk2eJIyGQ9IkaTwZIFaMft6j3+s3gMcFj4q1ltlsxoG1NUCurQLTdM6J5VS2Hkmi0Nozm2xw9tQmpXNYZdDa43xUuXVgxgIYVPBgKEWwjjhwvrGwqKBoKi1rwXlwER3hqJxDeYf34vnQKJQxYrE1GdoEZS2I3uiVwHs0To5G8BDuiep4XIMnQ3mxqagGaIh60prCOuA9CmfvWRScUZAs8sc9pILiY0TJFNwdrGBe5kJpRa4zlM+ZVoqz85pxKR7aKJ98eFYfhnrxQHGCt6jh9q2wdRZlwrsPRieNEm+F9yilSY2mVCW1q8OcC/gCj60t83lBXdvgMbNAHYCrpq4d1jqMTnDBchjljbeWqirFkxCFapz/3UoAwUOFKKde6bAixAuWmoQkMSjvcdbhjXyLsM6jJ0YbWfzOO7Q3cl9n8coDJgCSVhZ574IH0QKpGOTqKnh4g0HGWkxigscDrA0MVImxRisHWBy1eACsEqt3UeJr4dVagVKyH8tqQi9f5dKjh8iSk3z0Yx8Qa7eJntoMFRSc2opXLk0yUp2ilKJ2FdP5RPacUjhrqYsK7+Q9KO1wqsCrbZSumz3X6IIOvDcY3UfpDFBYK+9CK41WEVRHg4QJ3iCZ87ougyQJF2vWnA/vUbxlcf8nSfrJXfz3EbX6V6s0Rp4UrdKtwXVvlMmiYq8aObVwLbUIAs4JLgK1ymerkrYA49wa6bkARvv3/t9vlPXu3wua7y6Ack6t+BzHz4Fv9gy3qwvv/oi9MmC/+zYz5hc95l2gp/R53kUQR13vTzu8/b63ONLFe3aOd6ev+3/f8Xqchy4YZOxdPO3gd/+9++Hbf/vOOR6fJmC0MNogGZsFA2IJrypscCc1CDycs9tV19zHL947QclkWBsAQhJ003a8iTEY7YShdTaXVqoTvkIjcGIoRPClBQbVojtRuB3KidiprGdrPOcTd51mNBrS7/fJ8z5JmpL3cvr9PmVZMp/PKUtRRCc7O4wGohSaxJDnOYW19IcjDh0+zGw6ZWd7i/HOhMNHjvLwhz+CaWkZec3Drn4YgzSlnM9wzlNbj0IAllZKLITUxAWTpik+WGIVkOY5FoVBk+LIlWaKItEa5RwGRaKDF8R7XG3DOwn2YKeFoasY5iHARCxhMreiyLYKWRJCoWrrg6gOay8yzaBEL6xH19qLLwbK85w0TRcsB96Ldc9Zy3w2YzKeUFcVvTwn7/fxHmrrKMs6AA0BU1mSkGcZWZaRpTHcyqIgvMNEQogQC6jSCm3SxiKsA8ATRu+oqhJre80+6YZxee/p9XoLIVji7m5/xx8ILmonAEM8CKCwTGc7zCZtCFcEPbuFILQgdTcFk0FQdEwAoO1e1Vq8DwJOfDMGOgKmAXjatCgGFr0GqOAdsS2o0QsDEeER/xm1dUTZjcpxJN8BFV1e0OV/UVntyPaGFzWhC+H5PYTQh3A87E2NpmcyUpMxL+HkTsHxzSmzyrXf8xGYqIY3XUw7xdlgnCBak6MiLPzbWYvSXt4vOiieNoA5uUYTcuddM6/ee+qqJhqVnLM470iCMUXrwDOUp6pK0jSVkIcgnIXXN3AQR3jvkf0rOu9cNeCyWd9xjSh5T0ZplFZYZzEmgqpgUNEqhB4GD3DUqrXHK9uCSqXEct/xrMhjd0NIggdEa6x1wdgjPMAoAVNG5YGHVNR1IbDAWbw3ux5M5lR5hfMV82IL7TyHV45RVwD/QDGfMJ+nlEWBswL2fAAQ1ln6vQE6qBfzUsIwVdjFzlrqspbxJQp0jVdz0BN5P2GlxukQfpigdY5SKR4VQBaoXQCjCSGKngwEhMkzybVlLbXqkWr4g/wY8+kBMuKi26vUdpTtOC9E3qnP78mgw6+CMWk/HW9f6uiIrZV+3xPpyoDFa7b8cy9g2Pd2Ah/3PW+Xdry/br/vd31n3s41gt36vRwTnXBRkT8HgGotgkTGttvDIZ+3L/ruAN9+86boejF0kCf7fa/5x97xdsbsd8/r3dA98Avuv7i6CPNCAEj8WymF6muSLMEEZcg5YZxx0TjrqRqQEZmqb5i0WL7cAtDQSkJ5osCXH8CJktrmc3SQfbAO66DsetVgxzbOL46bKFTaF+XDRMR4w7gw48YmKNeFdZzZ2OHOO0+wstIT5THLOJwepp/3qfs1dWnxTlHVFdPxlK18C2sdg+GALM3Iej1mtWVlbZ219THjnR3G4wm93g7ra+tcfcUVzGY168MRG2dOMp1Osc5J/LivUCTiXk9k3k1wn6d5KuEezmGBNO+R5Dl2OhdLuFIkeOoQbiIhXhqrXDvHXhicctEPIe9B5lWsT+Kl0HgnHqBmQYc5r2snUSId4OZCfKcP87h7rZ2PEX2qKYYiNXHdSJhHXAfKQy/LSA8cRBmN1zpsYBW8BnPJ/QngIU0T0jTFaB3CmEL+Q8dq4hEFKUtTsjRFGxVCGUwTHmSMQStNGuIyBbhKXCYq2Pm8xIc6L9Ze71xr8XPRMhbBRlCWEUutdY7ZdIdiPqWaT7Axbj4yWiXPI6ExrTITvY1BJQaCyz+CgPh5XGPtzmrmvLFGqgC+TBIsuy1jbeYfOUcrjTLiPXWuNSQ0QKHhV60w1DoKwK5BYffa64CogCB2M/T9BHUMY+lSR+VreQmQ6YShycBqdiYVm+OSuQUfQq2iYia8KoxECTy52MjZ4MWMlv7GoCD5b9FgoxR4i+RtKNfEeYtcaIGvvCPxFDhf45womEohe0hZrK1IkqQBz6KQurDuo+FFddaDjFXkjAYV4Vq7TkQ++Oa70eKojUF7LWP0EqKY6ITUGHpZBgrKKvA2G7xxTcivC+/dBKVDci+UkmeVJS3xpp5FmQdQ24ragnUVoDHeY4zBOrmH0Rpcu64BjFHUVvJOTJIAFVU1JlMp2im2ts5QVXNsVTCfTZhNB0ymE/q9FRKTN96NwpaMyzE93Wc6H2NtLbvZQV3V2BiOpVUYfwF6EvZ6MPZFPcwplMrQKgedBJAh7yDu7TbUTYt3JHhKJfRawsXovE8f4a3XEPJ+vAetJJz0YqJFDynN31HuRl2lNc8EY0q0ZntPTB7YCzAimNiPLtyD0RnsXj52XsDRPk/nEvtdeM/Y2mt3ePE5+XLnKn434li8/mL40LnG24476oWLI+v84xxgUK4flPs9c7bfPXcBPt15d2pRJi2CjBZgRr60eK99bnaOF9ZR9y8EXwD3AGSoXVO06Fi55wBEa01d1xTBJRtDQTwdYeslmc05T+3EhUujZKrmgYOeFBQKcEHjbRdAu8nqqsZlcr+I6p3zGCOx4fF7clxi6FV43hjvKPxMN5aZCEyiIa553gaUdJQ2BydObTIc9cjyAVm2yWg0YjAYMhqtUJYVKMN4vMO8KDl79ix1XUvCbprS6+fk/ZxaeS69/DIm21ucPXuGE8dPcEwrrrz8Mk6dOsvGmVOcPHGC6XRGWdXU1qJV+96axHxtQIlVrSpLrHPU1mHSjDQfMNneItECEkwQxlqLsp8oTYJqrK3WS8K+CYqlUu0s1bWjcqAkAFdCCCKaw4ckKkNdhUT98G4lfCAqFe06apnFhS/2TwW5+N61FqUmJnsaQ7/XQx08yGg0CuuDjjIr76OqJAQqJtmBhCXoIDSdj+tTNTkuUTHT2pCmScNEkpCsp7RqcotiYhp0BI5SIVG54zFybsHdvp+FJIa31FVJUZZYV1KWE8pqilU1VvkAMnTIUfDNHpMnDspfNDL4VllTQUNWKoY1Ilpm2I1aR+7tcJLxIcnaKBKVhHWdgE4CgwjhWcJhMCj5ng+Ko4/GhDAmI54SMSjI96INx0lgl4Rt6cXk/FaxDzypyTXxgT8EJTS6TMJ3o5LUQRQ0wEvFMAZFojR9k5OSsDOtObk5Z2fuQBsMPhofw3PFEQdr74UoCZ9CaoWdzKpSPhhD5JjzHu1VAAoK52usU/haCf+PSfbO0YRTaYVJFM4r0B7rajQOnEUSqUNuR8/gSxsUsWgNl1wkayVkS5LFu2s+8puo0IlyqlUifwXM4RENWevWcmyDR8U5R2oUWdojSwxV7TBIaKnSWVgnPuiFBkXwXipP9Pa48CzgSZME60RGucALlJYl73xNUVvZZ95iXUVuBngkTyM1GWkvo64kx1Pmv0QpJ14kHFiPrcf0kiG5TlEeCUerpmjtKUYrTGZjRtWcgUkxJiHLc85unuHM2dPYqmY+K6iritxIeFddVNhaclPQHq9rnN4GPW88GQ3A8B4fErOVziEYwsTIoVsDQrOmdMipCDzF1uIBo+v18SFcDcRLJt5O74KRKL24QEak3REbu0NeWnHqG4NsNNYtKJp7+EDwlql2T0a5sJ/lvKvsLoKDXbLhAox/5wIve2XOOUDDPnKJzn7d8/1Gt7zbod3dwNs/O8+xz8zSviPfGu18BBe0n3WOt8+zH7BsPdTxeLRt7evJ6Lz33V6Mrj61X7CU9/Gzlvu1z7A4D+eie72b9k7nuc+MQ+uSd57pdIYxUjWn3+uh0wSiMI7XD/vEhTyIMK17cW20ZhiDVt3QgI51Eo9t3KwqhJxoamUbZQzdhmW5UGpKKp5E2edwSmOtuO4lWsNBkwvSbvYINEA1uQrOW8aTGXcdP8NwuEovz9nc3CTPe2RZzsrKCs6PqaqSeTGhLEsmkwm9Xi8okJDnCeQZ3juOHTvGfD7n7NmznD11hpWrhhxcW+HDH7mdkydPMi/acDNHtByKAhIT4ZXSVGXBbD5j5NexLlR/QkFUTH2N8gqNWBhrJ0qBUWDjVvKi3ERw0ChMSFywhGypjrVhYUWg8FgXwqWiEt6833YtuYVNyAUt9E8VbY+n9K2jl+f084zovo+/Y0gScE7muu/nqp23+P5cAALOOWxdi9U0eC4iE9IB8OwXh9v1xOnI8Tx401YEEc9Fy6i7vE+UlRIVErfns5QsN+jE4ZQXsK80RkO0yoboupB/1XoxhCIkFaUzGtmEebdGBeIaahR2K4AkfBQBnumAqC7D8HE+kTCW2gto8EGZ17orMFphC6EAhu/aDSN3j9fuuJOjBUtFC0R3zcvYu4JGvC0hbAuaqM9ozDAo+ialp1OqSnFmp2Zzaqmcl9iyMGGdbUejQLBw8H4nycdpZYP3TpTjsF7D6kJ4pwuV/lqPd+dKOC88iZAfkZqUxHiqKhRE8BbvbQjH15R1FXLnWr4sxiNZ385aMEnzjpt90WU5RMEd4vlRxGpQgqNVw+u8s9R1hUkTnK3BaxIj1RULK56R1irtA3wVflGVnfAe55q9obXwS+9Z8Gy2fFNknXICqgUs13hfiRJPTe08PWPxPsWVDm00VTUjWvu1EdNApnvYqiAfZlxxyVV87M5/4s67TpIkUFYFRTGnrCp6PXkOow2utmxvnWF7awNbi5eVdEhlDfP5XMBWkqKNxesS9DZae4jFALwKijJ4r0OoVAbohh/pkGfTVaq01mgjOVjgcK7GeytZOzF0tOFjKvwX3h+gdRI8OBcPOd96KCJFA0J8ju7+9tDk/LT8Wi3IhvN5JrphPhfiwWiNwl0ltzPOXXK+e5/F6184g4qKuOu8+/MCG89uhaMz9r1zC5y7qpTa/e9dnox9nmnPFC6MZ6/xrjln1zWbn5CXt3vcXf0h3r0tcLRYFWzh0XyQWucDht4vzFQbU3R+uge7qZvsfC469+d7QYmEQ3kvCo61Dpd4vFPydrUPE6kbJaHdL4Hxd68WGKMPFqSmMktcKEHXcMGjICE9IcEtLLRYeiwqcVIBR+4dQ7iixcgjTC4qKzSoLmyyOB8qKsbx5XuKGnZ25pw4cZrVlQGj4ZDV1RlZJrkZNpRjlEoiUuljPp8H74tCqx5JYkiSlNX1Nda31plMJhRFwdbWNkePHeOSy45xxyeOS4hSYNrE5FnABiZkg6VrZ2eb4Uji9ZNEku2V0TIWIwpb6g3GOQyx7KToNtY7XCi9IyFmnky1S1CBuOAttEma7Tpo8L5XFGWNtT4orrrDpDrhad21oAlC5eKgU6dPszIaMhoOwQ2aknGxlG0EvC3w7Sj7/hzMZh/az8Own/DYz8V+d+S9x4eKbN0cjO6YfFDulDIo7aVqlUkk8bYsKF1MQo4ewhC+AC0gjWNRsFDaFYdY+l0T0hcVbd9YdNuQFRXTz5SscW1iIQcZafx/gEliFAhsJjwU7dd1CzI6QjuSiZXMvMfbDrhQAjgaS1SY72YXRFdnnL1gf4jPpYkhX7JjfIRkIUdDe8iVoZ/0wGVsT0q2JjWV1c04iZ6jOCxFw38U7d8XA0mifty3QeCFKg/ikRDDxGLhOJnPVpa0gtLaGDYra9QYybObV5WAEtV6rfE+KJ+Oui4lQRvxENR1ibU13osRR5TZqBO0ip3qLEGlNDoUF1CBvykd1nwAS9qA9zXGQJqEssuhhIEYsTx4FwxWDu+NhPDhwesAqmOIlAAXGnkm4aQE0C45JE68BQoIBaS1sTgvHgTnJIxqNt9Gs0LtFBQW6+YNeBLFvKSyE8pqC4Xn4Ogghw89hOOnbsN5qMpKSsGXVaP4J4l4U+u6ZjYfN+XXc9Mj832Uy/AKTGrRvSlkZ0mTLUjkGZ2P7xHRB0hDZamQN+hCuedOzltcD0YnIRFcLmBtDaHwiPMRsLWmAPFiqGADaPPULiZSoRBBx8oiAR2hIE6oNQZGYSKX874p2Rr5bFfJbC++614NT1YL7GI/2bHw7/jC6MiIc4CL3brbwlkLQMWf4/z95WV7jTgH5/j6efToC6Kg1u32XohBq6t4q4X5bcXNLmCzAMj282Scw5vUGc/uaywMdx9g6Xff8zyPGz0Xi09BVN3uli48XErvShuM4UpRwT7/t89xLLqMOpaYeHm8yGUtbmipny9gQUMDKFTj/ouLfHExq47wVyisrbG1hdSH2GxZMUZrUq2pVLTw+8XxdP4dwtHbJNFdjxcVPt3ESItCJrH5HmsV06Li9NlNRnf1OHLwANtbm6RpxmAwYNDPsHZAWdfMpmOU0kwm06CYKLyzjEZDkiwl7eUcPXaUoig4c/Ysk8mE+XzGkSNHuObaq9ncnnJ2Z0os/emc1Fsxykt/A+uwtWc+rbEVQCJu8GpK3htQO09dO7RRZEpjPCRoKizRUh4emrj7opKlVVutQvn2d5xVpWJssYRKeTRF7NOg2Hfxt0Cz86YvHt2JM2c3mM1mzGYz6nqNQb9PnudkabogwGLI0m7QcS4QcG5m2tJu0LL7WucDMOfyqsTx7nFfB2GdeOmXUakyKC0TiqqkslC7EIoUFHsXhL/cquEenfvHPhWihIEo9caEEEqnAt8JwDQKwhDzLuzCtDkZIQa180QL92orDzmUkqAr6XUTFHXf5p6gImhYmLSG7Xja99flvR6/sDwX301roIg2VfFmhBLEGLwPlcqUJs96GJUwmVac2ZwzKywmTYPE8yGJPQqp8I7D3xcKMD9VlGZBkbOSZ5QkNKWuvW/zY9yC26L1akTyqEZ51MpIiGsNSieYRPZYWVWkqcOEUFxrK2pXoUOp0gjplJJ8hKquSWO9/QhAF2zJ3XcXfjcvXIXJF8ARe8gQrq9wIVFaLPbKSUhYXVeyziGsdwEbSWJCcjjyjhVIDoOjqkuiN9C5GlnTlfz2QW4qF3qOiNfRezEq4WXNO1egdJ8k6WEUaJ3Rag/i8bB+zLQ8Bd6R6YzRaIU8H+BsSV1BXVnmxZjarqKTntThT1O8cxTFjLKcYrwBZUE5UlOTZOB7E+jfBdkJtD4bcs4Uda2wtcLWHudTjF4jMavoRCoexry8vfkYKvQRMWF+Jf+mUbppiw1IPoYSIwm6ARxJkjbr4mIhnYR3EpVngFCy3MXKjQC1eK2UEo+rjbkvqq106IxpQnjjom1xxW65sTe8ajcf2W1173oV4u8O/ligu/OoLFx/v8/iT9yne260+N39z1k873z3a8a9S+GIvCP+vfDBwpG9IVG7AUeUJXtvutuToZtj0fjSRDd0PRmqDdnslq7d89wL4KEDGDtnBVW9M04WK6+egy54N8Va2nID3+Gr+6BJv4shL3y+IHKDMtEisxj7HEFI16K4eIUYA91OjwtJ4+Jy77yQGNOvotBtxxMn32sdjYZY2zKthSXbAUPybwkZ0lEh9u24gCb+Lbr4nZNYV+cMRWXZmsy568RZjh4+S97vhaS5I2RZTq/fo7Y13jnms1kAKJAkhiw1VFVNmvSkZ8EqHLtEmgpOp1Puuus4l1/xEB7+8IcymxdsbE8oq0oqZQXQkAQlV2nw1lHVNUVV47yisjV1ZfFegckp6xm5ErujCe/JBCutUiIkxYKqGszZJt/LPGjfbs79LCIKqVRV1a4NN1PEioMtQwkKX/fFXEzK03g8pizmlGWJs5ZiOGQ46DMYiFcjTdOFfItI+zLuc3x+vmP7HT8X6Lh72h0mpZrf7Vglw8HVJfNixmQ2ZlaV1E14Y7A9qyDKfXcc0UUbXqeSosXyrfibxiXuQk5F5+7ChwLA1UqR6Ayj01BlS3oYSPUY3RQkiIw8wgyLWP1UO6JmdPHfDXCI89C5f6vIB37VsK+mOGbQR1WTpNzeq2Xjsg90x3oBKOnz0TMpg6RPPYfNnYKtqaV0Mk/aqKYRFF2gERthycUX3tv9TTHZ2BjdeHiVikaKuOlVY4QQS718Zq3qWCzku90eEM5LUnOaiGe6LOdkaQ5GwqOck4Z+eZag3OKsdKuoGWMahVbM+lrKK2PxTYhNDJkK66zTc8OHHDTX2c/eS3+cuq6pQ9UjF0LFJHdA470OlahC/kXjf/ZEL4214oUxRmN07FnkUMTzDcYoAWzKiUdDW5yvUa7CU6N10hg4vLckeYb3KdaWbRVAneBxFNUYpUzw9syxtSRyF+Wc6XSH8bjP+vpB0iRFKUjTjCzNGQxG+HqO8YoUQ6otymyiswk+P0mdnAbmYqioHFXlqUuNqw1KpRi9Qp5ezmBwBVl/PTQr3cG5Gfv1x9DGBDknQMy5WvZaJx8jgu/47iJf08Zg0qRTmeriIDHAtXJB4UFZvPXtHvcW5V1TNcvWAjAancV7yqKQssHBqx4NMcYYlNHoYNAIGtmC3LhbMBA5YgeYX4jC3tKi/DufJ2O3Ff5cI2rHsD/KOe/4/P6f72ajqjm4H3ftgrjzA5vWo9ANL1ucfxbexzmGvWvMEYhHHasbKtU9db+ZiPrs4v+jp96fdz106R6BjO5DnPe3Wlgyux48xiGrBn+oIHydU3hCycrwNlUQJq31Uua6QYK0L0G68orC2/TcUMJ88BKK5ZQw7q4XRIfKPdponK/3PHs3HCVcUphWGIvRmtp2GzcFGKREmMpYhQFoB1Z5qspR49HbYz7ysY8zGEqlqa2tLVZXV0nTjNFwIPYka5nNpeOyUkqqEyUpmUnp93t4C2sHDjKeTqiP15RFxWRnwrFLjvCoR30Gn7jrFJN/+ijeWmrrKcoqpOK2nhyPCr1Q2vfYeBhCqIdWQWFqygCGSj1O4W1QD9sIjyYcRREWu28VqVhhqNlATsCFi9MY5UdUmFT7vuWLcZeo/XfI/URKawn58lN0kuKQzuqltQwHA3InyZppmkpTvYWN2s7JXgsIe847xwjO/ck9ABmtdyWu/XDnfSxFUprYMR5vM55OgoBXjdIdFfN979/iDblPcyyaHNr7Llp4ItgIxyPQ0NKoLm5OpVpFIlabgujdjGOXZ9Q+AmTXMnHV3AHvwUTe5CJQiZYsuX8r1OTrWhl0xN9e8lRaZQHwUnrYxH3gQ08P3z59imKgE1Sl2BqXbE5rSq+D0ST2mhElVas412HP6ZgArkJwzsVDxoiVPqoozrWhUC247QqzrqXO44NXS4VmfYQrSSO5rPme85baWvC19E7xEkajtcKFRG8d5qlb/hy09GBR0rulBYVRJggbUo6mj0oDMBBQqU2KL8MaslLVqbY1ZV3Sd3kwmoi3IXpkIlDyVmFM3sxFVFaU9rjKQVhb6Fg9S4UwKI9JBMxgpCeG1rHkck3MYYoNQ+uqQqGZFwVaxaIHFu+TUHCioHYzpvUOp7c2uOv4h0WpxVHMxkw0DAZ9ynIeGh0mZGlGr9enl/ex/R6amswYtJrg9Ql8chynxzhV42qoraKqNLYST78mJzErJOkRst5R0v4avf4aWie4OsO7bZwtA1+U0EqldNNXBCSkzLo6NOFr+2O4sB9iBcTIa2LIp9EXlycjTWO4VGzWiIBcbZp16b2XJPewnp212NjkVWt6vV5j2Ir9j6RJrAldw00LPlBtJON5qPVi+AWlvKvAdhXVcAQ4N3DZCzDOfe/dgKYLSvYRU+e60v7PdB7qDrkxjgc9tftMXb9BV4512Ai7/tHotZ07yP939cdYHAQBbO7yYrA4z+eb73NRC2678tc3qteF0AXvpq7ldfeg9gvDONfv+Ldr4m8FYTWeAB+UAR8rDrVIbBHhda7r48uNrtQQv90IqKBYdIWA82Da0oZVqHYhzUZbx6oPzFjr2G2X0P1XLPhReTpXaEpMYrTeSe4CEkdrvacObc5PnN5k5WN3sr6+Hty9ioMHDtLr5bR1wC2z+Yz5bMbOzpjEJORpRpYlZL2c2tUcOXoUZy3bm2POnD5DmihW11Z57KM/g63tMSdOnqW2NfNKhHRiRCBpo4P7DYL2FKphQa83oKwLNBWJUiQaEm+pg2A3WqNsTDSL4Sut9USpzmZTIdTNt3ukay1xrtM8bHE2z/vvxZCK+5eyLA8N7Tw7O2OqsmTQzymKgrIsGQ1H9Ho9We9pShqqnAmda9e26x3YY8FraX9mcW89Ge3e6d67AwbwWELO0GzK9vgMs2pG6WMNJ1DKdZplSRflKBRjULsMSzfSSfohSMU3YzRNxJNHLLUNh/M4K4YFUCF/Q0KL5L9YxlbT5kTEPhQt0MArKVjQSAsCD2iVk7g9DBKeQxy/UqLkBSC1OFfRSLL4dpQKpaMRPcE4xMASQm18w380mVIMjSb3ip1xyentkkkpCuwCDPVe8q+QzaXDvaM3aNFCdv+TKDkxcVegWpfnxkpqDZj0bUJ+rAKGUg1v8aF6kvIK60Pp87AuyrIiMRU+0RiTC3BGrL+1s5R1RZ7lYmzxjrqupKITbW+SWH1NeUfTl6NZh43VCxDDS9vFW0CjeCS86IXOM5vPyJOUJBXLf6KDkQwJfVI6NoWTRpOeGmtrjPGSbxjCFHWqsK5CI7zZak+SSGUplCieWoeqalqhqGWeQkM+6wopcRu87WmqcY6mkqDIgpJxcYYTOx/jn27/R06duQvnaqp6gncSilaVK1TFFOdW0EaTZQl5LvzNGAts45MCp8/g1Wm8muCco64ddaWoKkVdeww5ie6RpkOy9ABpdpgk6SNaryYxGaurh/Bes711OshneefeOaqqCLLfUlVzVOMBCkiQGCwl+gJKE6uFpWmGSRIGvcGnZhNcIA0G/UaBrKoqlF6WneETDcbha1k/1lvJkSkKbFk1gLecFwxXRuR5TpIkwTtcC7BIE4wPoYNKIV5f13oGgzexDbNalCWCI/aCg72hUosMaK/OtN/T7z7YGiEWdMt99Mw9X18czJ4TLgxgtLJULfDgxYDKwHzPQdFotTjuNhomDmvXveJPtwytWtSxu8+g2BUqdQ4dtX09/hxzFA5F4Bh+9rvmfnSPQcbukKHuYPf7936fxXCkSK3CCUSrpPKdFxoshQph2p0GXNI8LoII3wjqaImV7weLlvNYRVNtqfG6dF+ejgoI7WQrCIU2pKwiSvpudF5wLHkryolcM8bAxQ3qnAtlemlKGhZKcXZrwkfvOM5oZcj11z2CdJ4yn89ZWVkhSQx5ntHr90IzNcd0OmXQ7zOfz9EG+oMeaZ6RVzkHDx4Cp5nNJhw/fpyqKrj8ssM85tEP56/++u85u7FNZV2YT0PtFEkoLWiMxlYVto4WE0eSplSCHEg09IymcuCtonQSJm8C4HCEZP2F1xvj1EWA+04J0+adh3hyF4v7N1plm98RFbj9GMHF1JBPwj8MdV1TVWJVKouCoiwlTMI6BqFDd55nDHr9NoTqPBv2njDAXUe7V7ng59hv/yzs6/A/j7jht7a3GI/HwWIctrBSC3xj93gWvB3Q1gTwauHMdhwEMND0gieuibjPjG7L9C4KwuC5cJ2Gjg3IWHwuHStiBSOI3DsYMgIKbvlHvEfHS+I71iRFI1AaXqFCBZ7GuirPLKV0WyuYVorUSKiUqw2bs5JxYbHBS9OWoW4r7PhQbceGPgqtR0YtGunvZ3LOUpaOOG/y/nzTKI/AF6KCI/MTgKXzaCNCXOtQrhZCh28JV5uXFZKvIeDWORfAhiXRGlvbhV4M0ghP1nxdl7i6xmStObc1cnVQY5dUG+YWBbJGSaUrnWC9hK64UAChrGtmxZxh6M8kYas2KH9SolbyCWyDfSXFJJTC9bHwiKG2BdpKeJRSIc+INAC4aHALCd8+NBsMzynlWhXeJwyH62jtKItJeFYp6+q1Zzz/OKe2Ps6psyeZz+dU1YS63iJNxaPi/ZSynFFXZfDeeZJEYRIHagfrPoH3W2imeF/hraeuoaw8VQmu1hiVk2YDsnRIL18lSddRuicFS3xNbYtOPo6U7Pa2IqRv4WxNWUzBh67hrkRryT20WIhVxsL7iZXBBCoqycfQhkF/eF8t8/uERisr+NAosigK5vO5lFrGgtIYr0BlUqRFO5yfMS8KqvkMb+Uc5yw65LZJpcoMELAvuXUdXq+k3HnXW+A6oKMrGwDxpvjFn5ZiQZ7FZzqX4WvvdfaXWfvea189dBf4uGAReI4T1eKfUe7s5Qjh06jTLoy5O1a/cHw/Ob/HE7Ewd2rXNfw5v9fK8d2yfH9Qsei7bc+Lsv1C6R53/O5Sd6HsfrhzfVcWbDt0paQaTDuBAVDQ/R3doNEaQ7A6CXtofyIS0yHmN2qoch3nPTiCgAnKhlaNfDCJIdE6xLcuPk8Me1IqVL7xQLBqKQhN7Zo2HqIrhwo33Rbvu1GntZZpWXHq7A7//JGPMRoOuOrKKxrXZZ7n9PKMuj+gLivGkyllVbO9Mw5uToU2ijxPyfKM4WiErR3T6ZjNjQ1OnjhFmmY8/Nqr2Noa856/+Xuq2lI7j6odRSXNqOrQG6GYzcGkoea7EkubSfCuRPuaQSbNy0gkSVK5WAo4NC4MFsYGBBID3YICHt+J8tLxVcuxWLrS7bfOAB3mttFDvQgG/IUlH32qKMuyJvymLOsQO+2o7JSqdhSVZV5W9PtF6JcBPefIQ4O8BYa1m5lz/s19/o0f38I5Pj2HoeBc+94HQ4CrLbPZhDMbp5jM51grVvmQxUus0BYqG0PoadGaRTpuWNGGwt/iyUgTaR4p2CWurS4/CU+laKw2kRHHOFRaX9qC4OlOlxwVj4TR4tmT0p964TtOuabUrVIm5A2de64iEOm+m/ZvhXc6uLrjBOhmLoyGgUnJVMZOYdmeV9RO+GH3Oq2n1ze9Rrrjied1m67d3xR7HWgtYRooCSWy8YQFI5NqcwSUEiu8glj9Sa7niV6z2np8WeI8lBa8lYISiZHcDq2MFLywFqViTgiAgBwXPktcu9z2gxbiJYvrKFjEVbwOgFS4Sk1CEd+v0mJ1t5Z5VaBLTe0qrA1NSPF4arHqG4MxqXhVFHiceCuclRwcDc5WeB86m1uNsxXO1VLtSmnSNEWpShRu5UElGNOjrpFQIq9D2KvDuZIsy6gqcL4MpZoNvp4zmZ2gl26hEAPKdLZNXZ9mRRm0zlAU2HqOsyXWJgLUXAl+B6VOgDqJ9TN8LeFKtZWQ4XLusXVClvbo5av0eyv08iFpOsCRh6hqi7MFtk6xJkEb8eD38pxiXodqUx7vamxlscpjEoM2GuuhLEsqW4CvQRHCBiPACPxBGWlOai4+kNEf9PFOwgBVaMZSFkXwmAdPq5eeKliPSXJ0kuHUjLKcy9xgMamER2mT4EPTQdl7sn/k+hqv9L48a38QAdGz1+o5fhfvicfoHFvkg/eEhM/5BT63G9gsgIRzGuj2l3m7vx5pt3NiIYJl1yPsfaLd45PfCxhp4Zy4LpXoqPuAheY0TzP/i+NVjbG7TfrepZvvCzH2Ugsw4jc+CSBDmLj8vZ9ls0sLFkTv9yxWsQqG8pSJ1AzXumXQrQuok7SixYWnlOQF2Hgt9m4Gvee43A8c1klZVosjaZRU+UlCeEas2BG+Kf8O5QijYGlRnmpcR4kx1CHxD2K5Sx9i1MN3fHS9A8HDUVU1M+DUmR1u++idHDhwoOkcffDgQdI0ZTAYiCfGeYqiZF7M2dh05JkAI4Wj3++BhzW1yryYURRztre3mIwnXPaQNR71yIdxxx13cufxU9TWYp2lqGvyPBGAMS/Z3t5itHoAV1U4r9D5EG96VHaOcZBpxSAPjQptcNE6UbRiwUYUaOVRNs6hPLvRCqlQLMqcNqIYeitWEhUsjs1G8pGBqDDT4eIdRUpFYHmR0KWXHGM8mTKbzZlMpsxms8ajUVWWoqgo5iXzwZyyKPFra5KkZy39XihNrM0ua8WiQnxPmfJ+dL49ej6DQXscQBpqTqcTzpw9zXQ2l9ykBQ8CTVnVxWuHmOjYfAtH202KENmgY75rqNIW8ws686IVygUDgBYPgYlgo9PhtE0Xb0MzpVCEeCSBptO4bUanZWw+BvIQQhIIDfli3krM+aDpHN4KhBhyJdqqeBtMyD9SEoteR6Un3kWmIdWGnjb42rM9rZnMHc7rJsejXQad6joEXmp0O/9BS754dglS4tVLbkSSGGIIXVfQe+fEgOC9GHOU5DDZwC9EqLrOd4QrO0RhkqR3MU7VtkJhqOoKo5NwrCYxGXVd4X0Wwl8FANmQnC0hWqEserRuEK2BhDFJhSIIYXcxLxCFUYY8TZnXmsrVoaeF3GNelSgNVV3jiR4FsbZrLQm/zlaiBIZqU9pAlqU4rynnLgAtaVZorTT9i30wjEkoihlZXmO0QxsBKXiNU0Eptxql0gBSWrCmCA37EoN1FbaekmjFoLeCVhlVOce5OYnpY5QFCqpywmy6SVFMmc1nbG1/nJ3xP1HWHwdm4B2Vl9LEVaUoCo+mR54OGfXX6PVG5L0BadIHleK9ISb/40tqZigPSWJJjSbPc2w9pyoLXMi/wMWKdAnKpDgMpbXM6zlaORJj5LrEfESROxHIpkkuRQIuIkoSycnQRjdKZfRixq71zjmSNIO+NMV1wfLiLMznM+ZljZrNQRmUMfI7hJLqNAngQoWmkF48QM43utqCIaPbxykwxf28F805gN/lRt0NNGQ/dSu67afptyHz+4KdcO+FP/0+f3Nu3fVuqYMpGokSgFQLAPYzSYR7+qi8dIHGLk9GVKKgI0cWo226Y9nXi0EbKhVzj3fL+MarIgf2jrc75t3zqthzzXPRPQIZ8tDxLuFh9lWC9qfWIuWDZduQJKLES0WuGI/sozEcUCGvoXXzusbyqRas2PLQ+ytJKlgfvYuucbm2RpohGa2ovUeFTr+SxBfd+LqBsVH3iTMdFQmAxBjAh2TG9v4SvmAbk5hz0lVbG4NGEqtr69mZFdx+5wlWV4c8+lGfQZ7nzOcFw6FY+/I8o98fhHcuysxsNg8CNyHPcon3d54Dhw4ymwvQOHPmDHkvZW1tneuvfxjjyZSzm9uhs7ZuFDRb1xTzGWmaU5YFtVeYdAimx7xWZNqArUlTRW48g1xJ0l7tg3XOkWiD9lJxy2gRzkVo3KcUGAPKhqT7oFQ2TqeQKxPTy9s53LUHFLQx9q1idjHQpZccZT4v2BmP2dzaZmecsrM9YTqdU1cVdWWpa0sVGoJlaRrWt6zdnIwkN6G6THdT3fNnXOQb+zN5Oe98197L6CM5W1OXc7a3N9gZb1M7cc2LshfqvjWm4LgPd3kyiMnlUVWOfSgEVlrXwnxULIkbQ55iorismNjRvN2XdBT38NM08AuPolQwILSFGxxIs8nAMBrDhaJpxBdmgOhVMLGfDzSVkLrvYNFVLselrHWn43RnTgwe46VktKs9RekoXYwmlz2idr1HfAihiZavkOwrDelcE1Z0MZAM24ZqTxJiJmy2tZhGy6iANlFCpJuz7oDWcD3tm2R8pUG5Tox0KOyBhqouxGPoFbWt0EoAh6ud7MOg7DT82hMSshUqCvJO0YpYqlZrCTGxKuSO+JBTSKdBphMIZHQA3kieXm1r8YArkR/W1RijSE2CVYDX0gkd8TY7HZubajKTobXB2oLEZCiFZCMZKeOqjeQeGGOkKaArSJNc+GyixVNiRQ6mSRZAegqAtYWEyRio7ARlHAcPXcaZrW02N2/DKE1mUlIUvppRzM6w4Susg8n8NKc33sts9nGcnwUPtOR7WKtxrkfPDMnSnDzrM+oPpL+GTlEqxftEvCiYxthUlXO8dfjMkyYDsjTH5gPwNc4XTZd7aTArSeuKTIrBOAdGwKoWKC6tG6MrSqx+rI4OkCW9T8keuFCaFkWjMCZpKuGcwQshVcra0FyXOPK8J1XQvAKVoNIxVVlQWg/zIoRUhhIu3pEo8cCL5ywh5ra2IAPp69LsxcjbhJEpugqu6DiLZqZI57bIt9W/uoaD/eVSNDR1xxANOLvObM/ZF7S0/74Q0LEAnJRa4L97bID7He8ACd8xWMSR7DuE3SBjAZy1kQ57QUYLAqLRfT9a8GM0gGJxprqYKB5vPTj3IchoGb3ac7xLLQhRC/ePyn8bLiULK1ZfMU3IFA1Dbxa4ipbNwEC6T9y41X2DAiVEY7Fyj1xbY52TxnAdBTW+iETrJhHX21jbMGwoJLnMaC3xiq5uFxq+WVeJ1ngtSlZ0UcXum1H5siE2X3tRoBTgtIQf7UzmfOSjd7IyHPIZj+yRjHdIjZGwqSzDrBt6acLW1hbKQ1GUAbxl9HoFw+FA8jOcZW19jfl0yonjx7njjju5zMO1D72KM6c3mbzvH5jMKzxBgBlJSJ9N5yR6TFXVKDMAY6i9xM66VOGdwnhNojz9TFMVikIHwRctI942PQcSA7mCUhrdhnKLtGFVzTtWzIoqvKvWmtF0eldxDS6aZPcoWvczHVhfxVrL6sqQtZUR48mUza1tTp8+y9mNLYqixDqLdVKGq5dnoWqXhAclxuAzh9FmV4+HC3nGczPK8/PQ81373J8V1jGfz9jcOMNsNgmKnFhzlYvqMAEcLDpZVdxbTUe8TqlXp4jpCbEQbrPLVFCuwycxB0vrNh9jcewR7kQBFpV01ew91cT1tyFWoqK6hsO2zDXwkuYOLgDlYKEO1tFg6gldqruhBPEZjIA0Syj3G0v2epQXr1/iFdorrBdvYV0TPDMglW7DKDo82QaPkA5+GAn1DIV0Lx4s3pRWhLZaFJ7QfG/REirlZNt48DzLZQ+VVmZNGYx2WG+RsCtZF0pJTkF8WbWTnhXW5aQ6paoLEpOHztKtkHYu9LJwFqUSmTtHA1CjrPHBwyK/VbMuYh2vCHJ1kBkSqmKk4IaVAsrW1QIAqcDbEO5W473GJBpfyTOJF7umtgJMvHM4b0SJdg6QtSSeEOkHpZR49pSyJMZgbQm+xtaxF5EOsfaJjFMpvPUoEqyzaJ2j1f/P3p91y7Il2XnYtxp3j9jdaW6blZmVAAoEwAJJUIN6kF70F/Rr9RskamhwSBQhAgSQVdne/p5zdhPh7qsxPZit5R773sw8BVZzMADPPHd30Xi4r8amzWnTtO8ErhDiyp9/8k84LQu//83/BHNgJBBFkPWJx4df8eY+c14eeFq+Zl6+BQrs7oXUyOB+ytX4kSbFJs84VmJo9TVBnQqrJR1sPooItbT1xRN8ZDgOxGHUvhb+gXU5U6QgzlMMiGvPGW/mJsVcJ10bboi1shMghMgQJ0IY/55mwfsd87KqE9gwaP3eFDmMI+PxSMmJknI3FvFnhyuCTDqZXBwI00HlVcuM1MS6JkROlFIYpokDm9Q0hMt6tn2WfB/QtmRAX1ut1rKN+S0jf7l+N4XJJchoGXWhx3E/uli15NAf26/+gKSrvTzvByh+5K0v3rclt/r3l2d5eT7tnP7YuV6c8wYkngOLi5jA8meX+4see+nwc7VPv4/bLy7Pahdet0deMM3PA/s/cfyNOn7LRfb4h4cOvH6qPxrYdKrNgm1E5VLDEDX4r2KAwwZsSxBaB2lq0cnj3MZI7Go4FAxA6Ah7Q32NzShVnTT2NJe3DGu07tZF7Rs66my2t947xiFCtkXPQgOkGBW+DQxvNQYXA4mt8LxaQx3xzbvfkQXePpz4t//hV7x4eccYIvc4Xr16xTBEYgwMwbMuC+d14TQvrCnjvefx8UwIkavrIyKVly9fspxn7h/uebh/4KuvvuXnPz/yT//iF/zm17/jtLxFs4mVVIXTmuDpzBhHavWMVweqeMRH60LuoMBAYEUYI8TY1K3q7tPrK3B4KmPwVO84rWIBmAKxXvtvwab3gZTSxRjq4OxZt/k9XndeunvRh3BcH0YEuLk68OrFLeuaOJ1n3n3+Cb//8mt+87vf8+7hkafzEyknHKIMR0k4YBoCyERLsP3Njj/8hP84GPaHFmN9tVpW3r79lm++/4Z5XSx899ZA0yNFZR/VmKzGYG5MhgKttqnsM2JbpqaF+JYh2/2+LX5t/qpl67a4tk4GIjtQIdLrisGcgBDLpLeAvGXI2nvYtzu7SF03tnN1TpmJVjugTxVCk9G0NQinAKM6cq6Usq1F7bO0FdZbHwh1XSsdkLfrt3Vh3yBPew1z9bxwg/mwajK27asUIQRNDrV+QsBFQTuofKdWRxanwEwxinaBd4CreJ+pVWVKVTKlFhqDHvygcrdSCC5SU2IcEsEN5KIF4Th1gsrWZ6AHRWD3WzQrXgubvKMBz5YA2Sy6dXvSjuDOZWIcCOgetqyL2VxXO69sY0n7WqT8pOcajhoci1enKF/JdcUxIFRC9NSqAYh3gWVZAWEYAiVlYnS6VwlWWI+xHjMiK3gF1CklckHZ8HQmp6yyqrwSwwnqieth5KMXn/P61c959+VbKEJJKwuZdTnzlO45L+/IdTE5ogIGKkSuuQo/52b6x9yMLzgeA4dDxoV7fFhJpbAUIaVilvAV31gf5xniZA5Qg2byhwkXR513ohbAZZ215iNnQhjwPqqjWPEgyrQ656yOyk7MWfLQe1JazQnswzmaG6Fz2kW9NTtkGJCqpi1H0VrMdVk4n06cnk7M84nxMDEcj6QlsS4n1vMTaZnVpapWYs7dgEL3YU2yxrgPDbd94AJoQAcXF7tyA4Y9GbP5LimY9TZWWxyX2VVbWkJ9cwPV97s8jwu3U33T3Xpoa0YVSzj/2PE8sLa1fPee+8NxuYfuE00thtwCeXfxZfcmu4D+Egj1z9d/9SNA40eCgh+XSm3Pu+zy/gxo/Cjw2T7Tjz3m4vF/hCHZH+/f8duhWRv2wOeSKbi8OZd/g+3mhWaNVsy1IAwMXjPpGwOxX9y3jdxeyOjmbTPvyFpT3lsQItvZOAsMxIL7fohpHFHN5tbbor3dxr4Er44vEFlK6ud2gfSx/hGhZeC3t6pYQXhzoqrVrAk9VRQ4raXw5v6RX/3mC17c3hJD4Hw+48O1vZ/n7u6O9c33LMtixbczMUbmeWGcVIIzHCZevH7Fy/t71mVlPp/59tuv+ejjj/ln/+wf8927f01OZ/COXCrzkgheKW0XBnyYSCmTRfBDpNaVkitkR5g8EoQwqIYTtIC7ATdQiUYInlECoU8QpyDSkLc3mko10iazEQsadoh6P44crZu47AqKP4xjv/iEGBhj4PrqwOsXt3zy0Ss++/g1f/3r3/D1N1rD8PDwQPAaEKyHY+9VYnjsb/HE/vae1MZ5Ton7x3tO89NO8vHDef/8tbYx0ianRcQWrNXGXzxf2fuzOkfS55rbvYXlJBB2vSHcrvg8eFxxljVX5kU3REFlmb5nlrZsnY07AyQ4dZnT5ldCqWqIUMX6xTjN3FUxowTROaI3NmyZrUZGXGQH+4XW9wyBED3DYDpqzJizMSOtnsVe77ncqAGn99kQ/r6ObH0qQojU3G60rhtidtjbBlotkFe5UaU5LznEXPrU5tWcCyXQDDm0iUXbpA0giCW5anuMUHKihmDrtTIZpSa8aHCvjAQ9U4sLNs4aS6Sjox/OGD3nVJJld6BklUK17VkTbbrZqE2y3iMfIEaPSLOcnfqMKTkRAtSijfecDf4GjlVPn0ir9mkpOeOpxOjJNTPEgULWEFuq2pU6SGVl8JE1rca0iiYB8KzpnnlW8HA4jAxDwEchlZnHZYacmesjaz2Rq1qsVtH+F5IDAy+Y/M+5Cn/OdfyUoz8ySWGoJ2KYgEhhRSSx5plURANeEULQxn7DcCCGQS1rS6bIgphNcGxNCVuQWqpeaz8wDdfk8qBMFnS5dYstfFtr+r6V/g5H/t/80OJ9Tco+PT3hvef6+poYwy752RrseYZx5Hh9TUqJeZ61L0YuLOcTD+/ecn565OnxgZxW1pRwcwtGW0+hy/dtyYkfMASOrds49HHYfmjjHwxstyTR7mtLimhS0lnROd35bQMOdKn9/jxaIH0ZsNv3XpDiVDZaq/7cPPJ3DoDvxWzYEtWD/v6ZHRsb3y7K9pT9e1y8yw6stUTF87j6uUzqgpVwl4Dvsuj7Elw8N8b5AZPRzmd/DS++7h4pbD07+CHo+bHjvUHGMDzr+C27CydsGb4OxvaoSb82oOC9oxbp1E/wuql7p9137dE9Q6RZ8hbMW6bvR1DYdvGtQNI7Axa6LQevE6bWramNyuEdAY+vlRBU4uCc7wBmy1w6YnBE7wwM5Z30a38j2hXYMrH7SRFjZByj0ZYNvZsvuzE2KVV+87svuLu54jCOxKiBxuFwwDvPOE0cD0cFGbWyzDNXV0ctIj/NxMEK466u+PSTT1iXme+//56np0dev37FX/7X/5Qvv/6Of/O//co2bZjXTAyRlCvTMNrmUng8nxnbPTFdbS/SDrohOie4WtXVo5gEClEmo2g2MfQxIQSnBbbeqcREqnTJymVWhM22tA8psyOVVln+4cCM7RQ39OMQXAy8vLvl9vqKj1694Kuvvua3v/s9v/vyGx7uHxhi5O76hloKaV0Yh0jYZZM+JEkYgJTC+Xziu+++47wsWpNDC8Aub8mWAGC3OMPGjLLtQg1gXmz8+rM+bnu8a8W4LWTbJ4KwwF0XkT1SffZyW+IDC2L31LDSw7oJ+MYyuLYhgqv9E+3e2fV/tQpavNoCwF1C4g/cUmeAqG0bnlbQXrfKEXm25ri2T+jvis25Jjdqm/GHcihjrVrv4hRUlJw4HAdwQk4GLGhyGW2W2mQA66rZeqm6j/R1uAghOnwIuApLFkRUq5nLyhQO+lo+UF3RpnwhWrBW++bcwA1s+xbY8BPoLmmi0jc9HK3rNx0AKiBpxeQOCNMIJVuAr89sSRMNWDzzmjgctN5CZXJYAgZtGBdAgvRzaA1lhyFSa6JKJsZRh5gX8FAk43xAnDDGiSWdqHUh+ECpK8FNBoxtlBmTJlWdmub0xFIfeTz9hqfTX1GHe57IzKkgJZEl6fwxwF2yx9UjB15y5T/j2v8Z1+E1AwfyIvi8ENKMH0HGgeq1qL9UG/9SwRXGMBD8iHcDIQ5UhHmdqbLi/Yg3BlLZImWENHHoGaYj43gglVtkSUjJumf5QHCR6CPO6b9xGLg+HpXR+oCOadKGjCGEDjSenp64Oh5YFnWPGodJAXvVjt5NXjVNUy8OL3e3XN/cMM8nZTseH3l8eCCllWXN4BZaw1LnnNkFb3HLPlnc58huxe1JXuC5A14DKpeZ9fY83zI4PRmyV6GImEy+J7m3BIpjYzV0bd2trwI4j7dkLhhoETEm8ocysD8US+wTNH113yU9L/64j313e0mPmXvM194XfhjN2jXfO0t1c6T2HpfJpIvnuTYnflwq1c7tx46+xD17Tr+k2xu9V1zy/n0yog24vpFvO3q/oR10bJKBhtLa41rmujotYsx1a7pEZy4ce695bwWdelk1Yx5ce59twG8XSQtGWxEoKAMhzuGzOlzkfXDSi5scMXjGITIv5hLVJ1abJIENwLWNSN+nbfJCc39oj7lEnM4JL168YFlWnp5Ou6vcpByaAX08L/yHX/2Gl3e3HKbIo+lWp+lACJ6bmytKyTxZf4LGZsToicNB7QjHxIuXL3l6emSeZ06nR56envizn/4Z/+q//a959/aJr755Q3aBIoWUK2sWjnGklsrT+cw3b+/5ZBJk8FQJpFwoGao3pmKAdQUfNJMUgwKKQYJ5pmwbtXjBl13AhsN5rHfKBiwV5LWMtl3f3XhQJqwtbB/WptCP3YLQvg0h8MnHH/H61Ut+/rOf8u/+w1/z29//nvu3b1nnmfl8opRPKVW4vrlmiMMOXMmPvfg/yFFr4d3bt7x9eMeSExpe7COxLdDeW1E7+3sDGWIZYL1CJoER1xfAbRGr/eM7c9pxYv0SdkGRZr01sw3qogLoWGoZfmuMqc0xDViINkuDTfJkUa4VQCrL2HzidKxqjVKzXW6dz7tNlW+Cre34cba31U60pITKZ1rB8RgCgw9IWVhrtWvltjnVNsdW+L4DaQ30tQz9h3KUWoktIKdSq0oocsnb/WzA1WnwKQ5yKYy7zsUCmxV2rTYKVf4yTpFcZ9aUEAZqzWRXSCWrm5IIKRemwZNKVh2/eQDXWrbC877X2Vpkw3u7la0QX8fyxTbesq8mA6sWKCg7FXqXb13fTLZngfJ8npUxcNVkh14z+DVx8JE4RGouOO/JuVAk40PCe8GbY1LwAynPBC/ayA9BaiH6l7ghspbvyXnBSWGcAt4rg7KmTC6JIV4R4wEhk/Ijv//if+bf//L/S/VvcIeZ6hNZstYwosYMtXqCu+Z6fMUhfsLBveJQXzC6W6I/INWZRPRE4oE4gb8ZSaNjZQB3xKFMVQgHvJso1YxHnGNdZ61tK47gR8bxoOuITadaixJL2ROGCe8HDuMtTjK5POGA6CNDGBnjAeciVYIVvkczcPlwjiZdKqVwPB5psqlaC9M0cT6fub+/tz4fvgMETWaO3X3qfD4zTCPXt2rRW3NlXRfm05l5ObMuZ2oprDlTZGcT65wZtbCNVVGeuO6ABeyAxj7/sXP52xobb8cPm+nazxZP1ba+eaBIf899fOZDUGtqSw70nmWCGsq0RLb37JlSqhjYd6akEV1/djGrhh8X4XV/3y1pdplsukyQ9YtzcZ3a132MzH5tf0/r2udMzL5P1Ab69qUMPwQSl6cou8fszpPdvf6xc/oDx/vXZHgLGqTR+Ttkt1ts+3q8IYt+4u1XuZrMxTYNjUl0J5TmEOKcOho4uuvIpW758hK1D9sotSiCmG2Rc9YAi32Aajptp3pUb0XJVRRotL26ASWgMyNSS6/h0AZzoTfBuqDxuLyxbXIuy8L9/RPjOPRAoWfKdug058C7hxO//NVveHF3gwuBGE94H7QILEZub66RWkgpsSyLLS6BYYgEnxjGkVoKL1+9MjvVhaenJ+bTmZ/92Wf843/0Zzzcn3g4na1xlYpRXIisOfPm3TsezzNjFm5c5BAK+MpwCLiaCREOk2edYTWmaPCOIBBME+lbXxHU+UX7agi98ZhrmtotGG231/vQa1uyLQJbMnqbkP+pHO1cY4y8eHHHf/vf/At+8vmn/P6LL/nmm2/47s33LGnlk/OZTz7+mNvbW81oug9J7AIpJb765kueTk8km8P7+7C3cu0WxLvPsGelFCDY9z+aHdv+rK/hbX2xppItvHM7F6j9Art/qz+QvfmR/WN/khcBfV/aqgElq9W4lDC1fclfvNR+0e+9fPo5yf4tFQRJJvqBwWuQlUqfNpfZK7+tI/sNZv9+P9aD5h/qEBRwi6ukZM3l8ORUVO4jCjilYo06tX5vXcsGzdp666WPE6GQS9JkS4hE71nJurYXHTOlJHLNiKDdvUWzvw0EiAiUZEBDi4XVe5uekGrZyO3YJB/OAjAnVleCrmne3L5SUiDgnKPmRBwi4zRwnmf9nAac17SiLkAjVAXPeJX8ti7dGli18Y/tzxWVNidA3bPUKjjinPbAKKUyxFucg+ze4t2k16iuLEtGO2yLBuAl42KlyAPfv/kta3rAxQUxwKPXQRv/1QrH+BkfvfgXvLj+M8ZwgywOmR2S2txFnbaWyrxm/KzaqnIVSYOADwaQIsEARnAKums6k/NCzgvrWrU43Zvcso95VQaUmklpYRwnYpxArnFJZ+owTAxhYoiT1rOIV+tw0ULwD+3YmAWt0cg5915W0wGavfMQhx4/tENEWNeVnLMZxXhubm8NvFhLgLKyrgvn0xPn04lsKossgssFcabiIPT3bfrTH7KybV2zx+3W4x8GvvKD9co5r017dwyAQ7pjXFvG1MVvt9Z7ZyUizmKOFp/tgmdpCSdLIGhmCClFk7uuavKynz/bOVx8Rks00dYd6fHI/hHt+l8Ggvv9bRdjChfP3wU6/TpenIHID+61Y1v/vcWgz0HgH2Ns2tltj7k8120P5vkF+YPH+7tL9TTij7yww7R5rv2fH4IQHRwll+4s5JwuLpuLhAfXirMEJ8Ua5TlccFbM2HxlLjfuPZshghYDsl2QpksL3uGLsKbEmrNqPJ1moJxljLwPhl652Ef0cTqYgmXLmsLzOZviDb3vZWQOzBVEeHw6Maaojb96cNQmrbrwF3HMCX7/9Xe8+OvfMsSo4CHobQshcDio3d79/T0pJdZ1ZVlWpmnC+cx0nIjjyNX1Na9evebx8ZHz6cS333zHz//8z/lX/+1/zfffP/Bvf/kryqobehhGcJ7z/MSbN284LSs+V16ODiYhVhjRTrXeFa4OgdNTAVcIIRK8AoyAsUPovRbXujEDRSw7p4PZ46k1W0C5yVJUiz4gVVjWlVTrfmTtOIL/9A7nHNM48pOffMZHH73i7duf8rvff8HX337L77/8iqfzwscfveazTz/h6jjtstQ/WG/+Xg+RyuPpnu/efMOcV8sd7ydLm49tkb58fsuG7X5jP12mDpxrr1nBVQ3c2BY/QWlwdVHyW3+MNp/6+GhZfX3v4LTXRbBx1jXau/WkLcauLwSu7wi1O2dpACnPwUeT3ZhTkphUqsmWei8Y2QrPW3+FEMzVqlqioSbGMDKNEIMgadswNynCvpnp5Sa1ZZ74oOZK08x7r0FfMTAhYsGCE8RpUF2piKsdJKS0OXa1bJ/eE7H7UjULXwJDHAhrJkTHWqplNcUkNcHYCutSX4Ot7hqElKrZ4uCD3nqRLde2C3b20pC+AQvb+Ku6Yzhb49Y1MY6+3w/vHFfHibyuIGp37nywAMYTvEpXcQqQgleHxBAcpSqgcgJOlOUKMVIlUUpGXNE+JDX38xEWremQTPQ3DKM21Cz1TK2ZYYjWK2KFmm38Vub5DS6fyeWBNb2l1AVlGNXIoxbHFG/4+OU/46c/+e94efMRYzjw9PaJ+6/vWXMmeAM6vlCqJ63CnBN1KEgYcAyEIRKHQPBRr6MIzldKXnC+4iRrf4xlxbvE6iM+BEuAt8dWXKnU4pE6EMOAi2qIUiUxhIlpPBD8SM6VWtV8JFjh84d0tG7bQJdCNVAsIhwOkWEYrdGkSge9BdHruvR6DdC6V+e0mV8cBvtbYCAyHQ/c3N1S1kReNZZIKSm4FWUfpVjdKja+bVnstRkOpXRb0+KL4xJgPAcbG8gQdRe0NdizrZ/VSQfsYcc47aVcbRxoYZ7Gdm3P0H1Ai8xbXOZroZagsu5ScL71HjEQ4myfELpMtiWUvAGDljzdJ0B+AAraf3csRj+P51dqD7rYWI12jZ8zIbsr/KOA7vnRn9HAxI+cg+we2OBGr+/4E6+/P/4GIOMPUe22cP3gvfZZQP25lkIxp3dsAXXB0KZ9iNaxtnmSi3PqStTPQ8ze9odoqg9av3URh0231xohgU7clDJ11OZdzfTRURkHT/SuFyI72zW06DtwGLQBXi7CnMvmz76bNDGo280WNjnb/vTIJeOS4MyW7up45Pb6yDIrTdwviDjOS+bXv/k911cTV9fHTgveWjbicDgYuFhYloUYA+M4qi4zBqZxJNzdUUvl/u1b8rLw8PDI2zdvefXiJf/yL/+C3335e95llZgcrm6p4jjNM+8eH1lrYQFOWRijJ+eKFJXQBScwVMZRcKeKd4XgQV3OPdG6rsbgKVb/stn76ILinceHEe/U4aV3TXeOcRw4TJq5KbWYveGm13zfgf6hHsp4wWGa+OyzT/j4k495++6B33/5Fe/u7/niq69YU+L161e8uLtlGmK7dP9Ah9YzffHll7x5+5Y1JWMjdzrdHZu3/14Da6Owd3p3/QqYfGqT+FgA2Vc72yg8SNkWaBFa4lU3DTbQ3i5To9xbwuEHxXD9P9uS0jb2LWv9bDHun+WCe+nrRStirs2Zrb/W/rHN4camRuuU7rRzcZYEKNA4DB636ua338x+sEm1DyAmOGzJC5497h/wKLWwrJVxVGBVikrXSil2zipfqz3TCU3Sllun7rbJd+BnumsRimhBuLN72LJ9FZUVLWlhjBOlaqO+MU4KlR04Ualmzisljji8WcG25Ecb2wCujw/nuqi8n4eaIWzdwKUqk++yIM5TRQ0/lkWZhiUnmqy4ua05tG4kZa0bCT7YuWYKWvyriafMOIxM40Re31FdIeUFoRC908DbCd5XlvVJmYI4InlhGidqHVjWhIh2kpYacCESgmNd70nxno9fXvHbrxrAABFPLZ6cARk4HD/m5d1P+OzTn/Dy9iPSXDjfa/d1RG1iddKodXpeEktYWVfBDZkxoHuBjFrvJBlxWZsSRrUCznWlpDPrsuBcxfmRYTwAxZzGKs5nZUfKSsmJIR4JfiSGQhU1HAhhwLsAXhUVRYRUCvO6/I18N/+uD2WiijmNhb4u7t3Xevfu/XOydkP3AeIwMAzaS2uIAykn0rKAc9RhYBz1+Y7IYZjgWtnqtK59bdd6wVXjJgPmriWX3LY+9ma7XnTAVwgNPMjzPMgPgcZF3RrbmlmrUIMQSt2kjH3t27L6pUmfrAnyPvHdQIz9GhBc9VRfkRCopZq7nAIOZTO3hEKFLoHsYNSsxjuI6LHgLvh3at0vre72R5fiXSz7TCrF7jo1ZPfH6jH0/VoMfOnUZVfrR8ZZS91tgGiTS233yt7oveOuv4WpJD96wj+MgpzZudpPzhnbYGi47j5QLRdISdGnjs5WyL31oGgD0zrAOm2KF0dF2zVbAOTN0tJSmrq5lN4511F7F1ofzFc7b3a7IIwx8ur6yE8+vuNqGvn1l99yWhN5bUVEW6DwY4OsZVKlXR2LbLxzTEPkoxcvePSPPJ3nHcIECJyWxBdffcPHH782nb5jnda+uByPR87nM8uycD4veP/IOATSqvRmHAZu717w+uNPOJ/PvHnzhm+++YYQPJ9/9jH/5B/9nP/13/w1cZyYDlekXDnPapFbq7AQWKvXRThVDtlBRBvvRWEYIYbGGvkNPDhHdNi190hwuHVjI5zz4D1lLXi0qLFZ/OI2tb53znqYaIfcLMXkcP4Dys/+xx19gQWid3z06o4Xdzec55l39w+cz2ceH58QEV7e3anNLbz3JP/bPmrNfP3dN7w9PRoruWVQ4MezLBtgMGDQ58Y+m2PshG1YVY31wV1S0YpHDIzs0MEeVGy/RRfk9o4Xl2z3vN5kT/q9YLchdmp6DydELl5nN6mhF5ADrTDYbQ/vEswApF3zKacZ6UqlIOSaqRSG4DiOI8OpaJ+Ei/enr4HPz639vq23H8oholnVWowF804lTE6zh941AKaANAStBdMxUg2Qmj67mBFEv7fKVBRb3zV5VVizsmFjjPiSLa0UlDnY1wFhPmMlU6wZnbOMqm7YW6BysXlLoDd40dOwgMTYprLZ8qZSca4ieNac8Yu34nMNeF0VfPTUUjleH4jDFWtaKFkBFCUxTiO+auM0HJScSSlwGPWep2XuQam6RQWtg0wzwReUi9P57LztkS6Sy8mSPtGcnHRNxwXWdK91UAayyuqp+UDgwBCuOMRXHIYbpnHSe0Y1JZOZF7iAWD+QmpTNym5lzhlZMxIHYqxmDFNBEuKyvidq16rSnpnzfMK5ggujdULWi265a627KpmUzsQ42l454iqEMBD8gCNAzXgRcl55fHok5cLPrv6OJ8Df4PDPgfIusHwOPDb2VWOmUrSR7zhOeKe1O5qB9+SiNs3rMlMOB+IQzfEtMA4D0+HAMGltpsYuyhiuy8KalOVIKVFzUbDvDEWLMn4tJvKy9btq0Y9zJj+/SBJvewnYvNoHxtWAhq/Pgmtb360Ww5dCcV7nUSkXMtGWINgOXXu8Bf/eKzvufKaWQi3aOLnWVusnPXlDk/2LJcqbbNF7nU/7m9iTotBMbLz3mlwRrUsTY7OdcxdduvXnZ0mxto9esBj0mpcfK7C/eN4fH3K2Z14+p2+Gu9d9nxDkb8BkbMf7hTZy8V0ryGwa5RaROyDGYPfa9Q24XWQNMMQo9O39/S6du0fDoIM3xGC+9pmWEWubeEWpvzklyzTZ63qHN9QdY8AnAyjoAnl7NfKPf/oxf/kXP2V0jnePT3zx3aM2gmqBMX7LMtASW45m09qDA+e2C1mFtCyczyd8UAu69rjmSrLmyrdv7vnlr37D4XDk1cs75nlmmiaVRjnHzc2NPT4zzzPn85EhjohUDsExXV9z+/IlLx4fzKHike+/i3z2k8/5b/7yn/PwOHM+V1wIzKeZ+6cn8o6qPS0rExCo5BXiIPgKQ/BMURi9gNNsU8P12lhM6coAVM9FFrkFhqkIMQSqePaWcCJilK313wjqWqIyCw1I5H1G+n8iRxvDQwzE6yuuj0dyzp2pun/3luNh4nh1JIb4g1n+d3Il9sl7hHmeeZrPrFm91u3EewZkvwDug13a3+jbwsU565QWdhPn4hxabWebk21fe75ituAzNLDT/yvt/5cJj4u3c9tnsPG1P0dtjNY6jrv+nHZtGkgR5/tath3u2Vc9WoNRfWztuKl9jloyoxOuh8gYAnPKFwWXXU5hMoHqWqAsdr4/cj3/wQ/V75eqQa72x7BAqYEtp0YSpbFWVQixSR0KOHOg8n21QajUmsF71rwS4wAOUsr4ELT3Q9tALUDIOSFjVca13XdpfYza/RQDF1bw3+22wRFQh6KMcy2bLKh1VDOmUPARLECvohId/Z8npcThMDGnxhAIpQoxaNgcQ2QaRlIKKosKgwZAKRHjgIhHnAbWS0o2Nxqbjo37Jm/RsV9rxjOypJm5FKYx0uoqNPA5c16/ZIwvdcOVzGE8INWTk6MsHlluGdzHHIYrDuMVN9PHRD9pUb/p3V0VXDXTFLxp4M02mEpxmVRnakqEJXIYD5RitRsUfKyAV1vhrOvPvCwsq7E046QAIkYaG7oFfpCzJ+eVEA6EcGCMR8Yx6t6Iw6eEc2piAkJK69/bLHifo+2/WlPjeoDdCrpbUHmRqRbprlstMPYhMI46PrW7d+j7inYM1w7xw6CSsWyuVCGEXusWYuQYAzGPrOtKSIm8roiBF7zGH7maMYd4wrYy0tY3732XWG0yIG8NWZ8Fxzsmw1eh1sv61zbXGuPjvEoLcU6jvzbfxeas61EZOj/RnkSyrd3OOaoPFK/JgGIMhzRvXZqZtr1u2T6LSLUiefscsn2GvlL1mNUTYxuvWxzrvTbubLKwjdHYX5bnLPZzqdTlOOrJv2fX9eIxu8c931j38q32Xu+zp/xHMRl/CAX90feT7Xmd8jFNbRwa/asZCO8bcnNmQUlnL7xz/UY1kNJes18c13TKAiaT0oVTyLYptX4UItIHe0AtdNVhKjCvDqpa2h6ngZ9/9pL/w7/8Bf/oz17z3fdvSKKdm30zUKcA2gfC986iJg4zO8AmjWhWvC0QWNfEt9+90SK1IRBCJDdddsn6oU7w6999xdXxyPXVPyOEwOPjI86pLe7t7S21Vt69e2eF4CvLlBiI+LkQnHC4uubl69c83t8zn848PT5yenzkz3/2OW/fPfCr33zLkhKPpxOPpycDXsoWPKaCc3CYorrDiHqwD2jH1hA0+PPmGuMMIAqFGCFbple8LjVqsaZcRClVadIKwSnI1AZV1QolrWBfLicSDYz+J3782Gdwzpml8sA0DlxfHVnWlXmZeXx64vrqumtt/96ugQhff/cl3739hlXMkcfm4Z6+/bEsew/caVIpADG3qPbV3Ha2qF7fFjH8oc/XdWHHTjixgkR5thBdbrxC8/9voEO/unY+u3WqaZH1PbbnhOg21yC7Jk40KNo8+BtYsmBTNvlLtQ2o6Xr1vffSrH0gWpFamLxwMzquB8fjWdQyuOcqLJPfnO72qMl+Lz/I4P3DHmolXikFcNqAtdpGjQjT1UjJK9B6Yuypfx0n7TX6B20Ar4FJaa6B2m9Cam/PqCyH4YFsblMBbfjnLBjWoEX/1uqhlJVoWVb7MM5Zv4yA7iItsLMaCTSDrwFbYYgjy6qJKWViKmEIF+Cqloq4FlDVfg4e9fz3UdmJw3Ewy1goVny9lkJ1ZmNMVWtT0T4Lw6h1biLWL6NooXOIkPLMEO7IZcYzEsIm41NXxUqtM1IOpPMI5yPH+hnX42cc4hVXV0furm85jkdcEcgVSVn7cJhJgrc1XXKm5ARDhUmz07lklvWBeRlxDsZxIESPCxFByLmScuLptHBaFpayUurCuBwY4gjuoHalAkJG7XS1ODjlM3EIHIYrjocj0zgxjhPF9td1fWBdF07zEzEMfx9T4L0PEem1GC3ob79vcY+3RoLrmixDnslp7b0zqgXg7ecWM4yj1nKkpBI5L9qMstne5pw5HA7aaTwEhsFrzWpVKWKMkeA8NWhDYAektJKzSq0aUPFe46TaAmfvYS/9CmZw7y4dqPqaZQkXaQBLpLOEOu/1q2b90e7uuyC4dkbDjEhcy2W15oDbtiG14ms00wdtfulKoWTfXefa4itg3eX1aOygbhU7xYZsf9/vSc77Pmbb53XOq/tcCHqtw+7knMkwLfm8Wfm6rZlsj5N/fL2/4DGk7YG7fa/925bjy+NHGJI/drw3yJiuggbqhYubu8/W/THw0W6o7NAWqF2ermJbxtAZ2ui1Fw4trPGCN0/16lTjthW6wD4D7hxasBcCVQqpVnKtqoelSbCaPaXH9QGqaDoOoWuBg4fjFPj04xtevj4wh5kv53se06qSHbsjzvkWs5hkyAqbLw4bkM4Ci10GuAisOQEZbS6l10tKo9Iq7qny5Vdf8+nHr/nJ558RQmCeZ25ubhiGQZv0rStPT0+c5jM+eI71oFffecZx4MXLV8yfnXm4f9DGPPfvePHyJf/oZ3/GusLvvr5nXmYtGnMO8QFESAinIpxSZckQs6M61eiPMTLESkqCC2j9vjSwV4neI96RLUxs1GRjAXOplEb9o9dPs+Sb9rH2DaTdY33yh1ao97/3+MH03X3Oo9Hay7JwOp9UYzts1oV/18eaEl988QXv7u9/MLaf1wa0oLD9bS8J6unVi1Vjt8x1u9UNBOxiyQ469H008Osf34nJIJ9fD5NftXMR6ZtCey9Bdn9X0FBlP2fdFsgqsgJEgXF7LuAJG9vQ/sl2HbbNczvN1uV2l4Mh4agOhlC5inA9amPLZMXkOJ2DSO0Ssga+W2ddLMP/w7q5f7hDnErBKI7Q+uw4df3TpMuqANuucaWx2wBW3Oo181xrk9OpsQdmF1tq0b4LzRJX35lSVr1u9WBdnjPK+KirUivMb9l+qRlxQR2RL/TUTVrXVyRaVL6NKgGxir8QEMn6GoiBSJUppVohZX2VNs7sdXNOrH61msItQMIJa5pRQwRdO3Mp2oy1N3zUmqBUMlfDtdbQuUoMHqmBWhOOEecTPhyQov1EnD+CXVUfAiU50nrmvH7NGF5QTm84lI85hk+4ii84jFfcHW64na60F0mBvKykeaXm5tikg7qmTElJu5YfAvHqwOgy1ESpiWU5EeOoXb0ZlI2oBcmV0zLzdDqxrgspr+RaWPKJIR00UNWMHrU6RFRTD46cZ3IaYbomhIHDdORwvGJdV4ZhwvlHvn/7FfePbxiG8e9m0P/vPHLOfe1ogGPPamjQmRFxPD0+cX//jpubG+7u7sg5q+MFdICxLyJ/fHyk1MLd3S0A8zx3YNF67uyPZVk6uBkOEznreIs+UL3DxQF8QGrtdRygyYTgg5rY2POdLd57cNFee2M5nAbjtv46EcTvklmijJ0XwVdzGqMF7Y6cnTUA5nLL6VuUU7WMgQ7xol3iXcG5rc9QKbvrXluaWCyVasu8lB679rfoSYfnSbB9nUi7BhuL0XtjuC3Ztmex9qxD3/5+ADC2NWvTD1we29/bf58lbfb3f8+qvEfM8d4g4//8f/kXPD2eeXw48/Bw4nRayEm1k6WgfROKndTOZ75l+7r0yahtZSsicTAXFq+DyO+sGFsWpSG0puGriFIeBnLaazcrQ4wi9sERhqABbC6UZ1dXN6Id2vROk45UYnAM0VGqgRsP4gr35cSXb2b+/Zff8HBalEbviz40j3fv/MWN7gM+BibMYQYNsvcNU1zbNFUIqxuWeEQ8KWuTpa+/fcN/+KtfcThMfPbpZ6wpUXJmmjTgfPHiBfOyMC8LDqx3hqLeYTgQrQj88f6B3/924eHpibfff8eLlx/x8599xvf3J3JeVXLiHKVlA8SRBc5ZSMmpnnoIlCIMMTAOwppqdwSjijYu9J7gHNnsHxWEGTMlCq6a9KBKuyZKU3rv8DFSshV7mi1um2z/WR02RoYQ8QfH6XTi3du3jNOoJgA/Ip/62zmkLz7fv/mGL775kvOidpt7wPdcIrW/PRfSKRou3xVJtwz+/rEtcHcbW7IlLPZgU6ywcMtctSV5e7T+VsfZFhju18l2TnW3bu3PvzEpz9mano2ru7oAO5VSpdd6tfPwjaV9fo1FgUbX+wOZyoo6t41RuB48Qwgs1iOimpmFc/rerenVdhquf5Yf5Dv+AY9SM6VqkzxPACkaPNu6UKswmAHHMATOqyZdSlFZS90BOloyA2NzRBvP1WTmHg588GoJXAUXTJpZKsFpsJ9zZvADRWrfZ7TYNlHrZDrwQmNUVAbhrJaDDfj61jl5u8cKGGwdR01StBZHb0gp6sSjn8/GiXMUUSC2pIUQJht7BZEMDnJemEaVESHG2BeVdIhgDkTFxqKyzmEMtu84pvGalM4s+VF7sYRrVhGm8aAMgPeUmpAYyaXgXUYkk08TIb1SZ6pwzTgcOU5HDuOB6CNSCvP5DOXM/LCQlxUpBSSQy0paZtb5RHWVcDxwuDooQ50X1jSz5pkxafAvdaAg1FzI68K6qBVrKYUqOoZSWcklaQf0GADX+5LoNVspOZDSQk6rslFRnZW8j9aMMPF0fqtZ7PABVX2z1fE0G9p9B/Ccc/+dd9pUNOfM+Xzi6emJEALX19cKGKJjWRbmeebly1d4W8fGcWQcR87nEzknbfjrtZlve+89G51z7hLmPTNSSoEYGUaVUnkztZlqZX5SW1zfVCRZ651iHHC+EkWIIfb3aXJzix4tHrTaud0+s+01z4NsKN4bgxK2+ocfBOcWnu8SNN6bVM9VXHEUV81Gu2qioNatPsRqNWpj4AGq9fhyCnp07Tcw6GRzv4INXLidQiM4fGgxoVysL3V3/ZtNPHD5fEU6HYy061PrJgVtG+jWsV36/scukbudKRev367x+xzvPZsez18wHic+f3ngF9NLpvGA94HzadF/55XT08wyZ0oR1qWwrpV1LaxL7lT4uhRqVgcicAoygiHA6jqjAZh8RqwYyZnGUKVPzm0yJOelb+qtSMZyX7ig2chUdw4zeg8M+esi7HHabdwDVbPsMeiG77wWSf3uu+9J/67wdF755vf3zHNCNaAm9wCcOTrt3QEwBxkHXB8OHMeR86o6yMou29lvqWaxvLEjDUmDLpxPTzO/+e1X3Fxf8+rVK4Yhcj6duwPK1eHIq5cvefP2Lcu8copnHFpnsqaRcZq4vr3j089+wv3bt7x78z3ff/c94zjy+tUdn336gl/+NVxNI8u6kqVofYuoM8qSK0t2pAyhqGvJEIUQtHi+okkTb9nA6L2iePuczmkxeLCJXV3EeWuk5RwxVo5XEJJjTV7dZixD2Yqv9hnh/1zARp/UzmqEbm4Zh5HHx0ceHx65ubn5W5RPPb+mQskrv/nNr/j2+29IJf8AYLQFfFvYmiYdC6Btwe3DvRXv6mfz0hY6fT+xXgnegfdWeGfN2xorITSXE7q9qKrcnRUj6rzUQj395yzi9qIuR7UWfDB76wDZNpA9+9IW+m1zuAREjfFQTa8+rrkLOXOXcv3xG5AweG0MhihSaKwHjiKtX0YhUDh4YQpwdrXLrhqT2zsf7zKAW0M5PYcP6fBRWeZSRPvmOO1GLV6TCbWILiROr4GOC72BjdVsGmhs7XC2EYgVjZdqK7M937lgblI7hrTWzorVqlbb2pejmnQkE8JArVuGtdmZAx3LSqs9IKglsf3de08cIm7V+7muyfpzFJO46bmmVIyRULco5Y51nzqdzzhnCRndvDbZiSiIgAHnzL7VC94HSvWEeKCkwpJWfKgEDyphPVLKqsXvaabme8bhI5y/oebVJFcqUVInpsQ8v+WjV/8n3vzul1BHnAtqe+4iFGE9nUjpxOPDAxSHLI66Ql4LjkBNmTSfSWnFT0ficUJG4SAD4p9YkxZ1L/HRAtigoDKVntRswK5UBRq5LOS8IlLQviIWQ9m8QQqCx61nzudHpsMV43nUOV4rKa2kNJPzrGOpfFjzBLZxB/D4+Mg4jj3AX9eVdV25ub7qrpKvX7/uNZpNXuWcujXmUpiXGeccKSUccHN7w3Sc0IbEER90bJVSmGc1EGigQ2VTQw9253nuzEjOmXEcmaapNwIMw6j2LFf0REBatWh8yTqO15QZYmGsAzEEM1wIPcH8LHvEPklzwQyjCQWdLCqlbMyg97sGm/0ffRo3M6GW4G7uTK5Wk3M/AzeyW//771qBuAGZmtUG2rBFLdv77wN2cUETROK0MSBmfNEbtOp+mA1YNpC3lQh4JOxYDrs6Dahc1Jc1kHExvi74i+1zor/shee7hPj7bifvDzIeZ7ybcf6+b2rOnAiGYWQ4DHxydzSU7UlrUZYjCzmLBuN43nz/juW8cj4n5rM6Cg1DwxYeVnXzUFtDzfj4ogMnNNcnaXp/Axu7kaGTILYtfbuJO73yNjiLeYlbjlP0ymmzuEgIqwUPlfMq/O7bR76fF3LKkPYFZntgpOfpdu/tvIY9wTuOQ+Tju2v8cIsAy5J5c/9EtuLGRiu7huDtXnrLPjXx4Ok889vff8FP/+xTrn/+532haUXgV8crlnmxAu8nyzorYLqqMA4jH33yMaenn3M+nTidTrx9+5ZPpiOff/KSn3z6iofHE0/nRd0VxKEKX0jiSDVQskCmtU8neIeT0gNJjeVEk5TeMn1onwwFjkBxxBAYgseRcB6mQ+DubuJ0KsxL6vrzUnYZiN3C8p8LyNgf7bM3vew8zz24h+2a/K1IqBxIrby7f8MXX/2e03zq3MZzBmOfWfqxo0HoFlw36YjKfZrW1bS3bEyHZpErrnfz1ud6hID2rfECATUeCG0T0qVn9+42Dm1etqxSO13vnEpK7HM/iyP7537+eYsUzW6JFqkqTthdgw6gdtS1gZ3WAEzd2FCNszQwZTUVorR9CMLQ5hmebqTRzpfLe79nj/5uWK7/uCOX3E+nA06rs0B0zU1J+0XoIqhjoh/WrV3vsWhw6TZZlJjToK1MKskoWgNYaiFZ3YG3LvS5Vl2PLDhoe9y+LkZa3xMRLQ692GUbwrWMKEBtYxyCHwg+krKtZfZZNGO7FYj7xtA7QaruWzkXwmT7iAuI6DipJgdDfAddNVeYvGX7sWDN7IGrI1kDs8TCvNxTZEUkABHnKqfzEz5svQmcOzCEQJURpDKEyNX1LZM/UpIgFcpaWM4znkThTGKm4hmYGDkQZISq8te8rOS0ghPidMD5EXEZ5yKtqFaksKYTcZ20cJ8BqsO5aNdx0Ky3F6hFC8LNqrZaTxPMChrMlKWuZDeT8sQ8n9TFsGjfh/P5SSVxfXx9WPtJC4xTSoDKppxzHA6HziA8Pj70cdsC/sPhcCGnWtcVHyLDcFlz4iwxMVkdQH9fEXCeEAYE6+4trVdHIMbMw8MD67oyjiMiWpQPuvZ01sBrED4OAzFqc8hxHJnnhWR1I6UUllV7lzVjGGVYBlNihL6XtTnfz7/FAViAjNVlmLUs1hfDOUxGdwkyLvaqlsV/9voh+P7YluzQ59l719aZvBWIa0JNiqhPoKgVey4qa2vxi7KmXoG/2Hoj5nDqHIg3oNEaNGfr9l57fYhD1R4i0nulFLHkia0ne4ChrE+jMloCkG6gI25zMtOQeM9g+L420r7+ieO9QcbTw9qZAm9yGN/ZhXkLpl37XTAHA9+1fyB89HlgCLe4MODdRPSR6BzzaWZZEo8PT8Q4MZ9nzucZqZ75DMOqzgY8FVzCNKWCy9IBj4i34NV3p4gQvDqSWHawnT+onCqVpNnQ4KF6de6onhD1BtUsZGtln54S81I4DJFpGPButey7jUnXQMZu++mIGMbguL4aef3qmk8/ec3diztqgf/w17/hr377FWsu7PV5+6NaoVXYOYa8eXvPX//1r3l194Lb2ztOpxPOOYZxIA6R6+tr5nkh58S8LIQYGIexW8uO08RHn3zCd99+zW9/dc+b799xPF7x+Uef8Jd/8TO++vpbvvpOmYhUt5CporKplMEXT8pClWJIXz90m/YNNA8hkL1QcUQPBKV2pTrtXh4q+AQOxsFzfRyZl0UL1rLYBGoDX2wz/88TYDw/vPccj8e/1dfcLqt+U2vmq2++5Pu335FLvrjue6CxPd+AhNskPfoYc5kDvAVX3pqtiQVXXePeVr8qNM1+oyNaPY93WGNMq6+wTaXiCNIK5ozLsAZvgmhRrdUpaPCvnV51dG3Z/30g3ILN9oe+6bR36Nn1bTOSlgrqmXLpWckiQnFKoXsEnFL7jdhUhkT/J6it6xDgMHhiCOQtnN1Afd1Yzwv6fHcvP4SjCraOVbIYawsEH2l1laUoE75v6tXGVfAmBRBvgUXdmCIsi9/7t1h3ce8oon7/a05Er37/nsB5mRmHEZC+MWtsom5VWnjtn431tmm3QCFQq++JIlDo5J0m0YIL0ACG3eNK7ZNN5awjOQtVsrEaFQZPKgkyhDjiqgDqnBViICexgEMLtEVgGo/kXK1ZnycVyMUxVE+m4GVlSWdAM8ZxGECC6solgBtxbqHWTCmL7T+CUDgc4frqltP9DC6Q1kxaFh4fEqs8stYzx6trrscXBB/snET30rRQ8qoxQohULxQyRZLVgjjNNeYVvzwxDAe809cIbqBIAudNFrhZirYu7tFkyDrkvZZgVSFLxpFYw8J5fiT4gVIsO2xd3/fB6od0vHv3rjffa32xpFaiDwhwddQmg81+di+TAXZBqRAivYavlNIZkTZXGgva7Gmdc1ZL5FVBgvYL885BUNlWc7jcv197jxYUiwhx0EaLVSc/LiXtUSHCZIDo6elJm/3tajXmZSGXRAyRcRwYh1EZvB546dESKRbqdQllS1TpGr5nqbn4CphiY2PU257V57NrNaD+Ym0XZ2uY1Qu35xU8Uj0VLTzPRSWcUqvGcl57xRWvbL3G0YVQrSg+XLLSrV9Kq7+p1e4HQRNPVjedxZLSz5ib3qjNYmYawAC0IF7BUJsPOvd2lrhhk8ftVUd/7HhvkLGcG1nQNMBtItM3xQ4+2lfXfrZFoSG30D6kFVbbgDhMRz59dYN3nmm6001mSeRUrT2656uvvie4iSGMPD6eOJ8Sy7zqxFgLy2pbr1Pt8hAD4yEiDtZVsx4KjrzZCQqlZsZh0CZydpGxgrwiWiwOqB874IegjeaMrq6iWa7gHDFoUO6b1Mqi7OA80xj49OOX/NN/8uf89Cc/4dWrFwxD4PPPPuLq6n/ll7/5PfP50j7veVayUXMIpFL47Rdfczz+O/7lv/jnwBUueG6HqIvR8cDt7S0PDw+IaCZjns8E7xmCJx4nDtdXfPbTn/L2zTse799x/+6ej1695Bc/+4w//9mn/NVvvmX1VTcD60vhg2cVYc6VWANkz7qK1go4MQkbJluhFy8F74neMtCmv2z2js7DOI3q9Z6F+6eZ06zZuOYMVmxGXAztZwvNf47H323Bt2Y8zvOJ3//+d9w/3HdXiz0DcAn2tgCs/Vzr5e8a+9okVY0OxoqYL7b6jXrUH20j8Y6eeab1QdtlXC6f3BZSW/yrOsNVaTI9W2m71fQliNLFv+XEDAA4Zxkqs4kVtk3N2NO+EbWU0QWXs2NE7P03aUpwygABAABJREFUKl7PQdcfpc8H55iiZxqqGmbkSusurr4Q22tcnHdjcz+o8MnO0bpga18dR0lafK3NUzVwdv5SFunN9nFZ1pZ2vMgwOrvO3jYmQWiOOZqcyGiN20p0A4MPpKw9AwYLuHr9Xy+m3WUB25qzm3YdUFqNSSRQ3NZYNMbIEEatP3EGMstqwGgDJTlb8bcZB4h47V7uA96PIIL3UWslqsPlRAgTDm0wl0uyZMxqAVdgnRNStH/UECPercQQQAJVFnBodj9OlJo5r5Xj4RonhZxnSjwQwxVLemDN3zNeZcZpIo/aGLCKI6+FfHriXO6pPjOM14gHFx3BaUdwVyuSEpLXXuNSqpDKmbU+UTGHIh9ZU6LOJ2uiF5lGLSSmRrSnSqLWYtevaG1GXhnjpIy683gXKSSw+59Y8WlmXUfmMNL19xZ8Sp/dH9bxvAhbx6AG8K3JsLIEP+yArVn4sOn4q/Sajucy131vhfZeDdi0Q0RYlk0xcX19g4g+RkHywPl8ViezYeB0OrGuK9fX16xJQeQwDLqfS2VeV33eOHJ394I4DAo0RpV1C7rOp/nM6XxmGkeOhyPjMPbET6/jcB7nw47pEOuP5juzsp/HGrS3723Nddv6qayCNvVTnrLtK5tEta9jbS2o1eqimhQrUJ0zgFFIKdu6tYEMvO/No7dEvXZid2W7J+0+KcjIu2SdvwCWujxVav8s+6TdNj4uPLE6wBbwQXvkOFX0tOurzbONUWr793vMl/cGGTlvSL8dDVy0rPKPgRBlGaq6fngAteYTIERn2j+Hd6LNxx7v9cKYXeQQR8ZhUJ0djlefXVtheeL64yPH40dEuwDn88LDw4mSmv7MJpkfmJdCSeo4tcwnUk5I9Yw+8PrFHXd316SUOJ3OnB5nHh4ryUUY4Xwu1Kw3zEmllhUJZi8atHMpThFljMGyN3ZNGmviHcfDkZ/95HP+/Gc/5dXLV0yHARA+/fg1/+q/+efc3N3y73/5a+7vny4yEdgwqe0at+wyjqd55ouvvuH1q1f84hd/zmCUmlKMkbsXtzgPDw8P5JyZ50Wb7UwDwxiZDhOffv45T+8e+Otf6ue/v3/H9e0t/+yf/Jz/5d/8ivnrlWwWniF4fIwsJbFk4VjAVceahTHo5q9jw9OaqDVhQWORvHW6bWFPKZpRDsGTs2NeK/l+ZZ6raqqF3lDnOcBo2Yv/3I+/U6Ahla+/+ZKvv/uac15JUth618tugWsdrqUvgLsX2S1I1smZJk3pEdr297qze2ZbzDy2prQZ0dMwbd3rnmzs3Z5AAb8Zx+q5UthqPNo1NAc8eEYmtuC18yL4tsGIUvSbXIkdUGqF5vpMewt7PXYLv3TnlAtZUOsWjV6n4D1jjMoC2gZYDWRRndUC6HFRn/HBTZGmDda6uxh1DW9a5lbcHZwGkU6qdcxVeUgMAbrnfqCUbNlt3Xei8xQbH0WUGRBKNy0rpVBdIZekWW1pHccrLji1JG4jr/dAoo91F4LdNxs79BtLpymwfUw00RJixFlBa7X7ttXTNKesvSRUE149EJTS2R9ncq1mbys0CYzKjgQLJGqBIFZTUfAuUksmScbHQpXVwFfRfgbG/Dydv+XqGAlBAc0Q1Zo3lTNP5++I8RrPAra6+wZyKwzj2Bn3JkfzYhnkUqgpkXyiloV1XcgGdGJUdUMVTy0aVM3LSeXYw0T0A82RcQuy9LrUmoxxmfBuwPmI9wPOrThXwR7T6jdyXtV4wEUDp5EYjuyZ1g/luL6+/kHB8l6aBJDSwjAOF4x2B+XeG7Ng2XEb1yE8Z+a4+L5Jm/ZOVnlN3Qo3DoFx3ADLuq79/Zrt/DRNvaYjhMCyLBeJD1CnqvO8MN5OXF/fKpspwjhOtL5EtyEwzwsilfN5ISWtmXp8fOTm9pbj8WBre6G1L/BW94vXGGXfIb0nCyy5pWWjxhn3+ab7VKnaHFPrWiMbq7EVZ7tdLOKMTZIqyp4aoyJV65vWdcUhlCY9in4DEwYy+rUP2xq+B4RtnXzOcrSjrSf7iKnvQdh+arkvrTu2XnU+dIYq+BbLNjthrw6GznWmh/eYK+8NMp43e9EPtgUF++MSeLT6DQyASC8iSYs6CPXfO4ez4N0Ffc/VzZz8Qq/ME+vw7EQdqexitkVeE6F6Q0pufSwCBI+LjuIG6pQYjp5hCEzDwHAFZcj4I9y+OHDLxE/8R/gQWNfMw8PM6XFhnVckOw7jRM2VtGYen058/+aB+bQyxshhcAymp5OM6cE1MLi7PfDJpy+5vTuCL6ypapH0MPKzn/6UF69eEULg3/zbX/L4dN6yoLZ/ibNt1XTftQrrmvnu+3v+6le/4+bmhk8+Cd0tok3spuec55k1rfjZMx0mhjEyjJGrm2s+/+mfcT498fUXX/D992+I08hPf/IR/8O/+gse/x//C9++y3hRS7UkECqUoTmiQKiCxIqPBi7ZFeI6iD6QnTp1qchjCw5TKWRpmQZHEa3pabU8PzLELFO8ZWz/y/G3fOwYonk+85tf/4pvvv2WVHJf6Nqhi9/mrX65gLfHKGPQxnRjFBxC7e5Lsvvbhhw0Dt9+bgxZa9zkMYmKtAe3xp9t4oACIKvlMDDkjMFw5mgnnZGwtaS5PJkunz3dvGNpWnipoNldfD59mDcf+MboWJBoeZe+tFWzqwj2S8uGZQdCxUtSVyDnmLwjek/p4M02KNs42i1s/T30Gn4480Tlj9kSUZUqpkH2jpKzSmEtQ+dQyVLJlRCHHvS3ee+9ZqLVanMblxbmbyDVO22iZ2YdpSaqTDpWRDfpOEZKtS7K/Vy1wZjW6bUAwgCw7CScAmJjRwSVUHRA7TqoVBMU7WnRElHeQGMLJpwFK9RsdSSZIQxWJKt9h2KM5LzgggYjOTemW0P/aoWvV+MrUlnI9b6vp7msSH0CKiHouptyxscJl2pvvlZrRfKZ7BaVmaUn6pg4HibmuFgKaQP1IhBCtCZs3gwSnc41is0RIbOwlnvm9IBQGMcbnJsY4ojzBxwD6zpTirCsK8Owog0PIzEc8H4iuBFcsnhCELPADSHgpGVjI4VmUZzIxZOy2d/mZNcbonU4/xBBRmMJeoa9FHLJPD480OpNc0ldstRYj+eM5kUXaNFO1k3Wvmc+9kH4xXNxuGELaJvNP2xAGOjF5+M49vOPUWtBmgQrhECMKukWEUIMuKiSw4O7MpdJj8r5hHEaCSGyriun9NRH3GleuLq+xfu41Z047QXjvevScIf78c/IJpeq9n4ijpwtgWPSJFekj5VgsWkrDdDD1uudm1NLNLUxVUoxO9+1n4d3Dle12WEzAWrMkTYs3OKcC5BR216I7RNycQ9asqABoPZ+dqZbs0DvVFEUgrJAIeKDGS7snPI2aNo+bZML/+n2Ae8NMoZh+FG0++NabD2b3mW7/b4BDrcDBY4up3HGXpQA4kWzK/3vW4F3yzJuDk66UHeJRItHnIKVItksdisisxbjVHMbkZZpdGqT6p3qXp1jiMqgxCFwd3fgxScHcBrE2y7CED7Gh8jN8ZrrqyuW88rjw5nzaWU5J0oRbq7uuDtek+Z7wq1j9jOBGe8iIRyIfuQwXTHd3vAvXWUpC7/85a85Pa2I6OBr1o4qrWiotlBdYE6VL7/+jtvrXzEdDhyPx4vGO4eDyqaalm9dV5WhHZS+OxxHXrx8wU9/9jPOT498//3XxDHws5/9jP/hv/tnvLl/5H/8//x78tOpd0rHVXL1LKtmV9dUuDpo7UUqYhvnVv+iyBjybtJYDoDzunJOjipa/Kmo35C4d9onxG33FHaD/Rnw/S/H3/7xxde/49df/oZTnlmr0Fw294tbz6jKfr430NA2SDH5yA5A0Gz+2JaxqkFfM3fQiVosUGk1GwYUxBgFF3q03sJ+De2M+RCsA20rFt8t0kBjHGTPwjwHPg1o2OfbRjEX65L+vdILkXd6b5yO79CSMPacnllix/f0X0m/NsFps8ro9SsXPurGG7qtIK9toO3rh3I0e1VtqCfbfmEbn6AmFSq7LASvVto5Z6KZgjSZQ9Pnq0vYltlrzQm7xBTAMrO5ah1HLgUZdMNcU7KaNQWrzm365FISJUSc1QPotWx3cA+SASy4kVbUTQ/UYhxYl8XsdFWCV/v82EnbzFmtJeSc06aEJevrrTmTJTMGp8EyWrydSibXRMwq2fUuUqUS4si6gPMDIRRSWsB5PBNQOEwBIZPWleAOhHjFsjxymK4JbsBZwA6rWs7eXfHw7gzFhjmCiN5PBVTSEwFeJ2lPPLmo01VCwIcJvDCGKw7TC8bxBbjAspx5Or/lfH7SPiHrwhAnvIscxmteXX/KFA/ksoJXC+vgleFrAWX0EcKkOntXKaykPBP8gTWc1T7VidrYW72jDpEPZ55ACxhd/15EuksR6IrhnCPnzOOjunJN09T3/+c9lH4sKbe3qq21Ms+zjdctRPQ2ho/Hgz3OzCfYZEvN9Wgcxy7naufRJFj7zzRNU2dfpklBiQ/6WdZVa4HGccSFQJxGVTwsC6UWpmni9UcfcXVzjQDneeZ0OhGC5zAdiDEQo1rQsuul43aJKp1fWtviq9nQijqwVVcpklUCZWuoM4DlTCrfQIY2ytS7AcogqrGQApWcS69zec44OHtfnadak+e9Q4rvSdrt3mdrMGnrRU+l/Ph4ubjnDTA6j/dR3yt4XAwdZHin32uSIexfYJd0kV5nud9B/9Dx3iDjsoDwh8dz0PFD8EHv1gg6MXqwWZ+hzKIZLeegNNlV2KQGImKlkObKAVbzsUOHrrkYeaTVfpjkSoJAtclRatf8Y1n5vCREHCdRT+1ahW+/dsTgYDe4YgwMYyR4Rc5Dq4WYjgzjxNXNyDSNjDHgZGa8i3zPPcvDTIzgXWSMR4YwMaYJwZGGxO1PD3wir/jmq++oRbXHItYfQbxuNIZYK+pss+bM199+x6uvv+HF3S3H49ECC5UnHY9XpKSLkIhmh9ZViwKHMTIeJl59/BGfPXzO2/vvePP2Da9fv+L1yzv+5T//R/zyN1/zcF6soWEhOWGtCgymMCGy4PEM0bFa927fm9iYY5dDB642I1F0XB0pV0rxfa44ZwX4zhGiTo5a3EVQux+X/+X42z9aiQII333/HW/v32n31qK2m95tWbLnvuP96Fn1XaDezfXMPYp9TYQxG13C1N5D7fxc86BlC7o1UxP0fHbd+VqmxXnfIu0LkBE9NLvArsOtaKZZrPmUwI660GyoARDVu24+WchW4H4Ze6r7BxZA47QgfRTt3+OaFMc13KZObs7gFM76B1lmyks1zfkG4hzVwFvbFBxbrwbpb/0+G8Lf1yGoQ6AyO55cCrFt0NICkYBUpxKxYaCWyporpTooej0aGxJjZE3aI6LdumoAV2+wgUi0gF4o5LISGMl5xXkh5WhgwXWNurfxI7T+E1UTIKFdS482Tt3mQ9vQlW3Wzu04RwwDwZnGmUgMnlJmgnO9ZqkxgiEY21KyJs9ENOnlA0WCfp4K5lWgwDUEtQIX1caXknHek+oT69qCo0E7fdeK1MCcVg6HgEjAOS2CHoLHe13TVUo14t0KmENUORMOMN0ESILkiseTCUiNxKh9kbzTa+0NaCOo3CJGwjQxTEIYJlx0TMMV03DHcbolDCPHwy0xjEj9mtP5gWU5M45HpvHIGI+Eq8g4HCl1pSEd52AcjqpcMLYqSCVWu44lk2tmzSdCGohrtOvstosoH96eova8kIv1kjGXtOPxYAX5LeDfJE6llAtwsa9pUkBgLpy7uO557Nacplr23Jm8tdVUULb6sVq3tbHJq5ZlIVv/rlYEvreNbufVzrXVI7XzF5He9K+df6mVMCpQDyFwe3vbAVIwy9tStQGnE88YAjGa3MuAWbV5ZXCUbgXttRGzF8GXgKtFbZgRs9DeYg/vLA7csz3SkkW6+jgzFcglU0r+AcDQz9rYS+sbZuBHVSC6xkuXBWvyLbR1vyXsnSlEXNti3O77jb3qXcSDyiBd1O+9/a71+PG9/bnFXHqiutfJJqls9+pPHe8NMjZ1xGXG5vl83Hdf/uHgrReOH/vzaz+3rFbHZw7zPN/r03wD0D3YKLl1tLUbbN9rYVd/sNnJbjSaUuD0C1iy+owLziaOwxcHFXLCAqBi90B3sz2j4jsFpdas4xgYBvWdnqaBcYh4VzleTeB0YxiDbh66iCulfPh05M8/+UkvFkrryhQmvARKqry8ueMQD8znmceHk9VFrPz6y19x++rI4epAGKJuTE5rRw7HI49PJ4oN+pwTJUeWeWEcBw7XV3z6Z5/z5s23fPXl7/jq6y84Hg/8V7/4Kf/9X/6CL7/9niUtvQg7i9CK5TyOWtX1yzsxulKpx7BzzHHOHFW8Ar4qZmd9MX7apPA9s4mHWi47XbqWov4vx9/Bodc1l8Tbh3c8zWcFGbXYwmc5lGfAr3/f4qxdFr1JX1rGp4rVRDTnKNckVdk2Qp1P2tiogQ5ddDVY1BqEliUOZjYRRAg76Un/RGZK0MmHln2WxlC0zQHLZG+UM645IjXsYd7otgLxY7RxS6J4Z46aChYijqsQWWvl5LJ9pg02ufbcDhLaee7H+j6bvr1fC3b3hZyhB8QfTvC0jRe1J6+iQXwITYJpRdrWuTpYkqkxPrloLyNx2tF5HEZEIqXk3Xvs2KWqQKM5l2nG2xq11cQUJ7Dgxrn2FEfYMxUNZKD74d7us++JVsTdcowtqy6A9xHvo4GokTFeschKFWW8W+HuMEQFUAY8cs6Mw8ECsWSBmUkxfGWIA5gBgW2YzLNag2q38ZHgMlm0x8JhimjfOs9humZd3lKT53gVrSeUcByvSfkdwUGMVwR/oNQZxFPqIxJXxtuIyxWKo9xMhPWWUg9477j2E8cwMMaAF1S+FATx6raj3vTqUBmi2dL6gRhH4jARQiVP14zDgfP8yJoWluXEEAficGAIA+BJ+YlSV00oBmcJB21KWiUToqoOaqkKMGpmzYngZ2IcGYYR56LdKTs+sD2lNd27f3gAEY5HLXyOQ7SkyNYIbi9vgk3a9Fw6pRbK7mIM79fLwexmweaqVLJJZdtjqyWHQ0f1lcEHLZg2E4VaNmltKwbfy23bOtU+47quBrKV9Zim6UL6Fa0ebRwGizkqKSWC90zjZA5vCvrXdWUaR0D7ekiUDmCqCPPZaloEoiWIG1vjTc7VYlKxGPOiAR6uN4FtCR3fGXj9uRQ1lGiF9/p5NQmk13Gry1KwoAnz4DRlpEt37ffA0Ux1fL/PG1vFxV7oHAYcHD4GQhyUvYsDITZwYZI3F8Btr9FD/P3+vhtD+zHzp473Bxmy8Tb7l+0boN0td7ERbpSKwykdYxejPXfv49wDAgMcOm4bkoKcCs4VC+RbwzuziA3hYpNt/63lUifdtM7tvLxri5OiPpw3ysrRHD6q9vNR3e++KLPZJ1bX36+wBSfFQ0oQgwYp41gZBrV6fZoTWkgd9DoFzdPi1IAzhqBoOWih4DCOhHElOkcMnhTf4fwDbvLcvYocxivubm65OV5R4spvHn7FNF9xc3XD1eFau9lSkUGp/zkJ4eQZosrgnDimaWQ6XvHx5z9hXs7cv3vDF199weef/4T/43/3L/jf/vp3/M//269YqyPjKHiyoBQb2szQBd81izFGQtO3G1AQLxQp+NjsHEWbcTmzNKxiTh/qce3MqStEzaKts+lo2UQxl8HXP+yRc9oVSllK+w9mkW3S/uhvL/+y7Xt7ZP4fc4bv/ySRyvfffct33323dRi1GeYss9HqMC4a8TlpOQA29yhzQqLZd4oFeXX34fZApdkGmjiqU8rGfrhqxdeO6Hy/Ko1E0B/2awF27g2iiOGKLYDfFvI9i+K27zvIkQ4I9q+zLfT0rDnOCrBdE85UZfisSBErPtd8r3mxtzXP7WQzZhEdEAZvfRKguxftwcneRaXpn3Ujeu9b/3d+7DN4oBl8cR5nWmqtscg4LwxDJLjK4TCx5JN25TbgqiyG53iYtOdBNhBgoEWTFCaFKYVczbPeLpy4QC4G9Oya+RiMsRDFDDUj1Tr9uorsfOtdQyS9jqclsYLVCkEwcKPGAy2hVQl+oNaCM6AwDiNznfv4aeyEBisFJBHjSKkZ7wKlZq10EDUk8VVHgeCI0XoSVE12hRB5PL1l9jPDcCTnAjVRXLa9Vki5UKuuxfM8s6zCcXpF8DfUOlKrQ1xiSe+4mSLHG09JCaQwiOMgESxJdu1GrsKR6/GGMRypxTEvmeHdwLsnYZUTazqDrwRjibwf8etEEQ2ivA8WTAVKSSzryUCB/i2VxNPpxOn8BhF1PDoctAN5CIMxf7o/hRCIdSCkhTUvrKgN9DBExuEAzXZ4H2B9IEfrj9BkOyVn/DSpOUKtWivpXB+P7fsWrLdjHxC2nlOdAdj9rRVs75/jne5tT09PHA6HDkCC95SLZLEBD68BbM2FWqrFf5eyrRZ4tzqEnDP39/eAFrs7p71A2jXQ8zbZ0bwAOk8eHh6IIfL61Suur6/IOXM6nTif1OXq+uraGgSOFq8VhjiSQmJdVmrVdeHo1GWpK268JjqHIexi1m3PyyX3z+7QPc1bckqvKZSaTaaecL4wDC39YMY4tmE09kJdpbwma/3OhVEvLt5voGYPMnrdjNe6Fm3jENUAIQbtcB+jggs/XDQ6dM1cZAeWtqbHNGKmJxWf13j8qeP9QUa7wm0w7f7WcwD7xlAtYDAU6BpSaLSOLbfP29br27heaNkaszQk1bJC6lRR+8bvfLtIvicVG+3jWqDXbDTZCn8KBjxck260SbIv6jFLseCI5uLROyj21vJ2nqh8Qx9jmYSs7gW1COtaCNET1lYAr3S/jxqEe2NBQgRPts8Bzi8E7xgGtSEcYiCGQHTqCuDSiW9P3xFDJPrAGEf9NwxEFxmjfnXiiS4SXeR4PvL96ZppHLk+XnF9POIEDlc3fPzZT0lFeDrPPJ5OXN/d8t//q3/Bb797y/L195rJpWW0ddIIymA0nbj3avVbnX0Ir5nkBupqdeQipCqGqj0uOCTJVphkgBKnvw/R97Gnloz+ogj5H/r41/+/f804RlqvmMGyBrE1rRwGhqh6yGjyhx+P+9svf2zH27LArX6gAZo/PO//ZohEgJIzv//9b/n6269ZcyLXugXsZvWqzi7VgjpbjWTLzjRw4aRJnTbHKOdUMtPdcNpcNgDZyw0whtBtBab9U4lsAdwfBJsW8FvWrzUxaoFohw09U10vmLf2Gq1/jTIodXdr2t/aOtDWAtXOBnEMqHxL5S2FVBPZmByRohta7xEi9II6R7+WTrRPRy22/tVKLiCS7fqFLXMuG6PRs/P/UaD07+rYgJrWVXjtXSIq5WhAKQskb4zvEFRilDPK5NQO7qLR/tXAb2u0KGIuM87WFHOR0WxuxrvImmbKdEMisWa1dw3ObwASG+eiDkzPJSYK7lTooP91/T7sP61De2VEH9WauGScC2hBtGcaRtZ1Qfczb4Gg7Qn2mVpQqPddJVNxGEEiVTw5JVI1NkeEIR6YlxOlemIcQVQfXkohuMI4XpHyQkW4Or7gVE8sS1Kb4DDhuQICMQxUmZhTAbdyd/Oasj5xSgqUsVoMHyPRqdFHCJ7x4Lm9OhD9RK0wXUfcm8r56YH7JVFztn1wpBbRBoyumNsPeD9yGG+QWkhpZZ6f8F4zsgpEhfP8xLy+ZVg80/nAYbzleLhjiJPdSzaQ4QNOVlJaWEJkGEZzWTKZyG7+fkiHY+tvsS/s3suiWsC5ZwkaI9AAR/vnnSZMW23THqS0OGyfLAsx9OZ/sCtGL5utarOwbYXf7TVaE8HW/6KdW/vaLG7b52mfrZ37/txEhPP5zNP9A6DnfjqduD5eobUgU+/74ZxjmRdl+uxzxBhJKVsh+sTDwxOlFA6TJ9jjcJWatRFoiGifi6o2vb3ywrLgXUrmGiDQ9UZ6ArrVKlZbp4IBEr2rneW0OR+D/gvBdTkWCGIuOrqu7PpW7MCGFs6rFCqEgRAHlUbFiB+MuYiDuq/ZhtBqvi7Igt022hNxO7VCu6/7sfLHjvevyeiNOy6zgxffP9vk3e6/zX5QN/MNFsrzxnPGKKhFo756p/poGcKW7dxBLPtdraKe3ID42k9p2xjajdl7YotJRqVndapDs5p9MIgiSbddi3azaUwJ+hn3NpLt96Vadi0XZKkGYraJ2FxufLAeG15rQHz7nbMu6Lky+1Wz+6YhdE4dPUCL1WMIBD/bRhG61m0IgavDUZ0MslrAeUPHQxgY48gUJ6YwEUWY85O6ljx+w13I/MVf/oL/66tb/sNf/Ya3b95xfvuWeH6k+BMhjlQyQwj4UHEu4qj4GKgGAFGyiTgELeGtjlSFijd3Bf17RbMITiwLHKMVhcIwNFcex83VkXEcyGvmQzn+7//T/7sDwOD1HgWvNp3eOw6HidvbW66vr3lx94KPP/qY6+vrXhynR8uOtix7MVp4Jaes/R1K0aLVWgkhKoV+OOAvJBzPSRTLo8qzny8esx0P92/4/e/+iofHt6RSLMOIyuBoc7AF62UzehDZOds1dkBlUd6pJrX5jzeqv1HEtXfAthRK1cSEoHVIQtG+CWw8hxaEG7jZPpHmFaj9PHvRpNQNbLBzJHJWGwLbprFbezzOXg/rLr6tF1DbFkCvC7Ns4eiEyXuKVBKWjXSQUa1vBzReX1fXx3ZddLPttDnFrm9WP3YDGxVndSlsyRaHZj8tGfIhyUBqqb1PUgtcilQithY6KLWotDJnvFepaQyeJSnzA1pAH5wG98EYnmSAtgUnypZtdq/q7jSACCHozcw1Waf1TbeNiPnCN9Cz/7clAUTs/rGTLPSxsI295rGP0wxn8EVtu4tqzVsCJueio9reK6XC4XDUfUnQJpOW+BoHlQblLGY3WU0rDzFEhhhxvlLXCrkF7VfMksEroMulmFX8NXkQzueF8TCB+G4dLyLEcA2r9tIQMlRPmSspL+CLgeSCl8ICpGHAyUIMcDXdEuKBw83IlCeO/gWH8IT4yuFwxdXhlnF4QQgH28s83o3cXgtDmPDO83B6w7IuxOFEDLfEELk63pDLS3yolPpEyWeyd5QUCE4QP4EfCWFkBA5SSGW1Itwzy2qMR4gm692KeT+UYxo1Wdh6UzR2sgHxlBLjOPb+Fy2AbwxFC95bUNgYQDUw2AL+VrRda1VAgYKLlugNQU1v2vuLrc+1FB4fH1W2ZD05YKvNeHp6IsTIndndNkDivef6+rqDklprl0c18NRqGNpnCyFwdTwyxaHLq9o419fQ5x2PR25ubjifz93Sf7WeHM36t7Ex0zRxdX1NbKqO6EhZk2bT4cBTFSRX6+WlDnNpXUl1qx1pVXTKTth13+21jbkNoZmR6E6lzCf9b6oAMSDod7Fqy+M7VXxsdcfW7DoEwjBqX4sYcN7ARQMZMagqxBtQ2rERW/nCM2lU1cTd8xh6z5CHZ/HGjx1/A3epYLmYDcVtJ2TXcg9ARNhvadpZV3rTDy0sdbsPQGdC2rYuri3guxvSLoRTDWpb650t4mrftwcuP9SLN/vI/YXbwET76vpzG5gD3fg0HdnCmV1Wy57juaSU3AZd29ZoUof9AkD/jK2uYw0bxeidIxobgAcfPdEF6xHicL6adVvuxT3RMnwtg+sQ3jyejJbzDDFcDNbW6Tj6QPShI3Pmb0nf/JVeh1qJrwd+8vkN1Ftuj9fcHScgk5cnHt+9ZXw4wVoJj1p46ErCURgOIOezIm4ipToKK95H8NoBOa1qX9kWyBACIUaKZRKmRl1W4XjQRdc3i/gP4Mi1UpJALrtAGLPCa5mi7/DeMY6B2+srPnr1ms8/+4yPX3/Ezc2NLaiACCUlnh7ueXx65OnpgZQyoMFQbkCDthFNHKaJ6+srjscjwzRuTX5oY3gD2z0B0GqdbEzXmnl8fODf//t/ze+++DVrnjU4k41twOnC+Vwu1ca/NocDnNZYNC9yrdOxHhm+IjX3THDBWEF27hm6+ul7iWY5KXSQ3jWxGGPZY+lNHqksAM+AkfWXsFoPZwmEumuKV7eY3ZIfxjTU9hx7T0C17ybv22WcxAuDC0Sa5Z8G/ZliiYdWb9JQmevrHCIGZqo2LLVrC1q4mNZFc+DeNpAGjCwRoo9UW0bs3n8oh7IC1bLR1WouKmJSVe8dNan+OJWKS/R54R3UmjsSDCbX1BIu3Ry9HxBWnBNjDNTyO/jYcC9QWfNKwJFlYfIHcklmEy5Er7URUnUsSG3F/c2CuM0hG6vbKDQHF9edlxoAjmHAicLVGANhuOLxaSalzHlZSTkbAAtaNF5UY6768iPjMNGcs7zT5FDJM4gW/FYbd+qaVIjDQF4SKc2ICNdXN0xDJCVt4nY+LfgwUYvj22+/QsTh/QjVcX3zmmU54fyCkxHnlEHSZMcTsR6pp8L8bkZcIcSCOOtXsZ4ZWPkuem6u77i9/ZTj1cfUOLE6OF6/5JPjFT46xunAEA9M0xUhtMJllQip7EltZ5/me1KaOZ+fGOPEOByYxgPXx1d4L6yrIPWEk5VaZpxMZkYycjy+wHnP1fpIFcfD47ekPLOs0XqseJW4haBj5AM6YhxAVBnQmDMNlbb+CXs3yQYknveF2BdWN4Diw+Xm2QBHzpm8Kmi4ujoibA372uO0KWYgswXsDUT0buHGvKxWj9CkX+389sDldDoxTVN/nxbA7pnDdV2RKt2RKtt8qbVY08LYGZ9WFL4sKq1qr+e95+np6QIMAR2ITdPUJVeLCFc3akbQTCAA5tOZJ/fAnFZSyQxR2c/WD8c7zY+1OLLugF2LB/0utvNuq63Y5K2+F2Nvqg6HC8pkRa8NOEOMuDgSBk0wq0QqmkrCa/uGxlw4v+1ZdrQxJC2mNxXRVkeJPffHJVp/cvz+yUfYMR281UeaZt5AAtIKH7cThY3xsJ+Uw6jNw7dtqdtjNrmRLdk9I7cBG2uVYsmgBgha3wy7YAYyWvHK86LU7fU2ELE/jxaw7GKHfrP1edtA2z4r24NpjIj019PaaNWYe+f7uV9kmR02ALAATjc3Z+40VQQxnZ94CBkkQHZCCBC8dZGtgg8VXDJrUGVIlBJub9UyGrWfh/dBO3U7x9iQdNSOtzgo0qRckNcnwhoJLvL1/Tc02cLVNHAYR+KrO6YwcBUnXK0s88zr+RU1CON5pTIi1TE/rdT4LQwL6yrkXFhz6vGQc1qAFWKEoo5DV1dHLVhPibUkaq7devBDOMbJxlVH3jYxh2AZSBuTVM4pcf7+zLuHe7769mvubu54eXfH9fVRWSyg5sJ5nnk6nXk6n0gpW5ZTWFNiTSspJ7unjmGIXB8PXB0PHA4DwxBoFp9iFfbaGdWbXV1kmo5qeRgCSGWZn/j226/4q1/9NW8e3pldZm2xlHWc35oCbda10j+7Dn91w6ii966Ybeg20zf2QbOj0gFFn0kGVJRlaBa2+iulmN3W1M5sCi/0xaIIo2LgozY5F2Z7vSUZRBqgaZ+jUeBblgprDKcfcFuwK9oB3DsoorrpVPRerXUl5EIutdd0RfHmxmJZbppUyM7fmFWHqOa6bVJOEyq1aLfkgrIUPoAEr0GmaI1DWwMb6KvbMvcPf5g0SsDWIp0XuRRrymZwtoqBdA2SZAdg9Vqp5WKMkaEMyhw2v1QDzLUK6pm6B9JJA/UK4ovZTGZW0Yyqg15A6o0FKbUQdoyYBko9jdAZC3BmB+m7taXQ6ol0D5DqWNYZJZqtVuQJoFqWuK3TgVq9Db2KOE0iDWGkyoJzWvu2nDNeMlrsHhFyn4etJ4jgWeaZw3Ak5ZVaMy9u74CRZU6E6InRk5NnXRPzm68YomOabhmCt+tfgJXghWkaCS4gqzoyFpfJZWFeHynrO8awEgeYn048PmWuX3gOrz/jeHfDy8OBj4aI+K3+SKVMGuxJTd0K16F7qHOeUjLLemZenvAuEOPIYToiXFHrI3k9qyVoLVDBEziMN7x++RlxOnKaT5TiyHnh/vEbcl6oNfc10WW9bx/SsaZZ54Q51MjO/EQ1/OrIlnPuASM8NyZgkyDmrIG3c1xfj/3vF7Ucu8B2Y9QUdNBcmpwjWO3GcyalnUeTUImjnx9s8eGewW8sxrquPYBt59MA09PTE3lN3BmAOJ/PG3hJ2gX+eDwyDEN/zSaxevfuHYfDoUu6GgMUQuB8PrMsC4fDoQfQIlo8fjweub297exRrZW0rAzTyDBN1khYC8fHIXA4jEitrPOZklO/fgoOLfZzrb5C68Uukqoh9M+/1TFbbZ3VV2jdRVRJVIy95qIZHXmTmDvnrUedrlPeNYUQF0CiSbr2IGN/PJdn7VmNP3W8N8i4e3Gw+oPm8CO7f5btaeBDBG14BJr71E3bKZ2hAXMLCORyAohrj6fH/pdMgyIyQzkdkbQCUue3QL4N5kvwY0AB+o3f8S89O9W4EN3g6maB1DOnjXHAWBpMJqUZ23ZjQtTCPc2qql2ma/ngWrQI2gIy17KdiqJ0o5FtUJb2HkXPKWelElW/x5bRjEPX86mkylgom/S1aMCm16wh+Iby1fpXzINfWrDlbZAHECk4t3bGxGnBCY8pcargWXC1MoagGTUBsUJ9uZq0o6Q4bl5c8V99cgdEggUB65z57pu3PL49c//mkfMp6UZfHaMbCTGwpqS1HGWhVu3u+6EcpaSLhLHezz2TRp/MOSsb8TCf+e7hEf/1d5bV0CiqsQtShdya3ZVNLlhq3f6J2QZ7xxC9uppFrS1qARDS9OQNzOpYHix7omNFcGTSOvPu8YGnNLNUlUrZ2WgQa9IdrWEo3b5QP+ieJdjqNdqYc7vHYUGjRVUWjOljfJuHTpBWv9CSDG6jfPv8theuIriq4JseaMl2H/bSl1pwwVqKdaC0c6+yYBXU7WPwgSzmftSr8qSvF21jTyVTDZBVqdqXQSxpQZtXW/1JO6qBOQ0Wt1oVJ4LzGtQG7xi8vk8nKOx9PK731HEekzrYevMBgYw9TV+rMp6NZUK0Vsd7a46IuuHM62qA1Z6vtHXPercAvtYV6aDN45x2qFcrWJt/JkfLJRP82OtCStFaCR8iRYTAFhBVyVQpeFGDCkdV8LK7gTqvPK626gzV+hdXcWhdVvCDySKcNeZSd63Vgji1o2y7j+0jYSsG1YHkEfFM4xU5wxDUZUvEq3NU1LkdQ2AYR5yZapzmM8MYcH4g+sA8z1xdXeOolJxtDI84n1jnGecnfC7kfEKqZqdzXkhp5ebqhpuba8ppZfGenBZyyuSlUJPA4BjHgeAn8AeGwx1XV7dcX98QjyN4bzVdZt2bNFBOObOsi3ZHTgtrXllSpooKI9Nyto7ikSsfUM//A+NwDTmbFHhCZMShv7++esHhcM0Qjpxvn/j+7W+otbCsj5pscQHfA7o/LQH5+zy++/ZLXr38lBjHPp+bu1CPl9zGMLTx2rLie4nVXn7UxlcL/FuDvPZzM7LYy2PYMSI6FpSVaNn3/dFYi2maGEtWGZzb2JLngKO95/P6kf3niiGQ6sK6rv3zNBlUTqkXbYcQOsBozMrpdGJdV66urjgcDryy5scAp9OJh4cHlmW5YEBavcheJuaAw5XKFx9PJ64PKn8+HI54T7dwns9n0jIznc+Mj/fMpwfSOiO1WqG3yhH3nbWfsxgKIq053jDgB6u1iANxGM0AyVvjPAv83SUg+OG1tj3c4vC6UySI7Z3t2IOJNg724GKf0PtDx3uDjM8+f91RZbPyKpaZ69aiZQMgZfe7LoMwG0GxD9jkDUjTYqMZ03bsWIj2UPvDjs3QDxljpK0NImKITRfjKsU0yQ3k6ObvMemNWIzTbkSTJAW6BMH75jglRs9JZynEkGK0Il7BXE8aKm3auhh3wYVqqGPQAVmkklPuwK1zPRYgIUohK8psuu9L5qWUrBm+ohtOk0V5C0jaAxuToRSxRyRYkCaUpFbA1WGgzZtHtDoDBXME1iBGVIvrHT5qQBZEtAjTeVZrylfRYFpvoCBpxrtAFUe2xjbOBnA8OF78YuBn//wnOHEcD1dEP/L0NLOcE+/enHj7/QMP3z+S12Y5/OHUZJzP5/59C5jhciGttUl2HNmKeBWoQ2MKlSG0YlUsiY40tVyf9EUqRYTcbGBhl6UXmr69hSy9pqj9zqm/t/3A6IXr0RNROU4qGYrZzmp6l9rkPbUiRW3XtqJrBQS19bNw7JqNyY5Na4xFbcUPOkfRILOH4N0NbgMZIqKUcLNY8nSWo/WO2F/zRvW3AkgN5FtPDoFaydiia3KpHvyLXkePJ9qcaqmJTYKl/2rV/jN9o5dt/omBqGjA0RnDQs+sK9PpnJ6TZ2Me2yIp1eY/wdbYQhENMKS5ettaI96pLMc1S9X32xD+vo52Z5ou3DlhiAGo2sXaO2LUzru16jVfcu/8xl7O2gr4U0o6H0pWC4+2MIretyZVa0kvMIbXO4qsFFlx1kCvsXWaGXS2/hZqKBDMfUzQsW8TzGYfbG3oevCnn9aYJZMzLeb1j0naVILizM429qzwMAy44AhDJOUVx0gIEyWtLPOMc9WsO9WWNnsxUJZ49/iASGBZkmb8pfJ0eurytDh6YhhxfiHlhXG6xfuRWhfNQONwDMQ44WUgl8W6alemaeTu5R3eBw2o5jPD0wE8rI+V6BNjmJjCK8bxI3y4Qgos55k1nyloszMRT06VlHbW6rWCNzOREDkebg10nFnWJ87zIyEMxDAwHa6YxhvNCHMkLyvRD4zxJUO8JviJkgvrulBSQkpiSScyM7XkDgQd1ozsA0paAfyP/8//G3/2+T/lo9efc319x/Fwy/F4xTCMus5K1XlSYBXty6A2yBtY2AMPEbGgWRm/xsa15SH4y273zTGxjcf2rzENIjqWmzSq1Vg0wCAixLZHu5Y62bPIm8SqZA122/jfs4Yi2qPDXV31DuJ7qdjR+nG015rnmdvbW/3b8UgIgWVZupRrHMfuajUMA4fD4SJ4Ph6PWiies9aV7EDYaADm7sUdwzhyPKoaIJWk8ZEPLKeZcLjhxe1Lbj/6lGU5QS2cHx9ZHu41wYXGVb4xFSFYnawqONR2NqhscJjww9jtZ12IYIypbd96j39knW8JHDEmTKra0e9bAmyx5pZs75kp1//TWZa9MuiPHe8NMl69ek2jv7R4rijAsBMtpVLMtaIU3dCz/S7b33MqxnYIuerm3pKHjfmIvXrf0KvJBuqzwWaXrl+Qtum0gdyynSoZ0CJj1xgHZ43hcJYdbC3UDRQMDhfUyWkaIsej3uiG6qVW0x44bUxXihVwei3qNDBQS7VC3QziqCn3G+O9J3pHcUL1zqxfB/UUdxiK98qiOB04JRtYEgU6zgZNu6ZtZWjF6GLXr1GezplNbrNwrCpjaXaO3ppjKRY0mt8rOzTEwXTiIEULV2sqVqzoIen9CKHgfbasujWsCYElpy7HclYM7XAQdCMpUpQqz45TXTgtZxwQnxzToB0/ZfLc/Fnk1Z9/TJCPrTDJsy4fTop2TQ3wSI9DLsCxTeRqxaNVY2obV/Rx3up1EDSzYC/iRUGBJq81MC9SDBTqP+cbcjZ2z+mY6qC0/85ZZtSCJoQwoo218sKSVnJuLEULC/V1tdBbv3aa1dB6r6no9Q1GF1ug14PmLhdqc7f239nAtfe0i9Tlkq7TznIx55+rTTGQs7v8bRPBgERHcCrl2tdiyK5QuoqwVt0e11JYrJgYpzasHS5YkqCvVbVAsLXG1kuVAukcVCYKmxtsrmq082nnb0CuFKjqvy5ZgXv1VvzuPU7UDAKz3FZW1JjdDwhkaMCiV63JunSdEtayEol93IDv4yu0BIgB9VQqa/Ks+dCTO32kNmDbsv9Uq8VQeOksoC8lEbw5gXmVBY2HQTWiO4qsSuvjopu0+LAbTzamacmv5ljktvmHmPba5FCuIgxUm7y1QnXKSGo9gtnXVgU9p1pwzmsm1EdEHEtKDFELl3GO1RqeOcuSFoRlPaFo3LGsC4dpsjUlEw4RqZ4lrYyj1qs8PtxTRJu/xRBgiJSSei1IEem9Xw43V7ghcFivWOYFf6+B2jmd8bIS/UQI1yADyzyTJSNPmaU+kcpsNRADucCatEFsrZXr61uO1zeM48TgR0KI1FJY15l5PrOmM+fzI0OcCHHQwvVwgxsHMonoRw7jNTFMpJR5+/Z7nId1nXnz9gvm+Z5SjRnTyW7g3+P5sEDGv/vt/4s3T1/z0bef8+LmY25vPubj15/z8sUnDMNArio1xoLyZLIhEenBOGwsa6uHADHmXBsVV5OL5lpJ66qBJLoAOZNCtcRva7bXajH29R+NLdnLjvrfzYXseaYdy6CfjVG4vrlmiNqeU2oD/YDQ3bVCCB0IeDu3p6enHmOt69qL2UspZmM7dcYC6E5U4zjSpGTjOHK8uuJ4daW2+evKuiyknBkM0NRaCTFyc3urNrdxAOc6uLm6vkJEGe3j9RUlJWoZub255fruI87v3jKfT9SSLBbVDxcRq110ylzE0STjAz6MKotqdZY+oLITvZe69lyWB7R71YDF9nMxJqP2669rrH7f9grX4hDLSu5ypT1W+VPHe4OMm5uPDFAowNg7beydYhoIkaoBQSmFlDMpF9Y19+ZyuVbqmrsEpNpA6npuAa1/wDKaTUpkdJsAJRtt3WRL7eIagrdUpC70hryCxw+RcQocpokw+o5OYxy0UNq1AKhtGajLghelra2wJ4aIoNn43K+NBhnaHVmBVU7ZaPiioKvo+Se7NkqLWZDkHN5sYKXQJznBEafYWQJlZ3K33XMWoRSjL7EgpprVYanNDtjjXLTrgWUK1a0IUQeF5hFfEI3tir5u9MG6Zla1klXIDi70oBcBCfo+Io6SNANdHSgNLYiH7Is6Y3m3FTcFZ/aSvgfN3jnmkqh50eJLhGCuWd6pHOBDKvxOS3r2m/0ktKBZGpOht7aN9xaXg7mxyX4u6LWt9jt1IdInN71+azSn876N4e08endQ02l675CgRajtCCKEmpjTwmK2tbWazbIBeR17O4emC/DfaFXpgfoeiHi/LajNFUrJ/7bItYyL5bvMBU5lKurAIzsXH2cdhRuLIQ00bHtXDzBxxZg36WC9ndsWg1sw6lqArk/X+a3wqVS1Vm3dvNvt001ZY9MGNJyxMd35qYEY0dqNajKqzZa3bxUXIGfLRGmCoWX8xLkuQ8U+q56L286tVvssHw7IaF2yu0WlYJIyvf7aiUflnqWIBUBV16QuKVPZXs6rdu+2ADw4yNLeR2V6OEfNoqxPtzJvYwiKFA3Qw0DOiVq0aFjZhfY69A3bBTF3Ly3glj6mt1vRZLX7wRjQWihETUQ8yuTW1Bgaepa1ZRmH6Pv4aDJB7zxJhFQKFTXByCUjeFLKDKMnpcq6zpapbD18rNO818DyvGRq0YJzBVmB81IoxaSzzltyMBGCrtc5w5KfcNdwvL3mcH1FzoXT44lShfT0hIwTvnqGeIXzR3J1LOeZPCfm/I5zfovzhelwxTBMrFl4fDrx+PCOdZ15/foTPvroJ7x6/SkxHDiM1+SjMK+J8/zE6bQwrzPx9I4YB8JVZPAjhICPBe8HnFdJUEqJ0/yONT0wzw88nN+Qc4KqjoyY+YIYsN+vmh/C8cX9X/Hm/DVfvXnJ7fEVt1ev+eTlL/j41c+5vXnB4eolw3jsrKkCVN+z9t1CNsYu+3neS0fVH8rs1QzrMvcaCx+0oSJVQXIL8huT0cBEC+qPx2P/2/5o+9m+gLj93qEF0+MwcDwc1LUqKwDMltAex1Hd9GQr0m5Aw4HKpWSro2jF4XBZ1D1NE+fzmdPpxDiOLMtCs/ttn0tE1HreuQ7Ucs7qgmkyML02nnlekFG629Xj02Nfn7xlPWIITOOkBjYhMt7cUVxgWWbiOFo9ZCGIshtINevZERc8LkSCH6wz+W4dV9nDBsLYAQv7qjVOBddAhrS9z9bbVl+J9Di5YYcNZLS3q/01qsgP7vGPHe8NMj7//C8oJWn3wpKUkrbO0dpwJFNr7sGHauOKBQ4ajGTTfZWqC3pedXHLuQXhWqxWzR+8lg1dNaepKgVvmQ1vHJFatUbE7GyzXcxxiN19prkoifeKpq3GYCtEbQGJDuwQvHVVVcq7UeJVtGmRc7Ck1Olw73Uw+qHp4lQr7IyubwWyyvZsauySC8u8qHd5LlosKmon12RNrfZBb7JGmN47xMfeJbZnpVG9LyImv9HOnK0YVVkmoeSkjMLkiQSCG3HY44reo1LKRaCiAMXsSsGAiYdcDAAqCFMJggWCJvvBb/a/ohFy46zAq1ysFacLgG8Awj6fj32jFedYpeBESJI/qLxTXbONWdcDvg3+70CAYA5jGlRuWtuWNW32pLInGmgvoG43ti1adrFRHJ2l6EGzvXJjDKQqWWDsGKJZ8ugdYVCv/TktrDl36Z5uRBaoW51Frbr4P8+c7E7Wxn0Gm5sWQ+s5UDdUBThn52bdv9vzW2+M3idDrEZKHM6sgT0NeDU2oL2qnYcFEOwSI9VqonqH1t1zOlNkm4WytmostxFL1iumGT60tYpWi6FZO0MRRpi0Ggyv7lItDLUNon1GQTuPK3O1LeRNDdbPzYZX6dcKS5j4XU8ZPZd6Ya39D3s0kJFLYrRMa0paOxFME6gF0LWP8y5UsyJsXR/1ai3rzHGa9Lp5R011Z9ahjJL0DGq7D8r45pwYh4mUFiY/dsc2+rvqfdF9LFFrpEhL2LQOwZ0b6yCfJjnon1mzCoMf8ESqrXl1bTaY28BNae3nGr1nGiNLWi0oVMepxt6rLn2hZKgSTUbkKTV14KznpIBNRJnmksGNlQjkoutrqYVh0GDOeWVMhnECIlVWSomIeNb0iHOVcTwiFbzPLHEl4gilaP3SMBDHI8SRLELOC+d65pQfqC4zDpEqhSXNnM9nHt6+4eHtW5yrrOPEerglHe+IXjtzXx1utGZjnUnribQ+cp6fGKYDQxwJQ8Q57Q1AdUhRww2hsq4Lp/mep9Mb5vUJKYKv2jeqOV82p7m29nwox5IeWdYnHk/fMY0HDuORb978mtff/IS764+4vfmEFy8+5fr6Nbc3r/F+YLXCbu8c7nikMRxNvtQARAMcvf7BstutINs51/X+jZFoBdB7G93WD6OxkblsDlKwrY21yaN3CQ/t8RARkwZeX19fyK0w0H08HlmWhXfv3pFz5up4ZIz6eIBlXZmXxWzdtwLqJp9qMqxpmkgpKSB4fOTx8bEDe7B1B3rXb62fihv7Ilob0upC6lB5fHzsPzsc67J2ZkkeHnqBuatowng8MFSh4AjjaB3HA7Vm5vOJ9Txz8JHJ6rfMBF6PHk5Utj5tauwiGDtemimLSWxr6ZLmjSCg79d72VSTc4vFG9KZ+bafW8xhAOZPHe8NMn7xi/9Kbc2yIuOcEyXr19zAR14NMGRKTZ35kKpApH1gdfwolKr6QX1OIZXUN/9G7zvvLYjatO0dMCB067keBOnCq0VcW+Dj/GaJ1pBYay+/Zf5VutHkJs6ATekX2DKWTfZj2lpsY6mlIs40uj5swZ4Hh9q2glgjJtXe5+yZJt9rMRR0aeOh/Q1f18ViVAtRmlQYq2WIkXEcaB7fzpkEy0dENEMto37fsgHt9ZXJUCDhxbLGTpE8xiA1iVWxeHGPbp2BGvpGhrlBtQnhrEZAAZwPCvBys3SNKvPI2e6xgZFMYbECcxc0+67OVzrpFPR5puHDoTJK2oWfdk3ab37s0OGzPYfdWKt9AbH73gJRkS5d0ydaFnXzJtB/zS6PLaCS2tiIja1rgfx00EZaa8mcc2HtHU3bHNIgvfZFyoCCAZ2WIdZzaIAmIzUBQmguFwKt9gKRXgPkLNrWALS2fD4gFmgLvmGBWjS4EQjB8JXbAvY98GwxX0t40K/z7qtJDBtAahm3RrUra2DFvK0YoyMm+uPafGnABBdwJotrdUfYvdxvtBcS0Paq9lkvjCyev6ct+C2WbWtjKR6fNtlaEde9Kz6Eo9ZMiEHXe9EkRS9SryggqluGTWxd0kRG6E5TiPaZWFNhGoUQHOQGRjbmrkir9Wn1Eq6Dw1xW4IwLkSJXlKpBiY/qEtMW22pJLl0fzVzDZCfb7VNeTi972yM2PkOHviO4Ae8SaZ23+duTAhto1wCgIARSygQ7p+AHZbFdUTY6mBNN1QTXui744BiGQd15nMO5SPAR781+1Lpnn2e1t8UJ65pAPOM0cVpO4BwHEa39oBCjRySzLGfympgC2pBtSeTzmfz0QH56xNVKGAZCGKg+UErmnE/MnFQSFgbEqRtiKQtpOVGXMzFnjuPEi/GK2+HAwQ9MPqo0JMJxuuLu+hXL+sB9WVnTrLIpPxHdxGAGFs57lVKFSCURw4j3ylzU6kDMGYvWENMSEH3N+YAOr4mVKkUdCdcHHs9veXf6kuNww/Xhjld3n/Pi+jPurj/n7vYzrq5fMo0H4jCRgnZOF0cHAnsAcCFrcpoY2Tsc7R/Tvm9BfAMuredFqRWnLjS60lZNlnWZtNuA+WVBsX5U5xxXV1eAZs0bwxZj7MXcbUxLlS5dyjmzrCvR/lZEmMzKlpR6o84qwmGaOB6PpJRYlqWfw75fiFuWzla8ePGi3wrpgXjt9ruNzRERDocDt7e3Hbydz2cDbsqR1Zqpg/YDORwnY0Gtds+a/a2nE09LIlfw06itC6omZIK3WNf27Vq1caAqgjTxvwcMlmkGS1q1a95AggWEvQN8AxAtRuxxciuJKI04oL/PnzreG2S8fPVJv7hd02WsRGM3cjLgUTIlqxNHKZmS1WYz50zN2R6zkPNKKQpSqgERZUXS7oMp+FhLK6aOWpEfrfBT3K5hiKgEwQCJd+CC7wDAWX1DqZtXcwMfrvcKUL1su6AVGJxJj3aMRHOz8rvsoHdNE1xNM9y6Vpoe3QYIToiDOlqMVanzZuNYazWplWbe1pRNbqXyK6lYPUzpmxcIOVUN6AwctUzAOFiDNueM9bikvy6osFJ7fUetmh1vv6sGikKM1KosTwuAxbIf0m227PWqmKzDMrMddAVi1GsYfGCoGk3llPtipOyHXo/iNWPsPKxBs7S4JhFzrP5Po+m/r0N18i0oer5ZuWfftoDyMthUxwfZrmvdPIj2BcnbS6lWvQOWntHf5CdVdj5GHTi0H9TJZ4wOXOa0nJjTSi7VAlj9uzNWQ2yB6iylBerSgnNsrARAiuVgbJGTHiLjEJszBiVkW7icEyRIXwQ106hSJWcWpc7RDKztQmxCrI1R2epFtI4kI3ZOrVBa7PVqrUY/P7trbbN1gdLB3P7eNheoHTjsdSpm/W1/33Lb0rNNfd4IHR31ljiySeN0ruln9CJEtqJ6HW+eggLLnCs/GCgf1GEfVpw6somH2tiLZgwCPgZoa5+orAk2gFZrpTiY14Wrg1pohxB4PM2kUnAugtvW+lrEWGfPPK8McWAYvWXxV3JNRDfq+K6V4hxO6FnbYuyXjgRvoKWxVbt1lbY3GYNY6wVbpk5X1WSydj3cHnwquAje9+TSEAeWNZGzcJgcPujYbUAs58IQDhAqa1o0W++tL0vOhKA1HarX18RXyck6ba+6H40DjsB5Xmg1Q/My2947UNKZ5Aoi2s+o5qz2wstCfngk3T8g85novLloDVTUovq8nnlM7/BjZXSjMk5O1JFqLQQJTGFkDCNXYeLFdMvNeCS4gSyO6jzjMHB9vGFNH5HLzNPpO5b1zCk8MMYD8aANyYY4MQ2TWuQWcC4grdSrBiIDwZtLniU1xJqKCh/OfgIwTYM6UZo8r1CZa6Eumcf5De9OI0/pe+7PX3B8+5Lj9JLb60+4vf6ETz76GcjHDPGoydISGcZBwX22uMYkryknpnHk6ngE2eYi0FmAPZMBKsFqjxmGgYjO2QZOci6cz+deWN2YhT1I6Ys/9OB8XxDe7G9XqxO5vr7mME0MYas38d6rDfuu27cmeXS9DPb75sY4ThPTdDC51MzT0xO3t7eISP+c1eoxhmHQXh/rithrN2aorb2N6WhyrL1bkwhbzYeBgPP53FkALUDX5Cl4ro/XeFEziFwLrmoT5pyzJeDVmrfkYuoUbcxaSzJ1UTHZue6dm5ehJT4qW2mDZnRofaPautcAR79mVmvd1pomz3qf3eW9QYYPvg+8/dHiqL1muGnB++9qMeejSl5WUlpJaWZNCjSSWeL1r2kx4LKaNKuQS2JZZ2sEpMxJbVKo4FU+5QNjcPTAQjbUiTV5EgeD0XDNs17tzzJFxFykzM4zamdqZTa0xkDlCKZHa+5a0lyftLZBM/HbhFHLV92IHFijLAGK1RVEkwo5RAKD7JrqmGSmtIDdLNtyKT2gURmaSj6aXSgW6J1OM2KUZ4hbdmLf+KVt2Hv7uuYctq8L8A0FG6pd01bw32m02joMo4GpSRNyFsv2CqtpIH1zqXIqseobcHOWdyofUlcVHT84Rxy0m7bzjmY7+KEcNW0NjxpD1g+3BxRbULJJLBp7IRfBY3uys+er9In+Pvp7u0nSXpMOuKuIyWwcOJMH9vol/Xc8RK4GYc1P3K8zcy4mFxQrDodm/dnm1t5ppB1i+mbXXzvjaAXe6o7lrNhcu9zr9+08NOujjJfWV1RjH7RwtgVcroEP55rzQb+sm8PUdv02MCz9uraMpbKim4yq3av2ctUyN/pWG3js/3XNgc76PVjBtljBsahvtWWWdnBRhB+ME2kZbwNeld1z6ODKWZ2HdxooOXSNFkuENBatHd5Zlv8DOTSR09zCCiFoQIKAVDFWU804tn1Fn1tK89tvrFwFM90YfYCgXcBX670SgmnNa1GQLtojKA5C8MrwqMuQJskIxkrHhtn1PRzoGuwr4oqy1R3R90+GQYzOYvQb0e+Js+DHIbkSvNe9DL23h8PEssybK6Gt2SlZj4xhMOCgblvDoM1Kg58oRWsEITIOE6/ufsK33/812SW0u7iut94Hu26BaTpynk/EeGCaJuY5EeLEmispC9NQGYI3rxN1sSpSWNaZQzgwhkgJnug80W+Wqc5pM7BSK6msLOmRh/PXyFK5Li+4vr6z2qHAGI+E0ZGL1tU8Pt7z4u6Ju9sXhJLJGYqtIeNw4Pr6JWuZSXllnt/ydLonuEAMA/E44AMUVHmR08q8njmfZ3J2iGjGWHd1+nohrnXi+oAoPxRkODfu1ltLclaVvq2ucs73yDlxz3e4h8Dw/YGr6RUvv/2c2+On3F59zOHwguPhltu71wzjiBe/S24Kp8cn4itjLoLFCbbnN9vaPfDQvcddAA287+O2MQzNvakF5ufzWTP5h4MG2poy72th65PhnGMYB5IBjD3QiVE7tLfzaCCjZdqf702twV4phdPphIhop++rK0IMjIcDh8Phwja3nUcrcn96elLzAqs7adej1agcj0et2zDzCOecydJ8Z1y8dgyllNJZlH1n9hgjx4PKwJoMSgP7RLSGgK12Rlh5Op168XYIESmVlFfSumi915Za1L2smqyqboYSYsBLFUdNnqp7T1P77GXRzludTvAWq/3x4/1BhkldtlN+TvlrgNxW240Sa6+gG6w056VaqSWT62Zbl/JCTurPvawL63JmSWdysgKmvJDyypqWXgOi9HXL/lak6IatjeNCD6YanVVFA4Lqgnn964VUuz4LAp1p5J312G1ZRBvQ6kcvhBiIbKjeYW3mwbKmyjg0/TWm5nLC5o5ThUIh59KvVfPq1sHkNFjBIWMrsD72z6znX0m5dnmBFqJXRb8GQIrVg+wDrH2Tl0ZH9k6brlnbGd1vWW+l1bXAdShi1HPT5mugUIt0m+PW6Vr1hpq9/f8z96e/kWRJtif4u4uqmhlJd4/IpapedWMwH+b//3cGGGCm8dCv6tWSGeFO0kxV7yLzQUSuKj2zKqOB7i7XBNMZpNFMl7uIHDnnSE9JX9fdn7mYqEzvvTag8SQiIjRDoXQi7oYg+JhSBODHOHyROebFgYoFF+j7MdDpY4HVDVzMNtjG7vlvfB7JUdEQlHLkRTVHgv1LMIqVBUMe9zjdLkZY5khMG2Vf2cwKVHA6lZZrtZ7UxxxwFOxcDbMo0eO/8d8iSt1xobJ3oNfrb0jzxCRYZB3MEMd0CnFgxpq0GNVKL8bmjlcMgtHJrELCGLuYHEWodKpUhsPUSPr8S89FgF3UDS80/zxOSYPdw+BubFp58OqFBi7d5s/HtVNMk+KFEX9rwX20tGoTcXqcL0KRRGK292v2uRKbNt6M8Vh7/TmE/kEv+F99iLnJpRgp1ao56HhS8aH38al6+lE3NK+0eoADR3Us+RrfO/OUWctOF9P6OfBFA3RtbaJ9bfTRBEQapW9AUyArz0phGNSOYHPvBKK5O5rouDuVKnQPDEpVCUHHAujPUlAPox60l1AIolqKrHtXjKopCOHoplxbJaK9Neb5AnRqK0BXGpOt2aFrhShGeDxejapsQJ/tPbpH6j1Vy1PtFVL2Tu+RfW/0bvsPUIrO+ymrL/+6P1jXN57yjSVlJvP7J2ZMNqj7RMAcGHe29s5WX2lSyFPmU/qZKasWMMROkZldIut653178Ou3f+d6uTEvhQ1hJdBjhCky55nr5RPXyxvr4yvb/uA9wGVetBdJikBSnv76zv3xlXXfaS2AmlH7SBxf4YfzldJjng87V42bzGjAg0Sgh8ra7rYHV8pemdI/8+f7v/C0fOHT9Xc8X37mdvmZz29/x5fPf+Tl6bOOo6AuRfNFtTitNu0SLc0QoUDrlVLK6NkADHDPGQr6wyMpPus/PBHxwN/1C+7CKacgFo4EJoWIxDT+xi2dU0xWlWjsexk6DI9nPBka1RB779YaU57Y941t3z6A5p4U+LnebrdBzQSYcmYD9qIWyx43nasZ/n5OIXNzEr8/1WJNv0Z3vPLPr7UOutohrJdByTrHab0Le1UA+3q5aM+aWrm/v/P++ivr/RW6uWE1XdO6aWW66dpwULMfaxqcoBJ3A7PriiESUlIjpPDbesr85iSj1AeHDuFoU37eOPU+Ok4XbW+P4+9SjDqedcUdCNGRnetm0KolIHWn7Fr1KGVj3bQr47o/2LaHVjwsQan2+iY7LgwUD0TQoFdtNN2p6kA5U8yK9pojSwweuIVjUnkQKFo50HKU8QYtjswxIVmb+niAVnvXxlztEJ2q+wwgyo1t3dFlLdv3rkmHzEJ2lD6E0cQLO8c4RXJWB41w3HG6QDGkq9Rmjl5lVF5qU8crR2R7F7ZtV+cEsaZVwSsd6iEerWLklYlmJVZFqwI5qgVemrJS6VonMtuEU5ct1ZuY8LxZ4tC6cSP3kZR4SdKHk/qWO7c5jPuuo09GJ+sf4WhtRzC3sFPdAnTSajBlc8RKk53jOTRPDDofxuvZxUhMqD0A0oCbxmoa0J2G48Jko9AFvXeu2/GEY54i14tA37RaWAvd3FbM7NMxY5wudVStPlYxlNfrqJbZKDedi472Nzu/6Ej/qJidKVzB7tkp6NfIXMfoqXPqeVx4r5APN57T5nVK0vwINsbGfcPOC7d8lg9/6x9wvIcniFaYdqGyYD72nhxpxSrYGPAqk0pZNFDVgrFlBmYk4kmmJyoxaDO+S8pM0d4nCnFKRiU1v/Xoa6wngz/OPPHKlgd23mVW7NnquNKqmIhXW11LAQTV50zTgjRNFpNxvlvvuLuj23NDoPcGo4GkrqsKAuk9ldAofaW0QorTSMYZlSZLMMRnm+V9oY8MXx+Vasz8XD8ACwRiVKeYKS3UXqlNRiVXpJNToueJ3rRRnxhINUS6ebYEWz8vpQk3ZAClFCvltFL6qzaE3YICWVH1Qa0L5XEnpSuX+UaaVLi75wBBK+sxzghdE6Uo5LTQ205rAqh70YM35hDVRVA6Uquu3xKAZOe+s7fCtj/Y942UIlNUp8TLciPFCaZODtYxOkBvO6+Pb9xe/8y17JSQ2ANImoh91kZ/aeEy3ZjyQql31v3O2+NX8nRRRkKc2Eth3Tb2WrwjAeK9WUasAoy5faw3P8pxRrpVJK0/d0fObnOno3tylUqRnX1febQ7v7z9M0teuM7PPC1fePnzH/jdp3/ky/M/8OXzP/Dy6XdcliemWfvUbNvGPM0KXIgmFlvRAH9ZFrJVRCVqwiqhD2aEVuMO96rAYTnryceyLB8qDbXsGi98Jwgf1x8je9mHeDuEoG0G7J6oe2kZa2y2INztbT1R8KqDf8a+bQPAKOs6XLHgY8LhuhNQMbgAZd9VsxqjOTDq3Gv7TrbPOwTjHsMd15RzHgL3c8NE6bqOAR9E1fO82N6tld3WGtGuJ+fM5y9fuFwurOs6kgNRq1A+fX5BemdbH+xlp+6F7XGnrndc/+xtD8beG4efnZ17MPvtTMz5uK74f2aS0e/2kcdirxv7kXREs9cLmLsQSbNkC66cntDkQFJSzJhkQA9BnUCcK9gPS9zWTc9RbMEqO9vuyYclHnWjlp1ieg//t4vqPZyjnmIgh2MTToKW+gBEqFJAOr1262GhJYgUsja6EXXj6R72hzB0HB7cO9cxm+aj14oEdXNSzrGLaIUYEiLeIM/OoRnyb8lJEHPSidY8KARKURvbHBM5qQ1czpEosCza6EkEQ7KauXgJ+16He9A5YNTY1V2mqrle7RoAZXOMMqRNk5FjEyfoz4lRz8WSsy6CXDK9z9RqaH1zCox6txcrTe57oxblCNdaqLUjjcEj9kMDS3cd+nEg2pRNvxCOoFlgCKmQMKpQB9UieBR60JvCQY/yue/vg8iHrpwCau3pVbuAofidPNYIpzB8ROxTCHxaMpfU2Mo793KnDCcesQ7VXgxw3cVBD/SNWYH2Aw1xOuFB39OQIzTnPxsVKzGQHu9n4CV0A36JQRORZC5QCUv8LRFD3CDB74iln1a6GI5U/RzwH2v+2CB6P5I8vaqTA5gtvh5w2rPxZELAGovZvTJ/4o+VK/tc//BmVKxTXKNBK4RgdCFsDJim5pg7SmHJRo8iCsG40CFqbxrVH9v8Bq06/iBHjI72KUVVeUkqrhbrAh2i0pliCqxbG8hZ7wYexUgkUIEq2gjxp5dPCqpUzw/kFDhEMPpq/C5wExGInVY3eq/UUNibAi+1R6J0cjrG9pgHdLQXPEAYFXVGwuxj0a7bkv0Ukr22EmJCehh2tqXuo0LoKGyIil4LSj3qoZNzGIitiDV2jRPr+k6XwjRHJHZympiXK5F0GLRKBEm0ptXn9fHg6emFJnoNhKQgXQ8jUNRu6kqlKW3jT//+b+QnYQJ6FbbHnfXxRitVm4eF7INZ0dAemfqFZb5yW74wx4VlupLTTKHQcmW+XpBY2bbOoz345e1P1N5J+UKPmZqMRRAWUpi4zC/crj9Rysq2vfH2/o2UtHfGdX4hIkwp0dNsgIYmm/YE9VZ4OGXB4I8zS/QIbuN9CtyHkJoTS6NrtTITiWlhUFrbznvZeNRvfHv8K39++9/59f6/89Ptv/H517/n88vf8eXT3/H8/DNfvvyRGCZq2cECdDF30GGF+5SNVq5gI1HHSBdR/ZRRbrZ1BeA6LySLDbV6cVCE1H3vVLmwn5/Bq66Z+oex7roOpyDNcR5UII3BNNZ7enoaFCvsvsUQuCyLArkio2dGOdGgWmus6/qh0pEtuAb49ddfx556u93GWnK/33l/KCBf1pUOPD090aUPgwW3xI1WyQHGs12WZbgQ+mf6vTn+DUPz4V3PvdLRWmMvhWm+8Md/eCZYUifSeX19JawPXuaFEFRHtd9X9n2l7tvQd9A/2jg7oBdDhJiJJk3wxPJvHb85yXh//Hk0EjoSC3dbscRiNCDSjEerG1beCYlunTWx8JCgiI/G1JawYHSZFMhh/gAq9Oa2mSp4UcS/mK5DG6bs24N1fbCVVVHZfaPWTV/XPXA9JRwBtOxcybNm3Fh5t1mwpQIbE7JaX4dsiYAHDW535ofSuRrFNAq9NVrS6274Qi7ny7OF/5h0gxZgHWFD1KCvGUIdxbGrRqVrKdvQWLfiFYlMs1r+5knLXLMElmU6NCkCZa8q9DVKU0NoddLFo3v1wjqxIuZUI1pStYFIVErUmZYRYiAZXSCaLbAiYViX2s5SEr0vKLobtXPpbolihVqUv7hv1cRPXmL9sRIMgOUSTXOjYnnppt0JB9cRbOKC5WZH5Js8IT8D8oNHI2Y/rIG6ZbeEENR1K3+P5B+dQBVFt6idY2wtKfJ8EeDBo7yz1k17DEg0UXanR4x+hG3UB03qTBk67AwtMfGSrF91kEG766bJQHNSnP527r8DoJ2J7bpEe4uINzRzTv9feQ56Wofoe1Qv/HzdHjgoWj7EbSLD1Nr12J7n+X3TNNxrPH51+grlCQeq6wF8vbOA1B0+MMqYJveMdbQ5mi/qwCQhjTy+i5bHH7uwN3Xs8ipxD0fCp9a3EK2KLEHoQQWjP8wxHPpcc9HMBlbvcUpacVO9Riai2j69dxGCrgElaODTpPPYVp6uN6suq9OKvp+vEce9ciOKaFbZXmkmdBWXB2i9IBiN1jQfiDa/bL3pniadKKY/sPvvVCzfH7S9mzbRbKK/zzFD6KNaIr1DMqOQXm3sNWLMo++BilmV3tdbowXNVB34aa3SigZG0pRCstcCJF0zYkaQgYimmOgtsu8rOU/mqqV6DneK+/z0wmW6sG7vtP6um4XMrOENHr/yL+9vSNlITDxeH+z3h/Y3SMuocs8h8JQyP09P3G4QLjOXfCERmCxekJhpOVOboho9CKUXXh/fyGnmKc56z0T3414rMSfm6cb18olte6WUB9u+cre/iU+BECZiEKaYIep8P9p6OpTAX/n3xzmy8fPbyb3vQ0d6GAH6OWke+oR0AImtC496p77/T0p78Gh/4nX/J/78/jO3+Xf8/tv/yu9++m/crp+4Xl/oPZMkazwmSqNurR72sL2fkHAMyFR0fLMgvc+zUjitAhuSHHua9YwppQwAFRhJk1ceXEs3jCFOSYgH2kMTZ4Dp2fnK/02GaKtOwuIsZqZ5GgANKOXsfr8PIbeLvL0qsyzLiD1caO73fnwORwLYeue+PhR8z4losaIYsOhJWu9dq7F2H1NSR1Jlb9i9DUd8+Pz8zGZOWKslMd5xXUSYl4XZzjXliedarfqZ6U0paLUW1sedsm/s2wpdBptILN5zMFdiHAmGJ1l/c/z+1oH+/ng9oaGOuCsP0zuM+kapJ5EZvuRVG8jlMJmFXjJeXzIKkFr6OSKqg0yDeeW0OtfOStiEgWZJF2pT5KdZwlFrZSs727ZStocmHkavKlWF59VoVt7v48+//IkcdDuIQd2rBFFObkjUXillU6pU7VRpVAzpTZEkGJ0ojkGRoomZU9CmZ5eMlo9FqV29qlGniPX6mDXgsKSttmoJhw5Et23r0mm14t2cR0MrhNhVjJiCW5VVWrfB6uX2YDwMFCGbYmK6zlbxUP55c/1E9wBVnRFqqzaxlFYSMUoMqBBSjKZg5+oiMG0aiJUvDWG0rDznQO8mKLMmgXMLtD6DJKOWKS+47ButVNbHyrqulFJp9ccJnnorKHsiHKLdoKQHD3o9chWrBg7azYm7ebzG0W+b0FERXm9KprG/U+VO7yWuoRAigYloPWNORdEYuc2JOXXWcudRVnZLNINx4UEzWaWE9HG+g+JkV6Fz8WRvFzklC7o5doE67oPSpbzpXRCtFBI8cY6E0AmhkSPkgAWCYusBxhe1JGp8eaWmndYSMVcp9V/uJvCWkWydOcHHRh4NhTUq/ghJnJt/0C0swULorp/ye2NJFX5ajFyNozs4/s6WnNnr7ZZEex8xpL91rQYSjloHlqh58n3mKI9k8MeZJvastEfFNM1YmqrAiwXS+jtdh1M6i+59bAftcwIEUbvLvRZ6QOkdosmj7iG+GfrzbhZsYCjpZNWRzN42rvNNKwr5YqLxTjZ9gnSnXLmu6Ej4hxMaXukPA1jTfktG97Agvwx65bmvRaDW3RIdozMYz7y2jSkv1K5U21KbgVuBeZpoVQGpnBOtFQsmrOkhkKeZUlYOemHkslzZ9ju17MSk4EIXmPPM09MLc1q4r9/wMQowXTL768rXf/4T8ihc4hPbe2X7djcucETCsU9PBF6mC7eUCHMmh8wigVgrEQ3K8rJQ+0YoavTxWB9s7Cz5xtPlM1O2JoatUdeNvEykAPN84XL5xLq+sW7feKxv5JTJMTHPTwR7fxGh56TBuS0Ovl6NtYAfL82YZ0WiU84fqNdBPqLgZ1MX+OhYOexHgwEuNLb+RqiNt/Jnwrf/jSlc+Oc//44//PS/8NPLP/Lzl/+Vl6c/8Pz8kwrFrVlu2ct4/9Y6QcJ3AGsbCL0LvYEPgfdIJjqQg15TOJ6JC8Y1OM6DTujBs9ORXJ/gOgcNkOs4jwP4Ov7OD98rQwijj4UjpDEnbs9PA/B1u9vn5+dBGzvrSzzpcPG4i9SHza10pnlm3/eRDLh2ZDQBFHX42mwNB2z90vXD4+bem8VMH51CvXrjSYb/t993b8bo34vAXAqrJT/zcuH6/IlAoFetBu3bqmYYtucTPf4Ph5383zh+c5KxlTsuih4Wkngmcyym3nUyBNQvmWCdCjM5ZmLIpJRHspGjdtlWfF+59+rilAiGGoHSqhQT134JOWdfxpllQYMYGVls66KewW6Ta8nFtm9s24N910rHtj6opfDTpz+OJoOlup1uoVtJDYHYE0tyEZbrK5rZvApSO9pdVl1z3C86ihCSahqEQKyNmCNdMhLEbNyE3gujvJwyl5ytGiGITMMRwIMJdUQ5JosHFbUWbc6G9pPQro3RYh1d/JPBtGoBKfZctZS4zMrp9aqGLkqR1iZKLTitoY0kyN2QggVHOhbObmODOmScSucA5uwdNhX1dt3IFBN52ENatSsEUngaXSi79Ur4LQ1h/u869ruY5qE7sGlHIIiWtxXkdPtj29K8UjCSAN8Mjk3PBfihB2KHPoSoWikL5Zjy/pdOzQkpcFmyUSqi8fw789Shv/PYHrxvG6V54qDnODqDW8lcMCbQOckYSJMLmfXanJro5zPGAd/b1spw8dHqno3nQTnrOH0rxkgKavent8wRlfNTEJwjfyQaJ+rWkTH81VVyzClfRD1IH29/pmbp5w2bQKsWiV1HlzbmyBgL0au5/vNg91zGJiei1aA5BuagVLMqWkFsPRDiRMpNk/xhrV39TiNBaYbjDM384Uc51CkOG1eV1ndiFFKc6M169DStgi3zRJDK+6MQQkKpxmoMIU4vlMC6F17vb2rs4f78jvR6wh4AmtJ+4oz5OZLypOLIthPCSmk7OWnA3nuzjrz6TpoYWkLdBXFhZvCZKyPpCKIglVZg9Np1g1Y6aeyRBhSjA0ZzrNL5pcFXpw8kFmBbNwKZMCfbSycQtZUNTAi6p8SEUXYtwItiglWja4TALuq881jf6QLTHGmtEkNGOtzf3uCmVIm9qt2oBpvC/fHg3/7tf9DfGk/xM5REqJ3ZgLnWu9FyN9btHWmFGGEmknsg10ZYN+ISyEsm5QWmK1u8k9JMTguIC3cbUSqpC6EWylppNRGmTJbIJV9Z5ht7eWXbVmJ8JcbMU4ApXdR1KiSa5A9r15ibnP79wZKMEBOIuncRI2QxkKOPANiDbj886fC9VpP0o39CIECKVBvHtbzT66/88v7v/Pntn/h0+z2fbn/Hy/UPfHn6O2349+mPXC7PpDyxl0mTYIHL5aLj6YTidxHEKgivr6+UUrjdbh/0GV5lDTFSm9EgOaohB5MD5sndtZq5qimQeUbUA1iSrEmPdyA/d/H29/W/82qH08/GHE2J2dyqQggst6vGGTGSJ9X6eHIiIoNaNU3T6J3hlY95nimtDg2GszHO4244eRkotO2b/my4juq9yCmTJ6tukNlLIdo1uYvXuX9J7W0kUB/dRMOojqYUR7WmtUYKaZzn16+/jnNtVhn26iunytp/dvx2TcZ+Fn5bcjEs+sIJKbLgIgRS9oRDHTUUsZiYJ6XvhKCZWUSFYClpIpGC8jlzSsSgr9OSUkJIhB7oIVgR2pMcTCuQSUQmhZygXz7YdDnvTBsI6iAspVD2jW3Xcuu2r0rPKas1HdzVTre6m1Wjm+MNiCYkUocASzcmTcw1PPLgSzUMMQUV70VdCPoyG886HdiooY4xqt5CzNHJOdzOewx4xn7w9rRbuTW4knBMaJGBn4Nu0in4ono8WxHlwwfR/gueHE3TzNwnQ5PcOldPVMt5UIrbS/aRCPjGO+xtffEILjR3VE3R9exIh3VjNfBllIh94QzBRVU/DkTrGh6whf4UjQ5kM9rFynEvHPs8gpPjd+PvDeXEgqrQbZNEjDt9fs4HhzMY+tCb2p2KPdsYBVJlq2+87Xe2uptNpY8SDdRGQ76xwCgSNrZko/54VUPPs/9lwjRAA7GqildW9OcDWRrJUVBkCiGGzgjN7RwC1mfDEGWVyIaB7h/uVVapcBeTrvqMkfhY9WTkAKj4FI4StogbWwb8MY2/EBmocLdEWj/Chff+/PR6FKU6zwX73SlT0uqXVnCSrbFOKc1z4npLxC7GQRZKa0g90DswR65woF0/kiZDeqd2HYskvX+C6u7URlgrwq3pc/90u/JYN2oXQG3Gj2aSnhQKW9mYUmDKmVK9H8RRvlMheBiAB0FpoKFPdBohNqRrYBJMVJ+C0qniaV73YSyScDMHT5LHQBJwzp2+QkGoKDr+k4FxHhTVfTPRrYr2S1Gnrb1sxE2T7BAgzxnpek4hJAPphNYKQZRipehpHetjlWbOOoF5npjTTO+Vy5SZUuJ2vfJ2f1e6azT9YBf2KkwlHgmqifJrW/mHv/9/8ev/+79T740HD2aZySEpoBbUfr3Ttc9V2Sn7SsR6D2w716cb12siJSFPps3JF/rlhQRs04V93Qmiur0cHmqkUgqlbMgO+XKBKZFD5rZ8opaV9/WrshfyTM4z8aLgZsyJKLPOp/6xgungw/dr7o9w7EUNcWI04p0l1zFosBljYpoOI5pzMqFHPL43ECOhYJMCIYpQ9wBdKl8ff+Jt+8Yv7//Ky/Vnvr3+gU/XP/L16z/w8vxHnp9/4nb7xDRfICbKrl22p3kmRu+9cfS6cFeoczNk38OPWIDxOziqHW6rn1OypOVI1vt3r92s27fOp2n0zPDPcEvdfd8Hqu+/a60RWrWeKgdty5kF5+SodRlObtNlAYH7/Z1k+3qIkcl7k9k1O53NryfGaFSlOpKdGOKIF7wvhzt6eTLZUjPdiFLVSq2klO26ivYDKTvv73fUpntiXddxLy+Xy4cK17nfyaCdGeskpcTt6RkxBkNrFUHnjBoJHfHff3b85iTj/v42kowYncpkganRpUYXRx0u1KYondsqppAgJrYyk9NkZTClTO1RF8ucZwKJ3nS9nsJEzgs5K7IhwuhbkayDqZ+XlpTycNERIOaMY1mTo+5dy+VdujUxsapEU5eCUnZzM1C3nd1E5ev2MLqVaTzarglL2Am90N25RIz6UzUYlBC0ohFVTNdDG+UwDQCVLhUIhOT1GUWxppyY0sRWiiZuNkDISZOwdFQcBEYlQEQpTfrfDXqjNadveCzrlSk+THi7XboJogHPVpv1/tDnnxJMkumnv5Hupd0T0meBgDY2PAVsp8HpgZZXsc6c/I7bg6qYXB+suYNE8K7sP8rRSoHmaMFfYmIxqgtXsCTj3HQPT95hPItzSderBueNZNzH7/RXH/5OApt0SrOO2dYv4zIHUq68lwf3srL3SpezqN8sa80tSTnyMgwEztVMb2AlhnBI4MP5HxWtjlt0KptQ+fgfgvbTNTiNoQdNFujQoyDWBVWDNKcNMaoUZ/rD8XMLJHqg7I2YhZgs8REFDKzwo8E5oy6A//bjffXrk8Nm2IT9TcyH/PRgnAo1UqAPQJAHy752qRlFRg038TRKogIOQRMVFU1jtoLZRI/lsIj2hA3TDfwgh2AVsqCBf0zRqqHqMrhtVhEW7atzeZqZU9ZKqvP4u1UNg+BW5nstTHnhOi/03njsO9KPRNsT8C6dJmfqhAZy2pVdQJq9Rsi21iggoic/5q1VcMXWb85jDkNI7FsCpmnQc/AgMYVMZqHyruM5BaTqe3fxDueFEIR5nuhVzyUmtZ3VAdOZppkpXSm105q69S3LjD77yjQl5rzQauF2e2Z7vGvvDau8qr5DgZvSGtdlpsedxqSdiUXX/9oqEiplW3maf88V5e2H4rPkqFQHsyIPKdGDOlhte2GqjXm5DIAxdgUHYsiE+UoWYQ+ZPW6UvbCvD9h1j6utK/V5rSzSybKQIixxYckv7GFnK195PF5JaSJZshHS4Ypz0CRPFdZ+3rN+nCPnWeMU0T1C90+QaHt0DOSo41EpqGJAhwwtQ+/d7MN90QljjVadpZrTpKjBZ5XG2/6VvT24r3/mT/d/5vP7v/DT2z/w8vI7rssnbstnnl4+c7t+osaZbc3kPOEVvmSsDw9slbbldspNDXROovZztc61GMO1ytbXs7UrhvSfnavWfbeYJQ5qlAfy5wTmg7C8qyaX6tVODfrPugtPjLxi4PQwEettYV3KU87q7BfMiZNAtXnslQQ5ff94PMZnXeYFMZqVJxnn43K5DBqW7/3JZAt+Ht57KE+Zbdv49ddfKaXw9PTEQZ06wEh3VDyeT7N+S4qMvHx6GZ8vrltsjW19UPYy6PP/6fj9rQN9Skr0EGwAt0p1FJUDLfeMKU8H3zUG80MOWqbe62oPKJgATZvp5aQNVjSpmIhEChOX2Ah0etNsDxdKpkyrXipLhuosiDlaBTBEMujiaSiAajsWDdqamKagj5voHsLDWrdW9n0byce+PdjLymO9U8rGXnf2umrX81pM61FG7w+havBRHIV10FIsazRNgwnnsQGd0zQGUBq2wXGIv2urhO5VJcuWg9o46sTTjUGMI1lrVcS2HULXundqbcTUxgQeg8oGbs4TcfIQjGHR5j05dDwqjS1E645rC3gb9DW7n6eg0/91yshAf8WcuboMDqp23XXNi1aEkndp/3EAWrZ9Vw/86PS0/3jD+stKxcck4/vXjGD3RJvzDMvvhVf1xKoP+sYu3NLuYiKQYyCnzlbeed1feW+FvTu1SYcp4z0OsSgEpHS1DT3d+4g1oTz9rYvDvezbzU1JCx0Nd/P1EP44LAEJ6qIkCKV3FTNbYuyuUvi1HoXU0wUc5+8JS++d16+v7GXl6dNMzNb9Wzj+yAAK17wc7/OXCaCjcP46T0w82Dw/3yZiQeyRoPgzPX36+LtgoEIcVS+NUR21Wku1njuZlJO5iAi1TmzbZl87cPB/f5RD420TlgRoVSBalbcnuydK09tbJRB5uly4r7vaKw4nMzTJ6Gok0CSx18bTErgsF7bdDDxCHA1Sne4aHG3vgkhRihDanXqr7+R5otaN22UZa6x+pu0LIsNXSkQ+jP/jmRqNOKSRuB+MAJ2vrVbbAzVV7p48YdWxrhv8PCs1qkoBou4zvZByZ7ITqbXQJWil2cxRUtLAB7Sa5QLiZZpZH6sKxnslW9BXSyenmRCS6fA6l/mK9Mq2NaY5UcqDujUu6UaqHVrQ1jUxQlAnrCpFtYxto/ZCl061wPeSJ5blyrRc1DkrBGMYVOjCFDIxLWp2Io22F7ZB640DlGu1EHYIKZCJXNKFfbpR6ivb/iCu38jTzDwpsJmTdvoeIER3qu9pTv8GdPb/zmOenpB8OFE6dbW3pv17xHSgFliEEAgJQjKQ02K2Wt3aXzTmEDd6kUFjTtFMekQB0dYb7+WN9/LG1/d/50+v/53P99/ztHzhNn/m+ssnXm4/8Xz7mZ++/DfS9TO1drZ9p3e43m4s1ws5Zcq+07ue61429pKsEbEnsDrmB1j93f4I+pqh/zCw+1xtEDGjFdMj+PucHac8iD+Llkspg6rkwb0Lz104ftCG2jjPo9dX/5DIuBbVx5i/3qlMIQRrqqkB/pQnrpeLdhW38/YO6Wf3sN7VYth/prbBYZyL7ykxRuskfjRYrrXyeDw+VJX8b0ZDxS4Es6Rc18L1drX38HWv25iclLb2FzDqXx6/Oclg1AMsQP7gYnOghyC0Wmzh9mxTRVikpII3C/x1rav0HlSY2RMtJhO9WdOiOLHWO3NZmPKi72PUoGT0q5yynUim1FWTEOOVaWfITIyVECdFncSbiCg3NmYPyAPZMn3P8PzBXps2DPOmRtqcxrqXV+1GvpuwfN+0r0cpG1t5aJ+PplmfCrGLOojQCa0TzB9cnXQcsfb7rtQptbiVkWmniPogw6ADeLneJ5pI0cpDCGTrqRHcgcHiuhC8Md4pqeou/tUBXGuniupc3AvbB7knJorMHiXaFCMSIYc8wqgjczaqVTPKShcgH6j5CNBgr4Vajnsv1q0XtPsuoatbxQ9ylH2nBesJQ7BGikdg+rHpjYdSR6L4IdA1VN4Ttt67NenTZ60vNy2No7Wn9/LvlXqjImrRKAaC9hLY28ME36bjETXk7N8lGE4rka7jQRekjphLlhj9yCtjqtPQREDd5YJZezacWjkskEWTiXHh9tExarfmIN7kMnjfKKRW8MaXUU5rXRj/r035rFIiFaQSYuP2kln6TEhqcKA3SBOAaJt0E3GDtvG8VNNx/Pc4xD9fRv8SD6icmuivHtUMwVBFRRj93EWwpo36/BIMx2HXVZTaVF9Wu2nGVgVrTo2gSqnWwFQF/Kl15uk3D+P/yw9dx2Q4NGlfhzByOelanem1U1pn3TdShpwiVUzP0T2BdMrmKTAJwpIXEhNNdlQoqwF/F1E3pdY5fOc7cw4QElUqtW24EF0rHskSBT1FtxVXNDyYjecZoLGERiwojonYAylqRUrt25PxsLHAURHV5bLgFb9uiHCpqm/wZLFjdp9GucXeJ0RhX7W7d+oOWmkQFWIgzYp+buvKnDTxKnUjBmGZJh5bJeDN/4qCe70rDTZap2Fbiz5/+gO/7r/Sq+i1daVKhahdx9e98NbufF1/YX28Eztc5gvL5crl9kSaZqtwaHJ0X9/ZtgdVGilEMpEpZKokBRiTakNCjMRpIoeJFgWarokxJ66XGxI7nY33TZv03R/fuMwXppiZ0oVoncglMAwTnDb0I9KlYsh0RJMjkbG+izltStf9e1C/uoy9w3n3xK726pL5YHTRVevSzemsywE0EZRCpZbonRpWvvWd++sry/3CNd+4zs9c5xeu0xe+/PKPfHr6I7fbZ+b5BiQeD0W+l8tVzU8MzFGWhcCka15rR3M7BwJ67+okZgE8HOBLjKZ3/a7KMeWJSnEUV+/fSWju1ZIPlrYxDlrsOXg/dzn39/HDEwvXYvh5y+l9/DgnM54keUXD9RKeKHgF40zj8oSotTYoVH6PWm0Uo11dLhfmZR7n55bDfi5+Xvu+D6G808m82hOxRqASuFwWHT8WVwiiBhQGfMXcjgr+f3L85iTD+xoMkU0Y0RO+OervRct17dgIumh5tVbrxpgz0zQTJVi5VycDUtWVyNjXWmaCGJVGpdUNDU4m8yyWh/mOx1l5lyGTw2RdPxcImVKwzUQz9cneK5Bo3Tc2E6gnFVsnpzz5tfnE7Id7S5d66j1hOo/eqGWnlV2dBLY31v3BXjY2s2UtdVONh31pVaFQt53Wd3uYihKrMNrLhska+R3Yb3CRuaEVas3bTN8SAO3aqXzsIwDUxMBpbljwjto+Bh2QgYTETO9CtoRAkxcZY8EHmZZBu2XoxySS8JfuFyLCdToiHt20Ar1XvGO65a1MU4KLBh2auAa774flqHa9/TGOddtGUzC1xAuWMEdDuI/XenLoQffHUr3ioRqiaLISQiRJ/PA3pzfDS2Qac8QRqPrPCBqwxhC4zZEcN97LnbVsRmcLA4XtHvx7smKf50moiK/j0ZBkRXdSjFo9lKOfQGkVGiexrxiS3QgnTY8jbH4tTj8JhhgngrktQe9FdSsn3Nh1KFo9UhT8XAXqouaVMakVX5c2EE33BFJnIzklWecEUQ7E7TT2Y5ARXnaBKH0kBkePDezanXKqTkMe4HxfjhPRa6Vr4MiofBh6Z/SdrRTqvmuQZZuJJ+itKTAgHILHH+VIKZiAHXAXuxCQ0HAHJl1j9Z4+ymrWsH3Qq0alHKWPdaPPNXPHe75cmfKb8ve7kOdF3ai62kDqnhNpTUzXkMnTRK3v9F7MZamN/jPgs9Lon73SYxri+94xKq+91noDgCUbgumGGOtDDIGGNgT0ynOtxQKdwwNfTs5arXb2vTEvCylHBb7QnjPaYiZqw9VaWRYNqlNqpKy0p1oK85SRrsBXykJOE7Vr0JBSYt8bKU4OZdCaVk9C1B5RQWa2ulIkEEolh6QOd0EpIxIDVRrv9Y1f1n+jlJXn+ZmnT7/ny/PPzMsFcuZeKvdvX00LeVcQRYv75JC4pEnBhA6dTs4T87yQLxckQ5HGVncqjRATeUqQUdZEhLf7r7y//8rkQMesonbViibTiuozSiGbX8SPM0/A9r0ABNtPxECUmLTaG12b5FoM7xVR2HelcAd3kwzKHsGS6yhaYTsj5QpoKA2wdaU5x+hJvK69TQr3/RvhHpnTxDw98XL/Zz5dfuJp+cTt8hPX5QvPt9/x5fM/0oo2QSwVkEBtxey+lc7nvSzO9CjVEaLnI6pJ6GIds0NQhzA55tx4D1s7PLj/vkLi+oqz7qMZgOcg4ABPT8CFi8Bbax8qBPqM+sd7yAHE+vf+OmA0B3RtiFubn/Wz/rre+6hqACNJ8HO5P+48HiuCkKY0aFV+ra6LcdcrP3+/vnMSd/7MlDL2wD+Ah7pmHcDY3zp+u/C7HIHc+eF9/9W7cWktQMD8/Luou1LthX3fWMMD99tNKUJPpBDI02TII4YQdrWc7TupJuakaPxmrk8BVfjPeSHHCXokx8nsT2f6BlLVxjDniZwSOagoaEoLU76QUtYKB2oZZmk8o+9HjMoVdea3EsTp1DEZuwX4R+NArXhojw7NPnez1d33jb2u7MW+L0rFKs1e23Z6r+q1b3a5MekmUrsiXCln5mVB6LSmSBQh0qNuOm6nq4Pf/LIt+POqCDQCydAOmzTifD+hS0Bs44uxjeeuTdY8ePsO7e1i56SfudfKedE+T3KfvDFHphAR0oHUWOIXMG2Jb7St07raI4/S6A/kLvU8XYbLGsFQdrDoJGiZwK5LJSbfBZcwAkpH1vSwpEEcOD/K++P94wkxDx64+hw0FEwCOQnXJRJZWcudtamgtkpQUaR99lGhOp6fUt6a8eEPPq1SPFycH8b5w9n9y5MLu9JmAXo4dFxD9I079mBJk9M0NeiqoRpVJZ3ic/XEFROD+w09ryUi2vVZefzmH69yeCSYcNwpBsEDdtMT6U8JZtDQR5VHk7huIvUG2igrdvORt/exJCMSSMLpHG0jC83Q8kQMHaECk3GnjTomQiRyyTNbEXpQ9L15UhZUnxJiYIquc/g4T3+EQ3onBxcUBwuqjzMctrAGLjyKcq3TpOi29GCix4hII+LUhU4Pita1uXC7Xrnv70QTg7deWau6HHk38N47ta9qIhAT8zyRY9AqgZ7M4fKCbcg2FiU1TTTs1INn8nCACp4wRhBtoKHPJ6vrYumFFGdEEqWszFZymmftrqxmGl31Q00TaKWGmJ2r7FyvE9JhL4Xetc/UPM9Uc5mKKSOiAUlKnZQDr68rTTrL5crjcae1or2UYkZ6JKYwxjqo2Uens+Sk69oM0zJT7jvag0Lv0zRfmJ6upFzZ9o2vknm0O4WApEK8JPLlQumd9/c7v/z6C2+vf6Zs7/TWuDw9sdyeaTGxriuhCbHCnJS6G0JgSbqHd4RHntmkqktiTqQ4A4m1bDzCG6XcuZs+Y6+bOXIlY0qYpX5Ipud0GtuPc3jTuDNqH9OhhXUHNRAyjIDYq3T+3wdA1M0QAgVX0zT+3oEuD0ZD0zXe1x4HcRTs0DG+i9IyH+XBt8e/cJ2vXOcn5vjEJX/m5fb3fHr+O56efubTs3YXVxOFaJ91VChAPjTPi8n3eTHKtVk2i6EPNh9H+4CYyDEpBdFo3XDsQWcthVc1pmlSO2CzzfXmeh7E+9+fJQFwJBbeGPDcSNC1C/67s7vVObgHxnVv2/YhlvbzLKVoImKxExzUK7W11mp1NnDX39tF42f9iVdBzlWa8VldSJOKyLdtV7qVUatC1LV6nmdzNm3UvXyo2PxHx29OMrzj8veln++/l6hJRjKBsHdy1SAHE3sGkEDpjRg6rUUCKmyLm3HMUmKaLqoJwEvUlb2YcMidM0Jg283WMk6EmK0UnYlkUpo1U++qy3i5PnFZrrSm5dk5z1opSRM5TkR3uQrJytzZrM3sv010qEyPrEAubkfpjjGW1ZqI0UVbTkdScbl2WixlZ90e7PuuXcv3lW3089hGA8HWKrVU6JUm2oTq8bZDOKgvSreKZvGoHGW/FyFGirSBcLuIlhgUzYBBFZEY6BGaRLpZhLrVbKuVkBOCuUg0b/Gl9Ldo/A4xF6jFAsrujYG6Wnr65PVEqEnhCDaOPiwhRNVjRKUgOTrsiV2vzYLWH+P4x+c/WH8UoYXGHrSkrVS5PgTawcrQwUsMAFZOPhCRj17foI+sA6N0iL+f+lYLx/ufZicGGRMiXObAkht7u/OoD7bWqKJRkAfD2LPSwC+Mce2BmXnp2ue1USnRx30kJuLB7/gvj8FEx57ZeQ51giUUjGTDy/UgdEtK9Pdq9/kRrdKrlXF7xry0r+OnVj3xjXWg1ZZ8IHh9ImVz8rGA/UCqwhAvN9vzHEVvoj/T4N43DPOwCmkEr2JJ0NALxONueQLjyCUoFaLVDq2zxMh0WZBpUstulIoWHHXifBPi6Tn81x85JdtTFKRRulemNTMY6M0az4VBpdCctnOZJ3pXj36tdnykS3UDN0otY0P3yudlXtj31SpvGkClrDojXV46gUjtSm3N+WmMEyw4CzGoU9k5yf+Qxdndd3MPq3x5sidBDRiWNDHnmbXctblfjNR60CqXObHuxehSTWm2Rg2qRZjnBfXN13VRdXyRrXZCUlOOacp06ZRdu9HHoHvBL9++spcdiZHHVimmh0hkYo4sS6K2pigm5iZsFVkNgjq3p9vQMPYeRu+PPE88vTxzWwJTn5iu8K9z5v39lV8ef0KmyKU+aA0ej42v77/y/vYLqVVu84WnaVaBO7C2QpVOaIFaVFeWUmGZq7IZYmQhIUHYUqcFCMZYSEG/9i48Vk009zKrGNw6F6u9frJ9P43k40c6luVmDViPNVhBnW46SAMXLB4KQbTnl407DExx4FNBx0NLMBZLA8JCSMYUORuMHBXs6MYIw8RA/7bJxmPfeezfmNLMnK9cphfe9le+3v+N6/yJL5/+yPPtd1wvn3m6/QTBbGC7Jt6l+rpvdHajDLoO5XtAcbAqbHVzOndD1+d5nkaV1zWCvlWMdTzFMa5dxzCSnHj0m3CLWBdYezLhNrnX6xWnQ52tal3T4bqQYNXCIVgPCiRs2zZ0dQ7qn/UU0zSNzwcGUOti8Hk+fufJyL7vBjrFwUIRzOL6pONw6pVrd7WiaoJ5QFod19lELXtrrcNx7z87fnOSMRxn9NGOYGissVbK7e4mJNUQd3WBcq/w4wFrENNDINn3U07m8ABSKutWtfKQLHu0jC9GrUZ021BaK9ReCKGYLZvFQKjgLeWJmGYimS4b75vSoqYwsXddcOa8sOSJTKaRFDWvQt0bKU1c5ivzvKiPe4iW2RoCEvLIpNW5LA9EQGQeScfxs6PS0fvRxbyUnW1dWfcH2/rQqoc7XNWPFY9Sd2prVj3RJKTRNEALHoqKiimj+j7HKZOS6mRysgoGiSDR6EhGQndk2V2ejOrTLNCKxs3VhotZvftro1uPj04fFSEXskt0KzcGiuJIn9DUfhG1ZfMqiY6VPoLxaNx7p3mJJJg+Zur/1cdbfydKUM97Q5tSEEiO04u3cMDLwB70fuQD62Ko9/nsanQErb66h/H9kXh8SEHEw03VQ11TI8qDtd5ZmzZrxAsfZ2pItOjX+3nIsSCNzuKG8fu5yUgCTwEWjPVCKwB2vj2oEa4L+KKozsPuieqnNGBLVhFaUuQ6z9B0GzJPtsOdzc89BKNrKSDh9nuczrv1RrWk3e+f2EbtyYmICra7nKlsvv4pDdHXwdo6rXY1xJCg1VsHIDAqlV42LQR6UBR+rFcjMRSj1mhVxUGM3sX0GGq4ALbhm04Fq+0caavpp8Q6EI2B919/5DhT2UF23VvQvgyqlTPgxCrI676rLi0nplk1edGS0WZgxkjGQfscTfp30VD/3ShTJE1iammjYqZrS1CABG16JhbsB6vOdcw2WsRAhD7mH3JKVm2Mi2eOYoFfTNYoNVqSDJISS9Z+FS34WhhxG1mkcb1MbHs/KioWGMRoQI54gKTBZt0rhGBGJRvXqxqc+L4Uw8y6vhGHjm0ixo1mVF+veLhpTBMFSGKYde2OikCrmcvK3/8v/8i/3P832BQhjVZxnXJmuS085yu368J1uvLP//7f+fdf/yfvf/rGlG9IT2yPjbfXr0gpfL688Pz0xOeXF6bLorFBDNzZqV0oG6x7pX97Z11XXp6fWC4XmECSOy+ZrqB1JhJzXNhDsGpGtcrF0asrJf2KcTqSj/hjJRnz9GTX5y5M3qjOtEFGZXdNDmDVdG1yqdb+QhKByU1uDPjqB+I+qs8i6t4XjFplFWKiicODruKt1hNscYBKIsJaVtayc98evE+vLPnGMl35uv0Pni4/87z8nk9Pf8dPn/+Bz59+ZpqWUaXq0s2F7WBj+NeZvuQB8tm1aVzHoD3FMb8fj/LBvlZjWj171+OJAa3+fsCoDHil4VzJOFcqnP7kwMb5+zMFypv3AYOqhcgHlyy/lrP971nL4c/MReyq7Thob4OO5cmMgU+1VaXQnu7ROZHplgjte+F6veq1paP/Sdl3Bbq8wvMbei/95iRDT6p+uPH+8M6BhDeWEow6U7vZ+wk5J6Zppuzl4MzZAh1MiCUWmOqmUZBaaSmSkgUbKWqpNjhT3BZnQZHGcEBKXYoiMa1T6k4Q2EI02pRb416Qrh0OgwSWPHO53rheLiQSjcbj/o3HPbDMF6blRp6uLPlCjpEuSmtShwcTbhLNWk7/JZwzbuWit1bpaRqZpaOa7akOlMEF5vu+se0b6642uuv2YNvuupHUXZ0aqvb0KK3Qmuo+Wm/qlR6FEBohdrN808qELqpB0eGo1SNHokNQcXkCrWw4jSyizy4GcnSdQSPNev2ESLd70Uy0iIhqPXTg4JCe+9D3noizWg+rza0+NkGDiQOtdBcupa4NDj8/zqbwVr4xpcwUk/azN562W/WNpdjLvY74nyoTgsugHdk/EosofHeckNQPyf+RvAB0ezbLBFOqbO2Vr/s7j1bwjYizDW3QEnWMpm8Y4/eEvtvC6SjsYaR1LKrnKowj7ON87T9aa9RS/CwJQbAGrxpop0hCx+icIsuU1VUneH8K3yzkeOPTfToa8fXTXLONy++VXbMY1dPXr961CZ7gi7Gf+PEBrTnY0amta9cO0aTyTCt0TYV2BdfGet3XL39LMatJVIOiYWkYCZeP+YiQo1eojiTuPJbEzttrjT9QIYPr5ca39/2gBAogjiDqs+7ia4Bp9wTmeeb+utHaPjQ2bvLhwIha164a7KbINCf2Iuz7RpN42rvUMrt39ZPPaQLRDtkiXS3JA4fg3xIHY8CbgYdWWDuDTDvGynlOh7FfhSHsjziiGQYHurVIzgsBrexOeeL+eGPQtBCWZeZtfyjoYu+dQlbL9+T9ptRIpNZiwXcc1pte1UsxWoV8Yy87eVI6UqmVVjVAK0WBuzxdaLXTyk6cFh7bnff7G3H6Yjosp+0I275zv98JS+A6Xfnd008saSEz0Wvnf/zp/8uf9/8BoiCeNJjCQg83Uspc56s2XwsOIiQerRgVUwyMKzze31kuC3mZ4BqQaybOmRATU8w8Lc+0srLtXymlsz/uZqlr4nHv02VVtHPy8SMdgdmoe0JK6vyVk+6no7eMVyTMLauZDiNYMu4JYowGgCYhxkaXcgI/Dxem1urhvDU0k9bjKfpaFMnZHQaPNdFjF5FGaWqC89Z/IaXEsmjTxKfLM8+vf8dP3/5Xfnr5ez69/IFPLz9zubwAF9SwRs91N82Z04YcrVdaz0atdVQRjgA/fUDpnR3hNCG3pw0jHlGqLBKJPRKsp5BrGHPKzJM27IQzeKbvvyzLqE74vD9Twv1158TD75XGR4f71dmmN4Sji7hXU+Cowvih8VwayZDOW5UIeK+kaZrI0zQSA6+yeDVFKyra2Vz7bAiX65XQO8mqmHDoS7TK8RcByV8cv3k2pez42HFzHYntHjTaiXYU/YlWrgRV79fa4LFz0AaMUqAQFtX7/RiSkGNUBM6CNM/eet+1+6V0QkqQD79lxvkcnLrWtcQT0Sy8tZ2VAEH5mylPZLx81emlsLc3Ignv1HXJCy1qj4Ot7GztTo4ZiOZaootUJCqNKk8kyTS3LIyG6GNTMTjf0OJkQ2FCmD9k6yKddqnmVqPoQ6370Hl4B/Nte7Cu7+z7XbUfVvmoVZsKlqZdQVvtNDp7FELspNTw9vAxqQdtiFEbKiFaZgvKZU9EkvH+nLrg5+g2vDEkEpr9zinbdXXVdjjm3fR9Y1Jxf+xxIGAJRVGUVd9JhBOtwgLeoHQtDba8wvVjHEucySEyhWTn5fqWOhLKboG6JxjfH0OE/KGyoYeTXs6LnB/fv3b8HHSuBCEHEFbu5Y33slJ6H/Qrr65rkG7VC6N8DN91R2j988KxoPq1HrTBj+czaFDj0tVpp3Pq9xFUq+LKaau1qfA7KHIfcAG5riPB+qZ4x3G8ejASCMGbpx3UKd9Y4hAOesKi+YZd9ygaBbwipNflnyljQnvjsyOpOl+rbfR2dmdLxVNtyoJRFY5HmQhkumTocXT7HlVggmkBdF0e1zGcAI8g9IfKMAApujdEJgS11u694k57Ss10KqTRPVql7IUYA+u+K0VMGjn7GG3j+YGZFETRqlcKlFaRpraZvQkxZUP1GEl6q1X7N8VIqRve8yT2RpJED6IOUaKvbSEjUQhZBor7IdkFRroc4ojF9LGpy2EEphSIYWbf3y0o0ABxWTL5EXnsjd4qIhMQdO1slRBhmgKlFl5uz5S6EYJW4mttTFMi5omyN2qxddySmsu8ME0TdVdnIW2ytYOobW43lJZg99KBsK49Zq7XZ+7FegbMkZgzPer+WL/+SgmFRuPp+cZ1ufLzyx/YS6VI559/+f9w3/6VMAuhZuiJbX/n16+/8Lw8E0mkeWYKC09TJMyBrW2acuSJ3qDVyv39Tn90ZIVZblzjE8uSiCkR2gW5fKK1ldYKpTyU3hsahAahWAXITTrSSDx+pCOH2XcNdH3pIxmHrgL9ftjbKoXNNZQOWblxxUFTDiGqfkUDD0SEnISUKr1VA0MbZa+EIMTUDRD2NU1toN19yT9Pkzan4qAOeJaUP9bKY3/n2+NPTOnf+PPlf/D52x94efojP3/6X/j55R/59PIzy/LEtFyY0kxyeva2qvj7u4qG27K6iFvFzkcgfq52XK/Xv1pd0DUHdB1nJB6IWPKeqM7GsAUmxYQki3tsDJ0TAbe/9SrMOdkYmoqo7R2qxc/bto3X+DWN1gIGZLm9v2vYemuDzu6JzDRNFMqgsw/tRYA5zwMAHD8XZaNs2zaopetq91tUeJ6yJTqlUKo6l07z304hfnOSkaf0AXH36sGRdOhW2RESgde3d5ZpIV1uOvCs6tH9Dy0oHRRvF41igxcTOYdANpZWrf2UNTuFoNGKBiPSGjk5SqG9N2rXoNpxWBUHdUJM2gG5dVuYAykk7g/l0ytNy0r4RC7LhUu/Ml+eyHG2RnsRaQHpikjN08KUFuZ8QcWlE24h2He1O9MSfFSHrTyN7BdxYZOjpnq+IsfmlKQzI2NB8c6azexxa9mou6JS676ybnfW7c7DrAF303vUXoxuVZQmJQIReg/kSbFTaWLOLg0JKpbtqIf84I1bWXGaJ5bJtDBpwjsLx5ioVYNYCcr5C9EEbBb4pRghDdY63lyvw0dOsz3znCdMcWYb8VFJ+xGO1BJRlFIwmv8OJN3DYkvQPZkYYZH/q+LlMzp9HB4Qex3v9Hv5i5eN5J8QSKGTQqfVB2t5sEs79B1hTEvTjRwCbD980yAcCJEnA6Xsx5g1J5zzc3FKkW5SbhLhydeh9QgWwGklTYOpHBNTEGLXSk7ool/j7Q0hPiVeIxk4JeuOWp0F9cd6cmhkTNY4nsxIWNwQoVtiEIIF9AedyT/f7pj9zj5LFB1O0fj6vpHh98b/1hzzUDQPmWg9UruZIIjKyyUES8PsOmK0e+E/60eiQ0D4cebJNf3EvXwjpwkJ2t1aD12jpavLndIzNaDvMlkFHMACLTnmg9PbFJEVwqIINXRS170gACll5snd6vQplaaNKINcFcnMqhNrfR9GGep2rOMQ1OZYk13xHOVjLufnNr7Cad7rdUa0cVfHqjJR2PaVecrUUuyamgIqFkTUWq1KrqBQqZW8ZKa8EGRnK7taaFuhS8ws5Hq9UnujlcYtL+rO2COFwzUnBJiyNr1tlogJltAQyTlB6MSgTo/LfGG5XmgoFYkQqa3zuN+podGDTtrr9cbz9Zk/fP4jIp0UhX/9Kjz2X+kxwi6U8uDb2y/8CzOlNJ5fPjMvC5c8k58Sa5oswIzQF7Z1ZVtXequUvdHXQF6Ohns5Zy7TldvyiffHGznMo7qvzRur0rObUKnIKen4kY6cJlwTdFTYxKjlmmyEmEd8lqMMUwqt3urfqUag2hjVceVrpmrjjLpAQOz9emska1qpa3NDpIxAGvgQ8Op9V52QdE+L6neBtga0tX5l21/59f4/uXx74vOvv+fL09/z6fnv+Xz7Bz5/+juebp+5LM/kSZ3UYoyUsqtOqZQPyH5KH21nvVrt9Cc4tArngN8Pp7vrfxz0WN+vWq1Dl5pzZpkmsjVDDoIyZnpjWzddF6xCej68IjESnMBwdEspDa3DOYkagm9hMIB6b1p9RZPtUuK4ztEDRDCGgGlV4lHBPZ67VTI4NXomDLrVtqo5RIxxVIu8Eqj38TeM37/9Ej2enp/GRX8YMN7XwILGiJbVljlzWabx0EZQJIqYZ6MK1d6MNXJs7IhxDdHgtG59WNfqQ0mQlTa120KcYiD0Tml1ZOk1qkg5pomAZtR7r0gI1pVRJ5IEzb6dj6jOI5FalRIUU+J937jXV+JdcdUcEq0JkPjy+Scu+UpLnc7Our3CFrXBVIcpzsxpZpkvXOYFFyLu5UFqaXTW9g3W75VbgIbkrl1Y8y33bfYnrPeS/qzPoXkDvEqpSrXa9jvbtirVal9Z1/sQnNdalHLVdsqj0dqOoBuT+p5bYBjR5nto0yydfI1tL+xTGvSNZKW7nDMxTcM+UJrfY7PGa6Kl15CO0q6j/YIK0q0DeG+V1jF9Qj+50gTOrjT/1UfdGpIESZBy1OTKEtVgoZ4YpbCJinV7cM5/gz5ClnH4wuwlb0+6zkH28RfBcVNcoyB6m5lzZ0k7m7zz6Nrh+9QRj0FHEw/bDVGBkdDKkQHjlQxFjbwSYD/38RodTbMoelTs/OICSFQPddv8HMEIIVjPjmoVz0DqsO+d/d64XhIODh9gh6BN/NAN8VzB6IrQBbwEnlBTkWpJliFDyAcqlTqbeU5wTk70WXnHcQmqt0jGZxY5xL+e8LRmSgk5nq0ueGiyfRrKIZy0S7YmxChMs3CZQZJ63xOV7hZkUuBDRBujNd00tCoTvxtV/7XHz9f/J1/LP7HvuiEPIXgXJARzN4PavUcKuBvNdZnZ90jpXrU5Nk/nCgu2TsbAtplNeK+AUmLmPLGuG61V3BShtUqKqrWDzl5W1m0lzDMxyGEX211Y7wmtJn7BKu+BMJINTSwi7l7ICBaBGMgxs0wXMjtr3QcCK6IOULUWppysEtPYdtU6aqClpiX+tkGE62VBNtVZ5TyrXq9XelctSa16ni9PL6QYeX9/sEwLwkQpu84JjvVepBGYFZ2OibIXXdfkie2xcp2fuNwuPMpd1+oQVJtE4fGuroh5TkQiy+XC59sLKQaWeeL5+sSf3/6Z+/0b6/2dGgpROlu78/XbrwTJ5C8zy2Xhcs08Xc3W3oLf/HiodfFW2dvO/nhwn3Scz1NVlFiEJIlbvtHThSbNrEoV7W9uzuL/mjvkj3REuw4MmNEGvR1veugIegimHxJ3tPPgX/8rR/e+U9v31nZdGzlcj3R/0YosYrTNpA6gOZteim7MlELvRZO2rr2swnA4jGM/DymjOKpX8WW8h6Bg8tv2ymN7519//Seuy2c+X//Il5c/8nT9wsv19zxff8ft+oXb9ZkgT0zTcoipiyWHyQDwpvvsIXZXYMIrC9+Dkh8rGx8TkDOIeblcPrhMiYhSklIY8U7fdaPorbPLhphpBQYsOdAl/rl2Dp4cuLA7hDCqNiJC2QvNmuldLhdt5GfX3npH9n1oNJZl0arOlMmT0tW1IWf8cM2DmmUJyTRNPD09sSwLX7580Xvb1KhIKXRtVFbmeWZdV7Zt+5vj9zcnGZflOm6+0z7OXD4VmxQwi8hleaI35VOK8WCRY6OutY7FLEU0ODXP8db7GIwyghtBQjNDpK4N//AymDU/i+qooPxobUjVd0i52sZuAzxGcoikKR4VhFYPe0HPCHPWQR0C922lVx1Ul3lhuS2s606pK9/uf+K+aaapvs7ac0MkMOeZp+sLRRKrZOY2M2WtcHgSEoMJsaN3hfWN87AQ7WIISzjwa+neoM6SuKhCUXXdycCE9Avt2uj9i9KtXGC+rZZ0rON7bRy4sxVLPtpuvT92uv2tEJHQaUGFZ955u2SlyiUrO4UoVqmZmOaZOWdLFIOhcJBjJqRsHE+FAR096GhlyS4UEUOxsED2Q9D7W0fx//XHLV6hC4moVslR+5BoTDpKGzRpbLKxUdiksVNsg2g2To/yapPTuDw33INjwbRx44iphHAEPGjiPGcI4UFp7+xtVVQcLxPredmbjS/NF7QrfDME36mIPqElWPNFqwCohqYdYmxLPpIH0S587Ud1QTramyOqHiNGvdZkyWez3jSlFe5fH2xvwt///Y0pe0JkAXUQQ4UFRHnBvRcQ1XzE0IkWGCJCkH6uNYzbcNCg/L583HDOlCgXISvtULstuyXW3s0VxhCrGCDHYdrzF3dc38EruEk7H5sOgCDEXJmvjR4KLTZiBominZYpIErfpEdCRYXBuAD5x0FoZb1wzc/s9d2oAnr9vbdRzYJuG7NOnVorYZmZ0kSOiWKW1iGgfS6s4go6Zh/bSrH+LEoz0DFbaiOkxOWysFtPCh1jnSBGNenKc65N6b1iiWt0Wq6NfQV0VFjtVQrvO/BBkzFSfgtiguswJq7TlV121l2IQala85S0OSAaCB8VQL1HKR8BSkB7DKUM9bFTqjnx9ErKietlopTG47ETUiJidu4xknIhholpSsPid98KOc9My0SpK968rXZHe9MAmq7XRH2+ImulFRBRnWJplb5XOmoXHGz+LpcL1+WJn4AYM0t+5mv8V97Cn9jyO1lmcocqK6/3XyAIn+QLT0+fWC4XbvOMBK08TcuiY+Nbp66FrW6UfSPNMyFmnWO9M4XMp+UzrWvyVUXpx603SzrMIcs6XHf5cSzRAQLWDyMAePPcPp6/04FCCCpglnQAVQac6IoXELP8DimT4qzxAwrEdOn0dhgatNagB1LMTC46xrrIByFOCcFbDvShB+nddB2u4bVtQ8eOVSrdqc32fEEb9LbW+Pr4E+v+yuv2r1yXF14uv+dp+Zmny+/48vJHfvr8B56uX8j5ogBosr4Tu4KYLTZarJp4B9eMMKoa5yTh3JcDGGuNGKh1Tki8QnDWXjjl1S1j4aBODZYKKGXHjCn8cwlqCa0xTRgJggu+/fNc5O9/J5bglaI2s25h6+9RShk6jtaaMWcONyvX3vj6JHZvEAWr8jSByOhH4rH+uBZUsJ5zZl3Xvzl+f3OSMU2LDlULkj4kHOLc2GRIrQ3cHsCa2knvI7uszQaw8U7d1d62FbMU85FhqGKzhkMoZcIpJ0NYmnTyNLwMrtBqTio2B7OmtJsuXSjbptitlQqHXZo9hAC8vb5BVBQJNFAo+87j8dBBGQO9Fwoe3KtlbBGlItX9Tgsbc54JRSdsILKuG4iKyVWEPjGliXlamPME4l7HlYh2OA2iWginacScCD0OkVbrSs8IBEPVNPFIUSk8Get4vkC/aQPB1iqlVutOvrFtG+v6zraZq1VZNdmohb1qM8HWK7UXatvZ68a6FUSqCsqnYANaNTPaFb2xJ61W5KSN6nQyJlJmWJnqpLR+HQE62cTRDSEbHUXG+KN/Tzf6rz/+7f6LUfUSU9VO99nRAqysagFUo7BLpYSmFQ0r4/uk1mqUIXdnxJuxD+j3IZDTZLaNR0OjQZQJkBNcUqO1dx51ZetidQuxipy5WVmS6PxrQhzIXrQFGHtnww08HQE4KG4EQ75OqL+5l0VDSUPS0pwEZxybcYMj79bgrEmwjVZRr700RA6B3bHbnseC9zjoNn70y5E+v6fe+8JW/3Hv8cBX0KAdf+/jnn4IGkXvoyLmWBVI5+v398wDagxECSOnc4Q8kIN+RV8je6eVTpOdnnZ6qLTQ2VujVe2XIZaQRWvw0QyVTSEypTgEkz/CUX6NXL/8xGv4d6SVUZI/LDWtQhma3SNFqGsTYtSmeb3oBjcKZ8HL/YoeVut2Pk2zVZ51za6lkANqfJEiW1VhKRKodSdHs26O0MQ0hDaOMOpUTAmpXiWwPjHBq7C+m+l7IhBFqVGjK7ihmdpAMBFEuxVf5itCYcmZQKGVSrNeQ9Gub5pUEFuKJTqWJNXW2NadUkDoKvxulVB1HqWcCDFpl+BtIy6Lfn7qvN83DTKCOwfGsQcqxSaRovfn6IQkLJeJl/5EX4W2dda3nVIV0W61sdUHW3moyUmrtFp44TN5WbhMF/rymdAgFiG2wF1m6JXQA63sfH278/7+lff7G7//3T/w5affcZsX8jyTmG2/bkr97UV7hFRNKJuYI0+cSKIVI+3v0616oQlFMzt8d5rrnK2uf5zDlzoHfVwwrD+T0XsKwrCiVx2o/Y10ghxC5EQmSFNAI3plodNEXfhEOj14Z+kIaDNjOFB/HcPW7A+003rvkIScDtcqb9QrdJ0H1s8iRgvIbUGsrbLvO9qesvC2/cr7+srXtz8zTxeer1/4+fH3fLv/kdvlZz49/U6pVPlCijeQprOrqwFHa9oPaV4Wbf4cjsZzvr96BdTv4/f3+5yMeCXkrKs4g31uWftR5xGPdY1jrwCsOe1Z58ewsJ3nQzdxrtB6v4wQGD9fTcfRex8dwz3J8c/0Z+bicE+IBnULRvUeGOB2dvG67YveO4vIcLv6W8dvF36neKyb40l8t6lHteXqXcssngToDdUyb2uNqaENhhy1lkB1lPT7I2pJ3MXJIsrHFsSSDf0z6Zqp6+fJWDAJEWnmqhTC4BwGT456U4pBPFCake31TqsrKWcVtZlmQoO/NgI99+R2rYIOJAsXQuL98Y2A8lev1xtTnihS6B3KdlehTp812Xrr0BTln+aZ+bKoUKdHpOhioA4FyRIRRdcc6VLfdEWbxRO10+uiVxJSJE0XQMt4zqP3RXvfd/Z9Hba5tarIfC8bW1nZ9oe+rqkIvTbvZL7RtkrpjUfYNHnI2hwq5sgyKwopqFNGrJ1sQjEouO1xjAmCouER64kQwek9IQYkmoXlD1TK+B+Pf7MKTjTDAi3dRndCGqm0tWIz+9QPFVwxepI4jerQEXgA7IGxoD1p5jQz54l5mpiC8kBDOJ55ih1hZa13HnVn7Y3q79EP95FzqVjRfhNxG0LrSd4hYu1mccegUeqUF2sixqjKpCCKZCWtWPrvtAThyUXHm+SJOQb1E9VMXXUD05wNzQ3/8fMfgPPh895Eu2BbWjcskx3UcO93p6gh2m3czSx8np0/xBdofS80QbZgFxHiaZEPiDYd6KjewKobCW3Qp2iSdYQWew3afyYkoMC6N96lUv0arF9JCGEIpcVQWeXyBy5TZg4/UJLxCjwtBLKCJ8HGclLkTCtCFa1iKghUqzqnyPMLKWcdm4ZW1lY5qn/tGM/drcUzNSZU+GrizGBrU/VAQSm0CgrAlEBa1SqGjdUmjIaVGLqoFJSmgJoZgSiOYutyVJtwb+wqzffQoJRRieR8JVUz0DBqX46qhZyasO5Vu5Wj+6Wjn90RxgDbXsnTwpK0a7hWRQOtalDRupCmZYAGYi6HhMxeV3rv3C5Xo+foc3IYJ8Uw3Hl0fCakNZ5ePiEt0Gunt1fq/R2pjd4KZd+o68bj/sb6eGdb77RaeP78mWlemGJmmZ54uUGOV35+2Wl9Y93u3N/fKPUbj/uD8su/UWtXq+sUuUUF2HKaWJYLt9sT0GEN7LGaWYy6SM5xRpKCi2JVCnEjEau4KnXKqz/NaHU/zjF6EwljXZLePwSu5w7WDsgEM7XQ5TWO/kT6j9Bjt2qyKQVFSFbJ69KJaTK9pAydXu/emE7HfbS4SXflSEwWjIZMitDz0X28926ME9/vDBSNARWwa6Kt9ELGtW3tzqO+8bb9wvv27/xy/8J1+cKn28/c5k88LT/x+fmPPD/9zDI/E6NqckLUwH8vO/MyEyK0ouJm73Wx7/sHx6ojAbFxn5JVNbSa/30l+2xfO02T9o6IcYDQ/rpz9/CPn3M8w3Picraq9cTBfy9WvQ1BO3n73zdzTnI9xe12+1B18YTlLHlw6rWf9zgc4zd6mGaqtl+7CL3+torfb991RDnwZwTvDKfqQz2oL6F68x/jD6IbnpjYLueilrOow1SqTZHAU0dEsMAlqB/4ORipTUMPtTo0zvopsBZMu2GJh8jBsdaHOI1qRwhhBBleRjoHW2bOqouvZ6quGREUPQmWqStU+yHD9f4iW2ns9WG/i4YwCHPUMllI7vwf2RqENZDqxJxmda8KcSDFMUCe9OcuKARFmrwyEkaQFS35aYPbjjnyBGtoFqJ1XGdinieu1yfjovdRAVLthlrmbttDk42ymrZj1UaClnzUqg4ETQq9WiPB0KgbpKQblffbmHJmmrV834L2G4jmyT3cxaLbpqUxDp3jmX4oNxDrcdBVJNdDtYTXEeujSlGtkdVI1O0x+iKni4yJWfGvI7kwXIk5ZXpyVPxYqNQWWgOk1gr37Rtv5c57K5Sm3GTE6VeMBCY4oh4cWBALni2h09x9UPWiiUwPJOQjOjOOEEysbJobr0yNBMM+385jtI87JR9RINDG+PDF9kzL8s8WCwTtCgYa00/fgz+XI3E4/t6ehfjd5sO6oK/UD5XTJYzaTlcamPo+o6HzCfgwk6xxDd9/rr+nnquikXQIHaQZ5cscUVQQqpuPB0yeAE4hMZGY5MeZJ60IC1+45Gc6nVJXWi829w1xqxqQaGVG16fWO+u+GaUoq3gX0ACon/499H9l24mzgkCtGvUSWLeVaUpc5sxeOq1p0JCTVop7r1a90/1Dog1VHERKYxyN5+XjqmsyfAwMi6zMUcqd8kJMSE205mO9m4ZGx8MyXXjsD9ujIkTt4q4OMSrsV2BIKHVirzu1mSC8rCzLPBDPZntWytmApkxKkdYKvRugk6JaMrdmXPxsAl7Rvgo1MC+ZUnbaLvTJKgZTJs4RtkBISmnOqROSuqJt64PXV+v5g3B7fmGaL9yWC1OeuD092z5WWbd33q6/Ms+/8Pr1VW1uaWzbnW19Z5oyExdCgCnP3G7PemunRJFCvMzkeVG71DSDBcbNekKMxKKr+Fn6OQH58SoZAY99NOBPISnqYOPN3bCUMYIluB53HOti8DjJ10QRulnj2sjF9Y49NG0VIM5M0fui9uLuoqdVbuEIev2MdR8KJCZS7KSo/SDy6DDt/ZWUytv6zrGrhbG2A4cYWwJb3Snvf+L18Y2v939nmW/clk/89PZ7Pt1+z8vtD9xcLJ6u+NrocSUcPXX831LKEIRrpe6gJbkGw61hDwvaA5A+fzmy7w3yvney+n5PPLtOeUXqTMv1BMGrKGoVfwjHY1QntbIXnYs50Vo/dDwcCc25keFgSjQ1BLjf76Pfhn922XfmaR7gAnysXuzbNpKp/+z4zUmG32w//vJ7s3EN2oRqStMIjiARw6QBlnEJl3mBLuy10AlcFkaJ6wMNyyhDdAuwglIqXCqdUmKKURGt3tm2VRfu7pNCkcLB/7OF/vtDwFw4jtKWX+PojGkPJ+BiKBsMJkZWBLprVT06wuooptKa/LOSZ/8x0kNjLxWaNZmziVBrI+XMnC+kqInDPC96j1ul729EsiUWWt1o+zYuKEfjc0sgiHn2S2CeZlLMirqRLbCzgDK4FsQayZlNL2aSoIuQ0desGeBWrMKxvWsfj/WhfT3WB3vTruZbXU3fUc0pplGkIRRiquSpKqVjzqSsgvs8ZcU6WhiPLASrqtnKGf7Ks/yvPFLXYCgZ0t8tiFYKoJ52653S1V5uK/Uo0wfMNYSB5CCYWxVmp3k46IAi4JIhTupGVGzhU666jsApCVMsbPXOva2sbbeA/XRTOZIM0AZ0PscQD5tNsN4tybZg+2iAJCMJ9vf7sAinAEHdxrxbdu8VujrG5BDwjvCewQdbVHurSl1Kneutc4loEBMYyTRdA0ErsaDJkQYQfkO9Z0bDEyKxsWX0sQBhNEbrJnOUsZYNoILz2Au0FqnNdELnTaXZrh4V1w4SSBKhBaLYuxt9C5yjHBSB10YBFlio+4ePoZC0KJuiWvyqpbMHtAFJdg+MXikB2g9kkLC+78z3K8vzE+/yq3HxgiXEnWm6ILLhAUfvAjEaraVzM51XrX2Iw71RXO+nAMsE781NDkTpP1rx7dSiAcVtXli3SkCYp0kxNZoluloZ0f5ASYOsrmNTjNM/XHy8esExNvz/gzsDePIcAlEySKI2CEF5zpsJPumCTMG0ekE/pwlznoy/LixLRrpWcRR/6exbZ1oWTRBEBn1iMven0M1pKEemKZlYtStIiFYgY9AGhtOktq4+7rWzfSBliHLl69dfKffCfV3Za6H2as6FG4HKHJXGJ8EtZ99GkBZDZFq0J4aYs41a7E7UKlz2QtkbLTdSiLReuN/fCAEurRCzcsZTVEr0Epo604ZEDpk5zkzTddiEDm2J0YQ98ThXMtzq+kc6YkhjkYshELPGDz31AbQ5e0Js/fAkWw8dj1EXIXypCEFG4qGfA0o1lFHlcXczEWtc2ruSCbrNrc4AO7oI9D6MWNT5SoFcbRMAB71GjpQiQmyJEApIQpq7qskwhNE/iXZdwl539lp4u3/jdfoz9+Xf+fX9haflC0+XL9yuv+Pp8nuW+TPLchtMHJGPcd05kTjHnee+Gl6tEJGRaLi4Wq/zBEifkgrQz6q1Dd3j978/Jzzfg9v+3l51AMxR7rgGTwy2vLHum9G64kgWHKh0UMxF8B4/aOM9rYZ4wtNao9XG119/5dOnT4N6uu87KSUulwuXy4Vt2/j69evfHL//B5rx9dOghaOCod8HQyhD1ADVLbMQxWm9bbtYJpyswhCnRf3OWyVlvcHzPBNDHI1Wehd6U85eHxWRPjIzD0QkwPV2HUmESNfftRPSZLQqMO3AGFwHV0/zEB2UPtiOQeDOWmov+71wyM1y9W/dx96OaEiuBWmgtrurlRIxxF7pJ2nYENb+oPaVvUa2khExRxyzuFT7MWsYMy+aRKRMk2JzPCoXMmZNRnJHKNQmSNMKjfN9delQ3UiQoNts0M3bQ80Ylc88yYQAV8zVSppWPKwj6bY9eKyaeNzXNxWZGwWrto3SNnNHqPS9scpOfxREGvM0mTtCYp5UeBacow1Ea/IHykf/UY7HfmePkZwyi2lTUoraOyQ4l7JB6BSjwJXSKBY8NekWa+mClUNksopPIpLEe79YNQRYjeLTRZUHtak1sAZDnZdLIswbpT14tMpuXNAUTfJCx52VzFRE349jsfMEw6suI55Fg0L9oRc+bA4ZPcQzl1Ey7srZDh4IB39/ThUF1zBoMiIaL5OSMEVYJoHYRhXijM7ZCY9zkfHfB3DRDEXz6oFXEhRj48hTTkh1sA7e0bjPYi/sgj0P27B9LRCGeZffvxQCWSK9WtIERoVDu40TmYJqaKagneMTDawa2UOnpUoJBaIm3Nr4MZH9PojpTqTTg+iac2rc9yMc9bHy/udEuE6E0G1NDKZ/EZr5sHugoZTXyfj+qjO5TDOPdScgWg2dMqWIuc34/qQdtnt31ylRB8KBRioQM00T0iHnhadlYVsb79sKfWWOVR3jULBKugUhwyHHSUWChG7VOkbCZ+mlfm/XZCkrQUtzSFfKsBAhWv8g4P3x0GDaxmDKWY0gemWa51GRCKIUlnmeEMlU8853tLO1roLnJoReqZeF0jShmKabgj+tU6o2AaxNQZAYBZI2bAVNSpSeeaOUxv/8p3+mb4V9h1pUM7NuG99ev9Lag3nKXC43pmVhsn2orDvv8RUBbgLTshCz9iypVZuB7fuutrQtEIMaojzWjXXTRn+3283ErVqVab1C6/RatEkiYuNdyHk2uq1q/tI0j7mtHa+t03Gv9ObOhT/OodV7LFDtVsmYETv/bolT4GT2YUDFeR3zdSiIr0aB03Jl67ZVpQPQ3UlJ3zWlpD3HehksB7BeNoaMiZj1cTzsNDC6Y4hjMTS6tyPtEQmJKc1EGlN2yqBelwIx8hdf3uG6to1vj4337Ssp/k/m+crz5QvX+RPP8x+5pp/5+cvf8/T8mXm+krKCrNliilYb9/t9AMzePyLGOBJ010gcFYv8Ifk4g/BnapSIJW8OmhstzM/9uJY0krNzsF9rHVUE10PEsbYd1ZNlWSCGk2bjSJrOOhFvyJmzxpGlFEopI2Hyf6vo67ZtG/fBHaZKKbSmtLPvmwL+teO306V6O23mY+Qa+qRonaBuGxAIPRjPzS6W0405lexUtJoI2XyNmyBVqDRiUOpOsHS3i+giaJzKbr7eXWS0ZldepQcoljWnwKQKY/Ztp1pQJDAaWI1BYomIBiYeOGtaog+mKzKKjAz0eKh6bzyjdSs5p2OJZ5D+YAK6IdlM76LIAk1dHhrm6xxUDIxA3xjJVcoLKU/aYXrKEBpreWcrj/HeOU1McTJWO7aQmLi6GwUJ1XKklFULkiaSVUFC9J7Dyk3s3Rz3Q2YIwSwxSmgTwgULQp8/KWpUK2tZ2fei3cvL42MPj32jlJVaV6qJyqV3+i6spbGyq8bBbOKmOTNNptMI8AMBtNS60Qi0lEAyU8+IqJ5nIB+YZimoZ38ei4A+4+Y2tiLErMnCnPKghXkSt5dCqZVahM0TYOnDNi+FQOgCU0bag3t48JBCsQQX0/L0UX71hQvHEE4B+FGl8D4MvoCdqxW+mJ6RmLGJeYXQEDml6cXDclmsShkUleuiiFrRKJ4pZrrZ//bQkWCWjFEzEImnE/dDwkhG0XoR3ZE+HE/Tp+INMx1rdqpn9yThfC2evIhQm28MenVeWQkju7E10CskTRCnwTlneiRL6lI1xciUkjZps0RHKyEaBNWgyWg0h7YcM7MlP2CvaW7fC70ezm0/wtFrYX+PXOWKGOtLhetZg8tujeC6orA1qHDYEyjQZNCb6Unv2u0aKHsd2phaK5d5pvWdELI2afN7TWCeFxsfapnbSiVdRN8rzBQe7G3nku3ZSweUttq9l41V8CTKMdTCgS4fAI06OyWnSxm6GCxQIUTyNFPaZomrWrO3daXZeHOu+GSde1OINGmk0LnOCyVWeosImjCknMhRkfDHfVfr+BR5tA32rkL6hM3byjxfkJxZ153esXUrgdFDWlUuf4oT6/3B/m2FvZPyFUKiA4+y8+fXr5T1jety4Xc/z1yuN63CWyD3eNwtjBCWdoWkbIR933msd/ZtBwnkPCNNwatSNPn4Kl+5LReeb0/cbk/cnm7EKRODcsj3utP7zi4be120oZt18k5pItpaqnMnWWwAy0CNf6wkI1mXbo+5gpUyg2h1LwY1Q/AVTYGRMMaioGupLm/+HgrCfgSSsPVPV/geIkIznZpX6uRDwpBQIPJcmRCLjQboNIivWmUJZ+DG0CBNfDI2GPETmrwCZX1N/PkMYMuutQlW6dt59JX7fmeZfuHT5ZXb/Cce/U8833/iMn/m6fYz1+snTTZy0nU0e78aTXTHvT/pGfxQYPnYZ77//blSAWZlL4cTnYO1GM3MQTQRr+adwDAL6kdz0tYVcD0lNNgdu1wuI+k5yw3OtDBPWi6Xy7g+737u+o0QAtM8kTaj0ofDHvzbt2+8vb3x888/g33m3zp+c5LhN/57mpQOeN3nfQeWFhAija7NfMSCaddkaypr1CUdfioISkj0pFiop2Dcw5MlLyNL9gdSW0VaIyCUVkzwqH+qA9lQqBiYFrXI09LvR+FUqxr4SXTqEJa4aFB2blN/5rEPQY8lKZ4NxxDAmm/1YJSIcNBEWu3mihWHyJemnXx18pnzj9E5nKIxBDxUSun0vlNqOA1k3cBiSrqwhqx2hWNx9Y0OpqyLbg8qNtwbxP3UZRIVJ6prlgqac0ykOGnigcIeqgEyhy1DnmJMzGmGeWHqV5xS06WqvmPfeFi/jm27s1svjyE2Lxul79Sujhe9NmpXd6+YNPEYTal+kONIwgLF3CZqO5pn6Xxxt6jAZLzNZZqsQtHdQMoScLV21uem42KKiZYm5jyZg0Y4vdaqa0FRrSkHlgytb9zDxtqLuR+5CO1jaffDYhm/R2X0K59cK868z+8Pr2J4YKSB+7EJno8jAD7Kzj7+RPpA/T25cZTI/sToX6fFVeTDGjCMDQaiJHhJ3ilF4Pelj8C1S8dPzRMy73Og8xYLxo7XhWiLhycZdv09CBIxy+pM7MVmehibu66ckIP24nF6lL6TJmdTzDznSLDmVEhAmjpv+VgIQYECBge9U8oPlGTQ6Xvlc/8dS7zxqK8gvoGLRzz0pk221BnGH7jeEJ/3XdXf9Cpclhv3dadsu7nZBVIOtCKmsXDxtyYHKWW6Je1a+U60XolRk4/SKqUW+qIBQsgB6SbAFDNw6DKoJXDiXds1+J4XvCpszToR77Fi90TErG3F1vVK78XW8UQynVY0a8reGqFbUppnLvlCq3du1yvt3qgdtk0duIKtISkp9amUSoqRp+uTri1hYasazLWulLGcEl12BlAoKpif55lA4O3Pr0xrZ56v5OWifUuq9bAKidoCpQUkJAiaDIeoPVBabTzu77ZldhXyh0AQIcfA9bKwzDOlVPZt034qPIZY97GqUL23xpQTT5eZPN3oMdD3Vx5to9adKUd2URoVtn8qgJYNjdbEI0VNQoiBlOb/awf//8Ejp/kYX3ICeEN3VRBOjXWtqC0pA0jxdcH1qePnKPjh4Y6zTQXVFioFyqu02jCSIITekdrptSo4EHUvU0osI8HQXhVn2qyt9XKi1tparluj0bWDUqQlWGAeEhIU5G2tjRhRYy1v6KqaUy3CFKMU7jzKNx71z9z3T8z5E0/r73i6/MQyPXN7+sw8XYhxtkaTgZ68R0XTdTo48f0wMtK16Igfv6dcHV3Qjzg5xkQSp0v5HYeP1YCP1Q2fc55MtFoR03v4ZzOed+B72hUciYh/lvff8H4c5wTD474QApfrdcSx/vPH48Hb2yu1fhp9Pf7m+P2br7Dj9fV1bPyjS+AosdjGWrUykIzTr/zGQpBEIxwbYoy0Ho2woOXQZILnbgI5dbAI4yGJKE88oHQLNeXRc8lpJiAs08RadvailoTVeJeK2mvikVMgTNG4mQ3vgggqQG/VXLEs+wtWonQ6VcrJJki3a/cALVoA04GjsZ+gdIhoCYmHEiGoc0gwy9bUrL+HB0qC9tGQDv2gdJ194MVsyOZ5plnik6ZMjlraa71T26Z2ly1B3cfE9D4TTrFa5mWI8gPJfj6rgDyok9W63zUYCmFUPKY8K8IetbFZbypsDLZk6b1NYNa9MaI+7Wlima883V4Uda0brWnpTm10vUP5ISZv1rejNNUxSGmIVHr4cZCnz59ehoVgtE1Tc2qz7vsrhyPp56D4CBbBF6Pvw3j/lZe0VXvkzk+BSGMOjSk+2GTj3htbhY71n/BNaCD0Br/L6c05AvBzoHFexMZ1iCf+ilj11sdGhiflOFtdEenUQWkjfVhTD8MCwqBuqS4BUjDPnqFn8M1ynIT+nXgS4aYPfZwf8hFk8I4D7jjnr+tuVKFNauza7PkIp9cx5g4weK/uEBYI9KBUqYBZC+YAxXzkgyYQQcw0ICg9qMWGpGSVGt+FI5FM7B12vYfFnomjeylFYs4DIWvSqb1TfqMbyP8dx6e//xnJWn25pc/cyze9V70T00lIzwHkKDijGoz7XqhN+dK6ZAeQzO3ywrf3N0Ab29UqBLIlp07rNStLUbrAlDOtrazbRoyd66Wx5Mz1srD31fjfG3maqb2TQxw2tR8oHDCep4JbYE8We8jHnBZPvD1ATGr5HiMpzYgUck7c74+DWgyEnAlJA7WUMlEUhLhdP9Eb6i63vPD17Suglpjdnr06TimVRTWCnX0vXBdF+uujKO86zjw//cT62E7X1GlVe93QO9t956lrAJHTRJpnWoA53vgkP6m9+fMLOUWmy4Uu6n7lTd2mrHO7lEraNkLoxKgg2G25ma5Je0Ks68rX12/spbIskA2QEYG96jk/NdEeA6Gzy66NRkNAEgNhD7Zu9KY9FChG4wmRGBIxZbMC/3Fc2ABynMd4672COaQ57DJig66aoCBjR9EUJHhSrOtYx81rfB09DmWABgLK2GhlN52ZIcSu46idcn+wvq+EEFiuC/K0wGQuV0kD9pAOp6gza6SLrvnD8Wp02LZzFzGdaNTqbjo6mqf40eRBAWcd36m34ZLZW2MLhZB22vaVt/UbOc483/7EdX1myc/c7j9xm35imZ+5Xb9wWW64foEAKes4jGblLiKUos2Kg9EsNdbVoL3Wyrquo6pwuEz6HjpK4R8qHmfdr5u+uN7CbWcB9qD6iZBcdO9JZhxJpNOZfF1yMfnkQKbRsFprH9ynPFb2hMLtdIMw/gZEmw72BmS2bf/b4/e3DnRX3fvJfMiUUiAmpXbklA3Ja9S9QAjMcVLeZHOkXye2lokDxERnovdAkwghnehG6hcfUiK5X310qkKwcrmWnGsVQpiYp0TrQp60oVUgsO+rcsGNw9hpA2jqIiPZmBbtTuqceGwD3/d1BOigmXuMbkMmowO1B2ZaUuTDgA2Yr3c/ggEVFR6Z7rDSbObuwNH5+6+hxiLCtq4jqO01GZLhGyo0OTjIOZlfOHrPSq+UtbLVXYMbEaTp856aCspFoJZm94RhNZfiRNq9s3cmhsQUtQGfW+zqhm7o3Ql59okbDaGf84UQbgMZ9LJeqTvrvlJ2tc7dt4f289g3pVeV7YeyHPzy8jISAw8vwBPlv476+8+/D9r/2mv/sl7gibh+RRgMxgTMoQKbbrxNLTiBYdsqtsiPdw/HZgBHVc57AQRwqrPRrI7X6TX4f5/QqXggWGFUMhy1NvSqx8O61hNk021ENJnPUW2oXdvi98cri34PB0Ln/z2i1Y/zBhHTKjDmysF59fuqQEMTUc68fKzCuK2vJx/agT5+eE23hxPtfwGhW5M1TbCs6tHFAmF9jv5qbcQVxnpVivDo2um1iX7V1ul1dP0Agmq77EvX2h/HXern/8c/QJ5IF5i3L8T4z4R+8q0PvnGrcPJ4HpF126mtaqAqirSJDlykw5QmYgq2/gj3x3oEON0DtIjEQG2N2+VGmyrrtlsltTBnUPccRTX3vXDNBhpxCGlDMO1LV0emGJImpe7wY+vA+F4+WlmK1a5iTPTqSG5iryuJYE3lrJIugrRqvXDUdvKSLnYPolYDWmW9vzOlia08mCalQ7T3h+4FTalO2Si2MSUu85VS1QxCAREHBBTECTHRWtHmZ/a/Zb7y8nRh+9NDHQu7IHMk3Wau+YXfZaE+HnSzsW4itL0wTxOXy5XLZcJrtq11pDViyizzwu32QsyzJibbRgiJbV25E2hAmidtOFc7PWgPq70Upq60D11i1FZ3X4vSeQ1tPyPq2DxEGq0XQgvsYXja/TBHiploSWkn6F6KgLk+6VhqBzACYyEeSe+IHw4QR8GP8B1oImOt7tLY1pXaG8syjyAfacTWaGvhT//0C/TA3/23n5lmQ9czqi+zdS+YtnTYs0ZHvy3p612F+N3thXU9bU4jjpYontbllNzR0NfkTgz5BO6KGYoEctYeIvu+s26vbG3nenklhswc/4Xb9Jnr8pmn5SeeLj9xmV+IMVvvkSftFWH3UIP4Q0CNMND8owIfWNcH3hn7o8vUx33+iP1cq2Xr/Yf3O9YMpxuGoM/OrdPPiaXuB23Ez7E1pU2ajsSb9LXWWJblAyVs3/dxvs4AOJ/Hp0+fxt/U2v7PdZdK04Rvpo7g2C6uU7UXWtETj3aDMIpIGXaT8eONdbeAniDsijyETBcTygVzSOqauMSkgesQlIqWVpv9DJsYkJizlabNvk66iqSn2RKY3ui9Uj3pEEUFtQOo248pFzLlyCWp84a49qMp51k3OEMST1xOp0800cZOSTS7TynSo/MVvWQoZr174rcjRGtmlixodVrGoEThgPOxKEaMpuOT0u81yZbUgavR2rGxqKOIVaZCpnVdpNd9NUtDc7ZIohtUy6fBqeMix4nrfB1JhmbyEynNBFSg7h1FYzT6lUz27KzyERN5UhctHWlxuFi1VilmobvvG/v+YNvVyepHOT4/PwO6kHRD0f0405LOx/flzb+WbIClsN/9auRt3XUWukmkAHMQJimUrpWMrffDaSIEb9Ex3skRPz9H1yaJl8uxIJwjuQZz+8LoI6Oa4baGGjhpY7Xufgcq4g46Kt0pxxvxCULr0HogB00ssoMSIahBAh62xWFvHcSvQBjcTONZRbBuuEKgkwPqaDOSM4fbjhBDkBPbWCurjrV1SyL6uF45Xbt894zt5xwJVLNO4Pq8sevmEPuHaEmVCoyDJUIRtb+traoNsWkvahNqxd7b6JIxkqZkznPhh7J6vv3+ZwUiovDEP5LC/48YTZgcoUsbvvTeZKzsjRAitRdoiXm+AIpghpgpvfG+PQ6HNqtE72UnZ03uDucbvffrtrNMG9GBERrrtjJPO1pY0L0nWDWhN00Kva8HWPHvXNE40U/0BZY8YFVesx13RNlpsBjQNM8L98cr6pQlXC6HU2PpavhRa9OkMgbtu7QXpF+otfP2fle3wh5oxQXc1kwsZO0NEpWBkFIgxZlqJgqK5md6U42K65eCmQzs+8aSrsyXifLvFdJM64F92ygdWAJ9CSz5icvzFdkr5bGO5l95XliuV65PNwjCtj6oZWMvwjRfWOaFp9sz03JFgPfHnWIUrWWa6K2oUP9y1aZ6TW1ya1fueke08l+1elNKNWTdDVWOhMPNaRwI0Spq4z9Yfv/LjpzmI5BG6XpYLxiRaIkSYGNK4wndexrJ7smRcBwJhXNJjkODWXfiavbcxCq1MoAOmvZJePv2jhoLVBtnQNBquboqWrWIaLGb2b7q6SLmZhVCJHos1l347RUJ7490hDq+A5yZ0r17F+uPVKGcEzFFsukTBKH2RmsbX7dfyfFfmeaFp8sLz9NP3C5fmOKVJd94ef49L0+/Y1luYxw5CySEYO5Th61rSpHekwETivK72PqgUIWD8m5rxmEwdBgQOVPI10D/1++RJwrnuMFNJw4OgaizW/dE9LtExd4nZ2uRIIcbHWg8qfRKZZk8PT1xu93IOfPrr18/2OL+h+P3Nw/06SMH7PxvB6JMY2P33gpSrOXVmNxxBKY6KFTYJmpxxEAfScrjJNKZaFG7gKqAFgJxZKcYpqQbaCKhyI9YIB5Q68frcmFeFua0jISiNxXPyimsaGbBR9DL6dIJPRBCVsvaKMw5m66gKZ81Rd7Wu9Er2qBZ9Ca4JZ5w8lwWtTRNVmUR0UF/Pg7KRzP09+QOdVGktJ0oEjr5TZ/CEeR4sKuDQajFKi3RuP4BjwQRUZFXo1KqJ4XBoHHln7ddN4tlnnDkW9euyJQyte9a9k6RkPX6UpjIcWLKpglBbY57m+hMiu7ZBkxXPYduxMqTdQ6jltmfeHp6Ofjy8j2n8b/2mJMJ7M1RRjhWwbF5yQgvdfEO/t++V3yHpIUjqAZLNrzqZF/dE3jcN6QDFZGNFgubCC2g/FmwuYEl7CY+9jfnY9DsouajJCt+pvbaTu+Oznq15vidalzV191yBN3rRtVBKUKEYFQQSzYMOHNBuS7MaJXgfAr+vZdOxufLacNUOkEQIaMJhua2R+B/TrPkzH32DQtHs/xH3yeL50fm/XuOxEMvXOdjbVVRNw9I7aakKMwhkSQReuODqxuBLDCHyBwiKQk1HIiaTWadq2YeIR17TQR+nIpfnJdBm7tOf88lfWbb7oToziqFVhvTdAV0/2m1jxK/gzjzMlOr94nobK3QURvN2v26FXnMyQMTm5Miaqv6WHl5/kxOCyV2Sq081neQCUTpv9u+8nT5BNgc6wLRqoGnat9ItJGhrZKRmjpV1tZUHDBTYCeR6L3ozG2NUhXEmiYNMPa2I2bXu8yzBQ8dWufleWKvhRDg9nShvgtCYZpsrTW6cEdpibV1HuumXvjhSbnvIqTQ0Z4kM+v2SgidKSsiW0s1HRzc7++kvfP09Jn398JaHry97ZTcyLfA5bawXBem20K+LizrDt38/qeJbuM52FjdaiWFlduyjwCI0x4WArb+56G/mhelpGj1VtiquUoRVGPRxEwWhFpsXzQGQrAE40Pi8R215Uc5EtnAEo0DIIFUpOsaogF9h+i23G5tq5TSYOuMthc4qKOjOmbJiy4jXunQlfC6XAa7QrSPgCUMsMwzf/ff/oD0Rpp8XxFCE605RYGQxrIkXSDLqCp228N1H3LNkH6SM2Zaq0prDec9z5AqsMRFz1z3L/t36AmtMoc6Yi7LoTcNQd2THvudR7nz2F55nf7M8riQmchMXL5+5vnyez7d/sjL0++YpydymtXZjWhWyPXYQ8NhY+sOTL5eeRUBlKbpgHKtlWVZTGdRB0h1FnF/1Clq4uJJh1OtfN05g5khBDNF6qOHXEpO+Rd6bZRm/a+S7kOeeCgNXgG8s45DrX11HX56evqb4/c3Jxln/tj56CKGEvpPjo01moZAN+ZGKQc65RPbA4bYIyGKPrA0gXuDWx8NQiAF7bcRQ6aUSu9ZhdFpIiEqlkwqTu7h3E/AJknrlLba4hWhBxIzaZoVVTVaQSnadC5NmhBt26ZWXgjTZGLDqghUM3vclLSZnFi3THwSt2qJxjG5Q+/DycYDk+/9kwGrttgEtM6TXXRggGb20ZIApUtZUjEGnJ6GiibNag5DzkToVRcpsehSkVRvMONNFG2gWBfNZF7qTaolLkYzyzONSt20CWOIgTxPynU1+9Y4LE07U55YpoXLfAXR+6juH7N9RiaQaN0CWwvqYlDXF0FGpeQ/0jr8VxwhjNFmScZxHKmFB9n+jf9Wo+q/RpFyTvqHQyzgEQ9f0MZlMRJ7IdbCXt94i3dW1JlHhaanDSV4UmBn3Y/zPM5Uz+I8Ps+2eDrP2rjiOF5rwbo5RmXlRtm4Dza2leriSYH/rW988XQGvjCC2xGdgjUs8TCDat1rZSQYYlSv6GiaiQqbzUHtTwNFvGO5XvPRxPNw9gkhomwct7G1akn0INapPbpuKXeWD2NhIE2WF/l89c09hfOaoA+mG+ihQRgsU+ZpmpGgmovaA3up7Htj2xp7gVI7tYpWmn+gZFwrZVpNTlx5un7h2/rPZr+sFEy9QUpO0g7dNiLlcPpSAwyzc26FddVENOdEF09ehSOvcEqI0e6iOialOBHjhKD9HlItzGkhJuuxEEWRc0MGnQyp47efaBt/9WpP33lFQyvvIWiQrL0wDGixXhHNbGg1uTY0x/a0nDLrttHNTvft/Y3l0zNTDrRNLY+lQ54W5vnC2/s79f1OntTudZ4z0zzTSuNtfUXo1Kq0q8tF+5Hs+0a2PVAtLHV/2OvOvm06NqNy7lvr1EfhtXyjv1VePj9xe3nherkyXRLTfCVUDUBb62zbTkQ1kLUqOLeuK2/vr6R5YW+V1gNv7++8vr3yWFdKbdr7o1W2daO1xnSZSDlRpYJBK1262vcGOSX6ur5qhctoUugeSjjoz04t/JEOV7GFoVkQfb6YlbbvAyESRdM3CWKv78TgzfSwNZRRjVZKoeo4ht+e9RUKqMnEARxZTCCBkCbCAp9/1kav02wGP61rYNrtPMzRz/c31ezami3OsPAE4bhiEDMkyFp1xpgB3bR4tjcdodaxbvt+MgC74EZBh4umb7HTNOPNDEOATmUt70gPSBPi4xduy595e/yZ5/tPXOcvLNNnnp8+s8xXcp6twqIOX54YePM8rzRUM4Hxfj6eZPTeWdeVWuvo0O3rk1OUc07jfL+3mvVYult1vFkC7smHVxCTUVDBesvliYB2DC+lcLlchtZ5VFmCur16x/acj+7mvQvX6/UAbP6T47cnGb4j2iGni9Y+FToWFaX3pVTwTpGp6+CtTZ0AWu1UtHytgW0jdh/IAq0Zem52rSki0fmCKtyqkugdWkukNBPnC4RAKY1gpWYvEevQDacNJtFDYEpK0dEoAuWtTROR2acc8/XKZSrkFLksC7VWvn77hvK11fLM7RWb0Yr8QaRZs10PhL2y4XSUc5O/QbeywDOESM6G9wmDvuIZu9rEWcKEOUGcB94IoII27goHchtNlB17G8GO8uDL4ACfy4D1VMZzNEEkmLBJKzt0RQfAS3TeqEqFrMHGyzRlozQ0arVGMGbpOU8LeZpJYbYN1xBAt9WNE73v47p7n4g/kFBvntWZREuX3/1SzgE8p3v58euvVWbOAf5Z2zFQCzlK0ITA3HeiVER2CNWqCcHExwyu5V87QghjEfcSqp+X82J9KTg4zmG4hYihZsOaDxk2w2r1+eHDcMeUEWyLi6DFGpjJsH/WXMQ/M1opXneUc/HBEw51RDGer7a7t8QlHP0MLNFpFoS4pS++GWLiwyAWuOq2GINQlYegm0P3BP8AOI4AR5+NW9Z2WysF0c7n9ty0PWYw3n00FNEEwiL02nm/F/5leyfmyG1JTHMkGzo7x0icIIfInGHbGltpVIHefxyEVqTS2kYpG61WlvyiiWU67BnVNaba+nwgkt0cs7aycV0u9ph0Tepdx11KE7HqYNDGlGa1bYmJD+CcM73Btm8aj6RIr8K+F+Ki3cSD00JtjU7m/GWYAI4IqxTS10YfiD6OjBrsoJCnz4bkpjgpFU4cqFAa1DTp82+nwE86bPuuvYKwAMxc+17vK28PRZC7CN/e7iyLglzzolqMbV9xl54QUEfGWkgpsyxX5nli36vSqWKglN0CsRk3BHq+fWbZL2z3TQPPDlIr7b6xv78j20O7gv/0mdvlRphm8pzpa2N77LRtVzqbdOq+qVV13YhRICbmdaU24fXtnW/fvtFaZZovxByZWuXt9ZWvr6/kNXJ7uiLhSpiMTxN13cgGzHm99K+ut2YXLk1odOoPZCLih49XpYZaH5bRb8WpnqJjSZQWKJZMZNHVo1OxaaJzybQb3dYiw3gQoHV0Me1oUoIbZDg41sd8XJYJmHXtjgFJtnd0rZqp5bY1Ifb9Shj7COO/P4IwTi/8/jol+r6q+0UfMVSHaBU7/bQjtrIaNMjoB6Zfuk5oqwMHLXT9qFXPey8Ptrpx375yXZ95unzmkj7ztP7E0+ULy/SJ2/UzT7cnprwMmjcwKg1+eDVgmqYPdCVvdvd4PD5oJLw3hVc5YpSxp/r7f/icoOuJJwJe7dD99EgefEz5eRxOogxTl7POsbs+MhxJi3/m/6nuUkdZygeBBTrdfMstsHXE27lvan2qNKM0hNK6Ee/7poGoebiHIOY+cSzGgFr2df3MFnf7WQRxdD4irfJ4bNzvrwQUFcppIoSmQWtM+nNrDAPReGhWesfs1mqHoEkLlpXWdWWKM1OaCD0xp4WfPl2ovdhD7+xl18W6FXqv5hRVqW0nSiaYwFObFSadDNF7bxw2ZYNz58GmlQYF0Y6ujoKhVZ/DqlP/9bK9OgHo57ndmT+/aCiaBj9H4pVTJoSj8Y1OVB+oHgfpZ0fbN3VBq4hoM6kYupXjtFume0NH+9tEgqr0lLsoXSElFaRPOdNDQ8o7iJbGp6w2g1JNChtUK4OgVZKQifHHsRz0Zjjw15OBD6iaBS7n5jtHIM+Hvx3vMZ43FjTZ7yKGzOqGFNc3Sr2zhpWHqPZIK1MR78zqdAHvIuqb7vk4aCCH0YEH0X6ajvJbPmjoUid2nRspG0KIJVn2+loFiW6ba1UCGIHgEeh7mX4AU3Zvvqt1nE/dgnzff+mi3YN7I2ajuXAIpQUVzLWqFp4OlIznQLBqnCJ/Ypt3NNTsyG/8OffjnhDwvgnaD8REjfZ847HUEYMGRynGcb3YvylGpqQGF9/eChICbyko79muOWAN+qZEzoHLHLguk67LP1BDmW19Y91eeTxeqeUB08w8XdjqA2yDjDEalzgivQ46iy5NkbIXlunCPM/sddWkJIKIBpfRPPdTMrBKBHzMRF0jJaoD1ev7t4Fgqw20QGgKmtgA0YZ2jRwgTN5F2gAaOslpU2bxOcbwAILsa9BQsQFtCG/M9L6zTBOXeYYAl0tmK+8Mx57mtthqr4nRB2MK7KXQpFNaoROJpkNZzcY2elATkyUZYlTgSIzak2rKE4LQ+j7oSTFOQCSkSasbeeHp5Wfyt5mtrHQCe6081pXH2ytlf2V/DTxe33i8vfPTH39Pe3nhslxIkxrA3B877798Q4o2X6VVpinQ2o4QWC4bpQm//PKVX3/5yvV65fOnv+Py8kSVTpgWtn//F759+4W9VT7HQJwzKWdCUiQd8bnp417GbXcA0bUGvh4fe9+Pc8SYVW/Wq6555lqHNJKiImp97rC+rX0qRzOQwiu+EqAHbKKYccSxBqphSLSKacDko7qeWWKB71lGs3FQSterE3hjNfPe2gBzWjCAK2oVQ/OMoPrTfjwfX0ejJyIOPIz1WtAKpQEIQfB+VPoKq2Db3jHAgGBJks3LGDIx2TMPR+IiotXDPCWQzl7f2d/e+fb6b1zmG0+3n7jNn1jyZ27LTzxff2aZnnm6PXO5XK1Con3iPJnww9c231v/o5+73sED/7MIHL/XcoCFMSWz6NY7OJIAgW5uUoOBYPfdY0M/vNLi8YYnSUOcb5UZtdkuf/H3f+34zUlGKft48N8HPhJ08VYEQRG/aEJQbJK7aAaUVxxTZJ4vw0XIuXcdYS8++XWhnoPyJc82X1EaiGb0hwC50btThxJdCq3vTN2sWNGgVIVyGyFOzNMF7yuh2WIy4TO6IYXAfHvWDDRrl+nWmvZsqOrvvcwXEhOXbIlE1uqFDu5OKTtruZt4udiGpxUdLec3tSa05D5GXTRiUBE7MNAxLwVqpqmo33BhEP3bLt380DWYKdYx0pfaEMzC1NHgqBuyiPxFqfjcyTLggnafpPZ6Q4sAhGaOX4d1nduiimhGrGV3HQutNUJVv/q9fBzcqWVy0YSRkAxF0QrLlCajz2mi+KMcTpmxJRs4B+NHFUgdyZzL3WwS20bBx8TkfAQLTALH8/zw+x5ACrW+srVXNiq7BRSar/qiba/nCPz9B0qjchtRR4SOxe1IQA9xmlc3RuXiHPgbdB+TVh4Ed6WKA0kDcONjl1xY5qP3NYSjd8QxkjHrkRFgH0G+bbIdQoO+C4+vhU5leQkKIBBoeA8b22zNFQ6bO5rwMzKcI6Gyk+xemTjdQPuK0TACt9o1N7y9VkqriIsiTUgcRNRBT/QmBNENGeMpj0cXlJfdRdir0EunVaWhSNd7nzPMU9JkIwk5BW3Y+YMc317/hcf6yra9U0thuQpPly/s76sBCNHoLmrVqkuOjqEQAqXoXNIeOkJOkVJM2CluIexrl6KyIZn+rRafSHovY2ctO9Ok7jQhRC7LxGW+UEug9qaUz+jz+wAPtDqVkFb9YdvhCaaMz3Lk1uv8PrYDwfpEaQAYY+B6XShmH5piNrqFwXYx0Wqnt40YJ5brhVYbJQftWt2FZblS2kqKgZQzxaxec9ZkQjAeuc3hGDLSw+DB6zqbmJeFGGZ67+y1Dqrl9tiYBXqI7L2zlsJ9fXB/e6VuryyzNkZs6Z23lKilUD+9cLleYYb86cpUCuur0qzK9iBtop3d42RBqVJroyHUIsLT9YnpsnB90n/5p8j9/sr7YyUvM5eUDnOIYJRkYCAgx5PQwzV0YgHsj5hkOLXOzlwIhC6k1omtwV4IrQ9yEgSL1+UYdl2I7aQZEg3X1QzDtBHuckdUSmLriCQOWqoBJ6jxzWhEHJ3SqYu5JAe+LB2QEz2xOXB5xBkhBHo5dBcHDU/jC8/Ffd9y979BmrL55XGMrp/d3Dltv3W98LDvPUZBMCDr/NhjNB2FaYUdOF/Xu35qhL2+k8OfeFtfeNu+sORPXN5uPN2+8HT9xGV54bKohkP72mh1xAPz3n0PPfZ6rxR447yz4PtgkvBhjCqdXE6D2q/BqhZaotHPbCZZQNfHYXNuz9MrG+f4w12yek/Wp6aMSovHlv/Z8Zt3HRXluad0HIv3aJiFZVKxI5Zx+X1Q6ogusNEGDRKIeSaSyDGTYWwM6mpQ6VUHRmtCDgGRRCcRogmqzcO+Jx9uRt0KqICwN2ordCnUqh0+U8zUlqnFLM96wTuLpmSWqwMF00QmxklL9K0b1846oE4T14sKE7d1Vduw3qHCNF/Hgvx804ezbg+10MU6OdYdofJ4vBJMdB2CeVJLxy1tZdA+hFIbzR5s742cJw32QySbA1jrFYeaW6vUami0DepuonTlEYoNqmMh8AHqqLoj6D7IPcMeCHz35C+QkiYMUUf3QPu6aBCEiE3gj4mqJpk64GMIsOv5p6hNBH211HOMTFadiuEQU/0IxzTlD4jYB42MI9mtDzTgbBHr/uED4bbKFvABsRiJhpLDNUgRbHtphPpGrW88+sabVNYmlNGzQRE+RUZ8PZYPnzEWl6gdUH0uDx/vEzIkEsZG4G5aIQSaiG1coj1wrAkXIqP3BUHd4VIcYZcFBX0kErremGdUV34+3tl6bBRnsbuhxOG8CGtTwpeXmSoBchvjWBvkaU2jG2qul/8xwXHuvyf0HUZFonX/2zDuy6E1EbxLuYeXwVHpIQ3WwNVpXENfYgnHqIh5NiXaQ2c3vVc3eoPuJUfTx1K16ZrQzEXrx3Fh+/b679pwc98prw/m8sTT3/2e1/gLBKFHdQcKRoPSJqRHtdc5zvu+ncat/3tquCfO99ZxknOiNhMXE+kBo9UcVICI0FtlStq/qRV1LQxWcfD5fFSPLLFFTt8xKIKewAcHB07rrK53mIuYVc6r6ks8OUlp4rGuhzMcmP2kBv9l37hMs+4/GMDTggZ8Az3oagedEtM8a6DQ+/+fuT9rkiTL7jyx37mLqpqZeyxZWQU0gO7p6RHhkBRSyAeK8IHf/4lvbBGSs0830ECjcosIdzcz1bscPpxzVS2y0ECOSLMRWuXpHu62qKne5Sz/xQisGgzahJDzQozJ3IV7p2yFFDOlFkQyKZmR7O32Qri90vtEbZ37Vni7mSO31I5kmGLinCZSUcrLlS+tUXpjnhfSknn/57/j4+9+R7utXD9/4vb6hVo2bm9XpmliWhbmObOcJra18PLyhef37zmdL7x//mAIhZz5m3//v3Jf33h5fYMYSVP+ah3bA7JRsR/VEJ9nY7rHfZx8W0cQ7zSP8+0dWqWVQigF2QpUMyOO2PraR90ouICyNqiGfJBuHA374MbdEMWSerx24vHCvs7qUBs02W1V33CCxXWK7J0I0ceqj+6iHsPrJwxunrjs/yje+N43DgmB6IWRsEN6/Jxk8Epkf68BAbZZlggyCp/msWT804dg3AufOopAD4p/O3PRB0eMyTrD84mR9ZRWWVvhXlZu9XV3lp/fnjhN7znP7/n47s94Pn9PDBNCfChSeafCk6c4fC9UOTzYjs5F9Zhv8Dx2w8KReHAUuh7REAOetnvcTRNl2yhbwfgeBpkqZbP1+KHoP7uwgnU8IrUeBPCR+PwJJPwfOP43wKUUbdWUL7y9aEZ4FnCHEKBnVMQqsnsb9qiAGtml24BRa9U2D05tIx9EvkyerRtRS/HqhqlkND1kasWfwz5ADb4QxNqAA8NrLqad3ouZWzWTgWsS6NXMh9BGXe9eYQos8xPTNFOLVd9jSsQwAvDEPBnkSRRiyvSsxKTU2thaoTdLxkot5jgqgXl6QpIF73RTt1LtvD99ZGubw6vMaK61Si13H/jdnS8bITQEq9YZWRC/5jYAWq+oNgaxPoTAsqQ9sVCv2OzOx83IQlrNvGhksvtEl7BXEcLDwB3tO7DFWfcBbokSOPRGdZ+sIbqaQS8IBq1DjuBI/XHNuScxmPyetuqZ97EE1VYMk6wGyfm2Dlv4vk40HvH6R9VkJBPj50cux6/bo39SYZPjMcNoVeiEVqi6cm13XvrGnSOcHdfK3nckbse5PL6PmSQ2x3IeyY6XGceT9vvSvVvveyIjZMaVw9RhhJ7/Yqt8J8mQOVQnaAcXNOj0Bj2wS4bu5Fo9oFJ7t8XH0tiwoCPSrebVQYslFGgzYmQ4ih7j8SNJGAXoncTuCIzusAHdN347nzYSjMGN8fMcSb39yTdso4nYcwWCn7+gJpeqoyvknczxmfFEo0PdLHHUfszRIEoMJkuaostzAp1IQ00++hs5zHMlElpCvnS+/PTCn73/jhQSjcKIA209aZ5kKGa6dcAKRgRv4wdUg8vMwuBpSLCu504cxMaxqb0kUggETNEKX0ttrtr7xmiFp9o25nT2yuGhXPUY5Fhlkj05FBkbve0roiZhOyS+2yDSSmCKidISKg2RQUZ1FcCUCGMsqbIsi/NJrIsjMbCWioZOzDOgbmpoRSdFvbvdeX17A6mkEJBWEKLxeZKRVXtTx3MrTQs0S06dzwsTXJ5mwo+gaj4V61bYtjuiyjKfePf8xPvn91yenghTYu2Nl9c7n7aN5enM0/M7ni/PXN5fmCXT7t/z8tNPvPzyM7e3F9LrF2IU5jzTzgu1FD7//PMoNfH++9/zdHpCvk/UpvzHv/1rrm+vSLxyupzdzXjEiLLvYY8x0d61UE8LR8D6q2X2n/uIMtbeAA1CbbBV4laQbUU357fgUCU9OgiWAOi+x/feoBa0NTRasC9ixO+OLd4edu9dQXAe2oi9/HWjWNHWQSW21z+M/d47Ks35AiPgxxUOLbmQeBCSx1xpDhfHuwe2xzWDOoHLESffL0cH5CjQiHeHj66U7K+/rxdhZ5gAQ2THvzzhGN2P4xrJ7gC+Cwq4T85WbiYqBFx54Yv8wJQXPr39NU/Td8zTe5bpHct04Xx6JsXFPmMA+ihA2XxXT36MC2U+OKUOV/O+KzsNpb1pmvzeHaP7GNvK4DmPgouIEb6v1ysfPrx3aNfxXBM6MtnpeZ7dL2TE29G5IQbDb78h9vrNScaoUI4LYZu5UostQBICLTZis4BcHH7T9huNP8705hUOKUJVCJFhRDVQdxID0y51aLW+2prhy328BMxwr6pVFNFOCjAIddYd0Z081fuRKeJdgto2tmI3NwVz/awVUrKJVWujteRKRgmRRIrRW03NH5tAjMCe5xM5efej4zKzYhtgtUEZdHRLrDKXpwUEruuNsm1Ihnj5iLhqwG27cl+vaNlQvKompt7VtaMBr1QPgrkHbGFkx75BeCtyJAYpmRuuPAyWIzjmgWikXim3ex0eH/fwPHG5zH1QewWhNzPzyzkaLwPZIXFjUqlytOrUqonmgO7GfT6Juipr3ZBaHeb17QRP1kocn+dPOxl2BEZxZxxfdT98sf2Ki8GfJhlfKZLtogCVrjdeyxuvZWXzBnog7JKXI0HUscjqwQs4OBleN1dAwl5FswB+VFjDA4Z0fL5wwLK0O2FbaLUzdNkt4FZQg8AZFMqSDFMn8MVweFF01yeJBwlwtNR52Dj26+nVOqi7IktInbB0ona6eLjZu8l74tjk3uka9g3r8ejt8PMw6N4QZBjVt6M6OqBmXx2+8aqXGHe39X7MHxFH7Uvk0ZhzfynBTebwTqS4/noiJCGKc6V8ww8yVIssuCzfkITtMj8bObSvEO98+eUTbz8llu8XXrfNr6WtH62bWhDYfS/FvBJiSE7Gt052DHH3W4leQbVk0JPRHtBmDtWjA5GTQS9TTNxub0xz5nZfPTHdyHGyjl8dlV9P0GMAHU7cwuN6Ns798bCZNkJkW/ftIc5vwhT6cs80UXJaaH01R3LnSpRarTjn3SrrxlXS8Clwc8da7kZgb524GGSu1I3r7YpIZJoSKWdSNL+oFGdQ3QMG1c48n9jK5sW/uFdQuzaETG0NNt35ASZF2pinyPP5xMePH3n37h3L6UQLgpSNeymsn6+8XK9stxv9dxX5IITLMzmfWQQKWGGuFO63K5eUOS3mPPz6+ZVPP/8IQEiRp4/fMU0THz98x3a78ccfCvfbnRADfcq+PrrAyV4sO9aJX0NSx9ryrcGlRB66vNoJtSGl0LdCW1da2XwfHkWX4fu1V7JsDa3V9tSyWdfLyG+2vqtSerNilASaKpu/rgQhJQNjWTcPT9y8wDTgUt71EDEEw1jHLXfx9RK1uaQHumVwOGScD+69JFYMHofxdZQmAi5tjwimtOp9YO8KPKARj3vs+4n2MV7Fx4MVtMWROPs1dCjzkcgYnLZ5Yjr4xmMFHzFX1QJazDS43LnPV6b8E1N8YslPnE/PzNMTc35mns8Gp/JCuzDQDtWI59ud1oYhp+2l9l6mSjWoAjElR7Iwqo37j/EBmqaj6Au7HO14jdERjjFyv9/9mreveCK9t4PrIRD6f8Yk436/OXbsUWpVDWKkuFQrdGnUapjhmLK5kPrGiHa0HSo1aWD7GZUtRhHRglM5tPxHizmFAb2wQEmIlt27TKH2Top2UXMY8qde6XS8q6lUeYupNx/M3l7Hgon72qn17hUrQchIHQnGROsOZVIhSAYJpDRh9bnsQbL96+ny5AmVOYuO6zk+8JgMihJ64jRlr8Qou+cImRRPiCjn08y23SnbjdYKW92419VNBy1xMmMydVyly8H5WOs6KrCjgmoQgUd4zuho6AiOdODoj8E6ttIhqWmdK++CiBC65efaTTCw98cN+IDajYrkSNq6J2W7uo44/tIz/kHcCgOn+FsH8X+Bo5SDYDVIUo+B8dDK/oe6FAMCor5pj+c8HmPuDXd28OvfwVTXrpTywqdy5dW7e1F1l2PefVU8vwgd5hytHaoGe5Bui29XHQIjD+ijY7we1JxxLsfqZrwdZXB+VPrDcx+VrYyXUfGOXe9ETPUth0CSUePxDs8odCiWKZhj2kNS4K3iIDt+eCfWpkCpSvVz3WkVfWw8oyo9ktkxXJXWldo7rVuCJA/ymCNp2CeIelX0MXHE3qOJkej3y+mJh4JBt/bf27UWr8J6GLsnK613mkPfrNAQjHDsjxOB3oQehWh0OTLHZvPPfTxdvjNJ8f7GurxYB/gFpu+fQb9Yl0DqToDH4RsqruDWj3ERPBEZ5HrhUDVTHYmXb6wxcTmfeL2+GvegNTRk238GDtwfG0SIAlE6pTdKW2lamcLs0BCbh6OAMgKSgft+fC3YU2FGZw/CMR8wWGiQADFDULQ2coZai60bwaqXNmYql8sTV0cDSDQp0LJVglrlcZmfeL19ZpoTp+XE29vV4ZxQtoambmIfmDyvtkpvJgu+FYPmns+ZKWVXHayAYepvr1dOIhCFnAJzDlyWTFouvH9+x7sPH7lcLsScuK4b61ZZ74VemyUm8cY1f0YEaqssywXJgfD+mbkXypcvbE2ZSiHPC+fzGUF4+fLC559/IqXAHwSWpydyijw9P/H2duHzy8/c327UbSOm6GIBYYfbPMK997n1kHQ8fv9WjtA6sVZCKUaULxuhFPq2oXWMPe/EIq7aWPb9ZMC7W60Oi1mpDSRGiNGkvFszj5muaIjOnax7AB2cNxaCEqJJREcfcyGFHbkqcXBvge58M41eMLJ1Cxfx6S6r27H5u/M7YnRuawLnFMUolD6I2Z1eVk8ygpmq+nt2IKZOnszAcpd/fihG7TmkDBVB9jXW1HWsOBFEUVdwsyc5l8F7Pfb7AdmydXn8TXHPtXvltt1dsv/EKZ95285M6cyS3nM+feQ0PzNNJ+ZpdnndsENgS7HClo1V92XzGOvgdnRC72hre3Evio194UCg7J8jwvl8Ar42/BvdCYs95aGLNAoaxscwfkaH8OA59I8cvznJuN2uexIwCMMpmRxpjNmk/VzCbK+mj6ApGLbeKkvNFUOsYqH+AadoalA6bnLvbM2IZgYHCeQ02cIegm8cbuKWgkOZbIKFEHYOnnpQGuNk1ZsQaVhVtdVCSl5dyp5wMEhNhw+EXWRTWcppprLRhvmYDtlWIeWFlGZ6s+wzxYmcTfd8XJXWrG398f1HOo2yFe7rivZGyokpmwdEb82TMvMTmNLCnLJNdiDkQJLM/X5DpoWUvb0nsK2m2lW10mqh1M2Dy9Hy7N5J8qRCRwCou5IBsGMGx2b+6Nj+GDyPQYmqLx54rCYeofr9tyd70Nb3asF4TUsmg+tCy35OqpVBeoOhMKO0WlDdeAjN/tmPwVcZOMZxjEk8IGzjWu4kPH0g9jKw3fxpl0Y96fL7on49LUHdoL1xu79ybYUNaASv9tpVCoOzJLZpnKbMaZlY142ybfSGBfJ6dD1icA30PQY/Ehz9Oir+KhGNwWA7QeTrwq5wSDo363bEOBZ53/yxcxB/rPVSPAh4TGb2ovFIzEZwb53N1iqlFoqra5TeqNiaZFhngejyhb5hiBcPej9gbZaYHxuSMmR5R6Ih+/mBetJxjNWROKoE+7ApQGsGafY1yrpF0SvkSlPnh3ULtIN0khvAtQ5FhdoU2YqT6q0QmMThUmKbOd0hYd/QPJmnM+u2QsqE00KaF+4vnY/p99z1C12Uvn1hiCKYt0mktWKBorq+foBlOXNfb3uAP0Qs9qr1TgxNiAae53cEDXx6+4WtbnQ1iE/rXhUM4hrzlSUF5mlG+0YphlfuQdlBfeIE/2ZytwNOJ6p7txeOIMa8AYRDccoDJT2kNU3dLBEkQbBgf4d/eNAwz8sucTktC7UVaq8mhetFL2dQUdaVnDOXy5N31iu3+8oiJlG+3t9IMTGl4Y4cqeudroG1FJA7Zd0IMVui3DrTdGGez9S1k5JwOSVm+UCWzul0Mg39lKi983p95ZdPP/Py9kaaAu/Pz7x/fs90MmPc9frCVjfjMU6R6bt3MEfkdmdTRVpjyjPn8wXp8OnTL/z84480he/+7M+YTidSiDw/veN2vXK/3djuxebDcPpOlmjE8XOIrs4XeewIj8TjWzrSeifer7BtaFvp60ovqyWFqvu4GZV9Y2cEWodam3HaQmArG/f7jfu2URvENJNmW7fWbaPUwlqa8fe6c9EE55Q1RLtBMqOQPcmozRLgEC0ejDkiSSB4kh6jjfJRiLJciFGhVDxmKOUoHCZQEWLFCsCx0+6Fpo0Qh6Ggi0AEL0K30VFrFmy36nLh+rUK4+Pe5XPXpRnt7+ow2G7yu7ZfiiUkzqkIblyMNrojZNSL6HtBDAXvmrdeKWthXW/c0is5meDQMv3MtP7Akp+Y0xPL/I7z6R3n5WLKqEG84Gr7RykbrTWmadohTKMoObgUj4nySBhCSl/9fqiXykMsoGp+cKrKPM88Pz/vXh4jmbH4xTyMunqM+hsmy2/3ySgGtjMOkOFki2+eIfj2lXzQ+E0NKIRA10ivTj4M1uUYWSY+EKs2HxBpb60FrC1aa7U1ubpLoi8K6tXvkcFHz4AHnAN8EUn2HO3KVps9NhyQJwuCo+PxOhp91nq7r+tBiDUiddm7K1ZtLK70ciOERCCQ4kSIGcEGQ+4T9OB+EJHqXg8hRJbpRKkbMZhk4LrdTNFkaOV78CRi5KCyu4gHcl6YYiAmk4wtpRE1GxzF1SK2urJt1pWxoGvbuRuqYjmGGiZ8ELgfFQ9GrvDrgPcRDgS+KHkg9lU4Ixb9xBh9ozXDmK9fa0i1uYOxn8OuFiGC7NhUoBv+3JLIb6dC+0jYHqZscAQbx/evIVQiOPxIsPnxp637g7D4WG1zboEEojRKu3HtV1ZVOk7ABnbXIvewsGq48FYKb+7ibsVzq9KLiJnIIg7NGJyLo8vC/ix7zsOJItL36teRENji+1jbNc6NjcMUg3OqAkmiaXs3Vz2R8VZiuHYNu3fPrpTirzlwybrXlOycqz9u3BTdr+8x3wekUFE35rPHD/igDEq6Gj0dtVbyKJYwquiKdyEfE7HxvAcfhbH5eZJiDtJKbR2NTmT3pAaG+ILJrm5e1RaFFGGZIjkmpikypUDOrloVjvv9rRw5JIoUJAbiPDO/ezI56+0dSzqz9pUpzdRWKMUKCSlGmnfHtI7utEHHcjQRj6OwdogbWGbsvCTneZ2XE2tdebm90LsaVClNlsDFjXXdDNYaIkuYEI20srGWjSl10lD8Gm/na62ppalp+jPgq4cggME+rRppnQkfL95Ja2pk/ejjOqdMTIHr7YWxBxAs+D+Uodi7eeYmvyFxcj6LBQc5Tpwn4e1+c237mZgsiElh8g62WjK+bntAVWoBvTHlM0EixWXbl9MZlWDV72a8p2XKTCkwzzMhmsLi2/3O6+srr29vrOudeXni6XLhd9995OnpidI7X9Y7X15v3OOd6XRiXk6k+ERYZlKH4DSAGALLeeG8nXl5eeXzzz+BCO+++26HkE3TQineUeqd2hWKdWAGBytE8eQjElPYfzbPr8i3ZO4KIPcr3F5h25CyosUSyqZ9DzLtgaNDOqCk4gkCaOvcS+NtbZRqohWilVPKoJ2tNOOflsZ9s2QjxcTwQYtihd+AJbxFmncQC4IV1KacyDkRostAx0jIQLYOh6q6WaB3jXvbuXexeTu4W1CrBKgWa2ptqMf6poGraG80aUhsSDZzYx1FBTWlQAmyQwBFTKVyoCP2bcmRi4NvMArkIoHO4U3jV3VPIQxeHNDWDiPDEIlDqnwvHrbdm0x7p7SN2g19ct3emNJnpjgzpRNLfuZ0/cB5fs8yn5nziZQXJEx7URKU2orzHo8YzboM2x5/gBV/p2li8M92bnStbGUb9Tjr+qvB8kspVuyehqs5X73ethW68yibq039U8dvTjLefio+OcXwvykYDyApEqrhIFshhEZrbggSIEkmppnumGxtpmksDGkwc8U+CEvtoVvhyYZni80lCbU1H4jQ22at4u6DA9hxaxaCEkQMQ9pMUSTn2S54N0kvCYZHTSkNtUjT03fs9SD6WWZqZMDRPhpE3oMk1IBAbYVWALUNJcVETLNXhROhm5Gg9IOfALorwwjGRxERUusPUCsj1Q8Op7oySisN1EhikmebsJ55Tm3hJhO1FTQ2pkk9cGm0Wqh1o9YNwWRzTSMbDBJin9e4KA7hHEGaHupIA7Y0+DKPmfMY+EOnPygGe3t4ncEPeVRbMn58Zcifii9e4omheHW+8+0ET/M8P8DO+lfXCI7POo792vzqWuz62f4ZB2lrD0ofKghWaClov7OVN27lZhV7D3AfqxYmh2iVGVvnHyt34xxk51iMKomNea8MjY6LjKQFhtxza4o2G8c5HYog6lUrC9SVnXju1aIkwhSSKVz0jlmhCLbdCEFtP4iYCs8wlZKjqXF8BLX0Yveb0UMu2JoOXoTw4oHFoOOF5HiOqhn0+f6XJTJJpGujqOOX/Tlthwzu+cr+j2H41dG9rW/o2+O+PnaGSm2sm9BzPAjNWFFhv+HILiYwlKUMiCy00ll7Zyvs7+uX5Zs5Uoh7wSjkRFom9K1DmZnmE79cfyCkaK67wi72MeQrQwwPcwqmvFA77omB7y6VVjdCDuBcsVor93Xlcj5xmi/ctpWtFHoTns/PBOlsPXC7m2HdIJLGkIlZXQjB130Rau9mcOkJRutKeigG/DrBHskGe4AQ9oquzaFkPJXadzhfdTO8ECL0oZ/vruhNSSGhdLa6UlslxpnSCutWsJJe47ycQCbr6jUrNkmIzCmTxHh5QzZznk+c5idq3VCpJoMbAmWzwpdxFjvSLcG43a7c314JVFq2c+lYAbFsBUMSRC6XC+/ePfP0dLFux/mZ3BpbVX6+fuLLeoUcefr4kfPlifl8sqSsC1Ib/b5BCCynE/d15b6ufPrpR1pvTMvJ1MFqI4cIko5Cwx7wmdRzLQ2kWrAZvJgVAzHFvfPxLR3tfqPf70gtUIp5HmijPiQYB+9gpL6BAUUda9l9a6xFaT1Yp4BEaQb3qy3auNBA2TpbqbSxBsfMPCXWe0W7Sx+35mIjzVTKYqDNmT5NhChEFWKK9JyIA2ni4zy4b00tlS6CRJ+vIuQlEnsy8Gw3ZIYKaMOhVCAdevHCUuhIgR6MXJ6mZCId9N20T8Eg+2Jw1bFXiUDr4v5jo5jZ9oDetrWRkPha/lCTAuvQWBwy+CAOdxpx4VCscs7fKC4259q2WrlxJcYv5PQL8/0nlvzEabqw5Hec5vec5gtTXkjZ4kdbIxoDfm2JgOzciUfYNcDOwfS4Yts21nVlnh0140WylId0tFjxJ8X9uQf/8eiEhKj/eX0ybj8Wv8mCBMhzZj4vpNNk7bHa0K3SYqeXCtKMkHNfyXklDY12SRZcuGKMDHIodhOG0ob2aO6O6oE3aoF6TLTWKXWDYNboDNWkHi2wESMD197RGAkt0tQIf1btqW5CZC34MT/L1vauhpAtWEoZc5zth2Fcr/sAMfUSHIfvUCPBKg3j83RQElu97dXQGBMxZFKaMEO5gBJ3FQEwTeZpnjwLDQbR6tjjBxRHhdo2YnTiXhRrGXqAW4tpGqcQmaeJKOZsXAb2vze2YuQxaGivNPfwqK2DFuJosfW+J5Bj8I5jBMs6JlgfnJB6TMg0lJDs3L9uU+NkyrhPhlE9HqTm6uoP4BU8n+TfVPQED0mFrUhHQvr19RqxcX/wIoGvOxb7c1SNvD/I06oP3ztR7tBeeCuvvLTKXa2Lod6Zkj5WR9krNyYjr8f92c/hUFk6VDiw57vztewtZH+NPvDn/rrj01t24dKBnqA4zr73ThDM5FL7jj+NKXgQbo/PwdToogTrdjiXdw8QHro6O7lvBG4W7aNqUMWBXB7qUvQjqRh/aw4JMfih41pVyBrJCFUDFbsfO1Fe/To8eCLsxEJPrmUkbsJRVLH/H9dYoVa7Ftqh++ZqNum244qaPGhTpZbqghcjkBJ6N8CdrZOV0poHG/8bB/L/H49zntjKSk2Z6XLi+Q8fePv8ylaFJAsxWGHITAtdNltx6V8d1Q7Aqo4pT4SyEiJoHa39yaANve+E+a0VXq83cpqIIZHjRKtKKZ0gmSkrlG5Q1HXlNt9I4WTFpgC13GlppcXJu24P6mpwBBbBHOCN/xcRsb1g9D6sc+UFJhTjaWRCyASJtF6orbFtd+YlsSTDya/ezY9xKC8qy3L2+eqdDw9EmnamvBClc19ve7extUZtlTwFoBNTtnU9Rk7LzOl04XrdiMlgNyFE1vVGjBOLOxo3ClNUMwcs3imvK/cgXG+JKWfSZBzFOSd+99170py5PJ85P51JeaJ1M8jc3jZun9749PmP3HXlcv3Ch+9+z4eP35Eu7xGXpA3zAtc7AWHaVlO1Wu/c//7vCCmDQ4JMESztsNQk1qEYSd5j4mG+AQpSgerr07dTtALQbbP4qje0dWqzILX2Q8hBxIjZxn08pNLbgF0ihDgbfNthLsH9Z4x/Y8lH10hIE7E7kVnNgBKE0mx9iQS0WddLBFppzAlqWVlzIwYlYdLQUzY+xc6tEvdtKZW1bHuRwdZJszLovRHSUVDpakmrdUYMPtiLFTNDCLTajCuSDAnQ1AQKcII6AFHBPXZUOoQDQhpiR1sHKeZPFizAjiE6JCvsQh2oecB1/3lsdKOLKE1JSYgS98TDsgA10ZGH2OAoKDZase7C7X4jxU9MeSaHhWU+sUwn5nRxovgzy/TEMp/JaXYxouASu2mHTD3K4g/RhtHt2LaN3hvTlNm2bY9PQghM0/SVA/jgE+73LkeCG6HCn5r5/UPHb04yfvrjJ1JOTlwNpKlwfSn84Q9/YHlaIDRavdnNKgoJOtbSaqk5OcgW3JgyeTJ+xJ45DQUQX4hVuqmBiE0QEaihEMsgFkckOSY2qsGUxE1FaCO2sA1HcDyvy9q6tj87XnwETdZBUILhzRiE9L7ro9sNGgFkYJ4XTPGk+u86XavJjAUPDLttDMEHXO/mkdFCpKk5ypoXRNwxosEdeltTWtU9QEj5sZosbJstADJ01lFSGEpazSXiYMr2Gdf1TmkFgikE1CacYobZuhpdG61ubLUgUYBm3Y1W6b3sk+NRMWlscKojUA1mxONBWpBB7nLMpOCOuI69F1PNGRh5ERxD6dGqB2fSvQKshzeHPJJov4Hj7e31qNiMvWqvMun+81fF9/3P+vCQrzGkg7TdXPb48QUinRjvXOsbv6xvvNRK8VoucsjDepnfYRTDkPHx7I8r+Zh8jKRu/P1w/Hbo4sO5tm4wBfXK1d6X9uR7+DjsiyxQuwkV2ONtDqQQiFhrvbZKEmxe0miDlCdim4/jhXd1Ou0olTEmexeu18K6KrIEx9RzJAaeZFT/0u5j9eE+de1sUtGRdGnwJMY6czKuk0RPtG2MjosoeBcpBApK8Vc3r5PgyQnQLQZobbSLvkpZdkjAFAEJ9JBpXYkR5smLLNE5HU6Gju738Ogd8s99nFLmNSRSTPRpITwLccqeOzzRvdiEbE5IFIfrjbE/vCsCW1mRYPMtxRF0RM6nM8rC9Xqld3XOigWiay0WCMeJGCoqnbf1lSALU56Z8szr9cr1fuOyTAw4aWurVymPzkQYw/thrv66Y2mZfbSUwu/5WOssWOmg1jFGImVr1F5JCXqz5DqmBCt70DBUn8A6OClZMH273smmDm7me8m6kOu2spW7zScPonKabU+OUIxMwv12Z/SChkyPQSQCog5LyoG2rZTbK72soOb/VErzQCkZ7GnKTMvE+Xxivsycnk5M5xlJkVILb69vfPrlM19+/sTLjz9RdUXuG7Ju9LLRftd4fnrmtJyZFguqckosvo7V1ni7vrJtn2leIBjSxNGV10yBbSi22fmbKlBAY3pYA5yv2L6deQLQqyuYSaAFF4hw+OtYQ/HltqlxKGyvaJRa6QSDdoZInAStEcWC51orpZk3y+im5Xm2gBybc7vAhUS6mhhDd4PugKAx0DwQr2sj0EgCKQq39U4KwtAynJeZmEyFcVvXo7gYAnGaSNlgi7oBanyGpt26H6GhxbgSSYPtGxHzOXLn77pZgbXr8KDA+Heq7gUixr/YC2vgQEpLyHqji6At0UO3ZCPGvUMNyvCLw+pshIcOs3iHeXSq4Sgm4mMveOymWAFkN+T1PbC0QuuNOyu3bfClMvN0YUoncrKkY5meOC3vmfKJZT6zzCcOcSYTofk13HrEbTEePI2ReAw53NaM9J9z/gcRGCMJUz2gVP/Y8ZuTjM8/fdorkzElfv9n33MOidvrnSnOzMtEjlDrSq0b05KpGszVFoM+bc221srGFldrkwVrq6UUScmcuc3PwbTCU4heMRRahR49IQigakGvNUkaU7IgalycEXgLB4FGsGq7KXtYpm9FWfMbDm7wZtWkTpdgbplDQ/uBuBtjdGnL4mNMHOK0sMlmiU8IdCdgq3olWhtxmnyADUWSxjTNbNtthx8FP8+D+xG+UhQw6NXXhDX17kmQQMpW7dzfQ81bI42JokrYK74m30vItJiZT1a5WO9XBJNRVNJOxKxeUfPZ49fT0vod6sMxCP0Rdu6jwtxHwG1JlA380eEYE4Pd3GdXFhv3LJr787dEaG3VMnzYi+pfHY88l3/oeGx//7q7sftsmPanbRQCooXeX3i9f+Fz3bg79+BQUQmwd0A8dpWjEINf3yBOGAa2biC0KOaL09WI0QZ1GhLWfVclG52s2ixYiT4eRUbHpdtCv18dm9MmJ6sMRaToC3CQQETMXErVN09LBiL4Ij9ezeamXa9R1R9XzvDi8xwhRGpolro4QRecw+Hn2OrR+bAqrm2PncbmG3twSV/xz2PcKVOTG2p0ftOOhXkkjGAdCF/sgwws/ZGA7gNHxtwcKYx185oWpgxzyB4siVUb3SdDxbpjim3OOUSmmL4pGMhlOfP5duMeC2nq7kg+WZc4fGRKC/fyZh4RntjdbjfvCihdK4hxZhr4Jumch2BmdsqJ83Jhu6/mvTPuhxO7ZZr282la6b1SaiPHxGk+8XZfeb2+EcJMTpMF2pMlcWMQD1dpxLrM1lj1ivlDEjs6lzZuLDgLD7NhzAzfLekidIlsbSMlSGlme/lkj1XddfJbbyx62tdFevVpYVCuLy8vTDnwfFnIOZPbhALX28pG4Ok0kYJwu230Vqk1ME8RrdC1kqdke7B6ByR0lrCwbQXWSt/utLo6plv3AKW2TkeYUebzTJwyeZ6YZ0viQojc15XX11d++vEnfv7hB94+vZCSoHGj5TeuuMPw/ca7Dx959/yevEyEeGIJhkSorbOWjW0rFCfCj+pGGEp+Mf4q4RjF0mgyyN4VG+Ps6+Twn/9oIVpJQi3or6XT1DmKqjs3o/s6qcjuyD2KcR1Bg/uzJPHHcXA3wDptYt3COSamefL5BtqNGHy/30xEJnQQ684HR1qAQ/v8tYvjdSMKvRMCbL0yn2ZKi9w3KNvdRn4ULs8QZ4PEjftgkCYTsWFw84IgMRkCIFpirEGMqN2NmzHg3iqKel3aijz+OYfkugC7siDuyRYMfeIdIUneV/drvQvmiLD7IomnE25cOCDvw/xPMYL7ePCOZIhmiDz29lH4Gp220jbWsnJFiekLORppPKcTUzrzNL9jSmem6cKH99+T85kUZrLHUoeQgUn7TtPEsVfanL7dbrvnxiiUDK7FgGB9jcIYwjW/LqT8w8dvTjL+/Ps/mFFcbaZjfVs5LTPb9U5bnpA0kWUi1E673mBTUo60ENlatQ1jMqZ7pRGyKU0hnZSN45FzZZomD8ztA2ozAxQRbwe1dhA7/UKok+dKrKQ0u+SXTZYpJoaxi11Aw8g16yvagHIIgl1QI62OQXnIptqNzyE7R0RssrfmE6pYhu+V3BicxKtCINFFydk5B8E6I3YeZnrUe6c3dUI6zsFo3j2AIZm2FXH4hG9e7i+CBpddi8xpIuSJmAKtFFozYnoMgZQywiABPWxWzd5jEKaCwBQgn85mgqON3u97whLTtDtUDix+a1Y9HoYyYM/zur7/wkmy2PUcE3SY6ll+YucWvOKEiPFnekd6JEow2J7CTmj+Ro55nh+Svq8zia+rnP1PJu+fPuaYxHvFSnOzS3MAAQAASURBVL2ai92vIA2VO1u5crvfKbuMnV3F6HJ3zeFSj1yZgQ8dlZXg8KNB8DvPEykErtuGi04ZT8nHTmvq7zGUswzqVqUYic5NGYNXxbxK8VUXDIY84pGYldagKzkIs5PBu5pMn2gn+ka6l/AYkBNzheqqPjYNwti1ELNvOq7ahj9r7xSIuT+LHB0RwSqCykiwrErYFZp2qjoUwU3x1E+BrvsmM6qjpkjY7XXG+tWtstZdmnXAZlrHu7euNCVjEzzu65ITeTKD0I6yNXOgtXXEqp/i0IaEJ2y/oer0X+pYThfm+xuprXS1ynPIAl1p0jhNZ+71DStaNOdnmV+G4ZGVnKLJooqJP6g6ZAHr4pRtIy4n5jxzvV9pfaPWTg+Jt3AFbNx331R7VKuyMwpbytY2fvnymdN8NhKld9aYRuEHqz0Fk+nUXo/16LFQIgee254ZEL8ztVvCRIeg1r0NBIPyATFktMOUMuu20UwRwd830HojOTk9REWylXQQJeRM2TbuaeV8vtB7o9Zufi/JkvspJ2qJ5LyQknWV19WNCIPsBaXmZJdAoJeG9OZjrlrBzBOMIRuqKDFF8jwxzRPztLDMZ6a00Dsm73m98/b6ytuXL5T7SlwyoQfmlog3pesbL/fKertTS+Hd+48GAXu6cJomZE4wR/gx0j5/3tfHoX7ThwyrHGuUVWLTQ7cjfpWA/Hrd/uc+2ryYy7dWVDKqkRASdFdSquYHZFxXF6tBiDmTemdbTXmoaiOk7OvXYSXQdoEK71CHQMrZPMpcoQgg3SdCSmb6WxqbWMV921bjtIp4AddIFtpNFW6UdwVha4EuEc2RKyvXAnXbmFJEJ4V75/X+5p/FpHIHBBH83KaJLt3EcZwrkKZIVKWsBe8xEqJCUHpiRzyIqAkUBS+4+TjtpZr4bLe4VRswus3NYsGuCrXZel2tU7LzKQWLyVCTjo1yeIMMI0IngB/+R8qAVA3Bl32FVpwr4bA39e9t5b7eEflCThP3+WdisMTjbf2OKX3kPL/nsjxZrCdnapV9XKcUgGxvILqLRwzT3YHUqbVyOp2YZ/OoGcVig4YeCpr/WZOMv/qLv/RgtPLy+soff/ojWi+U7c52v1nmpI5dloDeC6kLMU/U0theCpI60xK53ldz3o2d02VCpkhPgRoaa7ztxHLBWmkxRFKakWDY4piStcrxi+cLc6uVXpUiVsVIOZsbpTpmLRr8KqRoqhO9HRVl6cbPgD1wHuUo2Ym8Xoke7q3OrTgwtcI0JVo1PoZJDzYPwjuqhqEcZELoeyDdxUiFAzdr2XLyQVbRbm202uoRwCqoFt/EjNOhXWht5aQntBiu2Wp9Aj0RU4Y+FmLv9vhE6R7Eda30VvB+mJ9rIKbJJpl2Yuhm8uLBYgudFipdBwfDrsqeoffRkmaUz9nZuzY/vfogh9zuCLbwjfmBIB29A6OifDuh02FwM3DT43iEUgys5OgKPSYbj1jIx1alffef92AKQ4fKyr3fufWye0C4s8hXr+GdYobq01gehpKY7FVYW4CLY3pjyi6F+qi2dlQzbPHrqBYn/pvM4XActopKQJs7uY4vbHEdzvV4N6FgnUwkErTbIvVQpVMOtZ5RFfr6+vj14vg8+32wm+GVqYeq81f3ySECng4f93BUhlwlbhDJlR2Ctr9m7ztGf1TMRp7wqAymOlJuP1/f6Lqb9o2N6DiJwNrg830DJ/YeJPqhNmSk+/5wvWttJn7xjRx5njnNC6+3N1qvRHFJ2CBEfeIyf8+n+49WENFDreyrLqkE8pRNbACorRODGezVcqduldaUKZ+4r9WdxK1z1bqylptV72JAPOBKMbN7oACjIr61BsWCjk7zcTgSiHFzHwoCepA8RR7GkYjtM927jEEIakU1x4M5X8PWZYPPNabpzKktfHl9sYADmF05ZisrIQFaGYqF+1raNyPLhgBUCxi3IYOZPFAyJbxSm8HtMInSssK2btbVb0qKJw9+rMNRVSxwwooEBqNxvp1Y5TRPmeW0MHmikfNEkEBtlbIV6loQVU7LYmpDMZLixJzOTGFBm1BeV663O9v9yvX6yoePv+f56T35tHBOv0NyhjxRgXi/exxQdyiKjg5wV+O6KIgr8YgrGP662/EtHTVF0GAJKMl9IaKpLrWCyoY2S24DlhyHZLL/sdpaLF2o60YvFiR3NdgVEijFVIVsMFiRid4orZFdYGGXPncScJoSW21s60pRRymIWCI+rAkyezENMSh8kEj1vUPzREsT961Su5AbpGZeKClFUgws0wRqXAKDCAohF1chHd1hZVkyLIFaCyFZpz0msUCh4UVYBVd97JZxkGImxsC6rp64K610QjD4kkY1YriToEXd/2vAh7uv7f0onjVpMDn32IOXca4w1v/BOhwJyJAxBxhrgPG2JEa3mutob3vHvNaN126GxGl9475dmfMnrtMzr/mZKZ85nz5wXt6xnM7klPckexQqzWjRIINDEndd1z1eeTTre+R5gJBz/s8Ll8p5YZqsbKMq/PjjHylbIeXI/fbGlCeiRObJDI+2+x0ths+LHVIPtFUprfD5xxdutztP7y4svz/BaUKmmUanyIrESpc7y2IklBo6Kw2CbQgmreYV1d7R4EmEu0D2bhXL0jpEl/KsV+Ypc1oWajQieJaBnPOAvTe6FK8yWbXgMXAYF3vwN8KQGg1mxDfITWkyGULFJBQNRx8MiuHk19oqjYbQqd6lCCFxnJFY4kMwR9bekSLU4BJswQL40tzbo1uA39S8EbqazO5OmhouxcWrXD4/Yk4uf2rSfq1DJBNyMn1nDzQPFS2TkhQZbs2GDx5BgIhtfMNBOT205cZ3Mw20zz5coFF1F+MjCOvoHvjCqDgPeJsSB5Hrn06m/4sdY6EREW/d2/GoHjUC81GdeYRIPSYZY7yNf+8V+tYZwnpBOq2/8cv6hde2ma48A8Jh16o/dDFERucBD0i8U6QPfBAJZE+WVIePLDsh0qr2I/gdX8OsTrw6JH4eWKeRQx7WOvQG4Rp9iCGrqw43GnwRPWYoNm5dvnZ/X/w5dpbWIsegeDoKTLrzd6K4Gptfp9EhGl+jxrRnHkEO/qDnxaYf7xUou4zAgGgdUKw9ccG6bkM57jDYtMfulQ7FCgBdduEEI2H4n9U6UrfS+HRdrXTgvgtBcNnaZNcXRZ2bJs0nO9/ORElpZplPTCmz1ZVhhChd6T1xzv+CFP57VuchOatrr74iOCTEAv8R0MeQTH3ovhmUqnUgsq0FDX0nNYq4mpL7YRikpJnev3hHO5gfR4wJwTbgZNG8rXW7KILNnwHjMujKI2eto07cH5AK6yYfUFg8mbTgx5QNrBtmI70USwyWOaNl88TWVf0EStnIKXI5nYg5c18Tb7cb8yT0Xqj1zrqZKtWUJ25tpWonuqLMfS20tpLCzHnJbjhbUDWp85gjOZlPRtGb6RBkM3kz/H4kR1cU8k7+cjGS997JmA2yVWvjft+4vd243++EAO/ev2M5LZZQzYs5GMcJCUBttG2lti+81ELbCq1Wnp8/sswL5+++Q9KE5Jnb2yvb7U7ZVtq2WcGvFIMPjsJOc2FrVUvEW4ey2cD8VXHoWzhKcGimBsjQw0QPVrShJTQnq6x7BxhVpDekNnIXlEhhNadwj3O0u8dGsM7cVrz7jCm6aW+0difeN+PvpLTv3WCJcgiu/RfMOd6AUQEVN+nzYFZFXZp/s5igNp6ez0y1cgG2UqilspZO/3KlNYNqT9m6ca011rUQxMZWWAsqhRCCyzF31tvG5aKcL2dur1egk2eDNkoydUJVRaIZE8+zQSXLuhFnK86aqEbYEwmDnnux7kFwpWs3CH06ilu9GW/GErhO1eKQqoeYZiAcYvDknCMJ8c65inoD5Viv9xKTrw0hmOKieo9I6ZReKNfCTd54C79wmk5M+cz19syyvOeyfM/5/M4dxj2u7aOgLcQ0EYMJDw3DzrG2jsRkcMGs02Gxy/QAOf1PHb85yVjX7XhSSjxfnvj8yxeWeaasRuJJeSF3a4++fWnOsg8klEw0vJsE5jAb+WyLpDoR1oneMvdS+eHnz/zxj39DiI3/8//p3/D8/kLIibxMVO3UrbKpt0CDeOUhkpPhB0MwNSiJECXRajEbeExd5r52YisogdJNgmtZToBVh6N4i6o3NLSdiGfVQFM4YHfidmpog+DSZbXY4JrnMyll1LPwFEe7T8k5UmvhervaxtSLwxzaVwRbHM8nfpNTykg/AsiUs/FRRFi3u6UqzV6nNNNBPnSiZQ8ORawLAwJxRneKrVdOFUQDgWzXQ0w+00LCwmirRl9MjkX5AeIj7nHBETzbomOPtIy4egLWXIXqOFfwRAtQbUcQgm1gogaj2F07v5FjXe/7z3tl3Y/H8zzEA/bCu8eaBxnbnn8EK8O53hzUlYgw5zv3fuWlFe697RWa/X10hC8jKbEu2eh0HDpOdgSv4o+rLyOA8gi8tZEsHOc+FlF121dbdDFYhx4kOPMdsMeEMBKFQ3BRRXZN9ihCRCzoFOznUQzYr9fBc5BxvR5TBg/0a63cb3er3A3dCH0YY961GLjcIdKwV6v9M4lCq2N9MFlIJfjG8lW/4eFnOc6lmRnf3oWRkUOMlEyQHujV3nNPsDuoGnTGoD2mMFPV7td4t7V2wroRRchRSK7qEkKw7vA3NE9izJxOZ+blxNt6NUhnr/RmhZMeElM4sdYXUDcapVOremBhcIi2rbY+CwwTQwsiFkqpbG0lp8R8mriv973zVGtHpJvOvfvMDP34vFxMiKMbybxLJxDNx8P5SJZMGBTWfEj6Pt6ar1fGH3pM7I6umi3t0SBOXo0dWO7B+wtqsucI1LoRk0P3xNzFp5SZ5pl1rdTSeHc+8fHyzOvtjfv1jVKU5/fPPF0+8uX1J97uN9CEYhCZqJEvL18I+kqKmWk+WZISYF0L758/sG6F1u5IMGjalE3utpVCmKKbkVkS3bt1RZZl4Xw6cXq+sDxdmC8Lp/OZZTkTw8Rabry93vjhx5/46ccf0LIypbxzKac8sZcVxJTUTFpeaXfYfvnCL9Uqru8/fsfl/MT84YnvTpm2VVqxLsl2u7HdDWlR15W6bfblMrA7nMoLQyMxbPXb6fgBVJcJ38UGwAL5GKAFyBPSXDGi23ftDWnVTB3jRgrCBFZYShVd7/a5JTBN4jD45sE4lF5gPfbulKLvAZ5gREdCxEgmUDrIEL3ACmgBJeVka3sw4rkEi1taa7vc+7quuxeahECONtckWAcxhoSKCVxoD1Q1UYSRZGf3ddg+vfDl5c1goaLk9ZAk3jYlTEqeMznOhGTnoNX4Hbqt9G78kuDyx3SLkXrtSPQ9q1tHDDEvIxj7kAtrqO7G06Owc/QrfGsOcdS1R+WUGMOo/do+KKO7cSQaQ0hzfLdChf11QPqNx3Gj1Y0UX3m9/cSUTpyWHzjN71iWZ5b5Qs4zMZrCXkqZeVrMVNm7xbV2ckg7wmCMg/E95/5VDPOPHb85ybhcTgxZtNt1NWfqpmz3QkoT27Yx1UwJSpDONC0IZo8exboM97YSg7CkiRo3phCZeiSTeblWu8ltIvaJ59PERU789O9/5POt0CXw8Q/v+f5370nBJGIrjea6ybTVW3l11w9vWHsxpgwiLiNabcGO2eA/KKXYAFO1pCWnRHbVieYEohSTt8SaBzqB5li9GIXeChoy0zTtrSbjW5j2uVnF26a2Nqu8npd3mJ6/QaBqq855cLI2rurUqsNbmt9wqwQPmAaoyeGGQAxK0Y2uzcNIHqqiHug6eVhV6Wvdq2xxaNeLMPw9dgIQh3EhDCUE9aDTeBrd0xAJhqNv6tKs6hKiqgw95xBsYvVulUFRy5BNP9rwtEGGwo/aAroHq7g3g822RwjFP/cxDHHseOxeHMd/iq8xpDC/4mE8fJlyE1jNtZOlkeKV63rlVrsp8oxAxgOnAR8KYk7GMYpzfiytjLsO+EMS5J0S8ygIJnoQgntG9H1MjXMM3uEwmVQDuHV0Tzp2KY8x/kYILg+dBq8uRhmdkEH+6/TaKWsgTIH5yTsk7qDRh5nAfiFdkpZOo6I0UgrMp5mtFko7ZKZHvd/GlM/Zce2dtGcxvlp3wVd4G8s4f8jmgOpRqdI96/nqDlsyJOGr38n+O2+Ox0ScIjMGQTjwvvatqyV6jA6GpyhDAcYghJaUKJGhvWib1LfTyUAgTzPzfCJFKwbVvhmHbFXm0zOX6SNru0NXtr4aLCCxr68hiIlbNBjXFwxyOE8zpTS2splyXTCTuG2zNcmWTUWCqdb13mnY40/LhSnPnJYTL29Xiq7MU979eSzZLqSY/cIOA1GvRj4kwqrH+drQ9x6kwIDcjuRkBCuBSJJEY+NYOpT7tlkHWRrLYrKuQ0a9e8UahNMy8dyF/rqingihwpTMo0k0cHfZy3meKFul9sr9bQWtpu7TEinPBEmUbpVt/BxDhJwjcZ7AYVb3dUW7BY7zvPD8/j3n5yemy0JeZk7LhXk+oU3oTbnd7vz800/8/d/+DVMMfPj4kXmeidNsAVAIe3EjxUhOxhNoAvdauX9+YVvvrPdXPn7/e86Xd8Q5kSYLabQrvT7TaqfVRllXyn2lrCvb/U5dV8p6Z1tXeik7xKq35rLf387RBnxvQC/VPSDcyRsAcehaF3e6FusgiykBTSkgKRlaYN2I2SSOazWZ694Vva3Urs7jbI5Q8CQjxsPDK2ZCsL1ouN7nlJxr4IufmPpea9Y97KqElByqpJRWmXJmnmdSStxvN0qtXnwymLxBjr8WzIgp7t3eUi0ess9eqaUwT5P7bTVK7bsyVCyNNDWWixBlg5YMkh4mtpeCIdkDJmNokPrg6+XgR43i0HAvV4/2zYnc1wABYjBIGwfnNIhJYKt3OgZPCP97r0M+2X3AXIBlP7zwNdzOjwLssdiEfaOwx221I61QqnGn7usL031x+4RESgtTfuI0v+d8es88L3unV7Wxlco0ZUdUWDd2wMAfURb/1PGbk4xlmfYP9eXTzwaNypn77c7l8kRthVoKVYyAI95ypnWCVyn07YYonJcTQWGZZ5ZpQlBCK4QemCQxh4nn5YklzLz+fOd//Hd/T+2BP/z4yr/6f/wVf/juA9ftxnV9Y6136q2ZP4cIEivFhWdMBjYSqknXdZe8neeJAGxrRcID9Mor8703WtgQSQRJTPPisnEGBTNceyQOidleScn0+1WbKXV0Cx5ijKamIUNzOYMarhVVv+GTkRmdJB5iIEwCoZv+eGvEGGhts/b18DHwhUa9wmDqUUKYJyeOd6JMtilWg9m0ZlXBEA9eB87Z6F6NA6G5uWFXk0Eci1n3hEW86jzcoZuVWTliPh/s3bpXwR0/h3LBqH6PoCyERIwwiVXZGMpbAVqphFC/4hd4fMchtfhtHL9WhBrfB4TqP9XZgANqNSoHA950BK7GKRrHKTVCqNzbalX6h0ppQLw13gnBvCdSwMep7AHyqMCLn49gm3rDMO6Kq0tVSyxbf5Cv3e+fv6etkvvrKHZ34n7vYfdy2KvwByROPY0W73j0oSCzKZ9/utEukct5YUTdOwzKIVLjPa2BfATdY7Xu/nm7V4P6+Gw+nrrusHiHQA0Do4G3Zf9URgxmL0QMYv1XxoqMazO6JmH/2To8iuxbw9i0TAFuCu5H8iA9ax0Wl48agfXg5ox8zu/9SChjCN65suT0WzpSyJznM3OaDA7TvbJ8V1pPLM/P0P+WXXac5J1PtbmgOP/A1q3oJOhatn1JWNdykHp7MEUzNQEDu64VxMZ3FeHtdmXOJxRhmjLTltnqocw2VGlGsAfd9o3uIYUMpTJ9WJZsDIya5JBpF8RhrMZltLsdLMHwwlRtlkDU1lnmC5+/vOxQy5wSl8sFpNBaNd+CGHmenqjtzrpaESFEgzX01V5rcPHKtnGPgWVeWNe6mwtO3nG2edo8OOqklPeElbARgDwlSqum/IUyTRPTPHsX40xeZqZlYVnO5DxZhVwN6tabcQG2e7XA5cMHcsyWVESTqU5iEMBBIC9N0O1OK3du2xsv65W6XXn68B3z6Yk8zW5aFglzZJqzza+22DxunVoqdSvUbaPcN8rdOh7r7UbdVtoDzPWbOJwXoQwjtMN+drhXd1G69ENPu1uhpveOSkSwroG0zpKSdXNUXSUskN7NTPPG5y+vFPfWGkfzDkl3eKDJRYeRThh8NCXrPgdBY6eUIYdvQgNpMrhc75Wx8uVpJmebm/M874Tjg7vY9qR8WhplK0zT5LK8EAd0MkR6V86XJwSlVSO6l8LOG+hiBoApNe660Qtcni6kFG0MuL+Exg5TZ5otCekOdxoFVrEKsxfa5Ohge+wjYsW5HtoO9xYRiCD9oVoE+7quuNF0EKJpfSD1gIUiJuAiYx1UOcRFwigkyf5aY88be26vldaurGFlKispWeIg4YWYvjCvn1lu75mnZ+Y8u/paptXOsszEElHNu/rU2OP+sycZ/+7f/c2uN32/b6x3a3F+eX3j+z8E1vXuVc8Faodq3IYUkiUaBKY0oV1ZlpkUI5fzmafzic0JjClYBSeHTI6RoI6l2xr3WlnfOuvnxvTuzDm/o6ZKqTfWtlFQVq0UNQndTjOYT2imGhOE5tlHrxv5yascHSSa6oSERNOZIIG1e1KRJrpW5mkhhMC9ruQ0E4IpJwTniIgHcNvmsro5k7NN7Fb7/vtpntAemKaTQbLUkoFOIOXZWtGtWsVBIymeaZgiTpCI+ueqrbiJWxywWBtkjmm3ilpzuJSQY9rxsqWUfbDYOVR3towMe/nmqlYwvDhcLtUnyOHXcQSbBhs4gmnbjHyicATPVgp2kpOMnNxmk/g4IJhfSeudkCPJ25uPgfgxyL+d4Gmelz34fSRLAV/9DF8H6v/Q7x6D+COocRCPKKdJuJXCrZr767iWqgc8StA92fAsmFarV1Zchs5bwI8Bsvg71dYZBaMBvRpqUuPcfq2lbRLiBmmzsSk7FGEkxmBrQg6yVy13nXqErmIyjarEqPzu+4nTBKobBhQbowUGXn+MUW3OW/Hg86EcTA9QPWnwENHeD+9uj9fQ46nmOTFewUUm+hE4PiYSQ1L60TF93ysG+a+3Y4Me17wbprfWBqsiJ+tMPt4NUKLAnBKXZaaLEvy8nIJiBZsAKQxSq60JtetemfsWDkuEAsu0sEwntvVm/ihikIq+dvLTezeYaiSvho5rG7xSCMf1H0IEb7c3Atk279q53+6cT1b5N/lYE9EIQU2coFvQ3YHVjQvv681Um1Ky9xvV1ObzxTyJ8RNAGeT/cBCOB4+t27kdAMTgHYnAAV2194hEcphQaTQKva8MUYHb7QYMrqlQu71vipGYTBnweruTWLzGo9xvb8RQWcvdCbxWwbaOhJ1Rrc0JnjPTFE1cRIV1LUxzZN2qcQCbIkRqU67XF76fAr/73UfKulHud1ovnM8nLpczy+nMtCzEZWI5nRw6bDKo631Fa+P56R1/+a/+a9b7m5mR1UpulUkrinkK5JxIOZOmTJpmaBBLJXVhKoq2StfPvN1XbpOpKoZsj83zQpoWcp5c+CWSciIvGdXFk8ZOK2aG1kqlrBvb/c63dEgKJmAjtg4NZT3tps7pqgED62rFBi+w9OBzPorJ9MeISvQutyUr2W0COsI0rfu+s20Gkd/X5xHUt0JRgyWiSi3dzDBTJBCsG6zqIn7BVccaMTVLqrsl8GNGTHPmfD4hYp3w1vpeYKveZZlPJ3oz+FVXm9PrurLdV1f2tHtbtpXNodetmghJzhO0hoTAthZqaaz3je1emJeZbb3t0B8RYV4W2mTy36fTbGR4gSAGL7bLP0Q1bM0HzFdMFNW6x5z2XDVTVRlS5WAqnPZa9s1iou7FCh3P90OHdcN+TTrLPHuS6ZpiDzXLkWwMmHVr1RLRvhJHQiUQ4pUYX5jSJ6bpRE5mApjDmSCT3YNTMW+7NJFz3jsZvxWm/puTjH/7b/97N+vIrqWvLFOiFeV+L8ynzPX1ypwyXSqRQpREqJ2QDEefYqLrQRY5nxbm2Yg7MQQonSlZK6dsnW1rmDRhQLuRf758euH28cbl8o4cT2RJLEmZn56QKXFzlv2n15/4cv1Ej408m4uqNrvBa9141VeT7tJuussuvSZxZcqzuWPHiIRG7QXdjL/RW+fl9YUUJ6a8EEIipQlUfRMQpskIbtElcWOM5Gx6z4L5Vww4Va0WzMfk0nm7Igl7ldM6DxnBlKxqL1AFke5yts0TDrDN1jeQYOo8XU0ed0Cfcs57CxIxoqUFh2baJSkR9WGT3ANAW8ssTvK63CAHe6djOFuPvNqSahvwg5MxSFBwVPsZwbQ/R1HHSkdL0sMB3zokSi3w4hvSlxpk7yP4/lUi9ifdDL66b6P8+VXAvydtligkjPAtrNzKnWsxrLoE3e9FeLgvIpaEDqnYR4L1eH1kdCIswh73aQ+UGbrYX3dm9ueDQ6islm7yrJYXlWKt4ChHVT4ASYTs/Cm7laam83iOrUNScS6JB+o8cIrwa8cxngan4vF67tUnRqfDg3IR50qO6tlIlCwAtMRwNL5tc+9egIBhMHnkMSNB8bfcv4Locd33Wt7oYdhlidZuQBCHJ3iLHA6oUxBiwgi9DpmynN2IgKqKdiPhj6rZCMZz/nYIrSZLrORonLi3ayaGbJyZbAo40s+cpydbo3szxTtsXqWUiSlSqinBDMd5VaX26vAe131HyNMCXbljZO9R5YshUbrB6mzd6azljooF3+al0JlzptJ3Tk7XThdockh2SzAxg6+6HaN/8dWGPLocA8vtBFnsNZJGVBM9TZSaIFRz5qUzLwv1ZmtgrXWHJ4rCWlZKm0lpYp6EnO8EgdMyIbHxerNEY55n1lKodaPUzfxJWqCXO2/lZmZ384nb/TO31XT8DTppyIDeN969f8fH6SMXbeSQuSwL19sbT08Xnt69ZzmdCVMm5IzGSO2N7b7x+fMXPn36xNvbGyklPn78SO/P9llaJ8eARJM9rb0TtSOtIc38qizJU2optK0Sk5poSS1orLRwo0ahpMg9JyQnTzoW0jTbVzY/LvtKpBTIS/bA/dvjZKgYBAoCMSeXC+50OfboRt2Thr1sEpxfp93MjZORxyVEA9xuzkHYy+fCUhZybdzvh+okvt8Czg0xWPOUI6021rXSameOiwnurBulOFT6IS7Yto0ck61hVSjFx70r4cUkxq/Nk6mKRkt4Y0g89WdLz0PYx34pZub49vpK2QoxBvewEZPVbVbAlVaZTvNuNDdilN471+uV+/3OgF8a3ytSNuNsta1xOi2WrLhpYO/1ocDKXjxLEm2d8rZ6t8XcZJ+TFX3tfqrdDzga2+KJVe071JkhtMLgkNlnG8psCUuseIwf/PVEOLpNodveHhJwuIEjgtRGlUIJK/f1jRRN9CGFhSldqO3O9XohT7PJT3vSnnMmud/MP3X85iTj5WoWjHttTZTTPJOi8PmXL/yb7/4VP7z+kdv9zmkJpoYUTA4sR3GJQgs4UoiklMgxsPikSS5XmUPiPD/x9vKZt5dCCrNh8Jpyu638/Mtn3v7wxjIvRDFtdFWot84smUt6zyJn6mvnf/p3/zM6J77/s+/57nfPIM2Me/rGtlZiCtYRcFfcIAFapdeNbQ17BSQn+x5rBhXThA4BSZ3WC71Uk/lbTQbXMkjHyXbhdDpbkBVll2EcQZ4Nanbc47qNitPAvxnpCmximTIE5GiqIKZgAFvZaK2gvRFsLlhFwbNvCQZZskpBOyZJcCMdiypBzZDNBmKxLF0H2dATnoeWIfp1NTvF5O7ghicZGHzxboaIp04hHJURjoB2r4oLBnxHGBgsdQMi8Y19YKa6fjubgkkB2nEkDyMJG3rYBzTq18HIOMa1efwKxJ0UNokiurHWSnm4F+MYql0CRLH0NIuYuV4fUnljgTB4UsNUbKpXVCTYIjXkUcXn/4Bvqa+SB2dEHRfsECjx5EBGx0J3fXYVjLjo48N3eLtueANMbJ2ReHTiDC30IPU31tWHy7fHczoC+SORQNVgiWJzQgW0td2szRvilkgMv5wwuC2Pb/PQYeIYw/a2up/HkXCMjOOhWwUeoBpGyz6vuBNz2jeMh6ceqlVi5F9GZZOwv+4+NzmgjTFG10j/No6IrSdBhCUvTGnmHiaK841UIbVnpnhhCq8owWFL3TsApnYEVmDpBC6XC29vr3bPvWpo3QdToZpiJOVAcRnwWs35WoIFsGB+Ry+3V/Nrivb6BlvrLMvE7XY3Mnkve1LX6C4kMKCrtiYN/PSubDOCEkZDL+xSleO3NtcCoQWmaI7oRQuLd0hfrp+s2FIrKWVqafTafb2wQlbTRsrBi2iFoInn83uubkpo3k6jGGESuFM8k6bMMp/NKbp0tlLJOZLijASDVW23OyJCaxs9NN69/2BE76cz17c3QhDmy5k4ZzRFKorWlV4bt7crP/3yEz/+8Y+8fnkhhWSQtOnE5ZyMO/NQaEPdj2bbkLIhm8l3rtvKer+xrVcXlzlb17TatUcEDR0Nxd2gAzVHSBFJkTBNxDwZ/8PhVXmaDGblUrbf0jG4bYZaMNhPiGJNVe1Uqkkd+3hk7L2AiCUYfTjkjeSjmfGoQbq9aCPCWS+UrSBR3IwP6la88KRWYBZxGC6UbWOezqBKGgUPUUrbjE8pJhij7vlSm9IDLvTQnANg61OeTPVpmgwyXX2cSowsZ+NujI6gOo/q6emJsn1kvZt/RCvFTB5fXpBgHallWQxWiO3PxhuaKaXw6dMXtnWja3eXelObm6bJPXnUi5uVGiNTSrRtg95t7EUhOFpEi1kQ9FIZNamxmUnyGEhMbUuDg1cF64l6kc8+b0CD81fl6NiPbS0CSKIXZWsFM2H1hGJYEgQrNIP6lDDVr4MfdiAoVO1at1bY5I5KIMXMnN9Yy5XbdiLHiXl+Ys4nE+yYTsQ47fHrP3b85tnktC8nPNqNeHlbOZ9mQn7hL/6iEmPm85dXcnrnXINIqxu1BoITqre17mZ1Y2NMoiS/yEkiOc/0Fnh92chxRhv0qtxvhb/7u7/nX//Zn/F8fvK2s1fPiaR8IkQjfWeZaffIv/tf/yN/+9cv/N//b/8X/o//7X8LAX788gO/vP7Ier9Ze5zOlLttWqFQdCPEiPZCiJFasmPvItM8e5uwcrtdkZBYppkpLyCBdSvc7jd3qk1GbMwWKBuUzgzDTLO7evvJEq3hAmzk8UBOMzEF7vcrw8tAe3dy7CDjWCU/hmwSd8Fb9lSCu9jaSDJFIoIQYmI3+1P2iG7gCx8z/SGzal0dDMLmk8ECNw9IPUCim7MzwVWIGFAhRTX4xAs7+XskIX6SR6V8H3kHBMi4GOqYap9AYt2Ob+X4CpO/K0Oxk+js90eXY/x9/PzY8/x1tyB64J5DBwpvt1debjcKfZdRteB5VMg92MUCV5P8taqGecbpEaCL3aPaGtWTu9DDQSh+qNaP1bM/VOxH8DuqM0bgO5IoVaF1d5rt9nmKKForU7RWxiDEqWcOItiYE0FcfWMAnNQhV7J3vvartm+mQ6P94Fz4mNSvuy/eeyGKv7oe33WYOPmnExG6V4OaHuN13K+Hm+eNhAGpso3RDGrVFcLElaPUw8yEFpyfZYnHkNoVJ5Fo66QYeF4m55343BqJHWNuuncJR2frV3nsP+sRVKE3Qrfgf0qZGEyLqbZOXSv3H5X5zz+Q8yfu9+0h4ca7wOzqWapCrZ0YE803+RCE3roH45Ucwz4PVXFpxohos2q7G1k2XIJbm/HgAMQ8JO5i5nSr3JjjEyIJR43s/KDRue1qJlpow0Rw4SHywPY/Dwp2ON4QNrAOzJQmet3ozc43T5m3l5tVdFtHNDDPmXa9os0Ub67rG1ut3FZb+2urLOFir+rqOVEDzUykmHIiR6FuffcjiLKwLDOtF0pZWeaTGTvGzDLZ2CMFspzI2boDl6dnem90x8BXOrVXWi2st5XXT1/46ecf+PTpF26vb4ApVV4uF969e895OpOnYYZna2TZVu63O9u2UvubSdLWyrbdKdudGGzu5Dx5cBX3NXiHJ0pH7x1CMTpTvFKjkXwlWacj5EyYrOORp/m/2Dz4rceoQwmOw1dnI6p1tlW7Q6TcjLU7nFBx47kxwFzJLOCBrxVNBYhPycQMVkhnS2BbqeTZkA4BcXGZSC0b2itTCsatc3VMVdBqxOfmCpLqSngtFNI0gdg8aa164nAoWK1T4XSyav7Yv2LeLJG9nA2SH8KeDF7y5EmvjbNaKvf1zqdffuH15ZXeO6fT4t064wCllLjdbrbfFTOdFO9it9qJ0SGyrbNtlV9++WyiBjlxWU5styu9VuYcyaKEbiahYTaBIbyIwUDJxGjO5J404NwZ28F0VwDtBqZBUkSl0wL06AIu6MDzImJwpVaqKzZiksZORN/FdWIgJsfSC/ZuYSSsR5wh+5pk+6GKCW1sZeNNXqxImC3GnfLCaXlimd+Rwol5Pv2TY/c3JxkjcGnNKk14RXStnV8+vfHv//3fcTpPXNcbU0o8zRFNTvBSyyaDmLTXtm2WgbZuBkoxknIkloZ22Vs2GrJ9wJTgbi25z5/feHm9mnlKcPm/3ml9JU/FWs1E5nTmDx/+wN/+8Ueur1c+/Xgl/Ncn/vIv/pLn/J5Uhb/5+79GNZiOd0i7uykuwbYWSzYGOTwl41MoSmnNcM4x0tud+/1KzouNEqxKFjL0Xrjf39hK21vVUY6JJQKT445rMzOlmJLLqMF6X6ml0jxZmFw5wQqW1m4v3VvGaXRJQIje2pS9S9N65d6KVYoGDAOPqLwC1BXHsvsEjxac4pXqEKzya91Vg9AMA8HdldO1rQ+40DGUrSPRnITq7Vs5/Ed2KbgRET3GbQ//FNgD4F296Bs7fl3ZfuxcHIv+Y8fjoWqtf/qZDD7WCVRaXbluN7be9ir3wNwMR3g77P5IGEZNvpAoFqhbBrcH9r2bUZn4ZrRDvJzfMO7BDrfzhFAf388zBDsPr/baG3rncagiBZqaJvrgC4wQa3TfoldiRso0xvyRlrIvoAOfNSAERxJ3mB1+FYg3S+xHQhFCIGDKGr2P9zsU3ITBqxmf96F6/dV9H280IFoHuT6MUraFC/YK+423DzSMzQy+dmRQ4zpHgdMUCdFb4ooR8v0se1dTFCnVOkfq7sffDnUJuloFsBWDM4RIjtnhOELdGnWtnD8spCkjKiTJEIXVix8mKX7co1atEBRCdvioXT8RIaXJE+jm3SOfk83EN6qW0cNCghmSbtUgRaLCfVutoo/HEV1Zy4akZBXmo2Xla9wBvbPf2xN1BIo61GCcnzFGyBjbEkADKWSDYagl2tu1IphS4lFQsCNnw03fyspaVpoGWq3ctsDT5UyM0Zy8Y4auLPPC5ZwodaOWlZQMDh1DplVhK3cLBKcFlcZtfSVopFRg2aiy8fr6xpImUrbCWOuV4glabZUVryx/+cKXn37m8y+fuL69UdaV1qp1UGuh1cJtOZni2DSb9GkwTlhpjXXbuN/edrXFUiq1mDRrCkJNd4ap3lffQ9wVeyyhE6iKSvMJWelhpUdBo7Alg1h9S4dEixMG2dfW4gEbPZrBEoJh7x3Og3aq2s/dVdTs8R5jhCM5Bnt+WjKSzNCztcZ2X9Ge7L27s+E83hCm43etmR9J7wRdyFict5WCaKeoWpeyFY9ljrkRQqCUyrrCthXjrwY7x23bIAjLMvNuLeafkuLOD56m2Q1whbQs5KmT54kQI8v57N3K4N3MwMKJiFCKve/z89MO5Rpcg5HMDQn+bTORA43JC8JwfbtRY+AUDSXQBNrmIkL43tod+pQiJEOY7NzVYOt+UyU4R0+DohFIajycoPSqrlTFXgwUUaJavNW1QzTRoebKVXt3SiDmSDSfA1PSi9GrdwMuL86hHION3efK1rFO1U4rhbW+EbfI2zYRZSaGiWW+/JPj97eb8YVhFOQbp59o2SpB4d/9+7/l5CTuL5+vfPc883SaCKI8nc+AOPnLCDnWthW20pmSaboHsQ08RVuwYkjMyU32mm2g69b44adf+Is//z0hZccTKto38roCnhTEyId371nyzNvbF375+TOfPt348z8Il/kd35/+wN9vP/Bv/z//E1urVFH+6r/6K663L/zu9+9YzolpGZuVVcikwttaSDkxpQxYBr11My4RzLhpmiZynJmmRNfCbTVX7t5MLjf5YBURwwM+qZsQHQoL0IzMFAJ5OdO10HozBZUm9GYSYynbZLPnHIGVSeB2xxRna1tqcBm05kxRpwwJIEMNweApo/rctdPcqCh4tyLEaAO8t52UaJJmsnMmYCQdoxovR7cDHiqvfedtxxjRfbhbC3IPvvESuIdSvX9d8f/Wjj/hK+jBYxjdp8e/Pz7m168zHhNdRUlrY1tvbGVjKOs8ZmPy8LopGKdlqwMiZ7oMgxqunlSq71ZdDcYiPBCF9fE8D24D2MakI8BVfWhKHcGW8BBwq1XdcXWzIRagcrAsdn6FL9L4OFGNQDjM+Ma13cNr3QNFI+baz6AO8XNiIRaUdgxS2PzckhgXQhFonaoGK3iEs4wrPNKGxwTmuGeuxIYnOFhiMCWDjTUTTTESpFfRzBvEug1JIAbnHcmAGtolrV1ZS2WrjaSQohJTIk+T+WdUl64e5Pb2cA5D7vIbOLZ1RUI3ff/aCYr5WaSJLZpgRa+dhd9x4z8w8NiBQHCVvNZkJ4NLUErdGERqg1S64lTrlNqo7W6KeymY4ZgqQTJPl2fqy89m+qcHd81yP0sWrusrOU2eqNl4KHUjhRkR6yCaKaKNiwGJBUZ2eHQmR1ka71JhRqnKMNnyudkhpYXU71TdqLWQY6alSmkG17rf7zxdLrvMJBgs7u1uRHqJmZgTpRczUZ0TtXdCMp+j83ThTSsN4X6/MqWPxLQgWbmtN2IKTMsMmPphK8ocM/fyxqf7Zy7XTE0zy+TqRWKFgaiCNDU/qLc3Pn36xM8//MCn//j33F+u5JiY8kQIiV4Kt7c3brfbvpSllJgn40x0Or2s9LpS6/C4MDn41oT1ujHMEWMUF3IJ7pEwko70VdIR9sRjwFjUSbobGja+pcO6TzbGx354dJjtvIVoPjhBkG4QzN4qISVT6XMJeDqWGEzGBbI1QrzrCXFKdv1ECD2aQlRrIxsBDFVCcGlYAjlEIrYvtdLoc2VNiXCLxJLMu6crokrImVKEUsrODR2eMiLCuhXerjdLeHLa1TBfvghvr29Ms3Ws5nnmcrkwTZsnHIFpyvv+mnO2QnYpthc4eiCnRHWjZFWoqTn00NbiOlROsPioVS+OoZTSuF3vlDYKOtAbVBfPWdeNFIIzBnXf32KOhFytGy+6d9sUgzca8iOgUdDkAmFdkTDgYr6TqZXaWi80TxIapjwVku2hRiy3+yXBYGeTDFlgYSfVOgRY/VdDMlh2Or7BuPbNR2zv7LXRekXkRgiRe/38T47f355kpOA6/bIbtgS1TkXBsr2X1xtNlc9fXvl5SVxOEzkHzsvMdx9uvH//tFcw7/eVGBPb1okSiAEzfmvVFrL5xHpbef/dM6Kmra0o9/vGH3/6xM+f3whpYZmD3+zGer8jIZOiBbHL6cRlXvhFv7DeNq631bC5eeJyec+/+LO/Yv7v/0f++MfPfLlV/t3/8v+iq3I6z3z87sKf/flHnt/NPD/PfPfxREiRe9kotw1dZuZl2SsLrTcjrccAVGrp/PLzjaaBGM3OPeeJaVqIScjJSOHremP9eeW0nFAODgPY65bWffIYSXGYmRkUrZnqhGt7m3qAdTxkBCkKpVoHKjj+MYSEkekdtqad2q2ypDLUiyxYktHxUKv6WvHbMcBhZMGWAFgFru/Pt8pd983cKsQmC+rJiuOPR/A5SNPBq05Hldo37yBHYVf4eiP/Rg5brI4E4x/uYjx6YnydkMgeO4/fsT/OZDILogXYzJxydyr154aRPHinKFiZQlWpKm4iaY+LMir/QIx7i9iu96EeNbpuplTR9+BrHI8/W7cy7PdXkB1rbZ4wvrAZ9gd0mBjJnkj2kXwgD4nL4/V4WPw4OiAP/Y6jg+F/389QPSnZg72jK2GEwrbDoH79+R4hi4MLNgLOcf8eHy+Kw5SUHIQ5RhJD+nF09g442ehiTM5XY29wHI8Z8r/NHWZVLGkxY0sLprfiLtY64Htj3h8J7T/38fZ65XKakKZI60SFOSS2OLNFw5m/vhZ+/puC/leubNftmuYU2DdL7PpMU6ZsxleLydQChwqLYGuV1lGgaPu1vZc7uSR6r7vaXugHH244VAeiV0UnanEDVfcLarUjMYFzhYSH+9a7nbhXRQ8I5DH+wD/KPsctsY1ieOdpOnO/XplPM/dVXWJVyZPJvQ4VIEXY6oZuyrZuTNH4Bi+vL2Sv+KOB6/qGRGGeE8/nC11XJFy4yhvbtgIWkPeu1H6Hm/GYcppIYUKpxKy8Wz7w+unG+nZlmxdOp9NOBI3ApJGlBl7fKuXzlfvnV14/f4FSWS5Plgg8dEqbG+y9Xl/ptXA5n7hcLsQUdvigakOw5FGizZnW1IVIOoWjWhycAxmC7KZslnx4xfmh22FJx5F4fEtHc2RBkMEliw9eDe5f0M3x2zifh0AKKZvhYzA407at9K2wTK4UlIIlJZsl2CJh4LBAlDQnQhNXavL12NUDfSNBgzl9kxNx7qSuyJLJZaHcV6Z1o9TOdTPfsJoTtxsmTexE7hZsTV7Xla1utNpMDMeTQuvOwPV2o7fG6Xx2k+O0z//TaWFywR6wuWbSs7Yn9268C507ecqUtTBPB2cLNdPpo+st+98ERdtmCW43ZVENka2bi3pKE93jMXpFWiWKrfMpR0KOOwUy5Uxwsrs6RNMlAaEGZBJCCih2P6UDwWLgpmrO9c1l2hFaiITZODVimwi9Gm8npEhfGyHamqngSaktOL2rc3tGUuRcV5HdjiB4oW8UzxTbf7Q25Dck5L85yQi+6fWGtW+6EgP0Xt1fQU06jECpToTRSgzw8uXO509XzueZy+XEhw/vmU4Xnp6fqD1a21vYN90QhDxNXF8/U7t1QfwtKNr5+fMrn7+8clnOlsW5Q+Tt+oaERM/NW+QzH9594O/+/keub1devnzher1y+viOeT7x4f3veH9+z1/rj9Rim3NrnbI23l7u/PzDF85L5N/8y3/Bv/y//qW9lxpu+BxPPJ2f2Frjbb1BgFo2aiuEAHM+k3J28nKla6V15XpbKWVyDKlBq9DIfbsRgpHES9mcu6VMySqUrRl/Q/LRzst52lVwFKVpZSt3aqvUUnfehXqVhyDg3A/bxIInbyCYznWX5pMTeqv2NyecEbqbyQAhedLg8qQM7odvvK4/b4NSx/A2DwQZcrguHewwgkPidRCLPWAU67Dsge5o7+4J2deV5H/OY6hs2QT+OgF67EqI6PH59Pjb42PgMYC3lncCMkqPjTsbN3VejUunBhmqSFYBEockhOABqc8jI7pWq5sGr/+rDVdrtVsn7fg8x+cLwZKYYWA54v69+RQFuhFio4BEN6wc8oqeNAaEobA4koMhrfs1OXpcv5FqqI+9vgfgXQbZYjh3f53UwchVRtbmm7RJN3lCDJXDS6PrQdAXF5moTa2SNfhFOMSPr/kz2ofqj3M+xOFR1pbzOaIE7zoG9fb4noCPawADPjgqVerzH+86dVdRqc2MtZoT2UWsKzPkXodD7bdwfPn0mRw+mMSxdhKYJ0JIDg9SqJ3tpXFqJ4IYOdLyYss2htqf6fEXVC3BrbUcOejoggESEhLuqFaQQ/Xmvl6Z5sS2FZNpFcgpG4zIlYaCBKY8kdNCitCK97OcG2SETqx4o5bY/Cq9tdN5PDGvGu6Js4/fkansFWvscry9vRGjeRa1UqFYYPju6ZmcM798/sTL2xdysUBaxYioEoRSN87TxDRN3Osdrd1gJhJJIbOWRuuwLJkPzx/ZtspabvQSSVmIBKaczf2YTCSx6Qu3MHF7+cTpmnleLyynC/M0EUTICKeQec4n3qYz17xQn9+RQ2ReFroG92Rgz7JExFACUZhyYvJOfevWwQA1eAiD2Dpig5GE+HxvJhs6rrmJeI2kw1SIgkvXBzcg25OPb6jjB/i+re7tM/iP1rky34QRAAZgVMbF4bDDW6PS7hsvn1643648PT3x/P49U8wE51XYvAoe0BpBWUJEGg/FRIUej+EK5vLt4jHaxbqTISNTIOZImhKTRKZS6dVIxiEZIiJGk8/1hW4XFinBuBOlqymTbRtN1bpxAttWud1W0JXWK6fTbElHiubVsquDHrytwUuz+CaQw9H5KMWKNCFY0j4eMzou4/1N3hmmKaMxUfpKyhmZMiLF1y0x9TMsXprUOrXdtORpWzXOLwZxKmpjukfMyK9YN0miCQOFjBVvuyJNCe3wbWpd3U+qU3uzmHOMdef+qnZ6su52SHF/bYsXjlrHXhQZnZWxVSKj7g0c+1N/gNX/Y8dvTjJuayPFQAiJEBSROsICajGzONuYLfjYaiQltapkg3rduK0bX16uvLzdyfPJEoIlm06zE+RMPcQme2ndieTRiZYGqXh9u/Pzz594f3kiuWtkq5WilZgnu0YxI5L5+P4jT8uJcr/z008/8umXX/juwztynvjw/iPfffhIxNvnbWzetqnkkPj++SP/zV/8N3xcfmeV/joRp0R9q3y+VzQGVCYCYt4SopChByPQWsJgG2SezMZ9niLLkh6w3p0gjdLu9GvxqrXswc+SI2Vzz4vVBk2KkSlnBgnIJlAmhUjrjS1aRWBrhW1diSnSmmWdnRHADYKh/U+81WqPsDacJRCuCY11EwJjQRkQAB6Ky75ZuPIT+1ZrkyJg5HdbFE2GbzgeD0LwYwV9DP5HL4bH47Hq/60d/6mK2LhmI7kan2EQHo9o/esAO5CYZCWWykbnKp0qzSA1fO1dMeBoMroS+GbkvUQ7Ed+I/DaNpsHja40k47gnlmi05vCkkeg53ODIOOwFdSSMHrUHZecbxCDeWRjPebj/fp06Xt2Vh1XO/3aocvnn2Sv/D1970uTroQfxFq2OK+GVHRkKal+96v62o5KnsHM2YvgaF7+fv3dKvh4CR0I2Cirjjowvu2djXbAbb/7l9n61WwElR+uJNOeVlGqS37U7LAKXfu4davuG0nA7fvzjj6YstXgwv7nb931Db4V6XWmlIBFy+cg0T5RtpWtFvkow7FoldzMeCeEIWMULKff17gG3bzOAYv4b2ippOtGTBRGjmzc6ua01WiggMOeJbSgeRYeXylAL9IKJRNhFDHDn+GHm6JAJjtE82DljD9xHhYzqY9iLMDZG1brR3dbRmAJR3ESzW4JbtUJQbs2gIfeivL98YJ4v/PTyI7UX3t5eqedn5imy1m57eFdqNX6LwVIWTPe/0rUQ4kyIkVJX2nxnS5mf+514e+V6v/J8vnE+nbksZ/OkSInny4X+3fckDbxbLm6oKFyvd+NWtGaIWe8mxJRIceL8dOHp6clVfir325uNAQ+GLSlIvt71w59kKPf1h+veLEBrgIhVj0XwREO+Tjq+sSSjUj1YHtydY/0ZlRfVYepp1ew4SPCpmZKUbKxq17u0zloqp9ZJ3rELkkyMRg0OpQiEZNLbzQoqw9tmVKoE63CMCjcdulhwKikgzcjZmjMRITpPc11XlnDsM+rxFiPhjkKaEq11MoLUSmveIXPlr9o7b7f7oUbWzf8rpsTZToWcEtNkEFuPXggP4g8msGMzMU0D7eHQUzf066reSbEVNMZErYXSOjG4WlbviFSX3U10gd4z9IZWgyJuTZ1PiXHRinEBi3aLtoIVmSQGZKt2DXIkdmHyu96rQ9TbMdYNL2Uwyf21UzQLgy6Qwm48G8CAAw8cDPG90bdDW57k4FuC7J99dPmOzvoRo/1jx29OMr68Fp4vCzkmm6TYXZMghunrICS0V/BuxlYdD+YFmlaVrVSu6xdu9/+BX3555XffvefPf//E02ny1rZ1R1IwstHb680qEs570CiU0vi7//hHns9nu6muYtTKti88wQfW+XTh4/sP/PDjJz798gs///wzf/WXf8E0T0yT8q/+4i/5f8Z/a9m6B8Yihqn7cD7zv//X/4Z/+Yd/QWiBuglSrZpV73feNgh5gjDx6csfqaycnyZCLHxpL8QgLHO2m5PMTEpD4a03WtmY5tnUBtQGfJBmm4S724aYiclIu/Np4na9sm3FFhAJRpwvFbTt1SMz1+tEiUxOyJvzbIpgfXX3TmsvN5fKdUaSJwtW/VK7oQ5z8Ynq7Vkbf2NkDqIve3UbdWyxuNlfN015SxdcrcdfK8TuyAeX0hVXNDICEMMwbrzn1zCdbw8udbiZw7hm8PW5/0mF/SGYHxX4X1dAbdJ31vpK3174sl65Vqs+Ehyb7kHHeKkYXJbZA22Fh8TQEsaxaHSXrY2+Aj0me+Mw11kl7ku2HOc64vbHcx4PU6+M7TwcW+hyFFdEGZujJaPDjKmLV2Mc/mCNMRtXAwb21TUa8AFGkmDheRcXamgV1OWhY9i7cuNl1Fs5jx0PCWK/k5F+4e7MHgrKUNGycTg2PcH4FE4X371djnnk1727op5EEmK8kGQeGceNt2to+4GfhxzX1+SplTwFQre8ojWHfjk8rvOnCfo/5/E//H//O15fXvjw8ZkglVo37tvG5y933j6v3L68sd1u6K3y7vOZ9GcLysuR6Gl3E7mD1zO6g3tbX5WUAqU3ts38H0ztyZY8/J7EnFnyxBQTpawm5VhMsn3MldIK9/XOeXreldpUrIMRJBgR1sdMHAnsCHTDECMY5ogDjufjuhmkbUDArPsVEDKt3Q2rDZStMC+ZaZ4N9qImMPLy8sJ3798jckDBlskgsSnMrkDTeLt9oraNGIwfOU8nOkJpldfXF1qPnE6R3m+cn87cPyfW7UYKA7OtgKn3nN7NhOlKevo94eMT988vbNc3ri8r78ud2jbOy4V5mpmnhe8+RJ7OT9w+/o4vn7/w+eUL21b3NaaNJGGIkkhAYibPJ07LQhBlzjO32xv3282kgWO2yq1wXOs+VOX066Sjj72pH0UPTBBhHKPT8Vg0+BaO6/aGScubbPNkig97V1TVJrgGsDXZOzeqpBDQaOiQ0/MT73vjUitTnljOQ83LSN2qGME7GdxKsA6J1IqOopMYH1Swx2rwbof/O3V8L3E1S7FuRhTjUtVamd27ZKynNiXVmyQKNRqiZNtoXclTYjnNvnEI8zSxbtZlDDHQq8ktl1ItCZFoENJZnVzdEGl2PZLBzFuxTv08zwbL6krOdo3NFb5wu92ozVQEi0PFWzMXc83u/6SdSKdptWs9QUiR1k3+t7dG9bhG8LHYGoJ1aNbN0SLeoYo52VwLnVrMnFrFBBzw+DgqltzVRmwg0pHqSXKDMIPkAXeyxU668dmyJKILSQzosx2+Aw+0gSuO7gnHuE9Dgvd/w17ym5OMH39+BRE+Pp8QGT4Og4jLQcDzymVr3TocKHG0NUewUxq/fHpl3f6Gv//jD/zwxzP/4g+/A4nE6YmuAQmmf/7Ll1fu99UqjE4y7k358nLjx58+Mc8n1/UNaCtwfSPlTLZwgGk68f75PT/88DMvLy98+vyZ+/3OPD8RRXh+eub90xN/98dfdpEiEZhD5K++/wN/9Yc/Z7vdia2ZXwaKaEJ0gg6RJ1rrvH0JrAXWt40vr39PngJ/8YePLHkyim+LhJQpvVPXwst9Y14WlmVy7HqlcDWJPRV6F3JaKHUm3BKo2KJMIJ7OqLjplFoGN0z9hMAwzxs2E6M7E8U8NWIUiGNxNww6qCuejIXYAso6hp9HNXau7sEx7r5YF6K1wTUYVUDX6g6CDHy8jKoF4ByU3hsDF28ERiwrRZxj4h2Nh6B8r/cqh7LLN3AciQQ+P+w4Ohd75P3wXb0SOjZyf63xQvth3iXXuvJSVrZuVZCRHFs943iKePI4eDEDhvRVIjAWFU8yjZNzVDJGB2lA1ZSDvH50YTxRitH//vgJZH9e2KturrwTTBLRyH+WhLTW94Q3jnHHSGnkVwnZ19fdOCOjeunytS7vusOqVD3B3e+Mna8YryXKQUTcuWcMVaBR9fHN0S6SJxnHz4h1OFSshNT9/VHM06AdkKyAQgz755umTI7Biw/jWovfi5Gkm4rPTrgPuLGYj5Jua2+OxqOrOqBf3848+Z/+u/83n375gd/97j3Pl5kQYN02Pr1UtptQb82UnXpj+0U5/cVH3uInkMhWVujd+7Ce6AUxomR/GJ9083c4zdxudxvnLvOdsqnE5JiY54UpT8QQebu/8eZu31ZpjbswwlpWbtudHGfnpDVaq0yHpQlDfmAkGUf67H/X8bjxi0FUt+7eUO0ThV4rtVdK3Wi+mC/LGb11Wqh0x+DHELjd7qY6GA7yOZh8bymbvWFQUhKmGFlLNa8C7eS4cDltlC5s7cr1/olSX12G3bw07NwV1WrzoSlb/UyaI9PphKpSRHm536EJstln0N5cpj2wLDMpRkKKaID7/U4pm0FZvAhn8Cnf572TGaLBpiwRC/Qu3G53E1AIuldYQwjm2DkKNZ54dO1oOxL9X3c88MKLiSXow936No6t2f3bGqQaKck4nkNtKjrkWHzPHJ9bBpZeha6RtMw8p4+o6m6OHH3NtuDMoVVuWDfWxtYScUp7kibdCle9uYdMjH6vOzRzytZq66UZIBuPTGJimie0d6bzbEICzTstLkwSUiCWgnZljUbEHntq765EmgwSdAqG5vj8y2e/n6aqd73eKKWS10Q5LZyWBQDtlSBCqYVtraQYuTwpi3Nra60WvAOIkHJm6nC93ujdxCpqteeFaO7igsVTDcgBQrJrVHu35CUJPSV6jD7OTLRivd8pXShqBfmAe8m1Rk5KikIKjRw3qBVpLmTh+2Er1WR3mwLBfl8EtkLmgkiku0yupOj7lxVDLMk4IpCxwyq68zVlr2DhMb0+RivHHP0NkoW/Ocl4fbuTc+JpWZhiIKZI0m4OnCFQat2xjOPkezOt3+BKBF8FAl25r4VSKrfrlZ9+/sw8LVyePvD0/gOn04IgvLzeeH2902rbA9gWlNu98MNPv5h7uMCyzOQgoBvrfUVktjZ2V86nCzlF3t5e+PzpM28vr7x7vhBj4OnyxB9+9x3/81//HWs1abCA8P37D/zrv/orggg//vBH/ut/+RdMU+K6mdShdV0SMUw2oXWm18rtdeWnv/3C5ZTp+T0pBC6XEzHNfH658nJ7JS822boqt21lqzdCCqQpMy0TitrAk+vuTBpCdIypKWCUkh8CesMh5jQxpWjGgNUqZzFGAkYUa91VJGQkhBbMmNut8x5c7lYVl487JO5UldDZYQS6b5XiI3Xg00fV+1CaGlQjUeN7jI1XXc7OI709WR0BuMel+6AeVcwjcPt2AidgV6YBHErxiK8/gubej0B9HLvr735/2BOAvWGQAi10Cq5SMRb3PUnxx3sV5egy2IUcChXs53Kc1+A5WMAWfcPp+zlaoUvRUvdk5VE9eCQYw7zPPpN9N0L44R0gDdPTV1OxUnSXYQ1yJBTykHCOz/Z4+N64XyvU+Q46XOrdJ8O7FnsIsXMtYB9kjAr3wHnrnqgwOj6+ho3Ht9YgGOE/BE+W9jGvzl/x66DGaWtNvSsxbvBISsU2/gfxgK9HtxBjMiMpdYOo1kyGtx2KKUcCaAFo9M/4LfnJ/PLpJ7Zyo9zfUz9cWLJJGddbotUTrXR6LaY4eK/k8o4gmSCbQUKBEB3W4UmpdQmGuITDOVo1EuVXssbdhDPEnt+6EiQy55l3l3fct41aKzklN/zrXG93ihau5cYlZAgWIFXZ0DTgVZ4QMoog3klTk4+2wTYKJezJiN0bV/4TQdSUFSVYEanU6k7jUEtlmmbWutk1KhbUPV0u3Mvdg2qhRzMK28oN0cCUZ54uZ0IXksB5WXi7bdxK5cNlti7PZkFMjIF5OoFk1m2lbHeeny/W9UmZ2ExyvHOj95Upn5CzS8BPGW2dtRfuZbW9sjV7XoyEGDidTwbpXe3vZTOp+A6Uaio9vXdyzlYE8e5UyhPT3Cmls66NWk1meBeZiLKTt4fZpvGYFZIHR48dDlUj0T4kHwNi9S0dcRR4VGnaWJsi7QjwknesrTktLqMq7LU8wYJ3sgWcve9FoZHQwhHA2hhyblu37ljWtneAtA91t+pVefx31bq3LgoTg3m5tNbMX8v3QYJ1N1DIMrNtBXHRFykVydZlJgixtl1BccCrYorEHCnuiSFRzG/Dg+FajeAuErle7/s6n2Ik52TQ+q3w9PxEyiZdazK2ZU96ppy9C9wpdTMkSPP52Cr9dnO54M6UEiVCjtHGuZXUDP6doomqiHgsFWjSWRXWrmwqbN1QByYTDAlh1sAclHCvaISIkl2RysZp86XEC5N+LiEnonakesEB4z1aSSYSNBCcbBEQq1CN2FwGXFdG2MBQhkcdcfAQsOjOf/zHj9+cZKiqeT1gFdLYvUUcKhJsQx+wguB4wdY6RTDN3vBQwVToTam10wNoE3qtvHDjp1/eePr8wu+//x5VKB1KtVZV7/b+MQr3Tfn05Q3079lK5cOHd1xOM1OKqATQRIgmVyYSeH5+5nbf0Nr4/PkLl+czIZjx3e9/9x3nKXO/F5TA+6cL/4f/5t/wNM/87X/4W85L5t27C2sxvkMmoASCZGKYUbzqpbBuK3R4N1+YZaLdOiuNXJW/+V//I//L3/41MQvPzxf+xV/8Be8/PLGcZ3oB1DbPaV5ISbjd31i3TgluRBVACZRy2yX7UlwQyazbzTWjM1GiQyXgdDox2nQd04sPyWQde1dyjCxxAmCr5sJZmw/JOKFqfiBjc2xdkdBJEYfWKMUX+kd4jQh0PSBA+9YrQFfXo1Z2h1YPQIeko3oiZ0Fn2F/z4DOoBaP627Lp/1LH4dT9kFT3w9n8a7jXuFaPgbNdk5GcHJyI8ZxGrcXwos2xya4aMzDoO2zNCDDefg189TZ+WHfh8Q9HF8OqYUO3f3xAfWCMwIANjZA4iJJcp3tE/cGXuIBDuNzfJosFwAPuEsSFZ0dS48G9mS+FP4ExWIKh46rtX+zXeiQZXvgIwYK9IHuyYAGFpcCWnDjcSAet/OvKtO5jzZPg0eUQlwjstsmhtu4FXKLW3hZrO9lruuwD1a9RD0KKgRSMp8V+Vf1ehcA8J37/3cJz6bRa2Gqh1O7z2X0/nATeRidnVHW/oXz88uEDORjxMFAIEllSQHPmrQXb2MtGp3F/2Xi6vWO5XNjKHcSgShLCDu/rrZFSpLayj/8Y3EDUVYVKKeYt4uMoiCUKpVafb5E5n0gxUxukOPN0XqhtMzfheqjQ9N4IIdu6JbpDCCxB9uq6F0EOU77u0p+eXOzFQg8M1ZMjF8RIMfm8jSiJ0u7c1jshQnd5cnX4VymFnIyPSIRaN6Y8M6Uzt9ud+32lnhYWJ8RmhdYLP/78E0/TnzNNC7ftBqrUVli3N1ozGMw8n2gNFzOwsd0p3MtPzJPBTTQIhGdizOj1xvX1Ri2FkheWXK2ANk27p8H5fOL733/PlBKvr69spRj7JJoM/FFU6tRWST1bAB0TMRtkDL9/qt4BrQCVoS61q0XtMCiHksboQj968Da6fgWt+paOnNNRzX+EK/v3SjOorC9EcXDwOPh4CrvC1nju6IDYC7En5gOJGuwNUE0Pa4ju16q3vsPNWqtI2cyPp/m5JKVs5suFYoIg3nkZJGwRoZbV4sCuSDbPNFEhThPXtyvSOzGYEtV4bikFZNsTl96V8/lEK5W369XV9sZa0B0No7tsrmrn9Xbn/X1jmrIVVj2pEKC6ncB6W627EQLERO2FXpuZQIqxV7eurKu917puexF+yom5Rwv0H1zke3ePpta5rRtb7VYwUeOWzSFZctM6oUESK/gNQRV8vNt+KkQxdVOr7AfqupEJpGxqhih0icZp7hC8WB0JXuBzUvoertnebdBFK5UcBeVxiCcf//T4/c1JRnRW/23dOM2nfeLmGCyQEWvND4yyqJ14VRPkS8FaOqp1x9sPAlcDgms7l+3OVhutdqZ5oZaxKY/Kg2O2u3IPGz/3xtv1zvnHT3z88Mx375/YSkPV3LlbMzz209Mz57MtYr/88omujZQE0UYg8Hw6s61WGfz4/MTz+cQPP/zA2/XGv/6X/ztSssoPHlSkmIiaSMlcemkGw2ilElR4Pl+Y80SKmfvtzn/4j3/k558+8fH9dyyzUXlef7wSV/jwu2ckZ3qItKuy5o35NCNbtJb/JIQczY3TA0e0m/tpu6F9pTYl3q9GZkLQLqQ8Ezc4nxaIkfu60rpduzHBbYHWnbBv/iSGAVRMNvd8mi3J3FaqVyz6cLUMez12D07HL4SBjW4MKN0IS1s318/BuNDxH22uB+7jSECprqIhqCeaNlsHbOXbiZ6OxOBIzP4hPsbj8TXJ/WvFBlU9OiG9UuqdtWx2/QC8+8HDawAPVX+DF1qn45FjYb/DqxY6kkTvmgS18TzUnqzNa2omMMJkwVthHtc3UpBB8dmDeB2v6wHYqJIY1OHAq4JzMDx5UC+0PAypx6bD4wXc3w8drB/dPyY6oICeqMuRZHibh/GsPRj3y6N6JIe2v4902V/cbgKlVFQP1TRELZlyxZf97qpSR7cjRg55D/HEXlwGWR/Ox6tIKDEFzueZ3G1etabeybCvoTLVmgW2hmAw+MOQiP4Wjqd3H8gxcj4HllNiztY9WrcAvdHqhpaCamN9uXL/eWZ+90SMP+/JXrDL7H4j7FApVMnJ8OtBLLjSZeG6E0UrATgtZ273GykmggTWdbUOoB7JWQwR7YGIOYH3bq7BYxzsgZwnj9aptXXUpM07MT6uBUcXQyUgakIaYezwesydKDZ+gliFVFrgvhWWU9wTpbFuhhBIAmuxJNeq216gEUtKbveVOc/M8xlpypRW6HYe63ZDGFKXgWV+4np9pbVC7Z1Z5l2eOsdkakV6Y57NHVwDkMxX4N5vrNeV63Vl1Rvvni5cLifbt2bdydbTnLm8u1hA9eXF1Blr2yEyo9BihpnOtYmRNE1Mve0qSCM52NUJ1aGBD34n7InHwbs4YFYJvFr8D63P/9zH6KSCjfVR9YnhIfjTkTB50KimbteMje17+aFYJyNI9H1imIQ+dte9gG3S0Q97i6qr4jWLs1SV0CyB6Z60BVceCnkjpogOlbZgcJ0hqKBq0MVNN4Mw+ueIYsIVeZn2WMW4UBHzdbCfzYSzMiBgmjMDzmNSz8K2rdzuNxBhKxspTbx7fmcmkdc7+nr112pEVzat3fa3UqxDUB7O/xGum6IldbV3tLofT62EItQ2wZzMp6rb3NLuUv0uNCDe/R7SuDElU3msjaqFLJEswpwiabZroa1Biw4PG7YDkJMVJrIEQm+EBtLEpI1VCSpIxXmQ6pAoPebCXoyLEIzV3DFjTWEU9PRILB622X/s+M1JxhgAX17fOJ8ySxJiw4kykDO0dUOwln+phV1ZZgRAAwKiY/J4dS+OxdKC29oKrX1B4tWztkpnYJK92hAsSakV1tsbv3x+5dOnz9z/8DvWtdBVeH5+RonUVl0yNqEqvL690fpmG3lvCIl/86/+NR/e/cT1duP58sT15YUvnz/x4eN3pDzz+eXOy7UyFET2ShNGhDIsn6KtErWTY/DFD37++RP/81//B5anJ/7w3e+Z88S6bpT7ivRIX4FVebm+kROECGWphCRc3l045RMyRbp0y6Rb5V4NJpGmRM4TMVhxLMVEyplt3Sj1zlbu3Ne3feEIIRJDAjF5NEuaumP77D7YRLJJ17rBEEKIzMuJ2Cq9DfK/3Y9aq0vempwkqnRpNDUIB9oflRlNnUjd8VdcEvcBEmSLhKusBBkFEEwaUj0ZwWAB+qc59j/nEeKQpTzS/LFx/UPJxq9hVOLqM4/Hge22zaNoo8og89qiISJeCJC9Wwjjuo37OhI9u5a21HgLW901WkehwM6+O/bd8M648s5xH/EOFJiB1pSj74dHxU1xnhEgGP60ebQV1Ny+95BN/n/k/emzLEly5Yn91MzcPSLu8pbMyiokutHomW4KR0jhd/5B/GMppJAUGUqzG40CUEBV5fa2u0W4u238oGrmfl9mVmWha3mD8ZSb7y4RHr6Ym6kePeeocqo1ftejdUbhaK4YSvTb6HfN4lX/tn3fwGIswfAVBT0MudTr43ZzZS8XKdpUWjlYH65e9WgXFaMjSqMUmhapln7+OVmp3znEa3OrJMU6oBekOnOVanxZa4LYm57qIRUgV+Wja3UHwPz9SyZ7nRd9qYQdZatWevC1p/L9pbfpcGAQzzR6psExBK1s1+IoKVHti1Io80o9F47hFu8Hcl4Qqb2KGcIAVHJJ2nyyGkpatZK7LBfGwTPPdr+rY/Da8+GMrjHLuiIoYumdYy1qYzmESbUh4qhVuykvaeEwHAku6BogVl2tz/n8TRdSKT0ZbQJwaEmzVjUcQWmtKNdanDr1tMAqMMCq+o15Wch57cHO6XSCCmmNWtGqajAQY+b2Sh107h7fsqaVVJVGcXm8aH8PV8k5chgPlLJQs3YmvlweSUmdDrNRDb0a/2s1P4wEJ5TyhnG8pSSnyXso4EaWNZOfFpZ4Uf2M0yCxOIeIUgKHYaAej8RUmGNkXheWdSWm1ANLDUabLsxrYuk8zg+4UI0D3xB202LlLeHoTlMGUJLVkEfjdHWVErO0bZ/3qblLVWGrrggG9Gzzl/aF0PMsOfdkAfS1je5SDPzd/qb79Dbmu+lHWydsjstGlWpjuxscGDpfa6U4Z4G69cWyezYMI4ubiUZBVJ+SXXQqGmxrh3d1fuo0Liq+DgYi+a1C43X+xyk1KwytFUBhXVZ8CByOB1LUin+jkeWy0XLnZWFZ1t4XQ6tsjpSrBmAGvhWbGy7zrGuhc4zjaOBs7gwB7x0lqcbVi6MUiHFl9YL4oGYpdklTrbhhJEjCxYgkpZUpYcNMWFJEpFJwJOcZpoE8DKphxLDdCvF8oSRtiC3DiIRBY6Icca5SoyYR3nvIWCsCZ13EbX3zTjuMC+AFT6AZ8Oi4MtDULI0rWjmpFv/9vu2nN+Mbgl60h5XXr17w+vZE9sKyRKhCrkJIZUOTZOPgpaKL6uC0A2fjebdkQcwBp6MQFe1cu6qYOQQPZbPSat16a1FKwxwja1SxoxQt0U3DwOgcEkaKITrOqXhpWVdECiFoFu6HgZ998TmvP3vBuq7ENRLXGT9MlAr/9JtvEAamwxWvXr7ULtoFvJURk9GFQAjAq+trSlwVGcuFf/nt13y4u+P/+Nf/nhc3L3WyTQ+srAgBx6Do4xIhob7MWYWFp+GkmfDDQq2R4DKH45GadcTmS8ZXYTxM1Ko9Ph4eLgbg6qQ7O8cwDv1BExxDGFjmhVwiIfj+kNe69RxQs50KvWuwXnOxh12dlBTZ8k7AV7IL5JJINVJioVoflY3m5DR4oPneG8XHSrDqhKAfpOi9ii7t+QNqA89pguJPaUs567hHA2rpaBGK7Igm1xgqvtds9AqItAVkV5kAqFn94tEwOu8cwLaXNl64BlPaGV2DFhrKDipC61fPEo9SzDHEyqdtp4YEqh1nQ8Sw46bf2yEENmhjL+i3hpkWa2VLKqhJG561BY79eex0KegHq7vFdr/btYUW5D9P4FrWKpakKOKTtUZm1KnW7bsa+tlQQ+eMDtgcqET0epoOTZNb6ZS+loD0cY6or3kV7X7cgv1qvubsQBe2+6I9L0Ddp6QHULlsX40zLbspvnGdnQXfH4+fRtv7VLbJTDQG59RJsCogU3OFlCGqewooyjffV473LwlhZClnApspRcqZxs5zviV22i+jlIkQggIhYrQOEZZ15ebVK94/vCemSCwJqYnRjZymA8u6GuCVzeVvwJvGKZuOTPtMyK60VpU2ZABDFeljcRu1DWqxnypoarx71kXvvxNHcCOurtpQTTwpr5RqiGdRhDEuC7evVNBbl6X3ygEPxTENB6bxxOE0kWskp8jN9YlxOvL+7p1Sjyo8nB8R55iXC6fDleoGpVDijDYrHDsgAaO6Bo0LYXEMVYEpBvDHleH6BHOEtPB0UYpbKcKNeE7jgPcaeoQw9O7N+sgK5XzuoEkIIyGMDOPB+h54clEb1K7da7fAhK5+eJ54lKKOPi0ALrvEQ8eKzaiNXrV7bj6FzXlvVu9bJbq7BFKpqeDMyKWKgkmB0OeXVp1oCW6bGxtAV7IjJqu8mjbI27rcweHdJVFLcZDdmHXeqwNVKb2ap68tRg1KpMXWg3E08TSAipxd04oYra2K6DPtdUz47mDVwCf9e4oRh+o74rogwTEcBnwQYvSkGO2eKsVKm8FqvFNqZY0aY2rnba1yhTCoTfMaSTFxmRcul8tWWUuJw+HQaVtVEkGUuuSw3hbOAUldNZ0g3jGOk9G4bG2t6gI6+EJGExrvrWmxVKU7jRNMAzKNyDDQrCPDMGkTwOlAPs/kdaWEQHVqLx2q6DpTheoysiTyWtSNjWbUZLa24iAMqmkbA87bvRWTBVSN/0QEjzdXKj3GXH4/cPWTk4ycEzFqMF1x/M1/+BvWhw+8efOWyqJIW9Z+Doo++744a4mn2CJoSQUb2uYMGSy19BrdHvEtpXFcTdSZjcbRMu2iKMvL2wND8MzLyjAGjseJJaoLSyYgFPBa8k6puZLQs1MYmaYjKSVSilxZi/kYK8EufAiKwoRcmfUAu++y1ML1aeJ2OiI1M00TT09nLmvk5cuXfPb6NcdxMlqdBi3itbqiArds3ztSzpyOgSABsiOvhbLOOFe5XCq//M1vePdwx/XNiV98+SUvP3vN7asXSlmrsyZSTsWHrQt1Rb2aL/PMukalVjk2e090gvLG26zOWxBmdIGiNAwnKmhtYl4nCqtno795r25YpUBx2k1XKxytvNsmraZXoBUn6M1gsLEjxiix17et1qoPb32+aP+lN9cWgkoX3n28aHlnKAw2YbrNIUeD4l2g3DZ7Plp3X23kWD6OWfYvN/obajtX1dOcqpRBWkWoHQ9YIK+BeXXP99VEbjgtwbeeDs4CqlIKy5y0ZBt8n9iVf1qN/ynPqg5ahFC6VNnFaiKiAjUqUsrm0GTjoJXUa1vIaJWb58kFHX1rFqJaCROb4HujM6t/tNxPDazbXwTQxCKXih1Of09uGUq7fllDxsFsaItoybknWtAF6O2YnQULrumy+223e2Gn1NHElsTY+NHGhtt16QtIcxOzgOLTSjICnsIY9KRzruRkiWnOSC6EajbbCLJAWA8M46RgiNjiZ256Xf1vSG0xG+RlUcMSsGtlYuBSE+v6yDR41phY4ox3EBgZh1ErszVxns9479SAI0Uq+uytMTGNSv0pNVPMhKEn7JY45Kr9jUKpannbROltPrOksD1LDWluiaoXTcIGGfDitHEXoJamA8VcxnLrRGxc9wbaXeJCrWq3efcwcxg1WAteNXNeAufHM9NRexOUIlRMAGv9Pbz3Nta88fihsLCmSl6+Y3RmWFArbhTqKcPr1ywJ1nLPcl6ID48sMVFw+GFkGMQqE9qZOATP8TBBuWEatOFgGNTM5Hg6cbo6aeOymPBBm03up0fgOSghWlmqzptjYgusn1va7qlW1NqppZ/UJqJORdDXhCK7Cg2tCm0/t6p4A7CMCtP0Y5QNXBIsaShtdlJaaKlWqbZysHZn/6jS0bayW4Scs8p6tapDazqn2icFdVVr5KTRgJVeVXJBsinhRKxpXOtxoVWLmlv1X6t8tWncSsHjlR7k0KRFhOpgRNePEyd1NEuF42FiGkcuy8yyLLQmjd57jXPRGVuwcVQ0QG/zaHOzyinpWhw0uZCK2eI6alXQLRsbIFeNgZUSVQk+mHGRuWyVyugdOSfwCgxPxwOH04HjcVJQvBhA7wftWRIGZJzAjjnnSEkrDiEVbYjrciEtq1YAMe1hLr3CUWuhLhb/eYekihwm3DB0G1yNHQNWQ1IwS74f2/zQ9pOTDOWhKlqRM7z67Bd88R//Pd9+8xu++vot33z7DidwJpJqxVcPuTwr7fSgyYnpOAC0p0JDI8ShTUR2SYYK6lS+1Dht3gmluF5ienV74G//3Re8e/+IhMDt7S2vX7/m4eGeDw+PrHGlBGcX0hZm0TKpN45o+zxdlI6GFECzznOiVnzeOYREWhfEH7ShUFqpJfHi6sgXL06klBmniW/evOHFixf84hc/5/bmVi0Rs5XMRZsONRTTScWhJTtFqyZEVKSd10SNCT+N3D8t/MM//DMfHj/w889ecv/uPcF7vvji57x8/TkyBgqVq1sVSzrv1JViXSgpcxiOIGylROcYx4ZC1z7gi+hDUUoiZ90HoP/WYqIjCMEZsopOB6JJyXEMlBJJ2TqeZ6tq7KyPa800a+I94tf59Yagt26/WCJaW2BB/aR8zdWZa0PQnSFje93FD286JlrwTf93+yGnyOM68xAXzkYJCN5rlQHRpj5VxWhVVBihQ0u2L1FnK60e6kJtqo5eDWhWmnvBetuaK682aMRep+9P1XifhuL3hlH2Dj2CNmGZZZ9rtCf6/ZeeHNQtEGhVK2l/qRZ0b/WYbdGtfZ+09+3viSj1KedMseumVQkLXNrkWQz42Od6epdpyWC/TxUytTu0tM8p5pylCdUOQayo40jV9ziw69F4060i3GyNNeDTSkpSEV9PvvVeCvtAazv/dj5Kq/g0tjE4RhfwThfhnCopaoBDKTiyipvFqAg5U+eJ46uXXOoDZKGUVV1WcNSqKHetGrS2ezkvK+N4UH2C83YvVLAahsDxeGRN91zmi15n58xRqpLyymV+YhxHDodJm3BFAEdGyNWaI6JNRZt71/5Z3yg7hVJanwxoz6Owo+t1IEWTD+ccwQ/q/JSDavJWDdiOx5N2Hxbj34swjROXZSVbR3PnPOf5bJ2MdR1ZYsU7IaYZHwbzvc8EdzDTAn3mkkQOhxNrzIoWj4MBFxkvQceg89xeDUiqxKTrSAiB4+mER50I1yWyPJ5J54WnpwsVxzCOVsEImsYLBO/I3nGYlBJSqzAdDoz2NU0TKVdqnYkt4PWhz1kKRur1k90zuE86alW4DEPQqY1i1SoeuVOtPqXND2GrYnT3K2mMTJT2va2Z+tjv53SeXZO2te+ddyoqhg2YqX0kGkhRLFkzgEN2iYa0pE7nM1ea+Ym+IhCYjgdzENutgwZA+1rBdGT9ftixN4e1WjF3zY1+qMZD6kCWM+AGSInqWswYCEmP7RSUky9eCL2bueBLYBTVDLsGQqBz9TgqVWsIjsM4qFYjRbXspbKmBS/CMHiLhWw+996aU2sslUvB5dxZDtUqDH4ITAJVKqNohaH2++U4HA8cTkeGURsENrOcWmrXpFAKfgyQgq4tCyCqmc7mQCV2faU8r9qLQJZETbVXvcQoka5U6qD61+pAmkup0/GmyeZzfcqPbT85yShZ+VggnM8rH+4X/pf/9De8ennFl1/e8c13b/nnf/mGr7/6wHfv7o073mgyDVHTQdvKNIrqWelNmpRUlLNXW1hCX0B7omLBRK46X1xNnv/41z/jF5+95Ouv3/KLz15yGD3LPFMqPD5c+HA/czyeuLo6Uo3GUoFJPOPoGQZPE4JuwXJD6z0xFrLBu1KLleJ18VuXhWWdGSRzczrx2atbcnG8u/tATIkvv/w5n3/+M5zTwH5ZE7lUQhjxZk/r3ErNiZS1w+cwtIqCeiLndWGwh/7XX33Nu3fvCaPn6nDN4IXz0yN3b95xfpiZl5nz4z3H6yu++Ksv+eLLv2Y8HvBACAf84MkUknULV2eURC7aUbIHT0ZjgkKqxbiZivTUWmzRtjBNwIeGVisqNw6BwY948eQSyE6FnGoFZ3iwF3NJ0mtO/b4b00a1alBl+33j33wEaf0Ft02wqAG+Wim2c6GP3RZ4buX7sgW5tfGDN0coQRe/mDNrzloltAd8s1W160Mrq+vCq5+/UTd6sL1bfNux24c92/YLlNo101Fjca1rqwbPGWcifXv20fK392qdqZqTYvxa1R80r5eYkyWywmSoSy2CVGvmZKV8J5vmpfaaQpv8tuDBTPsoCHMt5ALFaQlYqUcaLOpj76BmBieEoI4+lyWRU1tot6737Z6pRaD1N8ACFQsOEbUjjbWSKgRXyQKZ0o+6JSqCJhjBORPO9zShjapn98I3X3p7hjSJ2Cb7dnxNg5H5qCr2CWzitPmVC3YvslBKAFIXMRenyfIweKYxIDFw437Bg/wGNxwMKLmobgx1LfNBiCkjUgzd1QrsOIwcJq0pnS9n005hVQtnyWTl6Xzm6nTF6XTFPM/kEpnnhPMQxkEF/lSomZhXtYMUD3gQbwFENX2GJf1FqToNgPg+4NCeGUWBS0/IdTVSkF21DCKOYTiwLMq5bm5Bo+n8vHOUuo0hqVV7SFU1BBAvZkaykC9nnHM8nB8IAQav9Ky1VCrJkpkJP2hCq66CIznC8XiDd3Ce33Byj+R0rY1wg8f5CUHXOu7uiW8dc1zAXHrCMFAQXry4YQiWatn4L05wo17PwTRe3uk1pJqbjtOeG81RbU+B2lOheqfiHtPur7kFxs73wNzXLZn/lLbLPKv2y7QTznmc2a72JItt+m9j5+Nn/uN5fj+7tEvjnOwaS6ppyFYxbvHXBrw4ZOsvZgmjC77Ha+0zwjjihkDDzXotpSUruVBM8K90eqXipOh7otScq2opPaERq46LHbsLA0MNlFzU5naNhFH3kVOGwTMWbB1zXVjuxHctYo6JmlZC8CxLwXvh+vqkx3pQyuDhcGBdV6VfVsCOC9T6v66qd2rPetNzDOPY12tl7ui+GgAkUsl5ouTEdDwQhoD3AfFBKzuWyKipRFaqGYIbNPHnMOKOkwLZ5kCp10b1LmldEZwldNUqx8Vct0C8Oj76KmRZdT4LQb+K2UM7AyZd+eMmGdACnsrT+cK//MtX/F/+T/8Tn9++4HAYuL695uXL17z+7B2//Id/4d27D5zloq3enVlQ6vXZCYSyItm19sZbTpy6H+nToDSsUkwMpCfXmmS1SsMXn73g81cveHh4oiJ89vKahw/v+fu//xXiR7797h13jzPXV1fc3lxxfXPFixe33F5fUa8mQtiqGU2E2TJaDaAsgytGLZFKqapHSHElmh94cHAYhOMUiNlx/+EOHwZOp2tSKqQ4s6ak+pFcGYI2GBKnnsrrmqjOg8sMwwHvRhMQRdK6cjoNLMvKb377FY9PF05l4nK+4I8DQRw5ZWI68/T0yNPDHTUX3vItd28+UAXmZQZXuXl1y9WLW65uX3C4uuJwOuCHQPXq2LEuS8+6U1aER1wxAbaQ0MA2layoQtXEJO/mZhFhjUmzercFvyKe4Cp1J17LmHODBQQIFtC1SVJLhJpobImHjpFGO/k0Nm0eqMYmYsFfp0PJNm51s0TDOPj7nhQagG6LgpApaWXJEIuzYJU+gQGdB9u0EN3KUbbAs012umBtqHdL7Nqk0cSWivLlDUmrjc9p968YGCCAWXAqV1zdPtyuWlFLNa2DJzgHZhdYKWZTXDeEpSjC7/EYhoLR7p9VOp45SdF42O26tV/LJuSmdMpVe1FLIkTQZphFrWDXpA5N/fx6oqY/NnvIluS0XaqFrGor1mjUDqfHkIuFjiJmD7hVPbzYPZEGdeySU1uxnXNMB50XqhkziAtqXW3C/1qrasui0l6ozc72EwqepHZnulqFXJ1iBc4bDcKRxSEBpmlgDIE6O8pZ+fxrnvW6eTWRUJRar1+WBJSeFJeccaM65LV5LYxKNRrCQStORfU5qj0QjocjFcw1DM5ndaDJJeNKBAIprRrk46EGXBhwDUmzakR1otUCMtWsz79XHTRAAWmjyXzwRZ2ecoWUlCbcdDreOnCXnAjeQRGur244LzNrWsi5Mh5GcsqaeBT18Z/GQC3aByCiicC8zsQyEihQT2o7KoXDYaQCDkcpkZwEP54Yh4EUE7FGPrtxsKys50fC4cToj0qpGg9Mp8zh1QvC3T316Qkuiuze3d3pidfC9c1BzUrGUftpZKOriMYHKWWKCC5XddxJ6mw4job8Viyh3om9d3PdlnCU7Tn6eCi2ikdH1z4t4XfpyYRuajaxjaFm8U1VVkiv6O4MIJxzu3WiVcy3ZKGvqYYA+11PHeddt5HfH0erAGmFpWwJg2y254JooOoCoV1es2HdV1lEnNF4ZQORcyYM6Rk1qTlSkYsJ+TO1gTq2ttWsdq4OYXSBWjwxJfzgmY5HalHdVjPdiElp6t571cTFleWcSGT86DkNVwrGGhjonfYlu7m+Vke0ZeXy9KRrS2nxkmMYJs7ns1IzYyJXODQrdBUY6rqLVtad95YoBdUqjiM+BIZptEa3RgvzCmxIW49pTl9VExIRi5U9mYSg4Fquem2USpVMc7JSSyWkiCCEccAXcKl298NmG+0LFtQYsOWV5vz7tj8gydgGVk6J3371DV9/+4HXL36B8yPXJ89xOvHq9ee8/uwz/tt//SXfffuGdx8+qCBbxChOpaNxmrVqBlgb368a4mCLpa/aubpTmnYRZa2VcfT81S8+YxoCv/7td9zeXDF5x6/++df8/T9/R5VATJWY4ek8c//wwOEwcnV9xeevXvDF56+A13g/Mo4DsveO7kGiQ5Ihs64FHIrixpRIWRcmT8ZJwUkhxcT5fOF0ukZwpJi1L4ihUqUK3msVQ/qDpZ2+gxfGccS5gVogLivUyPFwzdP7Ox4ftQv6uq4cvMDrW6ZxUqpVqiznhfWysISBw0Ftd0WEeJl5ePzAh3ffkYDHWFmLMB4GPv/8Mz777CV//Yuf8bPPPyNMJ3ItREmsWW3ovPfErPbCYsgvZFNlbxSUap+XC420ThANmr10DFc1TKIoQq1Fewo45eo27qxObDtIhIYM7CseP2Gk/5m2hh7vEUutVO2aEe22/ULYygPVanob8qRBx7ourEknq/ZwtyC1BdjPFhJpaPnmjf5cDEx/X/tbQ+H3LiRaf5DezyJbBSk3zqcJwNsirUmRlbgtiKdoTFmdqIOF7J/ljSMMyhldDbkcZbA0Y9MgaKJRaBbJtNo+mrG1ZKhWoDikeFzxQNZmeLQqy3b+qpGQnszinGokStZFydAvaE2rVIxYYaOFOelCbJW/KJig1Q7VESjHdaM3Kc1Nr6nSHpQvW03J3CpPuvhq0Lz1Etmu975hZimlJxmltETpYyT3L7u1e4jNeaV4E7wrMuu94AcHQRjHoKYCqTLJDcEfID9pPOQcYiBFqYWa1PXEeQFUE7TGyM2NR7wnrTYfVjEdw2yBvTY6LEV7BU2jNjbVjtmJdV0VuSwZyRfG4YpcElkyzin9wnsLVm3Md6S4WoVNmkZqS5Lb/9v4ryI0vZCCba4fH3gT+aIW7IPOl9MwavO+AodxYskruWjyMIYBHxykSs0asI7DgPcDYnq6nAtxXbWZHarhi6VZHmsCJqLodCkJqrDGhTAIS7wn3f2W9fwFiFPHQqe9M6bjidtXr1kuMzUm0rt7XBHr9K39E0q55fbmmiEEahh6kJazJhmUTImqbYkpkVJ61hUcWpDdEmytCO+Tjh9OOLaq7lbxkF3F/NPZeq2iooCGOWTtE4iG6g8+9EqvWKKwNe01OqwBqM3CvFU9+nqDIdVVx6rSPvUPugboHOlt3VZdkN+N/Y3mqldSuqZDEC36VbXgbcddrQK9LfMV8doJvgFHJSWLF2vvzk02lkzJ/T6WUpCcKat04XlQ+J1G9SqpUrG+GzH2hF67lgfGKdhYTGqRWxRsa+tQTpnr61vmizAXMxHKEKt+lg9Kiy85WZNZYYlnzkvsDpTB9GhOnAqqV7XxPRxG1fR5dWBrtrbVXAtLMgCxAqZ7zKmYqUw11oBDvK25aMVOcOryWCoJT6yJ1dY1bf4sDClDmpEYm60oiDCOE3FRna/zjhC86oR+AlX9JycZ+52VUnj/4Y5/+pdv+M//6d8x+QFfVe3vxxN+ODEMR95894Z//qd/5Lvv3uixUpln5XIHFxC0jR1V/d9BJ8E20rwoXaJWqFkbsjjtuGMPhXpcX19dcf9w5sP9I//xP3zJ+XzmN1+/5eG8gCStRIgQE8iiln2PT2fmx0e8VCtlB66u6BQU5cN6QsDeW7Trqg02qmbSyzyzLhftt+EKwWslpuTE9e014XiDc4M1GnIM3pFKAimESZvnBV8RPN6PpKwJ1RAGQx8qKS5cDZ4heK5OV7x+8Ypf/uYbzpeZhxAYgJubW8bphhIjy2Umx0pNUFImuWTXNlJSIhf4cFn4+v0Tc8yIg1//6je8uDrw9ssv+F/+83/mxcsXHK+uuLq54vZwzTgNyDDw9uGBmCqlpg0tryoERwK1RkVuRZTSkzRBSKLifJ14Wpdn45ayIeO9QiViCV/FuwHnhELpft4riSLFApNPp5TREqxGg2nUKTB9XE8c8g5xajPBHpPHJl0LL7xQOqWvBahsb9hCmr5QdmCu1l2FIrdf9grLxwswP7bIimxWirsEpZaiC0I7adpnb+eW7UyccxQRkkbntqtKLcnWPIHqrHqhwkMRuutLzyn3x9ivqS3EdUc3KVDWrMGZky5yr1Wrp9sR6DHq4phUp7FL/loy2657raJN9xy7PTy7WLSUSCrqsEJVytY+gZPtvmlwFcEFZDcW2v7Vrz1xKcu26FSxPhGxVzG0G2/uh9HH1Cf0nFBbQqSgi1aHjELXqG5jwB0C4zTo+K+F+X3g1d/+FQ/xG2rRJodilQLFIpq4H11dxClBrVQO06S6tFy1yhocYx+z1eifjiUupBRxAqfjieQzlMK8zkChVLWXRAq5RjxDT+oF1TNJP5/WHLNQXO0i5GqVji3FaM9tA29sWEvtQchgQUcpERE4HY4W9Csa6pxSjILfnptxCNqgUJQ2FawfQG7AmDEMTqdrSoqktHQjk1Iz3gvTcORyeSR4x7I8MI3XSuUthTWduT4F5neReJ7xwwEfRpx4hnHk+uUrcsqMVbgME+uHR5bzhYeHB6UZLzMpJm5vTkYV9B2ATGm1ymZQ6mFMPUFp1dhNwyQdJBER0xjS15MW9P6UxOOTek6g08lplee6q77s5+3aDA90HAWvLmPSgnyjtTrnutsdWFFxV/Fumg/nfL8WDdDrTUxLRUR71SjaLX2/VI3jJG9zstqeYuuHUt6ktgq/IL72gLja52GUVLXhrYgbCAwaH8SIs94VAvRu7bQ1ruLWkRRjrwRJsTk9FwhVE3PNlvQ610otDmHADVis53HuqGtVMfv1lLTJc3C4QZveXV2fNNayRFiAGBetNveqdiLkgWANAdcoz8acE+Hli1umcdRmxxp8auPqnGy9tGqK14aFwXtNuHI2Uby6PA5Nx2OmDc4FNS4RFcPXELQKlDJVtPGfd9ZTqyF00uIXD1WfP6QyjNpXyHt1Fv19209PMuwmbASLyrdv3jCvmdPVRCiKclSE0+mKFy8KwQ+MDgZfmEZPjAvvPzxwfpq1bFwqyQLMEALicm9U1T6nml+pYEKf5mtfjQNeCk9PF96+uSPlymcvr/nqq+/4cH9RdKTCmgq45t9vKEeFMIz81S/+SmlAOfPuu29RQzNFZE6nI6fjkRBGYtQFq5ZCjpmSI8ucOD+uPD0+EFwCV3oX7ONx4meff84laY8AXVQcJWvAEXzAu42jqDfVUUo2hx61lF2WGXLkcDXhnePqdOIwTUpTKZVlTbx590DGc/PiM2KMLPNqD5zTBzsqureuiXVJnNfIdw+PfLifKVT8IISaOb284me3Lzi4QD4vxAKhVPzhSF3hIZ+ZY8SFwIvTNUu3NtTKxrIsSHEMogJAMQpXqWprJ8Wsh1FNxt5XXqmxdXOX2qEbzb7WiWP0wQJJoTjV5fwUG7U/22ZVuP3PpS90uU/im70rzxbJtmnloDlcKF0qk8FX9UmrOq7663eVkq6r6ZWM50lDK4t3ChQbktUcatqE3ZKTIoo8VzZNhhia3rQSGtC2oLz12ih9bFfrieKqUKogaN8IfY101yWH6hm0EpK7XayGZsEWom2OaHqvfn4YDz4r3WKZsz6DQ0bEa3LRBNWt3I8GqDrObL4TBTFKERWd2r1VwXul2Yd1fQ1bYllry330QrXEpPTFsLmktHvSHLSqUaa2hMYGUh9XpRSzslUKjjaEMlTMgonBrApBXU0+NXeplDLFa/fnWlTzl4tmYJ62UHrkOBCmoI3eCuSz4OaJcThYU8qEGcCrFkHahTdrYbuItVZGs5wtRr+sFlw119khBMqaVdMRTCtWKtM44pwQ79cewLSqRDAab9Op0bHOZgzgLAHakHOLEvvf1Y3H0ZxbNHDMSOuD0hMIDd6rZDUg8YHT8chyeVSjEKfU1NE7vAzEFBnDwDROzOtMtiNTNLr0pndOHNSAcxo0qmOWjccaSTES/KCC+prseR3BqelHutzj4qDV/mmiHCZk0Pl/HCdevHjBVIV5PPDBf6Me++cn7u/vrBrlyaVyc3VgCAMhbJSnddVYodSWeCSWZQG2edObCPbjxGOfgHjfjA8aus8PJh1lNx98KlvKFXFK1ZY2WHdzB0UDxJ64GzgVi1ZHBUGKAYGIBssiSs/ZrT2Nepuiia13s8+2tuxotFXnIZ3fbD0x7ZEf/EalqTr3CdYfseErbNoZZ3TBBjo6XfzYLHcboKKJjqvVBNj2EaXFDoKzJNmHQel1Vs2gVURKgdzeY+tfMVqa6QWbJXDJmw6wJu1kHsbAkLU/WPUVNzrCeKCkjMRIyAM5aZ+wkNQptGR1LJXB42t9di0bBayKcDweub65Yghq6DLPMyVpZVqTJX32x0FtgINXK+tsLqoNNMy1UZA1bq4umYjbdGGADOoIV4u6e2nPH6OqW8Lp7J7krDbQIprQlarX6TBMv3f8/nS6VFvxGmLgPcfj0bIk7dRb7ID8MHE4wbIufP7FZ5wvH3h5e8S7ypvv3vPVV9+yLJmLW5nXRClNIOspzoQ9tlB7425XhOCVc5tq0QDaJsqvvn3H3YdHbm+PeKm8ff9AjIWXrybVKeTYH8hO4yiVw+nEL37xV9ycjgze8dvf/gvn+3vevX9gSYXbF7e8evmaFy9eUCvaqbvqxU7rwvyUOD8tLPMTbgKCNlSpNTGNB17cBOL9hZxUXANaZlvXlVw9aY2sriC+sq7RrBgLwxBMTCrEGJnGQa+186R55Xy+qONUgsfHmVIyh9MNpVTimljXyDSq1S616vHmxOVp5v5x4e39A2+fzqypmh2d4/r2xJevX/H65haS+iCHUvFrASIxVX777Tf86s0b1pLxQbg6TRxPR8ZpZDpMKlIagqKTSRhGTyGbQMEmGudVENX+Kw0ZaW4SdBS/ULoQtnXgXXO0oK4YMu6Rn5BN/7k2bUzYrJptbqQhTS0g3aPjLRjVTRfHFqw2RH5XGUA0YMcg8Y4+bQtFp161z7PqRC1le16fFQL0AFpwWhGjldCrSrp4Ya5wjXu7uWbpz9vnZQMGtNq6BeOtU7kgZkFKn1P0XDShUQBBA+Rqeo3dEe+O7XlAUC16LObEtMTK3UOiDoJvxjIWmGSqumjYHtUzRBOd2o7Fmll1fczu9bWqsxHtPXY+TtR5SHtdWK8U57X6YV25xZp/OegTeUuwvH3eph3pk5daRKL6jUbPEgfiNhG50uPa8dce4H5KwdOaMpN3uKD2jTEWchRYIqFoRXgYHWK85IT2LElPhZvyioO/IeUPZPEEN1DFFsJW2XEFpGmJCilGjtOEF6U0ODcQXOjUi0ajcM4ZfVfvacpJ/e2lMIRBxba52mKvOge1BLVk2dbJLa+vu6Hb7oPRTWnPbDXRtwILYs/tvmmkor8ToOMo50IIo6GajpxWyjhotcJ5tREXBfxKrszLYgfmKSVxucx4H3DO96DSi6PUiHcDeZ0RFzgejqzrpdP4Gre/VWdzTtwcKwyByyXjUqSmFcqIeK3wHA4nxtdedSDryny5UD+85/x07gh5E7TeXJ0Yh6lfwGzGKtkGeumxQX0WpAH9/u2/9snHPphWYFMNHoBdpePTSsYBvA+7Od3mqC5ON6AFc8x09Ouz0Z8M5LSMu1WjWxO+1oW7VTnCoE5F1C0RA3riIa45g4oBOmpWEFOkZA1uW9O4Hi/aa504XNGEw7PRbxUWAGzerlat0V20VzcgshkeWL5VheppE55VAMDnQAh5q1QVsy0vhRLVSayaZW5OWRH7rC6f2v+9EEzLVa0nGNU0xctCLgkZtR4u4iBBCIKLleTVtl9t3z0uqDNoFWf9X1qfmMDT05NW54LjdH3FdJg0BnSeu7t77j/csS5rT5ZCCBzMca1Xpyxx9GZisZtyTBer1vKtOtVArP281+z3kyUTrQ9aG0vN/Ut7pGYcjhp//7PyB0dnLUgJIfDZ65dMowpQWtCHqECloam1FkJw3NyeOB1GxmHACSxL5PHxwru7B+Y5WTAmiiYZMq2lUnNYqqgzRQiUvFGmNNjOHI6Bz1/f8t3be97dXQiD59WLict54fHSeHD6oGZDAqMF9re3txzHwOk48PXXX/Pdt2/5zVff8avffM319Q3/83/8G16/eMkYbhEyNSfiMrMsK+uyEpxSkWIsnaowhMxkfuvNEhYgpZW3b95ymSOn05Hb6wPXx0CKkWWNlgCpEwgxUnPk9vaEiGeeVz7cPfD+/oFljSzrylJgGgLTOJLWlctlJqdMOCoq1Gws18vKhw+PfPv+jnePZ+ao2gkfHKfR8/MXL/j5q1fqxb6uHMajum0ULcHOaeWrN++5u38k5ZUgmfm94/7pwvv7R0II3L645he/+Jxf/OLnHE5HXHJQdSJvEwQ0p7K2iOgAThaMdSBSUN+qbBNah4aNZiUVtVS2J+kT2foiBlv2YIhAO+feBGnnfrItfi252FF+rCKRSmTNmejbe3Xh2KoQhuA2BN3+3/2+ZUvgxNCuKi2J0MNNMVtXB2+vpSd4jVuuPF39W5sPsGAO2Y732V0R4wi3Z7lrDnXhLJjXOxVfLeiuamXZzqBg4jeRvu9aoXVf0ZHR0lfjMkuGIVO1W5L9rU3CrWmUWJJg51vpc0RFRbNqgKBzlE7Mds2bwh9LepA+F7YmlIA2JNXZg+IgtPfY/8XGuCYKdkxV0479tt0HrRZ5p9zeYKLBxt9vYthqWrJWUv9UtpIK2edOg1mXlRwFmSM+LRTJwAHnA0UCqTpKFkiV5dsjx79+yWN9h3eewxTIJTPnFUQRQCcBJ9W45IVSExCoaB+nQiFnGAaHONUZwoSI0uBKVorAPM8cppOhelp9zjlSa+q86WrjQQGb2nv67BuWlZKpxVOdPl3Pt3bfW+8ALDcpZmduVLmScS5oI1YgJximQAKdG5I6CwpqDVvywuV85up0wziOPD4txKzNV09XNwpsGe98ns/cXF3hQ9XeTJJwBIQR71cFciRrwzFXoKp2BRco9ZFcVkINuDVSlwhjRmQAD34YEe8JpTJeX+EOEzEXHp+eWJYLcZlpJjC1Vm5uTgTxeD8wDEb/W1aowug1qcxm897nJlo8kDsyvK9m7JOOlnh8nHRoPxThU9uGYTRKt82rNllXS2CLrdP0c226iXZu+6ZH9o+BD7Sgu7a1aBd8uq0ivVXaFdhpwXpba6qN1yqFQiW12LNgQIom1c0MJIhX3UBR7U0Biliz4PwcHNEDa8upZRbeGc1r6+WhYFrdjtcXXLG+NJXNtSpliqihQzHKVQnBEpjcO6E326ycEkX0c3wIOGBNK9XbdZ7UAcrVgTSv+FAhOUZXleK2rkj0BmIJ19fXfayKCIdSGKYRHxzn+cw0e44ccOI5P515fHzUpoJ4StHYeV0Th0Ps9+swqPeoc46xqLFSSgnnVaQ+hLZmmO6yOgY/UEKx50F600R1kVURufOelLe1IxsoU4ve2NbM8HdtfzgEbAc5DAMvX75gHDxivVetHTC1ijU0qazroiIR703V3/jChrgK1o3XqAQVmg89VEox5NYWVuccUixbN9Tv33/5iuCFaTry9//wGy5z5MXtgS9eXvFtzkyDM4TcglxDle8f7rm7u+dv/vpLRBwnsy50IlzmhfOauigu50iOq6n4Mzmrq1Q2J535PJNlZY2fWyCQEAm4WlguZ+Y1KhK3rnz91W+5ezgzjgO3VxM3pxFxSm0KQ0CkkopwOK6cgvSmMakUnuaZ9/dPPF1UBEytXJ0OXB8O5JRYl1mrIU4HNYbMnM9n3n6459t391yi8pfVNQIO3vP5zS2HMJLXRJjGHbqqQeH7p0fuLxdyKXgpjL4Sl5kPb9/w3ds7KsK3X3t+86t/4Yufveb168+YjlccTwckwM2La66urzicdIFJq3IBxQlY23rxDqk7hxCsQ7ajC7g0NmvIioog5eM1+y+4ebOZk5YA2ELQEH7L+Sxw2CZ2RQabA1XHypWyY0lAMs/tKubCBDqpGqWptiBVmtPGhqjuqxw98N2hRmBztbQKyJYUtveDnUc1a1wTjjrnQVQ81pKWfeLUjs1i547U6slK74y8/6yO1udqtKdqFqANZGu8ezuquktiqRSyBpShcLh2RKya1ucdMc6yVldKbYJIpYostfbmfO1e5aIIl4DabVZIu1Sq0hJG/amFK677Ytk1szHQKlRt8W4Sz9aUrfGpofkS2f6D6wuGiKJTTnwPaDX5UTFgtoXjU0NnmTKlaCO7XNQutZYKeYYSteTkq04NzuMkWHVMyOeCxIM2fJVinZodLia9V1R7Lhq1T4g5UwTGcWBJM6CNq3KGw2GknM/UmgnekZLaUCpn2yoPbp801m65qtOXVqxK7W0q+xywVQETpXogfFRVas86/XnQr9LXuNrmYbOu1mm9sK4LV1fXsMC8zqprlErMER+OWiFK6VnztDY3zPPFTB6gmQ+kqlqNuC5kIt5HSl5URG9gA6VQysLoPd45ckkUIsE7nlq38WFExgPijBKsTUogeNxhgmFgTYllnkkOasncfxi1F0HQgGcaR73XVXsCDMPWwIz6fA5t1YdsP7cA+seqHR8nHR9XPz454XcBeuiv2xZvC4Oz5NXQuY3ypclvq270c7M3bwG8UkDbhd0DZDoGdS0Tm7K7hbhzpolSULkDSUB36JK+W8CoXALjYWByHlkWyI7khEXU2EIX/W1Ob85JLX7T/g+67mkyZACyNEONbV6t1g285oo4W+9EVIdRt/U6W8+wkp3RUO0aGZjXerc5EQvEwQ3efqcdwksuBCCviSyFise5kWH0+FxBArkUpuNR472klQ4/DWizYv2seV4UGFoTMa62lmv8jFVNUopcLpogDCGQQ1AXPVG98LKszMvCOA76bAwDY9UeHmKVpHEctbm0N+9GydqrydceSzjncEUd38ouniyCJSB/xI7fG29ZqQanqxM310flCZbmf+C0klHFMq/CuliSYWVWdYZAy9TNW7h+HGT0Mf7887v4Ux81h/DqxQ1/++//inVdePPuie/eP1IFPntx4vXtiYeHM7dXinzMsVBMXe+ckFLk62+/5T//p/9JReviORyOhCEwr5GcC1enIy9urpVmYYI5uvWuIinOO+IaOS8PzEsipUweMuIy8+XM3//9L3n34Y7PX95yGAY+fHjL/dOCc/B4L0xDsGAhME0DT08XHp5mfvb6lpdffq4PAZ67xwv/9Ze/4qtv3nGZk/GRK4dx5Op0JMbIumi3xzAEQ5crMSXuH8+8v3/iMi+mETH0rVQOXnh5ddIkKEaujlNfnBHhEhNv7x5IWW1sg6v4krlcZtK6muApU7yn5Mj9FPDiOP/2G71PwfWF4nA6cDhNvP7sBde3J9wYmEalLgzeUUWb1qRGsTIqHlUM1W0TqVaxfC3sioN/8W0yURcWnORcKJI78tZLti0QkQ192gJO6QFlo+DmXE2UpX9XrGGb/GmvVyzVKhj0RQl2z3AL6ouWmlvNIxc9RnGO7wX9FpxoTwI7VtrCpQkfpjUojt69XBfIJjLfEgSc69zwzYWkuQWJVToMaGiJRatkVbTCUWETz0pPOqq9R9OMhiwbCti0JqLHqBUHcLVan4pANlrTWlMP8Nqi3YARsSS+945hS8Q67cYQxr4o7wLLYkhhEaOHSaOO7ZKz/vI93WmrGgv65pIrqxliULceGZ3+Ub/fVPEvvbmXhfKhUKsGuj5Y5TpoUBSC2iaqR/tAzBbo1oosnjG9ZgonYr4zep5W0VSQqmNto1lm5nTBXZpSQ1+byXh/IgyOeblsgRhbopoF1rIyDBPjOLDGxShVLWhV3VAqiegiPgy7JEOARrMwu+baUlfYg2nbJs/GdLM2FjCEWitxIsK8zlxmpV7ENTEMB8p6IdeoCZBzLHElpcrQGruWjEhW69+s7lF4x2VZCIPjOI1Qi1abvVJnck6s6xO1wnEamMKB4CfiokDRdH2AIbCenyhrxjtPOUwQmre/fvkwMByPXL98wevPX5Pu3hPnWeMDgbSuLJczThwpJsKgSRyiLkOUTKlJr63TOgvsgIePko5SlIqjz8AWVO8pQHoPv590fFKbxSxV8vcSBO8dh8OBYJ2q17UFpdsc3gL8nHfzwJaldFDoWRJTNkc6seA/lazAniWtTvaVIt+R/5bs9MPfJQhUtTb3IRDEg4tAJYkRDltviW5SUMlJzROkaSugN4Krtva0KvL+HgrbmlulKkW1iD5iRZ89FzwuOOKqR5yzoNwrTeRzzrgimulVXXvEFVz1hGJVbVsjQnC4aWS5zEgO+DRqC4dcqLnixJNSJgwDYRitslI0US+ZWtH+QFTmZSWukVwrh9NRqYwm7K4FlmV5ds45q3RAbJyv68rlcjFnKgEuHKYD4zhQq/bFqLVafwyhVRF1nbYKDXQ3qZILLrQ1SZiXuTMPft/2B1Uy2uQZQuD25pqr08EurwnpREAcJVVSinipLMvMNGoHxLRG1lXt53Ir59f9Wvp97nAr/VdpQtBtAA/B8/rlNWHwLIvw9sM9T5eFwzTwxec3nA6OIMLf/vXPeP/hgW/en4lJqUvee2rOfPPV1/zDL3/Jz3/2M5xYSXicOM8LIsK6Rp6eFlJYmQbPZbngqGpHm7NpJ2BZZubLzGVWR4GSIn4coax89+1XfPPmjpeniYdl4Xy5sKwJ5ypxKTxRqUUIXu3LHp8eebj/wPXwtxyGvyIXuMyJ/+9//Uf+7//v/8KbD/fEqN2zx+A4jCoKPy8redUFRl1I9DrOc+TNu3vuHp5YY7IA11lQ5ZmC6jdyzoyjUpCaO1Sq8PbpkXdPT4gTBgFJiXg+k+eVg/cEhCUmEyY5Hu8eqFGrQOId4tSCLUa1gRxGz2efveR4OvI4r/z1lz/j9ctrbl7cMh0GW4JNoCmVcfJWnq29alHNmWIHk3wS2zAMNsE3Fwjlb6eUtwSj2iRpSZzO77vJX9iSDAApBLR0WauVfVsIbsiTsyBWDI13vukhNGSCtgg3DrSVwfuR2+xVO/jUF+J9Yk+thpy3g6W/QQS1BOw7rb0Mb62GOmqvqKPpr9jK6KDnHBBcqYh4dZUz0WODOqhKY9rock3bo8mOFIEk1NyQFws0DLmtVa0A067kj+mBYimcUyZWu4Z2pbQC6p8juz8y9FqJviWKCs7ZoidYOUfPV/XCmmgGtSanydp1dm0VKF3rct4cwNrv2c2bLaBqudW+CdynsqUvHrk9foF77wluZJiUFFfOZ9xizccOE26cyH6grKq3EPGwVob1JYfjLef0QEU1gqVALSttlASndglYgrwsZ7v/KoGuhpYG8WrL7SLDcNK5MEZFCX3g8fGR6aC2qnbVySWiXbmFLDru0rqCPxrIsEsqpa2SmUYBbAlj0yJpsCC4rA0kK1kbO1abp70nVcfoB+21YhPhPM84MwtYY9S5tlQulzMbTTVvfRXsoW/OTco9d8xpZViEcdgEuGeb8w+HCRVKa7VyHDToFQd+GIg5gXOcHx5YS2aICzeHET8E/BgIbgRRo5Wr0w3ysy84/B8in58mlocHSrJqxTQab9x10MVZU85UGy1yawirp7OjPJnLkTp6NevTVvGwpKPRIFulw+5Ro1mt6/rJJeSIJqbF0JZOb6UyOM84HIyGvpBibtPKBsbuHPWgTVmtKlD6muD283x7f+PqOwO5Su3vf24jv90L+vC32drJVsW3efA8zzAM6u4pqOGOAFaRAhUW63Og853qLz14ZzRVpReW/XxINbpcsbYHjuq0EV1rTImAa2tbBXzT4FWC0wpaGzM5p22MJEsGzN01GCBWbOwICoiOctA1uhTG0sAFs28xvYM6pTawNBLXSIxrX8ebjflwOqiOBU2QnAg1Z4LRu0II1lDUq235MpNyZY2ZNWb1UrdEMKaMn7X6Mo0DyzwzDENvBqiUQb+t99JiLBiGYFTPqlWXRalT7ic8K3+4JsMO5PrmmtNx2lnygbHv1AOb2hX116fW8Kh2j+tSimXG/OBC3RfE/TpeLfCx1XPwntubEyUXYspcLguIcJgGDpMq/EGrHfcPTzQEvFajLJTKhw/v+bu/+zvefPdtL3u9ff9AWiPiHO/ff+BffvNbro+TDriy4qVyd//E+w+RIiNOEo+PDzydz7x9d0f669eUkhkpvLq55sX1FW/eP5BL4e7+kXleTUSj2bIY4lsBVit3kzlNakX2/u6B/99//0f+H/+f/5Wv3rxniUYvqJodH8ZATIklRlLJjNMBHwZq1dLi+TLz9sMDl2UlmVjVS9UKA0LOlbv7M+GV53gYTTipX2spfHg6E3PGB4fkSkmRPK+EWjm4wOgcMyp6liJcaqWs+iDgKniPiGddF5Y1kpPnaXjg/PjE+7sHyuWRp5c3hHHkxYtbTlcnhmlkTYmHp0c++/nnSNCk0mvb6E5daAvRp7I1ruUzpAzPOPz4o1ZR5Gj/vgy6uFR7qGvsrg8GMZgrzR5A2qPdjdLU6AGy+7TGR97e15ujWZLTEJJWem8LiRd18BFa75rt2CtaDWhB/5425WyfbTnqyVLRWoEmVdbNtulM2M0Dzy5WbYf57Lo/e4leBUBRTwzpVoTahGxVO0BjC9+cCqRITNrTBnFQTGvSjhs0MXTOjqP267MrPGyLbK29L8d2j7accp/oKS5Lv0bNk36rxIg901tjsVI1kdonEe3fhurpIcv3r+VfcPv64dcwCK9Of4VLVwyTGkiwLnA542syY4ORWgSq9GtVS2G9d4wvr80tyhpphdpRQbHnwKHrTOlJ11YlKKUQ18gYjtqFuuRuXRucri/TNHH/8EC+VKMHKWWzlERKM2U46Webc1jMSVH3qghrr0425HjretATlmdbb8CJJp6ivQ9CDgpCTQdSGUh1pVJYl8TpNNHS81ILMa2akDkYB8d5fmQcJrwPvTmjiEN7n4X+jOccOV8eKTmoLssrWBVCIMZEa4dZivbpEh/JOSJjwQ1alUspEnIilILPRYMcb/dChHGa4Oaa6edfcO2F+PhEXfX+4AQXvDpMDep0E9dEKpH+ZPRGeXadDMluvxK2pE1EkCCatFXXn719xSOXrdLxKRokQHOT29G9nNj4xgwuMriBCtYfZH/8Fe0WL32e2+tQGvBlsmylCtkcu6eQgc1dNp77XF6bbnaHaXcwbfusxkIBrdwmCkvNOFFd4L7vR9dr2vxcdjFmNZF5MeBGfEu4e223g3a1PUto9a8xMyR4qM5a11TTaNVOS3KiI73Ugsuhz/E+67Pix6BCcRHUPNF0LVldnpxXrYlWQbRBYnPPytYHKOwAQ18cbvT4VdeUkjLkwiSOw+lg1GinXdFjQnKb0x2n41HnwG5Bm4jrqtqMw0QuxYB9DJTTc0vrwlm0Ynw8HvGm3Zim6Vmi0XQjjrae6JxwOLax9scWfstWybi5ueZ0HJE+DPRmVxzruiBSLTPTLAjLMFMywU2xjLPNDz/wcLfKhVKl1FaztWKnatB5e32klEyMicusjjinaWAaPZd51XJRKaxr6pzNhvwKENeVh/t7012om8y37z4ozaNkzucLX339LafDyPnxkQ9vJ0KA8xz58FDx4wEhcvfwoLqH9/csa2Ia1cXjdBz5xRef8U+/+YbffvuOh6eFNRaKlewb47YFVMk83k6HiVcvb5nXlX/+9Vf8t//+93z79h3zuqotmzkIBOc4HQ7knFnWlQoM42hZs1K3Pjw88nC5kEz4hGiWLPaQPD5d+O7tO3MAM/Z3FTKO909n7i4XcDA40RLeGnHmZjSFwOi8ro3qJ0sVT6IQ40qVbAIyT66VdYms88LgQJwnzit5WVgvAykWBhmoCcKQeH9/z6+/+gr/y19zfXPi888+43R9ZDpNjGMgBNPy/ISS3Z9ra0k07CbN3aT+bIJvaJqhSd3Kzibnfe5UjIrUqh8as2zRanOzAg3+w6Djb6sObmi4Ljz2+p7M72g1DqRKZ3U8Oyan/XA6xYsmZN/OaV9ZQPT1LarSX1mJuQh160xGr+o0yKIHZ62awA4l3haj9vuyK9+24ViATrNrVZ1adWGStkjTkWdd0K26Io7Wq0ZpZaofybVQUrS5S/fdOc20aqvrgaYD6/kBvSdEtftoi6UDvFSCLcZ1d2vEEo7gUdclNyi1QI3n+/jZz6HO0DtQ1Kyhup/KNi9nvuXXDFc33M6vwB+pwwEfDgzHa1xZSJeZvELJ5qevGBaJyuUhclhuGcLInFZyWqG47VzNT955B0WrILmoe52Ow0wq6rr0+tVnRp9NpLQqeLOjXYTg7fraPaSYffgTh+GaIZz0uLIBBV6DeNcQgD42NMmoFNPpWBLcxnbdxllPxkWrfCE4fHbIcGBME3mJSsEYg9rLSuHx6ZHB+kOo6FNYyZwOJ47TSQGeEikVJqNNXNas3OqkgZzznuAPxDjjw6iJiXaWZBiVv00d8M4zzxnnBR8KS5053p4Y0sjpxQ3HMeCp1KxJX+sj4kNgOByQ6yvGnJHDCbE1eQMGNrBmXTLLmqx5H7Ru0s66DutDou9u+6DWHmBSt6BTQYxW6aB/TotHtmrHp7OeAM/Ap02/pVNWqZk1RVx0rGmlSFGdUptJSzXfWDqi0RKHjTbWegZZxbv9Z3q90hsbZgP1tLGoN9FfcyZqs3SuGbUmb2N6u6ciQnXOtFNGvap1995+w6jVdB4ae/cEo+sCzWGxUY5bIoV9bjvnlhz1dMMASkdLOgKT92r+IFsFWarqFNSCXzUI1EotQ782bY4vuSht3EdzoCvdr7cNVYG2IGlCjVYCqeCHoGt2tkaUpRLMzUqrRV4bWjpwqeCCGvscDgdSjJALo3fElIgpMowjh3DiMl+4XFR/pXOhJlUxrsS4EoZB9WeWZJxOCpq0tWMYBqvo+m6P25o77rvI/67tD6NLWRVjOhx49eJGRd8mWNF1VVeBddXkIq4LIjAMyq1bTedQq5UnS+0PexuEH3+/z5DzRzzK42Hg5vpILpFlTTxZJeN0GDgMnjd3K8M4sMbEmnYOCt2HXsyyzXeEMObK5bLQeO21igbvOVFT5Pwo4Arzmnl8UvRm8JXHpyeeLjNv399z9/CINx6+hAO3tzfkXPn2zR3au6JYYvE8PM5i/Tu88MVnr7i9ueab797zy1/9mq/fvOc8r933WX2QhcM4cHU6WMa6IsA0TbQukMsaeXenblQdlXYNkQYqXJbMw9OlPzgpZ1wpnJeZNw8PxKz6krJciE9n6pwI1VOcMAXHcRh0ycyldwaNKSmyHZwlTxERBwVizFzOiRAq65IpqTA/zkiojP4A1VFl4e7DPZfHhfPljnfe8e0/f4d4z1oi3juOpwP/4T/8O6bD7/dq/nNt7f7st31iAW38bcF78+4u5gWu79Gx51yjDKgGYAtO2uIqz12rLEiuNFH91ojv2THZF047V5eqNniK8u+0HbtkCHSa7mVS2SHygt43Kw3U/jt6tcBRe/m17dOJKBrlxDqIJ4L1wnH4nd6rUjJUX3v0va+wPLuWLXHL2kAzF6We9MDCEMxkSFlt2U/VA1W+Kl2/0bYGBFQTvesZ7bHoLUXqY6BiVCjlzcJeO4JxaKFa1Wpf2bDUrR2WAnFO8C6oL/6A9cv48QZjpapzUi7ZKrufxlad8Lg+8Z37LdPpM+LjgRgzg6swqPMMMoIF9NKqAkEUnCgeOd9weHlNrO8AUUtJqqLdIoho86iGgGbRhVuk9YEoJMnEFLk+XvPu7juqeMbDZPxnvVchOJY1knI07rRy41OvqmvVywdzFrMgtwmua1WqlKLlzqybN2OAbRMQTxf8V+XWZwuIgvNkN+BEFVkhBAuM9HxLXUA0Ea0VUklIKaS4sMYZQeldx+mEupQWclk0eQqBYZxYlhkvei1DENOetM7gkVoSgx9Z42KoZmCNj8yXmdPNCec909UVPhgqHiPZqeNX8UaLDCNuOuKvC2E8MNo8UE2jqeBYYp4Xo7ktRv96LtBu9B6NdRuQAJYJtieH3czVk5Je6TANjtKsQq90fErbXuO10Zmq6VoL5/LEMs/PgKoGBreAvPH3dTx+REmvlTUnGmWvTWi9R1Kt3RGxVWebJlXQBC34oLayoFWL1v+l7gw6bE4sBqu3nkyKktuxSOngVcVc/gyQrWbwoNUTA3RQ2wLN5S2ma8lGW29Ful2uxj9tnTCQt1olNEsH8TB8QIGu0pMJBceaBmTbcs6UkJHgCW0uzm1Or7SmfL7sAEI7NiraN81L15S1Sb8lLDlnS+xGS8qVIor3DJOnriuSCj56ZNHnYzoc8JOOAe+U+qmPRyZWhy/eLGk1iW/jxznXf9a+NdZ8z3rNaXX8+7PXj21/sCbDO8fhMHF7c2UUiJb9aiWjFC2ZtkqGWEmmFvUqb3SlZO3h4Xc91PsSv1Gd7CfvHNdXB5zThHFeVtU5iHA8jIyj4zJHpuNEipE1ZZtA2JpdCSY620RSpVQWQ6O7IMyyW7EJTKswlZjMGcXBvESWlDmfF57OT0i+EIaJMF5xvixUnNrS0oIjvvewt2OagufLn/8M5zz/8Ktf81//4Z/4+s17lhitkWAruTluro5M49CrRN4JwzDa58CyJO4fmhal8RAFL4og5JxJTrhcLuZ2oDSSWCofLk88zRfUUy6S5wvlvOCz2EKnE9E0DFqSNh5hruqf7k3zUbLZnqGdc6WilpVJ0QMplXWOJNGM3T+dyTVzvlyI86pfAnHRJoNrSsRUwAnf/uY7jscR/m9/yEj+021aqdsvBrrtg2HYtCXPXrP7ny6o25jTpHhn14eh4TT3GkOwvS64uUp3kdgjSR/Tiqi1J/6lamWhoqLYlvw802RY5ajUiq/aGHCP/tSG2vbzsABA6DQlob3QnucqvU8KYC6kjlSec2etaKvaL7ZA+nsc6rpd55QLa0wwOOMDQy6QquLJ/dhbYlyqdZoXzIPULHNtkbUAsCcs9t6NumeUkrbA7LQXPQkwgMPKOluiUtt5Ss8hK5vmolSs+2vUhKuFqvb5ff+NrmALaWGz+v5UNr1vjvfz1xxvT7zwnngXyLUgk0fGgMdr8+vmwubUctsPov2KLkeGlwPBeWJeqVWFzKrdqVA9taYd2G2UiEYhc1BIzMul9wzQ4E1f66URhPQOtapGStoUS+nAK8FPug4VtcrdKoYtpq1KC6mdrGfg2S7Q0G96g0vjcuiXOnPiXaBQENFGraVm1TCI6LmLuvHdXl9xf57JUcdDTJFSklYx7Fpena54fHpinhe8H/AuECPdrc+J7l+qBqs5F1JZcUFZCapptDmjOKarK9JcmY4HkEBaCyVpd3UMgHROK0N+DEg9auIUIhITZY3kFMlpNVqyVqLEmTuSUwejYhTodt2+l3S41kVagQDpl7PNezYXmgX1x9oO3e+nJfz+uELZ1gRQYG9v27uvOj9fc76/z3b9QJ3TlDqmf9c5Tuk3+n3p81vr0r1pDAuVjNutMx0wadVmm+v69+28sgJA7RkHQQr9fuZd/Od8g2BadWP3kLXYrAEs9tC3RLQBZliFUkppzEVAKa14W4PqBkB77/HmCJdz0ibAYBau0t/vTHXYzlHXTu2P1iz4c0uidfLua+EWE+ha3uhVgrq05lKQrKBu8freBv6VprusXueT0RNOkz1nA5I9V/VamdBFmxjqCWjbg1pr71JeciHW1cALBaWkiPbRKQpq7OMBESFYrPm7tj+4kuG843A8cHt7pd3Y2wMg6iyVo07AUjIpKuI8BM+65J4dtVKoTrRbwPD9DJueQWvGvCHE3jlurg6IqCDpfFnIpTAOntNhoJZKjIXr24Hz5UxMrcxTOz0BSzKUaqG/iEkpRvbn54iJjfFaFVVtdmylamA+BM/1aeo2Z6U6Ull5fLqohW2jdOzety+Daubo+ezVLV988ZqnOfJ3//jP/Oarb3iaF/NM14zaiTA44eZ00IckaxftECZtGmW87ctl5uHp3PlzIqJe522QlmKNlioxZlKtuFq4zGfePj6xlAwkXFzwMTH0yVgIIt0LXjN8Z7xcdboZgmd0A0uK2sCqKk1ME04VETpQXZsXLhdFY4J3xmYRS1KMNyuaRJZUbCxVpGTiMv8hw/hPuuWcO6fx4zG9R6HKLuGEDTWiuq6faKVsUERIXYi0FJ1L0WTRhW3RabEJ+nyImAW0JQ9Yzwks0N4Cmm1M08veasvZJnVF0nTsVXOMKih1Raz7sZ4PGuxAn3C387RnuTa6Q0tC2uftaEJtPaltkaV/Ub+PBO+vtT5jmSoZ5xQUSGtmOIw9YCy10ez0s0uzTASzStb7kHNWcTi7eYm2kOTt+4qV7RtfVucZL14RKrZEsJX320lWqVSnDbF84wa069AQOPvcCpSSexfvapa7teTOM9dzaNeidhvenD8dvlQtpTuQfff0j+Qx8XL8W+pToHiPDNobqOSkiQZsSVfJFArreWXiM4J8INWoAZgTaoJSgiVzFe8NiezrTKFffoR1Wbi+mnDOq+VriirKzBmCV81LLtrpdxwowXG+nE2XESlD1gqdOUfVqp3lm4Nfo9VtDfs2VHibEyzAra0zila6mw2ua+fihHEILDFo81spLHHleBiICUIY6HajVSke0+HAGiMxqc6lVsfoT3ivAUUIAzkVvAxA7GtHLhF8IFijx+AGBq+BSfBB+9aUGec9hxe3pEUD3rhEljmScsafDkyAGwNuMLtM5/HjALmQUmWNM+v9A8vTE8usVsLO6Lwppb5Ol7KjfNockEva2EDyvNu3awmHa8Gm2Sk0VMGu8waQ7CpTn9AmH82jW04q3QnwY7ClxRNtHfq44vts31J3a80GdiJbjEMDWixX6NeM9jc6u6K5bkrbl31Wdy3qQSp6H6VVCkABmrrry6BgjXMe73frJNt+sPVHEx99vtv+8p4jWsHVXSd4vxETe6XebRWftv+9M5na33pb47frKfZM9/P14IpT6mT7fKtK9D4cbZ+tqtP2xUYVdnikagyUHV3vpYlFVYv3onFVKgmCMJ7GvsY47xhl0iQuFXOpShDUUIKqkoHgrf9ctfXP5o+cco9V9xoN3ben/gTg6icnGe2iB+85nU7c3lwrNzs3yoEmGSoQq4pK5MRh2vQY0TqLlqKVjN24frY9o0rpnXs+YKryzm+vj4iovefTZSaXytUxcDwMzLMKtxGtMqRuY0fnh4po8z8VLilvd41RM01bgNqgbq3lxR60bK4VviFYpTCNI7c3Rw2gEBBHSlmTjGXFuYFaN37kxyXLWiuD93z5xWdMh4m/+9Vv+Zevv2WNqbtx5aJ3PwwD0xB4cXONoE3UUq44H9CKUmVZE+8fnni4zKyGVk9BGERFT1Yv7IM9FXV2mFPiw3rmKUVFQecnhiVyLEIVr4lCrdZlVxMUFRM7vDN3IK9Wh5MfyU5LmrVEKupaVZIGy8dBEUsRry4q6PE5LxyvTqR4b01isrZkE888L8zmiU/NDMOnI/xuQttnyPIOWWqBkBP/DH3a+PPDFig3JxUK1Gxjs4CrxmUVTCLeHZ1alaDm3CfRWhtFqYmVUUFzUxnb5N6Tld0zty0KOqmW2EAFQ9Bp1K92BfT9zxuRtQVwW5oq0iuKVOXi1mrtEawCQ6k4HK4GPVdFHWj2teK25/MZiqdXBNWdKI2la7Gc0lXEqIFGe9UDNt2XuuR5UoVchVxaF9VqE7ydqaFYPSkrldwj4tp5wFTs+Ptl62ibGPLebsXeFrI1vWorZq3NHMD3Y0HaIlX7gk8ruSNIMw8oG130U9iUiqZVhZgjH+JvOL48csXPcUX5vzkVamrnrknwvBQSK3N+YmHhs89vGF7cMrNqNaHxwavaZgdzGco04WwzAbAAomRSiQhHAHJJ+OLBBZoFdQvUckqM00SYJlJMpJiZ10fG8cQQPIg3Fx19PqvdNw2EnCa+ViGsziggQHsQhc3u1TXP/1qp1q03VUV2gw8MIZBKC+a0ShD8QEmVaTowDZF5vSCoFiUMSnkoZJ33izD4iSF4FXk7T65ZfTocVKmEMGmVWrQTeEnZ1snEZXlgDCcqhVRmqqvkAvN55Xz/xNPDE6UWTq9e4I5HJEZkSHg/IC4gzpOdY6mJy3Lh/s233L95w+XxEXGVaRqZpgFw5sxXN5qzbHRTsH8NjMgl9bloT4l2FpBvzlVmRvERzUr6M/3pbLXmPif0WVVaiCLPAK19EL5fi4BnRh57sLPSGsPp9KGf5b+fjFgMWJCN6l7BVXWBdM51+ulm/KggB7WSd/vqI94qI7BV/4qUro1rFGCxtVST1OZuZklkqR8vgEZVpB9jNWcuXU1LTx56Vab2J9CeQ9n9bXOsyhbQY6+l3QMvRlOsnU5ViuCy9MTDed/30++LnbO3yvc+ISxGXdLqa1HBetnQtpozeAX9pDqkepyrEHa95EoT9oMbdK3IUdQooIIrlTAOHI9Hckysi1IUnXO0lielbElH6xsyHg/kXL7XVvSHtp9eybDFzw8DL1/ecpi08yG16QpsYU4LGLJeSlbv7lJJ1kuhWqaUy9Ywpl/w3dYCnLbvvsiLLtjTELhqKH7RSkYqlcPgOR4CyxJ7WXxZU783HRXqSYbfAiogxqQle7agEFpiYviSicNqi9Ht53EIWl1hC8zWNfF4bkj7DtX+6JzbwBqC58XNFeD49s17tcS1AKzxiJ0hM9M4cphUuPN0vjDPC8fjgXlRWtV5Wbh7fFRqWlV0uVuF1t01zrWXxEqtPM4X7teFKLDOF+b3H7jGMx2Odl10isilcllWYlLuu1C5Op162KWTUmAMgmPr6l6LI0YLoL0umj54TqNwPBx0kbkaOF6feFpW6rfW4t57pArLohqbXNR/uk57TPsvu7UAUoOi3F3A2qRVakXK88pdR5cESom93L9hRer8sswRqlN3J5u4nqNA25hKOeNtwtwca57/C9tEv6+2fKzDeHZyGBLfnai2Z7jtW3YViI7QSgvOpQe9DZHZf/ZmgyDP/t77YgBameEZ//hZJQO1yM0VdXbygrhKKolSnGkxrHJhk2Z7vlrurb8TcjEBuQnnpQX3/ertz3uXbTW4D0XPPEpPpOg9q62aKLpYDe01+wBKts+qbHSrUrxZTNd+jZ34bXGSbRHLBUjf5xD/pbd1XbsN4zAEUo28K7/m+vaKw/moIM5qDnyGTsaSeVwvXPITD8sdc1oYXn7G9c0VlbcKxNSMrbCAdq31IZDShZRrH1tOtrGaciSmSPADlEWdYwbTBTlvwZrR1OpACAPjOJHymVyTNueSBLkqtYLaF3bpSLk+i7rOdM+c3T1p86U2V+xJtTW8xDskCR5tTNjeEtygYs9Vk1wnjnEYLGFVY4OcM0yi6E/utTdaf5rglPZQm+vUbs1TFxxrNNj0KKLXpdbNxSsMkNbCell4un/g6f0dh+nAcK02ns1pqoRCdUXFv94RpXApK4/LhfPliXU9k1Lk6UlFp8Mw2SOlnPAmYPWuUaLE5iP6Ggc2B9s8m0si1+1K75vubRUP6fqAbtf3iWx7gKoFohrnPq9ctH/3Fd3977vGomx9NPYujW0eVsbHntr9nJbWfq/fwFYh3I65v+4Hjg9Ml1G1ory3PG+npFUaWzNtXs1UHX9ZLPFowK8uLt1ogVbZsM8T+nPUk7AiXYRd2WhfYmuvEwd+S1SrQKAiOaM9kK39Qk/uLC4SUbptrUh1qiHc34e9WLrWDha1Zoq9al2rGrAU03AZTX4fO7gsCphkTbLc6PEpKZsomiZEFLhsSV02MTolUzNdO4Z4xhAoVOIacR6GSXWErSre2C/OaPAUusbyd21/UCXDOeVnvn75guClJxi1oYBViFEbxJWkIjlt/qG8r9bpO5WmD/ixBKMFQ+1iSz9Rm4s5HUcOky5S2t1QdRTTGDhOA+8enmjt0Zd1c9nZvKA181S3DHtQ0ONvk69Si1QC63dONqXoVxMftYRpGgZurg+9kiHOscbI49MF2HjcTr5/ztjnDcFze3MFIrz7cKdaijax7IKx4B0H68y9rpHz04X5MrOcjjydz+oqdf/Ah4cHsy1UAWP4ARFwMYca5z1ziry5XFgkU0vm7pu3zB+ekOtrRhcUafbKl1/XzPmy8HieuVxmnIfbm2uWZWVddLCnUEjWebhknShyoVPSAIYwME0HhgCH44G1rLx4ec3h+sD7u0eNtdqzQaGWVlItLCkz+E+nkuG8Vu5al2DJhh5ZeFPNTpNnIUYTg7VxWPAo3aklo2lZSWvSgKtocCqVznnV8dHGmC0aNsHu1qL+HIhIR9d78tD0HjbOrI+q0i4sVMpsXUZLVeCgUYs2dMwZ0rYhRNYcoiP5ptDoFYZG4Ws9rsVQRZEmrt7pInYLWvt++5e+wLa+GMhWzk+lkGol1UKjH7WL1BpQOlRQ3RxnWj8FfWkrYzxPkPbbtmibl7jTCkVrXiRWPmmAR0NW23Co22Do4wMLXBXd2wwj9jSIveh7CwL0WBqF71PZxJxKtOOso1K4xEfeTL/ieH1ieDhoJaNpTKjEkjivF949vuO8POK9Z76H23TCi5AsKdNctq0XzlBwZ9WrFkhpQEHR+TvlzOl0TSnJLB8L4zAwjiOlJrwX1qjOLd5NTGPhPF9IOTGvM7V6rRA7DUBKMeoI1Xri+C6i/h4dp4OwG5YqUtVUBYez1wfxpJKUllo9pWoiUGtljitCIhVPKZnD4cDj/Eipmdkad4WgNri1FmKOVvmJTO7KHAoX5vnJ0FM9Jj2XRHAW5BVlIFQZKJIZPHifSZd7JE2UeYU1chwGXt7c8PL6hpvjDTEMJBSdLV6D3DCOhOmAG0fCaWI8jNS4qMC8KiU254K67upz442qol/OkkDX+w61fjrKv38OrOi0q3NzSrmDYfsgeh+Mfypbe7ahATG6TmwJ1ZaINJpU27b3QZtQaptJpVGYnMUz+to2Hz0DbloVYTff9HjKPst71zW3+8/ePhlLfnX9apNqpVFCG2C2B95sXnTu+THZO8uOAipgHgi2hrgtYS65mCDdKjVYQtJ0EFKpzTIctPdNzWY4YZRWs/33RkOuepJ2clvl8lmy5QXxwa6rN1vb0scidi5S664iXS2J8ZaIFapXY5a6m+PFi1JqnOlDskO8w7lMlERNaau3GKDmvOBqJqcKThMhh659zgVciiaD0GN0PuAtLii1MgYVfbvgGX14Fsf92PbTkwx7+IZh4LPPXipvnkQPlpw36ox2xI5RmyKNQ1AXhJg6Vz8ndZZidzO+v1iLCZzt+86L1gFyfZqYxkAt8HSZWWMieMfVccI7mJeED0dqqcy7Skaz3xQx0bd3XSSUUtZmdbWV0cz2i5ap6gDIRYOHFva0BeX2+shhMgW/6IKxxsj90wVEuuhOpNlcfnzGcHN15PrqRCrw9v39RjGr2xShNqKO03Hq1zOmpDaXIfTK0bysnC+zLkaYJWcPNAy9LZnqAuM4kSu8e3zkbpmRIKSnmQ/fvWd5Whir5zQOXE0T3nkuy8qH+wsP55X7hydSKtweT7y4uuKhQJwTJUdiXFjXpO4KRYO7GCMxZoJzykFHGMPE6XCgSGWOC8NhZDwccTiCBMhpGycFSrIMG2gdOj+FbV3VRrnR4p4F9QavuN3EvUfx27/CDt3HJp9siVqBbMgMFryL2H5ssiu1dFQctsn+WcWgqqtGrbUj33256J+914q0RFdIsdFI2nG3BGL7zDYp2be6L99SiGqrgT6UDkXxXdUFyCP4qg5oYRgQ52mmjD0AxxKQul279pcmfsYqXSoXV8G4cxXJtfNf+xIlzcZRx6PD7LIVdLYz1Am5JTOCkHn+PLW5xQkWIEMRIWaoxa5RS2ZECGDd27fruVWDZHdWdlRFWNdEkkIwxw9k42W36s52n1uAJr2y+yls03RgWWbtUFzV4917x7v5Ww7Ha/56vMadveletDoVc2JJK0+XJ0qNjGMgzyv1fOT08hXL01cEHxAypQoxGXWBbEmrAls6FrXJY6yZUmFNidGaUsECVfUTwzCyrLOKzr0zNL905DLlRMoLIYwMYaQaNzrUYtWlbUzgqiU/paXvbM/OfmxrRYPeX0UbjwmitAgC3g3kfDHdkM73Pqg+42YfaFpFJ6XEOI7m4pZx4hnDyBgGBEdOlXVdqFXHiYijlqi6FOpmAlEzIlu1plThMt8TLolRDhycZ7i+5Xg8cvvyJcera8J0YAmeWYTVBPPVqef+4eqK+OKWcvmcEBNPWiYhGdiXy2bpWdE+Jm2u+bhLd0s+mp9/p0b9DppVAyVySZiD6SeVjMM2f+eidsO1AbTe9clVGgXatj0AosBG01SYoF420LOh/nvQq1N7d4E9bHrLXhkVt6sQqEC8/f3jrf0u7/YngmmL+queJxJ9P0Zla8lNo8qKCqyxObW9v9S69RIpBUwnknPrb1HUEcupdqu6nnLS+n60iraw6UmL9SvxodHX3C4xsirQDuBpwT27KoB4o6LtjI90rXGWgFTE+teAGqzUusUBeu0qNYtWQEpV2lR2SPZGrQqkGHXuh25D7KomSZI9rpZOPxbnSblQSsBVj8dRUiY4b89+xeVC8J6cCyF4fV/+oycZnnEaefniluClL9RNj1FS6ZPwuq4MQzDrOw2Ci2VwqTR/5u+LY/cDssdN0DnHrcJwOoyMY6BkbTYXY2HwjquTNuErFcbgWWIk5mJJhqFKOEP3nGWXuueYkvapsAHvzN5OLONvHGlFOOkTVi7qx35zddBKgYCIIk3ny8JlXhA2eoNYZebj6ysivLi9IgwDdw+PPF4uvUqyv0bOKhmnw4SI+rMnExx7H/oxLeuqYr92Dm5DHfbXWASmaeSyrlzSwpozPkE+R9KSiWvm4eGJF1dHbo5HnHM8Pp55+/Yd51X7k1TgOI0M4jmGgRg8Mqk18FJ0sHqviUGMep0bvWRdVma/MI6OVG2cpEpNgmTP6CcoM21pTqVuDckqmpV/Utt+Efvpx7Ytbtt7Km0Sas9aw7FskZD2ImgDVyxo+Rhp/3jx3C+2+7/90CL78RjUaooK3kppja5yX8CeJxxWsZCGkO0E7ba4STuGqsQSL9qEbBiHDYWrDeXZgoPvnU/FeIX6JaUJsK2qUjWBcCb8dtVi+dprK7ReFtvnbAtyEXXCqu3itzhxdwx9YTaUqxbVBJTddW6JSKtUIUpNcf2efXQPbD8pZZaYVULsBC+aZLTP/NhIwiajfh8+lc15XajmedZrHjwpQwnwJv6Gabzi3738T7gHp85zSY0PqlRKzQzDwDiqYDneDRxfvMKHr3WNMF2YMzCo9c7IOSt1wOkYHAfl/MdVg3M552fBK7VQs45VHRlagX9anjTx7OM841zBe6U15JrUmckF2gNa2/NZLdHosxlsSbN+q4ioEa16EKnBvy+OAU9wgTUXpZ2SzW5WnaeWZem6wpIVgU45k9JKiyWDH6g02tjKZUmkHHFOlFaWCyVHgj+YpXMlDHodnHj9XRJz2akMXjgOI8P1NeHlyDhNHA5HwjhRjDff0NosYsmAWneOxyumm1vywyPz0wW/rj1xlhgBYyI0lNzmoVbliHGbb/aJxw8nHa5biH9M/Wnzxx8yZ/85tobbN7pLe8aLae0ECM7IsbvEYJuDa694i1Uuvl+F3UBQjJ64VRt214eP1gebuzQmSt97zcdVoY8rJH2ts2e7neezJagdqz0OzZXUkB4FdN225gFdW9PNdWzNKVLxtZgIO+IZjW1koHL4yEhFZLccS5exFkt6dCWWTVfntkSLuiUg+lzvgbINQxJxeAS8NrjbrwntGilroVJ9m+OtXYDTv2uFRPv5kAsSE3hRXaOoiUWJJqIPQRMnszXXz3Ba+XAqGvfOI80AKVf1zsrKsPBVdWAlVxwDv2/7g5KMEDy3tzecjiNeUDFOu8zijRKTaZWMaQwgyp1OsTXhK70J3w89y9sDbw9XWzy71RwE77m+Oqh/eVLKzpoyxylwOo6klMlFKxXnh7mX8LZkQQdy8B7vVFjWRNoxpY7oeqtiNP4nNF2EZuPevPdz3iUZvj0dWjq8f7r8iKvL90/eifDi5kQIAx++fcOyxp5R78a5eRY7jgft9Kr2tdqR21uWnEphXtaterJDtp8HkVpiPh0P4JTKBhUS5Kj8R4p0ZzAVNML5cuH+8YmnJWoVKTilxhX1ZD5NE+PoiEmdfQqFsLPJSwVcc42KkaeHex7kghsCYRSWc0LKDAlLMpxSWGrVgKPNh6W5Hf0b3+oPjZjftf050Lh/zWL8+9+zpUr2fUOoftded4hX//fjCcYWnp6stfWtbhP+jx+nPPu15gHfTwZ+V4Aiu9fID9yfXhT6aH97RNJiLA16C3QfRtlev1/Ila/unu3nk9hEDRtSCuZgosnQIMJTfOCr+kteXb/m86t/z+V+Zr27kNdk9ujSm0RRhfO7wvWXN+pkl2cNAlr1xjWArAWeA9TSTUS8g+x0wZ3nDFVd65RaGgiiFeDBj92eeo2r9asRo+qonXgDpVR4T4Npn61diDnsdWSg3RO9+c55pDSXsvgsImkCZucc4zByjtAS9WLJdM6qSRlHj5zbOCmMpn8pNdOqKT4EhmFEe9iq1a33FZeEQUacC4zDwNXpivKkzV4FRYFzikj1DMHjZaTEM66+MPqbx4n2xio5qw2pq+BRi/OciDki1jdjGCc4TKyHkVkql3WBVBjHAT8MyKCC130/mOcJBzTXu2YPukfif0rS0ZFxPqlcHNgZZ7TYReigKejx5pq3iqWdR6NgtuX+ebWCZ69r9qQ5Z9WN2fVuf9fA1wAk24eTzXmz7feHQOM9het5v4+t+tvMZJpeZN9Pqd2QTdcgSs8Hfdb6/Nb037IJzwHxzrQMAE2Hoih+itqc0ongvD7vRZ7TUZ3yXXECg2u9JuzYrNL9rCre36sJhLTsqP3eblppAEY7P8Q63e+dP62yUfU9OWvt3AHenmlAwWX0eau54IeBISdrS6D0B1MP4EtR2qPRq5ruzVmML6KMpZzVMlrs2CgGjFSQBC7T6Wi/a/vJSYYT7db5+vVLncBoCI8o6iCenNWPm5KJ68rN9VUPgmOMYN83X/62PUMSaIuoJZ9OqLnuUEDhMKrAutbKuiYVfefCGDxXx5GUIrmoiPoyryrcLLUH2ooKtWY1LWCgVzJ6muBUr7ElGSb6zpZdylaVmcaBFzdHpZFJ7UnX3cO5a1E2GsT3F3yxa/zqxTVhGHj34Z7LsuweWgxFUleewzgwjdotMqVMzonpcOh0qZwL87KQa3PVsUz7I8RaxLqGnyzJaBWWqhWHbCW7IQRz4tKEY1kiMSZi0teMogvOsi4slxUnSjmrRakKJSVFBes2cUgtqFcFLOvKw+WJYRo4Hkae3o/M7ky8LHipDN4xr1E7t8fUNTpqv/tTR/H/lrc/YOX7E+UXf87FV773f7bJ7iee4J/mcH9Yh/Gv2c+zn3aL9w9tPXX6Az66zzd8eujsslzw7sA4TqxLJKfMOHkDbOAhfuAf4n/heHvL9fiapxy53F14c/eW8zzjQ2AcVVd0eZxJ5yuOL29YL7MCU60EQKObaDfrhgKKCLVkBudYszakqyKkrOtUTIUlRg45MY1qATuvs2ow5guDHxmGgRgjFQ2evDXf0+C22NzXbDtN7F23r6YbeU5tAdg6GJcmADSjBUEsuDPRpWgvmGkaqKVY929PLpEQHKlIX5NyjlTUEXGOFw5uIjjtFo7AYAlTSQmGQbUZuVKL6kEGH5TNMGjHY3HqdpXKSnFmq2yI9mVWGpyI8rcZAnKakNOR7DwpJ1z2/e9+HCmHA0tw3F3O1PPM6erE6ebI9MqR10pNjpqgZgXBek+YbMj7R4lHqRowpwwSN4CtJRrfp1j5Z8nGp7IVM6JxtYmy6dNH08qq/oeeSEpD3esGPLSEG55XGto1AO1fValaMbQAtyVr2XqbNZ+oIlW1gSLaP6gnAXta9vPtY7OOj1+2r4J/PGd9fDxiaD9s86PmMpVWLe/7awBA3Wipebd/dY1SYyLZVbjaeNlXhvbVIq0w75KhHqvZXF1LU1lpkmhVGscmot/Tpnt1BuluaFUPkFqam1OlmoHDx3b5xTlqaJSxEdd6+jSqle2npITLDikaL4r9XYr2wFGTBU8NReO4WilZddXiBMVqnjMgfmz76ZUMJwQfePXyhXX6bjdSQJQWE+MKqH1tqVmdm1CkX7l8YjaspY+KH1v8eiXDJunSPazhMKqzVDW0flm1zHs6jIyD58kWGuedOi19VMkATRxC8L30VkpljdEmRvpi0SsZdlylWo8B2vvU0Oz6dOB4GGnzUxM2PjxdLFA3//wfOOeGUhymkZvrE4jj/d2D9tZgb2NJt+08TCPeafdw7a6tHunNjjflzLIuXcC3LyW2n0GTj8M0MQ6hN1lrKECOlhgAwxAYrKfIGhOLWci2Z2IIarNIVSqTdvreqix67tKfvsaXnIaAOOEyL1yWSPUwFc/l6WL0kMrgA9MwasfznK3JVDUrOXoC+296qz/0rCga9Gc9jG1e/5Nsf4xdt8flj7b9iS+x/Mj33zuM+ue+23+6zTlhjRcVUU8Ty7qSYsZ5LcnjhDfzV/yX8v/k/3z7fyUchFgjX333Deu64JwwjgOn6yO1Cne/hZvrL3Dujlq1KWmt9EW9VIeUTC6rVgssgG8VERUCq3on54TzmXldGdeF03TgME48zZ61rFTJSGhN6tLGlfbFqHlOPf2lgpk02FlTMdSWphXZAhhQ/rcB0EplaiCozf0VXcOGMBJcINWEc564RoJZNa/rCqK2k4NTa/CGgGNVjzk9IT6R8krJleAGbq9viOvMGmfVViIsLuHXhSrejr9azwoNZnNxlLBSw6MCa2TisvDw8EhcFWwahgE/jfh4pY3XBII0p0MNdMdp4nh14nh7SzgMXJ4eWdLM1cvK4a8myI6yCnmBsjrKCiUJNXq11S4aeGnfgF3SUZ67ANVaSWknFv6oi3hLOD6lrSUAbWvjoVFHgW2MSe1mF/qHzR7d+TaYtmB5v2+R5ua0uSG1oH5vf9uPo270zNZ1XgFNrZ62uKZRf3r1wuKxUqzngpO+lv9QJaQd2x6MbgAju9+pRsNgKNlRXEvpVYYGVDUxNpjBSSloz6EKJUNL8Cud2t3iwuLUHpuqYLKIAdJ2vffXpiUiDegQnGohd4D3/r+Njlx299pownohlM0RV3JMTNPEMAzPkqlWpdd2B2oBr1Wq1BMON5jLVVGNoisFsSQkOKXtlpih6NzRqkStGFadnesftZLhHGGwJCN4mui7VgHfnKUiQmVdFqUiWRCvou/cg04VcW/bxwO3/duz02az5hxUYRoDV6dJJ8tlZV51Ubk6jjjU9UhRpsRq+oxnGbBIbxJY7KHLuZgzlt5Z51un7yb61j8U4/laIa5XZW5OB6ZRuW6tnfO8rDxdFivH2Y5lG4j7TUCF44cDl3nh/vFs12yjSGhmrojZYRrwXkzknRBRy7927ZYYu4i9VUmel03b98LpOOGCJ+2uec3FOtvqb7SSoaW0NaoDSzYnBBEYx0EHpj34zfWkNP0EjfZWtaSNXpPjNPb7WLDrboum6kwGBudM41b7Q1JrI+r97yDJ2N+X3a///CnGn3f71yccH10V+cHffgKbPPvupydvn96Z/OGbzq0xXlRLgDXCKwVxA14qOWXe1a/4p6f/lZvyJct6x/v773QBzS+0suu1UdXj3crtfMM4HTnHezY6UusVoI0ZfZDuFqZ0XA2Ck3WSduJ7DwvVtUWGQalDx3FiXeeujwohkJLSbFOJpJIQN2gvCmpff3W9EFQN1ATduX+vd9+zC4H0jXabexNYQ4tLLXivx1SiHquzFw3DRK6VdTkD2rtp7OBPRATmrFWZnLUnlHcBcSpir6govxbfq+HFdHK5JgYX7PNUaNwaeq/5iSC6vp/nmQ93d8R5ZvCeYfS6dl+ekKqi+KMIPvgekA7TxPXNLfmLn8H5b5mPVxT3wPD5mXpYAY87eVzxSPHUpElHXS35WKHESl7BpQrZKh4mWq1561m013W0Xigpt4R0pyX7RLYWE7UgWoPVXZ+GHvzbuTVAsRrMjgb5Hdw1JF01tKXTpETETC62Kkf7tyUlGw1zqza0JK7VnWsuxKQ9Hpy3nj6yCZ+d132oFfO2v641+TFDlN2Xk4/cBtlscfVR2GI0cdKfJQWsaw/o2/ir7VyQDkSLc71Ld0tcnL1PehKgpj+NOta2pqGS7UN7ckgremA6JbufLdbU9/tnY1Up88U0FrrP8/kMYA01jS5ln6dgBDS9XikFiULODm1QWxQyKJbQmIaxWOWF0lwQW6ZWKVmv4wak/7Tn5CcnGd4Hrq+vuLm5UtF3aXQpZ5WMlmQUlmVmGFTvUEphjdHGuzbh08H+47SDLajelbstovJOHaROx4nL5cxlXpgX7fZ6dRoRqSwxM00n5llpVM3lpjfUsyQj+NDpQblklnULVhXtMk9t0cpFhS76tiPttpQvzFlKj1q7vd4/zSzL2kvmLRv8wUoGwu2NJhn3jxfun85oFYP+IOk5KJ/0OI0E77WTa0woT3nsD9E8L0Sz6XM0P+nvb05UjxEGx2LJn6uQ4+ZUE5xjHAJh0GuyrpFl1aqPzh/at0QFRqVXjHqCUTUZrXa9ci6IUzHu8TD2rsouhN7HoyeiNlFmSyzE0IZik2lDCj6V7YdKwP/D+7T//25Vwp9j+1d8/o884z9p+951lP6733eNf+xT/9JX8Me2Fl7+vu1/5HJ+SltwgSwJcYXCihBwToix4F21OTdTfOQ3y9/xIl9YfeLqaqAkZ/OENayjQIy4yyvG4zWze6SQO7VAXdkU2BgGNfpIUdHKStHEAwvIRBdRbbyVuCzqznc6TNqI76JmIiktrOvQAyxFCQuJBM4TalU3sQYOsVuU7Xe1VqpkoNGP2/lY0OKcHbcRv5uRdFEU14uKfcVE6tqUb6CiToPTMJIzLGvkeBgZhkldH6UqJ1uM7+9AZKBSGKcBoZCTmIOi2dQbxSylxLIuTCEgEhCpiKuIH7jEM/cPF969fcfdu/c4KqfjAecGUk48PtyR48yN3gj8OOJ8wWXl4U+HA1e3t/CLX/A0Qp5m4tUFS/80YPJOe4YMHjl6HIFgSQfRUaOjREdeIS+VsqIUK6NZta/Ody8bcr4FdJ+YyK9uQTpgc2AzsRGLS1rQq69pyHU1PYe4FkTb23uzutoTDRFz+HP76tpG22t6CfgowCwbpUtpTEqlascuDVhtwbvN4+IbLcnojB9pxz6unLStOVntBe69/FeribKbkYh99O79sqN27f/QGCN1Z+rw7JjEAO/mCoX058K35MTioT2g3dD/TrMyIFaLelYx2o3D3Y03QbkllmIOidUTned4OvbKW0tVeoKJgBeFWHSAEESQkp+N+9KOo1EN0Z9LyhQnvQqm9reO4K2ZKVvl6/dtPznJCMFzfXPN6TjSnZor5sXvKEk5nx61whsHtYdNayQ2AbMFmOziwh8qj1Ws+Z5smWcbDYP33N4c1aM/Fy7zSkyZwzhulYyYOd0MfLizBkwNSepZsIrHdZAqyp7yRjuSilnXYl2J6WVmbTlhYru6uebcnA4cxoBIAbPWfDzPLDFuD8PunD/eBLi90iTjt2/f8Ph06YNgn9U7EcYQmMYRQalo0YSTWsnQY5rXhbQXbv1AVCaiSdvpMGk3SoVzdL8pd7u0EDzDEPDm87ysUaschmI4p5UMsVJeW1DVdjXvqhhY5UdtS7XXx6A6i1wIY/Mq34Sb1d6jDQW3niT9OtYfvp7/Zrb60b/bMvGj2x+Giv+ltn/tPfvdJ/ZJDoXfUXLa1zJ+3y1r2Nwf/Nmf4DYMo3ZnjolStaeSk9Hc/goDQakBZNZSuPdfMfz8BV/+h59z980TSNNWwDhNuODI68BYXwHfoJBsNz5GL0Tpa1AuanNbl1m1ZophqtmHM22GaAVENX4eyOY6pXz/dZ11v/ZzLplKgupJknBVbYa7Fk4a9tzm80qrZOgSZ0FCFQOGsP55xc7XqAv6ZgRv+ousNC0zKrm+uub93ZkYV4ZhpCS1njyMAzkltMme4zhNLHElRgXiUr4gwHGaAIfLGecGQvC9l0jrOp9ERaIQqVVwYeGyPPLdN294fHhgPj9ZH6eDIbyV5XLm4dsVuTpxuL5hOhwZh7EHimEcGI9H4u2BKJWn8kisFyiitKaG34szHF/pbeIcMnoYPYLHF4/PHpKnJqGsYtUO0aQjVkry6mDYEo9GrSqNBv4pbZZAtmhVmmmNaoyiVWkMqdiqDDiqBcZ7Z7tq41XXTkcLA5v4+WOmA2g8QKm44L83nSkYG6w6YWh3q77bmG7zsvX21uOgxX/Pr/eervZD9KxSCtX5niQB6kzVAvxdrGfsvO/HmIb4StM87JKWSu22s/vrsCV5W/zRfpV2Tl9OHL6dxw6I3WIj/V+L5wCqYwOvK0bfsqS3X5hG2fJMpyNhGvACwXrRtXisWqLVbpImPR6CwxGeCcr7CeRqboha9ZOglRxnv2vVn5KtKecutvx92x9QyfDcXF8rtcZQH8PWAaeUlaqir5SS9asQ1lJVHGcBeSoaLP7QarmJX3bBggWWLR0cguf2+qQPV8yc5xVQMfhhGkwEXZnGgXleSaVulQzL3ls/CR3k+hVj6vZh+lrfB0xbGDTItVKfg5wV9TiMA1enCe9bqctRLMlY14iY08aPLfgiot3Cr9VZ6uHpwsNZk4xatpKgOD2HcQjaf6SqWL3WQhhUvKWVr8q8LGrHa0lAT9w/enDGITBNI1XoQqiWyWqCoEnGOGjGHFNm6ToXvS7Bmyic5oRBTxQaVapU3VfKSbN6geM09H0WdJH0XheTVI1jWVRcH406lj+i2gltcf23un06dYw/1faT42D53a/9GAX6S23/mgRPWnDwu15U/5Jn9cfdSskcpokYF2rNGggVwbnBgpKC8wpUOB9IPiIvLrz+jwdcdNQohMFxfX3N1emEBMfV4UiVL/DuH1nyYgBFojQKiAQLaBpyqlSqFJVGpICTY/Bqm5zrtuprfwatfjQ3m5Qj3gdKhZhWxpAQlG6VSyHViLigVZk+KByVZBz0j+/m7mdpAbVFjtgaYH2FqCpIlSRmX9r2py5RtaqDH7kiPrDGyDRo40PJuiZ47xmKNVAjWwBRQbT7t2pflAodhqDBh1iDWqfVDazaHrnnaf7AN99+Q5rPBHFM11ecpoNpOFRUGu/vubz/wPr6c/LNrQZD0hpSeoZpVP3N5Wvi+pac1h6Qlcb7l32yIT3pcC3xcA6cV1cqnCYdNTAWT41imo6WfEBeKyViSQd068JPZFuWpesigve63ppdfYyrNgqutsaW0sXYFsBYZ2eMRoGN9RZ0S6f+iAiZpj+wdKA2tydBzDls7+4l1bQ1zmhRLYRrw7ZF1SLdCICqScE2233ffhu2+XwPkm6dxFtcZE01G9goUHtz0yayft7rowPbbEL0/SYGJLQgn1bPa9lVlT5H6f62WbthBZVdRUzR+PZmE+prZQ4zyMHe06+JE2uOW/v10p4XFbzDuwFf7L50UTtmP9yKAJZ0mJNrm0ucE7BqVfuj7r+ddwbn8TuQW3psWBCr2u41Mb9r+wMqGYHbFzdcnSab0Aq90zeOdZ0RqcR1QagM1oQvp2QN5TCqTGa79t8X+LTKRTWIvBpPrN3gcfC8uL2iZG2cd74sAJyOA4fRc74shCGQcmZeU+/cq8/Ylj0OFqSDft6yxh7GdacQ2VUy7HVaPdL95VLIpfLieOD6alI0TARQ3cLD04WYsiUEzcbw+Tm3h+d0HLm9uWJNmfd390Yx27JTfa8OkGkI2oiwbgncOI5gFaA1RpZ1JZsDgbiWMbckSL8VJ0zTyDQNpLqJo1RHo5UMqlaPRlug5mVlXtbep6KCUqlM6K1lfF0Ic1Gbtgr9PNQuWI/ndJigYpUY1yezNjYE7UmQcybm1Ksa+xGjPUN+8jD+3/j2Qw/0vwrf/otsPy34luff/8B7/hxVmt+drvxxrvdHZ/p7Eij71P3c8Qd/yqezxbhyfX3Ni9tX3D/eabUgRyoO79TxZJCBUlqXexUr++vEzd9cUd9PvH79ilcvXzFNEzJ4wjRQ5AtO42su80MHQZxz5rxTtmSiJjWVCDZvKonfLMp9NwUpJVPEE3PmOKkt5LKuFhDZ4i4qKM91JaBzfSmZ7BIO62PCJkjVO5l7kK7bFoQ8i9TEQpxWwrDBX2pRTnsFasFZtXleZmpVt0EFmbRqUasmFSE4xmydhIsegzg6nSylzLIs1CwMzlOk7ijGXi1pS1ZaDUrnGIdAIPB0fuTD+w+kZeGzF9ecponTNFGdsMaIKxV3WVjfvWP94gN89gqXMoRt3Q1jIMkdl/TPxHi247LrIBtNpicbLSB+lng0PeWWdAi+06zcyeOrh+KpyVOjg+TIi2o78vppzafNXrYBtbEoOyKEsgvMa2/G15D73sfM0HApG4ja3MHaa3sXbFpwX3amMRvNXH/eeP1i723MkJw2OExMR+k0yyY1u1mUrtcPlo329HEy8PG2pyEBlFa1efa+zWVKrBxYK901iqqxazvSLl63RKdCf1b3gu+qJ6/va5Wa/lp21KEOS/frtyVRCmRkiibrxca10GlYm4jbaJMIpRjNquyCfgOUG/VNAWVLxtoUUlXH/qwhbzvwnf4G2X7tLO5uvT90NBjrpyqtvRQFoeUnPCo/OTqbDgde3F6bs1TW7Ad0JFklwwnG+VTua6lqg9qa8GVDSvZj53slrI9+l3sNSS98qxqUkokxc7ksIMJxGhgHz+NdJISBFBMxbXqMvZLfNWep2pK/ympJhg4Y11+r79N9FHMTbHN9Lrr/0zTuaGQ64V1m7ba9L/0JP/zgABwPI9dXJ5aY+HD/2GlFW2BRO09XKxmDBeiJSv2+6Nua8GnVQHp1oVc00InjMA6M09C7cIqDkkq/V87updrXOuXkLtEs3/S4hiF0m7daK95vHYiflfDq5vMsVsmoVE0yrKNua0a2RzNiUmpcq2TsNxEVEP7vYeuAyCe2bYHT733lj77u44D7f3T7CQDLn3X7Hlr2A9///vPeFsbf99pPnUJYiyK0WiUdoVacFFKKhgx61iXrfGVudblEqq8cvhi4uv6Mk7/SKqYo7LOsGRgYTjfWRV0pR3vqJWyBSguyx2Gi5EIyM4mcMz4Mqumw1bvRhJzZnJaiAW1zHqwUSl3VNpIEYlbotsjsgxX67zOY+LUBPx1Qqrb+VDFQr607zddQEBkIYSLXC8PgcV6IqXCZHyklcZgmHJpACI55vhCzWpSmFFF3K8c0nqh1JK5PpJxY18rgBqtaCIfDZABRNMc/tccVwajFymf4+rsPvH+4J53PfP7yWo1CvK6vyVwQ07JQ3r3l/O23rD/7Gel4YhxHVN8BKT7weP7vpHTeGoWJrsutWVuVlnxti1pfs+1Cbj+7Z8mHXlUNiPEe8R4mpVmF7AnZQf601pOW4PXmwDaG9qJtXa9Vm+ms0iReOTjaaI4tdy1NzCwIWRMU6Oh2u27e041cniM7FmSXjQKuz5QDb/eIgjZq1d4N4tTBqdStR4w4ZyDkD1ih/o5J7od7bmzXqn1557a+ZTXb82UN+mqDijXe60lOp0KZQLzPo5q0OrcfY+2C6t8rlrCJJT/7kzFQl7olRc+rBFbp2Z2n99oUrzi7ecq77COgli2ZABBLQvvfMSaOCE6DMPvcorokcj9mdZqCmorpeMwe15JPb26pVRpdfTDXrj9iJeNwmLi9uTJBXpv0BMRRCkYLUmstEc2+aynWxE1PLuXcg/4fXwQ3gRIIrdM3aFmuNbzLuTLPK8uqzkqnaWAaHJc5MhwnYopGscFQnC0rDcHjbWDBZl/bBlpveiRGNbLjbc3gtBpBT55UiD5iqwmCcFlWzpelewy3gfbxPWkUiVNLMtbEh4dHRdDqDsFEM9tg9rXOCTnm7ojVRd+laqdv+31LlH7wSoswjQPjGDibzZsD1VIkRRC9cwxDIHhPrYUlJlazr22g2zgEgmW/ioqIWf1undYrm7MYViE6HfSYY8pI8y6XzfJOS8DqV99QnGqOVq0026yV/01vHaX50wWOn1pQKruv/e9+/7aBGD92Tr/7TP+EWdzv2PX+Of2x5/VPOwL+vNswDKzrSs66iA1hYr4s1Jo2bjyaGDiv3u3h4EipEOVMuvmA+J9RSSxLZjlXllrxB0fwPyPIiVietDLqKqVuwYFzHucytWZKTvjxyM3pitl6/4BVZF2gGmVUnGNN2l1bA7BqDoUD0zRxPp9JOTK4jPgG6myVuPazmldsgYydpX1JRw0bMt8gRg1onCH6QasXTimyKWYVzPuJIThihHGcuDrdQI6cL/fEdeXqOFLwxLRY0lQZB4f3TeBZGYaRMTQhuRp9DGHUJq0Va7anr21ob1oza1158epLjqe3PJ4fOR2ODOOA854YE8uycD6fmecZn1fOb95yvr/ncHXNOB4Yp4lSVt5++C/cP/6KFFPvR6UX0MK4DpTtETOhGpUNq3g0GtW+4vH9asc+8XDgrdrBp5Vk9GZ80IPvsgPbNAnRBo7P1gljkjSa0n5+qc5tiawl0nu6Uq9u9Gdm6w3RE2GLZ6qBh27Lyi2OMpqb6QsaoNgqit57FaezxUGdnC7bcXy8tWPbH+v+b9t1QSsnO8H6PsloP1dLEnTsWMe6HqvtNcMFqu/v29NbRbRlgrAdT4FNeN/nAjEqmduSq2rJYzEgpLY+cgpu1LQTZWMOo95bl3O7bmLzRFEkslpy1yln5j4ntaqFrlUo+7GmQipZjZlSmwuEaVLnuVJRPY4MIHVrjPnHTDKOxyMvbq/xGnFbIKjOUilqqbkW7fTd7GHXJWvvCSv1pd7MRZ7dvOeDxKg1dvH2D5P3jtvro2bIufJ0mUmlMA3a6VtR/MzpNnA+X1hT6Zm4E1PpC73fg1YlhJgSsfdyoAe7TSSObFQpFVBpuTqXwjgEbq+Ptk9FhirC+bLweLmYQ4gJpOWHAx89rxOn45EP7898uHvcuTJZtiualQ7BczpOgAbnuRS93lbJUOrXqva1YE2bvs/1FrsOp+MB553eGzv/kmoXdo9emIZN/Ddbr4qWAHnvGIemrUh6rZ0j5dorPS2xbJ/hgMOgOo7UzmEYNHMXR8lpa4hTqiUZdI1IPwcaH/TfsiZj235ygCn9f3+yzea0Hw2I/6Qf/HvP7QcWpo+++aMF6z/p9H8IXfjoR/l+UrXfbM35V1doPrUkMoRAqcnstwUngXGcqAtaoV1XQjiqh34uPD4+WqVT55uze8cb948c5MTTQ+HpXCgCboIX4cj48jMunDtA0+mqFpCVYqithfZXhyMez0M6k4GUimnEAmvWfhAtmNLmswpu4cAHTxgC65q3zwHEKQrf7DSbYUrfWoO+3jZ468fUAl9BbdtrNhenqqhiFU9lsERE+23kFE235xAJDO5IGDR4p1bCMOAHx5pm4pKV8z14clrJBYKBWGMIamsrB5b1gogmLctyIWe9X5oIZhW5iuMwHvjyy1t+dTVwKC95cXvD4TARQuCyrKxx7b1QKIXz+zsevvmW4+nI6XCgHAJ3d/+N9+/+X8T1npSgZOWsixgK266NBcViql6xX7Z/K2XXK2KfYLTvd1WPXulQVUdLQD6lzbst2YQtqP/Y7WlD9hVUrbWSnVCrdFC0xWKKbrseqNIS3t183gLbUmDf71akiZwtPrLXqtFLA6CTJT5m4pOtz31te5LuNLqvRjQ72NKS7hYky/7zZXd82+fvY0knQtLW5f013ZJXWtVhS1K6fqF/XgMKvm/b2893F5vWqh8l1QL+tt+PriUUa8OxJb8ONl1FqYjzfaw+P8diOrFMLunZeQ3mzIlTe2Lx2PWWPr4Bcko07Yp4NaUIYcBVRxoSZTpSciWtq/W2U6dUNXez6m3Q8fj/b+/bmiM5lvO+rEv3zADY5U06xxfJki3ZL7ZDz7b//4ufHAqHrQg7bFnXc3TI5eIyM91dlemHzKzqGWB3seSSBHkmGSCwwExPd3V1VX6Z+X3ZeBkfsGeDjN3VFq9udogBoOq0NQMZRXtm1LKAa8UwaAq41opivRq0M3MFP8V3Q7+5a6SsgONUvvb6egMiJWDvDxMqC642CdtNwjQt8EZL07w00regk5+1ljHpRiEqpbssxRQ8AEftABphr2cuHEW7lC1jGAZcX2208ZJldmpl3B8my+7k9mARoTnca8sp4dXNFYQC3ry1Tt+rc28go6mCDIAAxbpt55zaw6BclBmlrpWl0H5uRqpQsRkH3eLEpeZUScK7e8bBMhlG3pvmpZUuAYIUI3LWGl9Ps+l1wtSp0K6jWGo0EDAOzvFYAIsCOBhScESt5nBatJTtnI9BhKaw8Us0v1s60rZIrX/5pL0sZ/L59oR7vYoCv/Nd7/yjPPHTu37xqa2DiifP7jsCs5/rnX3KZBU5FVs6kwcdqmYZKlfkmCASwFVfWKEy40QRd+kb/Jb+H6L8CvNs+8VRm3V+frVDoIjCy4rXpn2NiKyOPGUAZHsMI2ZqvYe6dj7buehmLbZPqF8mqFxwnI+tDKSyCnFovbsDC1WQUqnJCBHrlQFA8xZORj811QdS7kNFl/COpA1MSRgpZKQwQrigloo8pHatMQxIqWLIGfMy43A4YLsbNGBUXdhEzyVSVJARI662O1tqNihlxsP+Tsn3VVXANmmjQUVwu3ciBfd3b/DZzRXG6xvsdjtVHAy9IStbnXfKA0gEy8MD5v0deHkNEsHt7f/ANH2DWiYTVQFINGinJVMeYVbgduqAOuDw7/4etPIqsRvnmZBzwFHXGZCXZBZh6JkFtRPpWcsieHm3t4ZoLSJsT3Zei5Y69d4U3r05xmg+B5tEtJbanJayc4PAnimCvadF36EBXvWlVA66iHJYYc59saZ37qOobDSs5IoeSdiqD2SAyyL6ne9wCuA1KMk2XbzCwknj1AAG0MGHy7X26zwHHd3xX4MT/7k2oZ3Q2jeI9IxB69fnWcA2nY0fxafl+mEFcDwDE6RnY9pnM4NqbaJEMdh1G9AORIj24V4m6n0x/LxTSsjDiDQmRAo4HA7aksI68Emw1UxUypYoILRxf789G2S8fv0K45h102zKUvqQlkXDT7UWVK4Yho0qSZXam/Cx9zroxzyProlF6vzYLD0dQ9CynOvdBooGO8gYh4jtJuN4XJpiyDSXFm1fE5eItFzKa3QF0PIfrg09njah8Q3Ry6W0bZL/W1WhNjY5CEQR81xNghag9WJ4ds0+yV0xCxTwzbe3TUnJx0Nf6yRnBQaAZjKYGSltWhRjKUpMtLX/pDeIH8e/5xSx2YzWe9aMtbkfV13Uc0qNc7FMM6bJMhnQsUspYkip3eMYVRKuRU3smgWeidBMxmjHnJeDaj9bFmOdqVAgVTXLJHjExwCoqV38PthznEydcz/4qXwH+9Qn9fHH+9D4nf/9+wX/3/3mp878OfkZ4Pue00uy0/KMth5b8EJEm2zmnBFCUkltYYSg3IAQGBOAb9Pf4/XViHj8EvUARBGkGjHiS0T6GyxS0FVgeh03UFvgBkFwmCdtajVELIcFIlHLLKKt22zAwQJPno0H2BSyXCq0gL3OnQQxEgK0iak7vyLBHHQx0NLJzeIqNJ79aJkQbmsjkWYzCBmDZAg2qDyDSfmPMUREirh/eIvPXm0MEen4Ho+TBuys07OWrFTEEDEMA3JQadr5MGHcDMpBYW1kmCJQNdxqfaainSah8hFffvUl9l8tqPcTttsNkjU5XIo2b3WnM48DNpstBgBDArbbgq+/+W+4vf9fWJY9SlHivO4bmoFwyOXdknUcbCaRlaD5WAn1fYR0D6b1G9wpJmpjr0kP52K+LJCx7tXg/kNsEvymVhQ6D9IXEm9Y20ykNV6EAEF6RgLcfRNmFQxgFitf6s34vPzJkh/GWyCPhDUBAX9OiESJA4KmhOQBVO2XpSdbKmvmTwAKGSl2snt7TkCtaeD6fPT7KShw5lrjhFZp64DSFh6Xka+BhB9rDSTWx1+//sSPJQXFhbkDB3f2jYBNQMvyhJUstT/6It5Ub1USFwjRgvpsHJwTwCkC8jWl1YIBAKNIRZSIRNHI5BGI9qiIIEI5SQFaLcOsWU+BZmlDigBpKGT9uaw3/F3TttmzQcZXX36OHDV6oo4jqfqTBKtjZc1kcMVour2lFNRaAJBFMtbppXOA4ZPEfg4Erl6WpejuejtiM6pDe5hmHI4TWATbIWM7Znx996Dt3iGY5tIRrE8ekEnAdZKyQJUvKveujjFqi5sY+nLjpG+fzJ7m2wwZr657JoNCwLwccfdwALAiG9Lja4Z93pgTPnt1DRDh62/eKo/F0KofIFBoWYycVFmqGKneMxmVq9W/zm1pCWcPkn8mkaqCbLeD6pyIkr5R0Y5LBAw5Ixux2pvwOSkd4pmM1Ba4IccOKv0BhzY79EhB8I7lIWBeNJOhZU8edoFFWeSEj+H8nM7Ywe8PyJB+5R/jZ64XyB/W3n9W7zqF80K+d/2Lnvz7e87mEWL4ju/7BNbzGu97zYeurAdFnvyAn5m5M6KmTiSvehQ4IAghWAbTIm8QSAyoAAIqjvIADv8Hrz8j5PoFQiGMIaDeDsivr3Dgu5O9pUW9QWDLOsAcJTFHtXDRXhVRe2PEoFwQGIFWuCIIa2kDtNOuZkcEIgXMpZV+xpgQSbdZIVNjaZH2s0GxtIAG3pUb4MRLj2a7s8YiCgziDghKOp+We2xyVJlwAEMOyPkapRSUUFDKBF4WbDYDAOXY1ar7ZE4JOY2oyxFctUHhXB4gRg7NSTMwsixYyoSQM5g1PB7iCII28bu5/gIc9xjHATkGTFPBPM+Y5qk1LAwx4ubVK/yLP/o1fvXHrxE3/4jf/M1/xeH4jWayrFSqq2/xKvtg3w2sgciyHf73NThjH7J3ZDv0Dy3bcVJm9XJsXRJ1wqswH8bLWgCYv6Ny9PVMZtQ5GMGyNQ7sAwiUQot4+zNRa0VlNCnWdeaITNrfuQZavSB9byZoNgNoVSKRAvIwAGSNm0md7mKKZZo11GfQ/SxqnNhV1kU8EG8A1McEPTPRAYNKSwkUaFvk1cQbdL0hClb+54TyaNF6aqVVfv3rMin/WUQM9HUw6CpP/dEVvSdWYbLYdyWnK/eViCyQoWVM7YPb5tdBcjCQifYnavwPAM13NLcBFRWVovGQdL0N5nMJk9ITUoRQBIkgZecn6dxgmz+Roi3O+hzRM3rKPBtkfPH5a6QYQCjwRRpB+z/UqrX4ZZk1+p2jqVAUlSyFOpnMp7vkU053/10nDMFc/d12wDAkCAP7wxFzYaQQsNtmxADMc0FIWwjzSSZDS6V0grUOibbyFCNP68NpaaCgwl0qvaYPTmVYB1SBp/qJVk347OYTApal4n5/UPTHq4fuKZABI45fbVFY8M3bs0yGjooi2aCN8wAtaVqsnjmlbJNMMHsmwxcPOpmbzbTb9oiUIiZDzhFo982VpQbjTgDAcVYyvZO+Hagka+THVRBHHdt1JgPQ1KU3o8kxYByyLTAMsoc6ehv7FvFTaWFG7xy+NlfbWpYFPzf7uBr5k3jUT2Y/dhT9ZW31P5x1APXuK/6uY/9Sx3BdmuDX7U6GmAORV2TT9lpL2/fAETDJA2p+i2F4DYgGY+gwYPvqNe7lN6jWh8P17JmVtK0ARrOkQxoRQ8DEEyAMRlGZVgoIMaAWlWZPOUMKwKS9lYplW1JMqOSC9AtAKg0LsEVwI7wCQENXVlpC6uBKC8vbiLQ1WxvuBY8ya2BZu4kTEMIA1IQYgczakyOGgIARgQZAIlLeAPO9Omys4zwMA6bpABHWCKYEjHnEkWfd2hPhcNhjXmZEE9ZgViXD1sU8qEOm4C3i4f4WD/cFn19dI6UMAaEy6560TGBoeW8F4+bLa/z6z26Qbt7gb3/zl5jmWw1EVkKgATEPUPniYo3j2LI/Wlqm46PVB1ZkcvqzBHi4liDWlwFtP/fo8WPgoXv+SzLPHrjPcfqlr+nBJLGAKFune32eWi+pVaRCgOYHAUBOGdthBwij1gXzSjxHHeDuQwi4VRZEiQr4AHOqxRYeU3Hi2kCglwqxVT04+JOgGYCWHSBYRN6CawZgCGQqTdKu38veBeccXpM9a1kuPYeT2WI+hL7XB4bRqCNNTY47WFsBPc8I+j3wkJKOfX30+p5J1ddr36+CKipVmxwYkfFlggPonqFiI4ZrILwHzNfZGe99IuhZIHW/fR0kBAedUpCDBqpjSAiknBDJphim/ABTB5NOyvcb/gF7Nsj4/LNXSJG69rKlbqqlNiFK+k45IVBQnW6LiEM0HaaTkk4GeW2OUP23Hrl2xHy1HTAOEVwZ+8OEpVTkFLDbDsojYGAYI+alaBdMMWQfvFsokFKwFLEeuRTTE7exajJx5NKvpkZgpVI6qa00KATcXG+11ToBhAgW4OFwxOE4geDpOgUJ5/Vr/kC9fnWFnAfc3u/xsD8+In0Dei4xBmy3I4h0PEutSMk03W3CTvN8RmJ/7Lro5hSw226AQKumUyZfayAnAMhDts6uwDQvTVlKYKTvQbuMe1pQiZrKx9AxI8tk+CJpICMnLEWBYIi9L4l3Z9d5wo30zVVOIiUQGAHpdGH5xViLuD769ry3v1Tv8jvZx2367wNw3899+C6D+rz3NKfyfUAD68DDc475cidBBxl9YzzRckdoG7iuLadlC74+K8crI0rSsQsKDCITiF6DKIF5b2spQcWjogIACqYeaLLmOYH3FSyqIKU68QpaYtTeBNthA44ZtS6o5aHVM6eUkCGYZwbzjKVOSGFEAOs5RYJUQwiIIFTAyxsAc6C8fAXmFxF8LQRx73UkocldBokIoscbhgHDoHzEiB02+RqEDKkPSCmAF5ObjWggCxCM44jNsEEMCTEQ3t6+wbgZQZTBwhiTdpemrv2jZVQUzJmvoFDx5etf4eqfCzBX5JwhQtYpvGj0NUUEYdx8dY0/+Y//DPmrr/G7N3+NN7f/iKVM4AoEGrDZfYYUR5SqlRBahl3AtaBKgUjtX2ADEpaFENtH4GVW5ry2bIdH2VcRc4uen5RZvUA7f07859b+QfpG4VF8d+JVmRFW9aBRfXVULXIeCEMacDXswLXiACCtjsciCFHLml0tFBZMBItGwx18mjMfAjWpe3W90YQDXPDhvPwopdQdcYs5en8GJxqvS9o90GAPdAsisymbelam9aAIwUQNVPZ/nR15KlMEEQSEVprOYOsd0z8/xWRjpBfZeCurbNPp2nXK7eimgkZzLarWlSLikK0cjtre4BwjFoFwrxAKDkw8SEHW54K6cIBDNYjyd/V9hMoqaBF4Mf6GlnnGkBBMedTqqRoG167oH563zyd+b0dEUoTEdqEUDGRUffDnecY4JICsgdoTTfjavF1NrkelUuQ6wl2pI8eIm6sNco44LoyHwwHzUrEbM653o6kUKUfg7e2hkWA6WCCbxNHS3zqoqixV2g1UxO/pKz0/lWPVTEakXk8YYsDr6y1SaggFzIy394eWwXGjs2t2C0T4/LVGfr75ze+U9C1yArZApiwVNZNBcDJdQUyakhcRlMo4TlOLMPQmfGdOJ+mkvdopyCgOEBgmHag3KudomQwFMdOk0rhsIZAQgpXGOejqi2D1eYJO+mYRRNLU+zhka4AI3cQN3DFsMWW9ntmyTC4XvB5P59/8IkHGmZ1vfo+f7dXC9ZHHflRX+iPbIxD83he+/+r6dXzIXTibTB9+1TvO5/vZOovhPuQ7z+UjAMZLt3PnQqQDD9/wtRSyRzJBuo4xkUmp6/syDYh1C6kqjR0IoFFQ6IAiszmkApEA1tQBaiUVMSHdCx4OB8yloLD0XjS2rg00YBw3mJdipM6IQIKUCEtZwBJAtLEyjQVAwVKO2A47CBWtSdeuW4C4CqFFq8BQDX91iMmivQ4yyNRhQovGS3MMW5SXGWmIGIdrMBYwTwikQZ55tv2AGZshI6aEpc6Y58kctwLmjCILllmd9pjUISfL9MSQMaQdjmEPsAZ/ap211jskpJBBLLget9jPb3G12SGSZvSdI1hrxTCO+OqPv8R/+E9/is//5AFf3/9ffP3mt5imB3Al5HiFze7GOJMJIzKAYNUS1QCHKuuUuijoYPU9WIpFzNl6HSjwOOFcKJzUSC49UWZF/p6X9ZR5L4zmkKr/DYFxLs3vYNZgaSP5QvdVnWqizr6Vy7A9bx4JJ2gpTISqSEaKqDEgWhlWnWctvyd3jOmEF1LFwYW5sSajOpW5OdNEoQF4dZwtOLoKctZa23G9eZ0/+DHE1sfCB8IDt2wBbO/t4HBdSdd6HPZKFAJSyMgxYSqT+VekEsZma94HYLL8lVGkoLct1se2ijnlFFVWmgIICSLxJHCyDq77z35fgwlNBAvoKr+LIQbGiE7Vrdp3TXro/Q3GVwE17gdBs0IkZJnV0No3eLmjQMCkAeCFK0pd7PmICNy5I1o5Etv9p/g8v+HZIGPIUR/Atnlrp+9aTYeZGcsy4+bqypxgbb7jA3lO+nY7ARiwTdQi2ix9Qo9DwtVOCeVzKTgcteu0ZjIsssTqwB6nBVVgk6oDjBAVdZqPDBCs0VsHBCFEjZKH0yiAb3YabdcJsIlZ+3YY8YgQUFlw93A4ydoQnU6stRERPnt1hZQz3tze4TgvirxtQDS1q02RhpwVxAlMhYUxjLmBjMqM4zzrA48uXetj6J9HgJaZbSyTURvyU4kzkwDTOl2dVEupTVnKyVTRGgMCMFKffkZlWV0/tyZ8sGsZsvI47h+O2pvDaq/JzoGC9l5Ziqp+iUVMzt3GuNK+/iWbtP+9dPuOJ/mEY/2Ur/1h3sIPYN933L/HKa/Xxk91Oi/NfG3q5E6/XnUYagvWmGKOr2mOOARIlBHLBqiEkK1EdKyYcYcumdkO0z5jKUsLwrighWaGM2p1yW3C4XhESAG1VMzTjCEnxKiZ5coErhXzPOFqe4Uxj5BKEJ5ReVJex0nTLs/Od7UWSN+P5Oy1oJXPa3sJIapEZ50BWFmIzKgsWOqMWhewHDEMO6SQwEVr3lVZilD2cwtShSB42O/BTCBKqDwpf24GNuMWOQ6aHUAvX9Y4XAVRBMzBIsq4vtkCfziiTAtKrSiTcvjmeUapBa//8BX+4j//OT77V3u8Pfwd3nzzNfb39+AaMOQthrQFBcbd/jeaVYkDYhgRQkZKGTkP0GoBLQVynl+ty2nGwwAHi5Zxn5ZZeeCywTWdfyDj5ej1vCST1ucCPeDW9vZgwVlAfTLuSpENiBp0lWqlgrFlPwKCZXEAMDAvC6blCKaKuWppfDCgUk38wLMLgHKrxJ1u0sa4KapaAtcCFON0iJbbUfE+NQkpuSNPDcysszUKgptX2J3xVWbAAxSAvx4oRd+j2QZGICCZnwLpOm690/fpv0/I3+bzai8ZdEVqoL3WA6BMAuIKMaDhTZ/XjSKZ2bjKtV1D5wejNUmMMUKsU7pmcX1Meqn+mvAO8sCr8ZQCbO5rBoutpEzHwzLEBp6UJ0Z2r33OCRhWaSIBLAYypBPviRQDfMieDTJyDlYq5chSIwLLsgCinVqZK7LdTJevBVQ2UKPj/QKe5mN4JsMVCHod2jgkXF2NENZeDdOkCM87fT8cjm2ST/PyKJMBGMkmxZY6Y7aO5NYcxtPmLZNh56WoX5cioDeZu9pusNsO7cYQKXK9ezgYwccjCk9Eou1GbceM66sdKES8+fYOx1k7srIBDAiaeoSTpSvzqtN3sr4Uym+YprkR/on6Q+v/BjTDsRmV38JYkb4FKEtPv2XjYxApOX6eSwMYZBmJnJJOZlayIEAWefJ+4D0SAygXZOMSvFWjTMrH8Ida43ksqpTl5LV6TvpeLTi/pEyGprKfciWlZYXgueef0OX8UcoKaL3dy/kv3mvf++x+nMt78uenrAVGPvq8XpbDdG4OHNeZShGTtA4BCzsHUJoSzVotDxSQZQsqmlGNluXAWDHJnTqa8CAWNZfLPXtv0sciSOQyuvqZvvFXYYD1dcuyYMjRwEjCYr0ptFM5sN1cWd8oVVcMxC3QIubMBWuyp9mMzjVgaLbDy77Uv1mXiDpvUEnPBEKKAxAHLPWIQBHbcYPD4Q5EjFJmlDJhqRNgvaXSOGIz7DDPb60XEbexTylimksrsU0xY8gjgAJmi24CzXkKgSA1oMqCRY6gAHz25ReYDxPu397ittxhng9gYbz+6jX+4r/8Gb78NxMO/Pf49s0tHh4OqEWQ4g6b8QrzcsR+f49lLgAVBDrq/h0CQkhWzpUR4ogUNxjyCMEIl5PXfaaclFkxG/DgdZmV9SZpmQvAOzGv5+RLMecveMaCjDtarcxbuHZxBOppjnVZkZgfocerDV6FYPwHEczTBFTBzAsqChYuzaGFOAk/mgSydxnX8kKQlWYzgKQRb1BE5ARUrPgVsPOpsBg0itRW5x/Xojy24DVQsQIW6y/Amj97UJq0vFpIrzUCSNB1gUGo2vShNenTtdVEAlZzSQPT7jfpuJKgAaJ+Lf26tIoDQNBzSSmgVieD987ifr7tOkXFgWA+sKD7yS1DdOYXNKI8FAyRnJZg0cqn8klAFPV++fEtCN/EADwoD/RSfzsIQ4PrXYmMDMi+356fyUid9C2iqSUFGUr2nqajLbx688qijZY8DV5XJODzG3OSRrLfsQ0gBZWt2wwZN1dbMDMO04zjtCAGwvVuRICqSQ1DVgWkxZvFGR/DJqM2CUxa7gOVQ5ucNCxY9WoQ4wjoJGcrlXJHx9WVXl1vsRmTbl022Idpxt3DwSL7sGvAk44jAXh1s8N2u8HD/oi3d/etCZ4TIDX6r11Zt+OAZCUEy6IgK2eVs/VO39Mya/0kfDO2z1qtm4EIu+0GMUWU1ZhL4ZV8rYKMISsSn+fSwZtldAarF/QazZb+tHIpj9R5JkMzMtrdvNaKYiVnMQTT5PZz7SR25XI8BhKBunztLz2TAZwsz2iO47v2wh9sj3zeOL+fC/D8e/XUZv/sS1tFjV+CdVLg00bPwE/fCWO8dKNTXpVGLoM26+OV4ySeuKDWYFQDMBEDbyElwDmKYQBq3mPmB7DUPvYmtanEUa+Z9ox31+DnqoG0dZBGpVc3KItyM1LMGMcNlrJofXkyLoipzHCN8DryUhakmEAcoIxS3+8AQGVvCaGRk1tg0QCH6+yrcIYHeTw7nRBoACFpo1sCtpsdlsJtTFMKOM5aFhUoIacNiPaQqplid15d3e96d2Ua/SpuLhyshEws+png6leCCmYCRwZJ1ozG9YjtZgOkgEOZIKPgqz+/whd/+oBj/TtM8wEPd0dwiRiGDTbbHR4e7vGwv8Myz4376Cs+EYMwATRZ0DC0wFsMA1LcIsUROY/WlHZED25Wy3is+R1LI5QLW5lVk5rnFwYx1CHv9fewWItAgqjsK2DlPDrP2XgwBEJMqTmJXp3h/VuI9L7WWqEiwEcsUFDmmQtp3afZej/o/W48CefFCABEhKA9HyqXVuKmjm9ACL3Xh/7O5hN3MvPCJufcgokWkD17HjsI6aWD7rwDBCYFkZEEg6ijG0CoRMYPLhBQW3j1zqMBaRt5xVbm/XMrpXP+1PlMsfNc+TGAK+md8jMa19a5JdKrbkLuRH/P8PLK/zzfX8UDEZbtOAEXouup+2fRSOwhBATpvUhUpEGVWHPOmu1w+V1bN08yzeKckE+oLpUCGWO9k75FSBddMOZpsuiG1lDORtgV9k7fpgDwDoewp/xgN4bbXAuk5O7NmHE8HnE8zjjOC0IIuNoNIALmhTGMo3Wk1sgR0DMGDjJSjCi1ZyRUfldN6816fwyf6k76dnPAdLPbaPkSAO/0fb8/Yl6WlsbUv+HRdfsm8epqi81mg7v9QRWp0MmdnfStjvhmHBCjyr4qcQpGsNPXHuepN+FbIdJzC0TYbUYtAbBrCQLUwi2NFwNhSKocpeOrqW9PfWrZU1I5Rea2ADggcKKloIMOCvrZ23FQQiAzgnWqbBK/5jwws5GtZNWY0CN6vcTq56gs9fH2i3Qv320fDPF/v3TGyxhJOvnp/dFTgRMFfll4WjdlLwXwJJ6ADGRIi+S7T93XNY86ayYDRUncgQhhBCa6Q5X55NPEP9OdHP+9aJbEne3V6TVLKSEIUIBGyA4hIpqevzYFrer2B0LVBbwBBFgmVq/Has3FvwNCGl23mGL7DO/6rY6iae+TOfisGRglY0bLPhBSWjAvB2y2AwSC/VHr4CtrdUFK2WRwWSPHrI7mNM1WU66O6f1xj2k+QtKIXTBJWd+oBdBGswVj3mKMrzHNE2j/AB5HjMOAr/7gV0i7Lf74+h7l5n/jSH+NpRQ83BVwHTEOW4gw7u7eYn+4M5l7vyer+2b33e8HkwCVQVRBVBBob1H7iBgHpDAgxgGBBuScMNIIYGv7UG19BjTjsbRMRwMe5yV2P7Gx9QFh9rJhWAZD53QIhBhTj2AH5W8C7owDDhAdhECMyC2doFxJ52+RYsItvZkdSMGliAMN7tkiL6EJqgonFul2gOEZiXPieqvtD9azw3yAasf3rI3KrErjQ60zNL56+vMchBBDgkSAeUECMMSAJJZpCREzCnjplQHOwWo8hhWIJ+MhqINdAJjcre3JPXMQLKAdEFcLx2LVPE8CA/tiZqQQW/NnNj+oZ1kCKPQAhI+/aIdS+49b3xOfH34NDlBYGFy0hJDZmy0akd7I6w7utbfjabZIVoNFpFlh9zffZ88GGdQGFcZuD+AiWMqCREowG7KRqpfFmP0CJwG743w+wOtPYGHrsmo6v3azcgp4db2FQJ3gw3HCUhjjkLRcCVAS+M2Ab9/eolRpJVGexQgEc5gNhVukY16UfEzSUaUrHYFgUXi0tBU3VEm4udpgHKJmPEil/O73R+v0/XgjezSmBNxcb7EZN/iHb36Hu/2hRaz89XruhCFFbAZthljNAVfkPkCzLYLjtAIZ1Enf558ZAmG7sUxGqfD1m0u1Lt2ClGJrwlerdfpuWRaNGI5DbsCCbKwXK43zLIZmsqzzJXrHcs+KJOdjNLAweA83AAAUjklEQVRiJNBWEtZ7kqwtPOUU/FKt7+sr+/Hibe/OTLw/Ov/hA/8wb/JN7dHvV///4DE+6pzebR9zid11ftp+yjnwQ1ivUxas5Wu9bKKs+Bh6qdTWKvstMjYIZQRqACXLcozAjFsUntFHjPru6w+UBTKFXY41oBR3yk5LMgIp9wLQsiIBmuNDIIzjiO1mZz64AqYUybiMth4DVkvfwdUKPbVzVbVNVbWptteCACFvtsYt2+FqfErAVq6datlX7WcRokWpPbhGTZEmBCOmCoPCoE63SZHnHACqEFSEZE6eNQ7TqHPAMAxYpgqRgIQtbr+5w3x7j6ura1xfX2O83uCLP3qFw9Vv8E8P/4BaJyxLwvEQkdMVlmXB4fiAw/HB9ojuGJ2s955t9xgT+f3Rf7MNGqGAqIBob/ucqePEhBiU35HiiJhHCDxabEGwWlDLgmIlVi/JljqjsjuQq5I5EislhkWUTUOTCBKp/UzunZokKqCiKrUWNNVlqN8DElDUoB83PqWqNIVg4F9WJUWARfXN1ysVFDp3wKtJfGVb+32q1tTd5BisWVwMrRwL0OeSrRll5d5rC0ATRvB+MkNMyGmAAJhnIMIbCgqKQEuXmFqljFAHtB6V93nYOB+s5HTLI0BW1+KvB6xaIwA4EaTpAkJu576vlk2KOe21ndDawdcSRQWSniFSQGeKVywownqtopLYrpwH673Bri8BXTc0S8kKUINfla13KxJ88DEoCkhyzq3cKzwjyPtxIKN1+g4ANKJOEHAtWJYZV9tNK59Z5gVeOlNqxTv2/ZMb1cbdnEzfWIac8NmrK3BlzEvF/jABALZjxm7MRt7W7tuH44xicqcabTKCVCBrGtc/a1qW1noesC6aMCkwOxEvldKHBUY4Y+w2g5K+o0n4UQALcPtwxDQvUH6GnGweJ+NpmYDXNzvkIePt3R53DwoyxPkH9pnBSN+DKTmpahcjWW0wszbfOU6TbsyCVS3hqZNIRBiHjO1mgBBQfEKL9t5w+dqUohEcVYHrODnPRa8nxWRyeD0KSeSkbyVMslQwrFmQznVsxwwK1PptxBi03hSkD0lIACtCXkrRyV1PS+10QTTVi/qyok4/uvkG8sLt/SVUT77jPcf6JId5Ufah05Sz75/swD+hnfIxPDbYtefXNdnqAK35GFpLvsEOWDIA42NEAOOCGbeosthxYEEPWGkF2t7iWWCPkLLxxBQY6EvXQZAUVL1GhFFNAQYAhjyqM1QZXKu69dkauzIhJu2pK1UjigoSdE9tQAOwpKW5M7TqSQFAZW8LRKLmQoTbNRCCyohyQE4ZIei6m8aInEccDg9Kiq0VqKpKWIueb4hRHU4oYTcNWvZM3o/CstIhBEhRArEQMM13xssomPmIb3+3x/F+j9s33+Dmy8/xB599Dtr8A749/ncUuQWXgHmfEcOIaTri7e3XJj0v6hi5w3sGIh6DDqzmxwo74nRtUBWv0vYmvY9GyDVeR4wbDHEArMxq3fTtpZiScHugjSI17kALS1hPFq26CODFPLUQusOTspKuY0QkK+MhzZOpwy1gqJOrfa0MLBBUjMWAriqHLu25JVJlKoL1oDH/qfedoEYY94yGB2F9/zJqOjovVu2ce2EDYhk4LdcRqUoyDxGcR6SQVSkrRwhXA+MVhRkLC5a6AkF2bX4dAdS4Xy3DUyuWuuC4HBXkhdMO6ESdtB6prxV6vX2M1k0CTwjs6HPZcyRkcQdqWUOV/fW1McSAAF33KlcE9PIqbeTMkCrWC0ODG9UAn49315jogJCZUQKjJm207BUjOjc0KJxyxmazOWn+9z77CJDBNgQaWREELPMRRIJlmREIRvqWplwhArj8nLQ06FMElk4yQeht530C5hjx6noLto7Wh6OmwXdjxjBEHI9zq+Gd54IqchJd90hUSqlt0iyCeS7wEpwQTGOYVpkMeNpPb4VmEfTcduOA3XZQXGvpsnkpeNgfUWq1rtxdgvcEudrBt+OA66sd5qXi29t7KzGT1kTQR15BRlIlJ5HWPHAYBngGaFlMKtCuu2cy/IGBRe4IYx4wjLmhcwDWhK+TvlMMGHI0UvmMaZpPMlLahC/oxsBixO1VuRTQsh7ah0Tvw85I35qJ8RSjRwZssWFTJzNwes7ncT6Gl3b9XO3jzv0dKP0nto8HDx84Hrrz+d2sOx6PRkv6Dx8eyU8w1h+R6Fm5me89HKQFJX/+1jIZ5kCJQCSckj/RS6Xc8Vxf+oAtUJQXF4PWM9f4gIWPLTNiaQB4lA5tY2/+vH3m6pmk9r+mfMe1YsiDRhPFmlOxlhyl2NVr1JGKjbsAUjWogKBNxzj2D3YHWrxUqhUr+F97nEpEnYl1pBPmzAVCziMCqRMVQsJSC1ACYtCy2lKPOEwHbHejRe8F4zBgnmd4uZE0JUUPLALzMiPnB6tjl9bYUKRoBJkmTNO3eJg/x+F+wrgZcXNVQF/8Fm/LX2KpdyCKKPMOyxxwONzjfn9rncl1jGtFI8h2kOF1+P1enPmaq3/o/9rvqO8nDYCwAAY6ZloQ6F4dQ1eyigNiGBBCfu4M/tHMHdV1yVF7PkDwxm8O1nu5T+/VVWo1fyg0Z1QaqbxXbwivSonsv1pVWaqw+nhNXNZu0DknwEsa1Sl2BSyTkfV7av5IjNGAt/RrEDk5Fto1oUncetZA2LMIEYHsmYM+b+6BCfXM3BqRijCkrkL8T4Aafd6rrUV0dn7Kl1V/6xxEnM5Rf48fs1dvhNV601CX3QwDHGf3PSQtW6tVz2st+0sEENv5Vwc7ysPxeQKG9SiLDdQINKNcSmn3MpqMtZjj19ZHX5+f4cM8H2S0TQBaKwOthw8ELPMMIiBlJyUv8E6TqkAgjwb7/Of179YkayLCZsy4vtqAuWgm4zgDRNhuMsYc8M3tgmzN3ebyBB/DHPXkGwkMZCyLPaQa4VpLvro0mNZBot0IZj3+bjM2kKGyA4TDccbD4dijZXgMMNa22wy4vrrCtBS8vbtvKWN9YHUMAmmd32ggQwQrZancxm5a5iYZ7A+vP8zt+bFxGAfNihRH0gGQqqlO7/TtylLBeopoeVOvRcw5nXSbDLErPfn91g3JFgBYJmOjdcJLqdrF3Mj2vbZRr2cpRUu/xOVwV3NxBTJ+H0zWXz+hc/np8NzzDvRTXer7zq47rs+1d1zF+a/PvecnP/slwszval4y1DdeBwSti66tgVg7JVg5G5SReAMUjcBHCggZWNID5nJEf2p6d1ovl/WhXhMwZbVP9bVzpWIn0jhqUpX0ypUxDgO887XfoWAOjzbec2EL6qBJqN3LltFYdfUVczDWX+pAavFTIC2NqqzARctfxLoEZyXnsugho8lPpogqBaVsjCyu3MHd7gpSgZQGHPZ7TMcZOW7gzqGOd9XoqWjb8KY8Qwyhgs34ChQEi1R8+esdvvp3BQ/4K8zlDYQTpOywHDOOx2/xsL+1IKQ2bq2VUQub2mDfu/376Ve/P4+Bxyrj4aCj35J3llkVLCBaQHSvZbj0bLfoR7N1+fST0X10vobOEXdK+zME6F7qPRcAsvvgJGxGitbxuTm23nuCWsRfLFJehU1G3p4NK79zkRcvfV7fn/Upu6+g3AN1cKmVBTnw73v/2ldsIEoPixijKo8ZV1jM4XA/RKtqBLwKTGpouJ+QgwQf5+ZE29oTQ2y+1fp8PKOkqphY9fLQN64zoev3teuCrMYpdLBigZPzeSAAYkqos2Aus/pIlQ1Yq4/WeqQl7d7t19P5sv0cmCuqP1dBQSajGo8sANWC9hS0+qSkFuAo5cOlhR8BMmyAQAApWWxZFhAJlllVH4aUIMyY56XV4RcDGU8N7urobfAAag8LAOuqvWk6xYfjhOOknIfdJmPMEfvDjHF7jWVeMJfaEKQjTCIl7sUQVhNDMFtJl28kwaL/JgutDrL368CaXwBcbUclnRvUJBD2xxkP+4Mpc+hJ+E07uVq7QVfbETc3VzjOBW/e3imhR9xB17GgYDyGzYAUAsrCjew8DANE1spSxd/1JB/DP3s7aiZjz7XFzdiVpVjle8ecrRRLZXHX8rWAZTKSpv+9nIGly/u6M6b3n+0hJQUZYpkMS8dF8tSpRhyZvdO3NAnbFlsR6JikhOPx+LPMZHz8OZ+FRJ5lv4hQ97N+tbY2TGfD9fTovZwxejln8uMYWUTV+RiARdaCS3W2uGZzeMTWNRXZAEbaIiwjwNpHKASARsYS7rCwgwygRwQtSriaDev13yPpWkfdnTiN5nHLoAK9Jl2EkVNW4nd7PyGEpM6qUKsXd9Ckc9RjwesJa885rfbLthmQRh+5qEOcNDvCNh6A1lyXUHGcNZtemZFkxDIvAGk58bLMKCEhpx2Oh3ugEj7/7HOUZQFCwDRb76KoSlREs/ZDGkdQCVjq1AiuXnohIri5/gpTKXj161f46t8yjuP/xHH6HcARsrzG/i7h7bf/hP1RMyKAr/UVtWq1QC16neo/WganfV/PG3fc+u/0++r9dt+fU2bVj0/Wu+9lcTIeV370f7vzeB7xl7YH90Aci4JZHz/AJGxN0lezHq1gRzkfNl9bJ21zYA0pGwFZeT1rpaGuWGbb+iqI2JoHrjIXcL6RPVOacdDzcMcbtCrx8ch6E1SABsFrBZMStLFyrFuSIJCKKtRVnwx0ZTgfP1WpQhfCQYTAyxwVWLkgwRpSrB14WoEW55icg8S1DL868rI6J7S/+3kREUqtmOa5jeU6u6DiBgocGxE9hJbpSEkJ3t7eopWtwUBf7ecvpKXvvmoSGCSC46zggkConxJkAI7qVGN4WVQjmbiilEVr61PEMlWUVb2e3yTnxrc0+Ek2w0pryNO//ebHEHBztQGZzvf+oB1Mxxyx2wyACJaFcfUqYb8/mHSfLs6BnCUPa4pC0EOTdfrWB5DsZrnka7AJKSLgitbcxtH7kK37eIoA1bbIH6cZ+8N0tkk+bTEEXF9tsd2M+PbNHt/e3TeC8xpBByLkFLEdRwj05lZmIwJpJoNFQcayKFHaJR6fCpbmGLHZDAiRlCBv189FNJMhgiEqfyXFaA3+tLmSl3GFEExZKqCsJnSpq9o+u7+aztP7MFp2RLuzM2LOTb6WazFSmmdmlJD/JB/DHt5fZCbjqUkjT/8awGqJ6y/+uTmsT50vPfGH9wX7T9aTM0fyo+07vvVjwCOd/Ux497Xpsc/d45+79WjgOpMR4zrq90RU276zCAaMoKJBi0gEioDkCbM8mJOi1vtjhPabNRiNsUvXtsDl6maoit2se4RnbMWJr4SUsgIf6Y5RBxnmIAFAq6t38NBEWi0m+3gWtKy2KIGVmSGhAlyBoJltMIGQUCpDeMJxPsJLU0QqXIodwkgpYFm0bwaRBt7KvCCnjKksiN5xuALDsAEdD6hSjWu5aI176GXIIoJIGcfjjM/+4Et89S+3SJ//FQ7z10o3kRvME+Hu4Vs8HB+sMZ92G65F93TNZgDCBNCqxM3vQwMCgi4rf1p2ss50nIOO/jPaPFsNcAteAZbteKEP2VPZC/999xmogfZ1NsLnEIsYWF1JnZocrTuigGZDWHjFk+ll7ETaO4aijW0gBGvKKMzW5NF6wZCC8jXIYGbMywyY2IJgpcIGqCoVvFmd9nIR5wYgnDwPmq1QyX6WirlM6qPwumt49zHJGv/5eK1f49Ku61ItH99I1mAQgpaRtGdd8ZZ5UqsxPwXEZFU9nQzfmhBbwGX9eSEQwPzIxyGiJvtfrXmo88K8nwqqKt15RqIphfm5wDp4r85Bx72iYt2vqAdTgF6mhlJU4e0cxL/DPiqTocu+1pgqktEO0czFVDQ0beOcAWGPZOPJB3ed/lqBsd6ET9wZ3+jEZsH+OKGyYLeJ2IxJsxp2o+ZlQWlypyZZZjdaAYE/jNSa8Lk3410tffFsmQuTYwvBpGxZI0I3VxsE8okVUJhxvz9immeotJ8BGEJzuNeWU8Srmx1AEW9v73E8ziupVsBhmZLUQmtgtxhvQknXwYAcY5rnE2Wp8yiPn0xKEZvNaMRBT92rspRyZwQxK4iIScvfpkk7ffsGmWJvwqdSaH6dPZPh1+FNggIpyEgx4DhpY6dgtaCw6RGIQOylbKVnMtaTh3BSs/3Lt4+7xl/kkJz4Xs+AUO8BZT/a8PwAH/RLurdrhwNAW5ebjj5b9hgWCQU1iUePJg7YAIuui7pZCmSYMPNDGywxjXfNKAAOwtcKMSF6r47uKPg8802ZmZGiqidWKVY2q05JTrmtjSKCQMmI5Fq6QaTRU3aAAYFnMTq0OIedaMcTk7v1YJ2OFSME0UZn0MstpYIiI1IGY0YKGknOOWNZJv0Mqtgf7jGMVxCKmJcJMdwgBMIyT5ClgoOApWr237o312VpzqhGj7tUegja1PVf//svwFd/i7v5t6gV4LJDmQa8vX2L+/2d1bXrPS+LKNgwwMHViMFNIlOP7iCrRYvX2QqyIAvJo/3OHbV12c76/f1n+5y1A/LCbR3ZXjvvT9n539o46ZGMJHyq5NTHMBhhu3MRmGv7HlyAiBkglZAWUuwsBkRFtIzPz/sk8+IEa/QMgM7x2jIrvpA6kVrXAmlcKOdLGeMAFQsIAVEAcrndWoyToSDWx8Wd5t7ksP8sIq0zdwNxNoBE1AIH3Q8xlc12zt5ZvWcrvNHnybWuvoj6+biE7Jog3s9RwZz2N+lEdG01ptUzzAS2qh4AYGgwXJhBElpfmMYps2edrNFgJ4/rPFFfrAKVLKvb++p8yEh+Pzy1i13sYhe72MUudrGLXexiP5J9uCf4xS52sYtd7GIXu9jFLnaxi32EXUDGxS52sYtd7GIXu9jFLnaxT2oXkHGxi13sYhe72MUudrGLXeyT2gVkXOxiF7vYxS52sYtd7GIX+6R2ARkXu9jFLnaxi13sYhe72MU+qV1AxsUudrGLXexiF7vYxS52sU9qF5BxsYtd7GIXu9jFLnaxi13sk9oFZFzsYhe72MUudrGLXexiF/ukdgEZF7vYxS52sYtd7GIXu9jFPqn9fyxV1eqJut+zAAAAAElFTkSuQmCC"},"metadata":{}}]},{"cell_type":"markdown","source":"First Model Architecture\n","metadata":{}},{"cell_type":"code","source":"from keras.models import Sequential\nfrom keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, BatchNormalization\n\nmodel2 = Sequential()\n\nmodel2.add(Conv2D(32, (3, 3), input_shape=(224, 224, 3), activation='relu'))\nmodel2.add(BatchNormalization())\nmodel2.add(MaxPooling2D(pool_size=(2, 2)))\nmodel2.add(Dropout(0.25))\n\nmodel2.add(Conv2D(64, (3, 3), activation='relu'))\nmodel2.add(BatchNormalization())\nmodel2.add(MaxPooling2D(pool_size=(2, 2)))\nmodel2.add(Dropout(0.25))\n\nmodel2.add(Conv2D(128, (3, 3), activation='relu'))\nmodel2.add(BatchNormalization())\nmodel2.add(MaxPooling2D(pool_size=(2, 2)))\nmodel2.add(Dropout(0.25))\n\nmodel2.add(Flatten())\n\nmodel2.add(Dense(512, activation='relu'))\nmodel2.add(BatchNormalization())\nmodel2.add(Dropout(0.5))\n\nmodel2.add(Dense(256, activation='relu'))\nmodel2.add(BatchNormalization())\nmodel2.add(Dropout(0.5))\n\nmodel2.add(Dense(5, activation='softmax'))\n\nmodel2.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])\n\nmodel2.summary()\n","metadata":{"execution":{"iopub.status.busy":"2024-06-24T08:22:37.811407Z","iopub.execute_input":"2024-06-24T08:22:37.812220Z","iopub.status.idle":"2024-06-24T08:22:38.086219Z","shell.execute_reply.started":"2024-06-24T08:22:37.812187Z","shell.execute_reply":"2024-06-24T08:22:38.085365Z"},"trusted":true},"execution_count":92,"outputs":[{"output_type":"display_data","data":{"text/plain":"\u001b[1mModel: \"sequential_1\"\u001b[0m\n","text/html":"
Model: \"sequential_1\"\n
\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”“\nโ”ƒ\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0mโ”ƒ\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0mโ”ƒ\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0mโ”ƒ\nโ”กโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ฉ\nโ”‚ conv2d_567 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m222\u001b[0m, \u001b[38;5;34m222\u001b[0m, \u001b[38;5;34m32\u001b[0m) โ”‚ \u001b[38;5;34m896\u001b[0m โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalization_581 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m222\u001b[0m, \u001b[38;5;34m222\u001b[0m, \u001b[38;5;34m32\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalization\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ max_pooling2d_27 (\u001b[38;5;33mMaxPooling2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m111\u001b[0m, \u001b[38;5;34m111\u001b[0m, \u001b[38;5;34m32\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dropout_28 (\u001b[38;5;33mDropout\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m111\u001b[0m, \u001b[38;5;34m111\u001b[0m, \u001b[38;5;34m32\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_568 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m109\u001b[0m, \u001b[38;5;34m109\u001b[0m, \u001b[38;5;34m64\u001b[0m) โ”‚ \u001b[38;5;34m18,496\u001b[0m โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalization_582 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m109\u001b[0m, \u001b[38;5;34m109\u001b[0m, \u001b[38;5;34m64\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalization\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ max_pooling2d_28 (\u001b[38;5;33mMaxPooling2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m54\u001b[0m, \u001b[38;5;34m54\u001b[0m, \u001b[38;5;34m64\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dropout_29 (\u001b[38;5;33mDropout\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m54\u001b[0m, \u001b[38;5;34m54\u001b[0m, \u001b[38;5;34m64\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_569 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m52\u001b[0m, \u001b[38;5;34m52\u001b[0m, \u001b[38;5;34m128\u001b[0m) โ”‚ \u001b[38;5;34m73,856\u001b[0m โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalization_583 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m52\u001b[0m, \u001b[38;5;34m52\u001b[0m, \u001b[38;5;34m128\u001b[0m) โ”‚ \u001b[38;5;34m512\u001b[0m โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalization\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ max_pooling2d_29 (\u001b[38;5;33mMaxPooling2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m26\u001b[0m, \u001b[38;5;34m26\u001b[0m, \u001b[38;5;34m128\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dropout_30 (\u001b[38;5;33mDropout\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m26\u001b[0m, \u001b[38;5;34m26\u001b[0m, \u001b[38;5;34m128\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ flatten_1 (\u001b[38;5;33mFlatten\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m86528\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dense_60 (\u001b[38;5;33mDense\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m) โ”‚ \u001b[38;5;34m44,302,848\u001b[0m โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalization_584 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m) โ”‚ \u001b[38;5;34m2,048\u001b[0m โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalization\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dropout_31 (\u001b[38;5;33mDropout\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dense_61 (\u001b[38;5;33mDense\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m256\u001b[0m) โ”‚ \u001b[38;5;34m131,328\u001b[0m โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalization_585 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m256\u001b[0m) โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalization\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dropout_32 (\u001b[38;5;33mDropout\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m256\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dense_62 (\u001b[38;5;33mDense\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m) โ”‚ \u001b[38;5;34m1,285\u001b[0m โ”‚\nโ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜\n","text/html":"
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”“\nโ”ƒ Layer (type)                    โ”ƒ Output Shape           โ”ƒ       Param # โ”ƒ\nโ”กโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ฉ\nโ”‚ conv2d_567 (Conv2D)             โ”‚ (None, 222, 222, 32)   โ”‚           896 โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalization_581         โ”‚ (None, 222, 222, 32)   โ”‚           128 โ”‚\nโ”‚ (BatchNormalization)            โ”‚                        โ”‚               โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ max_pooling2d_27 (MaxPooling2D) โ”‚ (None, 111, 111, 32)   โ”‚             0 โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dropout_28 (Dropout)            โ”‚ (None, 111, 111, 32)   โ”‚             0 โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_568 (Conv2D)             โ”‚ (None, 109, 109, 64)   โ”‚        18,496 โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalization_582         โ”‚ (None, 109, 109, 64)   โ”‚           256 โ”‚\nโ”‚ (BatchNormalization)            โ”‚                        โ”‚               โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ max_pooling2d_28 (MaxPooling2D) โ”‚ (None, 54, 54, 64)     โ”‚             0 โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dropout_29 (Dropout)            โ”‚ (None, 54, 54, 64)     โ”‚             0 โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_569 (Conv2D)             โ”‚ (None, 52, 52, 128)    โ”‚        73,856 โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalization_583         โ”‚ (None, 52, 52, 128)    โ”‚           512 โ”‚\nโ”‚ (BatchNormalization)            โ”‚                        โ”‚               โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ max_pooling2d_29 (MaxPooling2D) โ”‚ (None, 26, 26, 128)    โ”‚             0 โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dropout_30 (Dropout)            โ”‚ (None, 26, 26, 128)    โ”‚             0 โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ flatten_1 (Flatten)             โ”‚ (None, 86528)          โ”‚             0 โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dense_60 (Dense)                โ”‚ (None, 512)            โ”‚    44,302,848 โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalization_584         โ”‚ (None, 512)            โ”‚         2,048 โ”‚\nโ”‚ (BatchNormalization)            โ”‚                        โ”‚               โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dropout_31 (Dropout)            โ”‚ (None, 512)            โ”‚             0 โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dense_61 (Dense)                โ”‚ (None, 256)            โ”‚       131,328 โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalization_585         โ”‚ (None, 256)            โ”‚         1,024 โ”‚\nโ”‚ (BatchNormalization)            โ”‚                        โ”‚               โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dropout_32 (Dropout)            โ”‚ (None, 256)            โ”‚             0 โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dense_62 (Dense)                โ”‚ (None, 5)              โ”‚         1,285 โ”‚\nโ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜\n
\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"\u001b[1m Total params: \u001b[0m\u001b[38;5;34m44,532,677\u001b[0m (169.88 MB)\n","text/html":"
 Total params: 44,532,677 (169.88 MB)\n
\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m44,530,693\u001b[0m (169.87 MB)\n","text/html":"
 Trainable params: 44,530,693 (169.87 MB)\n
\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m1,984\u001b[0m (7.75 KB)\n","text/html":"
 Non-trainable params: 1,984 (7.75 KB)\n
\n"},"metadata":{}}]},{"cell_type":"code","source":"\nfrom keras.callbacks import ReduceLROnPlateau, EarlyStopping\n\n\nmodel_checkpoint = ModelCheckpoint('inceptionv3_model.keras', monitor='val_accuracy', save_best_only=True, verbose=1, mode='max')\nreduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=5, min_lr=1e-8, verbose=1)\nearly_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)\n\nepochs = 40\nhistory = model2.fit(\n train_generator,\n epochs=epochs,\n validation_data=val_generator,\n callbacks=[reduce_lr, early_stopping, model_checkpoint]\n)\n\n\n","metadata":{"execution":{"iopub.status.busy":"2024-06-24T08:48:17.687512Z","iopub.execute_input":"2024-06-24T08:48:17.688356Z","iopub.status.idle":"2024-06-24T09:07:33.063991Z","shell.execute_reply.started":"2024-06-24T08:48:17.688319Z","shell.execute_reply":"2024-06-24T09:07:33.063098Z"},"trusted":true},"execution_count":101,"outputs":[{"name":"stdout","text":"Epoch 1/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 434ms/step - accuracy: 0.5353 - loss: 1.3409\nEpoch 1: val_accuracy improved from -inf to 0.18327, saving model to inceptionv3_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m31s\u001b[0m 570ms/step - accuracy: 0.5357 - loss: 1.3394 - val_accuracy: 0.1833 - val_loss: 18.4986 - learning_rate: 0.0010\nEpoch 2/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 447ms/step - accuracy: 0.6025 - loss: 1.1096\nEpoch 2: val_accuracy did not improve from 0.18327\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 525ms/step - accuracy: 0.6028 - loss: 1.1084 - val_accuracy: 0.1833 - val_loss: 13.6835 - learning_rate: 0.0010\nEpoch 3/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 433ms/step - accuracy: 0.6199 - loss: 1.0413\nEpoch 3: val_accuracy did not improve from 0.18327\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 509ms/step - accuracy: 0.6201 - loss: 1.0409 - val_accuracy: 0.1833 - val_loss: 13.4558 - learning_rate: 0.0010\nEpoch 4/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 441ms/step - accuracy: 0.6388 - loss: 1.0010\nEpoch 4: val_accuracy did not improve from 0.18327\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 521ms/step - accuracy: 0.6386 - loss: 1.0013 - val_accuracy: 0.1833 - val_loss: 11.3378 - learning_rate: 0.0010\nEpoch 5/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 438ms/step - accuracy: 0.6288 - loss: 0.9499\nEpoch 5: val_accuracy did not improve from 0.18327\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 518ms/step - accuracy: 0.6291 - loss: 0.9496 - val_accuracy: 0.1833 - val_loss: 6.9379 - learning_rate: 0.0010\nEpoch 6/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 432ms/step - accuracy: 0.6690 - loss: 0.8498\nEpoch 6: val_accuracy improved from 0.18327 to 0.23506, saving model to inceptionv3_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m30s\u001b[0m 556ms/step - accuracy: 0.6691 - loss: 0.8498 - val_accuracy: 0.2351 - val_loss: 4.5784 - learning_rate: 0.0010\nEpoch 7/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 433ms/step - accuracy: 0.6795 - loss: 0.9295\nEpoch 7: val_accuracy did not improve from 0.23506\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 508ms/step - accuracy: 0.6793 - loss: 0.9288 - val_accuracy: 0.2112 - val_loss: 6.3821 - learning_rate: 0.0010\nEpoch 8/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 427ms/step - accuracy: 0.6955 - loss: 0.8469\nEpoch 8: val_accuracy improved from 0.23506 to 0.31474, saving model to inceptionv3_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m30s\u001b[0m 552ms/step - accuracy: 0.6953 - loss: 0.8474 - val_accuracy: 0.3147 - val_loss: 2.6314 - learning_rate: 0.0010\nEpoch 9/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 435ms/step - accuracy: 0.6721 - loss: 0.8497\nEpoch 9: val_accuracy improved from 0.31474 to 0.47012, saving model to inceptionv3_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m31s\u001b[0m 560ms/step - accuracy: 0.6724 - loss: 0.8492 - val_accuracy: 0.4701 - val_loss: 1.6875 - learning_rate: 0.0010\nEpoch 10/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 439ms/step - accuracy: 0.7195 - loss: 0.7820\nEpoch 10: val_accuracy did not improve from 0.47012\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 514ms/step - accuracy: 0.7195 - loss: 0.7823 - val_accuracy: 0.4183 - val_loss: 1.9135 - learning_rate: 0.0010\nEpoch 11/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 427ms/step - accuracy: 0.7145 - loss: 0.7225\nEpoch 11: val_accuracy did not improve from 0.47012\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 501ms/step - accuracy: 0.7147 - loss: 0.7224 - val_accuracy: 0.4004 - val_loss: 3.4161 - learning_rate: 0.0010\nEpoch 12/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 431ms/step - accuracy: 0.7153 - loss: 0.7980\nEpoch 12: val_accuracy improved from 0.47012 to 0.55578, saving model to inceptionv3_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m30s\u001b[0m 556ms/step - accuracy: 0.7153 - loss: 0.7976 - val_accuracy: 0.5558 - val_loss: 1.5413 - learning_rate: 0.0010\nEpoch 13/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 442ms/step - accuracy: 0.7210 - loss: 0.7303\nEpoch 13: val_accuracy did not improve from 0.55578\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m29s\u001b[0m 519ms/step - accuracy: 0.7209 - loss: 0.7305 - val_accuracy: 0.5378 - val_loss: 1.4778 - learning_rate: 0.0010\nEpoch 14/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 435ms/step - accuracy: 0.7475 - loss: 0.6624\nEpoch 14: val_accuracy improved from 0.55578 to 0.57570, saving model to inceptionv3_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m30s\u001b[0m 560ms/step - accuracy: 0.7472 - loss: 0.6637 - val_accuracy: 0.5757 - val_loss: 1.1399 - learning_rate: 0.0010\nEpoch 15/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 431ms/step - accuracy: 0.7578 - loss: 0.6489\nEpoch 15: val_accuracy improved from 0.57570 to 0.69323, saving model to inceptionv3_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m30s\u001b[0m 557ms/step - accuracy: 0.7575 - loss: 0.6493 - val_accuracy: 0.6932 - val_loss: 0.8029 - learning_rate: 0.0010\nEpoch 16/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 436ms/step - accuracy: 0.7600 - loss: 0.6506\nEpoch 16: val_accuracy did not improve from 0.69323\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 509ms/step - accuracy: 0.7598 - loss: 0.6507 - val_accuracy: 0.5438 - val_loss: 1.4752 - learning_rate: 0.0010\nEpoch 17/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 434ms/step - accuracy: 0.7742 - loss: 0.5993\nEpoch 17: val_accuracy did not improve from 0.69323\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 507ms/step - accuracy: 0.7740 - loss: 0.5999 - val_accuracy: 0.5717 - val_loss: 1.2891 - learning_rate: 0.0010\nEpoch 18/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 429ms/step - accuracy: 0.7608 - loss: 0.6373\nEpoch 18: val_accuracy improved from 0.69323 to 0.74104, saving model to inceptionv3_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m30s\u001b[0m 553ms/step - accuracy: 0.7608 - loss: 0.6373 - val_accuracy: 0.7410 - val_loss: 0.6866 - learning_rate: 0.0010\nEpoch 19/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 430ms/step - accuracy: 0.7562 - loss: 0.6182\nEpoch 19: val_accuracy did not improve from 0.74104\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 505ms/step - accuracy: 0.7563 - loss: 0.6185 - val_accuracy: 0.5518 - val_loss: 1.3742 - learning_rate: 0.0010\nEpoch 20/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 428ms/step - accuracy: 0.7642 - loss: 0.6314\nEpoch 20: val_accuracy did not improve from 0.74104\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 502ms/step - accuracy: 0.7643 - loss: 0.6313 - val_accuracy: 0.4721 - val_loss: 2.2594 - learning_rate: 0.0010\nEpoch 21/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 434ms/step - accuracy: 0.7846 - loss: 0.6073\nEpoch 21: val_accuracy did not improve from 0.74104\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 507ms/step - accuracy: 0.7844 - loss: 0.6073 - val_accuracy: 0.7052 - val_loss: 0.8557 - learning_rate: 0.0010\nEpoch 22/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 431ms/step - accuracy: 0.7962 - loss: 0.5384\nEpoch 22: val_accuracy did not improve from 0.74104\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 509ms/step - accuracy: 0.7963 - loss: 0.5386 - val_accuracy: 0.7410 - val_loss: 0.6646 - learning_rate: 0.0010\nEpoch 23/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 433ms/step - accuracy: 0.7698 - loss: 0.5934\nEpoch 23: val_accuracy did not improve from 0.74104\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 507ms/step - accuracy: 0.7699 - loss: 0.5932 - val_accuracy: 0.6155 - val_loss: 0.9930 - learning_rate: 0.0010\nEpoch 24/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 432ms/step - accuracy: 0.7944 - loss: 0.5348\nEpoch 24: val_accuracy did not improve from 0.74104\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 505ms/step - accuracy: 0.7941 - loss: 0.5357 - val_accuracy: 0.6773 - val_loss: 0.8424 - learning_rate: 0.0010\nEpoch 25/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 430ms/step - accuracy: 0.7971 - loss: 0.5388\nEpoch 25: val_accuracy did not improve from 0.74104\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 503ms/step - accuracy: 0.7972 - loss: 0.5388 - val_accuracy: 0.7251 - val_loss: 0.7928 - learning_rate: 0.0010\nEpoch 26/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 432ms/step - accuracy: 0.8000 - loss: 0.5457\nEpoch 26: val_accuracy improved from 0.74104 to 0.75299, saving model to inceptionv3_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m30s\u001b[0m 554ms/step - accuracy: 0.8002 - loss: 0.5452 - val_accuracy: 0.7530 - val_loss: 0.7401 - learning_rate: 0.0010\nEpoch 27/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 442ms/step - accuracy: 0.7904 - loss: 0.5179\nEpoch 27: ReduceLROnPlateau reducing learning rate to 0.00010000000474974513.\n\nEpoch 27: val_accuracy did not improve from 0.75299\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 514ms/step - accuracy: 0.7908 - loss: 0.5171 - val_accuracy: 0.6833 - val_loss: 0.8404 - learning_rate: 0.0010\nEpoch 28/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 428ms/step - accuracy: 0.8211 - loss: 0.4977\nEpoch 28: val_accuracy improved from 0.75299 to 0.82669, saving model to inceptionv3_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m30s\u001b[0m 552ms/step - accuracy: 0.8214 - loss: 0.4968 - val_accuracy: 0.8267 - val_loss: 0.4684 - learning_rate: 1.0000e-04\nEpoch 29/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 441ms/step - accuracy: 0.8363 - loss: 0.4685\nEpoch 29: val_accuracy improved from 0.82669 to 0.84661, saving model to inceptionv3_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m30s\u001b[0m 566ms/step - accuracy: 0.8363 - loss: 0.4683 - val_accuracy: 0.8466 - val_loss: 0.4421 - learning_rate: 1.0000e-04\nEpoch 30/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 434ms/step - accuracy: 0.8658 - loss: 0.3958\nEpoch 30: val_accuracy improved from 0.84661 to 0.85060, saving model to inceptionv3_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m30s\u001b[0m 557ms/step - accuracy: 0.8654 - loss: 0.3966 - val_accuracy: 0.8506 - val_loss: 0.4161 - learning_rate: 1.0000e-04\nEpoch 31/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 433ms/step - accuracy: 0.8418 - loss: 0.4051\nEpoch 31: val_accuracy did not improve from 0.85060\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 506ms/step - accuracy: 0.8416 - loss: 0.4055 - val_accuracy: 0.8127 - val_loss: 0.5276 - learning_rate: 1.0000e-04\nEpoch 32/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 431ms/step - accuracy: 0.8349 - loss: 0.4287\nEpoch 32: val_accuracy did not improve from 0.85060\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 504ms/step - accuracy: 0.8351 - loss: 0.4285 - val_accuracy: 0.8287 - val_loss: 0.4647 - learning_rate: 1.0000e-04\nEpoch 33/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 429ms/step - accuracy: 0.8599 - loss: 0.3777\nEpoch 33: val_accuracy improved from 0.85060 to 0.85259, saving model to inceptionv3_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m30s\u001b[0m 555ms/step - accuracy: 0.8598 - loss: 0.3781 - val_accuracy: 0.8526 - val_loss: 0.4069 - learning_rate: 1.0000e-04\nEpoch 34/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 435ms/step - accuracy: 0.8509 - loss: 0.4017\nEpoch 34: val_accuracy improved from 0.85259 to 0.86653, saving model to inceptionv3_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m31s\u001b[0m 561ms/step - accuracy: 0.8509 - loss: 0.4019 - val_accuracy: 0.8665 - val_loss: 0.3727 - learning_rate: 1.0000e-04\nEpoch 35/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 452ms/step - accuracy: 0.8529 - loss: 0.3952\nEpoch 35: val_accuracy did not improve from 0.86653\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m29s\u001b[0m 525ms/step - accuracy: 0.8529 - loss: 0.3955 - val_accuracy: 0.7948 - val_loss: 0.6215 - learning_rate: 1.0000e-04\nEpoch 36/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 430ms/step - accuracy: 0.8572 - loss: 0.4037\nEpoch 36: val_accuracy did not improve from 0.86653\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 504ms/step - accuracy: 0.8572 - loss: 0.4034 - val_accuracy: 0.8625 - val_loss: 0.3769 - learning_rate: 1.0000e-04\nEpoch 37/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 437ms/step - accuracy: 0.8606 - loss: 0.3785\nEpoch 37: val_accuracy did not improve from 0.86653\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 510ms/step - accuracy: 0.8606 - loss: 0.3783 - val_accuracy: 0.7988 - val_loss: 0.6632 - learning_rate: 1.0000e-04\nEpoch 38/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 436ms/step - accuracy: 0.8548 - loss: 0.3995\nEpoch 38: val_accuracy did not improve from 0.86653\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 510ms/step - accuracy: 0.8547 - loss: 0.3997 - val_accuracy: 0.8546 - val_loss: 0.3832 - learning_rate: 1.0000e-04\nEpoch 39/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 435ms/step - accuracy: 0.8480 - loss: 0.4061\nEpoch 39: ReduceLROnPlateau reducing learning rate to 1.0000000474974514e-05.\n\nEpoch 39: val_accuracy did not improve from 0.86653\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 511ms/step - accuracy: 0.8482 - loss: 0.4058 - val_accuracy: 0.8586 - val_loss: 0.3976 - learning_rate: 1.0000e-04\nEpoch 40/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 434ms/step - accuracy: 0.8619 - loss: 0.3729\nEpoch 40: val_accuracy did not improve from 0.86653\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 508ms/step - accuracy: 0.8619 - loss: 0.3729 - val_accuracy: 0.8586 - val_loss: 0.4002 - learning_rate: 1.0000e-05\n","output_type":"stream"}]},{"cell_type":"code","source":"test_loss, test_accuracy = model2.evaluate(test_generator)\nprint(f'Test loss: {test_loss}')\nprint(f'Test accuracy: {test_accuracy}')","metadata":{"execution":{"iopub.status.busy":"2024-06-24T09:08:01.787461Z","iopub.execute_input":"2024-06-24T09:08:01.787825Z","iopub.status.idle":"2024-06-24T09:08:08.734751Z","shell.execute_reply.started":"2024-06-24T09:08:01.787795Z","shell.execute_reply":"2024-06-24T09:08:08.733846Z"},"trusted":true},"execution_count":102,"outputs":[{"name":"stdout","text":"\u001b[1m16/16\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 418ms/step - accuracy: 0.8278 - loss: 0.4176\nTest loss: 0.40044909715652466\nTest accuracy: 0.8484252095222473\n","output_type":"stream"},{"name":"stderr","text":"W0000 00:00:1719220088.717370 140 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update\n","output_type":"stream"}]},{"cell_type":"code","source":"model2.save('model2_84percentacc.h5')","metadata":{"execution":{"iopub.status.busy":"2024-06-24T09:08:39.723501Z","iopub.execute_input":"2024-06-24T09:08:39.724096Z","iopub.status.idle":"2024-06-24T09:08:40.819185Z","shell.execute_reply.started":"2024-06-24T09:08:39.724066Z","shell.execute_reply":"2024-06-24T09:08:40.818393Z"},"trusted":true},"execution_count":103,"outputs":[]},{"cell_type":"markdown","source":"Using Pre Trained Models\n","metadata":{}},{"cell_type":"code","source":"from keras.applications import VGG16\nfrom keras.layers import Dense, Flatten, Dropout, GlobalAveragePooling2D\nfrom keras.models import Model\nfrom keras.callbacks import ReduceLROnPlateau, ModelCheckpoint, EarlyStopping\nfrom keras.optimizers import Adam\n\nvgg16_model = VGG16(weights='imagenet', include_top=False, input_shape=(224,224, 3))\n\nfeature_extractor = Model(inputs=vgg16_model.input, outputs=vgg16_model.get_layer('block4_pool').output)\n\nfor layer in feature_extractor.layers:\n layer.trainable = False\n\nx = feature_extractor.output\nx = GlobalAveragePooling2D()(x)\nx = Dense(1024, activation='relu')(x)\noutput = Dense(5, activation='softmax')(x)\n\nmodel16 = Model(inputs=feature_extractor.input, outputs=output)\n\n\nmodel16.compile(optimizer=Adam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy'])\n\nmodel_checkpoint = ModelCheckpoint('model.keras', monitor='val_accuracy', save_best_only=True, verbose=1, mode='max')\nreduce_lr = ReduceLROnPlateau(mode='min', monitor='val_loss', factor=0.1, patience=5, min_lr=1e-8, verbose=1)\nearly_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)\n\nmodel16.summary()\n\n\n","metadata":{"execution":{"iopub.status.busy":"2024-06-24T07:11:54.797192Z","iopub.execute_input":"2024-06-24T07:11:54.797812Z","iopub.status.idle":"2024-06-24T07:11:55.101074Z","shell.execute_reply.started":"2024-06-24T07:11:54.797779Z","shell.execute_reply":"2024-06-24T07:11:55.100145Z"},"trusted":true},"execution_count":52,"outputs":[{"output_type":"display_data","data":{"text/plain":"\u001b[1mModel: \"functional_43\"\u001b[0m\n","text/html":"
Model: \"functional_43\"\n
\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”“\nโ”ƒ\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0mโ”ƒ\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0mโ”ƒ\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0mโ”ƒ\nโ”กโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ฉ\nโ”‚ input_layer_17 (\u001b[38;5;33mInputLayer\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m224\u001b[0m, \u001b[38;5;34m224\u001b[0m, \u001b[38;5;34m3\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block1_conv1 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m224\u001b[0m, \u001b[38;5;34m224\u001b[0m, \u001b[38;5;34m64\u001b[0m) โ”‚ \u001b[38;5;34m1,792\u001b[0m โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block1_conv2 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m224\u001b[0m, \u001b[38;5;34m224\u001b[0m, \u001b[38;5;34m64\u001b[0m) โ”‚ \u001b[38;5;34m36,928\u001b[0m โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block1_pool (\u001b[38;5;33mMaxPooling2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m112\u001b[0m, \u001b[38;5;34m112\u001b[0m, \u001b[38;5;34m64\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block2_conv1 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m112\u001b[0m, \u001b[38;5;34m112\u001b[0m, \u001b[38;5;34m128\u001b[0m) โ”‚ \u001b[38;5;34m73,856\u001b[0m โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block2_conv2 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m112\u001b[0m, \u001b[38;5;34m112\u001b[0m, \u001b[38;5;34m128\u001b[0m) โ”‚ \u001b[38;5;34m147,584\u001b[0m โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block2_pool (\u001b[38;5;33mMaxPooling2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m128\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block3_conv1 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m256\u001b[0m) โ”‚ \u001b[38;5;34m295,168\u001b[0m โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block3_conv2 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m256\u001b[0m) โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block3_conv3 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m256\u001b[0m) โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block3_pool (\u001b[38;5;33mMaxPooling2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m256\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block4_conv1 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m512\u001b[0m) โ”‚ \u001b[38;5;34m1,180,160\u001b[0m โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block4_conv2 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m512\u001b[0m) โ”‚ \u001b[38;5;34m2,359,808\u001b[0m โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block4_conv3 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m512\u001b[0m) โ”‚ \u001b[38;5;34m2,359,808\u001b[0m โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block4_pool (\u001b[38;5;33mMaxPooling2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m512\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ global_average_pooling2d_17 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚\nโ”‚ (\u001b[38;5;33mGlobalAveragePooling2D\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dense_42 (\u001b[38;5;33mDense\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1024\u001b[0m) โ”‚ \u001b[38;5;34m525,312\u001b[0m โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dense_43 (\u001b[38;5;33mDense\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m) โ”‚ \u001b[38;5;34m5,125\u001b[0m โ”‚\nโ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜\n","text/html":"
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”“\nโ”ƒ Layer (type)                    โ”ƒ Output Shape           โ”ƒ       Param # โ”ƒ\nโ”กโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ฉ\nโ”‚ input_layer_17 (InputLayer)     โ”‚ (None, 224, 224, 3)    โ”‚             0 โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block1_conv1 (Conv2D)           โ”‚ (None, 224, 224, 64)   โ”‚         1,792 โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block1_conv2 (Conv2D)           โ”‚ (None, 224, 224, 64)   โ”‚        36,928 โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block1_pool (MaxPooling2D)      โ”‚ (None, 112, 112, 64)   โ”‚             0 โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block2_conv1 (Conv2D)           โ”‚ (None, 112, 112, 128)  โ”‚        73,856 โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block2_conv2 (Conv2D)           โ”‚ (None, 112, 112, 128)  โ”‚       147,584 โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block2_pool (MaxPooling2D)      โ”‚ (None, 56, 56, 128)    โ”‚             0 โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block3_conv1 (Conv2D)           โ”‚ (None, 56, 56, 256)    โ”‚       295,168 โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block3_conv2 (Conv2D)           โ”‚ (None, 56, 56, 256)    โ”‚       590,080 โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block3_conv3 (Conv2D)           โ”‚ (None, 56, 56, 256)    โ”‚       590,080 โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block3_pool (MaxPooling2D)      โ”‚ (None, 28, 28, 256)    โ”‚             0 โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block4_conv1 (Conv2D)           โ”‚ (None, 28, 28, 512)    โ”‚     1,180,160 โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block4_conv2 (Conv2D)           โ”‚ (None, 28, 28, 512)    โ”‚     2,359,808 โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block4_conv3 (Conv2D)           โ”‚ (None, 28, 28, 512)    โ”‚     2,359,808 โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block4_pool (MaxPooling2D)      โ”‚ (None, 14, 14, 512)    โ”‚             0 โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ global_average_pooling2d_17     โ”‚ (None, 512)            โ”‚             0 โ”‚\nโ”‚ (GlobalAveragePooling2D)        โ”‚                        โ”‚               โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dense_42 (Dense)                โ”‚ (None, 1024)           โ”‚       525,312 โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dense_43 (Dense)                โ”‚ (None, 5)              โ”‚         5,125 โ”‚\nโ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜\n
\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"\u001b[1m Total params: \u001b[0m\u001b[38;5;34m8,165,701\u001b[0m (31.15 MB)\n","text/html":"
 Total params: 8,165,701 (31.15 MB)\n
\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m530,437\u001b[0m (2.02 MB)\n","text/html":"
 Trainable params: 530,437 (2.02 MB)\n
\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m7,635,264\u001b[0m (29.13 MB)\n","text/html":"
 Non-trainable params: 7,635,264 (29.13 MB)\n
\n"},"metadata":{}}]},{"cell_type":"code","source":"epochs = 17\n\nhistory = model16.fit(\n train_generator,\n epochs=epochs,\n validation_data=val_generator,\n callbacks=[reduce_lr, early_stopping, model_checkpoint]\n)","metadata":{"execution":{"iopub.status.busy":"2024-06-24T07:36:27.261778Z","iopub.execute_input":"2024-06-24T07:36:27.262375Z","iopub.status.idle":"2024-06-24T07:41:13.902865Z","shell.execute_reply.started":"2024-06-24T07:36:27.262341Z","shell.execute_reply":"2024-06-24T07:41:13.902050Z"},"trusted":true},"execution_count":60,"outputs":[{"name":"stdout","text":"Epoch 1/17\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 441ms/step - accuracy: 0.6507 - loss: 0.8859","output_type":"stream"},{"name":"stderr","text":"W0000 00:00:1719214614.511715 141 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update\n","output_type":"stream"},{"name":"stdout","text":"\nEpoch 1: val_accuracy did not improve from 0.85657\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m30s\u001b[0m 549ms/step - accuracy: 0.6506 - loss: 0.8862 - val_accuracy: 0.7251 - val_loss: 0.7658 - learning_rate: 0.0010\nEpoch 2/17\n","output_type":"stream"},{"name":"stderr","text":"W0000 00:00:1719214618.128470 141 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update\n","output_type":"stream"},{"name":"stdout","text":"\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 443ms/step - accuracy: 0.6751 - loss: 0.8348\nEpoch 2: val_accuracy did not improve from 0.85657\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 518ms/step - accuracy: 0.6755 - loss: 0.8336 - val_accuracy: 0.6574 - val_loss: 0.9390 - learning_rate: 0.0010\nEpoch 3/17\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 439ms/step - accuracy: 0.6767 - loss: 0.8283\nEpoch 3: val_accuracy did not improve from 0.85657\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 515ms/step - accuracy: 0.6771 - loss: 0.8274 - val_accuracy: 0.7610 - val_loss: 0.6719 - learning_rate: 0.0010\nEpoch 4/17\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 441ms/step - accuracy: 0.7568 - loss: 0.6717\nEpoch 4: val_accuracy did not improve from 0.85657\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 515ms/step - accuracy: 0.7566 - loss: 0.6719 - val_accuracy: 0.7231 - val_loss: 0.7189 - learning_rate: 0.0010\nEpoch 5/17\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 438ms/step - accuracy: 0.7833 - loss: 0.5983\nEpoch 5: val_accuracy did not improve from 0.85657\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 513ms/step - accuracy: 0.7825 - loss: 0.5997 - val_accuracy: 0.6793 - val_loss: 0.8659 - learning_rate: 0.0010\nEpoch 6/17\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 438ms/step - accuracy: 0.7607 - loss: 0.6344\nEpoch 6: val_accuracy did not improve from 0.85657\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 514ms/step - accuracy: 0.7604 - loss: 0.6354 - val_accuracy: 0.7749 - val_loss: 0.6255 - learning_rate: 0.0010\nEpoch 7/17\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 437ms/step - accuracy: 0.7707 - loss: 0.6229\nEpoch 7: val_accuracy did not improve from 0.85657\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 516ms/step - accuracy: 0.7709 - loss: 0.6225 - val_accuracy: 0.7849 - val_loss: 0.5701 - learning_rate: 0.0010\nEpoch 8/17\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 441ms/step - accuracy: 0.7994 - loss: 0.5884\nEpoch 8: val_accuracy did not improve from 0.85657\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m29s\u001b[0m 519ms/step - accuracy: 0.7992 - loss: 0.5884 - val_accuracy: 0.7749 - val_loss: 0.6136 - learning_rate: 0.0010\nEpoch 9/17\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 445ms/step - accuracy: 0.7864 - loss: 0.5555\nEpoch 9: val_accuracy did not improve from 0.85657\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 522ms/step - accuracy: 0.7866 - loss: 0.5553 - val_accuracy: 0.7649 - val_loss: 0.6434 - learning_rate: 0.0010\nEpoch 10/17\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 447ms/step - accuracy: 0.7955 - loss: 0.5735\nEpoch 10: val_accuracy did not improve from 0.85657\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 522ms/step - accuracy: 0.7956 - loss: 0.5728 - val_accuracy: 0.8108 - val_loss: 0.5511 - learning_rate: 0.0010\n","output_type":"stream"}]},{"cell_type":"code","source":"plt.plot(history.history['accuracy'])\nplt.plot(history.history['val_accuracy'])\nplt.xlabel(\"Epoch\")\nplt.ylabel(\"Accuracy\")\nplt.title(\"Accuracy per epoch\")\nplt.show()","metadata":{"execution":{"iopub.status.busy":"2024-06-24T07:33:47.939208Z","iopub.execute_input":"2024-06-24T07:33:47.939563Z","iopub.status.idle":"2024-06-24T07:33:48.209402Z","shell.execute_reply.started":"2024-06-24T07:33:47.939536Z","shell.execute_reply":"2024-06-24T07:33:48.208515Z"},"trusted":true},"execution_count":54,"outputs":[{"output_type":"display_data","data":{"text/plain":"
","image/png":"iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8H0lEQVR4nO3dd3xUVfrH8c+k917pvfcioNgAxbJWVKwUFVYE664/e19FXde1rIINKwKigB1FBLGA9N5raOmkkzr398fNTBLSk5lMSL7v12temblzy7kZdJ485znnWAzDMBARERFpItxc3QARERERR1JwIyIiIk2KghsRERFpUhTciIiISJOi4EZERESaFAU3IiIi0qQouBEREZEmRcGNiIiINCkKbkRERKRJUXAjItLMPPXUU1gsFpKTk13dFBGnUHAj0ki99dZbWCwWhgwZ4uqmiIicVhTciDRSs2fPpl27dqxevZq9e/e6ujkiIqcNBTcijdCBAwf4888/eeWVV4iMjGT27NmublKlsrOzXd0El2iu9y1yOlBwI9IIzZ49m9DQUC699FKuueaaSoObtLQ07rvvPtq1a4e3tzetWrVi3LhxZWopcnNzeeqpp+jSpQs+Pj7ExsZy9dVXs2/fPgCWL1+OxWJh+fLlZc598OBBLBYLH374oX3bhAkTCAgIYN++fVxyySUEBgZy0003AfDbb79x7bXX0qZNG7y9vWndujX33XcfJ0+eLNfunTt3ct111xEZGYmvry9du3bl0UcfBWDZsmVYLBYWLlxY7rjPPvsMi8XCypUrK/3dffjhh1gsFlasWMHf//53wsPDCQoKYty4cZw4caLc/j/88ANnn302/v7+BAYGcumll7Jt27Yy+1R135U5evQot956K9HR0Xh7e9OzZ09mzZpVZh/b737evHk88sgjxMTE4O/vz+WXX87hw4fLnXP+/PkMHDgQX19fIiIiuPnmmzl69Gi5/ar6/ZaWlpbGhAkTCAkJITg4mIkTJ5KTk1PlfYmcDjxc3QARKW/27NlcffXVeHl5ccMNNzBjxgzWrFnD4MGD7ftkZWVx9tlns2PHDm699VYGDBhAcnIyX3/9NUeOHCEiIoKioiL+9re/sXTpUq6//nruueceMjMzWbJkCVu3bqVjx461blthYSGjR49m+PDhvPzyy/j5+QHmF29OTg5TpkwhPDyc1atX88Ybb3DkyBHmz59vP37z5s2cffbZeHp6MnnyZNq1a8e+ffv45ptveO655zjvvPNo3bo1s2fP5qqrrir3e+nYsSPDhg2rtp3Tpk0jJCSEp556il27djFjxgwOHTpkDygAPvnkE8aPH8/o0aN58cUXycnJYcaMGQwfPpwNGzbQrl27au+7IgkJCQwdOhSLxcK0adOIjIzkhx9+4LbbbiMjI4N77723zP7PPfccFouFBx98kMTERF599VVGjRrFxo0b8fX1BcygbeLEiQwePJjp06eTkJDAa6+9xh9//MGGDRsICQmp0e+3tOuuu4727dszffp01q9fz3vvvUdUVBQvvvhitb9fkUbNEJFGZe3atQZgLFmyxDAMw7BarUarVq2Me+65p8x+TzzxhAEYCxYsKHcOq9VqGIZhzJo1ywCMV155pdJ9li1bZgDGsmXLyrx/4MABAzA++OAD+7bx48cbgPHQQw+VO19OTk65bdOnTzcsFotx6NAh+7ZzzjnHCAwMLLOtdHsMwzAefvhhw9vb20hLS7NvS0xMNDw8PIwnn3yy3HVK++CDDwzAGDhwoJGfn2/f/tJLLxmA8dVXXxmGYRiZmZlGSEiIMWnSpDLHx8fHG8HBwWW2V3XfFbntttuM2NhYIzk5ucz266+/3ggODrb/rmy/+5YtWxoZGRn2/T7//HMDMF577TXDMAwjPz/fiIqKMnr16mWcPHnSvt+3335rAMYTTzxh31aT3++TTz5pAMatt95aZp+rrrrKCA8Pr9E9ijRm6pYSaWRmz55NdHQ0559/PgAWi4WxY8cyd+5cioqK7Pt9+eWX9O3bt1x2w3aMbZ+IiAjuuuuuSvepiylTppTbZsswgFmPkpyczJlnnolhGGzYsAGApKQkVqxYwa233kqbNm0qbc+4cePIy8vjiy++sG+bN28ehYWF3HzzzTVq4+TJk/H09CzTZg8PD77//nsAlixZQlpaGjfccAPJycn2h7u7O0OGDGHZsmU1uu9TGYbBl19+yWWXXYZhGGXOPXr0aNLT01m/fn2ZY8aNG0dgYKD99TXXXENsbKy9rWvXriUxMZE777wTHx8f+36XXnop3bp147vvvgNq/vu1ueOOO8q8Pvvss0lJSSEjI6Pa+xRpzBTciDQiRUVFzJ07l/PPP58DBw6wd+9e9u7dy5AhQ0hISGDp0qX2ffft20evXr2qPN++ffvo2rUrHh6O64H28PCgVatW5bbHxcUxYcIEwsLCCAgIIDIyknPPPReA9PR0APbv3w9Qbbu7devG4MGDy9QazZ49m6FDh9KpU6catbNz585lXgcEBBAbG8vBgwcB2LNnDwAjRowgMjKyzOOnn34iMTGxRvd9qqSkJNLS0njnnXfKnXfixIkA5c59alstFgudOnWyt/XQoUMAdO3atdz1unXrZn+/pr9fm1MDoNDQUIAKa5NETiequRFpRH755ReOHz/O3LlzmTt3brn3Z8+ezYUXXujQa1aWwSmdJSrN29sbNze3cvtecMEFpKam8uCDD9KtWzf8/f05evQoEyZMwGq11rpd48aN45577uHIkSPk5eWxatUq/ve//9X6PJWxtemTTz4hJiam3PunBoQV3XdV57355psZP358hfv06dOnts11Cnd39wq3G4bRwC0RcSwFNyKNyOzZs4mKiuLNN98s996CBQtYuHAhM2fOxNfXl44dO7J169Yqz9exY0f++usvCgoKynTRlGb7az0tLa3Mdls2oCa2bNnC7t27+eijjxg3bpx9+5IlS8rs16FDB4Bq2w1w/fXXc//99zNnzhxOnjyJp6cnY8eOrXGb9uzZY+/aA7MA+/jx41xyySUA9mLqqKgoRo0aVePzVicyMpLAwECKiopqfF5bFsnGMAz27t1rD4Latm0LwK5duxgxYkSZfXft2mV/vza/X5GmTN1SIo3EyZMnWbBgAX/729+45ppryj2mTZtGZmYmX3/9NQBjxoxh06ZNFQ6Ztv3lPWbMGJKTkyvMeNj2adu2Le7u7qxYsaLM+2+99VaN227LAJT+i98wDF577bUy+0VGRnLOOecwa9Ys4uLiKmyPTUREBBdffDGffvops2fP5qKLLiIiIqLGbXrnnXcoKCiwv54xYwaFhYVcfPHFAIwePZqgoCCef/75MvvZJCUl1fhapbm7uzNmzBi+/PLLCoOMis778ccfk5mZaX/9xRdfcPz4cXtbBw0aRFRUFDNnziQvL8++3w8//MCOHTu49NJLgdr9fkWaMmVuRBqJr7/+mszMTC6//PIK3x86dKh9Qr+xY8fywAMP8MUXX3Dttddy6623MnDgQFJTU/n666+ZOXMmffv2Zdy4cXz88cfcf//9rF69mrPPPpvs7Gx+/vln7rzzTq644gqCg4O59tpreeONN7BYLHTs2JFvv/22XF1IVbp160bHjh355z//ydGjRwkKCuLLL7+ssHbj9ddfZ/jw4QwYMIDJkyfTvn17Dh48yHfffcfGjRvL7Dtu3DiuueYaAJ599tma/zKB/Px8Ro4cyXXXXceuXbt46623GD58uP33GxQUxIwZM7jlllsYMGAA119/PZGRkcTFxfHdd99x1lln1bkb7IUXXmDZsmUMGTKESZMm0aNHD1JTU1m/fj0///wzqampZfYPCwtj+PDhTJw4kYSEBF599VU6derEpEmTAPD09OTFF19k4sSJnHvuudxwww32oeDt2rXjvvvus5+rNr9fkSbLRaO0ROQUl112meHj42NkZ2dXus+ECRMMT09P+xDjlJQUY9q0aUbLli0NLy8vo1WrVsb48ePLDEHOyckxHn30UaN9+/aGp6enERMTY1xzzTXGvn377PskJSUZY8aMMfz8/IzQ0FDj73//u7F169YKh4L7+/tX2Lbt27cbo0aNMgICAoyIiAhj0qRJxqZNm8qdwzAMY+vWrcZVV11lhISEGD4+PkbXrl2Nxx9/vNw58/LyjNDQUCM4OLjMEOiq2IaC//rrr8bkyZON0NBQIyAgwLjpppuMlJSUcvsvW7bMGD16tBEcHGz4+PgYHTt2NCZMmGCsXbu2RvddmYSEBGPq1KlG69at7b/3kSNHGu+8806ZawPGnDlzjIcfftiIiooyfH19jUsvvbTcUG7DMIx58+YZ/fv3N7y9vY2wsDDjpptuMo4cOVJuv+p+v7ah4ElJSRX+7g4cOFCrexVpbCyGoVyliDROhYWFtGjRgssuu4z333+/RsfYJrtbs2YNgwYNcnIL62f58uWcf/75zJ8/356hEpH6U82NiDRaixYtIikpqUyRsohIdVRzIyKNzl9//cXmzZt59tln6d+/v32+HBGRmlDmRkQanRkzZjBlyhSioqL4+OOPXd0cETnNqOZGREREmhRlbkRERKRJUXAjIiIiTUqzKyi2Wq0cO3aMwMDAeq2KLCIiIg3HMAwyMzNp0aJFteu8Nbvg5tixY7Ru3drVzRAREZE6OHz4MK1atapyH5cHN2+++Sb//ve/iY+Pp2/fvrzxxhucccYZFe5bUFDA9OnT+eijjzh69Chdu3blxRdf5KKLLqrx9QIDAwHzlxMUFOSQexARERHnysjIoHXr1vbv8aq4NLiZN28e999/PzNnzmTIkCG8+uqrjB49ml27dhEVFVVu/8cee4xPP/2Ud999l27duvHjjz9y1VVX8eeff9K/f/8aXdPWFRUUFKTgRkRE5DRTk5ISlw4FHzJkCIMHD7YvTme1WmndujV33XUXDz30ULn9W7RowaOPPsrUqVPt28aMGYOvry+ffvppja6ZkZFBcHAw6enpCm5EREROE7X5/nbZaKn8/HzWrVvHqFGjShrj5saoUaNYuXJlhcfk5eXh4+NTZpuvry+///67U9sqIiIipw+XBTfJyckUFRURHR1dZnt0dDTx8fEVHjN69GheeeUV9uzZg9VqZcmSJSxYsIDjx49Xep28vDwyMjLKPERERKTpOq3muXnttdfo3Lkz3bp1w8vLi2nTpjFx4sQqh4RNnz6d4OBg+0MjpURERJo2lwU3ERERuLu7k5CQUGZ7QkICMTExFR4TGRnJokWLyM7O5tChQ+zcuZOAgAA6dOhQ6XUefvhh0tPT7Y/Dhw879D5ERESkcXFZcOPl5cXAgQNZunSpfZvVamXp0qUMGzasymN9fHxo2bIlhYWFfPnll1xxxRWV7uvt7W0fGaURUiIiIk2fS4eC33///YwfP55BgwZxxhln8Oqrr5Kdnc3EiRMBGDduHC1btmT69OkA/PXXXxw9epR+/fpx9OhRnnrqKaxWK//3f//nytsQERGRRsSlwc3YsWNJSkriiSeeID4+nn79+rF48WJ7kXFcXFyZeprc3Fwee+wx9u/fT0BAAJdccgmffPIJISEhLroDERERaWxcOs+NK2ieGxERkdPPaTHPjYiIiIgzKLgRERGRJkXBjYiIiDQpCm5ERMSlCousnMwvcnUzxEGOpZ1kb2KWS9vg0tFSIiLSfBUWWfli3RH++/NuTuYXMfPmgZzZKcLVzZI6yMgtYPGWeBZuOMqqAymM6h7Nu+MGuaw9Cm5ERKRBGYbBku0JvPTjrjJ/4Y//YDWvXNePy/q2cGHrpKbyC62s2J3Ewo1H+Xl7AnmFVvt7J/OLsFoN3NwsLmmbghsREWkwaw+m8sIPO1l76AQAoX6eTD2/Exvi0vhuy3HumrOBpMw8bh3e3sUtbZqsVoONR9JYtT+FIB9P2ob70SbMjxYhvni6V1+pYhgGGw6nsXD9Ub7dfIwTOQX29zpFBXBV/5Zc0a8FrUL9nHkb1VJwIyIiTrc3MZMXF+9iyXZzPUEfTzduH96Byed2IMjHkyKrQUSAFx+tPMQz324nMTOPBy/qisXimr/8m5L8Qiur9qfw0/Z4lmxPICEjr9w+7m4WWoT40DbMnzbFAU/bMD9ah/nRNtyP5Kx8Fm04yqKNRzmUkmM/LiLAmyv6teCq/i3p2SKo0XxeCm5ERMRp4tNzefXn3Xy+9jBWw/wSvW5Qa+4d1ZnoIB/7fu5uFp66vCdRQT78+8ddzPx1H4mZubw4pk+NMgoNLSkzj5d/3MXPOxII8PEgIsCbiAAvIgK8iQz0Ln7tTWSgl/25v3fDfeVm5xWyYncSP26LZ+nORDJzC+3vBXh7MLxTBAVFVuJSc4hLzSGv0Mrh1JMcTj0Je6s+t6+nOxf1iuGq/i05s2M4Ho3w81FwIyLSDGXmFvDH3hSGd44gwAlfuuknC3j7133M+uMAuQVmLcbontE8MLobnaICKjzGYrEw9fxORAV689CCLSxYf5TU7HzeumkAfl6N4+uqoMjKR38e5LWf95CZZwYMKdn5ZbIZlfH1dOe8rpG8MKYPwb6eDm9banY+P+9I4Kdt8fy2J7lMDUxEgDcX9Ijmwp7RnNkxHG8Pd/t7VqtBUlYeh1LMQCcuJZtDqbbnOaRk5+NmgbM7R3JV/5Zc0CO6QQO1utDyCyIizUxKVh43vfcXO+MziQjw4p6Rnbn+jDYOyZBk5RXy8cqDvLNiP2nF9RiD24Xy0MXdGdg2tMbn+WVnAnfOXk9ugZW+rUP4YMJgwvy96t2++lixO4mnv9nGvqRsAHq3DOb/LuqKt4c7yVl55iMzj6SsfPvrpEzzpy3AA+gcFcCsCYNpHeaYupTU7HweXbiFH7fFYy31jd4mzI/RPaMZ3TOG/m1Cca9jcW9WXiFWwyDIx/EBWW3U5vtbwY2ISLH8QnNo8oL1Rzi7cyS3n92+0f+FWlvJWXnc9O5f7ErILLO9Xbgf/xzdlUt7x9apbiIzt4CP/jzIe78fsAc1naMCePCibozsHlWnc66PO8GtH64hLaeADhH+fHTrGQ4LCGojLiWHZ7/bbq8XCvf34v8u6sq1A1vXaDSQYRhk5xex/VgGd81ZT0JGHhEBXrw7bhD929Q84KvIhrgTTJ29nmPpuQD0iA1idM8YRveKpmt0YKOpgXEEBTdVUHAjIqfKKyxi/tojzFi+j6NpJ+3bHZ3VqI5hGBxLz2XHsQx2xmewIz6ToiKDe0Z1pnts/f9/lZSZx43vrmJPYhbRQd58ctsQVu1P4fWle0jOygegb6tgHry4G2d2rNl8Mxm5BXz4x0He//0A6SfNoKZDpD93jejEZX1a1LseY29iFuNnreZo2kkiA735aOIZ9GjRMP/vzskv5K1l+3jnt/3kF1pxd7Mw4cx23D2yc527leLTc7n1wzVsP56Bt4cb/x3bj0t6x9b6PIZh8NGfB3nu+x0UFBm0j/DnjRv606tlcJ3adTpQcFMFBTciYpNXWMTnaw7z1vJ9HC/+yzcq0JtrB7Xiu83HOVhcR9Eu3I8HRnfjkt4xDvtLOCe/kF3xmew4nsnO+Ax2Hs9kR3xGmcJPG28PN/51ZS+uHdS6ztdLzMzlxnf/Ym9iFjFBPsyZPJT2Ef6A2e3w7or9vPvbfnKKZwo+r2skD17UrdKgKv1kAbN+P8CsPw7Y29wx0p+7R3bmb31a1LkLpCIJGbmMn7WanfGZBHp78Pa4gTUOvurCMAy+2Xyc6d/vsP+7GN4pgicv60Hn6MB6nz87r5C752xg6c5EAP7voq5MObdjjf9tZeUV8tCXm/l283EALukdw4tj+hDo4m4jZ1NwUwUFNyKSW1DEvDWHmbF8H/EZ5pdXdJA3U87tyPVntMHH052CIitzV8fx2ilZjYcu7s6wjuG1vuahlGx+25PMyn0pbDuWzqHUHCr6v6+Hm4VOUQF0iwmke2wQf+5L4dfdSQCMHdSap6/oiY+ne/kDq5CYkcsN765iX1I2scE+zJk0lHbFgU1pSZl5vPHLHj77K45Cq4HFAlf1b8n9F3Sxz1uSlpPPrN8P8MEfB+0FtZ2jArhrZGcu7R3r0KCmtPSTBUz6eC2rD6Ti5e7GLcPaMrhdKAPahBJVatRVfVitBpuPpvP8dztYfTAVgFahvjz+tx5c2CPaoV08RVaDZ7/dzod/HgTMz/bZK3vh5VF1pmtXfCZTZq9jf1I2Hm4WHrmkOxPPatekup8qo+CmCgpuRJqv3IIiPvsrrniYsTnXR2ywD1PO68h1g1pXGDRk5RXy3m/7eWdFzbMaAOk5Bfy5L5nf9ibz+55k4lLLj6aJDPS2BzHdYwPpFhNEx8iAMl9wVqvBm8v28srPuzEM6B4bxIybBlQYnFQkISOXG95Zxf7kbFoEmxmbtuFVH3sgOZuXf9rFd8WZAS93N8af2RZvD3c+/PMgWcVBTdfoQO4e2ZmLe8U0yEy0uQVF3Dt3I4u3xZfZ3jrMlwFtQhnY1gx2usUEVtsdlp5TYGbM4s3M2fbjmeyOz+RkgfkZ+3i6MfW8Tkw6p0Otg8na+OjPgzz9zTasBpzZMZwZNw0k2K/iDMyC9Ud4ZOEWcgusxAb78L8bB9SqSPt0p+CmCgpuRJqfk/lFzP7rEG+v2E9ScVDTItiHKed34rpBrcoMi61MdVmN/EIrG+JO8PveZFbsSWbLkbQyI1c83CwMaBPK8M4RDGwbSteYQCICvGt8D7/vSeaeuRtIyc4n0NuDf1/bl4t6xVR5THy6mbE5kJxNyxBf5kwaSpvwmhfkbjqcxgs/7GTl/pQy27vFBHLPyM6M7tkwQU1pRVaD77ccZ9X+FNYdOsGuhMxyGTA/L3f6tgoxg522IcQG+7InMYudx4uDmeMZ9gLcU3l7uDG6ZwwPXtyNliG+DXBH5siwuz7bQHZ+ER0j/flgwhllPqfcgiKe+XY7n/0VB8DZnSN4dWw/wmvx76cpUHBTBQU3Is1DZm4By3aZk5gt35lIdnHWpWWIL1PP78SYgS1rFNSc6mByNv8+JasxsG0om46k2TM7Np2iAhjeKYKzO0cwpEN4veeTiU/PZdpn6+1LF0w+pwMPjO5aYbHz8fST3PDOKg6m5NAyxJe5k4fWaaSRYRj8ujuJ/y7ZDRYLU87tyIU9ol22ZtCpMnML2Hg4jfWH0lgXd4INh07Yu8uq0yrUl24xJVmzbrGBtAv3d1rXWlW2H8vg1g/XEJ+RS7i/F++MG8TAtqHEpeRw52fr2Ho0A4sF7hnZmbtGdHZJG11NwU0VFNyINF1JmXks2Z7AT9vj+XNvCvlFJXOLtA7zZep5nbh6QKtq6xpqoqKsRri/F2d1imB4ZzOgiQ12/F/+BUVWXlq8k3d/OwCYc8i8ccMAYoJL6k6OpZ3khndXcSglh1ahZsbGFUOoXcFqNdiblMW6QydYd+gE6+NOkJSZR+eoALrFBtE9JpBusUF0jQl0+bwtp4pPz+W2j9aw7VgGXh5uTDq7PZ+sPERGbiGhfp68dn1/zukS6epmuoyCmyoouBFpWg6lZPPjtnh+2pbAurgTZbooOkT6m3N+9IyhT8tgh2cbDMPgz30p7E3MYlC7ULrHBDVYRmPx1uM8MH8zmXmFRAR48dr1/TmrUwRH08yMTVxqDq3DfJk7eViDda9I/WXnFXLP3A38vCPRvq1/mxDevHEALZr556jgpgoKbkROXxm5BcQVTxG/43gGS7YnsDO+7GR0fVsFc2FxQFPZNP9NxcHkbKbMXs+O4xm4WeCOczvyzeZjHE49SZswP+ZOHtrsvxBPR0VWg+nf7+DjVYe4eUhbHrq4m0Oyjac7BTdVUHAj0nhZrQbxGbn2NW0OpWYTl3qSuJRs4lJzOFE8821p7m4WhnYI48IeMVzYM9opXUGNWW5BEU98tZXP1x6xb2sX7secyUOb3e+iqSkssjbKRSldpTbf301rXnEROS0VFlmZ9PFa/jilTqYi4f5etAn3o124P8M7RTCyexQhfq5dc8iVfDzdeemavgxqG8YTX2+lZYgvs28fWqYGR05PCmzqTsGNiLjcXwdSWbbLnKjOw81Cy1Bf2oT50SbMj7bhfrQJ8zdfh/s5ZQXrpuC6wa25pE8s3h5uDbJUhEhjpv9LiIjL2RYkvHpAS14a00d/sdaRAj8Rk/4PIiIuZRiGPbi5pFesAhsRqTf9X0REXGr78QyOpp3E19Od4Z2dtxiiyGmlqAD2L4f8bFe35LSk4EZEXMqWtTm7c4RT1/AROW0YBnx5O3x8Bbw+ANZ+AEU1m3VZTApuRMSlbMHNqB7RLm6JSCOx7gPYvsh8nhUP394LM4bBjm+pcCl5KUfBjYi4zNG0k2w7Zk5AN7JblKubI+J6Cdtg8cPm85FPwkUvgl84JO+GeTfBrNEQt8q1bTwNKLgREZf5uThrM7BtaLNb4ViknPxsmD8BCnOh84Vw1r0w9A64ewOc/U/w8IXDf5kBzpwbIWmXq1vcaCm4ERGXsXVJXaAuKRH4/v/MDE1gLFw5E9yKv6J9gmHk42aQM2A8WNxg13fw1lD4+m7IOO7adjdCCm5ExCXSTxawqnhF7Qt6xLi4NSIutvlz2PipGbiMeQ/8w8vvExQLl78Od66CrpeCYYX1H8Hr/WHps5Cb0fDtrkjiDshKcmkTFNyIiEss35VIodWgU1QA7SP8Xd0cEddJ2Qff3mc+P+f/oN3wqveP7Ao3fAa3/gith0DhSfjtZfhvLzP7k7jT+W2uiLUIfn8V3j4HvrvPpcXPCm5ExCXUJSUCFObBFxMhPwvaDodz/6/mx7YZagY4Y2dDRBfIS4fVb8NbQ+CDS2DLF+b5G0LKPph1Efz8JBTlm9ctzG2Ya1dAc3WLSIPLL7Tya/FaUgpupFlb8gQc32SOiBrzLrjVcq4niwW6/w26XgL7fzHnxNn1PRz6w3z4hUP/m2HgRAhr7/j2W62w5l1Y8qSZQfIKhIumm9e0WBx/vRpScCMiDe6vAylk5hUSGehNv1Yhrm6OiGvs/A7+mmk+v3ImBLWo+7nc3KDTKPORfhQ2fALrPoLMY/DHa+aj40gYdCt0uQjcHfD1f+IQfDUVDv5mvm5/LlzxPwhpU/9z15OCGxFpcPaJ+7pH4ebmur/u5DRktULcSojtC94Brm5N3aUdhkV3ms+HTYMuFzru3MEt4byHzOHje36ENe/DvqUlj8AWMGAc9LwSIrvVPsNiGLD+Y/jxEbM7zdMPLngGBt1WMsLLxRTciEiDMgzDPr+NuqSkVgwDvv8HrJ0Fsf3g9p/B3dPVraq9okJzeYXcNGgxwJyszxncPaDbpeYj9QCs+xA2fGpmc359wXwExkKH86Hj+dDhPAioZjLNjGPm8PO9S8zXrYfClW9BeEfn3EMdKbgRkQa17VgGx9Jz8fNy58yODbBQ5omDsOLfUJBr/nUZ3NL513SFI+vgt/9AYAyc84A5bLipWfa8GdgAHN8Iv/+3dgW49VGYZ3bDnDgIJw6YwcKJA+bw69ZnmMFB66Hg6VP9uZZPh8OrwDsIrpkFHl5Obz5h7eGCp+H8R2DHN7DxM7MmJ/M4bPrMfABE94aO50HHEdBmGHj6mtsNwxyu/sMDkJsO7t7m3DtD76x9nVADsBhG81qoIiMjg+DgYNLT0wkKCnJ1c0SanVeW7Ob1pXu4qGcMM28Z6LwLZaeYQc2a98BaYG7zDoZLXoI+Y11a7OhQKftg6TMlaxGBOZPtsDvhrHvMCeCaglUzYPFD5vMeV5r36+YJk5dBTG/HXefEQTi6riR4OXHIfJ5xFKjm69LDF9qeaQY6HUdAVI/y/872LYNPrjLPdc0H0Otqx7W9tgpyzSBr3y9mu+I3l33fw8cMcDqeD4dXw85vze0t+sNVb5tD0htQbb6/FdyISIO6+LXf2HE8g5ev7cs1A1s5/gL5ObDqLbOAMq94UrMO55vPj64zX3e9FC57tfoUfGOWlQi/vmQusmgtBCxm0HbigDlFP4BvmJnZGHQreJzGy1tsmgcLJ5vPz38MzvknzLvZ/LKN6Q2Tljmme2rn9+Z5jaKK3/f0NzMgoe2Kf7Y3A4CDv5nBQVZ82f0Dost2+VjcYMZZkJ0IAyfAZa/Vv82OlJUEB34172XfL2b3VWlunnDugzD8PscUJNeSgpsqKLgRcZ3DqTmc/dIy3Cyw9rELCPN3YDq+qBA2zjZT/pnF09HH9DFT8R1HmO//8Sosf8HM5PiGwd/+axZVnk7ysmDl/+DPN8xiTjDXIRr1FET3NLsPdn4HS582p/IHCGkLI5+AnlfXvuAzLxMO/g4HVphdFP1uatj6it0/wpwbzIBjyBRzmLHFYgZ3bw6Bk6lw3sNmAW19JO6A90aZv9Po3hDTywxebMFMaHvwj6g842cY5jn2FwcGB/8wh0aX5hNsdulEdodJv4CXX/3a7EyGYf77sWV1LG5ml1ZsH5c1ScFNFRTciLjOB38c4OlvtnNG+zA+//swx5zUMGDXD/DzU5BcvJBgSBsY8Tj0uqb8l3n8Vlh4ByRsMV/3GgOXvAx+YY5pj7MUFZhT7S9/0fzLH8xi1AuegfZnV7B/oTmd/7LpJRmF2L4w6mkzk1DpdQrh2IbiL+llcGR1cWaolA7nmdmgrpc4t6D30J9mF05hrpmVKr3eEpiT1H15G7h5mNmbun7x5qTCu+ebXVLtzoZbFtb/vgrzzAyaLTg4vgkwzK6rycsgqnv9zt8MKbipgoIbEde58d1V/Lkvhccu7c7tZ3eo/wkPrzYnQYtbab72DTOLaQffVnU3TGE+rHgJfnvFzAgERMNlr0PXi+rfJkczDNjxtVlXk7LX3BbavjgTc1X1tUP52WY33e+vQX6mua3jCDPIsQUDqQdKMg4HVpjZhdJC25sBUfoR2LMEe+1JQIw5pHjAOAhp7bBbBiB+C3xwqTnrbufRcP3s8gGHYcDn48zfT3QvM8CpbXFuUYEZQB38zcxwTVpW8bpO9ZWdAod+h7AOjq0RakYU3FRBwY2Ia6TnFDDgX0soshr8+sB5tA2vx3pSmfHw/T/NUR9g/jU8dAoMv7d2BbRH18HCKSUZn343w0XPN54i3CPrYPGDcGSN+dovwux+GTC+9l/i2cnFBdbvFxdYW6DTSLMg+cSBsvv6BJsTsnUcYQY1oe1K3jtxyMwgrf+kJINkcTMDkEG3mues7+iZ1P3w/mjz/G2Gwc0LKu/CyUoylxvISTHXZRrxaO2u9f0DsPod8AqA25ZAdI/6tV2cRsFNFRTciLjGog1HuXfeRrpEB/DTfefW/UT5OTBrtDmyw+JmTvN+3sN1n921IBeW/Qv+/B9gQFArc5bVqrpunK0wz6wd+uM1c+VnT384cxqceRd4B9bv3KkH4Jd/wdYvSra5eZgLMNqKX1v0rz5AKcyHXd+ZQ7MPrCjZHtwGBo6H/rdAYB3mMcqMh/cvhLRDZjZmwnfgG1L1MdsWwvwJYHGHSUvN9tfEug/hm3vM59d/Zs4HI42WgpsqKLgRcY2pn63nu83HmXp+Rx4Y3a1uJzEMc5HBbQvNLMb4r80iWkc4tBIWTSnJYnS9xJxxteOIhp119fgmsyYocbv5uvd1cOG/6hYoVOXYBti71Awg2p1Vv6ApeY+5ptHG2ebEdGAGTG2GmfU5HUeY9T7VBUwnT5hdUYnbzK6wW3+s+X1/Pt4cHh7VAyYvr3502KE/4aPLzSzWiMfM7kxp1BTcVEHBjUjDyyssYuCzP5OVV8iiqWfRr3VI3U604t9m1sHNE8Z/A20dVJRsk59tLgC45t2SbSFtzWG7/W+BgEjHXq+0ogKzBmjFS2YBr1+EOVy9+2XOu6ajFZyEbYvMbM6R1WXf8w01Ax1bdujU9Yfyc8zal8OrzBqoW3+s3UKP2cnm6KmcZDj7H2ZNUmXS4uCd8819e15lzjfTVOY9asIU3FRBwY1Iw/t1dxLjZ60mKtCbVQ+PrNt6Uju/g7k3ms8ve93s+nCWpN3mF/Smz0qKa908ocflZl1J27Mc+2WYuMPM1hzfaL7ufrk5TN2/AWZwdpaUfSUjhQ6sKClmtgnvVBzojIA2Q2Hh32HPT2a9z4TvzaHYtbX9K7PA2OIOty+BlhVMEpmfbdbzJGwxpwq4dTF41aP+SxqMgpsqKLiR0036yQJO5hcRE1yDad0bqccWbeHTVXHcOKQNz19Vh5EiCdvh/QvMOUjOmAyX/NvxjaxIfo7ZBbZ2FhxdW7I9oosZ5PS93sxI1JW1yJyz5pd/QVE++ITApf8xh6c3pUxCUYFZvG2bHO7ouoonyvPwhXGLzGCnrr64FbZ+aS4IOfnXssshWK0wf7w5uso/0hwZ5ehRXuI0Cm6qoOBGTicZuQX87fXfSczM5du7htMpqp7FpC5gGAbDpv9CfEYuH0wczPldazkrcE4qvHOeWWDa/hxz5IwrFks8vskMcjbPh4Jsc5uHjxmI9L0eIrqaMx7XNChJ2WfW+NhmE+482pyxtimuCXWqk2kls/ru+8Wsc3LzgOvn1H917JxUs3sqO9GcSXfUUyXvLX8Rlj9vZuEmfFu/IEoanIKbKii4kdPJ/Z9vZMH6o4C5gva74wa5uEW1t/lIGpf/7w/8vdxZ/8QFeHvUYphw6TlIQtuZf2m7erK93AzY8jmsmWUWvpbm6V9qav52ZafpD25tDt+2Ws2aniVPmjPYegWas+72v7lpZWtq48RBwAKhbR1zvh3fwrybzNF0ty2BVoNg+9fw+S3m+5f/Dwbc4phrSYOpzfe3VgUXaaR+2HKcBeuPYitPWbI9gbUHUxnUrpHPpHuKJdsTADi3a2TtAhuAxQ+bgY1XANww1/WBDYBPEAy+3RxJdWSNmc05+Ls5wV1BthnwnBr0gPlFG9zK7HqxzavT/hy44s3yxbXNTel5dByh+9/MUWZbPjezY1fONGt6wFzCQYFNk6fgRqQRSszI5ZGF5vIAd5zbkdTsfOauOcz0H3byxR3DsJxGf+HbgpsLetRyKPPaD4pHLVng6ncb33T1Fgu0PsN8gDk3Tdphs4sl9YCZjSj9vPCkOUoHwNPPXDZh0G0NO8y8Obn4RXMRyOTdMOtCcwRah/PMYfXS5Cm4EWlkDMPgwS83cyKngB6xQdw7qgup2fks2niUdYdOsGR7Ahf2jHHItXYnZLL24AmuGdgKLw/Hf8keTs1hZ3wm7m6W2tXaHPzDnIEYzDlIul3i8LY5nIc3RHQyH6cyDMhKMAOdzGPQ6gwVsjqbXxj87VWYe4MZ2IS2N4d8u2A1a2l4+pNBpKGlH4Hf/mN+0VXgs9VxLNuVhJeHG/8d2w8vDzdign249Sxzzo8XF++ksMha8bnzsuCvdyo9d2mJGblc9/ZKHlm4hYcXbMEZ5Xc/FWdtBrcLJcSvhssFpMWZtRHWQnMV67P/4fB2NTiLBQJjzHl5eo1RYNNQul1iTs4X06fxdGtKg1BwI9JQDAM2zIa3hpmLIL5/gbk4YCkHk7P517c7APi/0V3pGlMyOuqO8zoS6ufJvqRs5q87Uv78J0/AJ1fCDw/Ap1ebxbiVNsXggS82k5Zj7vPl+iO8uWxv/e/xFEu2m6tRX9Cjhpmm/GyYc4O5TlBMH7Me5TTqgpNGaMRjcMdvEFXHWbHltKTgRqQhZCaYX9pf3Ql5GWZRaXYSfHgpHDHnTykssnLf5xs5WVDEsA7h9kyNTZCPJ9NGdAbgv0t2czK/1DwhWUnw4WUlCyym7ocNn1banE//iuPX3Ul4e7gx+Rxzde6Xf9rNN5uOOeyW03LyWXPwBAAX1qTexmo1J7JL2GrOQXLDnMoXSxQRqYKCGxFn2/qluWrx7h/A3QtGPgn3bzcXKsxNh4+vgAO/MfPXfWyISyPQ24OXr+tb4Sy+Nw9tQ6tQXxIz85j1R3HXU/pR+OBic8ZV/ygYPMnc/uuL5nT4p9iflMVz35nrFj14UTceuaS7PZD6x/xNrDt0wiG3vWxXIkVWg24xgbQOq0GQsuLf5uRqbp4w9lNzZJGISB0ouBFxluwUczG/L241u4xi+pgzpp59v9n3f8tCaH8u5Gdh/XQMG5Z+DsDTV/SkZYhvhaf09nDnnxd2BWDm8n2kHd0NH1wEKXvM1axvXQyjnzOfZx6HNe+VOd7MDm0it8DKWZ3CmXBmOwAevbQ7o7pHk19oZfLHazmcmlOvW99yJJ2XFpvDnWs0Sur4JnMVbDCXHdDkaiJSDwpuRCqy+0dzYb2v7zan389Jrd3xO78zszXbF5kzr577EEz6BaJ7lOzj5Q83fk5R54twK8pjhsd/eKTdLq7q37LKU1/etwU9YoOIzj+I+4cXmwW4YR3g1h8gvKM5aue8h8ydf3vFnHSu2JvL9rHpcBqBPh78+5qS7JC7m4XXru9HzxZBpGTnM/HDNaSfrLxmpyqLNhzlmpl/cjw9lw6R/owb1q76g5Y+CxjmIoaag0RE6knBjcipMuNhwWQ4th7WfwTzJ8BLHcxgZ+kz5oRthfkVH3syzawbmXujWVMT2R1u/xnOf7jiJQM8fXg+8BG+LhqGl6WISQnPYtk0p8rmublZ+NeQQuZ5PUtgQTL54d1g4g9lJ4Lre4O5/tHJVHPtImDT4TRe/2UPAP+6shctTskO+Xt78P74wcQE+bA3MYups9dTUNmorAoUWQ2e/34H987bSF6hlRHdolg09SwiA72rPvDQn7B3ibnY4YjHa3w9EZHKKLgRKc0w4Jt7ITcNonvD0KlmgIJhBju//ccsAn6xHcy+DlbNgMSd5nF7fzZHQm2aY85Ge9Y9MHk5tOhf6eV+35PM+38e4d6CqRzreB0Ww2rOqLr63crbGPcXA5aNJ9ySySZrB54Ke9EcZlyauwec/6j5fOWbnDyRwH2fb6TIavC3PrFc3rdFhaeOCfbhvfGD8PNy5/e9yTzx1dYaDRFPzylg4odreGfFfgDuPK8j744bRJBPNWtAGYYZMIKZsQnvWO21RESqo9mMRErbNNcs/HXzhKvfKelGyjgG+5ebC/3tX2ZmZfb8aD7ALOTNTjSfh3WEq2aWzFxbifScAh74YhMANwxpR4sr34EfI2DVW+YEdvlZ5sJ/pe1bZmaFCnLIjjmDmw5OJmtLNjceTadXy+Cy+/a4AmL7wfGNbPzsMfYnXUl0kDf/urJXlTMc92oZzOvX92fyJ2uZs/ow7SP8mXxO5UHHnoRMJn28loMpOfh4uvHva/pyWSXBU/mDl0DcSnMBynMfrNkxIiLVUOZGxCbjGCwu/oI976Gy9TFBLaDfjTDmXfjHbrjjd7jgWehwvvnFbAtshtxhvldNYAPwxNdbOZ6eS7twPx69tLs5n8vo5+Gc/zN3+PkpM6thy5zs+gE+uw4KcqDjCPxv/YoRfc3ZcF9cvLP8BSwWGPkEAAMSF9CCZF66pm+NJtMb1SOaxy4173/6DztZvDW+wv2WbE/gyjf/4GBKDi1DfPlyypk1D2ys1pKszRmTzN+xiIgDKHMjAsXdUfeYQ7Nb9Iez7q18Xzc3iOltPs662xxufWSNOTdLDdc/+mbTMb7aeAw3C7wyth9+XsX/KVosMOJR8A6AJU+Y3WD52dBqsLnwn7UQuv0NrpkFHt7888Ku/LD1OL/tSeb3PckM7xxR5jppscPZZ+nJQLbxRoufGNhlfI1/JRPPaseB5Gw+WXWIe+dt4POQYfRpFQKA1Wrwv2V7eWXJbgCGtA/jrZsGEB5QTX1NadsWmMPXvQLhrPuq319EpIaUuREB2PgZ7PnJnIfmypm1W3/G09dc3bkGgU1eYRHLdiby2KKtAEw7vxMD2oSW3/Gse+DS/5jP/5oJX95mBjZ9xsK1H5kjooA24X7cNKQtAC8s3oHVWrY+5vGvt/Ov3OsAGHDie0jeU+PbslgsPHlZD87tEklugZXbPlrL0bSTZOcVMvWz9fbAZvywtnx6+5DaBTZFBbDsOfP5mXeBf3jNjxURqYbLg5s333yTdu3a4ePjw5AhQ1i9enWV+7/66qt07doVX19fWrduzX333Udubm4DtVaapPSjsLh46PT5jzh8mvasvEK+2XSMu+ZsYOCzP9uHWfduGcxdIztXfuDg2+Gqt83iZIBBt1YYeN01ohMB3h5sPZrBN5tLZhj+auNRvtl0jM2WLqS3ucAsVv6ldisie7i78b8b+9MtJpCkzDxu/WANY2b8yQ9b4/F0t/DC1b15+opeeLrX8n8lG2ebsyj7RcCwO2t3rIhINVzaLTVv3jzuv/9+Zs6cyZAhQ3j11VcZPXo0u3btIiqq/ArCn332GQ899BCzZs3izDPPZPfu3UyYMAGLxcIrr7zigjuQ055hwDd3m0sitBwEw+5yyGmTMvNYuiOBH7fF88feFPJLDamOCvTmwp7R3D2ic/VBQd/rzdWM0w+bCy5WUAgcHuDNHed24OWfdvPyT7u4uFcsKdl5PF6cHbprRCeCez8NM3425905thFa9KvxvQT6ePL+hMFc8b8/2JWQCUBEgDdv3zKAgW3rsBBhwUlY/qL5/Ox/gHdg1fuLiNSSxXDGUsA1NGTIEAYPHsz//mfOw2G1WmndujV33XUXDz30ULn9p02bxo4dO1i6dKl92z/+8Q/++usvfv/99xpdMyMjg+DgYNLT0wkKCnLMjcjpa/3H8PVd4O5tFgJHdqnzqeJScvhpezw/botn7aETlP4vq32EPxf2jGZ0zxj6tQqpcGmF+sjJL+S8fy8nMTOPJ/7Wg6U7E/hjbwp9W4fwxR3DzCDqy0mw5XPoOBJuWVDra2w6nMbED9fQIcKfN27sT2xwxbMoV+vPN+Cnx8xZlO9aB54+dTuPiDQrtfn+dlnmJj8/n3Xr1vHwww/bt7m5uTFq1ChWrlxZ4TFnnnkmn376KatXr+aMM85g//79fP/999xyS+Uzmubl5ZGXl2d/nZGRUem+0sykHYYfi+eCGfFYnQObvMIi7vhkHct2JZXZ3rtlMKOLA5pOUQFVDr+uLz8vD+4d1YVHFm7h+e93UGg18PF047/X9S3JDp3/sFnEu2+pORFhu+G1ukbf1iGsfmQkHrXtgiotN8OcNRnMEWkKbETECVwW3CQnJ1NUVER0dNl1Z6Kjo9m5s4JhrcCNN95IcnIyw4cPxzAMCgsLueOOO3jkkUcqvc706dN5+umnHdp2aQIMw8zY5GVAqzNg2NQ6n+rfi3exbFcS7m4WzmgXxuie0VzYM6bcDMDOdt2gVrz3+372J2UD8Ogl3ekQGVCyQ1gHGDAe1r4PPz8Nt/1UYTdXVeoV2ACsfNOcNTm8szmLsoiIE7i8oLg2li9fzvPPP89bb73F+vXrWbBgAd999x3PPvtspcc8/PDDpKen2x+HDx9uwBZLo7X+I3MyPg8fuHIGuLnX6TQrdifx3u/m6txv3zyQOZOHMuGs9g0e2IAZeDx2aXdzeptuUdw8tG35nc79P/DwhSOrYffihm1gdrJ9KQhGPFq7EWkiIrXgsv+7RERE4O7uTkJCQpntCQkJxMTEVHjM448/zi233MLtt98OQO/evcnOzmby5Mk8+uijuLmVj9W8vb3x9q7FEFVp+tLiSrqjRj4BEZ3qdJqUrDz+Md+cYfiWoW0ZVZPVr51sRLdo/nhwBFGB3hV3gwXGwJC/wx+vmotVdh5tztvTEH57xZx1ObYvdL+iYa4pIs2SyzI3Xl5eDBw4sExxsNVqZenSpQwbNqzCY3JycsoFMO7u5l/cLqyLltOJYcBX08wv2dZDzRmF63Qag//7YjNJmXl0jgowZxhuJFqE+FbdfTT8XvAOhsRtsPXLhmlU+hFY8575fOQTDRdQiUiz5NL/w9x///28++67fPTRR+zYsYMpU6aQnZ3NxIkTARg3blyZguPLLruMGTNmMHfuXA4cOMCSJUt4/PHHueyyy+xBjkiV1s6CA7+aXTNXvlXn7qhPVh1i6c5EvNzdeP2G/vh4nkb//nxDzZmVwZxIr6jA+df89UUoyoO2w83RWiIiTuTSTu+xY8eSlJTEE088QXx8PP369WPx4sX2IuO4uLgymZrHHnsMi8XCY489xtGjR4mMjOSyyy7jueeec9UtyOnkxEH46XHz+ain6rwC9e6ETJ77bgcAD13cje6xp+GUAkPuMGc+PnHAHA4/+DbnXSt5L2yYbT4f9WSti5hFRGrLpfPcuILmuWmmDAM+ugwO/gZtz4Lx39apayS3oIgr3/yDnfGZnNslkg8nDnbqEG+n+utt+OH/ICAG7t4AXn7Ouc78CbBtIXS5GG6c65xriEiTV5vvb3V8S7NgHPwNDv5GobsvxuX/q3PNx4uLd7IzPpNwfy9evrbv6RvYAAycYE6klxVvjhxzhmMbzcAGC4x83DnXEBE5hYIbaRYOLf8YgC/yhnDbNykkZNR+PbJluxL54I+DALx8bV8iA0/zUXge3iUT+SXucM41fimepqH3tRDd0znXEBE5hYIbafJO5uQQdugHAL6ynsUvOxO58L8rWLThaI1H2SVl5vFA8bDvCWe24/xu5dc+Oy1FdjV/Ju1y/LkP/gF7fwY3D3N2ZBGRBqLgRhoNwzD4fstx4lJyHHrepd9+RhBZJBPKI3fcTp9WwaSfLODeeRu549N1JGflVXm8YRg88MUmkrPy6RodyEMXO3bVcJeKLL6XpIpnBa8X29Dv/reYsyOLiDQQBTfiXH+8Dp9cBSfTqt91bwp3zl7PtW//SXqOY4YnJ2Tk4rb1CwDSO15O7zZhfDnlTP5xQRc83S38uC2BC/+7gu+3HK/0HB/+eZDlu5Lw8jgNh31Xx5a5Sd4N1iLHnjt+i/mzx+WOPa+ISDUU3Ihz/fEa7PsFNn5W/a77kgFIyMjj6W+3OeTyr36/gfMt6wDoMGICAJ7ubtw1sjOLpp5Ft5hAUrPzuXP2eu6as4ET2flljt8Zn8H0H8ysxqOXdKdrTKBD2tVohLYzV0QvzDVnbnaUglxI3Wc+j+rhuPOKiNSAghtxntx0yDEDFjbNqXb3dQdP2J8vWH+UJdsTqti7eluOpJOz+Wt8LfnkBrXH0qJ/mfd7tgjm62nDmXZ+J9zdLHyz6RgXvrqCn4uvm1tQxN1zNpBfaGVEtyjGDatgrabTnZs7RBSvhu7Iupvk3WBYzQkDA1y/LIWINC8KbsR5UvaVPI/fDAmVZ2PyCovYdCQNgNE9zS/DRxZuKZdJqSnDMHjm221c4f4nAD79x1Y4eZyXhxv/HN2VBVPOpFNUAEmZedz+8Vr+8fkmnvxqG7sTsogI8Oala/qc3sO+q2IvKnZg3Y1t9FVUD03aJyINTsGNOE/q/rKvq8jebD2aQV6hlTB/L167vj8dI/1JyszjqW/q1j31/ZZ49h08xDlum80Nva+pcv++rUP49q7h/P2cDlgs8OX6I8xba64g//K1fYgIOM2HfVfFXlTswMxN4nbzZ1TjWXNLRJoPBTfiPLbMTWCs+XPz51BUWOGu6w6lAjCwbSg+nu7857p+uFngq43HWLy18mLfiuQWFDH9hx1c4v4XHharuQp1ROdqj/PxdOfhS7rzxR3DaBduztZ72/D2nNe1iQz7rowzMje2cym4EREXUHAjzmMrKB04AXzDICsBDiyvcNe1xfU2g9qGAtCvdQh3nGuu/fTowq2kVDNcu7RZfxzgyImTXOO1ytzQ+9paNXtg2zAW33sOi6aexWONaLVvpyk9142jVmOxZW4im8HvT0QaHQU34jy2zE1kt5JuoY3lu6YMw2DdoeLgpl2offs9ozrTJTqAlOx8nvi6Zt1TiZm5vPnLXlqSRD9jB2CBnlfXuuk+nu70ax3SdOtsSgvrYE60V5AN6Ufqf768zJKRV8rciIgLKLgR57FlbsI7Qt/rzec7v4XcjDK7HUzJISU7Hy8PN3q1DLZv9/Zw5z/X9sPdzcJ3m4/z7eZj1V7yPz/uJju/iMlhG8wN7YZDcEuH3E6T5e4J4Z3M546ou7GdIyAG/MLqfz4RkVpScCNwaCXsWuzYc+akwsniod1hHaDFAHPIcWEubP+qzK5rDpr1Nn1bBePtUXaCvN6tgpl6vvnF+/iirSRlVt49te1YOp+vM4uAr/W2dUlVXUgsxRxZd6NiYhFxMQU3zZ3VCnPGwtwbIKN2hbtVso2UCowFL39zOHDfG8xtp4yass1vM7BtxX/lTzu/E91jgziRU8Bji7ZUuB6UYRg88812DAMmdcvD78ROcPOE7podt0YcuQxD6WHgIiIuoOCmuctOMifbM6yQ6JhZgYGSepuwjiXb+owFLHDoDzhx0L55bfFIKVsx8am8PNz4z7V98XAzl0v4elP57qkftyXw14FUvD3cuCtyo7mx8wXqFqmp0ssw1JcyNyLiYgpumrv0wyXPHTnPib3eptSCicEtocO55vNN8wA4kZ3PvqRswBwGXpkeLYK4e6Q5nPuJr7aRmJFrfy+v0Bz6DTBpeHuC9iwy31CXVM2VztzUd8SUMjci4mIKbpq7MsGNA+c5qShzA2W7pkqNkuoY6U+ov1eVp5xyXkd6tzRX9H5kYUn31Ed/HuRQSg6Rgd5M7XIC0g6Bpz90udhx99PUhXcCi5uZxcuqx7IXOaklx9uyQSIiDUzBTXOX5uzMzSnBTbe/mYHHiQNweDVrirukBrervvvI092Nl6/ti5e7Gz/vSGTB+qMkZ+XxxtK9ADwwuiu+OxcWX+dS8PJz2O00eR7eZuE31C/ItWVtQtqCd0D92yUiUgcKbpq70vOaOKJLAsxzpBQXFJ+aufEOgB5XmM83fVaqmLjyLqnSusYEcu8FZvfUU99s4/FFW8nMK6RniyCu6RcD2xaYO9Zy4j7BMcswqN5GRBoBBTfNXeluqfp2SdjkpEBeuvk8rH3594vnvDG2LmDn0SQABtUgc2Mz+ewO9G0dQmZuIT9sjQfgib/1wO3gCrNA2jcMOp5fv3tojhwxHNxeb6PgRkRcR8FNc1c6uAHH1N3Y6m2CWoGnb/n3250NQa2w5GVwjnUt4f5e9rWcasLD3Y3/XNsHLw/zn+/FvWIY0iEctnxh7tDzKnNiOqkdh2RuVEwsIq6n4Ka5s3VL2estHFB3U9FIqdLc3KDvWADGuP/GwLahtV7moFNUIP++pg/ndonk8b/1gIKTsOMb8011SdVNfTM3hqFuKRFpFBTcNGd5WSWzCHcaZf50ZObm1Hqb0opHTZ3rtolzWtStzueKfi356NYzaBHiC3t+gvxMCG4NrYfU6XzNXnhnwGJ2K2Yn1/74zHjITQOLe/G5RERcQ8FNc2bL2vgEQ6vB5nOHZm4qD26M8E5soTMeFivn5S+v/zW3zDd/9hpjZoak9rz8ILSt+bwuQa4taxPeETx9HNcuEZFa0rdAc2artwlu7di1hWqQudmfnM28guEAtDj0VaX71cjJNNj9k/lcE/fVT32WYVAxsYg0EgpumrPSwU19uyRsDKNkXakqMjfrDp7g26KhFOKBW8IWiN9a92vu/BaK8swv5uhedT+PlApy65DBUzGxiDQSCm6aM9sEfsGt6t8lYZOVCPlZ5my3oe0q3W3toVTSCGRfmJm9OXUxzVqxdUn1vsZcoFPqrl6ZGxUTi0jjoOCmObPV3AS3Mn9GOKBrylZvE9zanPW2EmuLl13I63GduWHLfCgqrP31MuPhwArzeS91SdVbXTM3VmvJMZEKbkTEtRTcNGe2bqmQ1ubP+nRJ2KRUX0yckpXH/uLFMtsMucKcdC8rAfYvr/31ti00VzRvNbjiCQOldiK6mD+zEsx1omoqPQ4KssHdq2RaARERF1Fw05zZMze24KYeXRI2qdUXE9sWy+wcFUBIYEDJvDSbPqv99WwT92luG8fwDjQnXwRI3l3z42z1NhFdwd3D8e0SEakFBTfNVVEhZBwD4BgR7EnILBXc1OJL7VQ1yNzYgptB7YrXkypejoGd35lLQNRU6n44utas7+l5VV1aKxWpy8g51duISCOi4Ka5yjwORhGGmydXf7yX0a+uYOERf/O9rPiSyf1qK7WSBTNLsdXbDGxbvJ5Ui/5mYFWYC9sWVX+NokI4vBp+ftp83eE8CIiqW3ulvLosw6Bh4CLSiCi4aa6Ku6QKAloQn1mA1YD7Fu0jyyfGfL8u2ZsaDAPPLShiyxEzOzPYlrmxWEqyN5vmVnzelH2w5j2YexO81AHevwC2LzLf7zO29m2VytUpc6Nh4CLSeKhzvLkqLiY+4WFmPHw93TlZUMS67CjOdY83v9ja1HIZg8zjUJBjTr8f0qbCXbYeTSe/yEpEgDdtwkotltn7OjMTE/cnpB4A3xBzFNS+X2DfMkg7VPZEPiFmxqbLaNXbOFptMzdFBSX1OcrciEgjoOCmuSoObg5bwwG4dXg73N3c2PNrS85lM6vXrGTwgHG1W9DSVm8T2rbSVbnXHCyutzl1sczglmawsn8ZfHCJ2TVmWEved/M014zqeB50HAGx/cDNveZtk5qLLB4xlXEUcjPAJ6jq/VP3Q1E+eAWUFKeLiLiQgpvmqngCvx055hfXgDahjOweza8pg2DnD5w8uo0nvtrG05f3xM2thgFOjUZKmcOL7cXEpfW70QxuMs1CZyK6moFMx/Oh7VngHVCzdkj9+IZCQIwZYCbvgVYDq97fVkwc2U3reolIo6DgprkqrrnZmh0MQP82ZrBx7plnw07o5HaU8asOkZ1XyEvX9MHDvQZfWtWMlDIMwz5SamDbCoKbXteYo6U8faHD+WY2R1wjsqsZ3CTtrEFwY6u36eb8domI1ICCm+aquFvqqBFB+wh/wvy9zO3FXRItLSkEu51kwYajZOcX8voN/fH2qKYbqJqRUvuSsjmRU4CPpxs9WwSX38HNDc6YVKfbEQeL7AYHfq1ZUbGKiUWkkVEOuTkyDHvm5pgRTv82ISXv2bokgLcvDsLL3Y0ftyVw+0drOZlfVPV57ZmbimeotXVJ9W0VgpeH/uk1arWZrVrDwEWkkdE3THN08oS5uCVm5mZAm1O6iIq/2IYGJDFrwmB8Pd35bU8y42b9RUZuQcXntFqrzdzYi4krqreRxqWms1UX5JbUWilzIyKNhIKb5qg4a5NiBJGHV9nMDZT5YhveOYJPbz+DQB8P1hw8wU3v/kVqdn75c2YcgaI8c1RTJSNm7DMT2ybvk8bL9m8gLQ7ysyvfL3m3OarNNxQCohumbSIi1VBw0xwVBzdHjAj8vNzpGh1Y9v1TuiQGtg1jzqShhPl7seVoOmPfXklCRm7ZY+zDwNtVuLZQclYeB5LNL8lymSJpfPzDwS8CMMwRU5UpXW9Tm2kDREScSMFNc1RcTHzMCKdvq5DyI6Eq6JLo1TKYz/8+jJggH/YkZnHtzJUcTs0pOSa16pFStqxN1+hAgv0qngNHGpmaTOanNaVEpBFScNMclRopNaBtSPn3K+mS6BQVwPw7htEmzI+41ByunbmSvYlm7Q4pVdfb2IeAq97m9FGTZRhUTCwijZCCm+YozZa5qaCYGKrskmgd5sf8O4bROSqA+Ixcxr69kq1H00tlbioeKbXmYPHkfRXNbyONU40yNxoGLiKNj4KbZqjwhC1zE06/1iEV71TFF1t0kA/z/j6MXi2DSMnO54Z3V5GbULy2UAWZm9yCIjMAQsXEp5XqMje5GZAeV7yvJvATkcZDwU0zVHTC/EIygloRHuBd8U7VfLGF+Xvx2aShDG4XSk5uHu62hS0rqLnZfCSdgiKDyEBvWof51rv90kBsAcuJA+aQ71PZAt+AGPBT0CoijYeCm+amMA/v3CQAolt3rny/GnRJBPl48tGtZ3BFeyueliLyDE+WHC1fLLz2UEmXVK0W4hTXCogyV183rJCyt/z7Saq3EZHGScFNc1M8DPyk4UWXDu0q38+WuUmueoZaPy8PXjjPD4BDRhR3zN7AVxuPltlnnX3yPv11f1qxWKqezE/1NiLSSCm4aWasaSXDwAdUVdxrC25S90NhXpXn9Eo7CEBeUHuKrAb3ztvInNVm15fVarAuzjZ5n4qJTzvFa41VmMHTMHARaaQU3DQziUfM7oXjlsjyk/eVFhANPsGVd0mUVjxSqlfv/tw8tA2GAQ8v2MJ7v+1nX1IWaTkF+Hq606NFkKNuQxqKMjcichpScNPMJB0xA5E8/xblJ+8rrbouidKKZye2hHfk2St68fdzzeHg//puBw98sRmAvq2D8azqetI4VbaAZnYKZCWU3UdEpJHQt00zczLpIABeYW2r37mmK0OXmp3YYrHw0EXdeGC0eezGw2mAhoCftmwBbuo+KCy1ppitmDikLXgHNHy7RESqoOCmmfHINIt9w1pUPNleGTXJ3BQVwIniYeDFc9xYLBamnt+JJy8r6a4Y3F7BzWkpqCV4BYC1sGTVd1CXlIg0auVXOJQmK/1kASEFCeAGrdp1qf6AmmRu0uLAKAIPXwiMLfPWxLPa0zLEl+3HMzi7U0Q9Wi4uY7GY/w6OrjOD3KjigNdeTKzJ+0Sk8VHmphnZGJdKS0sKAMGxtcjcpOw1MzQVsa0GHtYB3Mr/c7qwZwz3juqCm5vmtzltVTTnkTI3ItKIKbhpRnbu3Y+3pQArFghsUf0BlXVJlFbNmlLSBJw655FhaBi4iDRqCm6akWOHzPWfTnpHgodX9QfYuiSg8robe+am4tXApQk4NXOTGQ+56WBxh/AqZrkWEXERBTfNhNVqkJl4EABLcOuaH1jdMgylRkpJE2XP3OyBosKSrE14R/D0cV27REQqoeCmmdiblEVYgTkviU9kDYaB2yhzI8FtzILxojxIO1Sq3kZdUiLSOCm4aSY2xJ2gpSUZALcQB2VuCvMh3VzOQZmbJszNrdQyDDtVTCwijZ6Cm2Zi/aE0WhSPlKJW3VKndEmUduKguTyDV4C5XIM0XaXnPFIxsYg0cgpuXCU/B45varDLrS+VualVcHNql0RptnqbsPZm8bE0XbYgN3FHSRelMjci0kgpuHGV5c/D2+fAhtlOv1T6yQL2JGbRwhbc1KZb6tQuidJUb9N82DI3e5dCQQ64e0Foe9e2SUSkErUObtq1a8czzzxDXFycM9rTfBw3F5Rk9ds12v3PfclsiDtRp0ttPJyGL7mEWbLMDcGtaneCypZh0Eip5sP2b+Bkqvkzoiu4a4JzEWmcah3c3HvvvSxYsIAOHTpwwQUXMHfuXPLy8pzRtqYtO8n8eXxTtd1TyVl5jJ+1muveXsmehMxaX2r9oRMl9TbeQeATXLsTVLYMgzI3zUdIW3D3LnmtehsRacTqFNxs3LiR1atX0717d+666y5iY2OZNm0a69evd0Ybm6asxJLn6z+pctftxzIoKDIoKDJ4eMEWrFajVpfacDiNVnWpt7GpbMSUbdZiZW6aPncPiCg1YZ+CGxFpxOpcczNgwABef/11jh07xpNPPsl7773H4MGD6devH7NmzcIwav4F/Oabb9KuXTt8fHwYMmQIq1evrnTf8847D4vFUu5x6aWX1vVWGl5RIeSklLze8jkUnKx0913xJdmatYdOMGdNzbsErVaDDXEnSuptatslBSXBTfJusFrN5wW5kH7EfK7MTfNgy+CBiolFpFGrc3BTUFDA559/zuWXX84//vEPBg0axHvvvceYMWN45JFHuOmmm2p0nnnz5nH//ffz5JNPsn79evr27cvo0aNJTEyscP8FCxZw/Phx+2Pr1q24u7tz7bXX1vVWGl5OCmCAxc3MpOSmw45vKt19Z3Fw0zbcD4AXvt9JQkZujS61LymLzNxC2roX10rUppjYxtYlUZBTMq/NiQPmPXgHgb9W/G4WIkutAK7MjYg0YrUObtavX1+mK6pnz55s3bqV33//nYkTJ/L444/z888/s3Dhwhqd75VXXmHSpElMnDiRHj16MHPmTPz8/Jg1a1aF+4eFhRETE2N/LFmyBD8/v9MruMkuDtz8wqH/zebz9R9XuvuuhAwAHryoG31aBZOZV8hTX2+r0aXWFxch9/BPNzfUJXNTukvC1jVVejVwDQNvHiKKR815BdSte1NEpIHUOrgZPHgwe/bsYcaMGRw9epSXX36Zbt26ldmnffv2XH/99dWeKz8/n3Xr1jFq1KiSBrm5MWrUKFauXFmj9rz//vtcf/31+Pv7V/h+Xl4eGRkZZR4uZ6u38Y+CfjcBFjj4W4UrbxdZDfYkmKOcesQG8cLVfXB3s/DD1nh+2hZf7aXWH0oDoJ1H8Uirun4pRZwyHFwjpZqfdsMhMBZ6jTGnCBARaaRq/X+o/fv3s3jxYq699lo8PT0r3Mff358PPvig2nMlJydTVFREdHTZ2W2jo6OJj6/+i3v16tVs3bqV22+/vdJ9pk+fTnBwsP3RunUj+IvTNlIqINLsJuo4wny94dNyux5KySav0IqPpxttwvzo0SKISWd3AOCJr7aRmVtQ5aU2HDaDmsii4oCqrsHNqUXFGinV/PhHwH3b4fLXXd0SEZEq1Tq4SUxM5K+//iq3/a+//mLt2rUOaVRNvf/++/Tu3Zszzjij0n0efvhh0tPT7Y/Dhw83YAsrUTpzAzDgFvPnxs/KLXFgKybuEh2Im5vZ/XPPyM60CfMjPiOXl3+sZLVuICPXnLzPDSs+J4uDxbrU3ED5BTQ1Uqp5UsZGRE4Dtf4/1dSpUysMEI4ePcrUqVNrda6IiAjc3d1JSEgosz0hIYGYmJgqj83Ozmbu3LncdtttVe7n7e1NUFBQmYfL2WpuAoqDm66XmPU3mcdh39Iyu9qKibtGB9q3+Xq589xVvQD4eNUhe13NqTbGpWEYMCDkJBajCNw86r4GVOnMjWEocyMiIo1WrYOb7du3M2DAgHLb+/fvz/bt22t1Li8vLwYOHMjSpSVf6FarlaVLlzJs2LAqj50/fz55eXncfPPNtbpmo5BV3C3lH2n+9PCGPsU1SqcUFu8unrSva0xgme1nd47k6gEtMQx4+MstFBRZy13GFvScHVU8siqoBbi5163NYR3M4Cg/0wxsMo+Z25W5ERGRRqbWwY23t3e5TAvA8ePH8fCo/XTs999/P++++y4fffQRO3bsYMqUKWRnZzNx4kQAxo0bx8MPP1zuuPfff58rr7yS8PDwWl/T5U7N3EBJ19TuxWUm+LN1S50a3AA8dmkPwvy92JWQyTsryhcjr49LM08dbFt2oU3d2+zhVZKl2fW9+dMnBPzC6n5OERERJ6h1cHPhhRfa61hs0tLSeOSRR7jgggtq3YCxY8fy8ssv88QTT9CvXz82btzI4sWL7UXGcXFxHD9+vMwxu3bt4vfff6+2S6rRsmduSgU3Ud2h1WCwFsKmOQDkFhRxMCUbqDi4CfP34vG/mfONvLZ0DweSs+3v2SbvA+jsk2ZurMsw8NJsdTe24EZZGxERaYRqnWp5+eWXOeecc2jbti39+/cHYOPGjURHR/PJJ1UvI1CZadOmMW3atArfW758ebltXbt2rdUMyI2OPXMTWXZ7/1vgyBqza+rMu9mTkIXVMIOYyADv8ucBruzXkgXrj/LbnmQeWbCFzyYNwWKxsD/ZnLzPx9ONSGvx9epaTGwT2Q12fA2HiwvKVW8jIiKNUK0zNy1btmTz5s289NJL9OjRg4EDB/Laa6+xZcuWxjHMurGzWiG7eCmE0pkbgF5Xg6c/pOyFuFXsSigpJrZUMlGexWLhuSt74+Ppxsr9KcxfZy6JYJvfpk+rENwzjpo7OypzYxTX9yhzIyIijVDti2Qw57GZPHmyo9vSPJxMBaPIfH7qsgXegdDrKnO+mw2fsMvTzGZV1CVVWptwP+4b1YXpP+zkue92MKJblL2YeECbUNhfPLqtvrPKRpadrFGZGxERaYzqFNyAOWoqLi6O/Pz8Mtsvv/zyejeqSbMVC/uGgXsFkyD2H2cGN9sWcjDqGqD64AbgtuHt+WrjMbYfz+DZb7ez47g5E/OA1sGwwUHBTXgncz0se+amQ/3OJyIi4gS1Dm7279/PVVddxZYtW7BYLPbaF1u3SVFRkWNb2NRUNFKqtNZnQERXSN5Fh/jFwLk1Cm483N14YUxvrnzzD77aeMy+fUC0O+TbRkvVs1vK0wdC25csvaDMjYiINEK1rrm55557aN++PYmJifj5+bFt2zZWrFjBoEGDKiz+lVOcOsfNqSwW+7Dwiwt+BszZiWuiT6sQJp7V3v66dZgvEUXFw/b9wsHLr25tLs3WNeUXDr4h9T+fiIiIg9U6uFm5ciXPPPMMERERuLm54ebmxvDhw5k+fTp33323M9rYtFSXuQHocz1Wiwf93PZxTnAiAd41T7Ddf0EXWob4AsX1NulmgXG9szY2tqJiZW1ERKSRqnVwU1RURGCgmUmIiIjg2DGzC6Rt27bs2lX5OkdS7NR1pSoSEElc5HkA3OK9olan9/f24PUb+jGkfZiZxUlzUL2NTcfzAQt0OM8x5xMREXGwWtfc9OrVi02bNtG+fXuGDBnCSy+9hJeXF++88w4dOqjAtFqlVwSvwnL/0UzgZ4bn/AyFeeYSDTU0sG0Y8/5evHzFDgcHN+3PgQcPgk+wY84nIiLiYLXO3Dz22GNYreZomWeeeYYDBw5w9tln8/333/P66687vIFNTk0yN8B32d05ZoThW5gBO7+t+/XSi4Ob+k7gV5pviFkbJCIi0gjVOnMzevRo+/NOnTqxc+dOUlNTCQ0NrXSiOSmlBjU3hmGwMyGH+UXnco/HQlj/CfQaU7frObrmRkREpJGrVeamoKAADw8Ptm7dWmZ7WFiYApuaqm60FHA07SSZeYUsMs4zN+xfDicO1e16jq65ERERaeRqFdx4enrSpk0bzWVTV1ZrjTI3u4uXXfCO7FBcuGvAxtm1v15hHmTFm88V3IiISDNR65qbRx99lEceeYTU1FRntKdpy00zV/2GKjM3O+OL15SKCTQX0wTYMBustQwqM4on8/PwKb/Ug4iISBNV65qb//3vf+zdu5cWLVrQtm1b/P39y7y/fv16hzWuybEVE/sEVzn6aVdxcNMlOhC6/Q18QiDjCOxfBp1G1fx6tmLi4FYqABYRkWaj1sHNlVde6YRmNBPZNRspZQtuusUEmkse9L0e/poJ6z+uZXCjYmIREWl+ah3cPPnkk85oR/OQVX29TUGRlX1J5lpQ9jWl+t9iBjc7voWj66HlgJpdT8XEIiLSDNW65kbqIbv6kVIHkrMpKDII8PawL6NATC9zKLhRBIummIXCNZGu4EZERJqfWgc3bm5uuLu7V/qQKtQgc7PTXm8TUHZ4/SUvm91ZSTth+fSaXc8ZE/iJiIg0crXullq4cGGZ1wUFBWzYsIGPPvqIp59+2mENa5JqUHOzKz4DgK4xQWXf8AuDy16FuTfCH69Bt8ug1cCqr6eaGxERaYZqHdxcccUV5bZdc8019OzZk3nz5nHbbbc5pGFNUlb160rtijfrbbrZ6m1K63Yp9L4OtnwOi+6Av/9mFhxXxDBKBTfK3IiISPPhsJqboUOHsnTpUkedrmmqSeYmwczcdImuILgBuPhFCIiG5N2w7LkqrpUMhbmABYJa1rHBIiIipx+HBDcnT57k9ddfp2VLfYlWyZ65qTi4ycor5HDqSaCSzA0Ud0+9Zj5f+T84vLri/dLjzJ+BMeDhVdcWi4iInHZq3S116gKZhmGQmZmJn58fn376qUMb16QYRrVLL9iWXYgK9CbUv4qApOvF0PcG2DTHHD11x+/g6Vt2H9XbiIhIM1Xr4Oa///1vmeDGzc2NyMhIhgwZQmhoqEMb16TkpkNRvvm8km6p3aWXXajORdPNBTVT9sIv/4LRp3RRKbgREZFmqtbBzYQJE5zQjGbANseNd1ClRcD2NaUqq7cpzTcULnsdPrsWVr4J3S+DNkNL3tcEfiIi0kzVuubmgw8+YP78+eW2z58/n48++sghjWqSbHPcVDGB367aZG4AulwI/W4GDLN7Kj+n5D1N4CciIs1UrYOb6dOnExFRfoXpqKgonn/+eYc0qkmqpt7GMAx2JdjWlAqqcJ8KjX7OHA2Vuh9+ebZkuybwExGRZqrWwU1cXBzt27cvt71t27bExcU5pFFNUlbVSy8kZ+WTmp2PxQKdowNqfl7fELj8dfP5qhlw6E/zuWpuRESkmap1cBMVFcXmzZvLbd+0aRPh4eEOaVSTVE3mxtYl1S7cHx/PWi5j0WkUDBiH2T11pznHTU6K+Z66pUREpJmpdXBzww03cPfdd7Ns2TKKioooKiril19+4Z577uH66693RhubhqyqJ/DbaVt2oSbFxBW58DkIagUnDsCCyeY2r0DwCa7b+URERE5TtR4t9eyzz3Lw4EFGjhyJh4d5uNVqZdy4caq5qUp21Usv1LqY+FQ+QXDFG/DJVbCveKbokNZQevFNERGRZqDWwY2Xlxfz5s3jX//6Fxs3bsTX15fevXvTtm1bZ7Sv6agmc7PbXkxcx+AGoOMIGDgR1n1gvla9jYiINEO1Dm5sOnfuTOfOnR3Zlqatipobq9Vgd4K5YGaX+gQ3ABc+C3uXmssvqN5GRESaoVrX3IwZM4YXX3yx3PaXXnqJa6+91iGNanIMo8rRUnGpOZwsKMLbw4124f71u5Z3IFz3EXS+EAZOqN+5RERETkO1Dm5WrFjBJZdcUm77xRdfzIoVKxzSqCYnPwsKzQUxK8rc2GYm7hwdgLubA2pkWg6Am+ZDbJ/6n0tEROQ0U+vgJisrCy+v8os6enp6kpGR4ZBGNTm2ehtPf/Aqn5mx1dt0qetIKREREbGrdXDTu3dv5s2bV2773Llz6dGjh0Ma1eTUcKRUvYqJRUREBKhDQfHjjz/O1Vdfzb59+xgxYgQAS5cu5bPPPuOLL75weAObhJrOcVObZRdERESkQrUObi677DIWLVrE888/zxdffIGvry99+/bll19+ISwszBltPP1VMVIqt6CIgynmgpfK3IiIiNRfnYaCX3rppVx66aUAZGRkMGfOHP75z3+ybt06ioqKHNrAJqGKkVL7krIoshoE+3oSFejdwA0TERFpempdc2OzYsUKxo8fT4sWLfjPf/7DiBEjWLVqlSPb1nRUkbkpPTOxRbMJi4iI1FutMjfx8fF8+OGHvP/++2RkZHDdddeRl5fHokWLVExcFXvNTfnMjYqJRUREHKvGmZvLLruMrl27snnzZl599VWOHTvGG2+84cy2NR320VIVZG4S6rmmlIiIiJRR48zNDz/8wN13382UKVO07EJtVTFayt4tpTluREREHKLGmZvff/+dzMxMBg4cyJAhQ/jf//5HcnKyM9vWdFSSuUnPKeB4ei7ggDWlREREBKhFcDN06FDeffddjh8/zt///nfmzp1LixYtsFqtLFmyhMzMTGe28/SVn2MuvwDlam5sXVItQ3wJ8vFs6JaJiIg0SbUeLeXv78+tt97K77//zpYtW/jHP/7BCy+8QFRUFJdffrkz2nh6s42U8vAxF7UsRfU2IiIijlfnoeAAXbt25aWXXuLIkSPMmTPHUW1qWuxz3ETBKUO9dxXPTKw1pURERBynXsGNjbu7O1deeSVff/21I07XtNjnuNEwcBERkYbgkOBGqlDJSCnDMNgZr24pERERR1Nw42yVrAgen5FLZm4h7m4WOkT6u6BhIiIiTZOCG2erJHNjy9p0iPDH28O9oVslIiLSZCm4cbZK1pXapS4pERERp1Bw42yVrAi+O0EzE4uIiDiDghtnqyRzk5BhzkzcKsy3oVskIiLSpCm4cbbS89yUkpyZD0C4v3dDt0hERKRJU3DjTAW5kJduPj9ltFRyVh4AEQEKbkRERBxJwY0z2bqk3L3AJ8S+uchqkJpjZm4iAr1c0DAREZGmS8GNM5UuJi619EJqdj6GYW4K81NwIyIi4kgKbpzJlrnxr7hLKszPCw93fQQiIiKOpG9WZ8qqeKSU6m1EREScR8GNM2VXPDuxPbhRvY2IiIjDKbhxpqyK15WyDQNX5kZERMTxFNw4U3WZGwU3IiIiDqfgxpnsmZuywU2SghsRERGnUXDjTJWOlrJ1S6nmRkRExNEU3DiTfbRUdJnNyZnK3IiIiDiLy4ObN998k3bt2uHj48OQIUNYvXp1lfunpaUxdepUYmNj8fb2pkuXLnz//fcN1NpaKMyH3DTzuYaCi4iINBgPV1583rx53H///cycOZMhQ4bw6quvMnr0aHbt2kVUVFS5/fPz87nggguIioriiy++oGXLlhw6dIiQkJCGb3x1sovrbdw8yiy9YLUapGRr6QURERFncWlw88orrzBp0iQmTpwIwMyZM/nuu++YNWsWDz30ULn9Z82aRWpqKn/++Seenp4AtGvXriGbXHOl623cShJk6ScLKLIagFYEFxERcQaXdUvl5+ezbt06Ro0aVdIYNzdGjRrFypUrKzzm66+/ZtiwYUydOpXo6Gh69erF888/T1FRUUM1u+ZKrytViq1LKtjXEy8Pl/cKioiINDkuy9wkJydTVFREdHTZYtvo6Gh27txZ4TH79+/nl19+4aabbuL7779n79693HnnnRQUFPDkk09WeExeXh55eXn21xkZGY67iapkV7z0QskwcHVJiYiIOMNplTqwWq1ERUXxzjvvMHDgQMaOHcujjz7KzJkzKz1m+vTpBAcH2x+tW7dumMZmVTaBn2YnFhERcSaXBTcRERG4u7uTkJBQZntCQgIxMTEVHhMbG0uXLl1wd3e3b+vevTvx8fHk5+dXeMzDDz9Menq6/XH48GHH3URVsitbesG2rpSCGxEREWdwWXDj5eXFwIEDWbp0qX2b1Wpl6dKlDBs2rMJjzjrrLPbu3YvVarVv2717N7GxsXh5VdzN4+3tTVBQUJlHg6g0c2MGN5HK3IiIiDiFS7ul7r//ft59910++ugjduzYwZQpU8jOzraPnho3bhwPP/ywff8pU6aQmprKPffcw+7du/nuu+94/vnnmTp1qqtuoXKV1Nwkq+ZGRETEqVw6FHzs2LEkJSXxxBNPEB8fT79+/Vi8eLG9yDguLg63UsOoW7duzY8//sh9991Hnz59aNmyJffccw8PPvigq26hcpWOljK7z8KVuREREXEKlwY3ANOmTWPatGkVvrd8+fJy24YNG8aqVauc3CoHqDZzo+BGRETEGU6r0VKnjaJCyEk1n59ac5OpbikRERFnUnDjDDnJgAEWN/ALs282DENDwUVERJxMwY0z2EZK+UWAW8mw9cy8QvKLzJFekRoKLiIi4hQKbpyhsnqb4i6pAG8PfDzdTz1KREREHEDBjTNUM1JK9TYiIiLOo+DGGTRSSkRExGUU3DiDfXbiilcEV3AjIiLiPApunMG+rlQlw8AD1S0lIiLiLApunKGSdaWSNAxcRETE6RTcOENlK4IXd0tp6QURERHnUXDjDNWuCK5uKREREWdRcONo1qLiGYrRaCkREREXUHDjaDmpYFgBizlDcSnJmaq5ERERcTYFN45mm+PGLwzcSxZdz84r5GRBEQARWnpBRETEaRTcOFol9TYpxSOlfDzd8PfS0gsiIiLOouDG0SoZKZVUqt7GYrE0dKtERESaDQU3jlbNSCnV24iIiDiXghtH07pSIiIiLqXgxtEqWxG8eKRUpJZeEBERcSoFN46mzI2IiIhLKbhxtGpqbsL9lbkRERFxJgU3jlbNulKa40ZERMS5FNw4ktVaEtyUy9xodmIREZGGoODGkU6eAGuh+bxcQbFqbkRERBqCghtHshUT+4SAR0ltTW5BEZl5ZtATqeBGRETEqRTcOFJWxSOlUrLNLikvdzeCfD1OPUpEREQcSMGNI1VWb1PcJRUe4KWlF0RERJxMwY0j2TM3lYyUUpeUiIiI0ym4caTs6taV0hw3IiIizqbgxpGyKpvjRsPARUREGoqCG0eqJHOTZK+5UXAjIiLibApuHKmS0VLqlhIREWk4Cm4cyb70QsXBTaSWXhAREXE6BTeOYhhaekFERKQRUHDjKLlpUGQGMeWWXtBQcBERkQaj4MZRbCOlvIPB08e+uaDISlpOAaCaGxERkYag4MZRsiuewC+luEvK3c1CqJ+CGxEREWfTQkeOEtkdxn4KlF1ewdYlFebvhZubll4QERFxNgU3juIfDt0vK7dZ9TYiIiINS91STlYyUkpdUiIiIg1BwY2T2ee4UeZGRESkQSi4cbJk+9ILytyIiIg0BAU3TqaaGxERkYal4MbJNDuxiIhIw1Jw42T2zI3WlRIREWkQCm6cTCuCi4iINCwFN05UZDVIzTa7pTRaSkREpGEouHGi1Ox8rAZYLOYMxSIiIuJ8Cm6cKCXb7JIK9fPCw12/ahERkYagb1wnSs7U7MQiIiINTcGNE2mOGxERkYan4MaJFNyIiIg0PAU3TpSUpaUXREREGpqCGycqqblR5kZERKShKLhxIq0ILiIi0vAU3DhRydIL6pYSERFpKApunEgFxSIiIg1PwY2TWK0GKVoRXEREpMEpuHGS9JMFFFoNQKOlREREGpKCGyexdUkF+Xjg7eHu4taIiIg0HwpunCTZ1iUVqC4pERGRhqTgxklUTCwiIuIaCm6cpCS4Ub2NiIhIQ1Jw4yTK3IiIiLiGghsn0dILIiIirqHgxkmUuREREXENBTdOopobERER11Bw4yQaCi4iIuIajSK4efPNN2nXrh0+Pj4MGTKE1atXV7rvhx9+iMViKfPw8fFpwNZWzzAMkrQiuIiIiEu4PLiZN28e999/P08++STr16+nb9++jB49msTExEqPCQoK4vjx4/bHoUOHGrDF1cvMKyS/0Aqo5kZERKShuTy4eeWVV5g0aRITJ06kR48ezJw5Ez8/P2bNmlXpMRaLhZiYGPsjOjq6AVtcveRMM2vj7+WOr5eWXhAREWlILg1u8vPzWbduHaNGjbJvc3NzY9SoUaxcubLS47Kysmjbti2tW7fmiiuuYNu2bZXum5eXR0ZGRpmHs6Vkq95GRETEVVwa3CQnJ1NUVFQu8xIdHU18fHyFx3Tt2pVZs2bx1Vdf8emnn2K1WjnzzDM5cuRIhftPnz6d4OBg+6N169YOv49T2TI36pISERFpeC7vlqqtYcOGMW7cOPr168e5557LggULiIyM5O23365w/4cffpj09HT74/Dhw05vo20YeLi/hoGLiIg0NA9XXjwiIgJ3d3cSEhLKbE9ISCAmJqZG5/D09KR///7s3bu3wve9vb3x9m7YDEqShoGLiIi4jEszN15eXgwcOJClS5fat1mtVpYuXcqwYcNqdI6ioiK2bNlCbGyss5pZa5qdWERExHVcmrkBuP/++xk/fjyDBg3ijDPO4NVXXyU7O5uJEycCMG7cOFq2bMn06dMBeOaZZxg6dCidOnUiLS2Nf//73xw6dIjbb7/dlbdRhq3mJlKzE4uIiDQ4lwc3Y8eOJSkpiSeeeIL4+Hj69evH4sWL7UXGcXFxuLmVJJhOnDjBpEmTiI+PJzQ0lIEDB/Lnn3/So0cPV91COcrciIiIuI7FMAzD1Y1oSBkZGQQHB5Oenk5QUJBTrnHOS8uIS81h/h3DGNwuzCnXEBERaU5q8/192o2WOh0ocyMiIuI6Cm4cLCe/kJz8IkArgouIiLiCghsHS840h4F7e7gR4O3ykiYREZFmR8GNgyWV6pKyWCwubo2IiEjzo+DGwVLswY26pERERFxBwY2DJdtmJ1YxsYiIiEsouHEwjZQSERFxLQU3DmYPbgLVLSUiIuIKCm4cTJkbERER11Jw42C2oeAKbkRERFxDwY2DKXMjIiLiWgpuHMw2z02kam5ERERcQsGNA+UWFJGZWwgocyMiIuIqCm4cKCXbrLfxdLcQ7Ovp4taIiIg0TwpuHCg50+ySCvfX0gsiIiKuouDGgVKyi4MbLb0gIiLiMgpuHEjDwEVERFxPwY0DJWkYuIiIiMspuHEgLb0gIiLiegpuHMi2InikMjciIiIuo+DGgWyjpdQtJSIi4joKbhxISy+IiIi4noIbB1LNjYiIiOspuHGQgiIrJ3IKAGVuREREXEnBjYOkFi+94GaBUD9lbkRERFxFwY2DJBUXE4f5e+PupqUXREREXEXBjYNk5xUS6ONBhJZeEBERcSkPVzegqRjSIZwtT42msMjq6qaIiIg0a8rcOJiHu36lIiIirqRvYhEREWlSFNyIiIhIk6LgRkRERJoUBTciIiLSpCi4ERERkSZFwY2IiIg0KQpuREREpElRcCMiIiJNioIbERERaVIU3IiIiEiTouBGREREmhQFNyIiItKkKLgRERGRJsXD1Q1oaIZhAJCRkeHiloiIiEhN2b63bd/jVWl2wU1mZiYArVu3dnFLREREpLYyMzMJDg6uch+LUZMQqAmxWq0cO3aMwMBALBaLQ8+dkZFB69atOXz4MEFBQQ49d2PSHO6zOdwj6D6bGt1n09Ec7hFqd5+GYZCZmUmLFi1wc6u6qqbZZW7c3Nxo1aqVU68RFBTUpP8x2jSH+2wO9wi6z6ZG99l0NId7hJrfZ3UZGxsVFIuIiEiTouBGREREmhQFNw7k7e3Nk08+ibe3t6ub4lTN4T6bwz2C7rOp0X02Hc3hHsF599nsCopFRESkaVPmRkRERJoUBTciIiLSpCi4ERERkSZFwY2IiIg0KQpuHOTNN9+kXbt2+Pj4MGTIEFavXu3qJjnUU089hcViKfPo1q2bq5tVbytWrOCyyy6jRYsWWCwWFi1aVOZ9wzB44okniI2NxdfXl1GjRrFnzx7XNLYeqrvPCRMmlPt8L7roItc0to6mT5/O4MGDCQwMJCoqiiuvvJJdu3aV2Sc3N5epU6cSHh5OQEAAY8aMISEhwUUtrpua3Od5551X7vO84447XNTiupkxYwZ9+vSxT+42bNgwfvjhB/v7TeGzhOrvsyl8lqd64YUXsFgs3HvvvfZtjv48Fdw4wLx587j//vt58sknWb9+PX379mX06NEkJia6umkO1bNnT44fP25//P77765uUr1lZ2fTt29f3nzzzQrff+mll3j99deZOXMmf/31F/7+/owePZrc3NwGbmn9VHefABdddFGZz3fOnDkN2ML6+/XXX5k6dSqrVq1iyZIlFBQUcOGFF5KdnW3f57777uObb75h/vz5/Prrrxw7doyrr77aha2uvZrcJ8CkSZPKfJ4vvfSSi1pcN61ateKFF15g3bp1rF27lhEjRnDFFVewbds2oGl8llD9fcLp/1mWtmbNGt5++2369OlTZrvDP09D6u2MM84wpk6dan9dVFRktGjRwpg+fboLW+VYTz75pNG3b19XN8OpAGPhwoX211ar1YiJiTH+/e9/27elpaUZ3t7expw5c1zQQsc49T4NwzDGjx9vXHHFFS5pj7MkJiYagPHrr78ahmF+dp6ensb8+fPt++zYscMAjJUrV7qqmfV26n0ahmGce+65xj333OO6RjlJaGio8d577zXZz9LGdp+G0bQ+y8zMTKNz587GkiVLytyXMz5PZW7qKT8/n3Xr1jFq1Cj7Njc3N0aNGsXKlStd2DLH27NnDy1atKBDhw7cdNNNxMXFubpJTnXgwAHi4+PLfLbBwcEMGTKkyX22AMuXLycqKoquXbsyZcoUUlJSXN2keklPTwcgLCwMgHXr1lFQUFDm8+zWrRtt2rQ5rT/PU+/TZvbs2URERNCrVy8efvhhcnJyXNE8hygqKmLu3LlkZ2czbNiwJvtZnnqfNk3ls5w6dSqXXnppmc8NnPPfZrNbONPRkpOTKSoqIjo6usz26Ohodu7c6aJWOd6QIUP48MMP6dq1K8ePH+fpp5/m7LPPZuvWrQQGBrq6eU4RHx8PUOFna3uvqbjooou4+uqrad++Pfv27eORRx7h4osvZuXKlbi7u7u6ebVmtVq59957Oeuss+jVqxdgfp5eXl6EhISU2fd0/jwruk+AG2+8kbZt29KiRQs2b97Mgw8+yK5du1iwYIELW1t7W7ZsYdiwYeTm5hIQEMDChQvp0aMHGzdubFKfZWX3CU3ns5w7dy7r169nzZo15d5zxn+bCm6kRi6++GL78z59+jBkyBDatm3L559/zm233ebClokjXH/99fbnvXv3pk+fPnTs2JHly5czcuRIF7asbqZOncrWrVubRF1YVSq7z8mTJ9uf9+7dm9jYWEaOHMm+ffvo2LFjQzezzrp27crGjRtJT0/niy++YPz48fz666+ubpbDVXafPXr0aBKf5eHDh7nnnntYsmQJPj4+DXJNdUvVU0REBO7u7uWquhMSEoiJiXFRq5wvJCSELl26sHfvXlc3xWlsn19z+2wBOnToQERExGn5+U6bNo1vv/2WZcuW0apVK/v2mJgY8vPzSUtLK7P/6fp5VnafFRkyZAjAafd5enl50alTJwYOHMj06dPp27cvr732WpP7LCu7z4qcjp/lunXrSExMZMCAAXh4eODh4cGvv/7K66+/joeHB9HR0Q7/PBXc1JOXlxcDBw5k6dKl9m1Wq5WlS5eW6TNtarKysti3bx+xsbGuborTtG/fnpiYmDKfbUZGBn/99VeT/mwBjhw5QkpKymn1+RqGwbRp01i4cCG//PIL7du3L/P+wIED8fT0LPN57tq1i7i4uNPq86zuPiuyceNGgNPq86yI1WolLy+vyXyWlbHdZ0VOx89y5MiRbNmyhY0bN9ofgwYN4qabbrI/d/jnWf/6Z5k7d67h7e1tfPjhh8b27duNyZMnGyEhIUZ8fLyrm+Yw//jHP4zly5cbBw4cMP744w9j1KhRRkREhJGYmOjqptVLZmamsWHDBmPDhg0GYLzyyivGhg0bjEOHDhmGYRgvvPCCERISYnz11VfG5s2bjSuuuMJo3769cfLkSRe3vHaqus/MzEzjn//8p7Fy5UrjwIEDxs8//2wMGDDA6Ny5s5Gbm+vqptfYlClTjODgYGP58uXG8ePH7Y+cnBz7PnfccYfRpk0b45dffjHWrl1rDBs2zBg2bJgLW1171d3n3r17jWeeecZYu3atceDAAeOrr74yOnToYJxzzjkubnntPPTQQ8avv/5qHDhwwNi8ebPx0EMPGRaLxfjpp58Mw2gan6VhVH2fTeWzrMipo8Ac/XkquHGQN954w2jTpo3h5eVlnHHGGcaqVatc3SSHGjt2rBEbG2t4eXkZLVu2NMaOHWvs3bvX1c2qt2XLlhlAucf48eMNwzCHgz/++ONGdHS04e3tbYwcOdLYtWuXaxtdB1XdZ05OjnHhhRcakZGRhqenp9G2bVtj0qRJp11wXtH9AcYHH3xg3+fkyZPGnXfeaYSGhhp+fn7GVVddZRw/ftx1ja6D6u4zLi7OOOecc4ywsDDD29vb6NSpk/HAAw8Y6enprm14Ld16661G27ZtDS8vLyMyMtIYOXKkPbAxjKbxWRpG1ffZVD7Lipwa3Dj687QYhmHULecjIiIi0vio5kZERESaFAU3IiIi0qQouBEREZEmRcGNiIiINCkKbkRERKRJUXAjIiIiTYqCGxEREWlSFNyISLNnsVhYtGiRq5shIg6i4EZEXGrChAlYLJZyj4suusjVTROR05SHqxsgInLRRRfxwQcflNnm7e3totaIyOlOmRsRcTlvb29iYmLKPEJDQwGzy2jGjBlcfPHF+Pr60qFDB7744osyx2/ZsoURI0bg6+tLeHg4kydPJisrq8w+s2bNomfPnnh7exMbG8u0adPKvJ+cnMxVV12Fn58fnTt35uuvv3buTYuI0yi4EZFG7/HHH2fMmDFs2rSJm266ieuvv54dO3YAkJ2dzejRowkNDWXNmjXMnz+fn3/+uUzwMmPGDKZOncrkyZPZsmULX3/9NZ06dSpzjaeffprrrruOzZs3c8kll3DTTTeRmpraoPcpIg5S76U9RUTqYfz48Ya7u7vh7+9f5vHcc88ZhmGugn3HHXeUOWbIkCHGlClTDMMwjHfeeccIDQ01srKy7O9/9913hpubm31l8xYtWhiPPvpopW0AjMcee8z+OisrywCMH374wWH3KSINRzU3IuJy559/PjNmzCizLSwszP582LBhZd4bNmwYGzduBGDHjh307dsXf39/+/tnnXUWVquVXbt2YbFYOHbsGCNHjqyyDX369LE/9/f3JygoiMTExLrekoi4kIIbEXE5f3//ct1EjuLr61uj/Tw9Pcu8tlgsWK1WZzRJRJxMNTci0uitWrWq3Ovu3bsD0L17dzZt2kR2drb9/T/++AM3Nze6du1KYGAg7dq1Y+nSpQ3aZhFxHWVuRMTl8vLyiI+PL7PNw8ODiIgIAObPn8+gQYMYPnw4s2fPZvXq1bz//vsA3HTTTTz55JOMHz+ep556iqSkJO666y5uueUWoqOjAXjqqae44447iIqK4uKLLyYzM5M//viDu+66q2FvVEQahIIbEXG5xYsXExsbW2Zb165d2blzJ2COZJo7dy533nknsbGxzJkzhx49egDg5+fHjz/+yD333MPgwYPx8/NjzJgxvPLKK/ZzjR8/ntzcXP773//yz3/+k4iICK655pqGu0ERaVAWwzAMVzdCRKQyFouFhQsXcuWVV7q6KSJymlDNjYiIiDQpCm5ERESkSVHNjYg0auo5F5HaUuZGREREmhQFNyIiItKkKLgRERGRJkXBjYiIiDQpCm5ERESkSVFwIyIiIk2KghsRERFpUhTciIiISJOi4EZERESalP8HscmobLzLi9gAAAAASUVORK5CYII="},"metadata":{}}]},{"cell_type":"code","source":"test_loss, test_accuracy = model.evaluate(test_generator)\nprint(f'Test loss: {test_loss}')\nprint(f'Test accuracy: {test_accuracy}')","metadata":{"execution":{"iopub.status.busy":"2024-06-24T07:42:48.818729Z","iopub.execute_input":"2024-06-24T07:42:48.819083Z","iopub.status.idle":"2024-06-24T07:42:52.935078Z","shell.execute_reply.started":"2024-06-24T07:42:48.819056Z","shell.execute_reply":"2024-06-24T07:42:52.934032Z"},"trusted":true},"execution_count":63,"outputs":[{"name":"stdout","text":"\u001b[1m16/16\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 221ms/step - accuracy: 0.8335 - loss: 0.4393\nTest loss: 0.44055408239364624\nTest accuracy: 0.8287401795387268\n","output_type":"stream"}]},{"cell_type":"code","source":"model.save('82_test_acc.h5')","metadata":{"execution":{"iopub.status.busy":"2024-06-24T07:35:28.936250Z","iopub.execute_input":"2024-06-24T07:35:28.936802Z","iopub.status.idle":"2024-06-24T07:35:29.017422Z","shell.execute_reply.started":"2024-06-24T07:35:28.936774Z","shell.execute_reply":"2024-06-24T07:35:29.016665Z"},"trusted":true},"execution_count":58,"outputs":[]},{"cell_type":"markdown","source":"MobileNetV2","metadata":{}},{"cell_type":"code","source":"from keras.applications import MobileNetV2\nfrom keras.layers import Dense, GlobalAveragePooling2D, Dropout\nfrom keras.models import Model\nfrom keras.callbacks import ReduceLROnPlateau, ModelCheckpoint, EarlyStopping\nfrom keras.optimizers import Adam\n\nmobilenet_model = MobileNetV2(weights='imagenet', include_top=False, input_shape=(224, 224, 3))\n\nfeature_extractor = Model(inputs=mobilenet_model.input, outputs=mobilenet_model.output)\n\nfor layer in feature_extractor.layers:\n layer.trainable = False\n\nx = feature_extractor.output\nx = GlobalAveragePooling2D()(x)\nx = Dropout(0.5)(x) \nx = Dense(1024, activation='relu')(x)\nx = Dense(512, activation='relu')(x) \noutput = Dense(5, activation='softmax')(x) \n\nmodelV2 = Model(inputs=feature_extractor.input, outputs=output)\n\nmodelV2.compile(optimizer=Adam(learning_rate=0.0001), loss='categorical_crossentropy', metrics=['accuracy'])\n\nmodel_checkpoint = ModelCheckpoint('mobilenet_model.keras', monitor='val_accuracy', save_best_only=True, verbose=1, mode='max')\nreduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=5, min_lr=1e-8, verbose=1)\nearly_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)\n\nmodelV2.summary()","metadata":{"execution":{"iopub.status.busy":"2024-06-24T06:54:42.838785Z","iopub.execute_input":"2024-06-24T06:54:42.839142Z","iopub.status.idle":"2024-06-24T06:54:43.874046Z","shell.execute_reply.started":"2024-06-24T06:54:42.839116Z","shell.execute_reply":"2024-06-24T06:54:43.873102Z"},"trusted":true},"execution_count":46,"outputs":[{"output_type":"display_data","data":{"text/plain":"\u001b[1mModel: \"functional_35\"\u001b[0m\n","text/html":"
Model: \"functional_35\"\n
\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”“\nโ”ƒ\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0mโ”ƒ\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0mโ”ƒ\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0mโ”ƒ\u001b[1m \u001b[0m\u001b[1mConnected to \u001b[0m\u001b[1m \u001b[0mโ”ƒ\nโ”กโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ฉ\nโ”‚ input_layer_15 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m224\u001b[0m, \u001b[38;5;34m224\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ - โ”‚\nโ”‚ (\u001b[38;5;33mInputLayer\u001b[0m) โ”‚ \u001b[38;5;34m3\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ Conv1 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m112\u001b[0m, \u001b[38;5;34m112\u001b[0m, โ”‚ \u001b[38;5;34m864\u001b[0m โ”‚ input_layer_15[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m32\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ bn_Conv1 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m112\u001b[0m, \u001b[38;5;34m112\u001b[0m, โ”‚ \u001b[38;5;34m128\u001b[0m โ”‚ Conv1[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m32\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ Conv1_relu (\u001b[38;5;33mReLU\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m112\u001b[0m, \u001b[38;5;34m112\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ bn_Conv1[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m32\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ expanded_conv_deptโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m112\u001b[0m, \u001b[38;5;34m112\u001b[0m, โ”‚ \u001b[38;5;34m288\u001b[0m โ”‚ Conv1_relu[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) โ”‚ \u001b[38;5;34m32\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ expanded_conv_deptโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m112\u001b[0m, \u001b[38;5;34m112\u001b[0m, โ”‚ \u001b[38;5;34m128\u001b[0m โ”‚ expanded_conv_deโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m32\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ expanded_conv_deptโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m112\u001b[0m, \u001b[38;5;34m112\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ expanded_conv_deโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mReLU\u001b[0m) โ”‚ \u001b[38;5;34m32\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ expanded_conv_projโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m112\u001b[0m, \u001b[38;5;34m112\u001b[0m, โ”‚ \u001b[38;5;34m512\u001b[0m โ”‚ expanded_conv_deโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m16\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ expanded_conv_projโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m112\u001b[0m, \u001b[38;5;34m112\u001b[0m, โ”‚ \u001b[38;5;34m64\u001b[0m โ”‚ expanded_conv_prโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m16\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_1_expand โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m112\u001b[0m, \u001b[38;5;34m112\u001b[0m, โ”‚ \u001b[38;5;34m1,536\u001b[0m โ”‚ expanded_conv_prโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_1_expand_BN โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m112\u001b[0m, \u001b[38;5;34m112\u001b[0m, โ”‚ \u001b[38;5;34m384\u001b[0m โ”‚ block_1_expand[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_1_expand_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m112\u001b[0m, \u001b[38;5;34m112\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_1_expand_Bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mReLU\u001b[0m) โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_1_pad โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m113\u001b[0m, \u001b[38;5;34m113\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_1_expand_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mZeroPadding2D\u001b[0m) โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_1_depthwise โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m864\u001b[0m โ”‚ block_1_pad[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_1_depthwise_โ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m384\u001b[0m โ”‚ block_1_depthwisโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_1_depthwise_โ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_1_depthwisโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mReLU\u001b[0m) โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_1_project โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m2,304\u001b[0m โ”‚ block_1_depthwisโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m24\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_1_project_BN โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m96\u001b[0m โ”‚ block_1_project[\u001b[38;5;34mโ€ฆ\u001b[0m โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m24\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_2_expand โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m3,456\u001b[0m โ”‚ block_1_project_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m144\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_2_expand_BN โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m576\u001b[0m โ”‚ block_2_expand[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m144\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_2_expand_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_2_expand_Bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mReLU\u001b[0m) โ”‚ \u001b[38;5;34m144\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_2_depthwise โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m1,296\u001b[0m โ”‚ block_2_expand_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) โ”‚ \u001b[38;5;34m144\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_2_depthwise_โ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m576\u001b[0m โ”‚ block_2_depthwisโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m144\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_2_depthwise_โ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_2_depthwisโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mReLU\u001b[0m) โ”‚ \u001b[38;5;34m144\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_2_project โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m3,456\u001b[0m โ”‚ block_2_depthwisโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m24\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_2_project_BN โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m96\u001b[0m โ”‚ block_2_project[\u001b[38;5;34mโ€ฆ\u001b[0m โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m24\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_2_add (\u001b[38;5;33mAdd\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_1_project_โ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m24\u001b[0m) โ”‚ โ”‚ block_2_project_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_3_expand โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m3,456\u001b[0m โ”‚ block_2_add[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m144\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_3_expand_BN โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m576\u001b[0m โ”‚ block_3_expand[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m144\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_3_expand_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_3_expand_Bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mReLU\u001b[0m) โ”‚ \u001b[38;5;34m144\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_3_pad โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m57\u001b[0m, \u001b[38;5;34m57\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_3_expand_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mZeroPadding2D\u001b[0m) โ”‚ \u001b[38;5;34m144\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_3_depthwise โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m1,296\u001b[0m โ”‚ block_3_pad[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) โ”‚ \u001b[38;5;34m144\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_3_depthwise_โ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m576\u001b[0m โ”‚ block_3_depthwisโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m144\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_3_depthwise_โ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_3_depthwisโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mReLU\u001b[0m) โ”‚ \u001b[38;5;34m144\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_3_project โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m4,608\u001b[0m โ”‚ block_3_depthwisโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m32\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_3_project_BN โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m128\u001b[0m โ”‚ block_3_project[\u001b[38;5;34mโ€ฆ\u001b[0m โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m32\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_4_expand โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m6,144\u001b[0m โ”‚ block_3_project_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_4_expand_BN โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m768\u001b[0m โ”‚ block_4_expand[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_4_expand_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_4_expand_Bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mReLU\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_4_depthwise โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m1,728\u001b[0m โ”‚ block_4_expand_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_4_depthwise_โ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m768\u001b[0m โ”‚ block_4_depthwisโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_4_depthwise_โ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_4_depthwisโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mReLU\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_4_project โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m6,144\u001b[0m โ”‚ block_4_depthwisโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m32\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_4_project_BN โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m128\u001b[0m โ”‚ block_4_project[\u001b[38;5;34mโ€ฆ\u001b[0m โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m32\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_4_add (\u001b[38;5;33mAdd\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_3_project_โ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m32\u001b[0m) โ”‚ โ”‚ block_4_project_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_5_expand โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m6,144\u001b[0m โ”‚ block_4_add[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_5_expand_BN โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m768\u001b[0m โ”‚ block_5_expand[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_5_expand_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_5_expand_Bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mReLU\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_5_depthwise โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m1,728\u001b[0m โ”‚ block_5_expand_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_5_depthwise_โ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m768\u001b[0m โ”‚ block_5_depthwisโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_5_depthwise_โ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_5_depthwisโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mReLU\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_5_project โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m6,144\u001b[0m โ”‚ block_5_depthwisโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m32\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_5_project_BN โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m128\u001b[0m โ”‚ block_5_project[\u001b[38;5;34mโ€ฆ\u001b[0m โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m32\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_5_add (\u001b[38;5;33mAdd\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_4_add[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m32\u001b[0m) โ”‚ โ”‚ block_5_project_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_6_expand โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m6,144\u001b[0m โ”‚ block_5_add[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_6_expand_BN โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m768\u001b[0m โ”‚ block_6_expand[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_6_expand_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_6_expand_Bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mReLU\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_6_pad โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m29\u001b[0m, \u001b[38;5;34m29\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_6_expand_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mZeroPadding2D\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_6_depthwise โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,728\u001b[0m โ”‚ block_6_pad[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_6_depthwise_โ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m768\u001b[0m โ”‚ block_6_depthwisโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_6_depthwise_โ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_6_depthwisโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mReLU\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_6_project โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m12,288\u001b[0m โ”‚ block_6_depthwisโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_6_project_BN โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m256\u001b[0m โ”‚ block_6_project[\u001b[38;5;34mโ€ฆ\u001b[0m โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_7_expand โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m24,576\u001b[0m โ”‚ block_6_project_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m384\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_7_expand_BN โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,536\u001b[0m โ”‚ block_7_expand[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m384\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_7_expand_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_7_expand_Bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mReLU\u001b[0m) โ”‚ \u001b[38;5;34m384\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_7_depthwise โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m3,456\u001b[0m โ”‚ block_7_expand_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) โ”‚ \u001b[38;5;34m384\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_7_depthwise_โ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,536\u001b[0m โ”‚ block_7_depthwisโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m384\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_7_depthwise_โ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_7_depthwisโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mReLU\u001b[0m) โ”‚ \u001b[38;5;34m384\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_7_project โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m24,576\u001b[0m โ”‚ block_7_depthwisโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_7_project_BN โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m256\u001b[0m โ”‚ block_7_project[\u001b[38;5;34mโ€ฆ\u001b[0m โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_7_add (\u001b[38;5;33mAdd\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_6_project_โ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ block_7_project_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_8_expand โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m24,576\u001b[0m โ”‚ block_7_add[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m384\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_8_expand_BN โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,536\u001b[0m โ”‚ block_8_expand[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m384\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_8_expand_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_8_expand_Bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mReLU\u001b[0m) โ”‚ \u001b[38;5;34m384\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_8_depthwise โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m3,456\u001b[0m โ”‚ block_8_expand_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) โ”‚ \u001b[38;5;34m384\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_8_depthwise_โ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,536\u001b[0m โ”‚ block_8_depthwisโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m384\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_8_depthwise_โ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_8_depthwisโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mReLU\u001b[0m) โ”‚ \u001b[38;5;34m384\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_8_project โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m24,576\u001b[0m โ”‚ block_8_depthwisโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_8_project_BN โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m256\u001b[0m โ”‚ block_8_project[\u001b[38;5;34mโ€ฆ\u001b[0m โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_8_add (\u001b[38;5;33mAdd\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_7_add[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ block_8_project_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_9_expand โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m24,576\u001b[0m โ”‚ block_8_add[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m384\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_9_expand_BN โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,536\u001b[0m โ”‚ block_9_expand[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m384\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_9_expand_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_9_expand_Bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mReLU\u001b[0m) โ”‚ \u001b[38;5;34m384\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_9_depthwise โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m3,456\u001b[0m โ”‚ block_9_expand_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) โ”‚ \u001b[38;5;34m384\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_9_depthwise_โ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,536\u001b[0m โ”‚ block_9_depthwisโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m384\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_9_depthwise_โ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_9_depthwisโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mReLU\u001b[0m) โ”‚ \u001b[38;5;34m384\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_9_project โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m24,576\u001b[0m โ”‚ block_9_depthwisโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_9_project_BN โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m256\u001b[0m โ”‚ block_9_project[\u001b[38;5;34mโ€ฆ\u001b[0m โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_9_add (\u001b[38;5;33mAdd\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_8_add[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ block_9_project_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_10_expand โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m24,576\u001b[0m โ”‚ block_9_add[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m384\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_10_expand_BN โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,536\u001b[0m โ”‚ block_10_expand[\u001b[38;5;34mโ€ฆ\u001b[0m โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m384\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_10_expand_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_10_expand_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mReLU\u001b[0m) โ”‚ \u001b[38;5;34m384\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_10_depthwise โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m3,456\u001b[0m โ”‚ block_10_expand_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) โ”‚ \u001b[38;5;34m384\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_10_depthwiseโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,536\u001b[0m โ”‚ block_10_depthwiโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m384\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_10_depthwiseโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_10_depthwiโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mReLU\u001b[0m) โ”‚ \u001b[38;5;34m384\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_10_project โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m36,864\u001b[0m โ”‚ block_10_depthwiโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_10_project_BN โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m384\u001b[0m โ”‚ block_10_projectโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_11_expand โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m55,296\u001b[0m โ”‚ block_10_projectโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m576\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_11_expand_BN โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m2,304\u001b[0m โ”‚ block_11_expand[\u001b[38;5;34mโ€ฆ\u001b[0m โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m576\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_11_expand_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_11_expand_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mReLU\u001b[0m) โ”‚ \u001b[38;5;34m576\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_11_depthwise โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m5,184\u001b[0m โ”‚ block_11_expand_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) โ”‚ \u001b[38;5;34m576\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_11_depthwiseโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m2,304\u001b[0m โ”‚ block_11_depthwiโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m576\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_11_depthwiseโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_11_depthwiโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mReLU\u001b[0m) โ”‚ \u001b[38;5;34m576\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_11_project โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m55,296\u001b[0m โ”‚ block_11_depthwiโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_11_project_BN โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m384\u001b[0m โ”‚ block_11_projectโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_11_add (\u001b[38;5;33mAdd\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_10_projectโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ block_11_projectโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_12_expand โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m55,296\u001b[0m โ”‚ block_11_add[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34mโ€ฆ\u001b[0m โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m576\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_12_expand_BN โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m2,304\u001b[0m โ”‚ block_12_expand[\u001b[38;5;34mโ€ฆ\u001b[0m โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m576\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_12_expand_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_12_expand_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mReLU\u001b[0m) โ”‚ \u001b[38;5;34m576\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_12_depthwise โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m5,184\u001b[0m โ”‚ block_12_expand_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) โ”‚ \u001b[38;5;34m576\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_12_depthwiseโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m2,304\u001b[0m โ”‚ block_12_depthwiโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m576\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_12_depthwiseโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_12_depthwiโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mReLU\u001b[0m) โ”‚ \u001b[38;5;34m576\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_12_project โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m55,296\u001b[0m โ”‚ block_12_depthwiโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_12_project_BN โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m384\u001b[0m โ”‚ block_12_projectโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_12_add (\u001b[38;5;33mAdd\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_11_add[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34mโ€ฆ\u001b[0m โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ block_12_projectโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_13_expand โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m55,296\u001b[0m โ”‚ block_12_add[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34mโ€ฆ\u001b[0m โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m576\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_13_expand_BN โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m2,304\u001b[0m โ”‚ block_13_expand[\u001b[38;5;34mโ€ฆ\u001b[0m โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m576\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_13_expand_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_13_expand_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mReLU\u001b[0m) โ”‚ \u001b[38;5;34m576\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_13_pad โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m15\u001b[0m, \u001b[38;5;34m15\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_13_expand_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mZeroPadding2D\u001b[0m) โ”‚ \u001b[38;5;34m576\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_13_depthwise โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m576\u001b[0m) โ”‚ \u001b[38;5;34m5,184\u001b[0m โ”‚ block_13_pad[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34mโ€ฆ\u001b[0m โ”‚\nโ”‚ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_13_depthwiseโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m576\u001b[0m) โ”‚ \u001b[38;5;34m2,304\u001b[0m โ”‚ block_13_depthwiโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_13_depthwiseโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m576\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_13_depthwiโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mReLU\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_13_project โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) โ”‚ \u001b[38;5;34m92,160\u001b[0m โ”‚ block_13_depthwiโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_13_project_BN โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) โ”‚ \u001b[38;5;34m640\u001b[0m โ”‚ block_13_projectโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_14_expand โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m960\u001b[0m) โ”‚ \u001b[38;5;34m153,600\u001b[0m โ”‚ block_13_projectโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_14_expand_BN โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m960\u001b[0m) โ”‚ \u001b[38;5;34m3,840\u001b[0m โ”‚ block_14_expand[\u001b[38;5;34mโ€ฆ\u001b[0m โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_14_expand_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m960\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_14_expand_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mReLU\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_14_depthwise โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m960\u001b[0m) โ”‚ \u001b[38;5;34m8,640\u001b[0m โ”‚ block_14_expand_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_14_depthwiseโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m960\u001b[0m) โ”‚ \u001b[38;5;34m3,840\u001b[0m โ”‚ block_14_depthwiโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_14_depthwiseโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m960\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_14_depthwiโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mReLU\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_14_project โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) โ”‚ \u001b[38;5;34m153,600\u001b[0m โ”‚ block_14_depthwiโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_14_project_BN โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) โ”‚ \u001b[38;5;34m640\u001b[0m โ”‚ block_14_projectโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_14_add (\u001b[38;5;33mAdd\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_13_projectโ€ฆ โ”‚\nโ”‚ โ”‚ โ”‚ โ”‚ block_14_projectโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_15_expand โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m960\u001b[0m) โ”‚ \u001b[38;5;34m153,600\u001b[0m โ”‚ block_14_add[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34mโ€ฆ\u001b[0m โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_15_expand_BN โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m960\u001b[0m) โ”‚ \u001b[38;5;34m3,840\u001b[0m โ”‚ block_15_expand[\u001b[38;5;34mโ€ฆ\u001b[0m โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_15_expand_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m960\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_15_expand_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mReLU\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_15_depthwise โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m960\u001b[0m) โ”‚ \u001b[38;5;34m8,640\u001b[0m โ”‚ block_15_expand_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_15_depthwiseโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m960\u001b[0m) โ”‚ \u001b[38;5;34m3,840\u001b[0m โ”‚ block_15_depthwiโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_15_depthwiseโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m960\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_15_depthwiโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mReLU\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_15_project โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) โ”‚ \u001b[38;5;34m153,600\u001b[0m โ”‚ block_15_depthwiโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_15_project_BN โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) โ”‚ \u001b[38;5;34m640\u001b[0m โ”‚ block_15_projectโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_15_add (\u001b[38;5;33mAdd\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m160\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_14_add[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34mโ€ฆ\u001b[0m โ”‚\nโ”‚ โ”‚ โ”‚ โ”‚ block_15_projectโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_16_expand โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m960\u001b[0m) โ”‚ \u001b[38;5;34m153,600\u001b[0m โ”‚ block_15_add[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34mโ€ฆ\u001b[0m โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_16_expand_BN โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m960\u001b[0m) โ”‚ \u001b[38;5;34m3,840\u001b[0m โ”‚ block_16_expand[\u001b[38;5;34mโ€ฆ\u001b[0m โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_16_expand_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m960\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_16_expand_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mReLU\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_16_depthwise โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m960\u001b[0m) โ”‚ \u001b[38;5;34m8,640\u001b[0m โ”‚ block_16_expand_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_16_depthwiseโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m960\u001b[0m) โ”‚ \u001b[38;5;34m3,840\u001b[0m โ”‚ block_16_depthwiโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_16_depthwiseโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m960\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ block_16_depthwiโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mReLU\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_16_project โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m320\u001b[0m) โ”‚ \u001b[38;5;34m307,200\u001b[0m โ”‚ block_16_depthwiโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_16_project_BN โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m320\u001b[0m) โ”‚ \u001b[38;5;34m1,280\u001b[0m โ”‚ block_16_projectโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ Conv_1 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, โ”‚ \u001b[38;5;34m409,600\u001b[0m โ”‚ block_16_projectโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m1280\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ Conv_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, โ”‚ \u001b[38;5;34m5,120\u001b[0m โ”‚ Conv_1[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1280\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ out_relu (\u001b[38;5;33mReLU\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ Conv_1_bn[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m1280\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ global_average_pooโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1280\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ out_relu[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mGlobalAveragePoolโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dropout_21 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1280\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ global_average_pโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mDropout\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dense_37 (\u001b[38;5;33mDense\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1024\u001b[0m) โ”‚ \u001b[38;5;34m1,311,744\u001b[0m โ”‚ dropout_21[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dense_38 (\u001b[38;5;33mDense\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m) โ”‚ \u001b[38;5;34m524,800\u001b[0m โ”‚ dense_37[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dense_39 (\u001b[38;5;33mDense\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m) โ”‚ \u001b[38;5;34m2,565\u001b[0m โ”‚ dense_38[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜\n","text/html":"
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”“\nโ”ƒ Layer (type)        โ”ƒ Output Shape      โ”ƒ    Param # โ”ƒ Connected to      โ”ƒ\nโ”กโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ฉ\nโ”‚ input_layer_15      โ”‚ (None, 224, 224,  โ”‚          0 โ”‚ -                 โ”‚\nโ”‚ (InputLayer)        โ”‚ 3)                โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ Conv1 (Conv2D)      โ”‚ (None, 112, 112,  โ”‚        864 โ”‚ input_layer_15[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 32)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ bn_Conv1            โ”‚ (None, 112, 112,  โ”‚        128 โ”‚ Conv1[0][0]       โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 32)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ Conv1_relu (ReLU)   โ”‚ (None, 112, 112,  โ”‚          0 โ”‚ bn_Conv1[0][0]    โ”‚\nโ”‚                     โ”‚ 32)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ expanded_conv_deptโ€ฆ โ”‚ (None, 112, 112,  โ”‚        288 โ”‚ Conv1_relu[0][0]  โ”‚\nโ”‚ (DepthwiseConv2D)   โ”‚ 32)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ expanded_conv_deptโ€ฆ โ”‚ (None, 112, 112,  โ”‚        128 โ”‚ expanded_conv_deโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 32)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ expanded_conv_deptโ€ฆ โ”‚ (None, 112, 112,  โ”‚          0 โ”‚ expanded_conv_deโ€ฆ โ”‚\nโ”‚ (ReLU)              โ”‚ 32)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ expanded_conv_projโ€ฆ โ”‚ (None, 112, 112,  โ”‚        512 โ”‚ expanded_conv_deโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 16)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ expanded_conv_projโ€ฆ โ”‚ (None, 112, 112,  โ”‚         64 โ”‚ expanded_conv_prโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 16)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_1_expand      โ”‚ (None, 112, 112,  โ”‚      1,536 โ”‚ expanded_conv_prโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_1_expand_BN   โ”‚ (None, 112, 112,  โ”‚        384 โ”‚ block_1_expand[0โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_1_expand_relu โ”‚ (None, 112, 112,  โ”‚          0 โ”‚ block_1_expand_Bโ€ฆ โ”‚\nโ”‚ (ReLU)              โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_1_pad         โ”‚ (None, 113, 113,  โ”‚          0 โ”‚ block_1_expand_rโ€ฆ โ”‚\nโ”‚ (ZeroPadding2D)     โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_1_depthwise   โ”‚ (None, 56, 56,    โ”‚        864 โ”‚ block_1_pad[0][0] โ”‚\nโ”‚ (DepthwiseConv2D)   โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_1_depthwise_โ€ฆ โ”‚ (None, 56, 56,    โ”‚        384 โ”‚ block_1_depthwisโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_1_depthwise_โ€ฆ โ”‚ (None, 56, 56,    โ”‚          0 โ”‚ block_1_depthwisโ€ฆ โ”‚\nโ”‚ (ReLU)              โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_1_project     โ”‚ (None, 56, 56,    โ”‚      2,304 โ”‚ block_1_depthwisโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 24)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_1_project_BN  โ”‚ (None, 56, 56,    โ”‚         96 โ”‚ block_1_project[โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 24)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_2_expand      โ”‚ (None, 56, 56,    โ”‚      3,456 โ”‚ block_1_project_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 144)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_2_expand_BN   โ”‚ (None, 56, 56,    โ”‚        576 โ”‚ block_2_expand[0โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 144)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_2_expand_relu โ”‚ (None, 56, 56,    โ”‚          0 โ”‚ block_2_expand_Bโ€ฆ โ”‚\nโ”‚ (ReLU)              โ”‚ 144)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_2_depthwise   โ”‚ (None, 56, 56,    โ”‚      1,296 โ”‚ block_2_expand_rโ€ฆ โ”‚\nโ”‚ (DepthwiseConv2D)   โ”‚ 144)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_2_depthwise_โ€ฆ โ”‚ (None, 56, 56,    โ”‚        576 โ”‚ block_2_depthwisโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 144)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_2_depthwise_โ€ฆ โ”‚ (None, 56, 56,    โ”‚          0 โ”‚ block_2_depthwisโ€ฆ โ”‚\nโ”‚ (ReLU)              โ”‚ 144)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_2_project     โ”‚ (None, 56, 56,    โ”‚      3,456 โ”‚ block_2_depthwisโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 24)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_2_project_BN  โ”‚ (None, 56, 56,    โ”‚         96 โ”‚ block_2_project[โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 24)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_2_add (Add)   โ”‚ (None, 56, 56,    โ”‚          0 โ”‚ block_1_project_โ€ฆ โ”‚\nโ”‚                     โ”‚ 24)               โ”‚            โ”‚ block_2_project_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_3_expand      โ”‚ (None, 56, 56,    โ”‚      3,456 โ”‚ block_2_add[0][0] โ”‚\nโ”‚ (Conv2D)            โ”‚ 144)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_3_expand_BN   โ”‚ (None, 56, 56,    โ”‚        576 โ”‚ block_3_expand[0โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 144)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_3_expand_relu โ”‚ (None, 56, 56,    โ”‚          0 โ”‚ block_3_expand_Bโ€ฆ โ”‚\nโ”‚ (ReLU)              โ”‚ 144)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_3_pad         โ”‚ (None, 57, 57,    โ”‚          0 โ”‚ block_3_expand_rโ€ฆ โ”‚\nโ”‚ (ZeroPadding2D)     โ”‚ 144)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_3_depthwise   โ”‚ (None, 28, 28,    โ”‚      1,296 โ”‚ block_3_pad[0][0] โ”‚\nโ”‚ (DepthwiseConv2D)   โ”‚ 144)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_3_depthwise_โ€ฆ โ”‚ (None, 28, 28,    โ”‚        576 โ”‚ block_3_depthwisโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 144)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_3_depthwise_โ€ฆ โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ block_3_depthwisโ€ฆ โ”‚\nโ”‚ (ReLU)              โ”‚ 144)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_3_project     โ”‚ (None, 28, 28,    โ”‚      4,608 โ”‚ block_3_depthwisโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 32)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_3_project_BN  โ”‚ (None, 28, 28,    โ”‚        128 โ”‚ block_3_project[โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 32)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_4_expand      โ”‚ (None, 28, 28,    โ”‚      6,144 โ”‚ block_3_project_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_4_expand_BN   โ”‚ (None, 28, 28,    โ”‚        768 โ”‚ block_4_expand[0โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_4_expand_relu โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ block_4_expand_Bโ€ฆ โ”‚\nโ”‚ (ReLU)              โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_4_depthwise   โ”‚ (None, 28, 28,    โ”‚      1,728 โ”‚ block_4_expand_rโ€ฆ โ”‚\nโ”‚ (DepthwiseConv2D)   โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_4_depthwise_โ€ฆ โ”‚ (None, 28, 28,    โ”‚        768 โ”‚ block_4_depthwisโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_4_depthwise_โ€ฆ โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ block_4_depthwisโ€ฆ โ”‚\nโ”‚ (ReLU)              โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_4_project     โ”‚ (None, 28, 28,    โ”‚      6,144 โ”‚ block_4_depthwisโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 32)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_4_project_BN  โ”‚ (None, 28, 28,    โ”‚        128 โ”‚ block_4_project[โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 32)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_4_add (Add)   โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ block_3_project_โ€ฆ โ”‚\nโ”‚                     โ”‚ 32)               โ”‚            โ”‚ block_4_project_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_5_expand      โ”‚ (None, 28, 28,    โ”‚      6,144 โ”‚ block_4_add[0][0] โ”‚\nโ”‚ (Conv2D)            โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_5_expand_BN   โ”‚ (None, 28, 28,    โ”‚        768 โ”‚ block_5_expand[0โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_5_expand_relu โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ block_5_expand_Bโ€ฆ โ”‚\nโ”‚ (ReLU)              โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_5_depthwise   โ”‚ (None, 28, 28,    โ”‚      1,728 โ”‚ block_5_expand_rโ€ฆ โ”‚\nโ”‚ (DepthwiseConv2D)   โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_5_depthwise_โ€ฆ โ”‚ (None, 28, 28,    โ”‚        768 โ”‚ block_5_depthwisโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_5_depthwise_โ€ฆ โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ block_5_depthwisโ€ฆ โ”‚\nโ”‚ (ReLU)              โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_5_project     โ”‚ (None, 28, 28,    โ”‚      6,144 โ”‚ block_5_depthwisโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 32)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_5_project_BN  โ”‚ (None, 28, 28,    โ”‚        128 โ”‚ block_5_project[โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 32)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_5_add (Add)   โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ block_4_add[0][0โ€ฆ โ”‚\nโ”‚                     โ”‚ 32)               โ”‚            โ”‚ block_5_project_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_6_expand      โ”‚ (None, 28, 28,    โ”‚      6,144 โ”‚ block_5_add[0][0] โ”‚\nโ”‚ (Conv2D)            โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_6_expand_BN   โ”‚ (None, 28, 28,    โ”‚        768 โ”‚ block_6_expand[0โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_6_expand_relu โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ block_6_expand_Bโ€ฆ โ”‚\nโ”‚ (ReLU)              โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_6_pad         โ”‚ (None, 29, 29,    โ”‚          0 โ”‚ block_6_expand_rโ€ฆ โ”‚\nโ”‚ (ZeroPadding2D)     โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_6_depthwise   โ”‚ (None, 14, 14,    โ”‚      1,728 โ”‚ block_6_pad[0][0] โ”‚\nโ”‚ (DepthwiseConv2D)   โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_6_depthwise_โ€ฆ โ”‚ (None, 14, 14,    โ”‚        768 โ”‚ block_6_depthwisโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_6_depthwise_โ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ block_6_depthwisโ€ฆ โ”‚\nโ”‚ (ReLU)              โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_6_project     โ”‚ (None, 14, 14,    โ”‚     12,288 โ”‚ block_6_depthwisโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_6_project_BN  โ”‚ (None, 14, 14,    โ”‚        256 โ”‚ block_6_project[โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_7_expand      โ”‚ (None, 14, 14,    โ”‚     24,576 โ”‚ block_6_project_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 384)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_7_expand_BN   โ”‚ (None, 14, 14,    โ”‚      1,536 โ”‚ block_7_expand[0โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 384)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_7_expand_relu โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ block_7_expand_Bโ€ฆ โ”‚\nโ”‚ (ReLU)              โ”‚ 384)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_7_depthwise   โ”‚ (None, 14, 14,    โ”‚      3,456 โ”‚ block_7_expand_rโ€ฆ โ”‚\nโ”‚ (DepthwiseConv2D)   โ”‚ 384)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_7_depthwise_โ€ฆ โ”‚ (None, 14, 14,    โ”‚      1,536 โ”‚ block_7_depthwisโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 384)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_7_depthwise_โ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ block_7_depthwisโ€ฆ โ”‚\nโ”‚ (ReLU)              โ”‚ 384)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_7_project     โ”‚ (None, 14, 14,    โ”‚     24,576 โ”‚ block_7_depthwisโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_7_project_BN  โ”‚ (None, 14, 14,    โ”‚        256 โ”‚ block_7_project[โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_7_add (Add)   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ block_6_project_โ€ฆ โ”‚\nโ”‚                     โ”‚ 64)               โ”‚            โ”‚ block_7_project_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_8_expand      โ”‚ (None, 14, 14,    โ”‚     24,576 โ”‚ block_7_add[0][0] โ”‚\nโ”‚ (Conv2D)            โ”‚ 384)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_8_expand_BN   โ”‚ (None, 14, 14,    โ”‚      1,536 โ”‚ block_8_expand[0โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 384)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_8_expand_relu โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ block_8_expand_Bโ€ฆ โ”‚\nโ”‚ (ReLU)              โ”‚ 384)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_8_depthwise   โ”‚ (None, 14, 14,    โ”‚      3,456 โ”‚ block_8_expand_rโ€ฆ โ”‚\nโ”‚ (DepthwiseConv2D)   โ”‚ 384)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_8_depthwise_โ€ฆ โ”‚ (None, 14, 14,    โ”‚      1,536 โ”‚ block_8_depthwisโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 384)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_8_depthwise_โ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ block_8_depthwisโ€ฆ โ”‚\nโ”‚ (ReLU)              โ”‚ 384)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_8_project     โ”‚ (None, 14, 14,    โ”‚     24,576 โ”‚ block_8_depthwisโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_8_project_BN  โ”‚ (None, 14, 14,    โ”‚        256 โ”‚ block_8_project[โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_8_add (Add)   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ block_7_add[0][0โ€ฆ โ”‚\nโ”‚                     โ”‚ 64)               โ”‚            โ”‚ block_8_project_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_9_expand      โ”‚ (None, 14, 14,    โ”‚     24,576 โ”‚ block_8_add[0][0] โ”‚\nโ”‚ (Conv2D)            โ”‚ 384)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_9_expand_BN   โ”‚ (None, 14, 14,    โ”‚      1,536 โ”‚ block_9_expand[0โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 384)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_9_expand_relu โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ block_9_expand_Bโ€ฆ โ”‚\nโ”‚ (ReLU)              โ”‚ 384)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_9_depthwise   โ”‚ (None, 14, 14,    โ”‚      3,456 โ”‚ block_9_expand_rโ€ฆ โ”‚\nโ”‚ (DepthwiseConv2D)   โ”‚ 384)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_9_depthwise_โ€ฆ โ”‚ (None, 14, 14,    โ”‚      1,536 โ”‚ block_9_depthwisโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 384)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_9_depthwise_โ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ block_9_depthwisโ€ฆ โ”‚\nโ”‚ (ReLU)              โ”‚ 384)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_9_project     โ”‚ (None, 14, 14,    โ”‚     24,576 โ”‚ block_9_depthwisโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_9_project_BN  โ”‚ (None, 14, 14,    โ”‚        256 โ”‚ block_9_project[โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_9_add (Add)   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ block_8_add[0][0โ€ฆ โ”‚\nโ”‚                     โ”‚ 64)               โ”‚            โ”‚ block_9_project_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_10_expand     โ”‚ (None, 14, 14,    โ”‚     24,576 โ”‚ block_9_add[0][0] โ”‚\nโ”‚ (Conv2D)            โ”‚ 384)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_10_expand_BN  โ”‚ (None, 14, 14,    โ”‚      1,536 โ”‚ block_10_expand[โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 384)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_10_expand_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ block_10_expand_โ€ฆ โ”‚\nโ”‚ (ReLU)              โ”‚ 384)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_10_depthwise  โ”‚ (None, 14, 14,    โ”‚      3,456 โ”‚ block_10_expand_โ€ฆ โ”‚\nโ”‚ (DepthwiseConv2D)   โ”‚ 384)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_10_depthwiseโ€ฆ โ”‚ (None, 14, 14,    โ”‚      1,536 โ”‚ block_10_depthwiโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 384)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_10_depthwiseโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ block_10_depthwiโ€ฆ โ”‚\nโ”‚ (ReLU)              โ”‚ 384)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_10_project    โ”‚ (None, 14, 14,    โ”‚     36,864 โ”‚ block_10_depthwiโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_10_project_BN โ”‚ (None, 14, 14,    โ”‚        384 โ”‚ block_10_projectโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_11_expand     โ”‚ (None, 14, 14,    โ”‚     55,296 โ”‚ block_10_projectโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 576)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_11_expand_BN  โ”‚ (None, 14, 14,    โ”‚      2,304 โ”‚ block_11_expand[โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 576)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_11_expand_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ block_11_expand_โ€ฆ โ”‚\nโ”‚ (ReLU)              โ”‚ 576)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_11_depthwise  โ”‚ (None, 14, 14,    โ”‚      5,184 โ”‚ block_11_expand_โ€ฆ โ”‚\nโ”‚ (DepthwiseConv2D)   โ”‚ 576)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_11_depthwiseโ€ฆ โ”‚ (None, 14, 14,    โ”‚      2,304 โ”‚ block_11_depthwiโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 576)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_11_depthwiseโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ block_11_depthwiโ€ฆ โ”‚\nโ”‚ (ReLU)              โ”‚ 576)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_11_project    โ”‚ (None, 14, 14,    โ”‚     55,296 โ”‚ block_11_depthwiโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_11_project_BN โ”‚ (None, 14, 14,    โ”‚        384 โ”‚ block_11_projectโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_11_add (Add)  โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ block_10_projectโ€ฆ โ”‚\nโ”‚                     โ”‚ 96)               โ”‚            โ”‚ block_11_projectโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_12_expand     โ”‚ (None, 14, 14,    โ”‚     55,296 โ”‚ block_11_add[0][โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 576)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_12_expand_BN  โ”‚ (None, 14, 14,    โ”‚      2,304 โ”‚ block_12_expand[โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 576)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_12_expand_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ block_12_expand_โ€ฆ โ”‚\nโ”‚ (ReLU)              โ”‚ 576)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_12_depthwise  โ”‚ (None, 14, 14,    โ”‚      5,184 โ”‚ block_12_expand_โ€ฆ โ”‚\nโ”‚ (DepthwiseConv2D)   โ”‚ 576)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_12_depthwiseโ€ฆ โ”‚ (None, 14, 14,    โ”‚      2,304 โ”‚ block_12_depthwiโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 576)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_12_depthwiseโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ block_12_depthwiโ€ฆ โ”‚\nโ”‚ (ReLU)              โ”‚ 576)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_12_project    โ”‚ (None, 14, 14,    โ”‚     55,296 โ”‚ block_12_depthwiโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_12_project_BN โ”‚ (None, 14, 14,    โ”‚        384 โ”‚ block_12_projectโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_12_add (Add)  โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ block_11_add[0][โ€ฆ โ”‚\nโ”‚                     โ”‚ 96)               โ”‚            โ”‚ block_12_projectโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_13_expand     โ”‚ (None, 14, 14,    โ”‚     55,296 โ”‚ block_12_add[0][โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 576)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_13_expand_BN  โ”‚ (None, 14, 14,    โ”‚      2,304 โ”‚ block_13_expand[โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 576)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_13_expand_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ block_13_expand_โ€ฆ โ”‚\nโ”‚ (ReLU)              โ”‚ 576)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_13_pad        โ”‚ (None, 15, 15,    โ”‚          0 โ”‚ block_13_expand_โ€ฆ โ”‚\nโ”‚ (ZeroPadding2D)     โ”‚ 576)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_13_depthwise  โ”‚ (None, 7, 7, 576) โ”‚      5,184 โ”‚ block_13_pad[0][โ€ฆ โ”‚\nโ”‚ (DepthwiseConv2D)   โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_13_depthwiseโ€ฆ โ”‚ (None, 7, 7, 576) โ”‚      2,304 โ”‚ block_13_depthwiโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_13_depthwiseโ€ฆ โ”‚ (None, 7, 7, 576) โ”‚          0 โ”‚ block_13_depthwiโ€ฆ โ”‚\nโ”‚ (ReLU)              โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_13_project    โ”‚ (None, 7, 7, 160) โ”‚     92,160 โ”‚ block_13_depthwiโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_13_project_BN โ”‚ (None, 7, 7, 160) โ”‚        640 โ”‚ block_13_projectโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_14_expand     โ”‚ (None, 7, 7, 960) โ”‚    153,600 โ”‚ block_13_projectโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_14_expand_BN  โ”‚ (None, 7, 7, 960) โ”‚      3,840 โ”‚ block_14_expand[โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_14_expand_reโ€ฆ โ”‚ (None, 7, 7, 960) โ”‚          0 โ”‚ block_14_expand_โ€ฆ โ”‚\nโ”‚ (ReLU)              โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_14_depthwise  โ”‚ (None, 7, 7, 960) โ”‚      8,640 โ”‚ block_14_expand_โ€ฆ โ”‚\nโ”‚ (DepthwiseConv2D)   โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_14_depthwiseโ€ฆ โ”‚ (None, 7, 7, 960) โ”‚      3,840 โ”‚ block_14_depthwiโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_14_depthwiseโ€ฆ โ”‚ (None, 7, 7, 960) โ”‚          0 โ”‚ block_14_depthwiโ€ฆ โ”‚\nโ”‚ (ReLU)              โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_14_project    โ”‚ (None, 7, 7, 160) โ”‚    153,600 โ”‚ block_14_depthwiโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_14_project_BN โ”‚ (None, 7, 7, 160) โ”‚        640 โ”‚ block_14_projectโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_14_add (Add)  โ”‚ (None, 7, 7, 160) โ”‚          0 โ”‚ block_13_projectโ€ฆ โ”‚\nโ”‚                     โ”‚                   โ”‚            โ”‚ block_14_projectโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_15_expand     โ”‚ (None, 7, 7, 960) โ”‚    153,600 โ”‚ block_14_add[0][โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_15_expand_BN  โ”‚ (None, 7, 7, 960) โ”‚      3,840 โ”‚ block_15_expand[โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_15_expand_reโ€ฆ โ”‚ (None, 7, 7, 960) โ”‚          0 โ”‚ block_15_expand_โ€ฆ โ”‚\nโ”‚ (ReLU)              โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_15_depthwise  โ”‚ (None, 7, 7, 960) โ”‚      8,640 โ”‚ block_15_expand_โ€ฆ โ”‚\nโ”‚ (DepthwiseConv2D)   โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_15_depthwiseโ€ฆ โ”‚ (None, 7, 7, 960) โ”‚      3,840 โ”‚ block_15_depthwiโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_15_depthwiseโ€ฆ โ”‚ (None, 7, 7, 960) โ”‚          0 โ”‚ block_15_depthwiโ€ฆ โ”‚\nโ”‚ (ReLU)              โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_15_project    โ”‚ (None, 7, 7, 160) โ”‚    153,600 โ”‚ block_15_depthwiโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_15_project_BN โ”‚ (None, 7, 7, 160) โ”‚        640 โ”‚ block_15_projectโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_15_add (Add)  โ”‚ (None, 7, 7, 160) โ”‚          0 โ”‚ block_14_add[0][โ€ฆ โ”‚\nโ”‚                     โ”‚                   โ”‚            โ”‚ block_15_projectโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_16_expand     โ”‚ (None, 7, 7, 960) โ”‚    153,600 โ”‚ block_15_add[0][โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_16_expand_BN  โ”‚ (None, 7, 7, 960) โ”‚      3,840 โ”‚ block_16_expand[โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_16_expand_reโ€ฆ โ”‚ (None, 7, 7, 960) โ”‚          0 โ”‚ block_16_expand_โ€ฆ โ”‚\nโ”‚ (ReLU)              โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_16_depthwise  โ”‚ (None, 7, 7, 960) โ”‚      8,640 โ”‚ block_16_expand_โ€ฆ โ”‚\nโ”‚ (DepthwiseConv2D)   โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_16_depthwiseโ€ฆ โ”‚ (None, 7, 7, 960) โ”‚      3,840 โ”‚ block_16_depthwiโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_16_depthwiseโ€ฆ โ”‚ (None, 7, 7, 960) โ”‚          0 โ”‚ block_16_depthwiโ€ฆ โ”‚\nโ”‚ (ReLU)              โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_16_project    โ”‚ (None, 7, 7, 320) โ”‚    307,200 โ”‚ block_16_depthwiโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ block_16_project_BN โ”‚ (None, 7, 7, 320) โ”‚      1,280 โ”‚ block_16_projectโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ Conv_1 (Conv2D)     โ”‚ (None, 7, 7,      โ”‚    409,600 โ”‚ block_16_projectโ€ฆ โ”‚\nโ”‚                     โ”‚ 1280)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ Conv_1_bn           โ”‚ (None, 7, 7,      โ”‚      5,120 โ”‚ Conv_1[0][0]      โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1280)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ out_relu (ReLU)     โ”‚ (None, 7, 7,      โ”‚          0 โ”‚ Conv_1_bn[0][0]   โ”‚\nโ”‚                     โ”‚ 1280)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ global_average_pooโ€ฆ โ”‚ (None, 1280)      โ”‚          0 โ”‚ out_relu[0][0]    โ”‚\nโ”‚ (GlobalAveragePoolโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dropout_21          โ”‚ (None, 1280)      โ”‚          0 โ”‚ global_average_pโ€ฆ โ”‚\nโ”‚ (Dropout)           โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dense_37 (Dense)    โ”‚ (None, 1024)      โ”‚  1,311,744 โ”‚ dropout_21[0][0]  โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dense_38 (Dense)    โ”‚ (None, 512)       โ”‚    524,800 โ”‚ dense_37[0][0]    โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dense_39 (Dense)    โ”‚ (None, 5)         โ”‚      2,565 โ”‚ dense_38[0][0]    โ”‚\nโ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜\n
\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"\u001b[1m Total params: \u001b[0m\u001b[38;5;34m4,097,093\u001b[0m (15.63 MB)\n","text/html":"
 Total params: 4,097,093 (15.63 MB)\n
\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m1,839,109\u001b[0m (7.02 MB)\n","text/html":"
 Trainable params: 1,839,109 (7.02 MB)\n
\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m2,257,984\u001b[0m (8.61 MB)\n","text/html":"
 Non-trainable params: 2,257,984 (8.61 MB)\n
\n"},"metadata":{}}]},{"cell_type":"code","source":"epochs = 40\n\nhistory = modelV2.fit(\n train_generator,\n epochs=epochs,\n validation_data=val_generator,\n callbacks=[reduce_lr, early_stopping, model_checkpoint]\n)","metadata":{"execution":{"iopub.status.busy":"2024-06-24T06:54:59.400852Z","iopub.execute_input":"2024-06-24T06:54:59.401422Z","iopub.status.idle":"2024-06-24T07:09:55.268520Z","shell.execute_reply.started":"2024-06-24T06:54:59.401388Z","shell.execute_reply":"2024-06-24T07:09:55.267766Z"},"trusted":true},"execution_count":47,"outputs":[{"name":"stdout","text":"Epoch 1/40\n\u001b[1m 1/48\u001b[0m \u001b[37mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[1m13:43\u001b[0m 18s/step - accuracy: 0.1562 - loss: 2.0710","output_type":"stream"},{"name":"stderr","text":"W0000 00:00:1719212117.938617 140 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update\n","output_type":"stream"},{"name":"stdout","text":"\u001b[1m47/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 541ms/step - accuracy: 0.3161 - loss: 1.6175","output_type":"stream"},{"name":"stderr","text":"W0000 00:00:1719212146.880511 140 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update\n","output_type":"stream"},{"name":"stdout","text":"\nEpoch 1: val_accuracy improved from -inf to 0.69721, saving model to mobilenet_model.keras\n","output_type":"stream"},{"name":"stderr","text":"W0000 00:00:1719212155.603070 142 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update\n","output_type":"stream"},{"name":"stdout","text":"\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m57s\u001b[0m 831ms/step - accuracy: 0.3200 - loss: 1.6095 - val_accuracy: 0.6972 - val_loss: 0.9503 - learning_rate: 1.0000e-04\nEpoch 2/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 433ms/step - accuracy: 0.5971 - loss: 1.0513\nEpoch 2: val_accuracy did not improve from 0.69721\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 508ms/step - accuracy: 0.5971 - loss: 1.0508 - val_accuracy: 0.6853 - val_loss: 0.8290 - learning_rate: 1.0000e-04\nEpoch 3/40\n\u001b[1m47/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 444ms/step - accuracy: 0.6294 - loss: 0.9272\nEpoch 3: val_accuracy improved from 0.69721 to 0.73307, saving model to mobilenet_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m29s\u001b[0m 521ms/step - accuracy: 0.6303 - loss: 0.9253 - val_accuracy: 0.7331 - val_loss: 0.7159 - learning_rate: 1.0000e-04\nEpoch 4/40\n\u001b[1m47/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 440ms/step - accuracy: 0.6929 - loss: 0.8332\nEpoch 4: val_accuracy improved from 0.73307 to 0.74701, saving model to mobilenet_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 518ms/step - accuracy: 0.6928 - loss: 0.8325 - val_accuracy: 0.7470 - val_loss: 0.6468 - learning_rate: 1.0000e-04\nEpoch 5/40\n\u001b[1m47/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 440ms/step - accuracy: 0.6886 - loss: 0.7870\nEpoch 5: val_accuracy improved from 0.74701 to 0.77689, saving model to mobilenet_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 519ms/step - accuracy: 0.6884 - loss: 0.7873 - val_accuracy: 0.7769 - val_loss: 0.5862 - learning_rate: 1.0000e-04\nEpoch 6/40\n\u001b[1m47/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 431ms/step - accuracy: 0.7364 - loss: 0.7034\nEpoch 6: val_accuracy improved from 0.77689 to 0.79681, saving model to mobilenet_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 506ms/step - accuracy: 0.7357 - loss: 0.7047 - val_accuracy: 0.7968 - val_loss: 0.5454 - learning_rate: 1.0000e-04\nEpoch 7/40\n\u001b[1m47/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 439ms/step - accuracy: 0.7302 - loss: 0.7255\nEpoch 7: val_accuracy did not improve from 0.79681\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 507ms/step - accuracy: 0.7294 - loss: 0.7265 - val_accuracy: 0.7689 - val_loss: 0.5589 - learning_rate: 1.0000e-04\nEpoch 8/40\n\u001b[1m47/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 433ms/step - accuracy: 0.7188 - loss: 0.7186\nEpoch 8: val_accuracy did not improve from 0.79681\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 500ms/step - accuracy: 0.7189 - loss: 0.7187 - val_accuracy: 0.7550 - val_loss: 0.6256 - learning_rate: 1.0000e-04\nEpoch 9/40\n\u001b[1m47/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 438ms/step - accuracy: 0.7517 - loss: 0.6591\nEpoch 9: val_accuracy did not improve from 0.79681\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 502ms/step - accuracy: 0.7513 - loss: 0.6605 - val_accuracy: 0.7809 - val_loss: 0.5619 - learning_rate: 1.0000e-04\nEpoch 10/40\n\u001b[1m47/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 434ms/step - accuracy: 0.7231 - loss: 0.7114\nEpoch 10: val_accuracy improved from 0.79681 to 0.81076, saving model to mobilenet_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 509ms/step - accuracy: 0.7237 - loss: 0.7106 - val_accuracy: 0.8108 - val_loss: 0.5098 - learning_rate: 1.0000e-04\nEpoch 11/40\n\u001b[1m47/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 435ms/step - accuracy: 0.7329 - loss: 0.6797\nEpoch 11: val_accuracy did not improve from 0.81076\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 502ms/step - accuracy: 0.7337 - loss: 0.6786 - val_accuracy: 0.8008 - val_loss: 0.5113 - learning_rate: 1.0000e-04\nEpoch 12/40\n\u001b[1m47/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 446ms/step - accuracy: 0.7517 - loss: 0.6430\nEpoch 12: val_accuracy improved from 0.81076 to 0.81474, saving model to mobilenet_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 522ms/step - accuracy: 0.7516 - loss: 0.6436 - val_accuracy: 0.8147 - val_loss: 0.5078 - learning_rate: 1.0000e-04\nEpoch 13/40\n\u001b[1m47/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 438ms/step - accuracy: 0.7717 - loss: 0.6254\nEpoch 13: val_accuracy did not improve from 0.81474\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 504ms/step - accuracy: 0.7713 - loss: 0.6261 - val_accuracy: 0.7809 - val_loss: 0.5567 - learning_rate: 1.0000e-04\nEpoch 14/40\n\u001b[1m47/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 440ms/step - accuracy: 0.7544 - loss: 0.6390\nEpoch 14: val_accuracy did not improve from 0.81474\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 508ms/step - accuracy: 0.7545 - loss: 0.6388 - val_accuracy: 0.8068 - val_loss: 0.4936 - learning_rate: 1.0000e-04\nEpoch 15/40\n\u001b[1m47/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 439ms/step - accuracy: 0.7544 - loss: 0.6678\nEpoch 15: val_accuracy did not improve from 0.81474\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 507ms/step - accuracy: 0.7550 - loss: 0.6668 - val_accuracy: 0.8108 - val_loss: 0.4993 - learning_rate: 1.0000e-04\nEpoch 16/40\n\u001b[1m47/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 444ms/step - accuracy: 0.7616 - loss: 0.6328\nEpoch 16: val_accuracy did not improve from 0.81474\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 510ms/step - accuracy: 0.7614 - loss: 0.6333 - val_accuracy: 0.7908 - val_loss: 0.5360 - learning_rate: 1.0000e-04\nEpoch 17/40\n\u001b[1m47/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 446ms/step - accuracy: 0.7521 - loss: 0.6502\nEpoch 17: val_accuracy did not improve from 0.81474\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 512ms/step - accuracy: 0.7527 - loss: 0.6493 - val_accuracy: 0.7928 - val_loss: 0.5571 - learning_rate: 1.0000e-04\nEpoch 18/40\n\u001b[1m47/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 433ms/step - accuracy: 0.7576 - loss: 0.6270\nEpoch 18: val_accuracy did not improve from 0.81474\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 500ms/step - accuracy: 0.7583 - loss: 0.6258 - val_accuracy: 0.8088 - val_loss: 0.5107 - learning_rate: 1.0000e-04\nEpoch 19/40\n\u001b[1m47/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 440ms/step - accuracy: 0.7745 - loss: 0.5864\nEpoch 19: val_accuracy improved from 0.81474 to 0.82271, saving model to mobilenet_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 515ms/step - accuracy: 0.7750 - loss: 0.5851 - val_accuracy: 0.8227 - val_loss: 0.4646 - learning_rate: 1.0000e-04\nEpoch 20/40\n\u001b[1m47/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 439ms/step - accuracy: 0.7726 - loss: 0.5927\nEpoch 20: val_accuracy did not improve from 0.82271\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 505ms/step - accuracy: 0.7727 - loss: 0.5922 - val_accuracy: 0.8108 - val_loss: 0.4849 - learning_rate: 1.0000e-04\nEpoch 21/40\n\u001b[1m47/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 433ms/step - accuracy: 0.7809 - loss: 0.5966\nEpoch 21: val_accuracy improved from 0.82271 to 0.82470, saving model to mobilenet_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 511ms/step - accuracy: 0.7807 - loss: 0.5960 - val_accuracy: 0.8247 - val_loss: 0.4594 - learning_rate: 1.0000e-04\nEpoch 22/40\n\u001b[1m47/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 439ms/step - accuracy: 0.7976 - loss: 0.5525\nEpoch 22: val_accuracy did not improve from 0.82470\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 504ms/step - accuracy: 0.7975 - loss: 0.5530 - val_accuracy: 0.7988 - val_loss: 0.5280 - learning_rate: 1.0000e-04\nEpoch 23/40\n\u001b[1m47/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 438ms/step - accuracy: 0.7926 - loss: 0.5512\nEpoch 23: val_accuracy did not improve from 0.82470\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 505ms/step - accuracy: 0.7925 - loss: 0.5517 - val_accuracy: 0.8227 - val_loss: 0.4780 - learning_rate: 1.0000e-04\nEpoch 24/40\n\u001b[1m47/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 436ms/step - accuracy: 0.7868 - loss: 0.5489\nEpoch 24: val_accuracy did not improve from 0.82470\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 502ms/step - accuracy: 0.7862 - loss: 0.5505 - val_accuracy: 0.8088 - val_loss: 0.5109 - learning_rate: 1.0000e-04\nEpoch 25/40\n\u001b[1m47/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 436ms/step - accuracy: 0.7447 - loss: 0.6121\nEpoch 25: val_accuracy improved from 0.82470 to 0.83267, saving model to mobilenet_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 514ms/step - accuracy: 0.7454 - loss: 0.6116 - val_accuracy: 0.8327 - val_loss: 0.4720 - learning_rate: 1.0000e-04\nEpoch 26/40\n\u001b[1m47/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 437ms/step - accuracy: 0.7654 - loss: 0.5678\nEpoch 26: ReduceLROnPlateau reducing learning rate to 9.999999747378752e-06.\n\nEpoch 26: val_accuracy did not improve from 0.83267\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 503ms/step - accuracy: 0.7661 - loss: 0.5679 - val_accuracy: 0.8247 - val_loss: 0.4836 - learning_rate: 1.0000e-04\nEpoch 27/40\n\u001b[1m47/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 434ms/step - accuracy: 0.7764 - loss: 0.5758\nEpoch 27: val_accuracy did not improve from 0.83267\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 500ms/step - accuracy: 0.7765 - loss: 0.5755 - val_accuracy: 0.8267 - val_loss: 0.4616 - learning_rate: 1.0000e-05\nEpoch 28/40\n\u001b[1m47/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 436ms/step - accuracy: 0.7962 - loss: 0.5479\nEpoch 28: val_accuracy did not improve from 0.83267\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 501ms/step - accuracy: 0.7965 - loss: 0.5475 - val_accuracy: 0.8207 - val_loss: 0.4689 - learning_rate: 1.0000e-05\nEpoch 29/40\n\u001b[1m47/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 445ms/step - accuracy: 0.8036 - loss: 0.5376\nEpoch 29: val_accuracy did not improve from 0.83267\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 511ms/step - accuracy: 0.8036 - loss: 0.5366 - val_accuracy: 0.8247 - val_loss: 0.4607 - learning_rate: 1.0000e-05\nEpoch 30/40\n\u001b[1m47/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 437ms/step - accuracy: 0.7759 - loss: 0.5691\nEpoch 30: val_accuracy did not improve from 0.83267\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 504ms/step - accuracy: 0.7763 - loss: 0.5686 - val_accuracy: 0.8207 - val_loss: 0.4681 - learning_rate: 1.0000e-05\nEpoch 31/40\n\u001b[1m47/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 436ms/step - accuracy: 0.7993 - loss: 0.5229\nEpoch 31: ReduceLROnPlateau reducing learning rate to 9.999999747378752e-07.\n\nEpoch 31: val_accuracy did not improve from 0.83267\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 505ms/step - accuracy: 0.7994 - loss: 0.5229 - val_accuracy: 0.8267 - val_loss: 0.4610 - learning_rate: 1.0000e-05\n","output_type":"stream"}]},{"cell_type":"code","source":"test_loss, test_accuracy = modelV2.evaluate(test_generator)\nprint(f'Test loss: {test_loss}')\nprint(f'Test accuracy: {test_accuracy}')","metadata":{"execution":{"iopub.status.busy":"2024-06-24T07:10:25.410804Z","iopub.execute_input":"2024-06-24T07:10:25.411488Z","iopub.status.idle":"2024-06-24T07:10:29.447781Z","shell.execute_reply.started":"2024-06-24T07:10:25.411457Z","shell.execute_reply":"2024-06-24T07:10:29.446954Z"},"trusted":true},"execution_count":49,"outputs":[{"name":"stdout","text":"\u001b[1m16/16\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 222ms/step - accuracy: 0.8321 - loss: 0.4484\nTest loss: 0.495183527469635\nTest accuracy: 0.8129921555519104\n","output_type":"stream"}]},{"cell_type":"markdown","source":"ResNet152","metadata":{}},{"cell_type":"code","source":"from keras.applications import ResNet152\nfrom keras.layers import Dense, GlobalAveragePooling2D, Dropout\nfrom keras.models import Model\nfrom keras.callbacks import ReduceLROnPlateau, ModelCheckpoint, EarlyStopping\nfrom keras.optimizers import Adam\n\nresnet152_model = ResNet152(weights='imagenet', include_top=False, input_shape=(224, 224, 3))\n\nx = resnet152_model.output\nx = GlobalAveragePooling2D()(x)\nx = Dropout(0.5)(x) \nx = Dense(1024, activation='relu')(x)\noutput = Dense(5, activation='softmax')(x) \nmodel152 = Model(inputs=resnet152_model.input, outputs=output)\n\nfor layer in resnet152_model.layers:\n layer.trainable = False\n\nmodel152.compile(optimizer=Adam(learning_rate=0.00001), loss='categorical_crossentropy', metrics=['accuracy'])\n\n\nmodel_checkpoint = ModelCheckpoint('resnet152_model.keras', monitor='val_accuracy', save_best_only=True, verbose=1, mode='max')\nreduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=5, min_lr=1e-8, verbose=1)\nearly_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)\n\nmodel152.summary()\n\n","metadata":{"scrolled":true,"execution":{"iopub.status.busy":"2024-06-24T07:43:16.445332Z","iopub.execute_input":"2024-06-24T07:43:16.445690Z","iopub.status.idle":"2024-06-24T07:43:20.298966Z","shell.execute_reply.started":"2024-06-24T07:43:16.445664Z","shell.execute_reply":"2024-06-24T07:43:20.298111Z"},"trusted":true},"execution_count":64,"outputs":[{"output_type":"display_data","data":{"text/plain":"\u001b[1mModel: \"functional_45\"\u001b[0m\n","text/html":"
Model: \"functional_45\"\n
\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”“\nโ”ƒ\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0mโ”ƒ\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0mโ”ƒ\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0mโ”ƒ\u001b[1m \u001b[0m\u001b[1mConnected to \u001b[0m\u001b[1m \u001b[0mโ”ƒ\nโ”กโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ฉ\nโ”‚ input_layer_18 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m224\u001b[0m, \u001b[38;5;34m224\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ - โ”‚\nโ”‚ (\u001b[38;5;33mInputLayer\u001b[0m) โ”‚ \u001b[38;5;34m3\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv1_pad โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m230\u001b[0m, \u001b[38;5;34m230\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ input_layer_18[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mZeroPadding2D\u001b[0m) โ”‚ \u001b[38;5;34m3\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv1_conv (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m112\u001b[0m, \u001b[38;5;34m112\u001b[0m, โ”‚ \u001b[38;5;34m9,472\u001b[0m โ”‚ conv1_pad[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m112\u001b[0m, \u001b[38;5;34m112\u001b[0m, โ”‚ \u001b[38;5;34m256\u001b[0m โ”‚ conv1_conv[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv1_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m112\u001b[0m, \u001b[38;5;34m112\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv1_bn[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ pool1_pad โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m114\u001b[0m, \u001b[38;5;34m114\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv1_relu[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mZeroPadding2D\u001b[0m) โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ pool1_pool โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ pool1_pad[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mMaxPooling2D\u001b[0m) โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block1_1_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m4,160\u001b[0m โ”‚ pool1_pool[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block1_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m256\u001b[0m โ”‚ conv2_block1_1_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block1_1_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv2_block1_1_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block1_2_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m36,928\u001b[0m โ”‚ conv2_block1_1_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block1_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m256\u001b[0m โ”‚ conv2_block1_2_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block1_2_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv2_block1_2_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block1_0_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m16,640\u001b[0m โ”‚ pool1_pool[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block1_3_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m16,640\u001b[0m โ”‚ conv2_block1_2_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block1_0_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv2_block1_0_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block1_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv2_block1_3_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block1_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv2_block1_0_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ conv2_block1_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block1_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv2_block1_addโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block2_1_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m16,448\u001b[0m โ”‚ conv2_block1_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block2_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m256\u001b[0m โ”‚ conv2_block2_1_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block2_1_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv2_block2_1_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block2_2_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m36,928\u001b[0m โ”‚ conv2_block2_1_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block2_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m256\u001b[0m โ”‚ conv2_block2_2_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block2_2_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv2_block2_2_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block2_3_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m16,640\u001b[0m โ”‚ conv2_block2_2_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block2_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv2_block2_3_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block2_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv2_block1_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ conv2_block2_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block2_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv2_block2_addโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block3_1_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m16,448\u001b[0m โ”‚ conv2_block2_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block3_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m256\u001b[0m โ”‚ conv2_block3_1_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block3_1_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv2_block3_1_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block3_2_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m36,928\u001b[0m โ”‚ conv2_block3_1_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block3_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m256\u001b[0m โ”‚ conv2_block3_2_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block3_2_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv2_block3_2_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block3_3_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m16,640\u001b[0m โ”‚ conv2_block3_2_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block3_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv2_block3_3_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block3_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv2_block2_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ conv2_block3_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block3_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m56\u001b[0m, \u001b[38;5;34m56\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv2_block3_addโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block1_1_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m32,896\u001b[0m โ”‚ conv2_block3_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block1_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m512\u001b[0m โ”‚ conv3_block1_1_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block1_1_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv3_block1_1_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block1_2_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m147,584\u001b[0m โ”‚ conv3_block1_1_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block1_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m512\u001b[0m โ”‚ conv3_block1_2_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block1_2_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv3_block1_2_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block1_0_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m131,584\u001b[0m โ”‚ conv2_block3_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m512\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block1_3_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m66,048\u001b[0m โ”‚ conv3_block1_2_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m512\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block1_0_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m2,048\u001b[0m โ”‚ conv3_block1_0_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m512\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block1_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m2,048\u001b[0m โ”‚ conv3_block1_3_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m512\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block1_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv3_block1_0_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m512\u001b[0m) โ”‚ โ”‚ conv3_block1_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block1_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv3_block1_addโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m512\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block2_1_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m65,664\u001b[0m โ”‚ conv3_block1_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block2_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m512\u001b[0m โ”‚ conv3_block2_1_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block2_1_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv3_block2_1_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block2_2_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m147,584\u001b[0m โ”‚ conv3_block2_1_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block2_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m512\u001b[0m โ”‚ conv3_block2_2_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block2_2_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv3_block2_2_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block2_3_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m66,048\u001b[0m โ”‚ conv3_block2_2_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m512\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block2_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m2,048\u001b[0m โ”‚ conv3_block2_3_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m512\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block2_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv3_block1_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m512\u001b[0m) โ”‚ โ”‚ conv3_block2_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block2_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv3_block2_addโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m512\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block3_1_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m65,664\u001b[0m โ”‚ conv3_block2_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block3_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m512\u001b[0m โ”‚ conv3_block3_1_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block3_1_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv3_block3_1_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block3_2_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m147,584\u001b[0m โ”‚ conv3_block3_1_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block3_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m512\u001b[0m โ”‚ conv3_block3_2_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block3_2_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv3_block3_2_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block3_3_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m66,048\u001b[0m โ”‚ conv3_block3_2_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m512\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block3_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m2,048\u001b[0m โ”‚ conv3_block3_3_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m512\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block3_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv3_block2_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m512\u001b[0m) โ”‚ โ”‚ conv3_block3_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block3_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv3_block3_addโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m512\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block4_1_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m65,664\u001b[0m โ”‚ conv3_block3_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block4_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m512\u001b[0m โ”‚ conv3_block4_1_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block4_1_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv3_block4_1_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block4_2_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m147,584\u001b[0m โ”‚ conv3_block4_1_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block4_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m512\u001b[0m โ”‚ conv3_block4_2_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block4_2_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv3_block4_2_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block4_3_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m66,048\u001b[0m โ”‚ conv3_block4_2_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m512\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block4_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m2,048\u001b[0m โ”‚ conv3_block4_3_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m512\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block4_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv3_block3_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m512\u001b[0m) โ”‚ โ”‚ conv3_block4_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block4_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv3_block4_addโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m512\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block5_1_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m65,664\u001b[0m โ”‚ conv3_block4_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block5_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m512\u001b[0m โ”‚ conv3_block5_1_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block5_1_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv3_block5_1_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block5_2_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m147,584\u001b[0m โ”‚ conv3_block5_1_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block5_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m512\u001b[0m โ”‚ conv3_block5_2_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block5_2_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv3_block5_2_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block5_3_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m66,048\u001b[0m โ”‚ conv3_block5_2_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m512\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block5_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m2,048\u001b[0m โ”‚ conv3_block5_3_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m512\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block5_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv3_block4_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m512\u001b[0m) โ”‚ โ”‚ conv3_block5_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block5_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv3_block5_addโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m512\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block6_1_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m65,664\u001b[0m โ”‚ conv3_block5_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block6_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m512\u001b[0m โ”‚ conv3_block6_1_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block6_1_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv3_block6_1_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block6_2_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m147,584\u001b[0m โ”‚ conv3_block6_1_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block6_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m512\u001b[0m โ”‚ conv3_block6_2_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block6_2_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv3_block6_2_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block6_3_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m66,048\u001b[0m โ”‚ conv3_block6_2_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m512\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block6_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m2,048\u001b[0m โ”‚ conv3_block6_3_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m512\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block6_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv3_block5_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m512\u001b[0m) โ”‚ โ”‚ conv3_block6_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block6_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv3_block6_addโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m512\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block7_1_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m65,664\u001b[0m โ”‚ conv3_block6_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block7_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m512\u001b[0m โ”‚ conv3_block7_1_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block7_1_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv3_block7_1_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block7_2_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m147,584\u001b[0m โ”‚ conv3_block7_1_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block7_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m512\u001b[0m โ”‚ conv3_block7_2_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block7_2_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv3_block7_2_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block7_3_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m66,048\u001b[0m โ”‚ conv3_block7_2_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m512\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block7_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m2,048\u001b[0m โ”‚ conv3_block7_3_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m512\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block7_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv3_block6_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m512\u001b[0m) โ”‚ โ”‚ conv3_block7_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block7_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv3_block7_addโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m512\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block8_1_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m65,664\u001b[0m โ”‚ conv3_block7_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block8_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m512\u001b[0m โ”‚ conv3_block8_1_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block8_1_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv3_block8_1_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block8_2_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m147,584\u001b[0m โ”‚ conv3_block8_1_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block8_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m512\u001b[0m โ”‚ conv3_block8_2_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block8_2_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv3_block8_2_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block8_3_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m66,048\u001b[0m โ”‚ conv3_block8_2_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m512\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block8_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m2,048\u001b[0m โ”‚ conv3_block8_3_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m512\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block8_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv3_block7_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m512\u001b[0m) โ”‚ โ”‚ conv3_block8_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block8_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv3_block8_addโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m512\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block1_1_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m131,328\u001b[0m โ”‚ conv3_block8_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block1_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block1_1_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block1_1_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block1_1_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block1_2_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚ conv4_block1_1_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block1_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block1_2_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block1_2_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block1_2_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block1_0_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m525,312\u001b[0m โ”‚ conv3_block8_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block1_3_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m263,168\u001b[0m โ”‚ conv4_block1_2_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block1_0_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block1_0_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block1_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block1_3_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block1_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block1_0_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ conv4_block1_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block1_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block1_addโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block2_1_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m262,400\u001b[0m โ”‚ conv4_block1_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block2_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block2_1_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block2_1_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block2_1_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block2_2_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚ conv4_block2_1_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block2_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block2_2_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block2_2_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block2_2_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block2_3_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m263,168\u001b[0m โ”‚ conv4_block2_2_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block2_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block2_3_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block2_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block1_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ conv4_block2_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block2_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block2_addโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block3_1_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m262,400\u001b[0m โ”‚ conv4_block2_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block3_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block3_1_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block3_1_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block3_1_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block3_2_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚ conv4_block3_1_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block3_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block3_2_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block3_2_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block3_2_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block3_3_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m263,168\u001b[0m โ”‚ conv4_block3_2_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block3_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block3_3_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block3_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block2_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ conv4_block3_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block3_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block3_addโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block4_1_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m262,400\u001b[0m โ”‚ conv4_block3_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block4_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block4_1_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block4_1_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block4_1_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block4_2_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚ conv4_block4_1_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block4_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block4_2_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block4_2_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block4_2_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block4_3_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m263,168\u001b[0m โ”‚ conv4_block4_2_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block4_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block4_3_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block4_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block3_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ conv4_block4_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block4_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block4_addโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block5_1_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m262,400\u001b[0m โ”‚ conv4_block4_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block5_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block5_1_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block5_1_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block5_1_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block5_2_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚ conv4_block5_1_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block5_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block5_2_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block5_2_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block5_2_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block5_3_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m263,168\u001b[0m โ”‚ conv4_block5_2_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block5_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block5_3_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block5_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block4_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ conv4_block5_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block5_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block5_addโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block6_1_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m262,400\u001b[0m โ”‚ conv4_block5_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block6_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block6_1_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block6_1_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block6_1_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block6_2_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚ conv4_block6_1_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block6_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block6_2_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block6_2_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block6_2_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block6_3_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m263,168\u001b[0m โ”‚ conv4_block6_2_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block6_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block6_3_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block6_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block5_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ conv4_block6_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block6_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block6_addโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block7_1_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m262,400\u001b[0m โ”‚ conv4_block6_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block7_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block7_1_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block7_1_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block7_1_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block7_2_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚ conv4_block7_1_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block7_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block7_2_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block7_2_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block7_2_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block7_3_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m263,168\u001b[0m โ”‚ conv4_block7_2_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block7_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block7_3_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block7_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block6_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ conv4_block7_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block7_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block7_addโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block8_1_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m262,400\u001b[0m โ”‚ conv4_block7_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block8_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block8_1_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block8_1_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block8_1_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block8_2_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚ conv4_block8_1_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block8_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block8_2_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block8_2_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block8_2_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block8_3_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m263,168\u001b[0m โ”‚ conv4_block8_2_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block8_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block8_3_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block8_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block7_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ conv4_block8_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block8_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block8_addโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block9_1_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m262,400\u001b[0m โ”‚ conv4_block8_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block9_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block9_1_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block9_1_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block9_1_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block9_2_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚ conv4_block9_1_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block9_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block9_2_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block9_2_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block9_2_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block9_3_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m263,168\u001b[0m โ”‚ conv4_block9_2_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block9_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block9_3_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block9_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block8_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ conv4_block9_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block9_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block9_addโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block10_1_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m262,400\u001b[0m โ”‚ conv4_block9_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block10_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block10_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block10_1_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block10_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block10_2_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚ conv4_block10_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block10_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block10_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block10_2_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block10_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block10_3_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m263,168\u001b[0m โ”‚ conv4_block10_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block10_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block10_3_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block10_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block9_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ conv4_block10_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block10_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block10_adโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block11_1_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m262,400\u001b[0m โ”‚ conv4_block10_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block11_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block11_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block11_1_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block11_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block11_2_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚ conv4_block11_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block11_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block11_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block11_2_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block11_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block11_3_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m263,168\u001b[0m โ”‚ conv4_block11_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block11_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block11_3_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block11_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block10_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ conv4_block11_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block11_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block11_adโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block12_1_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m262,400\u001b[0m โ”‚ conv4_block11_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block12_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block12_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block12_1_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block12_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block12_2_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚ conv4_block12_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block12_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block12_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block12_2_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block12_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block12_3_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m263,168\u001b[0m โ”‚ conv4_block12_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block12_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block12_3_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block12_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block11_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ conv4_block12_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block12_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block12_adโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block13_1_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m262,400\u001b[0m โ”‚ conv4_block12_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block13_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block13_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block13_1_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block13_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block13_2_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚ conv4_block13_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block13_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block13_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block13_2_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block13_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block13_3_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m263,168\u001b[0m โ”‚ conv4_block13_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block13_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block13_3_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block13_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block12_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ conv4_block13_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block13_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block13_adโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block14_1_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m262,400\u001b[0m โ”‚ conv4_block13_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block14_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block14_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block14_1_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block14_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block14_2_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚ conv4_block14_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block14_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block14_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block14_2_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block14_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block14_3_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m263,168\u001b[0m โ”‚ conv4_block14_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block14_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block14_3_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block14_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block13_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ conv4_block14_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block14_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block14_adโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block15_1_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m262,400\u001b[0m โ”‚ conv4_block14_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block15_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block15_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block15_1_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block15_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block15_2_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚ conv4_block15_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block15_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block15_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block15_2_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block15_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block15_3_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m263,168\u001b[0m โ”‚ conv4_block15_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block15_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block15_3_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block15_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block14_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ conv4_block15_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block15_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block15_adโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block16_1_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m262,400\u001b[0m โ”‚ conv4_block15_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block16_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block16_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block16_1_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block16_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block16_2_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚ conv4_block16_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block16_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block16_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block16_2_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block16_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block16_3_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m263,168\u001b[0m โ”‚ conv4_block16_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block16_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block16_3_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block16_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block15_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ conv4_block16_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block16_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block16_adโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block17_1_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m262,400\u001b[0m โ”‚ conv4_block16_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block17_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block17_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block17_1_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block17_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block17_2_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚ conv4_block17_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block17_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block17_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block17_2_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block17_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block17_3_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m263,168\u001b[0m โ”‚ conv4_block17_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block17_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block17_3_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block17_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block16_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ conv4_block17_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block17_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block17_adโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block18_1_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m262,400\u001b[0m โ”‚ conv4_block17_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block18_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block18_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block18_1_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block18_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block18_2_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚ conv4_block18_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block18_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block18_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block18_2_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block18_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block18_3_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m263,168\u001b[0m โ”‚ conv4_block18_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block18_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block18_3_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block18_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block17_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ conv4_block18_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block18_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block18_adโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block19_1_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m262,400\u001b[0m โ”‚ conv4_block18_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block19_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block19_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block19_1_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block19_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block19_2_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚ conv4_block19_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block19_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block19_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block19_2_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block19_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block19_3_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m263,168\u001b[0m โ”‚ conv4_block19_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block19_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block19_3_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block19_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block18_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ conv4_block19_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block19_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block19_adโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block20_1_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m262,400\u001b[0m โ”‚ conv4_block19_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block20_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block20_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block20_1_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block20_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block20_2_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚ conv4_block20_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block20_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block20_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block20_2_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block20_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block20_3_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m263,168\u001b[0m โ”‚ conv4_block20_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block20_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block20_3_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block20_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block19_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ conv4_block20_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block20_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block20_adโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block21_1_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m262,400\u001b[0m โ”‚ conv4_block20_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block21_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block21_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block21_1_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block21_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block21_2_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚ conv4_block21_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block21_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block21_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block21_2_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block21_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block21_3_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m263,168\u001b[0m โ”‚ conv4_block21_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block21_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block21_3_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block21_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block20_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ conv4_block21_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block21_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block21_adโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block22_1_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m262,400\u001b[0m โ”‚ conv4_block21_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block22_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block22_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block22_1_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block22_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block22_2_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚ conv4_block22_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block22_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block22_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block22_2_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block22_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block22_3_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m263,168\u001b[0m โ”‚ conv4_block22_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block22_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block22_3_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block22_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block21_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ conv4_block22_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block22_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block22_adโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block23_1_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m262,400\u001b[0m โ”‚ conv4_block22_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block23_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block23_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block23_1_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block23_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block23_2_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚ conv4_block23_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block23_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block23_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block23_2_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block23_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block23_3_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m263,168\u001b[0m โ”‚ conv4_block23_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block23_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block23_3_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block23_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block22_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ conv4_block23_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block23_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block23_adโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block24_1_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m262,400\u001b[0m โ”‚ conv4_block23_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block24_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block24_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block24_1_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block24_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block24_2_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚ conv4_block24_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block24_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block24_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block24_2_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block24_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block24_3_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m263,168\u001b[0m โ”‚ conv4_block24_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block24_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block24_3_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block24_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block23_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ conv4_block24_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block24_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block24_adโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block25_1_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m262,400\u001b[0m โ”‚ conv4_block24_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block25_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block25_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block25_1_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block25_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block25_2_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚ conv4_block25_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block25_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block25_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block25_2_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block25_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block25_3_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m263,168\u001b[0m โ”‚ conv4_block25_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block25_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block25_3_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block25_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block24_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ conv4_block25_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block25_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block25_adโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block26_1_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m262,400\u001b[0m โ”‚ conv4_block25_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block26_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block26_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block26_1_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block26_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block26_2_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚ conv4_block26_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block26_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block26_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block26_2_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block26_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block26_3_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m263,168\u001b[0m โ”‚ conv4_block26_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block26_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block26_3_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block26_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block25_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ conv4_block26_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block26_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block26_adโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block27_1_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m262,400\u001b[0m โ”‚ conv4_block26_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block27_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block27_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block27_1_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block27_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block27_2_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚ conv4_block27_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block27_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block27_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block27_2_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block27_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block27_3_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m263,168\u001b[0m โ”‚ conv4_block27_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block27_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block27_3_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block27_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block26_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ conv4_block27_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block27_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block27_adโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block28_1_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m262,400\u001b[0m โ”‚ conv4_block27_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block28_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block28_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block28_1_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block28_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block28_2_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚ conv4_block28_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block28_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block28_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block28_2_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block28_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block28_3_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m263,168\u001b[0m โ”‚ conv4_block28_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block28_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block28_3_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block28_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block27_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ conv4_block28_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block28_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block28_adโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block29_1_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m262,400\u001b[0m โ”‚ conv4_block28_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block29_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block29_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block29_1_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block29_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block29_2_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚ conv4_block29_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block29_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block29_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block29_2_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block29_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block29_3_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m263,168\u001b[0m โ”‚ conv4_block29_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block29_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block29_3_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block29_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block28_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ conv4_block29_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block29_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block29_adโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block30_1_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m262,400\u001b[0m โ”‚ conv4_block29_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block30_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block30_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block30_1_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block30_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block30_2_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚ conv4_block30_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block30_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block30_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block30_2_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block30_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block30_3_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m263,168\u001b[0m โ”‚ conv4_block30_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block30_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block30_3_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block30_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block29_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ conv4_block30_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block30_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block30_adโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block31_1_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m262,400\u001b[0m โ”‚ conv4_block30_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block31_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block31_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block31_1_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block31_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block31_2_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚ conv4_block31_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block31_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block31_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block31_2_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block31_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block31_3_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m263,168\u001b[0m โ”‚ conv4_block31_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block31_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block31_3_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block31_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block30_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ conv4_block31_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block31_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block31_adโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block32_1_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m262,400\u001b[0m โ”‚ conv4_block31_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block32_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block32_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block32_1_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block32_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block32_2_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚ conv4_block32_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block32_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block32_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block32_2_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block32_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block32_3_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m263,168\u001b[0m โ”‚ conv4_block32_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block32_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block32_3_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block32_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block31_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ conv4_block32_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block32_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block32_adโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block33_1_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m262,400\u001b[0m โ”‚ conv4_block32_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block33_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block33_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block33_1_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block33_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block33_2_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚ conv4_block33_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block33_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block33_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block33_2_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block33_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block33_3_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m263,168\u001b[0m โ”‚ conv4_block33_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block33_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block33_3_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block33_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block32_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ conv4_block33_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block33_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block33_adโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block34_1_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m262,400\u001b[0m โ”‚ conv4_block33_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block34_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block34_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block34_1_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block34_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block34_2_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚ conv4_block34_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block34_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block34_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block34_2_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block34_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block34_3_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m263,168\u001b[0m โ”‚ conv4_block34_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block34_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block34_3_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block34_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block33_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ conv4_block34_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block34_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block34_adโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block35_1_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m262,400\u001b[0m โ”‚ conv4_block34_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block35_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block35_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block35_1_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block35_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block35_2_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚ conv4_block35_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block35_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block35_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block35_2_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block35_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block35_3_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m263,168\u001b[0m โ”‚ conv4_block35_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block35_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block35_3_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block35_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block34_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ conv4_block35_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block35_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block35_adโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block36_1_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m262,400\u001b[0m โ”‚ conv4_block35_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block36_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block36_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block36_1_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block36_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block36_2_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m590,080\u001b[0m โ”‚ conv4_block36_1_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block36_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m1,024\u001b[0m โ”‚ conv4_block36_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block36_2_reโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block36_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block36_3_coโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m263,168\u001b[0m โ”‚ conv4_block36_2_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block36_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m4,096\u001b[0m โ”‚ conv4_block36_3_โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block36_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block35_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ conv4_block36_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block36_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv4_block36_adโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m1024\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block1_1_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m512\u001b[0m) โ”‚ \u001b[38;5;34m524,800\u001b[0m โ”‚ conv4_block36_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block1_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m512\u001b[0m) โ”‚ \u001b[38;5;34m2,048\u001b[0m โ”‚ conv5_block1_1_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block1_1_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m512\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv5_block1_1_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block1_2_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m512\u001b[0m) โ”‚ \u001b[38;5;34m2,359,808\u001b[0m โ”‚ conv5_block1_1_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block1_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m512\u001b[0m) โ”‚ \u001b[38;5;34m2,048\u001b[0m โ”‚ conv5_block1_2_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block1_2_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m512\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv5_block1_2_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block1_0_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, โ”‚ \u001b[38;5;34m2,099,200\u001b[0m โ”‚ conv4_block36_ouโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m2048\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block1_3_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, โ”‚ \u001b[38;5;34m1,050,624\u001b[0m โ”‚ conv5_block1_2_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m2048\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block1_0_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, โ”‚ \u001b[38;5;34m8,192\u001b[0m โ”‚ conv5_block1_0_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m2048\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block1_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, โ”‚ \u001b[38;5;34m8,192\u001b[0m โ”‚ conv5_block1_3_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m2048\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block1_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv5_block1_0_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m2048\u001b[0m) โ”‚ โ”‚ conv5_block1_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block1_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv5_block1_addโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m2048\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block2_1_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m512\u001b[0m) โ”‚ \u001b[38;5;34m1,049,088\u001b[0m โ”‚ conv5_block1_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block2_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m512\u001b[0m) โ”‚ \u001b[38;5;34m2,048\u001b[0m โ”‚ conv5_block2_1_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block2_1_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m512\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv5_block2_1_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block2_2_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m512\u001b[0m) โ”‚ \u001b[38;5;34m2,359,808\u001b[0m โ”‚ conv5_block2_1_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block2_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m512\u001b[0m) โ”‚ \u001b[38;5;34m2,048\u001b[0m โ”‚ conv5_block2_2_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block2_2_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m512\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv5_block2_2_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block2_3_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, โ”‚ \u001b[38;5;34m1,050,624\u001b[0m โ”‚ conv5_block2_2_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m2048\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block2_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, โ”‚ \u001b[38;5;34m8,192\u001b[0m โ”‚ conv5_block2_3_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m2048\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block2_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv5_block1_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m2048\u001b[0m) โ”‚ โ”‚ conv5_block2_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block2_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv5_block2_addโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m2048\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block3_1_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m512\u001b[0m) โ”‚ \u001b[38;5;34m1,049,088\u001b[0m โ”‚ conv5_block2_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block3_1_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m512\u001b[0m) โ”‚ \u001b[38;5;34m2,048\u001b[0m โ”‚ conv5_block3_1_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block3_1_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m512\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv5_block3_1_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block3_2_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m512\u001b[0m) โ”‚ \u001b[38;5;34m2,359,808\u001b[0m โ”‚ conv5_block3_1_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block3_2_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m512\u001b[0m) โ”‚ \u001b[38;5;34m2,048\u001b[0m โ”‚ conv5_block3_2_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block3_2_relu โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m512\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv5_block3_2_bโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block3_3_conv โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, โ”‚ \u001b[38;5;34m1,050,624\u001b[0m โ”‚ conv5_block3_2_rโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ \u001b[38;5;34m2048\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block3_3_bn โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, โ”‚ \u001b[38;5;34m8,192\u001b[0m โ”‚ conv5_block3_3_cโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m2048\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block3_add โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv5_block2_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAdd\u001b[0m) โ”‚ \u001b[38;5;34m2048\u001b[0m) โ”‚ โ”‚ conv5_block3_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block3_out โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m7\u001b[0m, \u001b[38;5;34m7\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv5_block3_addโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m2048\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ global_average_pooโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2048\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ conv5_block3_outโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mGlobalAveragePoolโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dropout_22 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2048\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ global_average_pโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mDropout\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dense_44 (\u001b[38;5;33mDense\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1024\u001b[0m) โ”‚ \u001b[38;5;34m2,098,176\u001b[0m โ”‚ dropout_22[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dense_45 (\u001b[38;5;33mDense\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m) โ”‚ \u001b[38;5;34m5,125\u001b[0m โ”‚ dense_44[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜\n","text/html":"
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”“\nโ”ƒ Layer (type)        โ”ƒ Output Shape      โ”ƒ    Param # โ”ƒ Connected to      โ”ƒ\nโ”กโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ฉ\nโ”‚ input_layer_18      โ”‚ (None, 224, 224,  โ”‚          0 โ”‚ -                 โ”‚\nโ”‚ (InputLayer)        โ”‚ 3)                โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv1_pad           โ”‚ (None, 230, 230,  โ”‚          0 โ”‚ input_layer_18[0โ€ฆ โ”‚\nโ”‚ (ZeroPadding2D)     โ”‚ 3)                โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv1_conv (Conv2D) โ”‚ (None, 112, 112,  โ”‚      9,472 โ”‚ conv1_pad[0][0]   โ”‚\nโ”‚                     โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv1_bn            โ”‚ (None, 112, 112,  โ”‚        256 โ”‚ conv1_conv[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv1_relu          โ”‚ (None, 112, 112,  โ”‚          0 โ”‚ conv1_bn[0][0]    โ”‚\nโ”‚ (Activation)        โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ pool1_pad           โ”‚ (None, 114, 114,  โ”‚          0 โ”‚ conv1_relu[0][0]  โ”‚\nโ”‚ (ZeroPadding2D)     โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ pool1_pool          โ”‚ (None, 56, 56,    โ”‚          0 โ”‚ pool1_pad[0][0]   โ”‚\nโ”‚ (MaxPooling2D)      โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block1_1_conv โ”‚ (None, 56, 56,    โ”‚      4,160 โ”‚ pool1_pool[0][0]  โ”‚\nโ”‚ (Conv2D)            โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block1_1_bn   โ”‚ (None, 56, 56,    โ”‚        256 โ”‚ conv2_block1_1_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block1_1_relu โ”‚ (None, 56, 56,    โ”‚          0 โ”‚ conv2_block1_1_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block1_2_conv โ”‚ (None, 56, 56,    โ”‚     36,928 โ”‚ conv2_block1_1_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block1_2_bn   โ”‚ (None, 56, 56,    โ”‚        256 โ”‚ conv2_block1_2_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block1_2_relu โ”‚ (None, 56, 56,    โ”‚          0 โ”‚ conv2_block1_2_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block1_0_conv โ”‚ (None, 56, 56,    โ”‚     16,640 โ”‚ pool1_pool[0][0]  โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block1_3_conv โ”‚ (None, 56, 56,    โ”‚     16,640 โ”‚ conv2_block1_2_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block1_0_bn   โ”‚ (None, 56, 56,    โ”‚      1,024 โ”‚ conv2_block1_0_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block1_3_bn   โ”‚ (None, 56, 56,    โ”‚      1,024 โ”‚ conv2_block1_3_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block1_add    โ”‚ (None, 56, 56,    โ”‚          0 โ”‚ conv2_block1_0_bโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 256)              โ”‚            โ”‚ conv2_block1_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block1_out    โ”‚ (None, 56, 56,    โ”‚          0 โ”‚ conv2_block1_addโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block2_1_conv โ”‚ (None, 56, 56,    โ”‚     16,448 โ”‚ conv2_block1_outโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block2_1_bn   โ”‚ (None, 56, 56,    โ”‚        256 โ”‚ conv2_block2_1_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block2_1_relu โ”‚ (None, 56, 56,    โ”‚          0 โ”‚ conv2_block2_1_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block2_2_conv โ”‚ (None, 56, 56,    โ”‚     36,928 โ”‚ conv2_block2_1_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block2_2_bn   โ”‚ (None, 56, 56,    โ”‚        256 โ”‚ conv2_block2_2_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block2_2_relu โ”‚ (None, 56, 56,    โ”‚          0 โ”‚ conv2_block2_2_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block2_3_conv โ”‚ (None, 56, 56,    โ”‚     16,640 โ”‚ conv2_block2_2_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block2_3_bn   โ”‚ (None, 56, 56,    โ”‚      1,024 โ”‚ conv2_block2_3_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block2_add    โ”‚ (None, 56, 56,    โ”‚          0 โ”‚ conv2_block1_outโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 256)              โ”‚            โ”‚ conv2_block2_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block2_out    โ”‚ (None, 56, 56,    โ”‚          0 โ”‚ conv2_block2_addโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block3_1_conv โ”‚ (None, 56, 56,    โ”‚     16,448 โ”‚ conv2_block2_outโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block3_1_bn   โ”‚ (None, 56, 56,    โ”‚        256 โ”‚ conv2_block3_1_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block3_1_relu โ”‚ (None, 56, 56,    โ”‚          0 โ”‚ conv2_block3_1_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block3_2_conv โ”‚ (None, 56, 56,    โ”‚     36,928 โ”‚ conv2_block3_1_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block3_2_bn   โ”‚ (None, 56, 56,    โ”‚        256 โ”‚ conv2_block3_2_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block3_2_relu โ”‚ (None, 56, 56,    โ”‚          0 โ”‚ conv2_block3_2_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block3_3_conv โ”‚ (None, 56, 56,    โ”‚     16,640 โ”‚ conv2_block3_2_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block3_3_bn   โ”‚ (None, 56, 56,    โ”‚      1,024 โ”‚ conv2_block3_3_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block3_add    โ”‚ (None, 56, 56,    โ”‚          0 โ”‚ conv2_block2_outโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 256)              โ”‚            โ”‚ conv2_block3_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2_block3_out    โ”‚ (None, 56, 56,    โ”‚          0 โ”‚ conv2_block3_addโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block1_1_conv โ”‚ (None, 28, 28,    โ”‚     32,896 โ”‚ conv2_block3_outโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block1_1_bn   โ”‚ (None, 28, 28,    โ”‚        512 โ”‚ conv3_block1_1_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block1_1_relu โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ conv3_block1_1_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block1_2_conv โ”‚ (None, 28, 28,    โ”‚    147,584 โ”‚ conv3_block1_1_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block1_2_bn   โ”‚ (None, 28, 28,    โ”‚        512 โ”‚ conv3_block1_2_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block1_2_relu โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ conv3_block1_2_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block1_0_conv โ”‚ (None, 28, 28,    โ”‚    131,584 โ”‚ conv2_block3_outโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 512)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block1_3_conv โ”‚ (None, 28, 28,    โ”‚     66,048 โ”‚ conv3_block1_2_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 512)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block1_0_bn   โ”‚ (None, 28, 28,    โ”‚      2,048 โ”‚ conv3_block1_0_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 512)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block1_3_bn   โ”‚ (None, 28, 28,    โ”‚      2,048 โ”‚ conv3_block1_3_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 512)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block1_add    โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ conv3_block1_0_bโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 512)              โ”‚            โ”‚ conv3_block1_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block1_out    โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ conv3_block1_addโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 512)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block2_1_conv โ”‚ (None, 28, 28,    โ”‚     65,664 โ”‚ conv3_block1_outโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block2_1_bn   โ”‚ (None, 28, 28,    โ”‚        512 โ”‚ conv3_block2_1_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block2_1_relu โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ conv3_block2_1_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block2_2_conv โ”‚ (None, 28, 28,    โ”‚    147,584 โ”‚ conv3_block2_1_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block2_2_bn   โ”‚ (None, 28, 28,    โ”‚        512 โ”‚ conv3_block2_2_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block2_2_relu โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ conv3_block2_2_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block2_3_conv โ”‚ (None, 28, 28,    โ”‚     66,048 โ”‚ conv3_block2_2_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 512)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block2_3_bn   โ”‚ (None, 28, 28,    โ”‚      2,048 โ”‚ conv3_block2_3_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 512)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block2_add    โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ conv3_block1_outโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 512)              โ”‚            โ”‚ conv3_block2_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block2_out    โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ conv3_block2_addโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 512)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block3_1_conv โ”‚ (None, 28, 28,    โ”‚     65,664 โ”‚ conv3_block2_outโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block3_1_bn   โ”‚ (None, 28, 28,    โ”‚        512 โ”‚ conv3_block3_1_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block3_1_relu โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ conv3_block3_1_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block3_2_conv โ”‚ (None, 28, 28,    โ”‚    147,584 โ”‚ conv3_block3_1_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block3_2_bn   โ”‚ (None, 28, 28,    โ”‚        512 โ”‚ conv3_block3_2_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block3_2_relu โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ conv3_block3_2_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block3_3_conv โ”‚ (None, 28, 28,    โ”‚     66,048 โ”‚ conv3_block3_2_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 512)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block3_3_bn   โ”‚ (None, 28, 28,    โ”‚      2,048 โ”‚ conv3_block3_3_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 512)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block3_add    โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ conv3_block2_outโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 512)              โ”‚            โ”‚ conv3_block3_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block3_out    โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ conv3_block3_addโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 512)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block4_1_conv โ”‚ (None, 28, 28,    โ”‚     65,664 โ”‚ conv3_block3_outโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block4_1_bn   โ”‚ (None, 28, 28,    โ”‚        512 โ”‚ conv3_block4_1_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block4_1_relu โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ conv3_block4_1_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block4_2_conv โ”‚ (None, 28, 28,    โ”‚    147,584 โ”‚ conv3_block4_1_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block4_2_bn   โ”‚ (None, 28, 28,    โ”‚        512 โ”‚ conv3_block4_2_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block4_2_relu โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ conv3_block4_2_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block4_3_conv โ”‚ (None, 28, 28,    โ”‚     66,048 โ”‚ conv3_block4_2_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 512)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block4_3_bn   โ”‚ (None, 28, 28,    โ”‚      2,048 โ”‚ conv3_block4_3_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 512)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block4_add    โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ conv3_block3_outโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 512)              โ”‚            โ”‚ conv3_block4_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block4_out    โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ conv3_block4_addโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 512)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block5_1_conv โ”‚ (None, 28, 28,    โ”‚     65,664 โ”‚ conv3_block4_outโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block5_1_bn   โ”‚ (None, 28, 28,    โ”‚        512 โ”‚ conv3_block5_1_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block5_1_relu โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ conv3_block5_1_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block5_2_conv โ”‚ (None, 28, 28,    โ”‚    147,584 โ”‚ conv3_block5_1_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block5_2_bn   โ”‚ (None, 28, 28,    โ”‚        512 โ”‚ conv3_block5_2_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block5_2_relu โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ conv3_block5_2_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block5_3_conv โ”‚ (None, 28, 28,    โ”‚     66,048 โ”‚ conv3_block5_2_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 512)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block5_3_bn   โ”‚ (None, 28, 28,    โ”‚      2,048 โ”‚ conv3_block5_3_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 512)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block5_add    โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ conv3_block4_outโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 512)              โ”‚            โ”‚ conv3_block5_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block5_out    โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ conv3_block5_addโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 512)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block6_1_conv โ”‚ (None, 28, 28,    โ”‚     65,664 โ”‚ conv3_block5_outโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block6_1_bn   โ”‚ (None, 28, 28,    โ”‚        512 โ”‚ conv3_block6_1_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block6_1_relu โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ conv3_block6_1_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block6_2_conv โ”‚ (None, 28, 28,    โ”‚    147,584 โ”‚ conv3_block6_1_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block6_2_bn   โ”‚ (None, 28, 28,    โ”‚        512 โ”‚ conv3_block6_2_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block6_2_relu โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ conv3_block6_2_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block6_3_conv โ”‚ (None, 28, 28,    โ”‚     66,048 โ”‚ conv3_block6_2_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 512)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block6_3_bn   โ”‚ (None, 28, 28,    โ”‚      2,048 โ”‚ conv3_block6_3_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 512)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block6_add    โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ conv3_block5_outโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 512)              โ”‚            โ”‚ conv3_block6_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block6_out    โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ conv3_block6_addโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 512)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block7_1_conv โ”‚ (None, 28, 28,    โ”‚     65,664 โ”‚ conv3_block6_outโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block7_1_bn   โ”‚ (None, 28, 28,    โ”‚        512 โ”‚ conv3_block7_1_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block7_1_relu โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ conv3_block7_1_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block7_2_conv โ”‚ (None, 28, 28,    โ”‚    147,584 โ”‚ conv3_block7_1_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block7_2_bn   โ”‚ (None, 28, 28,    โ”‚        512 โ”‚ conv3_block7_2_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block7_2_relu โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ conv3_block7_2_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block7_3_conv โ”‚ (None, 28, 28,    โ”‚     66,048 โ”‚ conv3_block7_2_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 512)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block7_3_bn   โ”‚ (None, 28, 28,    โ”‚      2,048 โ”‚ conv3_block7_3_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 512)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block7_add    โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ conv3_block6_outโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 512)              โ”‚            โ”‚ conv3_block7_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block7_out    โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ conv3_block7_addโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 512)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block8_1_conv โ”‚ (None, 28, 28,    โ”‚     65,664 โ”‚ conv3_block7_outโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block8_1_bn   โ”‚ (None, 28, 28,    โ”‚        512 โ”‚ conv3_block8_1_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block8_1_relu โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ conv3_block8_1_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block8_2_conv โ”‚ (None, 28, 28,    โ”‚    147,584 โ”‚ conv3_block8_1_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block8_2_bn   โ”‚ (None, 28, 28,    โ”‚        512 โ”‚ conv3_block8_2_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block8_2_relu โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ conv3_block8_2_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block8_3_conv โ”‚ (None, 28, 28,    โ”‚     66,048 โ”‚ conv3_block8_2_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 512)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block8_3_bn   โ”‚ (None, 28, 28,    โ”‚      2,048 โ”‚ conv3_block8_3_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 512)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block8_add    โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ conv3_block7_outโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 512)              โ”‚            โ”‚ conv3_block8_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv3_block8_out    โ”‚ (None, 28, 28,    โ”‚          0 โ”‚ conv3_block8_addโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 512)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block1_1_conv โ”‚ (None, 14, 14,    โ”‚    131,328 โ”‚ conv3_block8_outโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block1_1_bn   โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block1_1_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block1_1_relu โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block1_1_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block1_2_conv โ”‚ (None, 14, 14,    โ”‚    590,080 โ”‚ conv4_block1_1_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block1_2_bn   โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block1_2_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block1_2_relu โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block1_2_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block1_0_conv โ”‚ (None, 14, 14,    โ”‚    525,312 โ”‚ conv3_block8_outโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block1_3_conv โ”‚ (None, 14, 14,    โ”‚    263,168 โ”‚ conv4_block1_2_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block1_0_bn   โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block1_0_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block1_3_bn   โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block1_3_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block1_add    โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block1_0_bโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 1024)             โ”‚            โ”‚ conv4_block1_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block1_out    โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block1_addโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block2_1_conv โ”‚ (None, 14, 14,    โ”‚    262,400 โ”‚ conv4_block1_outโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block2_1_bn   โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block2_1_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block2_1_relu โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block2_1_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block2_2_conv โ”‚ (None, 14, 14,    โ”‚    590,080 โ”‚ conv4_block2_1_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block2_2_bn   โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block2_2_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block2_2_relu โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block2_2_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block2_3_conv โ”‚ (None, 14, 14,    โ”‚    263,168 โ”‚ conv4_block2_2_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block2_3_bn   โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block2_3_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block2_add    โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block1_outโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 1024)             โ”‚            โ”‚ conv4_block2_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block2_out    โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block2_addโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block3_1_conv โ”‚ (None, 14, 14,    โ”‚    262,400 โ”‚ conv4_block2_outโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block3_1_bn   โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block3_1_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block3_1_relu โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block3_1_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block3_2_conv โ”‚ (None, 14, 14,    โ”‚    590,080 โ”‚ conv4_block3_1_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block3_2_bn   โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block3_2_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block3_2_relu โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block3_2_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block3_3_conv โ”‚ (None, 14, 14,    โ”‚    263,168 โ”‚ conv4_block3_2_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block3_3_bn   โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block3_3_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block3_add    โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block2_outโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 1024)             โ”‚            โ”‚ conv4_block3_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block3_out    โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block3_addโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block4_1_conv โ”‚ (None, 14, 14,    โ”‚    262,400 โ”‚ conv4_block3_outโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block4_1_bn   โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block4_1_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block4_1_relu โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block4_1_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block4_2_conv โ”‚ (None, 14, 14,    โ”‚    590,080 โ”‚ conv4_block4_1_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block4_2_bn   โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block4_2_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block4_2_relu โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block4_2_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block4_3_conv โ”‚ (None, 14, 14,    โ”‚    263,168 โ”‚ conv4_block4_2_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block4_3_bn   โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block4_3_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block4_add    โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block3_outโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 1024)             โ”‚            โ”‚ conv4_block4_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block4_out    โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block4_addโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block5_1_conv โ”‚ (None, 14, 14,    โ”‚    262,400 โ”‚ conv4_block4_outโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block5_1_bn   โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block5_1_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block5_1_relu โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block5_1_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block5_2_conv โ”‚ (None, 14, 14,    โ”‚    590,080 โ”‚ conv4_block5_1_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block5_2_bn   โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block5_2_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block5_2_relu โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block5_2_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block5_3_conv โ”‚ (None, 14, 14,    โ”‚    263,168 โ”‚ conv4_block5_2_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block5_3_bn   โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block5_3_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block5_add    โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block4_outโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 1024)             โ”‚            โ”‚ conv4_block5_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block5_out    โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block5_addโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block6_1_conv โ”‚ (None, 14, 14,    โ”‚    262,400 โ”‚ conv4_block5_outโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block6_1_bn   โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block6_1_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block6_1_relu โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block6_1_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block6_2_conv โ”‚ (None, 14, 14,    โ”‚    590,080 โ”‚ conv4_block6_1_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block6_2_bn   โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block6_2_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block6_2_relu โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block6_2_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block6_3_conv โ”‚ (None, 14, 14,    โ”‚    263,168 โ”‚ conv4_block6_2_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block6_3_bn   โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block6_3_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block6_add    โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block5_outโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 1024)             โ”‚            โ”‚ conv4_block6_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block6_out    โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block6_addโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block7_1_conv โ”‚ (None, 14, 14,    โ”‚    262,400 โ”‚ conv4_block6_outโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block7_1_bn   โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block7_1_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block7_1_relu โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block7_1_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block7_2_conv โ”‚ (None, 14, 14,    โ”‚    590,080 โ”‚ conv4_block7_1_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block7_2_bn   โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block7_2_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block7_2_relu โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block7_2_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block7_3_conv โ”‚ (None, 14, 14,    โ”‚    263,168 โ”‚ conv4_block7_2_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block7_3_bn   โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block7_3_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block7_add    โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block6_outโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 1024)             โ”‚            โ”‚ conv4_block7_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block7_out    โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block7_addโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block8_1_conv โ”‚ (None, 14, 14,    โ”‚    262,400 โ”‚ conv4_block7_outโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block8_1_bn   โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block8_1_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block8_1_relu โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block8_1_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block8_2_conv โ”‚ (None, 14, 14,    โ”‚    590,080 โ”‚ conv4_block8_1_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block8_2_bn   โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block8_2_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block8_2_relu โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block8_2_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block8_3_conv โ”‚ (None, 14, 14,    โ”‚    263,168 โ”‚ conv4_block8_2_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block8_3_bn   โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block8_3_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block8_add    โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block7_outโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 1024)             โ”‚            โ”‚ conv4_block8_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block8_out    โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block8_addโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block9_1_conv โ”‚ (None, 14, 14,    โ”‚    262,400 โ”‚ conv4_block8_outโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block9_1_bn   โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block9_1_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block9_1_relu โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block9_1_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block9_2_conv โ”‚ (None, 14, 14,    โ”‚    590,080 โ”‚ conv4_block9_1_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block9_2_bn   โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block9_2_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block9_2_relu โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block9_2_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block9_3_conv โ”‚ (None, 14, 14,    โ”‚    263,168 โ”‚ conv4_block9_2_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block9_3_bn   โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block9_3_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block9_add    โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block8_outโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 1024)             โ”‚            โ”‚ conv4_block9_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block9_out    โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block9_addโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block10_1_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    262,400 โ”‚ conv4_block9_outโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block10_1_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block10_1_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block10_1_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block10_1_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block10_2_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    590,080 โ”‚ conv4_block10_1_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block10_2_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block10_2_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block10_2_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block10_2_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block10_3_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    263,168 โ”‚ conv4_block10_2_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block10_3_bn  โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block10_3_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block10_add   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block9_outโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 1024)             โ”‚            โ”‚ conv4_block10_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block10_out   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block10_adโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block11_1_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    262,400 โ”‚ conv4_block10_ouโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block11_1_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block11_1_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block11_1_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block11_1_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block11_2_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    590,080 โ”‚ conv4_block11_1_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block11_2_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block11_2_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block11_2_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block11_2_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block11_3_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    263,168 โ”‚ conv4_block11_2_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block11_3_bn  โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block11_3_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block11_add   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block10_ouโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 1024)             โ”‚            โ”‚ conv4_block11_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block11_out   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block11_adโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block12_1_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    262,400 โ”‚ conv4_block11_ouโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block12_1_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block12_1_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block12_1_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block12_1_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block12_2_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    590,080 โ”‚ conv4_block12_1_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block12_2_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block12_2_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block12_2_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block12_2_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block12_3_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    263,168 โ”‚ conv4_block12_2_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block12_3_bn  โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block12_3_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block12_add   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block11_ouโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 1024)             โ”‚            โ”‚ conv4_block12_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block12_out   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block12_adโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block13_1_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    262,400 โ”‚ conv4_block12_ouโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block13_1_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block13_1_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block13_1_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block13_1_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block13_2_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    590,080 โ”‚ conv4_block13_1_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block13_2_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block13_2_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block13_2_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block13_2_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block13_3_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    263,168 โ”‚ conv4_block13_2_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block13_3_bn  โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block13_3_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block13_add   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block12_ouโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 1024)             โ”‚            โ”‚ conv4_block13_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block13_out   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block13_adโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block14_1_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    262,400 โ”‚ conv4_block13_ouโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block14_1_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block14_1_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block14_1_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block14_1_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block14_2_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    590,080 โ”‚ conv4_block14_1_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block14_2_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block14_2_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block14_2_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block14_2_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block14_3_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    263,168 โ”‚ conv4_block14_2_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block14_3_bn  โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block14_3_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block14_add   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block13_ouโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 1024)             โ”‚            โ”‚ conv4_block14_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block14_out   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block14_adโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block15_1_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    262,400 โ”‚ conv4_block14_ouโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block15_1_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block15_1_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block15_1_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block15_1_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block15_2_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    590,080 โ”‚ conv4_block15_1_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block15_2_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block15_2_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block15_2_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block15_2_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block15_3_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    263,168 โ”‚ conv4_block15_2_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block15_3_bn  โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block15_3_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block15_add   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block14_ouโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 1024)             โ”‚            โ”‚ conv4_block15_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block15_out   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block15_adโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block16_1_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    262,400 โ”‚ conv4_block15_ouโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block16_1_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block16_1_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block16_1_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block16_1_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block16_2_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    590,080 โ”‚ conv4_block16_1_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block16_2_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block16_2_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block16_2_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block16_2_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block16_3_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    263,168 โ”‚ conv4_block16_2_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block16_3_bn  โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block16_3_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block16_add   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block15_ouโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 1024)             โ”‚            โ”‚ conv4_block16_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block16_out   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block16_adโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block17_1_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    262,400 โ”‚ conv4_block16_ouโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block17_1_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block17_1_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block17_1_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block17_1_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block17_2_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    590,080 โ”‚ conv4_block17_1_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block17_2_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block17_2_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block17_2_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block17_2_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block17_3_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    263,168 โ”‚ conv4_block17_2_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block17_3_bn  โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block17_3_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block17_add   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block16_ouโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 1024)             โ”‚            โ”‚ conv4_block17_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block17_out   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block17_adโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block18_1_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    262,400 โ”‚ conv4_block17_ouโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block18_1_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block18_1_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block18_1_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block18_1_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block18_2_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    590,080 โ”‚ conv4_block18_1_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block18_2_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block18_2_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block18_2_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block18_2_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block18_3_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    263,168 โ”‚ conv4_block18_2_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block18_3_bn  โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block18_3_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block18_add   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block17_ouโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 1024)             โ”‚            โ”‚ conv4_block18_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block18_out   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block18_adโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block19_1_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    262,400 โ”‚ conv4_block18_ouโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block19_1_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block19_1_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block19_1_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block19_1_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block19_2_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    590,080 โ”‚ conv4_block19_1_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block19_2_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block19_2_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block19_2_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block19_2_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block19_3_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    263,168 โ”‚ conv4_block19_2_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block19_3_bn  โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block19_3_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block19_add   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block18_ouโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 1024)             โ”‚            โ”‚ conv4_block19_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block19_out   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block19_adโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block20_1_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    262,400 โ”‚ conv4_block19_ouโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block20_1_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block20_1_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block20_1_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block20_1_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block20_2_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    590,080 โ”‚ conv4_block20_1_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block20_2_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block20_2_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block20_2_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block20_2_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block20_3_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    263,168 โ”‚ conv4_block20_2_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block20_3_bn  โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block20_3_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block20_add   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block19_ouโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 1024)             โ”‚            โ”‚ conv4_block20_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block20_out   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block20_adโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block21_1_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    262,400 โ”‚ conv4_block20_ouโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block21_1_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block21_1_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block21_1_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block21_1_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block21_2_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    590,080 โ”‚ conv4_block21_1_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block21_2_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block21_2_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block21_2_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block21_2_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block21_3_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    263,168 โ”‚ conv4_block21_2_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block21_3_bn  โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block21_3_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block21_add   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block20_ouโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 1024)             โ”‚            โ”‚ conv4_block21_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block21_out   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block21_adโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block22_1_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    262,400 โ”‚ conv4_block21_ouโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block22_1_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block22_1_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block22_1_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block22_1_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block22_2_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    590,080 โ”‚ conv4_block22_1_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block22_2_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block22_2_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block22_2_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block22_2_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block22_3_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    263,168 โ”‚ conv4_block22_2_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block22_3_bn  โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block22_3_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block22_add   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block21_ouโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 1024)             โ”‚            โ”‚ conv4_block22_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block22_out   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block22_adโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block23_1_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    262,400 โ”‚ conv4_block22_ouโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block23_1_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block23_1_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block23_1_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block23_1_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block23_2_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    590,080 โ”‚ conv4_block23_1_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block23_2_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block23_2_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block23_2_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block23_2_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block23_3_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    263,168 โ”‚ conv4_block23_2_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block23_3_bn  โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block23_3_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block23_add   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block22_ouโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 1024)             โ”‚            โ”‚ conv4_block23_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block23_out   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block23_adโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block24_1_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    262,400 โ”‚ conv4_block23_ouโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block24_1_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block24_1_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block24_1_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block24_1_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block24_2_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    590,080 โ”‚ conv4_block24_1_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block24_2_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block24_2_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block24_2_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block24_2_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block24_3_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    263,168 โ”‚ conv4_block24_2_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block24_3_bn  โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block24_3_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block24_add   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block23_ouโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 1024)             โ”‚            โ”‚ conv4_block24_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block24_out   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block24_adโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block25_1_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    262,400 โ”‚ conv4_block24_ouโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block25_1_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block25_1_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block25_1_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block25_1_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block25_2_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    590,080 โ”‚ conv4_block25_1_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block25_2_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block25_2_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block25_2_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block25_2_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block25_3_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    263,168 โ”‚ conv4_block25_2_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block25_3_bn  โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block25_3_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block25_add   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block24_ouโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 1024)             โ”‚            โ”‚ conv4_block25_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block25_out   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block25_adโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block26_1_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    262,400 โ”‚ conv4_block25_ouโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block26_1_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block26_1_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block26_1_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block26_1_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block26_2_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    590,080 โ”‚ conv4_block26_1_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block26_2_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block26_2_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block26_2_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block26_2_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block26_3_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    263,168 โ”‚ conv4_block26_2_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block26_3_bn  โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block26_3_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block26_add   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block25_ouโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 1024)             โ”‚            โ”‚ conv4_block26_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block26_out   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block26_adโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block27_1_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    262,400 โ”‚ conv4_block26_ouโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block27_1_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block27_1_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block27_1_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block27_1_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block27_2_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    590,080 โ”‚ conv4_block27_1_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block27_2_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block27_2_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block27_2_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block27_2_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block27_3_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    263,168 โ”‚ conv4_block27_2_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block27_3_bn  โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block27_3_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block27_add   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block26_ouโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 1024)             โ”‚            โ”‚ conv4_block27_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block27_out   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block27_adโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block28_1_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    262,400 โ”‚ conv4_block27_ouโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block28_1_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block28_1_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block28_1_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block28_1_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block28_2_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    590,080 โ”‚ conv4_block28_1_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block28_2_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block28_2_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block28_2_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block28_2_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block28_3_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    263,168 โ”‚ conv4_block28_2_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block28_3_bn  โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block28_3_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block28_add   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block27_ouโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 1024)             โ”‚            โ”‚ conv4_block28_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block28_out   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block28_adโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block29_1_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    262,400 โ”‚ conv4_block28_ouโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block29_1_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block29_1_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block29_1_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block29_1_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block29_2_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    590,080 โ”‚ conv4_block29_1_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block29_2_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block29_2_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block29_2_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block29_2_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block29_3_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    263,168 โ”‚ conv4_block29_2_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block29_3_bn  โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block29_3_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block29_add   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block28_ouโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 1024)             โ”‚            โ”‚ conv4_block29_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block29_out   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block29_adโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block30_1_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    262,400 โ”‚ conv4_block29_ouโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block30_1_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block30_1_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block30_1_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block30_1_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block30_2_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    590,080 โ”‚ conv4_block30_1_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block30_2_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block30_2_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block30_2_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block30_2_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block30_3_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    263,168 โ”‚ conv4_block30_2_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block30_3_bn  โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block30_3_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block30_add   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block29_ouโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 1024)             โ”‚            โ”‚ conv4_block30_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block30_out   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block30_adโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block31_1_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    262,400 โ”‚ conv4_block30_ouโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block31_1_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block31_1_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block31_1_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block31_1_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block31_2_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    590,080 โ”‚ conv4_block31_1_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block31_2_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block31_2_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block31_2_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block31_2_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block31_3_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    263,168 โ”‚ conv4_block31_2_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block31_3_bn  โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block31_3_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block31_add   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block30_ouโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 1024)             โ”‚            โ”‚ conv4_block31_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block31_out   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block31_adโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block32_1_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    262,400 โ”‚ conv4_block31_ouโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block32_1_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block32_1_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block32_1_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block32_1_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block32_2_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    590,080 โ”‚ conv4_block32_1_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block32_2_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block32_2_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block32_2_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block32_2_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block32_3_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    263,168 โ”‚ conv4_block32_2_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block32_3_bn  โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block32_3_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block32_add   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block31_ouโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 1024)             โ”‚            โ”‚ conv4_block32_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block32_out   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block32_adโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block33_1_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    262,400 โ”‚ conv4_block32_ouโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block33_1_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block33_1_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block33_1_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block33_1_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block33_2_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    590,080 โ”‚ conv4_block33_1_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block33_2_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block33_2_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block33_2_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block33_2_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block33_3_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    263,168 โ”‚ conv4_block33_2_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block33_3_bn  โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block33_3_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block33_add   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block32_ouโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 1024)             โ”‚            โ”‚ conv4_block33_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block33_out   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block33_adโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block34_1_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    262,400 โ”‚ conv4_block33_ouโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block34_1_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block34_1_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block34_1_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block34_1_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block34_2_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    590,080 โ”‚ conv4_block34_1_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block34_2_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block34_2_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block34_2_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block34_2_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block34_3_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    263,168 โ”‚ conv4_block34_2_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block34_3_bn  โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block34_3_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block34_add   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block33_ouโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 1024)             โ”‚            โ”‚ conv4_block34_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block34_out   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block34_adโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block35_1_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    262,400 โ”‚ conv4_block34_ouโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block35_1_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block35_1_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block35_1_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block35_1_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block35_2_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    590,080 โ”‚ conv4_block35_1_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block35_2_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block35_2_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block35_2_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block35_2_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block35_3_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    263,168 โ”‚ conv4_block35_2_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block35_3_bn  โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block35_3_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block35_add   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block34_ouโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 1024)             โ”‚            โ”‚ conv4_block35_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block35_out   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block35_adโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block36_1_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    262,400 โ”‚ conv4_block35_ouโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block36_1_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block36_1_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block36_1_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block36_1_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block36_2_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    590,080 โ”‚ conv4_block36_1_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block36_2_bn  โ”‚ (None, 14, 14,    โ”‚      1,024 โ”‚ conv4_block36_2_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block36_2_reโ€ฆ โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block36_2_โ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block36_3_coโ€ฆ โ”‚ (None, 14, 14,    โ”‚    263,168 โ”‚ conv4_block36_2_โ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block36_3_bn  โ”‚ (None, 14, 14,    โ”‚      4,096 โ”‚ conv4_block36_3_โ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block36_add   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block35_ouโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 1024)             โ”‚            โ”‚ conv4_block36_3_โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv4_block36_out   โ”‚ (None, 14, 14,    โ”‚          0 โ”‚ conv4_block36_adโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 1024)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block1_1_conv โ”‚ (None, 7, 7, 512) โ”‚    524,800 โ”‚ conv4_block36_ouโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block1_1_bn   โ”‚ (None, 7, 7, 512) โ”‚      2,048 โ”‚ conv5_block1_1_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block1_1_relu โ”‚ (None, 7, 7, 512) โ”‚          0 โ”‚ conv5_block1_1_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block1_2_conv โ”‚ (None, 7, 7, 512) โ”‚  2,359,808 โ”‚ conv5_block1_1_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block1_2_bn   โ”‚ (None, 7, 7, 512) โ”‚      2,048 โ”‚ conv5_block1_2_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block1_2_relu โ”‚ (None, 7, 7, 512) โ”‚          0 โ”‚ conv5_block1_2_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block1_0_conv โ”‚ (None, 7, 7,      โ”‚  2,099,200 โ”‚ conv4_block36_ouโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 2048)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block1_3_conv โ”‚ (None, 7, 7,      โ”‚  1,050,624 โ”‚ conv5_block1_2_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 2048)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block1_0_bn   โ”‚ (None, 7, 7,      โ”‚      8,192 โ”‚ conv5_block1_0_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 2048)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block1_3_bn   โ”‚ (None, 7, 7,      โ”‚      8,192 โ”‚ conv5_block1_3_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 2048)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block1_add    โ”‚ (None, 7, 7,      โ”‚          0 โ”‚ conv5_block1_0_bโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 2048)             โ”‚            โ”‚ conv5_block1_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block1_out    โ”‚ (None, 7, 7,      โ”‚          0 โ”‚ conv5_block1_addโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 2048)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block2_1_conv โ”‚ (None, 7, 7, 512) โ”‚  1,049,088 โ”‚ conv5_block1_outโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block2_1_bn   โ”‚ (None, 7, 7, 512) โ”‚      2,048 โ”‚ conv5_block2_1_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block2_1_relu โ”‚ (None, 7, 7, 512) โ”‚          0 โ”‚ conv5_block2_1_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block2_2_conv โ”‚ (None, 7, 7, 512) โ”‚  2,359,808 โ”‚ conv5_block2_1_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block2_2_bn   โ”‚ (None, 7, 7, 512) โ”‚      2,048 โ”‚ conv5_block2_2_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block2_2_relu โ”‚ (None, 7, 7, 512) โ”‚          0 โ”‚ conv5_block2_2_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block2_3_conv โ”‚ (None, 7, 7,      โ”‚  1,050,624 โ”‚ conv5_block2_2_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 2048)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block2_3_bn   โ”‚ (None, 7, 7,      โ”‚      8,192 โ”‚ conv5_block2_3_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 2048)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block2_add    โ”‚ (None, 7, 7,      โ”‚          0 โ”‚ conv5_block1_outโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 2048)             โ”‚            โ”‚ conv5_block2_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block2_out    โ”‚ (None, 7, 7,      โ”‚          0 โ”‚ conv5_block2_addโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 2048)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block3_1_conv โ”‚ (None, 7, 7, 512) โ”‚  1,049,088 โ”‚ conv5_block2_outโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block3_1_bn   โ”‚ (None, 7, 7, 512) โ”‚      2,048 โ”‚ conv5_block3_1_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block3_1_relu โ”‚ (None, 7, 7, 512) โ”‚          0 โ”‚ conv5_block3_1_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block3_2_conv โ”‚ (None, 7, 7, 512) โ”‚  2,359,808 โ”‚ conv5_block3_1_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block3_2_bn   โ”‚ (None, 7, 7, 512) โ”‚      2,048 โ”‚ conv5_block3_2_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block3_2_relu โ”‚ (None, 7, 7, 512) โ”‚          0 โ”‚ conv5_block3_2_bโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block3_3_conv โ”‚ (None, 7, 7,      โ”‚  1,050,624 โ”‚ conv5_block3_2_rโ€ฆ โ”‚\nโ”‚ (Conv2D)            โ”‚ 2048)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block3_3_bn   โ”‚ (None, 7, 7,      โ”‚      8,192 โ”‚ conv5_block3_3_cโ€ฆ โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 2048)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block3_add    โ”‚ (None, 7, 7,      โ”‚          0 โ”‚ conv5_block2_outโ€ฆ โ”‚\nโ”‚ (Add)               โ”‚ 2048)             โ”‚            โ”‚ conv5_block3_3_bโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv5_block3_out    โ”‚ (None, 7, 7,      โ”‚          0 โ”‚ conv5_block3_addโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 2048)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ global_average_pooโ€ฆ โ”‚ (None, 2048)      โ”‚          0 โ”‚ conv5_block3_outโ€ฆ โ”‚\nโ”‚ (GlobalAveragePoolโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dropout_22          โ”‚ (None, 2048)      โ”‚          0 โ”‚ global_average_pโ€ฆ โ”‚\nโ”‚ (Dropout)           โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dense_44 (Dense)    โ”‚ (None, 1024)      โ”‚  2,098,176 โ”‚ dropout_22[0][0]  โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dense_45 (Dense)    โ”‚ (None, 5)         โ”‚      5,125 โ”‚ dense_44[0][0]    โ”‚\nโ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜\n
\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"\u001b[1m Total params: \u001b[0m\u001b[38;5;34m60,474,245\u001b[0m (230.69 MB)\n","text/html":"
 Total params: 60,474,245 (230.69 MB)\n
\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m2,103,301\u001b[0m (8.02 MB)\n","text/html":"
 Trainable params: 2,103,301 (8.02 MB)\n
\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m58,370,944\u001b[0m (222.67 MB)\n","text/html":"
 Non-trainable params: 58,370,944 (222.67 MB)\n
\n"},"metadata":{}}]},{"cell_type":"markdown","source":"InceptionV3","metadata":{}},{"cell_type":"code","source":"from tensorflow.keras.applications import InceptionV3\nfrom tensorflow.keras.layers import Dense, GlobalAveragePooling2D\nfrom tensorflow.keras.models import Model\nfrom tensorflow.keras.optimizers import Adam\nfrom tensorflow.keras.callbacks import ReduceLROnPlateau, ModelCheckpoint, EarlyStopping\n\ninceptionv3_model = InceptionV3(weights='imagenet', include_top=False, input_shape=(224, 224, 3))\n\nx = inceptionv3_model.output\nx = GlobalAveragePooling2D()(x)\nx = Dense(1024, activation='relu')(x)\npredictions = Dense(5, activation='softmax')(x) \n\nmodelv3 = Model(inputs=inceptionv3_model.input, outputs=predictions)\n\nfor layer in inceptionv3_model.layers:\n layer.trainable = False\n\nmodelv3.compile(optimizer=Adam(learning_rate=0.00001), loss='categorical_crossentropy', metrics=['accuracy'])\n\nmodelv3.summary()\n","metadata":{"execution":{"iopub.status.busy":"2024-06-24T07:50:16.097608Z","iopub.execute_input":"2024-06-24T07:50:16.098412Z","iopub.status.idle":"2024-06-24T07:50:18.305129Z","shell.execute_reply.started":"2024-06-24T07:50:16.098382Z","shell.execute_reply":"2024-06-24T07:50:18.304274Z"},"scrolled":true,"trusted":true},"execution_count":71,"outputs":[{"output_type":"display_data","data":{"text/plain":"\u001b[1mModel: \"functional_55\"\u001b[0m\n","text/html":"
Model: \"functional_55\"\n
\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”“\nโ”ƒ\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0mโ”ƒ\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0mโ”ƒ\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0mโ”ƒ\u001b[1m \u001b[0m\u001b[1mConnected to \u001b[0m\u001b[1m \u001b[0mโ”ƒ\nโ”กโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ฉ\nโ”‚ input_layer_24 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m224\u001b[0m, \u001b[38;5;34m224\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ - โ”‚\nโ”‚ (\u001b[38;5;33mInputLayer\u001b[0m) โ”‚ \u001b[38;5;34m3\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_470 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m111\u001b[0m, \u001b[38;5;34m111\u001b[0m, โ”‚ \u001b[38;5;34m864\u001b[0m โ”‚ input_layer_24[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m32\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m111\u001b[0m, \u001b[38;5;34m111\u001b[0m, โ”‚ \u001b[38;5;34m96\u001b[0m โ”‚ conv2d_470[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m32\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_470 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m111\u001b[0m, \u001b[38;5;34m111\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m32\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_471 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m109\u001b[0m, \u001b[38;5;34m109\u001b[0m, โ”‚ \u001b[38;5;34m9,216\u001b[0m โ”‚ activation_470[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m32\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m109\u001b[0m, \u001b[38;5;34m109\u001b[0m, โ”‚ \u001b[38;5;34m96\u001b[0m โ”‚ conv2d_471[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m32\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_471 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m109\u001b[0m, \u001b[38;5;34m109\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m32\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_472 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m109\u001b[0m, \u001b[38;5;34m109\u001b[0m, โ”‚ \u001b[38;5;34m18,432\u001b[0m โ”‚ activation_471[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m109\u001b[0m, \u001b[38;5;34m109\u001b[0m, โ”‚ \u001b[38;5;34m192\u001b[0m โ”‚ conv2d_472[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_472 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m109\u001b[0m, \u001b[38;5;34m109\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ max_pooling2d_20 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m54\u001b[0m, \u001b[38;5;34m54\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ activation_472[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mMaxPooling2D\u001b[0m) โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_473 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m54\u001b[0m, \u001b[38;5;34m54\u001b[0m, โ”‚ \u001b[38;5;34m5,120\u001b[0m โ”‚ max_pooling2d_20โ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m80\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m54\u001b[0m, \u001b[38;5;34m54\u001b[0m, โ”‚ \u001b[38;5;34m240\u001b[0m โ”‚ conv2d_473[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m80\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_473 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m54\u001b[0m, \u001b[38;5;34m54\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m80\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_474 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m52\u001b[0m, \u001b[38;5;34m52\u001b[0m, โ”‚ \u001b[38;5;34m138,240\u001b[0m โ”‚ activation_473[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m52\u001b[0m, \u001b[38;5;34m52\u001b[0m, โ”‚ \u001b[38;5;34m576\u001b[0m โ”‚ conv2d_474[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_474 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m52\u001b[0m, \u001b[38;5;34m52\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ max_pooling2d_21 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ activation_474[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mMaxPooling2D\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_478 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m12,288\u001b[0m โ”‚ max_pooling2d_21โ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m192\u001b[0m โ”‚ conv2d_478[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_478 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_476 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m9,216\u001b[0m โ”‚ max_pooling2d_21โ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m48\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_479 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m55,296\u001b[0m โ”‚ activation_478[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m144\u001b[0m โ”‚ conv2d_476[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m48\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m288\u001b[0m โ”‚ conv2d_479[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_476 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m48\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_479 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ average_pooling2d_โ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ max_pooling2d_21โ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mAveragePooling2D\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_475 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m12,288\u001b[0m โ”‚ max_pooling2d_21โ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_477 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m76,800\u001b[0m โ”‚ activation_476[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_480 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m82,944\u001b[0m โ”‚ activation_479[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_481 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m6,144\u001b[0m โ”‚ average_pooling2โ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m32\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m192\u001b[0m โ”‚ conv2d_475[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m192\u001b[0m โ”‚ conv2d_477[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m288\u001b[0m โ”‚ conv2d_480[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m96\u001b[0m โ”‚ conv2d_481[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m32\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_475 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_477 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_480 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_481 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m32\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ mixed0 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ activation_475[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConcatenate\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ activation_477[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ โ”‚ โ”‚ activation_480[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ โ”‚ โ”‚ activation_481[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_485 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m16,384\u001b[0m โ”‚ mixed0[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m192\u001b[0m โ”‚ conv2d_485[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_485 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_483 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m12,288\u001b[0m โ”‚ mixed0[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m48\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_486 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m55,296\u001b[0m โ”‚ activation_485[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m144\u001b[0m โ”‚ conv2d_483[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m48\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m288\u001b[0m โ”‚ conv2d_486[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_483 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m48\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_486 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ average_pooling2d_โ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ mixed0[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mAveragePooling2D\u001b[0m) โ”‚ \u001b[38;5;34m256\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_482 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m16,384\u001b[0m โ”‚ mixed0[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_484 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m76,800\u001b[0m โ”‚ activation_483[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_487 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m82,944\u001b[0m โ”‚ activation_486[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_488 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m16,384\u001b[0m โ”‚ average_pooling2โ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m192\u001b[0m โ”‚ conv2d_482[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m192\u001b[0m โ”‚ conv2d_484[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m288\u001b[0m โ”‚ conv2d_487[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m192\u001b[0m โ”‚ conv2d_488[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_482 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_484 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_487 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_488 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ mixed1 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ activation_482[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConcatenate\u001b[0m) โ”‚ \u001b[38;5;34m288\u001b[0m) โ”‚ โ”‚ activation_484[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ โ”‚ โ”‚ activation_487[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ โ”‚ โ”‚ activation_488[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_492 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m18,432\u001b[0m โ”‚ mixed1[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m192\u001b[0m โ”‚ conv2d_492[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_492 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_490 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m13,824\u001b[0m โ”‚ mixed1[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m48\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_493 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m55,296\u001b[0m โ”‚ activation_492[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m144\u001b[0m โ”‚ conv2d_490[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m48\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m288\u001b[0m โ”‚ conv2d_493[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_490 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m48\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_493 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ average_pooling2d_โ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ mixed1[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mAveragePooling2D\u001b[0m) โ”‚ \u001b[38;5;34m288\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_489 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m18,432\u001b[0m โ”‚ mixed1[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_491 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m76,800\u001b[0m โ”‚ activation_490[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_494 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m82,944\u001b[0m โ”‚ activation_493[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_495 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m18,432\u001b[0m โ”‚ average_pooling2โ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m192\u001b[0m โ”‚ conv2d_489[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m192\u001b[0m โ”‚ conv2d_491[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m288\u001b[0m โ”‚ conv2d_494[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m192\u001b[0m โ”‚ conv2d_495[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_489 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_491 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_494 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_495 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ mixed2 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ activation_489[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConcatenate\u001b[0m) โ”‚ \u001b[38;5;34m288\u001b[0m) โ”‚ โ”‚ activation_491[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ โ”‚ โ”‚ activation_494[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ โ”‚ โ”‚ activation_495[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_497 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m18,432\u001b[0m โ”‚ mixed2[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m192\u001b[0m โ”‚ conv2d_497[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_497 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m64\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_498 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m55,296\u001b[0m โ”‚ activation_497[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m288\u001b[0m โ”‚ conv2d_498[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_498 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m25\u001b[0m, \u001b[38;5;34m25\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_496 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m995,328\u001b[0m โ”‚ mixed2[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m384\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_499 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m82,944\u001b[0m โ”‚ activation_498[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m1,152\u001b[0m โ”‚ conv2d_496[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m384\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m288\u001b[0m โ”‚ conv2d_499[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_496 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m384\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_499 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m96\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ max_pooling2d_22 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ mixed2[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mMaxPooling2D\u001b[0m) โ”‚ \u001b[38;5;34m288\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ mixed3 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ activation_496[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConcatenate\u001b[0m) โ”‚ \u001b[38;5;34m768\u001b[0m) โ”‚ โ”‚ activation_499[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ โ”‚ โ”‚ max_pooling2d_22โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_504 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m98,304\u001b[0m โ”‚ mixed3[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m384\u001b[0m โ”‚ conv2d_504[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_504 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_505 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m114,688\u001b[0m โ”‚ activation_504[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m384\u001b[0m โ”‚ conv2d_505[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_505 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_501 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m98,304\u001b[0m โ”‚ mixed3[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_506 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m114,688\u001b[0m โ”‚ activation_505[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m384\u001b[0m โ”‚ conv2d_501[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m384\u001b[0m โ”‚ conv2d_506[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_501 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_506 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_502 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m114,688\u001b[0m โ”‚ activation_501[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_507 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m114,688\u001b[0m โ”‚ activation_506[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m384\u001b[0m โ”‚ conv2d_502[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m384\u001b[0m โ”‚ conv2d_507[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_502 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_507 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m128\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ average_pooling2d_โ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ mixed3[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mAveragePooling2D\u001b[0m) โ”‚ \u001b[38;5;34m768\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_500 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m147,456\u001b[0m โ”‚ mixed3[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_503 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m172,032\u001b[0m โ”‚ activation_502[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_508 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m172,032\u001b[0m โ”‚ activation_507[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_509 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m147,456\u001b[0m โ”‚ average_pooling2โ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m576\u001b[0m โ”‚ conv2d_500[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m576\u001b[0m โ”‚ conv2d_503[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m576\u001b[0m โ”‚ conv2d_508[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m576\u001b[0m โ”‚ conv2d_509[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_500 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_503 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_508 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_509 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ mixed4 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ activation_500[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConcatenate\u001b[0m) โ”‚ \u001b[38;5;34m768\u001b[0m) โ”‚ โ”‚ activation_503[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ โ”‚ โ”‚ activation_508[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ โ”‚ โ”‚ activation_509[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_514 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m122,880\u001b[0m โ”‚ mixed4[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m160\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m480\u001b[0m โ”‚ conv2d_514[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m160\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_514 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m160\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_515 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m179,200\u001b[0m โ”‚ activation_514[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m160\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m480\u001b[0m โ”‚ conv2d_515[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m160\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_515 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m160\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_511 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m122,880\u001b[0m โ”‚ mixed4[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m160\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_516 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m179,200\u001b[0m โ”‚ activation_515[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m160\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m480\u001b[0m โ”‚ conv2d_511[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m160\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m480\u001b[0m โ”‚ conv2d_516[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m160\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_511 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m160\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_516 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m160\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_512 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m179,200\u001b[0m โ”‚ activation_511[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m160\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_517 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m179,200\u001b[0m โ”‚ activation_516[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m160\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m480\u001b[0m โ”‚ conv2d_512[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m160\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m480\u001b[0m โ”‚ conv2d_517[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m160\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_512 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m160\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_517 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m160\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ average_pooling2d_โ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ mixed4[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mAveragePooling2D\u001b[0m) โ”‚ \u001b[38;5;34m768\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_510 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m147,456\u001b[0m โ”‚ mixed4[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_513 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m215,040\u001b[0m โ”‚ activation_512[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_518 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m215,040\u001b[0m โ”‚ activation_517[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_519 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m147,456\u001b[0m โ”‚ average_pooling2โ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m576\u001b[0m โ”‚ conv2d_510[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m576\u001b[0m โ”‚ conv2d_513[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m576\u001b[0m โ”‚ conv2d_518[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m576\u001b[0m โ”‚ conv2d_519[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_510 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_513 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_518 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_519 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ mixed5 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ activation_510[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConcatenate\u001b[0m) โ”‚ \u001b[38;5;34m768\u001b[0m) โ”‚ โ”‚ activation_513[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ โ”‚ โ”‚ activation_518[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ โ”‚ โ”‚ activation_519[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_524 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m122,880\u001b[0m โ”‚ mixed5[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m160\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m480\u001b[0m โ”‚ conv2d_524[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m160\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_524 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m160\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_525 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m179,200\u001b[0m โ”‚ activation_524[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m160\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m480\u001b[0m โ”‚ conv2d_525[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m160\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_525 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m160\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_521 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m122,880\u001b[0m โ”‚ mixed5[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m160\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_526 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m179,200\u001b[0m โ”‚ activation_525[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m160\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m480\u001b[0m โ”‚ conv2d_521[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m160\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m480\u001b[0m โ”‚ conv2d_526[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m160\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_521 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m160\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_526 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m160\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_522 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m179,200\u001b[0m โ”‚ activation_521[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m160\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_527 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m179,200\u001b[0m โ”‚ activation_526[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m160\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m480\u001b[0m โ”‚ conv2d_522[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m160\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m480\u001b[0m โ”‚ conv2d_527[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m160\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_522 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m160\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_527 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m160\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ average_pooling2d_โ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ mixed5[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mAveragePooling2D\u001b[0m) โ”‚ \u001b[38;5;34m768\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_520 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m147,456\u001b[0m โ”‚ mixed5[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_523 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m215,040\u001b[0m โ”‚ activation_522[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_528 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m215,040\u001b[0m โ”‚ activation_527[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_529 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m147,456\u001b[0m โ”‚ average_pooling2โ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m576\u001b[0m โ”‚ conv2d_520[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m576\u001b[0m โ”‚ conv2d_523[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m576\u001b[0m โ”‚ conv2d_528[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m576\u001b[0m โ”‚ conv2d_529[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_520 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_523 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_528 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_529 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ mixed6 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ activation_520[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConcatenate\u001b[0m) โ”‚ \u001b[38;5;34m768\u001b[0m) โ”‚ โ”‚ activation_523[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ โ”‚ โ”‚ activation_528[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ โ”‚ โ”‚ activation_529[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_534 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m147,456\u001b[0m โ”‚ mixed6[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m576\u001b[0m โ”‚ conv2d_534[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_534 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_535 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m258,048\u001b[0m โ”‚ activation_534[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m576\u001b[0m โ”‚ conv2d_535[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_535 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_531 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m147,456\u001b[0m โ”‚ mixed6[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_536 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m258,048\u001b[0m โ”‚ activation_535[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m576\u001b[0m โ”‚ conv2d_531[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m576\u001b[0m โ”‚ conv2d_536[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_531 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_536 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_532 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m258,048\u001b[0m โ”‚ activation_531[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_537 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m258,048\u001b[0m โ”‚ activation_536[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m576\u001b[0m โ”‚ conv2d_532[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m576\u001b[0m โ”‚ conv2d_537[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_532 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_537 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ average_pooling2d_โ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ mixed6[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mAveragePooling2D\u001b[0m) โ”‚ \u001b[38;5;34m768\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_530 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m147,456\u001b[0m โ”‚ mixed6[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_533 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m258,048\u001b[0m โ”‚ activation_532[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_538 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m258,048\u001b[0m โ”‚ activation_537[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_539 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m147,456\u001b[0m โ”‚ average_pooling2โ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m576\u001b[0m โ”‚ conv2d_530[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m576\u001b[0m โ”‚ conv2d_533[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m576\u001b[0m โ”‚ conv2d_538[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m576\u001b[0m โ”‚ conv2d_539[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_530 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_533 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_538 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_539 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ mixed7 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ activation_530[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConcatenate\u001b[0m) โ”‚ \u001b[38;5;34m768\u001b[0m) โ”‚ โ”‚ activation_533[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ โ”‚ โ”‚ activation_538[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ โ”‚ โ”‚ activation_539[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_542 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m147,456\u001b[0m โ”‚ mixed7[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m576\u001b[0m โ”‚ conv2d_542[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_542 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_543 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m258,048\u001b[0m โ”‚ activation_542[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m576\u001b[0m โ”‚ conv2d_543[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_543 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_540 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m147,456\u001b[0m โ”‚ mixed7[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_544 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m258,048\u001b[0m โ”‚ activation_543[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m576\u001b[0m โ”‚ conv2d_540[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m576\u001b[0m โ”‚ conv2d_544[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_540 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_544 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12\u001b[0m, \u001b[38;5;34m12\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ \u001b[38;5;34m192\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_541 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m320\u001b[0m) โ”‚ \u001b[38;5;34m552,960\u001b[0m โ”‚ activation_540[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_545 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m192\u001b[0m) โ”‚ \u001b[38;5;34m331,776\u001b[0m โ”‚ activation_544[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m320\u001b[0m) โ”‚ \u001b[38;5;34m960\u001b[0m โ”‚ conv2d_541[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m192\u001b[0m) โ”‚ \u001b[38;5;34m576\u001b[0m โ”‚ conv2d_545[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_541 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m320\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_545 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m192\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ max_pooling2d_23 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m768\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ mixed7[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mMaxPooling2D\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ mixed8 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ activation_541[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConcatenate\u001b[0m) โ”‚ \u001b[38;5;34m1280\u001b[0m) โ”‚ โ”‚ activation_545[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ โ”‚ โ”‚ max_pooling2d_23โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_550 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m448\u001b[0m) โ”‚ \u001b[38;5;34m573,440\u001b[0m โ”‚ mixed8[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m448\u001b[0m) โ”‚ \u001b[38;5;34m1,344\u001b[0m โ”‚ conv2d_550[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_550 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m448\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_547 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m384\u001b[0m) โ”‚ \u001b[38;5;34m491,520\u001b[0m โ”‚ mixed8[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_551 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m384\u001b[0m) โ”‚ \u001b[38;5;34m1,548,288\u001b[0m โ”‚ activation_550[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m384\u001b[0m) โ”‚ \u001b[38;5;34m1,152\u001b[0m โ”‚ conv2d_547[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m384\u001b[0m) โ”‚ \u001b[38;5;34m1,152\u001b[0m โ”‚ conv2d_551[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_547 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m384\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_551 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m384\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_548 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m384\u001b[0m) โ”‚ \u001b[38;5;34m442,368\u001b[0m โ”‚ activation_547[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_549 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m384\u001b[0m) โ”‚ \u001b[38;5;34m442,368\u001b[0m โ”‚ activation_547[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_552 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m384\u001b[0m) โ”‚ \u001b[38;5;34m442,368\u001b[0m โ”‚ activation_551[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_553 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m384\u001b[0m) โ”‚ \u001b[38;5;34m442,368\u001b[0m โ”‚ activation_551[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ average_pooling2d_โ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ mixed8[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mAveragePooling2D\u001b[0m) โ”‚ \u001b[38;5;34m1280\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_546 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m320\u001b[0m) โ”‚ \u001b[38;5;34m409,600\u001b[0m โ”‚ mixed8[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m384\u001b[0m) โ”‚ \u001b[38;5;34m1,152\u001b[0m โ”‚ conv2d_548[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m384\u001b[0m) โ”‚ \u001b[38;5;34m1,152\u001b[0m โ”‚ conv2d_549[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m384\u001b[0m) โ”‚ \u001b[38;5;34m1,152\u001b[0m โ”‚ conv2d_552[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m384\u001b[0m) โ”‚ \u001b[38;5;34m1,152\u001b[0m โ”‚ conv2d_553[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_554 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m192\u001b[0m) โ”‚ \u001b[38;5;34m245,760\u001b[0m โ”‚ average_pooling2โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m320\u001b[0m) โ”‚ \u001b[38;5;34m960\u001b[0m โ”‚ conv2d_546[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_548 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m384\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_549 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m384\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_552 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m384\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_553 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m384\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m192\u001b[0m) โ”‚ \u001b[38;5;34m576\u001b[0m โ”‚ conv2d_554[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_546 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m320\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ mixed9_0 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m768\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ activation_548[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConcatenate\u001b[0m) โ”‚ โ”‚ โ”‚ activation_549[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ concatenate_10 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m768\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ activation_552[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConcatenate\u001b[0m) โ”‚ โ”‚ โ”‚ activation_553[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_554 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m192\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ mixed9 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ activation_546[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConcatenate\u001b[0m) โ”‚ \u001b[38;5;34m2048\u001b[0m) โ”‚ โ”‚ mixed9_0[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m], โ”‚\nโ”‚ โ”‚ โ”‚ โ”‚ concatenate_10[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ โ”‚ โ”‚ activation_554[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_559 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m448\u001b[0m) โ”‚ \u001b[38;5;34m917,504\u001b[0m โ”‚ mixed9[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m448\u001b[0m) โ”‚ \u001b[38;5;34m1,344\u001b[0m โ”‚ conv2d_559[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_559 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m448\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_556 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m384\u001b[0m) โ”‚ \u001b[38;5;34m786,432\u001b[0m โ”‚ mixed9[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_560 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m384\u001b[0m) โ”‚ \u001b[38;5;34m1,548,288\u001b[0m โ”‚ activation_559[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m384\u001b[0m) โ”‚ \u001b[38;5;34m1,152\u001b[0m โ”‚ conv2d_556[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m384\u001b[0m) โ”‚ \u001b[38;5;34m1,152\u001b[0m โ”‚ conv2d_560[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_556 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m384\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_560 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m384\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_557 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m384\u001b[0m) โ”‚ \u001b[38;5;34m442,368\u001b[0m โ”‚ activation_556[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_558 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m384\u001b[0m) โ”‚ \u001b[38;5;34m442,368\u001b[0m โ”‚ activation_556[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_561 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m384\u001b[0m) โ”‚ \u001b[38;5;34m442,368\u001b[0m โ”‚ activation_560[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_562 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m384\u001b[0m) โ”‚ \u001b[38;5;34m442,368\u001b[0m โ”‚ activation_560[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ average_pooling2d_โ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ mixed9[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mAveragePooling2D\u001b[0m) โ”‚ \u001b[38;5;34m2048\u001b[0m) โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_555 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m320\u001b[0m) โ”‚ \u001b[38;5;34m655,360\u001b[0m โ”‚ mixed9[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m384\u001b[0m) โ”‚ \u001b[38;5;34m1,152\u001b[0m โ”‚ conv2d_557[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m384\u001b[0m) โ”‚ \u001b[38;5;34m1,152\u001b[0m โ”‚ conv2d_558[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m384\u001b[0m) โ”‚ \u001b[38;5;34m1,152\u001b[0m โ”‚ conv2d_561[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m384\u001b[0m) โ”‚ \u001b[38;5;34m1,152\u001b[0m โ”‚ conv2d_562[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_563 (\u001b[38;5;33mConv2D\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m192\u001b[0m) โ”‚ \u001b[38;5;34m393,216\u001b[0m โ”‚ average_pooling2โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m320\u001b[0m) โ”‚ \u001b[38;5;34m960\u001b[0m โ”‚ conv2d_555[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_557 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m384\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_558 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m384\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_561 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m384\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_562 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m384\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m192\u001b[0m) โ”‚ \u001b[38;5;34m576\u001b[0m โ”‚ conv2d_563[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mBatchNormalizatioโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_555 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m320\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ mixed9_1 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m768\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ activation_557[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConcatenate\u001b[0m) โ”‚ โ”‚ โ”‚ activation_558[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ concatenate_11 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m768\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ activation_561[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConcatenate\u001b[0m) โ”‚ โ”‚ โ”‚ activation_562[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_563 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m192\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mActivation\u001b[0m) โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ mixed10 โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ activation_555[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ (\u001b[38;5;33mConcatenate\u001b[0m) โ”‚ \u001b[38;5;34m2048\u001b[0m) โ”‚ โ”‚ mixed9_1[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m], โ”‚\nโ”‚ โ”‚ โ”‚ โ”‚ concatenate_11[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”‚ โ”‚ โ”‚ โ”‚ activation_563[\u001b[38;5;34m0\u001b[0mโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ global_average_pooโ€ฆ โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2048\u001b[0m) โ”‚ \u001b[38;5;34m0\u001b[0m โ”‚ mixed10[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ”‚ (\u001b[38;5;33mGlobalAveragePoolโ€ฆ\u001b[0m โ”‚ โ”‚ โ”‚ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dense_55 (\u001b[38;5;33mDense\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1024\u001b[0m) โ”‚ \u001b[38;5;34m2,098,176\u001b[0m โ”‚ global_average_pโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dense_56 (\u001b[38;5;33mDense\u001b[0m) โ”‚ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m) โ”‚ \u001b[38;5;34m5,125\u001b[0m โ”‚ dense_55[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] โ”‚\nโ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜\n","text/html":"
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”“\nโ”ƒ Layer (type)        โ”ƒ Output Shape      โ”ƒ    Param # โ”ƒ Connected to      โ”ƒ\nโ”กโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ฉ\nโ”‚ input_layer_24      โ”‚ (None, 224, 224,  โ”‚          0 โ”‚ -                 โ”‚\nโ”‚ (InputLayer)        โ”‚ 3)                โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_470 (Conv2D) โ”‚ (None, 111, 111,  โ”‚        864 โ”‚ input_layer_24[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 32)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 111, 111,  โ”‚         96 โ”‚ conv2d_470[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 32)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_470      โ”‚ (None, 111, 111,  โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 32)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_471 (Conv2D) โ”‚ (None, 109, 109,  โ”‚      9,216 โ”‚ activation_470[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 32)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 109, 109,  โ”‚         96 โ”‚ conv2d_471[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 32)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_471      โ”‚ (None, 109, 109,  โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 32)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_472 (Conv2D) โ”‚ (None, 109, 109,  โ”‚     18,432 โ”‚ activation_471[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 109, 109,  โ”‚        192 โ”‚ conv2d_472[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_472      โ”‚ (None, 109, 109,  โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ max_pooling2d_20    โ”‚ (None, 54, 54,    โ”‚          0 โ”‚ activation_472[0โ€ฆ โ”‚\nโ”‚ (MaxPooling2D)      โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_473 (Conv2D) โ”‚ (None, 54, 54,    โ”‚      5,120 โ”‚ max_pooling2d_20โ€ฆ โ”‚\nโ”‚                     โ”‚ 80)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 54, 54,    โ”‚        240 โ”‚ conv2d_473[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 80)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_473      โ”‚ (None, 54, 54,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 80)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_474 (Conv2D) โ”‚ (None, 52, 52,    โ”‚    138,240 โ”‚ activation_473[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 52, 52,    โ”‚        576 โ”‚ conv2d_474[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_474      โ”‚ (None, 52, 52,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ max_pooling2d_21    โ”‚ (None, 25, 25,    โ”‚          0 โ”‚ activation_474[0โ€ฆ โ”‚\nโ”‚ (MaxPooling2D)      โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_478 (Conv2D) โ”‚ (None, 25, 25,    โ”‚     12,288 โ”‚ max_pooling2d_21โ€ฆ โ”‚\nโ”‚                     โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 25, 25,    โ”‚        192 โ”‚ conv2d_478[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_478      โ”‚ (None, 25, 25,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_476 (Conv2D) โ”‚ (None, 25, 25,    โ”‚      9,216 โ”‚ max_pooling2d_21โ€ฆ โ”‚\nโ”‚                     โ”‚ 48)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_479 (Conv2D) โ”‚ (None, 25, 25,    โ”‚     55,296 โ”‚ activation_478[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 25, 25,    โ”‚        144 โ”‚ conv2d_476[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 48)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 25, 25,    โ”‚        288 โ”‚ conv2d_479[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_476      โ”‚ (None, 25, 25,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 48)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_479      โ”‚ (None, 25, 25,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ average_pooling2d_โ€ฆ โ”‚ (None, 25, 25,    โ”‚          0 โ”‚ max_pooling2d_21โ€ฆ โ”‚\nโ”‚ (AveragePooling2D)  โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_475 (Conv2D) โ”‚ (None, 25, 25,    โ”‚     12,288 โ”‚ max_pooling2d_21โ€ฆ โ”‚\nโ”‚                     โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_477 (Conv2D) โ”‚ (None, 25, 25,    โ”‚     76,800 โ”‚ activation_476[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_480 (Conv2D) โ”‚ (None, 25, 25,    โ”‚     82,944 โ”‚ activation_479[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_481 (Conv2D) โ”‚ (None, 25, 25,    โ”‚      6,144 โ”‚ average_pooling2โ€ฆ โ”‚\nโ”‚                     โ”‚ 32)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 25, 25,    โ”‚        192 โ”‚ conv2d_475[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 25, 25,    โ”‚        192 โ”‚ conv2d_477[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 25, 25,    โ”‚        288 โ”‚ conv2d_480[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 25, 25,    โ”‚         96 โ”‚ conv2d_481[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 32)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_475      โ”‚ (None, 25, 25,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_477      โ”‚ (None, 25, 25,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_480      โ”‚ (None, 25, 25,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_481      โ”‚ (None, 25, 25,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 32)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ mixed0              โ”‚ (None, 25, 25,    โ”‚          0 โ”‚ activation_475[0โ€ฆ โ”‚\nโ”‚ (Concatenate)       โ”‚ 256)              โ”‚            โ”‚ activation_477[0โ€ฆ โ”‚\nโ”‚                     โ”‚                   โ”‚            โ”‚ activation_480[0โ€ฆ โ”‚\nโ”‚                     โ”‚                   โ”‚            โ”‚ activation_481[0โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_485 (Conv2D) โ”‚ (None, 25, 25,    โ”‚     16,384 โ”‚ mixed0[0][0]      โ”‚\nโ”‚                     โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 25, 25,    โ”‚        192 โ”‚ conv2d_485[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_485      โ”‚ (None, 25, 25,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_483 (Conv2D) โ”‚ (None, 25, 25,    โ”‚     12,288 โ”‚ mixed0[0][0]      โ”‚\nโ”‚                     โ”‚ 48)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_486 (Conv2D) โ”‚ (None, 25, 25,    โ”‚     55,296 โ”‚ activation_485[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 25, 25,    โ”‚        144 โ”‚ conv2d_483[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 48)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 25, 25,    โ”‚        288 โ”‚ conv2d_486[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_483      โ”‚ (None, 25, 25,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 48)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_486      โ”‚ (None, 25, 25,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ average_pooling2d_โ€ฆ โ”‚ (None, 25, 25,    โ”‚          0 โ”‚ mixed0[0][0]      โ”‚\nโ”‚ (AveragePooling2D)  โ”‚ 256)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_482 (Conv2D) โ”‚ (None, 25, 25,    โ”‚     16,384 โ”‚ mixed0[0][0]      โ”‚\nโ”‚                     โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_484 (Conv2D) โ”‚ (None, 25, 25,    โ”‚     76,800 โ”‚ activation_483[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_487 (Conv2D) โ”‚ (None, 25, 25,    โ”‚     82,944 โ”‚ activation_486[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_488 (Conv2D) โ”‚ (None, 25, 25,    โ”‚     16,384 โ”‚ average_pooling2โ€ฆ โ”‚\nโ”‚                     โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 25, 25,    โ”‚        192 โ”‚ conv2d_482[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 25, 25,    โ”‚        192 โ”‚ conv2d_484[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 25, 25,    โ”‚        288 โ”‚ conv2d_487[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 25, 25,    โ”‚        192 โ”‚ conv2d_488[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_482      โ”‚ (None, 25, 25,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_484      โ”‚ (None, 25, 25,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_487      โ”‚ (None, 25, 25,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_488      โ”‚ (None, 25, 25,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ mixed1              โ”‚ (None, 25, 25,    โ”‚          0 โ”‚ activation_482[0โ€ฆ โ”‚\nโ”‚ (Concatenate)       โ”‚ 288)              โ”‚            โ”‚ activation_484[0โ€ฆ โ”‚\nโ”‚                     โ”‚                   โ”‚            โ”‚ activation_487[0โ€ฆ โ”‚\nโ”‚                     โ”‚                   โ”‚            โ”‚ activation_488[0โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_492 (Conv2D) โ”‚ (None, 25, 25,    โ”‚     18,432 โ”‚ mixed1[0][0]      โ”‚\nโ”‚                     โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 25, 25,    โ”‚        192 โ”‚ conv2d_492[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_492      โ”‚ (None, 25, 25,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_490 (Conv2D) โ”‚ (None, 25, 25,    โ”‚     13,824 โ”‚ mixed1[0][0]      โ”‚\nโ”‚                     โ”‚ 48)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_493 (Conv2D) โ”‚ (None, 25, 25,    โ”‚     55,296 โ”‚ activation_492[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 25, 25,    โ”‚        144 โ”‚ conv2d_490[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 48)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 25, 25,    โ”‚        288 โ”‚ conv2d_493[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_490      โ”‚ (None, 25, 25,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 48)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_493      โ”‚ (None, 25, 25,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ average_pooling2d_โ€ฆ โ”‚ (None, 25, 25,    โ”‚          0 โ”‚ mixed1[0][0]      โ”‚\nโ”‚ (AveragePooling2D)  โ”‚ 288)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_489 (Conv2D) โ”‚ (None, 25, 25,    โ”‚     18,432 โ”‚ mixed1[0][0]      โ”‚\nโ”‚                     โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_491 (Conv2D) โ”‚ (None, 25, 25,    โ”‚     76,800 โ”‚ activation_490[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_494 (Conv2D) โ”‚ (None, 25, 25,    โ”‚     82,944 โ”‚ activation_493[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_495 (Conv2D) โ”‚ (None, 25, 25,    โ”‚     18,432 โ”‚ average_pooling2โ€ฆ โ”‚\nโ”‚                     โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 25, 25,    โ”‚        192 โ”‚ conv2d_489[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 25, 25,    โ”‚        192 โ”‚ conv2d_491[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 25, 25,    โ”‚        288 โ”‚ conv2d_494[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 25, 25,    โ”‚        192 โ”‚ conv2d_495[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_489      โ”‚ (None, 25, 25,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_491      โ”‚ (None, 25, 25,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_494      โ”‚ (None, 25, 25,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_495      โ”‚ (None, 25, 25,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ mixed2              โ”‚ (None, 25, 25,    โ”‚          0 โ”‚ activation_489[0โ€ฆ โ”‚\nโ”‚ (Concatenate)       โ”‚ 288)              โ”‚            โ”‚ activation_491[0โ€ฆ โ”‚\nโ”‚                     โ”‚                   โ”‚            โ”‚ activation_494[0โ€ฆ โ”‚\nโ”‚                     โ”‚                   โ”‚            โ”‚ activation_495[0โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_497 (Conv2D) โ”‚ (None, 25, 25,    โ”‚     18,432 โ”‚ mixed2[0][0]      โ”‚\nโ”‚                     โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 25, 25,    โ”‚        192 โ”‚ conv2d_497[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_497      โ”‚ (None, 25, 25,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 64)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_498 (Conv2D) โ”‚ (None, 25, 25,    โ”‚     55,296 โ”‚ activation_497[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 25, 25,    โ”‚        288 โ”‚ conv2d_498[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_498      โ”‚ (None, 25, 25,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_496 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    995,328 โ”‚ mixed2[0][0]      โ”‚\nโ”‚                     โ”‚ 384)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_499 (Conv2D) โ”‚ (None, 12, 12,    โ”‚     82,944 โ”‚ activation_498[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚      1,152 โ”‚ conv2d_496[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 384)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        288 โ”‚ conv2d_499[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_496      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 384)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_499      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 96)               โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ max_pooling2d_22    โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ mixed2[0][0]      โ”‚\nโ”‚ (MaxPooling2D)      โ”‚ 288)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ mixed3              โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ activation_496[0โ€ฆ โ”‚\nโ”‚ (Concatenate)       โ”‚ 768)              โ”‚            โ”‚ activation_499[0โ€ฆ โ”‚\nโ”‚                     โ”‚                   โ”‚            โ”‚ max_pooling2d_22โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_504 (Conv2D) โ”‚ (None, 12, 12,    โ”‚     98,304 โ”‚ mixed3[0][0]      โ”‚\nโ”‚                     โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        384 โ”‚ conv2d_504[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_504      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_505 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    114,688 โ”‚ activation_504[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        384 โ”‚ conv2d_505[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_505      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_501 (Conv2D) โ”‚ (None, 12, 12,    โ”‚     98,304 โ”‚ mixed3[0][0]      โ”‚\nโ”‚                     โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_506 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    114,688 โ”‚ activation_505[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        384 โ”‚ conv2d_501[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        384 โ”‚ conv2d_506[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_501      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_506      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_502 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    114,688 โ”‚ activation_501[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_507 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    114,688 โ”‚ activation_506[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        384 โ”‚ conv2d_502[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        384 โ”‚ conv2d_507[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_502      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_507      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 128)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ average_pooling2d_โ€ฆ โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ mixed3[0][0]      โ”‚\nโ”‚ (AveragePooling2D)  โ”‚ 768)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_500 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    147,456 โ”‚ mixed3[0][0]      โ”‚\nโ”‚                     โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_503 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    172,032 โ”‚ activation_502[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_508 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    172,032 โ”‚ activation_507[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_509 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    147,456 โ”‚ average_pooling2โ€ฆ โ”‚\nโ”‚                     โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        576 โ”‚ conv2d_500[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        576 โ”‚ conv2d_503[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        576 โ”‚ conv2d_508[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        576 โ”‚ conv2d_509[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_500      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_503      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_508      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_509      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ mixed4              โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ activation_500[0โ€ฆ โ”‚\nโ”‚ (Concatenate)       โ”‚ 768)              โ”‚            โ”‚ activation_503[0โ€ฆ โ”‚\nโ”‚                     โ”‚                   โ”‚            โ”‚ activation_508[0โ€ฆ โ”‚\nโ”‚                     โ”‚                   โ”‚            โ”‚ activation_509[0โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_514 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    122,880 โ”‚ mixed4[0][0]      โ”‚\nโ”‚                     โ”‚ 160)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        480 โ”‚ conv2d_514[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 160)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_514      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 160)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_515 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    179,200 โ”‚ activation_514[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 160)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        480 โ”‚ conv2d_515[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 160)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_515      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 160)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_511 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    122,880 โ”‚ mixed4[0][0]      โ”‚\nโ”‚                     โ”‚ 160)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_516 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    179,200 โ”‚ activation_515[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 160)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        480 โ”‚ conv2d_511[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 160)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        480 โ”‚ conv2d_516[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 160)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_511      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 160)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_516      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 160)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_512 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    179,200 โ”‚ activation_511[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 160)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_517 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    179,200 โ”‚ activation_516[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 160)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        480 โ”‚ conv2d_512[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 160)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        480 โ”‚ conv2d_517[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 160)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_512      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 160)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_517      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 160)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ average_pooling2d_โ€ฆ โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ mixed4[0][0]      โ”‚\nโ”‚ (AveragePooling2D)  โ”‚ 768)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_510 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    147,456 โ”‚ mixed4[0][0]      โ”‚\nโ”‚                     โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_513 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    215,040 โ”‚ activation_512[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_518 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    215,040 โ”‚ activation_517[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_519 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    147,456 โ”‚ average_pooling2โ€ฆ โ”‚\nโ”‚                     โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        576 โ”‚ conv2d_510[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        576 โ”‚ conv2d_513[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        576 โ”‚ conv2d_518[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        576 โ”‚ conv2d_519[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_510      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_513      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_518      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_519      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ mixed5              โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ activation_510[0โ€ฆ โ”‚\nโ”‚ (Concatenate)       โ”‚ 768)              โ”‚            โ”‚ activation_513[0โ€ฆ โ”‚\nโ”‚                     โ”‚                   โ”‚            โ”‚ activation_518[0โ€ฆ โ”‚\nโ”‚                     โ”‚                   โ”‚            โ”‚ activation_519[0โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_524 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    122,880 โ”‚ mixed5[0][0]      โ”‚\nโ”‚                     โ”‚ 160)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        480 โ”‚ conv2d_524[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 160)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_524      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 160)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_525 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    179,200 โ”‚ activation_524[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 160)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        480 โ”‚ conv2d_525[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 160)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_525      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 160)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_521 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    122,880 โ”‚ mixed5[0][0]      โ”‚\nโ”‚                     โ”‚ 160)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_526 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    179,200 โ”‚ activation_525[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 160)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        480 โ”‚ conv2d_521[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 160)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        480 โ”‚ conv2d_526[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 160)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_521      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 160)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_526      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 160)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_522 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    179,200 โ”‚ activation_521[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 160)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_527 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    179,200 โ”‚ activation_526[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 160)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        480 โ”‚ conv2d_522[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 160)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        480 โ”‚ conv2d_527[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 160)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_522      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 160)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_527      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 160)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ average_pooling2d_โ€ฆ โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ mixed5[0][0]      โ”‚\nโ”‚ (AveragePooling2D)  โ”‚ 768)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_520 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    147,456 โ”‚ mixed5[0][0]      โ”‚\nโ”‚                     โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_523 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    215,040 โ”‚ activation_522[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_528 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    215,040 โ”‚ activation_527[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_529 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    147,456 โ”‚ average_pooling2โ€ฆ โ”‚\nโ”‚                     โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        576 โ”‚ conv2d_520[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        576 โ”‚ conv2d_523[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        576 โ”‚ conv2d_528[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        576 โ”‚ conv2d_529[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_520      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_523      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_528      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_529      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ mixed6              โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ activation_520[0โ€ฆ โ”‚\nโ”‚ (Concatenate)       โ”‚ 768)              โ”‚            โ”‚ activation_523[0โ€ฆ โ”‚\nโ”‚                     โ”‚                   โ”‚            โ”‚ activation_528[0โ€ฆ โ”‚\nโ”‚                     โ”‚                   โ”‚            โ”‚ activation_529[0โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_534 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    147,456 โ”‚ mixed6[0][0]      โ”‚\nโ”‚                     โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        576 โ”‚ conv2d_534[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_534      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_535 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    258,048 โ”‚ activation_534[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        576 โ”‚ conv2d_535[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_535      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_531 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    147,456 โ”‚ mixed6[0][0]      โ”‚\nโ”‚                     โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_536 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    258,048 โ”‚ activation_535[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        576 โ”‚ conv2d_531[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        576 โ”‚ conv2d_536[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_531      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_536      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_532 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    258,048 โ”‚ activation_531[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_537 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    258,048 โ”‚ activation_536[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        576 โ”‚ conv2d_532[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        576 โ”‚ conv2d_537[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_532      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_537      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ average_pooling2d_โ€ฆ โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ mixed6[0][0]      โ”‚\nโ”‚ (AveragePooling2D)  โ”‚ 768)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_530 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    147,456 โ”‚ mixed6[0][0]      โ”‚\nโ”‚                     โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_533 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    258,048 โ”‚ activation_532[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_538 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    258,048 โ”‚ activation_537[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_539 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    147,456 โ”‚ average_pooling2โ€ฆ โ”‚\nโ”‚                     โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        576 โ”‚ conv2d_530[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        576 โ”‚ conv2d_533[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        576 โ”‚ conv2d_538[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        576 โ”‚ conv2d_539[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_530      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_533      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_538      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_539      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ mixed7              โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ activation_530[0โ€ฆ โ”‚\nโ”‚ (Concatenate)       โ”‚ 768)              โ”‚            โ”‚ activation_533[0โ€ฆ โ”‚\nโ”‚                     โ”‚                   โ”‚            โ”‚ activation_538[0โ€ฆ โ”‚\nโ”‚                     โ”‚                   โ”‚            โ”‚ activation_539[0โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_542 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    147,456 โ”‚ mixed7[0][0]      โ”‚\nโ”‚                     โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        576 โ”‚ conv2d_542[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_542      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_543 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    258,048 โ”‚ activation_542[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        576 โ”‚ conv2d_543[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_543      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_540 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    147,456 โ”‚ mixed7[0][0]      โ”‚\nโ”‚                     โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_544 (Conv2D) โ”‚ (None, 12, 12,    โ”‚    258,048 โ”‚ activation_543[0โ€ฆ โ”‚\nโ”‚                     โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        576 โ”‚ conv2d_540[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 12, 12,    โ”‚        576 โ”‚ conv2d_544[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_540      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_544      โ”‚ (None, 12, 12,    โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚ 192)              โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_541 (Conv2D) โ”‚ (None, 5, 5, 320) โ”‚    552,960 โ”‚ activation_540[0โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_545 (Conv2D) โ”‚ (None, 5, 5, 192) โ”‚    331,776 โ”‚ activation_544[0โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 5, 5, 320) โ”‚        960 โ”‚ conv2d_541[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 5, 5, 192) โ”‚        576 โ”‚ conv2d_545[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_541      โ”‚ (None, 5, 5, 320) โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_545      โ”‚ (None, 5, 5, 192) โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ max_pooling2d_23    โ”‚ (None, 5, 5, 768) โ”‚          0 โ”‚ mixed7[0][0]      โ”‚\nโ”‚ (MaxPooling2D)      โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ mixed8              โ”‚ (None, 5, 5,      โ”‚          0 โ”‚ activation_541[0โ€ฆ โ”‚\nโ”‚ (Concatenate)       โ”‚ 1280)             โ”‚            โ”‚ activation_545[0โ€ฆ โ”‚\nโ”‚                     โ”‚                   โ”‚            โ”‚ max_pooling2d_23โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_550 (Conv2D) โ”‚ (None, 5, 5, 448) โ”‚    573,440 โ”‚ mixed8[0][0]      โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 5, 5, 448) โ”‚      1,344 โ”‚ conv2d_550[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_550      โ”‚ (None, 5, 5, 448) โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_547 (Conv2D) โ”‚ (None, 5, 5, 384) โ”‚    491,520 โ”‚ mixed8[0][0]      โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_551 (Conv2D) โ”‚ (None, 5, 5, 384) โ”‚  1,548,288 โ”‚ activation_550[0โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 5, 5, 384) โ”‚      1,152 โ”‚ conv2d_547[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 5, 5, 384) โ”‚      1,152 โ”‚ conv2d_551[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_547      โ”‚ (None, 5, 5, 384) โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_551      โ”‚ (None, 5, 5, 384) โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_548 (Conv2D) โ”‚ (None, 5, 5, 384) โ”‚    442,368 โ”‚ activation_547[0โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_549 (Conv2D) โ”‚ (None, 5, 5, 384) โ”‚    442,368 โ”‚ activation_547[0โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_552 (Conv2D) โ”‚ (None, 5, 5, 384) โ”‚    442,368 โ”‚ activation_551[0โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_553 (Conv2D) โ”‚ (None, 5, 5, 384) โ”‚    442,368 โ”‚ activation_551[0โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ average_pooling2d_โ€ฆ โ”‚ (None, 5, 5,      โ”‚          0 โ”‚ mixed8[0][0]      โ”‚\nโ”‚ (AveragePooling2D)  โ”‚ 1280)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_546 (Conv2D) โ”‚ (None, 5, 5, 320) โ”‚    409,600 โ”‚ mixed8[0][0]      โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 5, 5, 384) โ”‚      1,152 โ”‚ conv2d_548[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 5, 5, 384) โ”‚      1,152 โ”‚ conv2d_549[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 5, 5, 384) โ”‚      1,152 โ”‚ conv2d_552[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 5, 5, 384) โ”‚      1,152 โ”‚ conv2d_553[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_554 (Conv2D) โ”‚ (None, 5, 5, 192) โ”‚    245,760 โ”‚ average_pooling2โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 5, 5, 320) โ”‚        960 โ”‚ conv2d_546[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_548      โ”‚ (None, 5, 5, 384) โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_549      โ”‚ (None, 5, 5, 384) โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_552      โ”‚ (None, 5, 5, 384) โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_553      โ”‚ (None, 5, 5, 384) โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 5, 5, 192) โ”‚        576 โ”‚ conv2d_554[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_546      โ”‚ (None, 5, 5, 320) โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ mixed9_0            โ”‚ (None, 5, 5, 768) โ”‚          0 โ”‚ activation_548[0โ€ฆ โ”‚\nโ”‚ (Concatenate)       โ”‚                   โ”‚            โ”‚ activation_549[0โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ concatenate_10      โ”‚ (None, 5, 5, 768) โ”‚          0 โ”‚ activation_552[0โ€ฆ โ”‚\nโ”‚ (Concatenate)       โ”‚                   โ”‚            โ”‚ activation_553[0โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_554      โ”‚ (None, 5, 5, 192) โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ mixed9              โ”‚ (None, 5, 5,      โ”‚          0 โ”‚ activation_546[0โ€ฆ โ”‚\nโ”‚ (Concatenate)       โ”‚ 2048)             โ”‚            โ”‚ mixed9_0[0][0],   โ”‚\nโ”‚                     โ”‚                   โ”‚            โ”‚ concatenate_10[0โ€ฆ โ”‚\nโ”‚                     โ”‚                   โ”‚            โ”‚ activation_554[0โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_559 (Conv2D) โ”‚ (None, 5, 5, 448) โ”‚    917,504 โ”‚ mixed9[0][0]      โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 5, 5, 448) โ”‚      1,344 โ”‚ conv2d_559[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_559      โ”‚ (None, 5, 5, 448) โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_556 (Conv2D) โ”‚ (None, 5, 5, 384) โ”‚    786,432 โ”‚ mixed9[0][0]      โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_560 (Conv2D) โ”‚ (None, 5, 5, 384) โ”‚  1,548,288 โ”‚ activation_559[0โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 5, 5, 384) โ”‚      1,152 โ”‚ conv2d_556[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 5, 5, 384) โ”‚      1,152 โ”‚ conv2d_560[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_556      โ”‚ (None, 5, 5, 384) โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_560      โ”‚ (None, 5, 5, 384) โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_557 (Conv2D) โ”‚ (None, 5, 5, 384) โ”‚    442,368 โ”‚ activation_556[0โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_558 (Conv2D) โ”‚ (None, 5, 5, 384) โ”‚    442,368 โ”‚ activation_556[0โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_561 (Conv2D) โ”‚ (None, 5, 5, 384) โ”‚    442,368 โ”‚ activation_560[0โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_562 (Conv2D) โ”‚ (None, 5, 5, 384) โ”‚    442,368 โ”‚ activation_560[0โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ average_pooling2d_โ€ฆ โ”‚ (None, 5, 5,      โ”‚          0 โ”‚ mixed9[0][0]      โ”‚\nโ”‚ (AveragePooling2D)  โ”‚ 2048)             โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_555 (Conv2D) โ”‚ (None, 5, 5, 320) โ”‚    655,360 โ”‚ mixed9[0][0]      โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 5, 5, 384) โ”‚      1,152 โ”‚ conv2d_557[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 5, 5, 384) โ”‚      1,152 โ”‚ conv2d_558[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 5, 5, 384) โ”‚      1,152 โ”‚ conv2d_561[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 5, 5, 384) โ”‚      1,152 โ”‚ conv2d_562[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ conv2d_563 (Conv2D) โ”‚ (None, 5, 5, 192) โ”‚    393,216 โ”‚ average_pooling2โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 5, 5, 320) โ”‚        960 โ”‚ conv2d_555[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_557      โ”‚ (None, 5, 5, 384) โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_558      โ”‚ (None, 5, 5, 384) โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_561      โ”‚ (None, 5, 5, 384) โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_562      โ”‚ (None, 5, 5, 384) โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ batch_normalizatioโ€ฆ โ”‚ (None, 5, 5, 192) โ”‚        576 โ”‚ conv2d_563[0][0]  โ”‚\nโ”‚ (BatchNormalizatioโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_555      โ”‚ (None, 5, 5, 320) โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ mixed9_1            โ”‚ (None, 5, 5, 768) โ”‚          0 โ”‚ activation_557[0โ€ฆ โ”‚\nโ”‚ (Concatenate)       โ”‚                   โ”‚            โ”‚ activation_558[0โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ concatenate_11      โ”‚ (None, 5, 5, 768) โ”‚          0 โ”‚ activation_561[0โ€ฆ โ”‚\nโ”‚ (Concatenate)       โ”‚                   โ”‚            โ”‚ activation_562[0โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ activation_563      โ”‚ (None, 5, 5, 192) โ”‚          0 โ”‚ batch_normalizatโ€ฆ โ”‚\nโ”‚ (Activation)        โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ mixed10             โ”‚ (None, 5, 5,      โ”‚          0 โ”‚ activation_555[0โ€ฆ โ”‚\nโ”‚ (Concatenate)       โ”‚ 2048)             โ”‚            โ”‚ mixed9_1[0][0],   โ”‚\nโ”‚                     โ”‚                   โ”‚            โ”‚ concatenate_11[0โ€ฆ โ”‚\nโ”‚                     โ”‚                   โ”‚            โ”‚ activation_563[0โ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ global_average_pooโ€ฆ โ”‚ (None, 2048)      โ”‚          0 โ”‚ mixed10[0][0]     โ”‚\nโ”‚ (GlobalAveragePoolโ€ฆ โ”‚                   โ”‚            โ”‚                   โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dense_55 (Dense)    โ”‚ (None, 1024)      โ”‚  2,098,176 โ”‚ global_average_pโ€ฆ โ”‚\nโ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค\nโ”‚ dense_56 (Dense)    โ”‚ (None, 5)         โ”‚      5,125 โ”‚ dense_55[0][0]    โ”‚\nโ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜\n
\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"\u001b[1m Total params: \u001b[0m\u001b[38;5;34m23,906,085\u001b[0m (91.19 MB)\n","text/html":"
 Total params: 23,906,085 (91.19 MB)\n
\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m2,103,301\u001b[0m (8.02 MB)\n","text/html":"
 Trainable params: 2,103,301 (8.02 MB)\n
\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m21,802,784\u001b[0m (83.17 MB)\n","text/html":"
 Non-trainable params: 21,802,784 (83.17 MB)\n
\n"},"metadata":{}}]},{"cell_type":"code","source":"# Define callbacks\nmodel_checkpoint = ModelCheckpoint('inceptionv3_model.keras', monitor='val_accuracy', save_best_only=True, verbose=1, mode='max')\nreduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=5, min_lr=1e-8, verbose=1)\nearly_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)\n\n# Train the model\nepochs = 40\nhistory = modelv3.fit(\n train_generator,\n epochs=epochs,\n validation_data=val_generator,\n callbacks=[reduce_lr, early_stopping, model_checkpoint]\n)\n","metadata":{"execution":{"iopub.status.busy":"2024-06-24T07:50:42.614721Z","iopub.execute_input":"2024-06-24T07:50:42.615082Z","iopub.status.idle":"2024-06-24T08:10:42.011096Z","shell.execute_reply.started":"2024-06-24T07:50:42.615054Z","shell.execute_reply":"2024-06-24T08:10:42.010203Z"},"trusted":true},"execution_count":72,"outputs":[{"name":"stdout","text":"Epoch 1/40\n\u001b[1m 2/48\u001b[0m \u001b[37mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[1m4s\u001b[0m 98ms/step - accuracy: 0.1953 - loss: 1.9122 ","output_type":"stream"},{"name":"stderr","text":"W0000 00:00:1719215469.675815 140 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update\n","output_type":"stream"},{"name":"stdout","text":"\u001b[1m21/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[1m24s\u001b[0m 905ms/step - accuracy: 0.1894 - loss: 1.8224","output_type":"stream"},{"name":"stderr","text":"W0000 00:00:1719215487.651536 140 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update\n","output_type":"stream"},{"name":"stdout","text":"\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 609ms/step - accuracy: 0.2042 - loss: 1.7496","output_type":"stream"},{"name":"stderr","text":"W0000 00:00:1719215504.867885 142 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update\nW0000 00:00:1719215519.871236 139 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update\n","output_type":"stream"},{"name":"stdout","text":"\nEpoch 1: val_accuracy improved from -inf to 0.37052, saving model to inceptionv3_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m77s\u001b[0m 1s/step - accuracy: 0.2050 - loss: 1.7476 - val_accuracy: 0.3705 - val_loss: 1.4769 - learning_rate: 1.0000e-05\nEpoch 2/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 432ms/step - accuracy: 0.3852 - loss: 1.4441\nEpoch 2: val_accuracy improved from 0.37052 to 0.45618, saving model to inceptionv3_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m29s\u001b[0m 529ms/step - accuracy: 0.3856 - loss: 1.4436 - val_accuracy: 0.4562 - val_loss: 1.3237 - learning_rate: 1.0000e-05\nEpoch 3/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 439ms/step - accuracy: 0.5118 - loss: 1.2752\nEpoch 3: val_accuracy improved from 0.45618 to 0.55976, saving model to inceptionv3_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m29s\u001b[0m 537ms/step - accuracy: 0.5123 - loss: 1.2745 - val_accuracy: 0.5598 - val_loss: 1.1867 - learning_rate: 1.0000e-05\nEpoch 4/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 435ms/step - accuracy: 0.5624 - loss: 1.1746\nEpoch 4: val_accuracy improved from 0.55976 to 0.59163, saving model to inceptionv3_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m29s\u001b[0m 534ms/step - accuracy: 0.5626 - loss: 1.1742 - val_accuracy: 0.5916 - val_loss: 1.1023 - learning_rate: 1.0000e-05\nEpoch 5/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 437ms/step - accuracy: 0.5871 - loss: 1.0979\nEpoch 5: val_accuracy improved from 0.59163 to 0.63546, saving model to inceptionv3_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m29s\u001b[0m 534ms/step - accuracy: 0.5877 - loss: 1.0970 - val_accuracy: 0.6355 - val_loss: 1.0408 - learning_rate: 1.0000e-05\nEpoch 6/40\n\u001b[1m47/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37mโ”\u001b[0m \u001b[1m0s\u001b[0m 439ms/step - accuracy: 0.6568 - loss: 0.9807\nEpoch 6: val_accuracy improved from 0.63546 to 0.63745, saving model to inceptionv3_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m29s\u001b[0m 528ms/step - accuracy: 0.6562 - loss: 0.9816 - val_accuracy: 0.6375 - val_loss: 0.9963 - learning_rate: 1.0000e-05\nEpoch 7/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 432ms/step - accuracy: 0.6520 - loss: 0.9610\nEpoch 7: val_accuracy improved from 0.63745 to 0.65538, saving model to inceptionv3_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m29s\u001b[0m 529ms/step - accuracy: 0.6522 - loss: 0.9607 - val_accuracy: 0.6554 - val_loss: 0.9510 - learning_rate: 1.0000e-05\nEpoch 8/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 432ms/step - accuracy: 0.6682 - loss: 0.9198\nEpoch 8: val_accuracy did not improve from 0.65538\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 510ms/step - accuracy: 0.6681 - loss: 0.9201 - val_accuracy: 0.6454 - val_loss: 0.9359 - learning_rate: 1.0000e-05\nEpoch 9/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 433ms/step - accuracy: 0.6684 - loss: 0.8937\nEpoch 9: val_accuracy improved from 0.65538 to 0.65936, saving model to inceptionv3_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m29s\u001b[0m 531ms/step - accuracy: 0.6686 - loss: 0.8935 - val_accuracy: 0.6594 - val_loss: 0.9080 - learning_rate: 1.0000e-05\nEpoch 10/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 432ms/step - accuracy: 0.6781 - loss: 0.8931\nEpoch 10: val_accuracy did not improve from 0.65936\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 513ms/step - accuracy: 0.6781 - loss: 0.8928 - val_accuracy: 0.6574 - val_loss: 0.8868 - learning_rate: 1.0000e-05\nEpoch 11/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 430ms/step - accuracy: 0.6972 - loss: 0.8395\nEpoch 11: val_accuracy improved from 0.65936 to 0.67729, saving model to inceptionv3_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m29s\u001b[0m 529ms/step - accuracy: 0.6972 - loss: 0.8394 - val_accuracy: 0.6773 - val_loss: 0.8579 - learning_rate: 1.0000e-05\nEpoch 12/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 434ms/step - accuracy: 0.6949 - loss: 0.8386\nEpoch 12: val_accuracy improved from 0.67729 to 0.68526, saving model to inceptionv3_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m29s\u001b[0m 532ms/step - accuracy: 0.6952 - loss: 0.8383 - val_accuracy: 0.6853 - val_loss: 0.8387 - learning_rate: 1.0000e-05\nEpoch 13/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 439ms/step - accuracy: 0.6966 - loss: 0.8176\nEpoch 13: val_accuracy improved from 0.68526 to 0.70120, saving model to inceptionv3_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m30s\u001b[0m 558ms/step - accuracy: 0.6968 - loss: 0.8173 - val_accuracy: 0.7012 - val_loss: 0.8270 - learning_rate: 1.0000e-05\nEpoch 14/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 437ms/step - accuracy: 0.7294 - loss: 0.7623\nEpoch 14: val_accuracy did not improve from 0.70120\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 518ms/step - accuracy: 0.7292 - loss: 0.7624 - val_accuracy: 0.6952 - val_loss: 0.8178 - learning_rate: 1.0000e-05\nEpoch 15/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 437ms/step - accuracy: 0.7187 - loss: 0.7743\nEpoch 15: val_accuracy improved from 0.70120 to 0.70717, saving model to inceptionv3_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m29s\u001b[0m 537ms/step - accuracy: 0.7190 - loss: 0.7741 - val_accuracy: 0.7072 - val_loss: 0.7993 - learning_rate: 1.0000e-05\nEpoch 16/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 435ms/step - accuracy: 0.7383 - loss: 0.7508\nEpoch 16: val_accuracy did not improve from 0.70717\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 514ms/step - accuracy: 0.7383 - loss: 0.7506 - val_accuracy: 0.6992 - val_loss: 0.7940 - learning_rate: 1.0000e-05\nEpoch 17/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 435ms/step - accuracy: 0.7362 - loss: 0.7549\nEpoch 17: val_accuracy improved from 0.70717 to 0.71912, saving model to inceptionv3_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m29s\u001b[0m 531ms/step - accuracy: 0.7361 - loss: 0.7548 - val_accuracy: 0.7191 - val_loss: 0.7884 - learning_rate: 1.0000e-05\nEpoch 18/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 434ms/step - accuracy: 0.7513 - loss: 0.7153\nEpoch 18: val_accuracy did not improve from 0.71912\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 512ms/step - accuracy: 0.7514 - loss: 0.7151 - val_accuracy: 0.7131 - val_loss: 0.7790 - learning_rate: 1.0000e-05\nEpoch 19/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 435ms/step - accuracy: 0.7376 - loss: 0.7140\nEpoch 19: val_accuracy did not improve from 0.71912\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 514ms/step - accuracy: 0.7377 - loss: 0.7138 - val_accuracy: 0.7171 - val_loss: 0.7575 - learning_rate: 1.0000e-05\nEpoch 20/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 433ms/step - accuracy: 0.7591 - loss: 0.7039\nEpoch 20: val_accuracy improved from 0.71912 to 0.73506, saving model to inceptionv3_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m29s\u001b[0m 531ms/step - accuracy: 0.7590 - loss: 0.7039 - val_accuracy: 0.7351 - val_loss: 0.7421 - learning_rate: 1.0000e-05\nEpoch 21/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 432ms/step - accuracy: 0.7598 - loss: 0.6955\nEpoch 21: val_accuracy did not improve from 0.73506\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 510ms/step - accuracy: 0.7597 - loss: 0.6955 - val_accuracy: 0.7231 - val_loss: 0.7395 - learning_rate: 1.0000e-05\nEpoch 22/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 429ms/step - accuracy: 0.7304 - loss: 0.6947\nEpoch 22: val_accuracy did not improve from 0.73506\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 509ms/step - accuracy: 0.7309 - loss: 0.6943 - val_accuracy: 0.7291 - val_loss: 0.7387 - learning_rate: 1.0000e-05\nEpoch 23/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 439ms/step - accuracy: 0.7364 - loss: 0.6880\nEpoch 23: val_accuracy improved from 0.73506 to 0.73705, saving model to inceptionv3_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m29s\u001b[0m 539ms/step - accuracy: 0.7368 - loss: 0.6877 - val_accuracy: 0.7371 - val_loss: 0.7313 - learning_rate: 1.0000e-05\nEpoch 24/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 429ms/step - accuracy: 0.8037 - loss: 0.6450\nEpoch 24: val_accuracy did not improve from 0.73705\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 508ms/step - accuracy: 0.8033 - loss: 0.6453 - val_accuracy: 0.7371 - val_loss: 0.7173 - learning_rate: 1.0000e-05\nEpoch 25/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 434ms/step - accuracy: 0.7477 - loss: 0.6955\nEpoch 25: val_accuracy improved from 0.73705 to 0.73904, saving model to inceptionv3_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m29s\u001b[0m 529ms/step - accuracy: 0.7480 - loss: 0.6950 - val_accuracy: 0.7390 - val_loss: 0.7271 - learning_rate: 1.0000e-05\nEpoch 26/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 434ms/step - accuracy: 0.7695 - loss: 0.6569\nEpoch 26: val_accuracy did not improve from 0.73904\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 513ms/step - accuracy: 0.7696 - loss: 0.6568 - val_accuracy: 0.7390 - val_loss: 0.7204 - learning_rate: 1.0000e-05\nEpoch 27/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 437ms/step - accuracy: 0.7862 - loss: 0.6070\nEpoch 27: val_accuracy improved from 0.73904 to 0.74502, saving model to inceptionv3_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m29s\u001b[0m 537ms/step - accuracy: 0.7859 - loss: 0.6075 - val_accuracy: 0.7450 - val_loss: 0.7000 - learning_rate: 1.0000e-05\nEpoch 28/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 448ms/step - accuracy: 0.7692 - loss: 0.6540\nEpoch 28: val_accuracy did not improve from 0.74502\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 525ms/step - accuracy: 0.7692 - loss: 0.6535 - val_accuracy: 0.7430 - val_loss: 0.7039 - learning_rate: 1.0000e-05\nEpoch 29/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 434ms/step - accuracy: 0.7770 - loss: 0.6258\nEpoch 29: val_accuracy did not improve from 0.74502\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 516ms/step - accuracy: 0.7767 - loss: 0.6260 - val_accuracy: 0.7430 - val_loss: 0.6981 - learning_rate: 1.0000e-05\nEpoch 30/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 432ms/step - accuracy: 0.7703 - loss: 0.6362\nEpoch 30: val_accuracy did not improve from 0.74502\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 506ms/step - accuracy: 0.7702 - loss: 0.6360 - val_accuracy: 0.7430 - val_loss: 0.7027 - learning_rate: 1.0000e-05\nEpoch 31/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 436ms/step - accuracy: 0.7840 - loss: 0.6438\nEpoch 31: val_accuracy improved from 0.74502 to 0.75299, saving model to inceptionv3_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m29s\u001b[0m 535ms/step - accuracy: 0.7839 - loss: 0.6436 - val_accuracy: 0.7530 - val_loss: 0.6854 - learning_rate: 1.0000e-05\nEpoch 32/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 432ms/step - accuracy: 0.7739 - loss: 0.6072\nEpoch 32: val_accuracy did not improve from 0.75299\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 511ms/step - accuracy: 0.7739 - loss: 0.6072 - val_accuracy: 0.7450 - val_loss: 0.6856 - learning_rate: 1.0000e-05\nEpoch 33/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 438ms/step - accuracy: 0.7579 - loss: 0.6496\nEpoch 33: val_accuracy improved from 0.75299 to 0.76096, saving model to inceptionv3_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m29s\u001b[0m 534ms/step - accuracy: 0.7583 - loss: 0.6490 - val_accuracy: 0.7610 - val_loss: 0.6737 - learning_rate: 1.0000e-05\nEpoch 34/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 438ms/step - accuracy: 0.7705 - loss: 0.5965\nEpoch 34: val_accuracy did not improve from 0.76096\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 518ms/step - accuracy: 0.7706 - loss: 0.5964 - val_accuracy: 0.7590 - val_loss: 0.6654 - learning_rate: 1.0000e-05\nEpoch 35/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 429ms/step - accuracy: 0.7633 - loss: 0.6314\nEpoch 35: val_accuracy did not improve from 0.76096\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 508ms/step - accuracy: 0.7637 - loss: 0.6306 - val_accuracy: 0.7590 - val_loss: 0.6714 - learning_rate: 1.0000e-05\nEpoch 36/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 431ms/step - accuracy: 0.7913 - loss: 0.5923\nEpoch 36: val_accuracy did not improve from 0.76096\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 506ms/step - accuracy: 0.7914 - loss: 0.5922 - val_accuracy: 0.7490 - val_loss: 0.6725 - learning_rate: 1.0000e-05\nEpoch 37/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 431ms/step - accuracy: 0.8201 - loss: 0.5567\nEpoch 37: val_accuracy improved from 0.76096 to 0.76295, saving model to inceptionv3_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m29s\u001b[0m 528ms/step - accuracy: 0.8196 - loss: 0.5572 - val_accuracy: 0.7629 - val_loss: 0.6595 - learning_rate: 1.0000e-05\nEpoch 38/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 430ms/step - accuracy: 0.7924 - loss: 0.5430\nEpoch 38: val_accuracy did not improve from 0.76295\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 507ms/step - accuracy: 0.7922 - loss: 0.5435 - val_accuracy: 0.7610 - val_loss: 0.6495 - learning_rate: 1.0000e-05\nEpoch 39/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 430ms/step - accuracy: 0.7871 - loss: 0.5733\nEpoch 39: val_accuracy did not improve from 0.76295\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m28s\u001b[0m 508ms/step - accuracy: 0.7873 - loss: 0.5732 - val_accuracy: 0.7570 - val_loss: 0.6466 - learning_rate: 1.0000e-05\nEpoch 40/40\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 434ms/step - accuracy: 0.7929 - loss: 0.6056\nEpoch 40: val_accuracy improved from 0.76295 to 0.76892, saving model to inceptionv3_model.keras\n\u001b[1m48/48\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m31s\u001b[0m 565ms/step - accuracy: 0.7928 - loss: 0.6053 - val_accuracy: 0.7689 - val_loss: 0.6446 - learning_rate: 1.0000e-05\n","output_type":"stream"}]},{"cell_type":"code","source":"test_loss, test_accuracy = modelv3.evaluate(test_generator)\nprint(f'Test loss: {test_loss}')\nprint(f'Test accuracy: {test_accuracy}')","metadata":{"execution":{"iopub.status.busy":"2024-06-24T08:46:00.191387Z","iopub.execute_input":"2024-06-24T08:46:00.192234Z","iopub.status.idle":"2024-06-24T08:46:04.497276Z","shell.execute_reply.started":"2024-06-24T08:46:00.192202Z","shell.execute_reply":"2024-06-24T08:46:04.496404Z"},"trusted":true},"execution_count":95,"outputs":[{"name":"stdout","text":"\u001b[1m16/16\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 236ms/step - accuracy: 0.7941 - loss: 0.5531\nTest loss: 0.5449430346488953\nTest accuracy: 0.8070865869522095\n","output_type":"stream"}]},{"cell_type":"markdown","source":"Ensemble Learning Second Attempt\n","metadata":{}},{"cell_type":"code","source":"modelv3.save('inceptionv3_80.h5')","metadata":{"execution":{"iopub.status.busy":"2024-06-24T08:46:16.688635Z","iopub.execute_input":"2024-06-24T08:46:16.689029Z","iopub.status.idle":"2024-06-24T08:46:17.226212Z","shell.execute_reply.started":"2024-06-24T08:46:16.689001Z","shell.execute_reply":"2024-06-24T08:46:17.225393Z"},"trusted":true},"execution_count":96,"outputs":[]},{"cell_type":"code","source":"from keras.models import load_model\n\n\nmodel1_VGG = load_model('/kaggle/working/82_test_acc.h5')\nmodel2_mobile = load_model('/kaggle/working/mobilenet_model.keras')\nmodel3 = load_model('/kaggle/working/inceptionv3_80.h5')\nmodel4 = load_model('/kaggle/working/model2_84percentacc.h5')","metadata":{"execution":{"iopub.status.busy":"2024-06-24T09:10:42.630720Z","iopub.execute_input":"2024-06-24T09:10:42.631520Z","iopub.status.idle":"2024-06-24T09:10:46.349971Z","shell.execute_reply.started":"2024-06-24T09:10:42.631491Z","shell.execute_reply":"2024-06-24T09:10:46.348986Z"},"trusted":true},"execution_count":108,"outputs":[]},{"cell_type":"code","source":"from sklearn.metrics import accuracy_score, confusion_matrix, classification_report\n\n\nmodels = [model4, model1_VGG, model2_mobile, model3]\ntrue_labels = test_generator.classes\n\ndef simple_ensemble_predict(models, data_generator):\n preds = [model.predict(data_generator) for model in models]\n preds_array = np.array(preds)\n avg_preds = np.mean(preds_array, axis=0)\n ensemble_preds = np.argmax(avg_preds, axis=1)\n return ensemble_preds\n\nensemble_pred_labels = simple_ensemble_predict([model1_VGG, model2_mobile, model3, model4], test_generator)\naccuracy = accuracy_score(true_labels, ensemble_pred_labels)\nconf_matrix = confusion_matrix(true_labels, ensemble_pred_labels)\nclass_report = classification_report(true_labels, ensemble_pred_labels)\n","metadata":{"execution":{"iopub.status.busy":"2024-06-24T09:12:13.816083Z","iopub.execute_input":"2024-06-24T09:12:13.816900Z","iopub.status.idle":"2024-06-24T09:12:30.530418Z","shell.execute_reply.started":"2024-06-24T09:12:13.816867Z","shell.execute_reply":"2024-06-24T09:12:30.529492Z"},"trusted":true},"execution_count":112,"outputs":[{"name":"stdout","text":"\u001b[1m16/16\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 216ms/step\n\u001b[1m16/16\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 214ms/step\n\u001b[1m16/16\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 223ms/step\n\u001b[1m 1/16\u001b[0m \u001b[32mโ”\u001b[0m\u001b[37mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[1m11s\u001b[0m 734ms/step","output_type":"stream"},{"name":"stderr","text":"W0000 00:00:1719220346.922421 140 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update\n","output_type":"stream"},{"name":"stdout","text":"\u001b[1m16/16\u001b[0m \u001b[32mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 239ms/step\n","output_type":"stream"},{"name":"stderr","text":"W0000 00:00:1719220350.500242 140 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update\n","output_type":"stream"}]},{"cell_type":"code","source":"print(f'Ensemble model accuracy: {accuracy:.4f}')\n","metadata":{"execution":{"iopub.status.busy":"2024-06-24T09:23:16.351997Z","iopub.execute_input":"2024-06-24T09:23:16.352384Z","iopub.status.idle":"2024-06-24T09:23:16.357619Z","shell.execute_reply.started":"2024-06-24T09:23:16.352351Z","shell.execute_reply":"2024-06-24T09:23:16.356673Z"},"trusted":true},"execution_count":119,"outputs":[{"name":"stdout","text":"Ensemble model accuracy: 0.9055\n","output_type":"stream"}]},{"cell_type":"code","source":"\ncm = conf_matrix\n\n# Plot Confusion Matrix\nplt.figure(figsize=(10, 7))\nsns.heatmap(cm, annot=True, fmt=\"d\", cmap='Blues', xticklabels=test_generator.class_indices.keys(), yticklabels=test_generator.class_indices.keys())\nplt.xlabel('Predicted')\nplt.ylabel('True')\nplt.title('Confusion Matrix')\nplt.show()\n\n\nclassification_report_str = classification_report(true_labels, ensemble_pred_labels, target_names=test_generator.class_indices.keys())\n\nplt.figure(figsize=(10, 7))\nplt.text(0.01, 1.25, str('Classification Report'), {'fontsize': 14}, fontproperties='monospace') \nplt.text(0.01, 1.05, classification_report_str, {'fontsize': 10}, fontproperties='monospace') \nplt.axis('off')\nplt.show()\n","metadata":{"execution":{"iopub.status.busy":"2024-06-24T09:23:21.412994Z","iopub.execute_input":"2024-06-24T09:23:21.413811Z","iopub.status.idle":"2024-06-24T09:23:21.945224Z","shell.execute_reply.started":"2024-06-24T09:23:21.413779Z","shell.execute_reply":"2024-06-24T09:23:21.943533Z"},"trusted":true},"execution_count":120,"outputs":[{"output_type":"display_data","data":{"text/plain":"
","image/png":"iVBORw0KGgoAAAANSUhEUgAAAwgAAAJwCAYAAAAtA0YPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABqnElEQVR4nO3dd3gUVRfH8d8mkE1ISKEXqaH39io9IKFLEaSoSGgqCkpRmkgvQZQioIAgVZp0BaRIlY406VIF6UVASEggmfcPYN01oAkmOwv7/fDM82TvlHsmkyw5e+6dsRiGYQgAAAAAJHmYHQAAAAAA10GCAAAAAMCGBAEAAACADQkCAAAAABsSBAAAAAA2JAgAAAAAbEgQAAAAANiQIAAAAACwIUEAAAAAYEOCAACPcPToUVWrVk0BAQGyWCxatGhRoh7/1KlTslgsmjJlSqIe92lWqVIlVapUyewwAMDtkSAAcFnHjx/X22+/rZw5c8rb21v+/v4qV66cPv/8c0VGRiZp32FhYdq3b58GDRqk6dOnq1SpUknanzO1aNFCFotF/v7+j/w+Hj16VBaLRRaLRZ999lmCj3/u3Dn17dtXe/bsSYRoAQDOlszsAADgUZYuXapGjRrJarWqefPmKlSokKKjo7Vx40Z16dJFBw4c0FdffZUkfUdGRmrLli3q2bOn2rdvnyR9ZMuWTZGRkUqePHmSHP/fJEuWTBEREfr+++/VuHFjh3UzZsyQt7e37ty580THPnfunPr166fs2bOrWLFi8d5v5cqVT9QfACBxkSAAcDknT55U06ZNlS1bNq1Zs0YZM2a0rWvXrp2OHTumpUuXJln/ly9fliQFBgYmWR8Wi0Xe3t5Jdvx/Y7VaVa5cOc2aNStOgjBz5kzVrl1b8+fPd0osERERSpEihby8vJzSHwDgnzHECIDLGTp0qG7duqWvv/7aITl4KFeuXOrQoYPt9b179zRgwAAFBwfLarUqe/bs+uijjxQVFeWwX/bs2fXSSy9p48aNev755+Xt7a2cOXNq2rRptm369u2rbNmySZK6dOkii8Wi7NmzS7o/NOfh1/b69u0ri8Xi0LZq1SqVL19egYGB8vPzU968efXRRx/Z1j9uDsKaNWtUoUIF+fr6KjAwUPXq1dOhQ4ce2d+xY8fUokULBQYGKiAgQC1btlRERMTjv7F/89prr+mHH37Q9evXbW07duzQ0aNH9dprr8XZ/tq1a/rwww9VuHBh+fn5yd/fXzVr1tTevXtt26xbt07/+9//JEktW7a0DVV6eJ6VKlVSoUKFtHPnTlWsWFEpUqSwfV/+PgchLCxM3t7ecc6/evXqCgoK0rlz5+J9rgCA+CNBAOByvv/+e+XMmVNly5aN1/Zt2rRR7969VaJECY0YMUIhISEKDw9X06ZN42x77NgxvfLKK6pataqGDRumoKAgtWjRQgcOHJAkNWjQQCNGjJAkvfrqq5o+fbpGjhyZoPgPHDigl156SVFRUerfv7+GDRumunXratOmTf+4348//qjq1avr0qVL6tu3rzp37qzNmzerXLlyOnXqVJztGzdurD///FPh4eFq3LixpkyZon79+sU7zgYNGshisWjBggW2tpkzZypfvnwqUaJEnO1PnDihRYsW6aWXXtLw4cPVpUsX7du3TyEhIbY/1vPnz6/+/ftLkt566y1Nnz5d06dPV8WKFW3HuXr1qmrWrKlixYpp5MiRqly58iPj+/zzz5U2bVqFhYUpJiZGkjR+/HitXLlSo0ePVqZMmeJ9rgCABDAAwIXcuHHDkGTUq1cvXtvv2bPHkGS0adPGof3DDz80JBlr1qyxtWXLls2QZGzYsMHWdunSJcNqtRoffPCBre3kyZOGJOPTTz91OGZYWJiRLVu2ODH06dPHsH87HTFihCHJuHz58mPjftjH5MmTbW3FihUz0qVLZ1y9etXWtnfvXsPDw8No3rx5nP5atWrlcMyXX37ZSJ069WP7tD8PX19fwzAM45VXXjGqVKliGIZhxMTEGBkyZDD69ev3yO/BnTt3jJiYmDjnYbVajf79+9vaduzYEefcHgoJCTEkGePGjXvkupCQEIe2FStWGJKMgQMHGidOnDD8/PyM+vXr/+s5AgCeHBUEAC7l5s2bkqSUKVPGa/tly5ZJkjp37uzQ/sEHH0hSnLkKBQoUUIUKFWyv06ZNq7x58+rEiRNPHPPfPZy7sHjxYsXGxsZrn/Pnz2vPnj1q0aKFUqVKZWsvUqSIqlatajtPe23btnV4XaFCBV29etX2PYyP1157TevWrdOFCxe0Zs0aXbhw4ZHDi6T78xY8PO7/txETE6OrV6/ahk/t2rUr3n1arVa1bNkyXttWq1ZNb7/9tvr3768GDRrI29tb48ePj3dfAICEI0EA4FL8/f0lSX/++We8tv/tt9/k4eGhXLlyObRnyJBBgYGB+u233xzas2bNGucYQUFB+uOPP54w4riaNGmicuXKqU2bNkqfPr2aNm2qb7/99h+ThYdx5s2bN866/Pnz68qVK7p9+7ZD+9/PJSgoSJISdC61atVSypQpNWfOHM2YMUP/+9//4nwvH4qNjdWIESOUO3duWa1WpUmTRmnTptUvv/yiGzduxLvPzJkzJ2hC8meffaZUqVJpz549GjVqlNKlSxfvfQEACUeCAMCl+Pv7K1OmTNq/f3+C9vv7JOHH8fT0fGS7YRhP3MfD8fEP+fj4aMOGDfrxxx/1xhtv6JdfflGTJk1UtWrVONv+F//lXB6yWq1q0KCBpk6dqoULFz62eiBJgwcPVufOnVWxYkV98803WrFihVatWqWCBQvGu1Ii3f/+JMTu3bt16dIlSdK+ffsStC8AIOFIEAC4nJdeeknHjx/Xli1b/nXbbNmyKTY2VkePHnVov3jxoq5fv267I1FiCAoKcrjjz0N/r1JIkoeHh6pUqaLhw4fr4MGDGjRokNasWaO1a9c+8tgP4zxy5EicdYcPH1aaNGnk6+v7307gMV577TXt3r1bf/755yMndj80b948Va5cWV9//bWaNm2qatWqKTQ0NM73JL7JWnzcvn1bLVu2VIECBfTWW29p6NCh2rFjR6IdHwAQFwkCAJfTtWtX+fr6qk2bNrp48WKc9cePH9fnn38u6f4QGUlx7jQ0fPhwSVLt2rUTLa7g4GDduHFDv/zyi63t/PnzWrhwocN2165di7PvwweG/f3Wqw9lzJhRxYoV09SpUx3+4N6/f79WrlxpO8+kULlyZQ0YMEBjxoxRhgwZHrudp6dnnOrE3LlzdfbsWYe2h4nMo5KphOrWrZtOnz6tqVOnavjw4cqePbvCwsIe+30EAPx3PCgNgMsJDg7WzJkz1aRJE+XPn9/hScqbN2/W3Llz1aJFC0lS0aJFFRYWpq+++krXr19XSEiItm/frqlTp6p+/fqPvYXmk2jatKm6deuml19+We+//74iIiI0duxY5cmTx2GSbv/+/bVhwwbVrl1b2bJl06VLl/Tll1/queeeU/ny5R97/E8//VQ1a9ZUmTJl1Lp1a0VGRmr06NEKCAhQ3759E+08/s7Dw0Mff/zxv2730ksvqX///mrZsqXKli2rffv2acaMGcqZM6fDdsHBwQoMDNS4ceOUMmVK+fr66oUXXlCOHDkSFNeaNWv05Zdfqk+fPrbbrk6ePFmVKlVSr169NHTo0AQdDwAQP1QQALikunXr6pdfftErr7yixYsXq127durevbtOnTqlYcOGadSoUbZtJ06cqH79+mnHjh3q2LGj1qxZox49emj27NmJGlPq1Km1cOFCpUiRQl27dtXUqVMVHh6uOnXqxIk9a9asmjRpktq1a6cvvvhCFStW1Jo1axQQEPDY44eGhmr58uVKnTq1evfurc8++0ylS5fWpk2bEvzHdVL46KOP9MEHH2jFihXq0KGDdu3apaVLlypLliwO2yVPnlxTp06Vp6en2rZtq1dffVXr169PUF9//vmnWrVqpeLFi6tnz5629goVKqhDhw4aNmyYtm7dmijnBQBwZDESMpsNAAAAwDONCgIAAAAAGxIEAAAAADYkCAAAAABsSBAAAAAA2JAgAAAAALAhQQAAAABgQ4IAAAAAwOaZfJKyT8W+ZocAJzqz7N+fAItnRwqrp9khAEgi0fdizQ4BThTo47rv5z7F2zutr8jdY5zWV3xRQQAAAABg80xWEAAAAIAnZnHvz9Dd++wBAAAAOKCCAAAAANizWMyOwFRUEAAAAADYUEEAAAAA7DEHAQAAAADuo4IAAAAA2GMOAgAAAADcRwUBAAAAsMccBAAAAAC4jwoCAAAAYI85CAAAAABwHxUEAAAAwB5zEAAAAADgPhIEAAAAADYMMQIAAADsMUkZAAAAAO6jggAAAADYY5IyAAAAANxHBQEAAACwxxwEAAAAALiPCgIAAABgjzkIAAAAAHAfFQQAAADAHnMQAAAAAOA+KggAAACAPeYgAAAAAMB9VBAAAAAAe1QQzLd27VqzQwAAAAAgF0kQatSooeDgYA0cOFBnzpwxOxwAAAC4Mw+L8xYX5BIJwtmzZ9W+fXvNmzdPOXPmVPXq1fXtt98qOjra7NAAAAAAt+ISCUKaNGnUqVMn7dmzR9u2bVOePHn07rvvKlOmTHr//fe1d+9es0MEAACAu7B4OG9xQS4XVYkSJdSjRw+1b99et27d0qRJk1SyZElVqFBBBw4cMDs8AAAA4JnmMgnC3bt3NW/ePNWqVUvZsmXTihUrNGbMGF28eFHHjh1TtmzZ1KhRI7PDBAAAAJ5pLnGb0/fee0+zZs2SYRh64403NHToUBUqVMi23tfXV5999pkyZcpkYpQAAABwCxbXnDzsLC6RIBw8eFCjR49WgwYNZLVaH7lNmjRpuB0qAAAAkMRcIkFYvXr1v26TLFkyhYSEOCEaAAAAuDUXnTzsLC6RIEjS0aNHtXbtWl26dEmxsbEO63r37m1SVAAAAIB7cYkEYcKECXrnnXeUJk0aZciQQRa7cV8Wi4UEAQAAAM7DHATzDRw4UIMGDVK3bt3MDgUAAABway6RIPzxxx/cwhQAAACuwc3nILjE2Tdq1EgrV640OwwAAADA7ZlWQRg1apTt61y5cqlXr17aunWrChcurOTJkzts+/777zs7PAAAALgrN5+DYDEMwzCj4xw5csRrO4vFohMnTiTo2D4V+z5BRHhanVn2sdkhwIlSWD3NDgFAEom+F/vvG+GZEejjuu/nPtU/c1pfkSs+dFpf8WVaBeHkyZNmdQ0AAAA8HnMQzNe/f39FRETEaY+MjFT//v1NiAgAAABwTy6RIPTr10+3bt2K0x4REaF+/fqZEJHr8vPx0qfv1dCRbzvq2qqeWvtla5XMl8m2vmfLStozvb2urPhI55Z209LhzfW//JnNCxiJ7vKli+r3cTfVfLGsKpctoTca19ehg/vNDgtJYOfPO9ShXVtVrVxBxQvl09rVP5odEpIQ19u9TZ00QS8UK6DhQ8PNDgXS/TkIzlpckEskCIZhODwc7aG9e/cqVapUJkTkusZ2q6sXS+VUq0ELVarFWP2447iWDm+uTGlSSpKOnbmqTiOXqVSLsarSbpJ+u3Bd3w97Q2kCUpgcORLDzZs31LZVMyVLlkzDRo3TjLnfqX2nLkqZ0t/s0JAEIiMjlSdvPvXoycMi3QHX230d3L9PC+d9q1x58podCiDJ5OcgBAUFyWKxyGKxKE+ePA5JQkxMjG7duqW2bduaGKFr8fZKpvoVC6jRR7O0ae9vkqRBk9epVtk8erP+/9Rv4hrN+XGfwz7dxqxQy5dKqFBweq3bxbyPp92MKV8rXfoM6tl3kK0tU+bnTIwISal8hYoqX6Gi2WHASbje7iki4rZ6f9RVH/Xup8kTxpsdDh5y8zkIpiYII0eOlGEYatWqlfr166eAgADbOi8vL2XPnl1lypQxMULXkszTQ8mSeehO9D2H9jtR91S2cNY42ydP5qnWdUvq+p93tO/4RWeFiSS0ccNaPV+mnD7u2km7d/2stOnSqcErTVW3AQ8aBICn0aeDB6pchRA9X7osCQJchqkJQlhYmKT7tzwtW7ZsnOcfwNGtyGht3X9GPcJCdOS3K7r4xy01rlJYLxR8TsfPXrNtV7NMHk3r84pSeCfXhat/6qUPpunqjbiTwPH0OXf2dy2aN0dNXg9T81Zv6dDBfRrxWbiSJU+uWnXqmx0eACABVi5fpiOHD2ryjG/NDgV/56JzA5zFtATh5s2btq+LFy+uyMhIRUZGPnJbf//Hj6+OiopSVFSUQ5sRe08WD1NznyTTauACje9eTycWfqB792K15+h5fbt6v4rnzWjbZv3uk3qh9TilCUihlnVK6Jt+jVTx7Ym6fP22iZEjMcTGxipfgUJq276jJClPvvw6ceyYFs3/lgQBAJ4iFy+c1/Ch4Ro9bqKsVqvZ4QAOTPsrOjAw8JETk+09nLwcExPz2G3Cw8Pj3OnIM2uIkmerlBhhupyT5/5QtfenKIV3cvn7WnXh6i1N7/uKTp77w7ZNxJ27OnH2mk6cvabtB3/XvpnvKax2cX02Y6OJkSMxpE6TVtlzBDu0Zc+RU+vWrDIpIgDAkzh88ID+uHZVYa++YmuLiYnR7l0/a96cmfpp+x55errug8SeecxBMMfatWsT5Tg9evRQ586dHdrS1RqaKMd2ZRF37irizl0F+nkr9H+51HPc4/9A9LBYZPV6Nisq7qZI0eI6/ZvjZPPTp08pQ8ZMj9kDAOCKSr1QRjPnLXZoG9C7p7LlyKHmLduQHMBUpv3VGBISkijHsVqtcUpzz+rwIkkK/V+wLBaLfj1zRcGZU2nwO9X06+krmrZst1J4J1e3Nypq6aYjunD1T6UOSKG3X35emdL4a8HaA2aHjkTQ5PXmertlM02d9JWqVK2ug/v36bsF89S1Z1+zQ0MSiIi4rTOnT9tenz37u44cPiT/gABlJCl85nC93Yuvr6+Cc+V2aPPx8VFAQGCcdsDZXOov6YiICJ0+fVrR0dEO7UWKFDEpItcT4Oet/m9VUea0/rr2Z6QWrz+kPhNW615MrDw9PZQ3Wxo1q1FUqQNS6NrNSP18+KxC35ukQ6cumx06EkH+goUV/tnnGjdmpKZMGKuMmZ5Thw+6qXqtl8wODUng4P79erNVmO31sKFDJEl16tVX/0FDzAoLSYTrDbgQNx9iZDEMwzA7iMuXL6tly5b64YcfHrn+n+YgPIpPxb6JEBWeFmeWfWx2CHCiFFbK7sCzKvperNkhwIkCfVz3/dynzpdO6yvy+3ed1ld8uUR61LFjR12/fl3btm2Tj4+Pli9frqlTpyp37tz67rvvzA4PAAAA7sRicd7iglxiiNGaNWu0ePFilSpVSh4eHsqWLZuqVq0qf39/hYeHq3bt2maHCAAAALgFl6gg3L59W+nSpZMkBQUF6fLl++PlCxcurF27dpkZGgAAANyNxcN5iwtyiajy5s2rI0eOSJKKFi2q8ePH6+zZsxo3bpwyZsz4L3sDAAAASCwuMcSoQ4cOOn/+vCSpT58+qlGjhmbMmCEvLy9NmTLF3OAAAADgXlx0boCzuESC0KxZM9vXJUuW1G+//abDhw8ra9asSpMmjYmRAQAAAO7FJRKEh6Kjo3Xy5EkFBwerRIkSZocDAAAAd+SicwOcxSXOPiIiQq1bt1aKFClUsGBBnX7wJMn33ntPQ4bwcBgAAADAWVwiQejRo4f27t2rdevWydvb29YeGhqqOXPmmBgZAAAA3A7PQTDfokWLNGfOHJUuXVoWu29UwYIFdfz4cRMjAwAAANyLSyQIly9ftj0Hwd7t27cdEgYAAAAgqbn7358uMcSoVKlSWrp0qe31w4syceJElSlTxqywAAAAALfjEhWEwYMHq2bNmjp48KDu3bunzz//XAcPHtTmzZu1fv16s8MDAACAG6GC4ALKly+vPXv26N69eypcuLBWrlypdOnSacuWLSpZsqTZ4QEAAABuw9QKws2bN21fp02bVsOGDXvkNv7+/s4MCwAAAO7MvQsI5iYIgYGB/1jCMQxDFotFMTExTowKAAAAcF+mJghr1661fW0YhmrVqqWJEycqc+bMJkYFAAAAuC9TE4SQkBCH156enipdurRy5sxpUkQAAABwd0xSBgAAAIAHXOI2pwAAAICroILgYtz9ggAAAABmMrWC0KBBA4fXd+7cUdu2beXr6+vQvmDBAmeGBQAAADfm7h9Ym5ogBAQEOLxu1qyZSZEAAAAAkExOECZPnmxm9wAAAEAc7l5BcLk5CAAAAADMw12MAAAAAHvuXUCgggAAAADgL1QQAAAAADvMQQAAAACAB6ggAAAAAHaoIAAAAADAA1QQAAAAADtUEAAAAADgASoIAAAAgB0qCAAAAADwABUEAAAAwJ57FxCoIAAAAABPg5iYGPXq1Us5cuSQj4+PgoODNWDAABmGYdvGMAz17t1bGTNmlI+Pj0JDQ3X06NEE9UOCAAAAADwFPvnkE40dO1ZjxozRoUOH9Mknn2jo0KEaPXq0bZuhQ4dq1KhRGjdunLZt2yZfX19Vr15dd+7ciXc/DDECAAAA7LjqJOXNmzerXr16ql27tiQpe/bsmjVrlrZv3y7pfvVg5MiR+vjjj1WvXj1J0rRp05Q+fXotWrRITZs2jVc/VBAAAAAAk0RFRenmzZsOS1RU1CO3LVu2rFavXq1ff/1VkrR3715t3LhRNWvWlCSdPHlSFy5cUGhoqG2fgIAAvfDCC9qyZUu8YyJBAAAAAOxYLBanLeHh4QoICHBYwsPDHxlX9+7d1bRpU+XLl0/JkydX8eLF1bFjR73++uuSpAsXLkiS0qdP77Bf+vTpbevigyFGAAAAgEl69Oihzp07O7RZrdZHbvvtt99qxowZmjlzpgoWLKg9e/aoY8eOypQpk8LCwhItJhIEAAAAwI4z5yBYrdbHJgR/16VLF1sVQZIKFy6s3377TeHh4QoLC1OGDBkkSRcvXlTGjBlt+128eFHFihWLd0wMMQIAAACeAhEREfLwcPzz3dPTU7GxsZKkHDlyKEOGDFq9erVt/c2bN7Vt2zaVKVMm3v1QQQAAAADsueZNjFSnTh0NGjRIWbNmVcGCBbV7924NHz5crVq1knS/8tGxY0cNHDhQuXPnVo4cOdSrVy9lypRJ9evXj3c/JAgAAADAU2D06NHq1auX3n33XV26dEmZMmXS22+/rd69e9u26dq1q27fvq233npL169fV/ny5bV8+XJ5e3vHux+LYf/otWeET8W+ZocAJzqz7GOzQ4ATpbB6mh0CgCQSfS/W7BDgRIE+rvt+nr7NXKf1dXFiI6f1FV/MQQAAAABgwxAjAAAAwI6rPknZWZ7JBOG3pT3NDgFOlOvt2WaHACe6MLWZ2SEAAPBMeyYTBAAAAOBJuXsFgTkIAAAAAGyoIAAAAAB2qCAAAAAAwANUEAAAAAB77l1AoIIAAAAA4C8kCAAAAABsGGIEAAAA2GGSMgAAAAA8QAUBAAAAsEMFAQAAAAAeoIIAAAAA2KGCAAAAAAAPUEEAAAAA7Ll3AYEKAgAAAIC/UEEAAAAA7DAHAQAAAAAeoIIAAAAA2KGCAAAAAAAPUEEAAAAA7FBBAAAAAIAHqCAAAAAAdqggAAAAAMADVBAAAAAAe+5dQKCCAAAAAOAvVBAAAAAAO8xBAAAAAIAHSBAAAAAA2DDECAAAALDDECMAAAAAeIAKAgAAAGDHzQsIVBAAAAAA/IUKAgAAAGCHOQgu4P3339eoUaPitI8ZM0YdO3Z0fkAAAACAm3KJBGH+/PkqV65cnPayZctq3rx5JkQEAAAAd2WxOG9xRS6RIFy9elUBAQFx2v39/XXlyhUTIgIAAADck0skCLly5dLy5cvjtP/www/KmTOnCREBAADAXVksFqctrsglJil37txZ7du31+XLl/Xiiy9KklavXq1hw4Zp5MiR5gYHAAAAuBGXSBBatWqlqKgoDRo0SAMGDJAkZc+eXWPHjlXz5s1Njg4AAADuxEU/2Hcal0gQJOmdd97RO++8o8uXL8vHx0d+fn5mhwQAAAC4HZdJEB5Kmzat2SEAAADAjXl4uHcJwbQEoUSJElq9erWCgoJUvHjxf5yksWvXLidGBgAAALgv0xKEevXqyWq1SpLq169vVhgAAACAA+YgmKRPnz6P/BoAAACAeVxuDgIAAABgJld9PoGzuESCEBMToxEjRujbb7/V6dOnFR0d7bD+2rVrJkUGAAAAuBeXeJJyv379NHz4cDVp0kQ3btxQ586d1aBBA3l4eKhv375mhwcAAAC4DZeoIMyYMUMTJkxQ7dq11bdvX7366qsKDg5WkSJFtHXrVr3//vtmh+iyGtWppgvnz8Vpf7lRU3Xu9rEJESGxeFgs6tGwiBqXy6F0gd668EekZm44oU8X7ZMkJfO06ONGxVS1WCZlT5tSNyOjtX7/BfWdvVsXrkeaHD0S0+yZMzR18te6cuWy8uTNp+4f9VLhIkXMDgtJhOvtnqZOmqAvR41Qk9feUOeuPcwOx+25+Qgj16ggXLhwQYULF5Yk+fn56caNG5Kkl156SUuXLjUzNJf31bTZWrR8nW0Z8cUESVLlKtVMjgz/Vcc6BdQqNLe6TN2hF7p8rz6zd+v9lwro7ep5JUkpvJKpaPZU+nThPoV8vExvjNygXBn9NeuDSuYGjkS1/Idl+mxouN5+t51mz12ovHnz6Z23W+vq1atmh4YkwPV2Twf379PCed8qV568ZocCSHKRBOG5557T+fPnJUnBwcFauXKlJGnHjh22W6Hi0YKCUil1mjS2ZfPG9cr8XBYVK/k/s0PDf/R8nrRatvN3rdxzVqev3NZ3209r7b7zKpEzjSTpZuRdvTxktRZtO61j52/q52NX1GXqDhXPmVrPpU5hcvRILNOnTlaDVxqr/ssNFZwrlz7u00/e3t5atGC+2aEhCXC93U9ExG31/qirPurdT/4p/c0OBw9YLBanLa7IJRKEl19+WatXr5Ykvffee+rVq5dy586t5s2bq1WrViZH9/S4e/euVi5bolp1X3bZHzjE3/ZfLyukYAYFZ0gpSSqUNVCl86bVj3vPPnYff5/kio01dCPirrPCRBK6Gx2tQwcPqHSZsrY2Dw8PlS5dVr/s3W1iZEgKXG/39OnggSpXIUTPly777xsDTuIScxCGDBli+7pJkybKmjWrtmzZoty5c6tOnTr/uG9UVJSioqIc26I93LLy8NO61bp160/VqlPf7FCQCEZ8f0ApfZJrx6d1FRNryNPDogFz92ju5lOP3N6a3EP9Xi2ueVtO6c9IEoRnwR/X/1BMTIxSp07t0J46dWqdPHnCpKiQVLje7mfl8mU6cvigJs/41uxQ8Dfu/kGrSyQIf1emTBmVKVMmXtuGh4erX79+Dm0fdv9YXT7qnRShubQlixfohbLllSZtOrNDQSJ4+YVsalQuh9p8sVGHz95Q4WxBCm9WShf+iNSsnxz/WEjmadGU9yrKIos+mLzdpIgBAPF18cJ5DR8artHjJrrlh5pwbS6RIEydOlVp0qRR7dq1JUldu3bVV199pQIFCmjWrFnKli3bY/ft0aOHOnfu7NB2I9olRk451YXz57Rz+1YNHDrS7FCQSPq/VkIjvz+gBVt/kyQdPHNdWdL4qlPdgg4Jwv3koIKypPFVncGrqB48Q4ICg+Tp6RlngurVq1eVJk0ak6JCUuF6u5fDBw/oj2tXFfbqK7a2mJgY7d71s+bNmamftu+Rp6eniRG6NzcvILjGHITBgwfLx8dHkrRlyxaNGTNGQ4cOVZo0adSpU6d/3Ndqtcrf399hccdMfNl3CxUYlEplylc0OxQkkhReyRQbazi0xcQa8rB713qYHOTM4K964T/qj1vRfz8MnmLJvbyUv0BBbdu6xdYWGxurbdu2qEjR4iZGhqTA9XYvpV4oo5nzFmv6nAW2JX+BQqpe6yVNn7OA5ACmcokKwpkzZ5QrVy5J0qJFi/TKK6/orbfeUrly5VSpUiVzg3sKxMbGatn3i1TzpXpKlswlLikSwfLdv+uD+oX0+9UIHf79uopkT6V2NfPrm/XHJd1PDqZ1qKgi2VOp6Wdr5elhUboAb0nSH7eidTcm1szwkUjeCGupXh91U8GChVSocBF9M32qIiMjVf/lBmaHhiTA9XYfvr6+Cs6V26HNx8dHAQGBcdrhfMxBcAF+fn66evWqsmbNqpUrV9qGDHl7eysykgc+/Zuft2/RxQvnVavuy2aHgkTUdeoO9XylqIa1/J/S+N9/UNrkNUc1dMH9B6VlCkqhWiWzSJI2hr/ksO9LA1dp46GLTo8Zia9GzVr649o1fTlmlK5cuay8+fLry/ETlZohJ88krjcAV2AxDMP4982S1uuvv67Dhw+rePHimjVrlk6fPq3UqVPru+++00cffaT9+/cn6HiX/mQMtjvJ03aO2SHAiS5MbWZ2CACSyJ27MWaHACcK9HHdYVQl+q9xWl+7er/otL7iyyXmIHzxxRcqU6aMLl++rPnz59tu8bZz5069+uqrJkcHAAAAuA+XGGIUGBioMWPGxGn/++1LAQAAgKTGHAQXcf36dX399dc6dOiQJKlgwYJq1aqVAgICTI4MAAAAcB8uMcTo559/VnBwsEaMGKFr167p2rVrGj58uIKDg7Vr1y6zwwMAAIAbsVict7gil6ggdOrUSXXr1tWECRNst+m8d++e2rRpo44dO2rDhg0mRwgAAAC4B5dIEH7++WeH5ECSkiVLpq5du6pUqVImRgYAAAB34+5zEFxiiJG/v79Onz4dp/3MmTNKmTKlCREBAAAA7sklKghNmjRR69at9dlnn6ls2bKSpE2bNqlLly7c5hQAAABO5eYFBNdIED777DNZLBY1b95c9+7dk2EY8vLy0jvvvKMhQ4aYHR4AAADgNlwiQfDy8tLnn3+u8PBwHT9+XJIUHBysFClSmBwZAAAA4F5MTRBatWoVr+0mTZqUxJEAAAAA97n7JGVTE4QpU6YoW7ZsKl68uAzDMDMUAAAAADI5QXjnnXc0a9YsnTx5Ui1btlSzZs2UKlUqM0MCAACAm3PzAoK5tzn94osvdP78eXXt2lXff/+9smTJosaNG2vFihVUFAAAAAATmP4cBKvVqldffVWrVq3SwYMHVbBgQb377rvKnj27bt26ZXZ4AAAAcDMWi8VpiysyPUGw5+HhIYvFIsMwFBMTY3Y4AAAAgNsxPUGIiorSrFmzVLVqVeXJk0f79u3TmDFjdPr0afn5+ZkdHgAAANyMxeK8xRWZOkn53Xff1ezZs5UlSxa1atVKs2bNUpo0acwMCQAAAHBrpiYI48aNU9asWZUzZ06tX79e69evf+R2CxYscHJkAAAAcFeuOjfAWUxNEJo3b+72FwAAAABwJaY/KA0AAABwJe7++bXpk5QBAAAAuA5TKwgAAACAq3H3IfBUEAAAAADYUEEAAAAA7FBBAAAAAIAHqCAAAAAAdty8gEAFAQAAAMBfSBAAAAAA2DDECAAAALDDJGUAAAAAeIAKAgAAAGDHzQsIVBAAAAAA/IUKAgAAAGCHOQgAAAAA8AAVBAAAAMCOmxcQqCAAAAAA+AsVBAAAAMCOh5uXEKggAAAAAE+Js2fPqlmzZkqdOrV8fHxUuHBh/fzzz7b1hmGod+/eypgxo3x8fBQaGqqjR48mqA8SBAAAAMCOxeK8JSH++OMPlStXTsmTJ9cPP/yggwcPatiwYQoKCrJtM3ToUI0aNUrjxo3Ttm3b5Ovrq+rVq+vOnTvx7ochRgAAAMBT4JNPPlGWLFk0efJkW1uOHDlsXxuGoZEjR+rjjz9WvXr1JEnTpk1T+vTptWjRIjVt2jRe/VBBAAAAAOxYLBanLVFRUbp586bDEhUV9ci4vvvuO5UqVUqNGjVSunTpVLx4cU2YMMG2/uTJk7pw4YJCQ0NtbQEBAXrhhRe0ZcuWeJ8/CQIAAABgkvDwcAUEBDgs4eHhj9z2xIkTGjt2rHLnzq0VK1bonXfe0fvvv6+pU6dKki5cuCBJSp8+vcN+6dOnt62LD4YYAQAAAHY8nHgTox49eqhz584ObVar9ZHbxsbGqlSpUho8eLAkqXjx4tq/f7/GjRunsLCwRIuJCgIAAABgEqvVKn9/f4flcQlCxowZVaBAAYe2/Pnz6/Tp05KkDBkySJIuXrzosM3Fixdt6+KDBAEAAACw48w5CAlRrlw5HTlyxKHt119/VbZs2STdn7CcIUMGrV692rb+5s2b2rZtm8qUKRPvfhhiBAAAADwFOnXqpLJly2rw4MFq3Lixtm/frq+++kpfffWVpPuJTceOHTVw4EDlzp1bOXLkUK9evZQpUybVr18/3v2QIAAAAAB2XPVByv/73/+0cOFC9ejRQ/3791eOHDk0cuRIvf7667Ztunbtqtu3b+utt97S9evXVb58eS1fvlze3t7x7sdiGIaRFCdgpjv3zI4AzhT77P0I4x+kfv49s0OAE13eOtrsEOBE92JjzQ4BThTo42l2CI9Ve/x2p/W19O3nndZXfDEHAQAAAIANQ4wAAAAAOxa56BgjJ6GCAAAAAMCGCgIAAABgx5kPSnNFVBAAAAAA2FBBAAAAAOwk9AFmzxoqCAAAAABsqCAAAAAAdty8gEAFAQAAAMBfqCAAAAAAdjzcvIRABQEAAACADRUEAAAAwI6bFxCoIAAAAAD4CxUEAAAAwA7PQQAAAACAB6ggAAAAAHbcvIBABQEAAADAX6ggAAAAAHZ4DgIAAAAAPECCAAAAAMCGIUYAAACAHfceYEQFAQAAAIAdKggAAACAHR6UBgAAAAAPUEEAAAAA7Hi4dwGBCgIAAACAv1BBAAAAAOwwBwEAAAAAHqCCAAAAANhx8wICFQQAAAAAf6GCAAAAANhhDgIAAAAAPEAFAQAAALDDcxBcgKenpy5duhSn/erVq/L09DQhIgAAAMA9uUQFwTCMR7ZHRUXJy8vLydEAAADAnbn7HARTE4RRo0ZJun8RJk6cKD8/P9u6mJgYbdiwQfny5TMrPAAAAMDtmJogjBgxQtL9CsK4ceMchhN5eXkpe/bsGjdunFnhAQAAwA25d/3A5ATh5MmTkqTKlStrwYIFCgoKMjMcAAAAwO25xByEtWvX2r5+OB/B3cd+AQAAwBwebv53qEvcxUiSpk2bpsKFC8vHx0c+Pj4qUqSIpk+fbnZYAAAAgFtxiQrC8OHD1atXL7Vv317lypWTJG3cuFFt27bVlStX1KlTJ5MjBAAAANzDEyUIP/30k8aPH6/jx49r3rx5ypw5s6ZPn64cOXKofPnyCT7e6NGjNXbsWDVv3tzWVrduXRUsWFB9+/YlQQAAAIDTuPkIo4QPMZo/f76qV68uHx8f7d69W1FRUZKkGzduaPDgwU8UxPnz51W2bNk47WXLltX58+ef6JgAAAAAEi7BCcLAgQM1btw4TZgwQcmTJ7e1lytXTrt27XqiIHLlyqVvv/02TvucOXOUO3fuJzomAAAA8CQsFovTFleU4CFGR44cUcWKFeO0BwQE6Pr1608URL9+/dSkSRNt2LDBNgdh06ZNWr169SMTBwAAAABJI8EVhAwZMujYsWNx2jdu3KicOXM+URANGzbUtm3blCZNGi1atEiLFi1SmjRptH37dr388stPdEwAAADgSVgszltcUYIrCG+++aY6dOigSZMmyWKx6Ny5c9qyZYs+/PBD9erV64kDKVmypL755ps47fPmzdMrr7zyxMcFAAAAEH8JThC6d++u2NhYValSRREREapYsaKsVqs+/PBDvffeewkO4N69ezp8+LC8vLyUJ08eW/vixYvVu3dvHT58mAQBAAAATsOD0hLIYrGoZ8+eunbtmvbv36+tW7fq8uXLGjBgQII7379/v3LlyqWiRYsqf/78atCggS5evKiQkBC1atVKNWvW1PHjxxN8XHc0e+YM1az6ov5XvLBeb9pI+375xeyQkAR2/rxDHdq1VdXKFVS8UD6tXf2j2SEhEfmlsOrTDxvqyLL+urZluNZO6aySBbLa1vv6eGlEt0Y6tnyArm0Zrl3ze6rNKwm/tTRc06SJ4/XGq6+oQukSCg0pq84d2unUyRNmhwUnmTppgl4oVkDDh4abHQrw5E9S9vLyUoECBfT888/Lz8/viY7RrVs35cqVS4sXL1bTpk21aNEiVapUSXXq1NHvv/+uIUOG6LnnnnvSEN3G8h+W6bOh4Xr73XaaPXeh8ubNp3febq2rV6+aHRoSWWRkpPLkzacePXubHQqSwNjer+nF0vnU6uOpKtV4sH7cclhLx72nTGkDJEmffNBQVcsWUMue01SswUCNmbFOI7o1Uu2QwiZHjsSw6+cdatT0NU35Zo6+/GqS7t27p3Zt2ygyIsLs0JDEDu7fp4XzvlWuPHnNDgUPMAchgSpXrvyPt2Ras2ZNvI+1Y8cOrVy5UsWKFVOFChU0a9YsffTRR3rjjTcSGpZbmz51shq80lj1X24oSfq4Tz9t2LBOixbMV+s33zI5OiSm8hUqqnyFuHcRw9PP25pc9asUU6NOX2nTrvuV00Hjl6lWxUJ6s1EF9ftyiUoXzaFvlmzTTzuPSpImLdik1g3LqVTBbFq6fp+Z4SMRjBk30eF1vwHhCq1UVocOHlCJUv8zKSoktYiI2+r9UVd91LufJk8Yb3Y4gKQnqCAUK1ZMRYsWtS0FChRQdHS0du3apcKFE/Yp1pUrV5QpUyZJ92+T6uvrq9KlSyc0JLd2Nzpahw4eUOkyfz1ozsPDQ6VLl9Uve3ebGBmAhEjm6aFkyTx1J/quQ/udqLsqWzxYkrR170m9FFLYVlGoWCq3cmdLpx+3HnJ6vEh6t279KUnyDwgwORIkpU8HD1S5CiF6vnTcB8bCPDwHIYFGjBjxyPa+ffvq1q1bCTqWxWLRn3/+KW9vbxmGIYvFosjISN28edNhO39//8ceIyoqyvY054cMT6usVmuCYnla/XH9D8XExCh16tQO7alTp9ZJxq4CT41bEVHauveEerxZU0dOXtTFqzfVuEYpvVAkh46fuSxJ6vzJXH3R61UdXzlId+/GKNaI1bsDZtkqDnh2xMbG6rOhg1W0eAnlyp3n33fAU2nl8mU6cvigJs/gmU9wLU88B+HvmjVrpkmTJiVoH8MwlCdPHgUFBSlVqlS6deuWihcvrqCgIAUFBSkwMFBBQUH/eIzw8HAFBAQ4LJ9+wgQfAE+fVh9Pk8UinVg5SDe2jVS7V0P07fKfFRtrSJLebRqi5wtnV8MO41T29U/UffhCjezeWJVfYNzys2bIoP46fuyowj8ZbnYoSCIXL5zX8KHh6jd4qNt8qPk08XDi4ooSXEF4nC1btsjb2ztB+6xdu/Y/99ujRw917tzZoc3wdJ9ftKDAIHl6esaZkHz16lWlSZPGpKgAPImTv19RtTafK4W3l/z9vHXhyk1NH9JSJ89ekbc1ufq9V0dNOk/Q8o0HJEn7j55TkbzPqeMbVbR22xGTo0di+WRwf23csE4TJn+j9BkymB0Oksjhgwf0x7WrCnv1r1u5x8TEaPeunzVvzkz9tH2PPD09TYwQ7izBCUKDBg0cXhuGofPnz+vnn39O8IPSQkJCEtp9HFZr3OFEd+7958M+NZJ7eSl/gYLatnWLXqwSKul+aXrbti1q+mozk6MD8CQi7kQr4k60AlP6KLRsfvUcuVjJk3nKK3kyxRqGw7YxMbHy8HDNMaxIGMMwNDR8gNau+VFffT1NmbmL3zOt1AtlNHPeYoe2Ab17KluOHGresg3JgclcdW6AsyQ4QQj422QpDw8P5c2bV/3791e1atXifZy/zzP4J/80BwHSG2Et1eujbipYsJAKFS6ib6ZPVWRkpOq/3ODfd8ZTJSLits6cPm17ffbs7zpy+JD8AwKUMWMmEyNDYggtk18Wi/TrqUsKzpJWgzvV168nL2rad1t0716sNvx8VIM71lfknbs6ff6aKpTMpddfel7dhi8wO3QkgiGD+mv5D0s0/PMvlMLXV1eu3J974ueXMsEVerg+X19fBefK7dDm4+OjgIDAOO2AsyUoQYiJiVHLli1VuHDhf50b8G8CAwPjnZ3FxMT8p76edTVq1tIf167pyzGjdOXKZeXNl19fjp+o1AwxeuYc3L9fb7YKs70eNnSIJKlOvfrqP2iIWWEhkQT4eav/e3WVOX2grt2I0OLVe9Tni+91716sJKl590nq/149TRkcpiD/FDp9/pr6frFEE+ZuNDlyJIZ5386SJL3VqrlDe58Bg1W3Hh/4AM7k7oVZi2H8rV79L7y9vXXo0CHlyJHjP3W8fv1629enTp1S9+7d1aJFC5UpU0bS/TkNU6dOVXh4uMLCwh53mEdypyFGUJwhF3i2pX7+PbNDgBNd3jra7BDgRPdiY80OAU4U6OO6w6g6Lj7stL5G1svntL7iK8FDjAoVKqQTJ0785wTBfv5B//79NXz4cL366qu2trp166pw4cL66quvEpwgAAAAAHgyCb670sCBA/Xhhx9qyZIlOn/+vG7evOmwPIktW7aoVKlScdpLlSql7du3P9ExAQAAgCfhYXHe4orinSD0799ft2/fVq1atbR3717VrVtXzz33XIKeWfA4WbJk0YQJE+K0T5w4UVmyZHmiYwIAAABIuHgPMerXr5/atm2bKM8u+LsRI0aoYcOG+uGHH/TCCy9IkrZv366jR49q/vz5id4fAAAA8Djc5jSeHs5lToxnF/xdrVq19Ouvv2rs2LE6fPj+pJA6deqobdu2VBAAAAAAJ0rQJOWkzKayZMmiwYMHJ9nxAQAAgPhw1bkBzpKgBCFPnjz/miRcu3btiQL56aefNH78eJ04cUJz585V5syZNX36dOXIkUPly5d/omMCAAAASJgEJQj9+vWL8yTlxDB//ny98cYbev3117Vr1y5FRUVJkm7cuKHBgwdr2bJlid4nAAAA8ChuPgUhYQlC06ZNlS5dukQPYuDAgRo3bpyaN2+u2bNn29rLlSungQMHJnp/AAAAAB4t3glCUs4/OHLkiCpWrBinPSAgQNevX0+yfgEAAIC/83DzEkK8n4Pw8C5GSSFDhgw6duxYnPaNGzcqZ86cSdYvAAAAAEfxriDExsYmWRBvvvmmOnTooEmTJslisejcuXPasmWLPvjgA/Xu3TvJ+gUAAAD+Lt6foD+jEjQHIal0795dsbGxqlKliiIiIlSxYkVZrVZ16dJFbdq0MTs8AAAAwG24RIJksVjUs2dPXbt2Tfv379fWrVt1+fJlBQQEKEeOHGaHBwAAADdisThvcUWmJghRUVHq0aOHSpUqpXLlymnZsmUqUKCADhw4oLx58+rzzz9Xp06dzAwRAAAAcCumDjHq3bu3xo8fr9DQUG3evFmNGjVSy5YttXXrVg0bNkyNGjWSp6enmSECAADAzbj7XYxMTRDmzp2radOmqW7dutq/f7+KFCmie/fuae/evUl6W1UAAAAAj2ZqgvD777+rZMmSkqRChQrJarWqU6dOJAcAAAAwjbv/KWrqHISYmBh5eXnZXidLlkx+fn4mRgQAAAC4N1MrCIZhqEWLFrJarZKkO3fuqG3btvL19XXYbsGCBWaEBwAAADfk4eYVBFMThLCwMIfXzZo1MykSAAAAAJLJCcLkyZPN7B4AAADA37jEk5QBAAAAV+Hutzl1iScpAwAAAHANVBAAAAAAO25eQKCCAAAAAOAvVBAAAAAAO+5+m1MqCAAAAABsqCAAAAAAdixy7xICFQQAAAAANlQQAAAAADvMQQAAAACAB6ggAAAAAHaoIAAAAADAA1QQAAAAADsWN3+UMhUEAAAAADZUEAAAAAA7zEEAAAAAgAeoIAAAAAB23HwKAhUEAAAAAH8hQQAAAACeMkOGDJHFYlHHjh1tbXfu3FG7du2UOnVq+fn5qWHDhrp48WKCj02CAAAAANjxsFictjyJHTt2aPz48SpSpIhDe6dOnfT9999r7ty5Wr9+vc6dO6cGDRok/PyfKCoAAAAATnfr1i29/vrrmjBhgoKCgmztN27c0Ndff63hw4frxRdfVMmSJTV58mRt3rxZW7duTVAfJAgAAACAHQ+L85aoqCjdvHnTYYmKinpsbO3atVPt2rUVGhrq0L5z507dvXvXoT1fvnzKmjWrtmzZkrDzT9i3CwAAAEBiCQ8PV0BAgMMSHh7+yG1nz56tXbt2PXL9hQsX5OXlpcDAQIf29OnT68KFCwmKiducAgAAAHaceZvTHj16qHPnzg5tVqs1znZnzpxRhw4dtGrVKnl7eydpTCQIAAAAgEmsVusjE4K/27lzpy5duqQSJUrY2mJiYrRhwwaNGTNGK1asUHR0tK5fv+5QRbh48aIyZMiQoJhIEAAAAAA7HnK9J6VVqVJF+/btc2hr2bKl8uXLp27duilLlixKnjy5Vq9erYYNG0qSjhw5otOnT6tMmTIJ6uuZTBBiDcPsEAAkkbMbPzc7BDhR2gpdzA4BTnR106dmhwC4rJQpU6pQoUIObb6+vkqdOrWtvXXr1urcubNSpUolf39/vffeeypTpoxKly6doL6eyQQBAAAAeFLOnIOQmEaMGCEPDw81bNhQUVFRql69ur788ssEH8diGM/ex+0Rd5+5UwLwwJ3oWLNDgBNlrtzN7BDgRFQQ3EuK5K77V/iXm085ra93y2Z3Wl/xRQUBAAAAsOPhurmLU/AcBAAAAAA2VBAAAAAAOx5P6ySEREIFAQAAAIANFQQAAADAjpsXEKggAAAAAPgLFQQAAADADnMQAAAAAOABKggAAACAHTcvIFBBAAAAAPAXEgQAAAAANgwxAgAAAOy4+yfo7n7+AAAAAOxQQQAAAADsWNx8ljIVBAAAAAA2VBAAAAAAO+5dP6CCAAAAAMAOFQQAAADAjgdzEAAAAADgPioIAAAAgB33rh9QQQAAAABghwoCAAAAYMfNpyBQQQAAAADwFyoIAAAAgB2epAwAAAAAD1BBAAAAAOy4+yfo7n7+AAAAAOxQQQAAAADsMAcBAAAAAB4gQQAAAABgwxAjAAAAwI57DzCiggAAAADADhUEAAAAwA6TlAEAAADgASoIAAAAgB13/wTd3c8fAAAAgB0qCAAAAIAd5iAAAAAAwANUEAAAAAA77l0/oIIAAAAAwI5LJAienp66dOlSnParV6/K09PThIgAAADgriwW5y2uyCUSBMMwHtkeFRUlLy8vJ0cDAAAAuC9T5yCMGjVK0v2Z4hMnTpSfn59tXUxMjDZs2KB8+fKZFR4AAADckIebz0IwNUEYMWKEpPsVhHHjxjkMJ/Ly8lL27Nk1btw4s8IDAAAA3I6pCcLJkyclSZUrV9aCBQsUFBRkZjgAAACAy84NcBaXmIOwdu1ah+QgJiZGe/bs0R9//GFiVAAAAID7cYkEoWPHjvr6668l3U8OKlasqBIlSihLlixat26ducG5uJ0/71CHdm1VtXIFFS+UT2tX/2h2SEhCXG/3MnHcGJUpUcBhadKgttlhIZH4pbDq0051dWRxT13bEK61E9urZP4sDtvkzZ5Ocz9rqQtrBujK+sHaOKWDsqQPNCdgJCrez12bxYn/XJFLJAhz585V0aJFJUnff/+9Tp06pcOHD6tTp07q2bOnydG5tsjISOXJm089evY2OxQ4Adfb/eQMzqUlK9fblvFff2N2SEgkY3s20osv5FGrvrNU6rXP9OO2X7X0i7eUKa2/JClH5tRaPaGdfv3tkqq3Hav/vTZM4V+v0p3oeyZHjsTA+zlcmUs8Sfnq1avKkCGDJGnZsmVq1KiR8uTJo1atWunzzz83OTrXVr5CRZWvUNHsMOAkXG/34+npqdRp0podBhKZtzWZ6lcurEZdpmjT7hOSpEETVqpW+QJ6s2FZ9Ru3XP3eqaEVmw6r5+iltv1Onr1qVshIZLyfuzbmILiA9OnT6+DBg4qJidHy5ctVtWpVSVJERAQPSgPg1s6cPq061ULUsE419enZRRfOnzM7JCSCZJ6eSpbMU3ei7zq034m6q7JFc8hisahGufw6evqyvhv1pn5b3lcbJr2vOiEFTYoYgDtxiQShZcuWaty4sQoVKiSLxaLQ0FBJ0rZt2/71OQhRUVG6efOmwxIVFeWMsAEgSRUsXEQf9xukEWO+UpcevXXu7Fm90/oN3b592+zQ8B/diojS1l9OqUerqsqYxl8eHhY1rVFCLxTOpgxpUipdKj+l9PXWh2EvatWWw6rz3lf6bt0+zf4kTOWL5zQ7fADPOJcYYtS3b18VKlRIZ86cUaNGjWS1WiXdL6137979H/cNDw9Xv379HNo++ri3evbum1ThAoBTlCn31/CDXHnyqmDhInq5dqhWr1quuvUbmhgZEkOrPrM0vldjnVjWW/fuxWjPkbP6duVuFc/3nDwejG9YsmG/Rs/6SZL0y9FzeqFIdr3ZoIw2PhiWBCBp8KA0F/HKK6/EaQsLC/vX/Xr06KHOnTs7tMV4eCVaXADgKlKm9FfWrNn1+5nfzA4FieDk2auq1nasUnh7yd/XqgtX/9T0Qc108uw1Xbl+W3fvxejQyYsO+xw5dUlli2Y3J2AAbsMlEoT+/fv/4/revR8/w99qtdoqDg9F3DUSJS4AcCUREbf1+++nVaN2HbNDQSKKuBOtiDvRCkzpo9DSedVz9BLdvRejnQfPKE/WdA7b5s6aRqcv8IwgIKm5+yRll0gQFi5c6PD67t27OnnypJIlS6bg4OB/TBDcXUTEbZ05fdr2+uzZ33Xk8CH5BwQoY8ZMJkaGpMD1di+jRgxV+YqVlTFjJl2+fEkTx42Rp4enqtbgWQjPgtDSeWSRRb+evqzg51Jr8Psv6ddTlzTt+x2SpBHfrNP0Qc20cfcJrd95TNXK5FOt8gVU/Z2xJkeOxMD7OVyZxTAMl/y4/ebNm2rRooVefvllvfHGGwna150qCD9v36Y3W8UdilWnXn31HzTEhIiQlLje0p3oWLNDcJpe3T/Qnl0/68aN6woMSqWixUro7XYd9FyWrGaH5jSZK3czO4Qk0zC0qPq/W1OZ0wXq2s0ILV6zT33G/qCbt+/Ytmle53/qEvaiMqcL1K+nL2ngVyu1ZMMBE6NOWlc3fWp2CE7D+7mUIrnrfky/8tBlp/VVLb/r3craZRMESdq3b5/q1KmjU6dOJWg/d0oQAHfjTgkCnu0EAXG5U4IAEoSHXDFBcIkhRo9z48YN3bhxw+wwAAAA4EYs3MXIfKNGjXJ4bRiGzp8/r+nTp6tGjRomRQUAAAC4H5dIEEaMGOHw2sPDQ2nTplVYWJh69OhhUlQAAABwRx7uXUBwjQTh5MmTcdru3LmjL774Qrlz59aFCxdMiAoAAABwPx5mdh4VFaUePXqoVKlSKleunBYtWiRJmjx5soKDg/X555+rU6dOZoYIAAAAN2Nx4j9XZGoFoXfv3ho/frxCQ0O1efNmNWrUSC1bttTWrVs1bNgwNWrUSJ6enmaGCAAAALgVUxOEuXPnatq0aapbt67279+vIkWK6N69e9q7d68s7v4IOwAAAJjC3f8MNXWI0e+//66SJUtKkgoVKiSr1apOnTqRHAAAAAAmMbWCEBMTIy8vL9vrZMmSyc/Pz8SIAAAA4O5cdW6As5iaIBiGoRYtWshqtUq6f+eitm3bytfX12G7BQsWmBEeAAAA4HZMTRDCwsIcXjdr1sykSAAAAID7eA6CiSZPnmxm9wAAAAD+xtRJygAAAABci0s8SRkAAABwFe4+SZkKAgAAAAAbKggAAACAHXd/JBcVBAAAAAA2VBAAAAAAO25eQKCCAAAAAOAvVBAAAAAAOx5uPgmBCgIAAAAAGyoIAAAAgB33rh9QQQAAAABghwoCAAAAYM/NSwhUEAAAAADYUEEAAAAA7FjcvIRABQEAAACADRUEAAAAwI6bPwaBCgIAAACAv1BBAAAAAOy4eQGBCgIAAACAv1BBAAAAAOy5eQmBCgIAAAAAGxIEAAAAADYMMQIAAADs8KA0AAAAAHiACgIAAABghwelAQAAAMADVBAAAAAAO25eQKCCAAAAAOAvVBAAAAAAe25eQqCCAAAAAMCGBAEAAACwY3Hiv4QIDw/X//73P6VMmVLp0qVT/fr1deTIEYdt7ty5o3bt2il16tTy8/NTw4YNdfHixQT1Q4IAAAAAPAXWr1+vdu3aaevWrVq1apXu3r2ratWq6fbt27ZtOnXqpO+//15z587V+vXrde7cOTVo0CBB/VgMwzASO3izRdx95k4JwAN3omPNDgFOlLlyN7NDgBNd3fSp2SHAiVIkd92B/ntO/+m0voplTfnE+16+fFnp0qXT+vXrVbFiRd24cUNp06bVzJkz9corr0iSDh8+rPz582vLli0qXbp0vI5LBQEAAAAwSVRUlG7evOmwREVFxWvfGzduSJJSpUolSdq5c6fu3r2r0NBQ2zb58uVT1qxZtWXLlnjHRIIAAAAA2LE4cQkPD1dAQIDDEh4e/q8xxsbGqmPHjipXrpwKFSokSbpw4YK8vLwUGBjosG369Ol14cKFeJ8/tzkFAAAATNKjRw917tzZoc1qtf7rfu3atdP+/fu1cePGRI+JBAHAU+VeLHMQ3Alj0t1L6pqfmB0CnCjyx+5mh/B4TpweYbVa45UQ2Gvfvr2WLFmiDRs26LnnnrO1Z8iQQdHR0bp+/bpDFeHixYvKkCFDvI/PECMAAADgKWAYhtq3b6+FCxdqzZo1ypEjh8P6kiVLKnny5Fq9erWt7ciRIzp9+rTKlCkT736oIAAAAAB2Evp8Amdp166dZs6cqcWLFytlypS2eQUBAQHy8fFRQECAWrdurc6dOytVqlTy9/fXe++9pzJlysT7DkYSCQIAAADwVBg7dqwkqVKlSg7tkydPVosWLSRJI0aMkIeHhxo2bKioqChVr15dX375ZYL64TkIAJ4qt+7cMzsEOJGfN59juRPmILgXV56D8MuZW07rq0gWP6f1FV+88wIAAAB2LK45wshpmKQMAAAAwIYKAgAAAGDHzQsIVBAAAAAA/IUKAgAAAGDPzUsIVBAAAAAA2FBBAAAAAOy46oPSnIUKAgAAAAAbKggAAACAHZ6DAAAAAAAPUEEAAAAA7Lh5AYEKAgAAAIC/UEEAAAAA7Ll5CYEKAgAAAAAbKggAAACAHZ6DAAAAAAAPUEEAAAAA7PAcBAAAAAB4gAQBAAAAgA1DjAAAAAA7bj7CiAoCAAAAgL9QQQAAAADsuXkJgQoCAAAAABsqCAAAAIAdHpQGAAAAAA9QQQAAAADs8KA0AAAAAHiACgIAAABgx80LCFQQAAAAAPyFCgIAAABgz81LCKYmCFmzZlWlSpUUEhKiSpUqKTg42MxwAAAAALdn6hCjwYMHy9vbW5988oly586tLFmyqFmzZpowYYKOHj1qZmgAAABwUxYn/nNFFsMwDLODkKTz589r/fr1WrJkiebMmaPY2FjFxMQ80bEi7rrEKQFIArfu3DM7BDiRnzcjYd1J6pqfmB0CnCjyx+5mh/BYJy7fcVpfOdN6O62v+DL9nTciIkIbN27UunXrtHbtWu3evVuFChVSpUqVzA4NAAAAbsjdn4NgaoJQtmxZ7d69W/nz51elSpXUvXt3VaxYUUFBQWaGBQAAALgtUxOEw4cPy9fXV/ny5VO+fPmUP39+kgMAAACYys0LCOZOUr569arWrFmj0qVLa8WKFSpXrpwyZ86s1157TRMmTDAzNAAAAMAtucwkZcMwtHPnTo0ZM0YzZsxgkjKAR2KSsnthkrJ7YZKye3HlScqnrjpvknL21ExSdrBr1y6tW7dO69at08aNG/Xnn3+qcOHCeu+99xQSEmJmaAAAAIBbMjVBeP7551W8eHGFhITozTffVMWKFRUQEGBmSAAAAIBbMzVBuHbtmvz9/c0MAQAAAHDgqg8wcxZTE4SHycHOnTt16NAhSVKBAgVUokQJM8MCAAAA3JapCcKlS5fUpEkTrV+/XoGBgZKk69evq3Llypo9e7bSpk1rZngAAABwQ+7+oDRTb3P63nvv6datWzpw4ICuXbuma9euaf/+/bp586bef/99M0N7auz8eYc6tGurqpUrqHihfFq7+kezQ0IS4nq7l0Z1qqlCqUJxluGfDDQ7NCQBfr+fbX4+Xvr0nSo6MuMdXVv6gdZ+3kwl82awra9XPo++H9JEvy/ooMgfu6tIcDoTo4W7MzVBWL58ub788kvlz5/f1lagQAF98cUX+uGHH0yM7OkRGRmpPHnzqUfP3maHAifgeruXr6bN1qLl62zLiC/uPx+mcpVqJkeGpMDv97Nt7Ac19WLJ7Go1ZIlKvfm1ftx5SkuHNlWm1H6SpBTeybV5/+/6eMJakyOFdP9Bac5aXJGpQ4xiY2OVPHnyOO3JkydXbGysCRE9fcpXqKjyFSqaHQachOvtXoKCUjm8njF1ojI/l0XFSv7PpIiQlPj9fnZ5eyVT/Qp51aj3fG3ad0aSNGjaRtUqnUtv1i2ufpN/0qwfD0iSsqbnbo4wn6kVhBdffFEdOnTQuXPnbG1nz55Vp06dVKVKFRMjAwDXcvfuXa1ctkS16r4si7sPjgWeMsk8PZTM00N3oh0f9Hgn+q7KFspiUlT4JxaL8xZXZGqCMGbMGN28eVPZs2dXcHCwgoODlSNHDt28eVOjR482MzQAcCk/rVutW7f+VK069c0OBUAC3YqM1tYDv6tHs3LKmNpPHh4WNa1SUC/kz6wMqXzNDg+Iw9QhRlmyZNGuXbv0448/6vDhw5Kk/PnzKzQ0NN7HiIqKUlRUlENbjIeXrFZrosYKAGZasniBXihbXmnSMnEReBq1GrJE4z+spRNz2uteTKz2HL2gb9ceVPHcGf59Z5jART/adxJTEwRJslgsqlq1qqpWrfpE+4eHh6tfv34ObR993Fs9e/dNhOgAwHwXzp/Tzu1bNXDoSLNDAfCETp6/rmofzFQK7+TyT+GlC9dua/rH9XTywnWzQwPicHqCMGrUqHhvG59bnfbo0UOdO3d2aIvx8EpwXADgqpZ9t1CBQalUpjwTWIGnXcSdu4q4c1eBflaFlsqhnty1yCW56twAZ3F6gjBixIh4bWexWOKVIFit1jjDiSLuGk8U29MoIuK2zpw+bXt99uzvOnL4kPwDApQxYyYTI0NS4Hq7n9jYWC37fpFqvlRPyZKZXvRFEuL3+9kWWiqHLBbp1zPXFJwpSIPfqqxfz1zVtOX7JElBKb2VJZ2/Mj647WmeLPfvYnbx2m1d/OO2aXHDPVkMw3jm/pp2pwTh5+3b9GarsDjtderVV/9BQ0yICEmJ6y3dunPv3zd6hmzfukkftH9bM+YvUdZs2c0Ox+n8vN0nKeL3W0pd8xOzQ0gyDUPyqX/rEGVOk1LX/ryjxT8dUZ/JG3Tz9v15lM2qFdaErrXj7Ddw2kYNmrbR2eE6ReSP3c0O4bHOXY92Wl+ZAl1v5AsJAoCnirslCO7OnRIEPNsJAuIiQbjPFRMEp7/z/n2+wD8ZPnx4EkYCAAAAxMUcBCfbvXt3vLbjQUAAAACA8zk9QVi7ltn6AAAAcF0WN38OgqlPUn7o2LFjWrFihSIjIyVJz+C0CAAAAOCpYGqCcPXqVVWpUkV58uRRrVq1dP78eUlS69at9cEHH5gZGgAAAOCWTE0QOnXqpOTJk+v06dNKkSKFrb1JkyZavny5iZEBAADAbVmcuLggU+8ft3LlSq1YsULPPfecQ3vu3Ln122+/mRQVAAAA4L5MTRBu377tUDl46Nq1a3GejgwAAAA4g4t+sO80pgwxOnfunCSpQoUKmjZtmq3dYrEoNjZWQ4cOVeXKlc0IDQAAAHBrplQQChYsqC+++EKffvqpXnzxRf3888+Kjo5W165ddeDAAV27dk2bNm0yIzQAAAC4OXd/HJcpCcKgQYP09ttvq0aNGjp48KDGjRunlClT6tatW2rQoIHatWunjBkzmhEaAAAA4NYshkkPHTh58qRat26tgwcP6quvvlLdunUT7dgRd3mOAvCsunXnntkhwIn8vE2dKgcnS13zE7NDgBNF/tjd7BAe6/Kfzvu/Jm1K13ufMy2iHDlyaM2aNRozZowaNmyo/PnzK1kyx3B27dplUnQAAACAezI1Zfntt9+0YMECBQUFqV69enESBAAAAMDpmINgjgkTJuiDDz5QaGioDhw4oLRp05oVCgAAAIAHTEkQatSooe3bt2vMmDFq3ry5GSEAAAAAj+TmBQRzEoSYmBj98ssvcZ6gDAAAAMBcpiQIq1atMqNbAAAA4F+5+3MQTHmSMgAAAADXxG2DAAAAADsWN5+FQAUBAAAAgA0VBAAAAMAOcxAAAAAA4AESBAAAAAA2JAgAAAAAbEgQAAAAANgwSRkAAACwwyRlAAAAAHiACgIAAABghwelAQAAAMADVBAAAAAAO8xBAAAAAIAHqCAAAAAAdty8gEAFAQAAAMBfqCAAAAAA9ty8hEAFAQAAAIANFQQAAADADs9BAAAAAIAHqCAAAAAAdngOAgAAAAA8QAUBAAAAsOPmBQQqCAAAAAD+QgUBAAAAsOfmJQQqCAAAAABsSBAAAAAA2JAgAAAAAHYsTvz3JL744gtlz55d3t7eeuGFF7R9+/ZEPX8SBAAAAOApMWfOHHXu3Fl9+vTRrl27VLRoUVWvXl2XLl1KtD5IEAAAAAA7FovzloQaPny43nzzTbVs2VIFChTQuHHjlCJFCk2aNCnRzp8EAQAAADBJVFSUbt686bBERUU9ctvo6Gjt3LlToaGhtjYPDw+FhoZqy5YtiRbTM3mb0xTJ3e/eVFFRUQoPD1ePHj1ktVrNDgdJzJ2vd4rkyc0Owenc+Xq7I3e+3pE/djc7BKdz5+vtyryd+Bdy34Hh6tevn0Nbnz591Ldv3zjbXrlyRTExMUqfPr1De/r06XX48OFEi8liGIaRaEeDaW7evKmAgADduHFD/v7+ZoeDJMb1di9cb/fC9XYvXG9ERUXFqRhYrdZHJoznzp1T5syZtXnzZpUpU8bW3rVrV61fv17btm1LlJieyQoCAAAA8DR4XDLwKGnSpJGnp6cuXrzo0H7x4kVlyJAh0WJiDgIAAADwFPDy8lLJkiW1evVqW1tsbKxWr17tUFH4r6ggAAAAAE+Jzp07KywsTKVKldLzzz+vkSNH6vbt22rZsmWi9UGC8IywWq3q06cPE5zcBNfbvXC93QvX271wvZFQTZo00eXLl9W7d29duHBBxYoV0/Lly+NMXP4vmKQMAAAAwIY5CAAAAABsSBAAAAAA2JAgAAAAALAhQXjGrFu3ThaLRdevX//H7bJnz66RI0c6JSa4jr59+6pYsWJmh4EEiO/vNICnQ6VKldSxY0fba/4/hisiQXCSFi1aqH79+nHak/o//ylTpigwMDBJjo34adGihSwWi9q2bRtnXbt27WSxWNSiRQunxPLhhx863DsZievhtbZYLEqePLly5Mihrl276s6dO4nWx8P3jIdL2rRpVatWLe3bty9Bx+GPEudI6p8JrqPzGYah0NBQVa9ePc66L7/8UoGBgfr9999NiAxIPCQIgBNkyZJFs2fPVmRkpK3tzp07mjlzprJmzeq0OPz8/JQ6dWqn9eeOatSoofPnz+vEiRMaMWKExo8frz59+iR6P0eOHNH58+e1YsUKRUVFqXbt2oqOjk70fvDfOetnAs5hsVg0efJkbdu2TePHj7e1nzx5Ul27dtXo0aP13HPPmRgh8N+RILiYjRs3qkKFCvLx8VGWLFn0/vvv6/bt27b106dPV6lSpZQyZUplyJBBr732mi5duvTIY61bt04tW7bUjRs3bJ9g9e3b17Y+IiJCrVq1UsqUKZU1a1Z99dVXtnUvvvii2rdv73C8y5cvy8vLi0+gn0CJEiWUJUsWLViwwNa2YMECZc2aVcWLF7e1RUVF6f3331e6dOnk7e2t8uXLa8eOHbb1f/zxh15//XWlTZtWPj4+yp07tyZPnmxb361bN+XJk0cpUqRQzpw51atXL929e9e2/lFDjCZNmqSCBQvKarUqY8aMca47EsZqtSpDhgzKkiWL6tevr9DQUK1atUrS/addhoeHK0eOHPLx8VHRokU1b948h/2XLVumPHnyyMfHR5UrV9apU6ce2U+6dOmUIUMGlShRQh07dtSZM2d0+PBh2/r58+fbrmv27Nk1bNgw27pKlSrpt99+U6dOnWzvDUg6//Qz8agKQLFixWzv1YZhqG/fvsqaNausVqsyZcqk999/XxLX0UxZsmTR559/rg8//FAnT56UYRhq3bq1qlWrpuLFi6tmzZry8/NT+vTp9cYbb+jKlSvxPvbp06dVr149+fn5yd/fX40bN9bFixclSTdu3JCnp6d+/vlnSfffU1KlSqXSpUvb9v/mm2+UJUuWxD1huB0SBBdy/Phx1ahRQw0bNtQvv/yiOXPmaOPGjQ5/sN29e1cDBgzQ3r17tWjRIp06deqxw1PKli2rkSNHyt/fX+fPn9f58+f14Ycf2tYPGzZMpUqV0u7du/Xuu+/qnXfe0ZEjRyRJbdq00cyZMxUVFWXb/ptvvlHmzJn14osvJs034BnXqlUrhz/mJ02aFOeph127dtX8+fM1depU7dq1S7ly5VL16tV17do1SVKvXr108OBB/fDDDzp06JDGjh2rNGnS2PZPmTKlpkyZooMHD+rzzz/XhAkTNGLEiMfGNHbsWLVr105vvfWW9u3bp++++065cuVK5DN3X/v379fmzZvl5eUlSQoPD9e0adM0btw4HThwQJ06dVKzZs20fv16SdKZM2fUoEED1alTR3v27FGbNm3UvXv3f+zjxo0bmj17tiTZ+tm5c6caN26spk2bat++ferbt6969eqlKVOmSLqfnD733HPq37+/7b0BzvH3n4l/M3/+fFvV4ejRo1q0aJEKFy4sietotrCwMFWpUkWtWrXSmDFjtH//fo0fP14vvviiihcvrp9//lnLly/XxYsX1bhx43gdMzY2VvXq1dO1a9e0fv16rVq1SidOnFCTJk0kSQEBASpWrJjWrVsnSdq3b58sFot2796tW7duSZLWr1+vkJCQJDlnuBEDThEWFmZ4enoavr6+Dou3t7chyfjjjz+M1q1bG2+99ZbDfj/99JPh4eFhREZGPvK4O3bsMCQZf/75p2EYhrF27Vrb8QzDMCZPnmwEBATE2S9btmxGs2bNbK9jY2ONdOnSGWPHjjUMwzAiIyONoKAgY86cObZtihQpYvTt2/e/fBvcUlhYmFGvXj3j0qVLhtVqNU6dOmWcOnXK8Pb2Ni5fvmzUq1fPCAsLM27dumUkT57cmDFjhm3f6OhoI1OmTMbQoUMNwzCMOnXqGC1btox3359++qlRsmRJ2+s+ffoYRYsWtb3OlCmT0bNnz/9+kjAMw/H33Gq1GpIMDw8PY968ecadO3eMFClSGJs3b3bYp3Xr1sarr75qGIZh9OjRwyhQoIDD+m7dujn8Tj/8HX/4HiLJkGTUrVvXts9rr71mVK1a1eE4Xbp0cTh2tmzZjBEjRiTi2eNR/ulnwjAefR2KFi1q9OnTxzAMwxg2bJiRJ08eIzo6+pHH5zqa6+LFi0aaNGkMDw8PY+HChcaAAQOMatWqOWxz5swZQ5Jx5MgRwzAMIyQkxOjQoYNtvf01XLlypeHp6WmcPn3atv7AgQOGJGP79u2GYRhG586djdq1axuGYRgjR440mjRpYhQtWtT44YcfDMMwjFy5chlfffVVUp0y3AQVBCeqXLmy9uzZ47BMnDjRtn7v3r2aMmWK/Pz8bEv16tUVGxurkydPSrr/yWCdOnWUNWtWpUyZ0vYpwenTpxMcT5EiRWxfWywWZciQwTZcydvbW2+88YYmTZokSdq1a5f279/vtMm0z6K0adOqdu3amjJliiZPnqzatWs7fPp//Phx3b17V+XKlbO1JU+eXM8//7wOHTokSXrnnXc0e/ZsFStWTF27dtXmzZsd+pgzZ47KlSunDBkyyM/PTx9//PFjfzYuXbqkc+fOqUqVKklwtu7r4e/5tm3bFBYWppYtW6phw4Y6duyYIiIiVLVqVYff8WnTpun48eOSpEOHDumFF15wOF6ZMmUe2c9PP/2knTt3asqUKcqTJ4/GjRtnW3fo0CGHnyNJKleunI4ePaqYmJhEPmP8m8f9TMRHo0aNFBkZqZw5c+rNN9/UwoULde/evSSOGPGVLl06vf3228qfP7/q16+vvXv3au3atQ6/4/ny5ZMk2+/5Pzl06JCyZMniMESoQIECCgwMtP0/EBISoo0bNyomJkbr169XpUqVVKlSJa1bt07nzp3TsWPHVKlSpSQ5X7iPZGYH4E58fX3jDN+wv9PBrVu39Pbbb9vGl9rLmjWrbt++rerVq6t69eqaMWOG0qZNq9OnT6t69epPNDkxefLkDq8tFotiY2Ntr9u0aaNixYrp999/1+TJk/Xiiy8qW7ZsCe4Hf2nVqpVtyNgXX3yR4P1r1qyp3377TcuWLdOqVatUpUoVtWvXTp999pm2bNmi119/Xf369VP16tUVEBCg2bNnO4w9t+fj4/OfzgWPZv97PmnSJBUtWlRff/21ChUqJElaunSpMmfO7LCP1WpNcD85cuRQYGCg8ubNq0uXLqlJkybasGHDfz8BJLrH/Uy0bt1aHh4eMgzDYXv7eUNZsmTRkSNH9OOPP2rVqlV699139emnn2r9+vVx3sNhjmTJkilZsvt/Tt26dUt16tTRJ598Eme7jBkzJkp/FStW1J9//qldu3Zpw4YNGjx4sDJkyKAhQ4aoaNGiypQpk3Lnzp0ofcF9UUFwISVKlNDBgweVK1euOIuXl5cOHz6sq1evasiQIapQoYLy5cv32AnKD3l5eT3xJ4aFCxdWqVKlNGHCBM2cOVOtWrV6ouPgLzVq1FB0dLTu3r0b5xZ5wcHB8vLy0qZNm2xtd+/e1Y4dO1SgQAFbW9q0aRUWFqZvvvlGI0eOtE0u37x5s7Jly6aePXuqVKlSyp07t3777bfHxpIyZUplz56dSedJyMPDQx999JE+/vhjFShQQFarVadPn47z+/3w08L8+fNr+/btDsfYunXrv/bTrl077d+/XwsXLrQdx/7nSJI2bdqkPHnyyNPTU9J/e2/Ak7P/mYiMjFTatGkd5g7cvHnTVjF+yMfHR3Xq1NGoUaO0bt06bdmyxXZbW66jaylRooQOHDig7Nmzx/k99/X1/df98+fPrzNnzujMmTO2toMHD+r69eu2/wcCAwNVpEgRjRkzRsmTJ1e+fPlUsWJF7d69W0uWLGH+ARIFCYIL6datmzZv3qz27dtrz549Onr0qBYvXmz7xDlr1qzy8vLS6NGjdeLECX333XcaMGDAPx4ze/bsunXrllavXq0rV64oIiIiQTG1adNGQ4YMkWEYevnll5/43HCfp6enDh06pIMHD9r+UHvI19dX77zzjrp06aLly5fr4MGDevPNNxUREaHWrVtLknr37q3Fixfr2LFjOnDggJYsWaL8+fNLknLnzq3Tp09r9uzZOn78uEaNGmX7g/Fx+vbtq2HDhmnUqFE6evSodu3apdGjRyfNybupRo0aydPTU+PHj9eHH36oTp06aerUqTp+/Ljt+z116lRJUtu2bXX06FF16dJFR44c0cyZM20Ti/9JihQp9Oabb6pPnz4yDEMffPCBVq9erQEDBujXX3/V1KlTNWbMGIebFGTPnl0bNmzQ2bNnE3SHFfx3D38mvvjiC7344ouaPn26fvrpJ+3bt09hYWEO7w1TpkzR119/rf379+vEiRP65ptv5OPjY6vmch1dS7t27XTt2jW9+uqr2rFjh44fP64VK1aoZcuW8UrkQkNDVbhwYb3++uvatWuXtm/frubNmyskJESlSpWybVepUiXNmDHDlgykSpVK+fPn15w5c0gQkChIEFxIkSJFtH79ev3666+qUKGCihcvrt69eytTpkyS7n9yPGXKFM2dO1cFChTQkCFD9Nlnn/3jMcuWLau2bduqSZMmSps2rYYOHZqgmF599VUlS5ZMr776qry9vZ/43PAXf39/+fv7P3LdkCFD1LBhQ73xxhsqUaKEjh07phUrVigoKEjS/U8Le/TooSJFiqhixYry9PS03cGmbt266tSpk9q3b69ixYpp8+bN6tWr1z/GEhYWppEjR+rLL79UwYIF9dJLL+no0aOJe8JuLlmyZGrfvr2GDh2qHj16qFevXgoPD1f+/PlVo0YNLV26VDly5JB0/0OA+fPna9GiRSpatKjGjRunwYMHx6uf9u3b69ChQ5o7d65KlCihb7/9VrNnz1ahQoXUu3dv9e/f32EOUf/+/XXq1CkFBwcrbdq0SXHqeAz7n4nu3bsrJCREL730kmrXrq369esrODjYtm1gYKAmTJigcuXKqUiRIvrxxx/1/fff255nwnV0LZkyZdKmTZsUExOjatWqqXDhwurYsaMCAwPl4fHvf3JZLBYtXrxYQUFBqlixokJDQ5UzZ07NmTPHYbuQkBDFxMQ4zDWoVKlSnDbgSVmMvw9+BOw8/I9nx44dKlGihNnhAAAAIImRIOCR7t69q6tXr9oeAvP38cwAAAB4NjHECI+0adMmZcyYUTt27HC4fSIAAACebVQQAAAAANhQQQAAAABgQ4IAAAAAwIYEAQAAAIANCQIAAAAAGxIEAAAAADYkCADgYlq0aKH69evbXleqVEkdO3Z0ehzr1q2TxWLR9evXnd43AMA8JAgAEE8tWrSQxWKRxWKRl5eXcuXKpf79++vevXtJ2u+CBQs0YMCAeG3LH/UAgP8qmdkBAMDTpEaNGpo8ebKioqK0bNkytWvXTsmTJ1ePHj0ctouOjpaXl1ei9JkqVapEOQ4AAPFBBQEAEsBqtSpDhgzKli2b3nnnHYWGhuq7776zDQsaNGiQMmXKpLx580qSzpw5o8aNGyswMFCpUqVSvXr1dOrUKdvxYmJi1LlzZwUGBip16tTq2rWr/v78yr8PMYqKilK3bt2UJUsWWa1W5cqVS19//bVOnTqlypUrS5KCgoJksVjUokULSVJsbKzCw8OVI0cO+fj4qGjRopo3b55DP8uWLVOePHnk4+OjypUrO8QJAHAfJAgA8B/4+PgoOjpakrR69WodOXJEq1at0pIlS3T37l1Vr15dKVOm1E8//aRNmzbJz89PNWrUsO0zbNgwTZkyRZMmTdLGjRt17do1LVy48B/7bN68uWbNmqVRo0bp0KFDGj9+vPz8/JQlSxbNnz9fknTkyBGdP39en3/+uSQpPDxc06ZN07hx43TgwAF16tRJzZo10/r16yXdT2QaNGigOnXqaM+ePWrTpo26d++eVN82AIALY4gRADwBwzC0evVqrVixQu+9954uX74sX19fTZw40Ta06JtvvlFsbKwmTpwoi8UiSZo8ebICAwO1bt06VatWTSNHjlSPHj3UoEEDSdK4ceO0YsWKx/b766+/6ttvv9WqVasUGhoqScqZM6dt/cPhSOnSpVNgYKCk+xWHwYMH68cff1SZMmVs+2zcuFHjx49XSEiIxo4dq+DgYA0bNkySlDdvXu3bt0+ffPJJIn7XAABPAxIEAEiAJUuWyM/PT3fv3lVsbKxee+019e3bV+3atVPhwoUd5h3s3btXx44dU8qUKR2OcefOHR0/flw3btzQ+fPn9cILL9jWJUuWTKVKlYozzOihPXv2yNPTUyEhIfGO+dixY4qIiFDVqlUd2qOjo1W8eHFJ0qFDhxzikGRLJgAA7oUEAQASoHLlyho7dqy8vLyUKVMmJUv219uor6+vw7a3bt1SyZIlNWPGjDjHSZs27RP17+Pjk+B9bt26JUlaunSpMmfO7LDOarU+URwAgGcXCQIAJICvr69y5coVr21LlCihOXPmKF26dPL393/kNhkzZtS2bdtUsWJFSdK9e/e0c+dOlShR4pHbFy5cWLGxsVq/fr1tiJG9hxWMmJgYW1uBAgVktVp1+vTpx1Ye8ufPr++++86hbevWrf9+kgCAZw6TlAEgibz++utKkyaN6tWrp59++kknT57UunXr9P777+v333+XJHXo0EFDhgzRokWLdPjwYb377rv/+AyD7NmzKywsTK1atdKiRYtsx/z2228lSdmyZZPFYtGSJUt0+fJl3bp1SylTptSHH36oTp06aerUqTp+/Lh27dql0aNHa+rUqZKktm3b6ujRo+rSpYuOHDmimTNnasqUKUn9LQIAuCASBABIIilSpNCGDRuUNWtWNWjQQPnz51fr1q11584dW0Xhgw8+0BtvvKGwsDCVKVNGKVOm1Msvv/yPxx07dqxeeeUVvfvuu8qXL5/efPNN3b59W5KUOXNm9evXT927d1f69OnVvn17SdKAAQPUq1cvhYeHK3/+/KpRo4aWLl2qHDlySJKyZs2q+fPna9GiRSpatKjGjRunwYMHJ+F3BwDgqizG42bCAQAAAHA7VBAAAAAA2JAgAAAAALAhQQAAAABgQ4IAAAAAwIYEAQAAAIANCQIAAAAAGxIEAAAAADYkCAAAAABsSBAAAAAA2JAgAAAAALAhQQAAAABg83+8z8CvAk39GQAAAABJRU5ErkJggg=="},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"
","image/png":"iVBORw0KGgoAAAANSUhEUgAAAxoAAAMHCAYAAAC+CCEXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACOuElEQVR4nOzdd1RUx/s/8PcCW+jLAoIUQSFqAAtiCRjBkihqFAtiSWKLSuxoTIz5aNAUS2yISIwNTewdY0FjlGBUIiJFIEQRAY2YUFWUzvP7wx/367qgYBYRfF7n7DnembmzM7OX6z5778wVERGBMcYYY4wxxtRIo74bwBhjjDHGGGt8ONBgjDHGGGOMqR0HGowxxhhjjDG140CDMcYYY4wxpnYcaDDGGGOMMcbUjgMNxhhjjDHGmNpxoMEYY4wxxhhTOw40GGOMMcYYY2rHgQZjjDHGGGNM7TjQYA2Kn58funfv/p/qaN++PRYuXKiW9rCqhYeHQyQSCa/s7GyVMra2tkL+ihUr6rQ9paWlGDVqFAwMDCASibB169Y6fT/GGGOMAVr13QDGauPrr79GaWnpf6rj119/hVQqVVOLWFXc3NyQmZmJCxcuYOjQoVWWiYqKQnl5OTp16lTn7dm/fz+OHDmC8PBwWFlZwdDQUMhbvHgxQkNDERsbizfeeAMJCQl13h7WMIwdOxbZ2dk4evRofTeFMcYaJA40WIOir6//n+swNjZWQ0vYs0gkEpibm0OhUFRbxtTUFACgqalZ5+25ceMGbGxs0LFjR5W8wsJCjBw5Ei1btkRMTEydt4Uxxhh7XfCtU+yZFi5cCCcnJ3z22WfQ19eHlZUVtmzZolLO1tYWS5YswbRp02BoaAhDQ0OsXbtWyA8ODoa9vT10dHTQsWNHnD17Vmn/srIyLFy4ELa2tpDJZGjTpg0OHDgg5H/zzTfCbTbV3ToVFBQEOzs7yGQy2NjY4H//+59S/jvvvCPUUdWtU7m5uRgxYgQMDAxgYGCAkSNHIi8vT8jfunUr9PT0sGPHDlhbW8PY2PiVvQWrsq2///472rVrB5lMhtatW+PRo0cAgLS0NAwaNAj6+vpo2rQppk6dKuRVunLlCt59913o6urC2NgYI0eOxIMHDwA8/uLu5eUFMzMzyGQytGvXDj///PNL7+fzLFy4ECKRCAsWLEBSUpLw+T9569TXX38NPz8/2NnZvfD77N27F46OjtDW1oaFhQXGjx+vUmbPnj3CZ9GsWTP4+/sLeUVFRZg8eTKMjY2ho6ODfv36ISMjQ2n/tLQ0iEQiHDlyBH369IGOjg4sLCxw8eJFAI8DphkzZsDMzAyGhobo378/0tLSXrhPL+p5YyESibB//35hu/IcU6l79+748MMP8d5770FbWxtt27bFpUuXhPzKYzsgIADGxsYwNTXF4sWLld4jLS0Nffv2hY6ODoyNjTFlyhQUFxcrlXnW38jYsWMhEomwbds2HDt27JnnDcYYY9XjQIM9V3JyMjIzMxEVFYV58+Zh4sSJSExMVCkXHBwMHR0dREZG4uTJk7C2tgbw+D/0RYsWYeXKlUhISMCYMWPQv39/pS9S/v7+WLduHZYtW4aEhAQsWbIEf//9t5A/a9YsZGZmYuLEiVW2MTo6GtOnT8eXX36Jv/76Czt37oS5ublSmX379iEzMxOOjo5V1jF16lQkJCTg9OnTOH36NK5evYoZM2YolSkqKsKxY8dw+vRpLFy4EIsWLcLVq1drNpAvWVlZGT799FNhTP38/EBEKCkpQZ8+faBQKHDp0iX8/PPPiIqKwpw5c4R9s7Ky0KtXL5iZmeH8+fM4c+YMWrZsiXv37gEAsrOz0alTJxw7dgxJSUkYPnw4Bg8ejJs3b9ZXd6s0Z84cZGZm4pNPPkGrVq2QmZmJzMxMDB8+XG3vcffuXbz//vt4//338eeff+LIkSNo2bKlUplffvkF77//PkaOHIm4uDjs2rULRUVFQv6iRYtw5MgR7Nu3D5GRkXj06BHef//9Kt/vs88+w7BhwxAfH48ffvhBuA1w8uTJuHTpEg4fPoyoqCg0adIEAwcORHl5udr6+jw1GYua2LVrF3r16oXY2Fh06tQJQ4cOVbpl8tGjRzhx4gQiIiKwdu1afPXVVzhx4oSQP3LkSBQWFiIyMhL79u1DaGgovvnmG5X3qe5vZM2aNcjMzISPjw/eeecd4bh58m+EMcZYDRBjz+Dv709isZjy8vKENFdXV5o9e7ZSORsbG3J3d6+yDltbW1q/fr1S2ltvvUVLliwhIqJHjx6RVCqlLVu2PLc9M2fOJA8PD5X0/fv3k6amJt27d++5dbRr1478/f2V0vLy8khDQ4OOHDkipP3888+kqalJ+fn5REQUEhJCAOjWrVtCGUNDwxq1+2WrbOuZM2dU8rZu3UqWlpZUXl4upIWFhZFMJqOKigoiIvryyy+pRYsWVFpaWuP3VCgU9MMPPyilnT17lgBQVlZWtfvZ2NjQ8uXLa/w+L8Lf358cHR3/c5mqXL58mQBQYmJitWXc3d1p9OjR1eYrFAoKDAwUtq9evUoA6OrVq0LazZs3CQB9+eWXKvvfvHmTRCIRJScnC2kPHz4kDQ0NunjxYm279MJqMhYAaN++fcL20+Pu4eFBHTt2FLbv3btHUqlU+NusPLYTEhKEMiNHjqQhQ4YQEVF8fDwBoPj4eCF/7dq1ZGxsrNSOZ/2NVBozZgz179//ed1mjDFWDb6iwZ7L0tIScrlc2HZ0dMSNGzdUynXr1k0l7cGDB0hLS4Ofnx/09PSEV1RUFFJTUwEAKSkpKC4urnL/murVqxfs7OzQunVrjBkzBhs3bhRu86mJmzdvoqKiAm3atBHS2rVrh/LycqVf6aVSKaysrIRtuVyO3NzcF253XRKJROjatatKenx8PDIzM2FgYCB8HoMHD0ZRUREyMzMBAAkJCXB1dYWWVtXTuB4+fIhPP/0Ub775JuRyOfT09JCXl4eCgoI67VN96du3rzBWffv2Vcpr27Yt3Nzc8Pbbb2PEiBEIDAxEVlaWUpmEhIRqj++8vDzk5uYqHXuOjo7Q0tJCSkqKSvmq6rl69SqICC4uLkI7mzRpgoqKCuHv7GWoyVjUxJO3UhkYGMDa2lrpnKOpqYk333xT2H7ynJSSkgINDQ04ODgI+e3atUNOTg7y8/OV3qe6vxHGGGPqwZPB2QshIpW0J4ORp23cuBFvvfWWUpqBgYHa2iOXy3H16lVEREQgPDwcCxcuxNq1a3HlypVqvyy/iKrqqmosXgU6OjqQSCRV5rm4uGDnzp0q6U2aNKlR3XPmzMHx48cRGBiIVq1aQUtLC66urqioqPhPbX5Vbdq0CYWFhQAAbW1tpTyxWIxz587hwoULCA8Px7p167B06VIkJibCyMhI7W2p7u9MQ0MDly9fVjlGzczM1N6G6rzIWNT0mHne39mL/B0+62+EMcbYf8dXNNhz/f3330q/BCYmJtZ44qy+vj5sbGyQkZEBe3t7pVfll1p7e3tIpVL8/vvv/6mdEokE77zzDr755hscOnQIV69erfLKS1WaN28ODQ0NpfkWcXFx0NDQQPPmzf9Tu141bdq0wY0bN2Bubq7ymVR+SXVycsLFixervb//999/x7hx4+Dl5YXWrVtDT08POTk5KuX09PQAQPiSXhU9Pb1n5r8KLC0thTGytLRUydfQ0MDbb7+N+fPn49y5c8jMzFSawOzk5FTt8W1kZAQjIyOlYy8xMRFlZWWwt7evUfucnJxARMjNzVX5TNWxUlttPG8s5HK50pWvW7duqdTx5Byw+/fv49atW0rnnPLyciQnJyuVr8y3s7NDRUUFkpKShPy4uDgYGxs/88eQqkgkEpSVldVqH8YYY/+HAw32XOXl5Zg5cyb++usvrFu3Dn/88UeVq+pU58svv8TSpUuxefNm3LhxAxcuXMBnn32G06dPA3j8C/Enn3yCzz77DHv37kVqaipOnjyJgIAAoY67d+/i7t27ePToEUpKSoTtkpISAMDx48exZs0axMXF4caNG9i2bRsMDQ3RrFkzAFDap6ysDAUFBcI28PjLj7e3N+bNm4dLly7h0qVL+PzzzzFixAilZy40BiNHjoRCocDw4cMRFRWFa9euYefOnZg8ebJQZtq0acjNzcXYsWMRFxeHhIQELFy4UJig37JlS/z888+4evUqrly5gtGjR0Mmk6m8V6tWraCnp4eNGzciMzNT5dYV4PHVlYMHDyIlJQV379596VeIMjIyEBsbi7t376KoqAixsbGIjY2t8f5RUVH49ttvER0djbS0NGzYsAFisRitW7cWysyfPx87duzAd999h2vXruHSpUv47LPPhPyJEydi6dKlOHPmDOLj4zFt2jS4ubkp3UL0LM2bN8cHH3yAcePGISwsDKmpqQgLC8P777+vtHJaXavJWFR+3pXBwpEjR1TquXLlCtasWYO//voLs2bNgrGxMTw9PYV8kUiE2bNnIykpCXv27MHBgwfx0UcfAXh8+1bnzp0xffp0xMfH48yZM1iyZAl8fX1r3R97e3tER0cjOTkZRUVFHHQwxlht1eP8ENYAVE7U9PPzI11dXbKwsKBNmzaplHvehN7g4GBq1aoVicVisrCwIB8fH7p27ZqQX1paSv7+/tSsWTOSSCTk4OCgNGEUQJWvs2fPEhHRhQsXyMPDg+RyOenq6pKrqytFREQI+1dOSq7qVSkrK4uGDRtGenp6pKenRz4+PpSTkyPkh4SEkK6ubq36XV+qauuTUlNTaciQIWRoaEi6urrk7OxMAQEBSmWio6PpnXfeIR0dHTIyMqJhw4bR/fv3iYgoLS2NevbsSdra2mRjY0Pbtm0jOzu7Ksdiz549ZG1tTQDIy8tLJT8jI4Pc3d1JLBYTAKWFB9TlWRO9x4wZ88zj4nn++usv8vT0JBMTE9LW1qZ27drRoUOHVMrt3r2b2rZtSxKJhKysrGjBggVC3qNHj2jixIkkl8tJJpNRnz596ObNm0r7V04Gj4qKqrIdDx8+JD8/P2ratClJJBKyt7enqVOnUmFhYY378l/VZCxiY2PJycmJFAoF9e3bl6ZMmaIyGfz999+nPn36kFQqpTZt2ihNaK88tr/77juSy+VkbGxMX3/9tdJ73Lhxg/r06UMymYyMjIzI19dXZRye9zdCRJSbm0v9+vUjfX19AqCyiARjjLFnExG9ojeYs1fCwoULsX//fn5aMmPspejevTucnJwQFBRUZf7WrVsxbdq0RrvwAGOMNSZ86xRjjDHGGGNM7TjQYIwxxhhjjKkd3zrFGGOMMcYYUzu+osEYY4wxxhhTOw40GGOMMcYYY2rHgQZjjDHGGGNM7TjQYIwxxhhjjKkdBxqMMcYYY4wxteNAgzHGGGOMMaZ2HGgwxhhjjDHG1I4DDcYYY4wxxpjacaDBGGOMMcYYUzsONBhjjDHGGGNqx4EGY4wxxhhjTO040GCMMcYYY4ypHQcajDHGGGOMMbXjQIMxxhhjjDGmdhxoMMYYY4wxxtSOAw3GGGOMMcaY2nGgwRhjjDHGGFM7DjTqiK2tLUQiEUQiEVasWPHCdbzovowxxhhjjNWn1y7QCA8Ph0gkQnZ2tpCWlpYGkUiEy5cvq+19oqKikJmZCSsrq2eW6969O6ZNm6a2932dBQUFwdraGtra2vD09MTt27drtf+1a9fQr18/yOVyGBkZYdy4cXjw4IGQX1RUhHHjxsHBwQEaGhqN+nMrLi7G5MmTIZfLIZfLMWXKFJSUlNSqjt9//x1ubm7Q09ND06ZN4evri4KCAiE/MzMTI0aMgKmpKfT19TFkyBBkZmaquyuvhIyMDHh6ekJbWxvW1tYIDg6udR0rV66Evb09ZDIZnJyccPToUaX8vLw8jBgxAnp6emjSpAm+/PJLdTW/wTl8+DDeffddyOVylfN9pWedLyr/T3j6xRhjrHZeu0DjZTE1NYW5uTk0NTXruymvhWPHjsHPzw+LFi1CZGQkioqK4OPjU+P9y8rKMHDgQEgkEkRGRuL48eO4dOkSpkyZIpQpLy+HRCLBnDlz0K5du7roxitj/vz5OHz4MEJDQxEaGopDhw7B39+/xvvfv38f7733Htq1a4e4uDjs27cPp06dwueffy6U+fDDD5GRkYFffvkFv//+O7Kzs2v1mTUk3t7eKC4uRmRkJBYtWoQZM2bg5MmTNd5/+/btmD9/PpYtW4bExESMHDkSQ4YMQXJyslBm0qRJuHr1KsLDw7Fx40asWrUKP/zwQ11055V3//59uLu7Y+7cuVXm1/R8ERYWhszMTOHFGGOslug1c/bsWQJAWVlZQtrNmzcJAEVFRQlpZ86coc6dO5NUKiV7e3sKDAxUquezzz6jN954g6RSKZmbm9Ps2bOppKRE5f1sbGxo+fLlKukeHh4EQOUVEhKitO+8efOof//+pK2tTS4uLnT9+nUiInr48CHp6+vTnj17lOqdPXs2eXh4vMjQNGgDBgwgb29vYTshIYEAUExMTI32T0pKIgCUlJQkpO3du5fEYjHdu3dPpbyHhwdNnTr1P7f7VVRWVkZGRkYUFBQkpAUFBZGxsTGVlZXVqI5Lly4RAEpLSxPS5syZQ2+99RYRPT5+RSIRHT9+XGWfP//8U009eTVER0cTAEpISBDSvL29ycvLq8Z1+Pj4kI+Pj1Kag4MDzZ07l4iIsrKySENDg44ePSrkz5kzh9q1a/ef2t7QVXW+J3r++aKq/xMYY4zVHl/RqELlLTSjRo1CYmIi1qxZg0WLFmHv3r1CmcLCQgQFBeHPP//E9u3bsXPnTixdurTG73Hw4EFkZmbC1dUV48aNE34xGz58uFK5TZs2YeLEiYiKikJpaanwi7COjg6GDRuG7du3C2UrKiqwe/dujBkz5j+OQMMTHR2Nrl27CtuOjo5QKBQ1vh2u8rYgiUQipMlkMpSWliIxMVG9jX3FpaamIi8vT2k83d3dkZOTg5s3b9aojtatW8PExAR79uxBRUUF/v33X5w+fRr9+/cHAJSWloKIVMYbAGJiYtTYm/oXHR0NuVwOR0dHIc3d3b1Wt2qWlJQojRXweLwqxyomJgYVFRUqn9nVq1dRXFz8H3vQ+NT0fDFkyBCYmZmhV69eiIyMfNnNZIyxBu+1DTRsbW2hp6cHPT09pS8AALBkyRIMGjQIM2fOhJ2dHfr164eJEydiy5YtQpnAwED07t0bzZs3R69evTBq1CicOHGixu+vUChgbm4OiUQCHR0dmJubw9zcHNra2krlBg4cCC8vLzg6OmLs2LGIiooS8saOHYuwsDDk5OQAAM6ePYv8/Hx4e3u/yJA0aFlZWTAxMUFAQABsbW3x6NEjmJiYICsrq0b7t2rVCmZmZli5ciWKi4uRlZWFNWvWCHW/Tir7a2JigsGDB8Pb2xsmJiZKec+jr6+P8PBwbNiwAVKpFGZmZujcuTPmz58PADA0NES7du2wdu1aPHjwAAUFBfj222+hqanZ6MY7KysLxsbGePjwIZo1a4bAwMBaHZsA4OHhgaNHjyI+Ph4VFRXYv38/rl69KtSRlZUFLS0tyOVydOjQAZ988glMTExQUVGB3Nzcuupag/W884Wenh7Wrl2LQ4cO4dChQzA1NUWPHj2QkpJSzy1njLGG5bUNNM6ePYvY2FjExsbi+PHjSnnx8fE4cOCAEIjo6elh1apVSE1NFcrs378fbm5uMDMzE/5TenKiq7rY29sL/zYyMlL60tCtWzc0a9YMe/bsAQDs2LEDgwcPhr6+vtrb0VAoFAo0a9as1nNjZDIZdu3ahWPHjkFHRwc2Njbo3r07ALzWk0AtLCzQtGnTWu9XVFSECRMmwNPTE5cuXcKJEydw5swZfPXVV0KZH3/8ESkpKTA0NIRCoYCdnR10dHQa7XhraWnBxsYGCoWi1vtOnToVgwYNgrOzMyQSCZYtW4YhQ4ZUOVbW1tZo0qSJOprc6FV3vjAxMcG0adPg4uICNzc37NixAzY2NtiwYUM9tZQxxhqm1zbQaN68Oezt7WFvbw8bGxuVfF9fXyEQiY2NRWJiIn755RcAQGRkJIYPH46+ffvi1KlTiI2Nxfjx41FRUaH2dmppaSltE5HS9ujRo7F9+3YUFRXhwIEDr+VtU8DjyffZ2dkYPXo0IiIiIJVKkZ2dDVNT0xrX0aNHD6Snp+POnTvIysoSbvOxtLSsq2a/kirHLDs7G+vWrcPatWuFVXtqOp67d+9Gamoq1q5dC2dnZ3h6euKrr77C0qVLhb+Ttm3bIiEhAVlZWcjKysKcOXPw4MGDRjfepqamyMnJgVQqxblz5/DBBx/U+tgUi8UICQnBo0ePkJGRgaioKBQWFgpjZWpqirKyMuTn5yM0NBRz585FdnY2NDQ0Xiiwaexqe77Q1NRE27ZtkZ6e/pJbyhhjDdtrG2g8S5s2bfDXX38JgcjTAcn58+dhbW2NBQsWoF27drC3t0dGRkaVdenp6aGwsLDa95JIJCgrK3vhto4ZMwZ//PEH1qxZA319ffTq1euF62rIXFxccP78eWE7MTERubm56Nixo1K5oqIipKWlIT8/v9q6zMzMoKuri927d8PY2Bht2rSpq2a/klq0aAG5XK40nhEREVAoFGjevLlS2fz8fKSlpaGoqEgpPS8vT6VeLS0tlJaWqhzvxsbGMDQ0xO7du6GlpYW3335bjb2pfy4uLsjPz1ea6xMREaFybALA3bt3kZaWVm1dUqkUFhYWyM3NxalTp4Srbu3bt4eGhobKZ9amTRtIpVK19aWxqOn54knJycmwtbV9Ca1jjLFGpL5no79sNVl1Kjk5mSQSCc2dO5cSExMpNjaWVq9eTatWrSIioiNHjpCmpibt37+fUlJSaNmyZaSvr0+Ojo4q7zd69Ghq3749Xb9+nTIzM6miokIpf/LkyfTmm29Seno6FRYWKq3q8/SKVSEhIaSrq6vyHj169CCxWExz5sz5b4PTgB09epQ0NTVpy5YtFBcXRx4eHsIKR0+q/Pz9/f1V8o4fP04RERGUlpZGGzduJKlUSitXrlQqk5iYSDExMeTi4kLDhw+nmJgYYSWwxmTOnDlkbm5O4eHhFB4eTubm5vT555+rlPP39ycAdPbsWaX0uLg40tLSok8++YSuX79O58+fJycnJ+rbt69Q5vfff6eTJ09SWloa7du3j4yMjGj69Ol13bV60alTJ+revTvFxcXRli1bSFNTk8LCwlTKVa5G97SSkhJat24dXbt2ja5cuUK9evUiKysrys/PF8p4e3uTg4MDRUVFUWhoKOnq6tL69evrtF+vqpycHIqJiaGNGzcKx2dMTAw9ePCAiJ5/vtiyZQv99NNP9Oeff1JCQgJNmzaNtLW16dq1a/XVJcYYa5A40KDql7d1c3MjmUxGRkZG1LNnT6UvBp9//jmZmJiQvr4+jRkzhubNm1dloJGRkUHu7u4kFosJAOXl5Snlp6amUrdu3UhHR6fK5W1rEmiEhIQQALpy5cqLDEmjERgYSJaWliSVSqlPnz5069YtlTLPCjS2bdtGlpaWJBaLyc7OjgICAlTK2NjYqCxJ3BiXEy4qKiJfX18yNDQkQ0ND+vjjj6m4uFilXHWBBhFRaGgoubi4kI6ODpmbm9OYMWPo33//FfJPnTpFzZs3J7FYTFZWVjR//nwqLS2ty27Vm/T0dOrduzdJpVKytLSkdevWVVmuukCjtLSU3NzcSEdHh/T09GjAgAGUkpKiVCY3N5d8fHxIR0eHTExMaMGCBXXSl4ag8pz49OvJ4/RZ54uQkBCys7MjmUxGhoaG1L17d7pw4UI99IQxxho2EdFTN/2zBmfx4sXYtWsXrl69Wt9NYYwxxhhjDADP0WjQCgoKEBcXh8DAQEyaNKm+m8MYY4wxxpiAA40GbNq0aejcuTN69eqFjz/+uL6bwxhjjDHGmIBvnWKMMcYYY4ypHV/RYIwxxhhjjKkdBxqMMcYYY4wxteNAowHw8/MTHszFGGOMMcZYQ8CBxlPS0tIgEolgbm6OiooKAI+fJm1gYACRSITs7OyX3qavv/4aBw8efOnv29AEBQXB2toa2tra8PT0xO3bt2u1/7Vr19CvXz/I5XIYGRlh3LhxePDggVKZffv24Y033oBMJoObm5vS054bk+LiYkyePBlyuRxyuRxTpkxBSUlJrer4/fff4ebmBj09PTRt2hS+vr4oKCgQ8vPz8zF+/HiYmZlBX18f7u7uuHTpkrq78krIyMiAp6cntLW1YW1tjeDg4FrXsWnTJrRu3Rra2tqws7PDqlWrlPIvXbqEbt26QV9fH2ZmZpg9e7bKU9jZY/fv34evry8sLCygo6ODXr164a+//hLy//rrL/To0QNNmjSBjo4O2rZti+3bt9djixljrIGq38d4vHoqH95nbW1NZ86cISKiAwcOkLW1tcqD/tiro/JJv5s3b6bY2Fjy8PAgV1fXGu9fWlpKrVq1Ii8vL/rzzz/pwoUL5ODgQB988IFQJi4ujjQ1NWnJkiWUkJBAPj4+ZGNjQ0VFRXXRpXpV0yeDV+fevXvCg/5SUlLo3LlzZGtrS1OnThXKjBs3jlq1akUXL16ka9eu0ejRo8nY2JgKCwvrokv1qvLJ4LGxsbR58+ZqnwxenfDwcNLQ0KANGzbQzZs3adeuXSQWi2nfvn1E9PhhfSYmJuTr60vXrl2jU6dOkYWFBc2fP7+uutSgffTRR9SyZUu6cOEC/fnnnzR06FBq0aIFlZSUEBFRSkoKbdq0ieLi4ujmzZu0adMmEovF9Msvv9RzyxljrGHhQOMplYHGrFmz6OOPPyYiouHDh9Ps2bOVAo2YmBjq2rUrSaVSMjc3pwULFlBFRYVQT0VFBc2fP5+srKxIKpWSvb09rV27VsjPzs6mESNGkIWFBUkkEmrZsiVt2rRJqS1ff/31c58+/e+//wpf0HR1dal79+4UHx+v5lF59Q0YMIC8vb2F7YSEBAJAMTExNdo/KSmJAFBSUpKQtnfvXhKLxXTv3j0iIpo+fTp17NhRyM/PzyctLS06dOiQWvrwqigrKyMjIyMKCgoS0oKCgsjY2JjKyspqVMelS5cIAKWlpQlpc+bMobfeekvYdnBwoIULFwrblZ9ZcnKyGnrx6oiOjiYAlJCQIKR5e3uTl5dXjev47rvvyNbWVimtY8eOQvB3/PhxEolE9PDhQ6V9zMzM/lvjG6kmTZpQcHCwsP3vv/8SADpx4kS1+3To0IHmzZv3MprHGGONBt86VY0BAwbg+PHjePDgAc6dO4fevXsLeaWlpfDy8oKlpSWuXLmC4OBgBAQEYMuWLUKZgwcPYsWKFfj++++RnJyMH374AXp6ekJ+QUEBrKyssH//fiQnJ2Pu3LmYNGkSIiIihDKzZs1CZmYmJk6cWG07Bw8ejKtXr+LgwYO4cuUKPvzwQ2RkZKh5NF590dHR6Nq1q7Dt6OgIhUKBy5cv12j/ytuCJBKJkCaTyVBaWircHvX0exgaGqJt27Y1fo+GIjU1FXl5eUp9dXd3R05ODm7evFmjOlq3bg0TExPs2bMHFRUV+Pfff3H69Gn0799fKNOtWzecPHkSOTk5KCsrw549e9C6dWu0aNFC7X2qT9HR0ZDL5XB0dBTS3N3da3XcdO3aFXfu3BHOD1euXMG1a9fg6ekJ4PHxKxKJIBaLhX1kMhn++ecfZGZmqqknjUdJSYnK3zoAxMTEqJQlIvzyyy/4888/4eLi8tLayBhjjQEHGtXQ19dHhw4dMGfOHPTq1QtSqVTICwsLQ2ZmJoKDg+Hg4IDBgwdj0qRJ+P7774UyaWlpMDIygqenJ2xtbdGzZ0+MHTtWyLexscHy5cvh6uqK5s2bY/z48Wjfvj3CwsKEMrq6ujA3N4eOjk6VbTx79iwuXLiAffv2wd3dHS1btsT48eOVvsy9LrKysmBiYoKAgADY2tri0aNHMDExQVZWVo32b9WqFczMzLBy5UoUFxcjKysLa9asEep+8j0OHjwIU1NT3Lp1q1bv0VBU9sfExASDBw+Gt7c3TExMlPKeR19fH+Hh4diwYQOkUinMzMzQuXNnzJ8/XyizZs0atGzZEiYmJpDJZNizZw9OnDih9GW5McjKyoKxsTEePnyIZs2aITAwsNbHjZubG3bu3In+/ftDLBbD1dUVgYGB8PDwAAB07twZUqkUK1asQFlZGdLT07Fp0ybh/ZkyDw8PbNy4EVlZWSguLoa/vz80NTVVxsrNzQ1SqRTvvfceAgICMHTo0HpqMWOMNUwcaDyDj48PNmzYAB8fH6X0lJQUWFhYwNjYWEhr164dUlJShO3BgweDiNCyZUtMnDgR27dvV5pMW15ejm+//RZt2rSBkZER9PT0EBsbqzRZ9nkSEhJgYWEBOzu7/9DLxkWhUKBZs2bQ1NSs1X4ymQy7du3CsWPHoKOjAxsbG2GlL5FIpFTWwMAANjY2SsFnY2VhYYGmTZvWer+ioiJMmDABnp6euHTpEk6cOIEzZ87gq6++EsoEBwfjypUrOH36NC5dugRXV1e89957KCwsVGcXXhlaWlqwsbGBQqGo9b7JycmYNWsWli9fjujoaKxfvx5+fn44ffo0AKBp06YICQnBqlWrIJPJ0LZtW3h5eQFQPX4ZEBgYCC0tLTRp0gR6enrIycnBm2++qTJWe/bsQXR0NJYsWYIvvvgCf/zxRz21mDHGGqj6vnfrVVM5RyMqKooKCgooICCAiouL6ezZs8IcjVWrVpGNjY3Sfj/++CMZGhoqpT18+JCOHDlCs2fPJrlcTp6enkLe0qVLSS6X044dOygxMZGuX79O7du3V5osW2nmzJlVztEIDAwkS0tLdXS7wbOwsKDVq1crpSkUCtq4cWOt67p79y4VFBTQlStXCABFR0cTEZGbmxvNnDlTqWyHDh3of//734s2+5V07do1lfkt8fHxBICuX79eozpCQkKoSZMmSvOWdu7cSdra2lReXk5FRUUklUrp6NGjQn5paSnp6urSzp071daXV8GGDRtILpcrpdX2b3fMmDFKc5CIiCZNmkS9e/dWSquoqKA7d+5QYWEhHTx4kABQTk7Oize+kcvPz6fs7GwqLy8nIyMjWrlyZbVlx48fT/369XuJrWOMsYaPr2g8g66uLmbOnKl0Ly8A2NnZ4c6dO8jNzRXS4uLiYG9vr1ROR0cHAwYMwMqVK/HDDz8gLCwMRUVFAB4v/enl5YVRo0bBwcEBVlZWtZ5b4eTkhDt37iA1NfUFe9h4uLi44Pz588J2YmIicnNz0bFjR6VyRUVFSEtLQ35+frV1mZmZQVdXF7t374axsTHatGlT5Xvcu3cP8fHxKu/R0LVo0QJyuVyprxEREVAoFGjevLlS2fz8fKSlpQnHdaW8vDyVerW0tFBaWoqysjI8evQIxcXFSr8ga2hoQCQSNborGi4uLsjPz1daCjkiIqLK4+bu3btIS0tTSc/Ly1P5tV1LS0tlrEQiEZo2bQqZTIbdu3ejTZs2L3QF5XVhaGgIY2NjnDx5Enl5ec98XpGmpiYePnz48hrHGGONQX1HOq+aJ69oPOnJKxrFxcVkbW1NPj4+lJSURAcPHiR9fX3asGGDUP7HH3+kTZs2UWJiIv355580ZMgQeuONN4T82bNnk42NDf3xxx+UkJBAI0aMID09PaUrGpmZmZSZmUkTJ04kV1dXYbu4uFgo07VrV3JxcaHffvuNrl+/TiEhIUq/Er8uKpe33bJlC8XFxZGHh4fSCkeVKj9Hf39/lbzjx49TREQEpaWl0caNG0kqlSr9whkbG8vL2z7F39+fANDZs2eV0uPi4khLS4s++eQTun79Op0/f56cnJyob9++QpnOnTuTs7OzsLzttGnTSEdHh1JTU+u6ey9d5fK2cXFxtGXLlmqXt/Xw8KCqTsvBwcEkFotp27ZtlJqaSgcOHCA9PT1atmyZUGbv3r106dIlSk1NpSVLlpCGhgbt37+/TvvVUCUkJNDBgwfp5s2bdPLkSbKxsaEBAwYI+Vu2bKFNmzZRfHw8paSk0IYNG0gqldKaNWvqsdWMMdbwcKDxlJoEGkSPl6x0c3MjiURCTZo0oS+++ILKy8uF8qGhodSlSxfS19cnAwMDevfdd+nq1atCfm5uLg0ePJj09PTI3NycvvvuO+rVq5dSoIH/v7Tt068nv9Q9ubytjo4OdevW7bVc3pbo/25HkUql1KdPH7p165ZKmWcFGtu2bSNLS0sSi8VkZ2dHAQEBKmX27t1LdnZ2JJFIyNXVVekzbUyKiorI19eXDA0NhedhPBngVqou0CB6/Dfg4uJCOjo6ZG5uTmPGjKF///1XyM/IyCAfHx8yNTUlPT09cnV1FZ5d09ikp6dT7969SSqVkqWlJa1bt67KctUFGhUVFbR06VKyt7cnmUxGzZs3p0WLFiktN7x06VIyNTUliURCTk5Oje4WNHWKjY2l1q1bC+fvqVOnUkFBgZC/Z88ecnFxIQMDA5LJZOTg4MBBBmOMvQAREdHLv47CGGOMMcYYa8x4jgZjjDHGGGNM7TjQYIwxxhhjjKkdBxqMMcYYY4wxteNAgzHGGGOMMaZ2HGi8JLGxsRCJRFWukc8YY4wxxlhjU6+BxqBBgyASiYSXra1tfTZH0L17d6FNhoaG6Nq1K3755Zdn7iMSiZ75sKcnERFcXFyU+m5sbIzdu3dXWX7hwoUQiUQIDw+v9r33799fo/d+2Z7XdnUKCgqCtbU1tLW14enpidu3b9dq/9u3b2Po0KEwNjaGkZER+vfvj2vXrimVWbx4MZo3bw5tbW04Ojpi+/bt6uzCK6O4uBiTJ0+GXC6HXC7HlClTUFJSUqs6wsLC4OLiAl1dXVhbW2PJkiVK+QsXLkTr1q2ho6MDMzMzfPDBB8jMzFRnN14ZGRkZ8PT0hLa2NqytrREcHFzrOlauXAl7e3vIZDI4OTnh6NGjSvmHDx/Gu+++C7lcDpFIhOzsbHU1v8GpyVg863yRlpamdH6ufDHGGKudOgk0ysvLsX79eri6usLQ0BD6+vpwcnLC559/jpycHKHciBEj4O/vD39/fxgaGtZFU17YuHHjkJmZiUuXLqF9+/YYMGAAkpOT1VL3zp07ceXKFejr62P69OmYMWMGPD09MWrUKJw5c0Yt71EXtm7dCpFIhK1bt9Z3U1QcO3YMfn5+WLRoESIjI1FUVAQfH59a1fHuu+/i4MGDyM3NRX5+Po4fP44333wTPXr0wJ49e/Djjz/i66+/xqpVq/Dnn3/i448/xujRo3Hp0qU66tXLYWtrqxLkz58/H4cPH0ZoaChCQ0Nx6NAh+Pv717jOlJQUDBo0CAMHDkR8fDwCAgKwePFibN68WSjTokULBAcHIzExEWFhYfj7778xbNgwdXXrleLt7Y3i4mJERkZi0aJFmDFjBk6ePFnj/bdv34758+dj2bJlSExMxMiRIzFkyBClc9L9+/fh7u6OuXPn1kUXGpTnjUVNzxdhYWHIzMwUXowxxmpJ3Q/mKCoqIk9PTwJALVu2pJkzZ9Jnn31GPXv2JA0NjSof7EVEZGNjQzY2Nupuzgvx8PBQenDe/fv3CQAFBgYKadnZ2fThhx+SkZERKRQK6t+/P8XExAj5BQUFNHLkSNLW1qbmzZvT8uXLCQDdvHmTRo0aRQDonXfeUXpfhUJBs2fPFrZv3rxJnp6epK2tTYaGhjRx4kSlp1Cjmgf63bx5U/2DQkQhISEEgEJCQmq8T1ZWFv3555/08OHDOmlTpQEDBpC3t7ewnZCQQACUPpPnkUgkBIB69OhB/v7+NHz4cAJAUqmUAFCHDh2oe/fuSvuYmJjQ+vXr1dWNevH0315ZWRkZGRlRUFCQkBYUFETGxsZKD4h7luDgYDIzM1NKmzJlCnXp0qXafY4cOUIikYgKCwtr14FXXHR0NAGghIQEIc3b25u8vLxqXIePjw/5+PgopTk4ONDcuXNVyj79cNHXWXVj8bzzRXUPbmWMMVY7ar+i8eWXXyIsLAwffvghEhMTERAQgGXLluHXX39FfHw8mjVrpu63rFPl5eXC7TEymUxI9/b2Rm5uLs6cOYPffvsNFRUV+OKLL4R8f39/XLhwAadPn8aPP/6IdevWCXmVv4xJpVIAj2+l+vnnn5GXl6f0HiNHjkRhYSEiIyNx8OBBHDt2DN98841SPZV1bdy4Udi2traug5F4MSYmJsLtMXUpOjoaXbt2FbYdHR2hUChw+fLlGtfRsmVLAMDbb7+Nzz//HDo6OujVqxeio6Ohra2NmJgYxMTEIDExEQBw8uRJFBYWokePHurtTD1LTU1FXl6e0ni6u7sjJycHN2/erFEdJSUlEIvFSmkymQxxcXGgKp4Rmpubix9//BFOTk5KfwONQXR0NORyORwdHYU0d3f3Wh2bJSUlkEgkSmkymQwxMTFqa+frpKbniyFDhsDMzAy9evVCZGTky24mY4w1fOqMWvLy8khbW5uMjIzowYMHtdq3Jlc0/vrrL5ozZw61b9+e5HI5yWQyevPNN2nRokX06NGjKvf5448/aODAgWRhYUFSqZSaNWtGgwYNotOnT1dZfteuXWRgYKBylaBVq1Z0//59IiIKDw8niURCXbt2VSmXmZlJRERGRkYUHBws1NulS5dqr0BUvpo1a0bp6elERLR582aV/BkzZpCxsbFKmwHQvn37qKysjNatW0ddunQhfX190tfXJxcXFwoICKDi4mKhfH5+Pi1ZsoS6detGZmZmJJFIyNramiZOnEi3b99WqrvyF8FnvZ6+wlHVPtVdySIiKi8vp1WrVpGTkxNJpVKSy+Xk6elJFy9eVCn75FWVjRs3UuvWrYUrDtOmTaPVq1eTjY0NPXz4kFq2bEmLFy+u9n2ftm7dOgJAIpGINDQ0qEuXLpSbm0tEJFyl++ijj0gsFpOWlhYZGBhQWFgY/fzzz9SjRw8yMDAgbW1t6tKlCx0+fFilfn9/fwJAx44do2nTppGJiQnp6OhQz5496fLly1W2KSkpiby9vcnY2JgkEgm98cYb9OWXX1b7q3/l2Pv7+1NCQgK99957JJfLSVdXl1xcXCg2NpaIHl+1e97neuvWLRo0aBANHTqU7ty5QwDowoULNRrLK1eukEgkou3bt1N5eTldvXqVLC0tCQDdu3dPKPfzzz+Trq4uAaC33npL+PtpTL799luys7OjgoICsra2pjVr1tDOnTtJIpHUuI7Vq1eTXC6nuLg4Ki8vp3379pFYLCZnZ2eVsnxF4/9UNxZisZh++umnas8XWVlZtHbtWrp8+TKdP3+ehg8fTjKZjK5fv14f3WCMsQZLS51By6lTp1BYWIghQ4ZAT09PnVUDAA4ePIjAwED06NEDXbt2hba2NqKiouDv74/z588jLCxMacJeTEwM3n77bejo6Ai/TN26dQsRERHYt28fevXqpVT/unXrMG3aNMhkMrRq1QrdunVDUlISIiMjMWXKFOjr6wMA4uPjUVpaisuXLwu/2paWlgJ4/GuwVCpFXl4eHBwchLoHDhyIP/74AzNnzsThw4eRnp4OW1tbDBgwAA8ePMClS5fw448/Cld8SktLIRKJMH/+fEREROC3336DnZ0dcnJykJ+fD7lcrtT2iooKDBw4EMePH4e9vT3Gjh0LXV1dxMXFYfbs2fDy8hLuw//zzz8xb948vPXWW3jvvfdgYmKCGzduYOvWrThx4gSioqJgbm4O4PH9+5X35sfGxiI0NBReXl5o37698N5P/vvpfcLDw/Hbb78983P19fXFpk2b0KpVK8yYMQO5ubnYtWsXPDw8EBYWVuUVg61bt+Kvv/7C4MGD4ebmhi1btmDdunX4+uuv0axZM2hqaj7zPaty+PBhAMBHH32ECRMmYNGiRRg2bBh++eUXaGk9/lMJDQ3F1q1b4eTkhNOnT2PQoEEoKipCkyZN4OPjA21tbZw4cQKDBg1CSEgIxo4dq/I+M2fORFlZGcaMGYO8vDzs2LED3bt3R2RkpNKv3klJSXB1dcXDhw8xfPhwNGvWDKdPn8ZXX32FyMhIleP9Sbdu3ULXrl3h6OiISZMmIT8/H2fPnsXNmzfRrl07jB07Vli8ICAgAADg5+cn7LtlyxYAgIWFBTQ0an/h09nZGQEBAfD19cWYMWNgYmKCDz/8ECtWrFBqc48ePRATE4OMjAx8+eWXmDlzJvbs2VPr92sItLS0YGNjA4VCUet9p06diri4ODg7O0MkEsHZ2RlDhgzB9evX66Clrw+FQlHl+cLExATTpk0Ttrt06QJHR0ds2LAB33333ctuJmOMNVzqjFq++OILAkBLly6t9b41uaKRlJRU5a90kydPJgD066+/KqXPnj2bAFBYWJhSellZGd24cUOlng4dOpBMJqOuXbsqzdH4/vvvqU2bNlReXk5ERIGBgdS0aVO6fv268AJAnTt3pkePHlFubi4BoPDwcKGOc+fOCfMnKn9N7t+/v5AfHh5OVlZWVFBQQEREBw8eJA0NDSorKxN+CV+zZg0BoLy8PKV2A6DRo0cTAPLy8qLS0lKl/MuXL1N2draw/c8//1BycrJK//fs2UMAaMGCBSp5RC82R6Oy7dVd0bh06RIBIEdHR6WrUhEREUJ6VW0wMjKiv//+W0iXy+UEgD799FMhTaFQ0MaNG2vUzsp7sgHQ119/TUQk/Ip/8OBB0tfXJw0NDZo8ebKwz5UrVwgAyeVyysnJEdIfPXpEzs7OZGhoqHRlr3IszM3NhSslRESHDh0iADRgwAClNvXr148A0I8//iiklZeX0zvvvCNcxXpa5S+4mpqa9O233yrllZaWVvn38/Tf3rVr11Tmt8THxxOAWv+iW15eTrdv36aSkhJatWoVGRgYVFs2IyODANClS5dq9R6vug0bNpBcLldKCwwMJEtLy1rXVVRUJBz3AwcOVDlmiPiKxpOqGwsLCwtavXq1UtrzzhfDhg1TmSfDGGPs2dQ6R6NyRakX+cWuJt58802YmJiopPfv3x8AcPXqVaX08vJyAFC551tTUxMtWrRQqae8vByampoqvxJPmDABOTk52LFjBwCgTZs2+PfffyGVSmFvbw97e3sAgLa2NrS1tWFkZASFQoGkpCShjoSEhGf2zcPDA02bNsWqVasAAHZ2dqioqFCq48aNGzA2Nla5miEWi3Hq1CloamoiICBA+PW9kouLC4yNjYXtJk2aoFWrViptqG4c69LBgwcBPP6VX1tbW0jv1q0bXF1dkZiYqLLELAB8+OGHsLCwELa7dOkC4PHVGgBITExEbm4uOnbsqLRfUVER0tLSkJ+fr5Sel5cn/PvMmTNYuHAhVqxYIbxXaWkpLC0tla7UbdiwAcDjKzpPHvPa2tqYMmUK7t27h9OnT6u0fdy4cTAyMhK2K682nThxAoWFhQCAhw8f4uTJk7C2tsb7778vlNXQ0MCnn36qNHZVsba2xmeffaaUpqWlVeXfz9NatGgBuVyO8+fPC2kRERFQKBRo3ry5Utn8/HykpaWhqKioyro0NDRgaWkJsViM3bt3w8PDo9r3rfxV+eHDh89tY0Pi4uKC/Px8YW4P8Hg8nz42AeDu3bvPfNaOVCqFhYUFcnNzcerUqRovqc2Uubi4KB3f1Z0vnpScnPzKLMHOGGMNRYN6YF9FRQU2bNiArl27wtDQEBoaGhCJRHjvvfcAAA8ePFAqP2TIEIhEIvj4+ODTTz/F4cOHcefOnWrrHzp0KB4+fIgrV67g8uXL+PXXX3H//n1oaWnB19cXX3/9NcrLy9G9e3d07doVw4YNQ0REBG7cuAEASkHBhAkTsGzZMly8eBHnz5/H8uXLn9u/adOmYdWqVbh37x7atm2Lzp07Y/r06fjnn38APF4W19fXV2W/Fi1a4O7du7C2toa5uXmVk22f9uuvv+K9996DmZkZtLS0IBKJhC/RT49jXaoMDJydnVXyKtMqyzypcuJ2pcrbHK5fv474+HhMnToVb731lsptXZGRkWjevLlwu1AlBwcHIVg4e/YsFi1aJAR9BgYGOHfuHEaOHIlNmzYhNDQUN2/exIkTJwAAOjo6WLhwodKr8rkhKSkpKm1v27at0rZIJIKjoyPKysqEoOr69esoLy9H27ZtVW5deta4VHJ3d1cJOGtKU1MTEyZMwDfffIPffvsNv/32G7755htMmjRJ5RaTgIAANG/evMqJslu3bkV8fDxSUlIwa9YsxMTE4H//+x8AoKCgADNmzEB4eDjS0tLwxx9/YOzYsbC2tn7ml72GqEOHDujUqROmTZuG+Ph4hISE4NChQ5g8ebJK2REjRqgEc8DjWymDg4Nx/fp1xMTEwMfHByYmJvjoo4+EMrm5uYiNjRWOuYSEBMTGxqKgoKDuOveKet5Y+Pr64tChQwgJCanyfBESEoLt27cjOTkZiYmJmD59OlJSUjBhwoT66hJjjDVM6rw8Ute3Tk2dOpUAkJmZGY0fP57+97//kb+/P40ZM0aYAPu0X375hd59911hwjAAcnV1pT///FOlbHl5Oa1bt4709PSEsmKxmEaNGkXXrl0jsVhMW7duJaLHy9uOHTuWTExMSCaTCZO5Kz18+JBGjRpF2traZGtrSytWrHjmrVNEj2+LMDU1pYULFxIR0Y0bN6hPnz6kpaUl3FpT1STg7du3C5OYK9/jWfbs2UMikYhkMhkNGzaM5s6dS/7+/sKtPR4eHlXuVxe3TvXq1YsAVHkr24IFCwgA/fTTTzVqAwCSSCQklUqpT58+dOvWLZUyT06Wfto333xDAITlhHv27Elr164lExMTMjU1pRs3btCnn35KzZo1I5lMRmKx+LkTqis/yyfH4uTJkyrv/eGHHxIAOnfuHBH93612H374oUrZsrIyAkB2dnbV9u+LL75QyatOVX97RUVF5OvrS4aGhmRoaEgff/yx0oICT/epqs93+vTpZGRkRFKplDp16kSnTp0S8goLC2nIkCFkaWlJEomEmjRpQkOGDKnylr7GID09nXr37k1SqZQsLS1p3bp1VZarPDc8rbS0lNzc3EhHR4f09PRowIABlJKSolSm8m/j6dezFmJorGoyFpW3r1V1vggJCSE7OzuSyWRkaGhI3bt3r/FCCIwxxv6PWgON3bt3EwB6//33a73v8wKNf/75h0QiETk4OKisaLV3795qvzxWKi4upnPnztH48eMJADk4ODyzPfn5+RQaGkrdunUjADRlypRnln/WF/SnVfdlojrP+7Je+ZyPFi1a1Kg+BwcHkslklJiYqJT+77//vvRAw8vLi4Cq16ufMmUKAVBawel5gUZNP4OqVNZdOUejUuUcihEjRiilu7i4EABhNbLnqRyLXbt2qeT1799faV5ETExMlcEo0f99Tu3bt1fJe1YgVZ1X6Rk2jDHGGGs81Hrr1LvvvgupVIoTJ07U+nK9np4eHj16VG1+amoqiAh9+/ZVWdGqJk9mlkgkePvtt7F582b06dMHSUlJyM7Orra8oaEhBg4ciNOnT0NfX/+5KyfVJ319fbRq1Qrp6elITU19bvkbN27A0dFRaVUs4PnjWHnbTFlZ2Ys39ilvvvkmAFT5PIDY2FgAQOvWrdX2fi9i0KBBeOutt7Bnzx7ExcUJ6ZW3+NTmeQjA41XLnkRESExMhKamJt544w0AwBtvvAFNTU3Ex8ejoqJCqby6x0VTU1OtnyljjDHGGKDmORoKhQJTpkxBbm4upk+frvLlJTk5udovwvb29sjOzhbmOzytctnXS5cuKc1BiI+Px/fff1/lPhcvXlSZpFpcXIz09HRIJBKVh8idPXtWZX7D33//jYcPHypN3n0VTZo0CeXl5Zg5c6aw1G6l+Ph45ObmCtvNmjVDSkqKMHkfeHxPc+X989UxNTUF8PhzVJchQ4YAAAIDA3H//n0h/ddff8WFCxfg6OhY5cT1l+2LL74AEWHhwoVC2oQJEyASifDJJ59UGbT+9ttvVU5sDgkJUZp8vm/fPqSlpaFPnz7Q1dUFAOjq6qJPnz64desWtm7dKpQtKSnBsmXLADyeU6QOpqam+Oeff5TaxBhjjDH2X6n1ORoA8O233yIuLg5bt27FxYsX0bdvX0ilUsTGxuL06dM4ffp0lSs+ffzxxwgNDUXv3r0xbNgwyGQytG/fHoMGDQLweD3/wYMH49ChQ3Bzc0O3bt1w69YtHD58GD179sTx48dV6ly2bBnOnj0LDw8P2Nvbo6KiAmFhYfjrr78wY8YMlUBj8ODBMDQ0hKurK2xsbJCXl4eDBw+CiIRnDFQKDw8XJvxWSktLU/oiOnbs2BdepeTJeirfZ+vWrcK/bW1tlZ7RMHPmTPz66684evQo3nzzTfTv3x+6urpISEjA8ePHkZKSIkx2njZtGmbOnAkXFxcMHjwYBQUFOH78ONq3b6/0i/3T3NzcYGBggHXr1qG8vBxvvPEGNDQ00KNHD6VgoDZt79SpEyZMmIBNmzahQ4cO6NevH3JycnDw4EFIJBKsXbv2hcZP3d577z20adMGhw8fRkxMDJydndGxY0d88803+N///odWrVqhX79+sLa2xj///IPw8HCkpqYiMzNTCB4q6erqokOHDhg6dCju3LmD/fv3Q1dXF0uXLlUqt3z5cvz++++YOHEijh49ChsbG5w5cwbx8fHo3bu32gKNvn374o8//kDfvn3h7e0NPT096OvrK612xRhjjDFWa3VxP1ZpaSkFBQUJT6jW1dUlBwcHmjt3rtLzHJ4WEhJCb775JmlqahIAGjNmjFL+/fv3yc/Pj2xsbEgqlZKDgwOtX7++2vvSw8LC6P333yd7e3vS1tYmhUJBXbp0oS1btgjPxHhScHAw9evXj6ysrEgqlZKFhQX169evyvkFlffbP+tV3byEmszReF7dVc1FqHwyeOfOnUlXV5f09PSoQ4cOtGrVKqWJvBUVFbRu3TphroaVlRV98skn9OjRo+fOc/jtt9/o7bffFp7mjCrmS9S27eXl5bRy5UpydHQkqVRKBgYG1KdPnyonX9bHHI1KO3fuJAD03nvvKaWfOHGCPD09SaFQkEQiIRsbG/Ly8qJt27YpPdOk8pg5evQoTZo0iRQKBWlra1OPHj2qnKNCRJSYmEhDhw4lhUJBYrGY7OzsaMGCBTV6MnhNFRUVkZ+fH1lZWQl/ezxngzHGGGP/lYioBmuhMsb+s4ULF2LRokU4e/YsP/+AMcYYY41eg3qORkMiEomEl5mZGYYMGYLr16/X2Xvt37+/TupuSIKCgmBtbQ1tbW14enri9u3btdr/2rVr6NevH+RyOYyMjDBu3DiVZ4okJSUJCxIYGhqid+/e6uzCK6O4uBiTJ0+GXC6HXC7HlClTUFJSUqs6wsLC4OLiAl1dXVhbW2PJkiVK+d9++y3atGkDXV1dWFhYYMKECc9coKEhy8jIgKenJ7S1tWFtbY3g4OBa17Fy5UrY29tDJpPByckJR48erbJcaWkpOnbsCJFI1GjH83kOHz6Md999F3K5vNpxqOn5Ij09HYaGhnBycqrrZjPGWKPDgUYd2rhxIzIzM3Hs2DHk5OSgX79+KhO1mXocO3YMfn5+WLRoESIjI1FUVAQfH58a719WVoaBAwdCIpEgMjISx48fx6VLlzBlyhShzL///gsPDw8YGRkhPDwc0dHRmDRpUl10p97Nnz8fhw8fRmhoKEJDQ3Ho0CH4+/vXeP+UlBQMGjQIAwcORHx8PAICArB48WJs3rxZKHPx4kXMnTsX0dHROHjwIC5fvozhw4fXRXfqnbe3N4qLixEZGYlFixZhxowZOHnyZI333759O+bPn49ly5YhMTERI0eOxJAhQ6pcmGHRokUq84JeN/fv34e7uzvmzp1bZX5NzxcVFRUYM2YM2rVrV9dNZoyxxqm+791qrADQvn37hO0jR44QAIqPjyei/7uXPisrSyjj4eFBU6dOFbZzcnJoxIgRZGxsTDo6OtShQweleR+oZg7E8x7Y1xgNGDCAvL29he2EhASl51I8T1JSEgGgpKQkIW3v3r0kFovp3r17RPR4jkWrVq2qnN9TE897psiroqysjIyMjCgoKEhICwoKImNjYyorK6tRHcHBwWRmZqaUNmXKFOrSpUu1+xw8eJAAUH5+/os1/BUVHR1NACghIUFI8/b2Ji8vrxrX4ePjQz4+PkpplfPennT+/Hlq27YtnTx5UuX88jqq6jxLVPPzxdKlS2nChAnk7+9Pjo6OL6PJjDHWqPAVjZegoKBAuLVJJpPVeD9/f3/ExsYiLCwM8fHx+Pzzz5WeqZCZmYnMzEwA/3f1JDMzE9bW1urtQAMQHR2Nrl27CtuOjo5QKBQ1fsZF5W1BEolESJPJZCgtLUViYiKAxytodevWDaNHj0aTJk3g4uKCffv21biNCxcuBBG98vMzUlNTkZeXpzSe7u7uyMnJwc2bN2tUR0lJCcRisVKaTCZDXFycyhLSlfLz86GtrQ2pVPrijX8FRUdHQy6Xw9HRUUhzd3ev1fNXSkpKlI5N4PF4Pvn8mYKCAowdOxYbNmxQKcuU1eR8ERsbix9++AErVqyojyYyxlijwIFGHfrwww+FpUJ//PFHjB07VnggW02kpaWhTZs26NixI+zs7DBs2DD07NlTyDc3N4e5uTkAQC6XC9uVD9Z7nWRlZcHExAQBAQGwtbXFo0ePYGJigqysrBrt36pVK5iZmWHlypUoLi5GVlYW1qxZI9QNPA7s9uzZgyZNmuDkyZMYPnw4hg8fjqioqDrrV32o7K+JiQkGDx4Mb29vmJiYKOU9j7u7O/7++2/s2LEDFRUVSEhIwJ49e1BUVKQy7wV4/CV5yZIlmDp1aq2C8YYgKysLxsbGePjwIZo1a4bAwMBaHZsA4OHhgaNHjwoPcNy/fz+uXr2qVMfMmTMxcOBAdOnSpS660ag873xRVFSEDz74AIGBgTA0NKzn1jLGWMPFgUYdWr58Oa5cuYLvv/8eAwYMqPbBgtUZP348jhw5gs6dO+OTTz7Br7/+WkctbTwUCgWaNWtW62BLJpNh165dOHbsGHR0dGBjYyNceRCJRAAe36/dpEkTrFy5Es7Ozvjss8/QqVMn7NixQ93deGVYWFigadOmtd7P2dkZAQEB8PX1hUQiwTvvvIORI0cC+L/xrFRWVoZRo0bBwsIC3377rVra/SrS0tKCjY2N8Dyb2pg6dSoGDRoEZ2dnSCQSLFu2DEOGDBHG8siRIzh37hy+/vprdTe7UavufPHFF1+gffv2eO+99+qpZYwx1jhwoFGHzM3N0bJlS3z88ccwNjbGvHnzhLynv2wBULotCnj8AMH09HTMmDED//zzD/r06SM8FZopMzU1RXZ2NkaPHo2IiAhIpVJkZ2cLTzOviR49eiA9PR137txBVlYW+vfvDwCwtLQE8PgX/jfeeEPps2vRogX+/vtv9XamnlWOWXZ2NtatW4e1a9cKq/bUZjxnzJiB+/fvIz09Hbdu3YKFhQUMDAygr68vlKmoqMDo0aORmZmJI0eONMpbfkxNTZGTkwOpVIpz587hgw8+qPWxKRaLERISgkePHiEjIwNRUVEoLCwUjs0zZ84gNTUVRkZGkMlkwmpoVlZWWL9+fZ30qyF73vnizJkz2Lt3L2QyGWQyGb755hskJSVBJpMhKSmpnlvPGGMNBwcaL8mnn36KdevWITU1FcDjW52Ax7eMVLp165bKfmZmZvjggw+wfft2TJo0CYcPH1YpIxaLUVZWViftbihcXFxw/vx5YTsxMRG5ubno2LGjUrmioiKkpaUhPz+/2rrMzMygq6uL3bt3w9jYGG3atAEAtGvXTvj8KmVkZMDKykp9HXkFtGjRAnK5XGk8IyIioFAo0Lx5c6Wy+fn5SEtLQ1FRUZV1aWhowNLSEmKxGLt374aHh4eQR0T46KOPkJSUhJMnT8LAwKBuOlTPXFxckJ+fL8z1AR6P59PHJgDcvXsXaWlp1dYllUphYWGB3NxcnDp1Srjq9sUXXyAhIQGxsbGIjY3Fpk2bADyeVzRixAi19qcxeN754vDhw4iPjxfG8+OPP4a9vT1iY2Nhb29fX81mjLGGp54nozdaeGrVKSKiHj160Lhx44iI6OHDh2RgYEDfffcdET1+6rSGhobSqlP+/v50+PBhSklJocjISGrdujVNnDhR5b3efPNNGjVqFOXm5lJhYSFVVFTUYc9eTUePHiVNTU3asmULxcXFkYeHB7311lsq5Z715Ozjx49TREQEpaWl0caNG0kqldLKlSuF/MjISBKJROTv70/Xr1+n77//njQ0NKp9qndDNmfOHDI3N6fw8HAKDw8nc3Nz+vzzz1XKPWslrZCQEIqLi6Pr16+Tn58ficViioyMFPInTZpEzZo1o6tXr1JmZqbwqunKVg1Jp06dqHv37hQXF0dbtmwhTU1NCgsLUynn4eFBVZ2WS0pKaN26dXTt2jW6cuUK9erVi6ysrKpdoau61ZZeFzk5ORQTE0MbN24Ujs+YmBh68OABEdX8fFGJV51ijLEXw4FGHakq0Dhw4ABpaWlRSkoKERFt376dLCwsqGnTpjR9+nTq1q2bUqCxePFievPNN0kmk1GTJk1o7NixVX6xOHnyJLVu3Zq0tLRe2+VtiYgCAwPJ0tKSpFIp9enTh27duqVS5lmBxrZt28jS0pLEYjHZ2dlRQECASpmdO3dSy5YtSSqVkqOjI+3Zs6cuulLvioqKyNfXlwwNDcnQ0JA+/vhjKi4uVin3rEBj+vTpZGRkRFKplDp16kSnTp1SysdrtDxzeno69e7dm6RSKVlaWtK6deuqLFddoFFaWkpubm6ko6NDenp6NGDAAOE8UpXXPdAICQmp8th68jityfmiEgcajDH2YkRE1aw1yRhjjDHGGGMviOdoMMYYY4wxxtSOAw3GGGOMMcaY2nGgwRhjjDHGGFM7DjQYY4wxxhhjaseBRh2xtbWFSCSCSCTCihUrVPIXLlwo5Ds5OdVDCxljjDHGGKs7HGg8JTo6Gpqamvjtt9+U0gMDA2FkZISsrKwa1RMVFYXMzMxqH+Y2Z84cZGZm4pNPPvnPbWaPBQUFwdraGtra2vD09MTt27drtf/t27cxdOhQGBsbw8jICP3798e1a9eUyixevBjNmzeHtrY2HB0dsX37dnV24ZVRXFyMyZMnQy6XQy6XY8qUKSgpKalVHWFhYXBxcYGuri6sra2xZMkSpXwiwoIFC9CkSRPo6elh5MiRuHfvnjq78crIyMiAp6cntLW1YW1tjeDg4FrXsWnTJrRu3Rra2tqws7PDqlWrlPIvXbqEbt26QV9fH2ZmZpg9e/Zr+yDPw4cP491334VcLodIJBKebP+k550vFi9ejC5dukAqlfKPQYwx9qLqeXndV9KECROoY8eOwoPv8vPzycTEhNasWVPrumxsbGj58uXV5vP67OpR+QCuzZs3U2xsLHl4eJCrq2ut6ujRowe5ublRbGwsJSYmUp8+fZQ+m23btpFMJqODBw/SzZs3KTAwkEQiEf3xxx/q7k69q+kD+6pz/fp1kkqltHDhQkpJSaH9+/eTnp4ebdq0SSgTFBREurq6FBoaSlFRUeTg4EAjRoyoi+7Uu8oH9sXGxtLmzZurfWBfdcLDw0lDQ4M2bNhAN2/epF27dpFYLBae1ZObm0smJibk6+tL165do1OnTpGFhQXNnz+/rrr0Stu2bRt99dVXtHjx4iqfJ1KT88X8+fNp9erV9MEHH/A5mjHGXhAHGlX4999/SS6X008//URERHPnziUnJycqLS0VymRnZ9OHH35IRkZGpFAoaOTIkVU+HOu/BBo3b94kT09P0tbWJoVCQZMnT6aioiIiInr77bdp2bJlVe73xhtv0NatW2vc38ZgwIAB5O3tLWwnJCQQAIqJialxHTo6OkrjdvToUQJAhYWFREQ0ZcoU6t69u9I+JiYmtH79+v/W+FdMWVkZGRkZUVBQkJAWFBRExsbGNX5qd3BwMJmZmSmlTZkyhbp06SJst2nThubMmSNsV375y87O/o89eLVER0cTAEpISBDSvL29ycvLq8Z1fPfdd2Rra6uU1rFjRyH4O378OIlEInr48KHSPk9/Bq+b6h5cWJvzBf8YxBhjL45vnaqCqakpFi5ciP/973+4du0a1qxZgzVr1kBLS0so4+3tjdzcXJw5cwa//fYb8vPzMXr0aLW2Y+TIkSgsLERkZCT27duH0NBQfPPNNwAAV1dXXL58WWWf/Px8pKSkwNXVVa1tedVFR0eja9euwrajoyMUCkWVY1Sdbt26ITQ0FA8fPkRRUREOHDiAXr16QSaTCflxcXFITEwEAJw8eRKFhYXo0aOHejtTz1JTU5GXl6c0nu7u7sjJycHNmzdrVEdJSQnEYrFSmkwmQ1xcHIgIxcXFSExMVHmP8vJyxMTEqKcjr4jo6GjI5XI4OjoKae7u7rU6Nrt27Yo7d+4gIiICAHDlyhVcu3YNnp6eAB6Pt0gkUhpzmUyGf/75B5mZmWrqSeOhjvMFY4yx5+NAoxpTp06Fvr4+3N3d0b9/f/Ts2VPI++2333DhwgXs2rUL7du3h5OTE1avXo0TJ07g7t27ann/q1evIjIyEmvXrkXbtm3Rs2dPzJs3D99//z2Ax4FGVFQUgMfzQXx9fQEAly9fhkKhQMuWLdXSjoYiKysLJiYmCAgIgK2tLR49egQTE5Maz6kBgD179qCwsBD6+vrQ1dVFUlIS9u3bJ+SPGDECX331FZydnSEWi+Hj44MDBw40urGuHDMTExMMHjwY3t7eMDExUcp7Hnd3d/z999/YsWMHKioqkJCQgD179qCoqAgPHjxATk4OKioqYGJiglmzZqFjx47Q19eHRCKp1WfWEGRlZcHY2BgPHz5Es2bNEBgYWOtj083NDTt37kT//v0hFovh6uqKwMBAeHh4AAA6d+4MqVSKFStWoKysDOnp6di0aZPw/kyZOs4XjDHGno8DjWpoaWlh4cKF+Oeff/Dtt98q5cXHx6O0tBRNmzaFnp4e9PT04OLiAuDxr8HqkJKSAg0NDTg4OAhp7dq1Q05ODvLz8+Hq6oq0tDTk5ORg//79+Omnn5CamorLly/jrbfeUksbGiKFQoFmzZpBU1Oz1vv6+/ujsLAQ586dw4ULF6BQKDBs2DAQEQDg3LlzWLZsGbZu3Yro6Gj4+/tjxIgRuHr1qrq78cqwsLBA06ZNa72fs7MzAgIC4OvrC4lEgnfeeQcjR44EAIhEIqWyTZo0QbNmzdTS3leZlpYWbGxsoFAoar1vcnIyZs2aheXLlyM6Ohrr16+Hn58fTp8+DQBo2rQpQkJCsGrVKshkMrRt2xZeXl4AVMeb/Z//cr5gjDH2fFrPL/L6qvwV19jYWCXP3NxcuI3hSZaWlnXersr3t7W1RVRUFMLDwzFz5kycPn0aUVFRr91tU8Dj292ys7Ph5+cn3MKWnZ0NU1PTGu2flpaGNWvWICEhQbjFZfPmzbCwsEBkZCRcXV2xYMECjBgxAqNGjQIAtG3bFidPnkRQUBB++OGHuulYPagcs+zsbKxbtw4AhGCqpuMJADNmzMC0adOQmZmJJk2aICgoCAYGBsKVCw0NDWRnZ2PevHkAgAcPHqCkpKRW79EQmJqaIicnB1KpFOfOnQMArF27tlb9XLp0Kbp06YKPP/4YwONjLzIyEsuXL8c777wDABg+fDh8fHxw9+5dGBkZ4cSJEwBe3jmpIfmv5wvGGGM1w1c0XkCbNm3w77//QiqVwt7eXumlra2tVFZPTw+FhYXV1lVdvp2dHSoqKpCUlCSkxcXFwdjYGHK5HMDj26dOnToFLS0tjBw5EqdPn8bly5dfy0DDxcUF58+fF7YTExORm5uLjh07KpUrKipCWloa8vPzldLz8vIAKP/6Wzknp/LzycvLU/l1WEtL65mfb0PUokULyOVypfGMiIiAQqFA8+bNlcrm5+cjLS0NRUVFVdaloaEBS0tLiMVi7N69W7jVRyqVwtHRUeU9NDU14ezsXAe9qj8uLi7Iz88X5vYAj/v69LEJAHfv3kVaWppKek2PPZFIhKZNm0Imk2H37t1o06bNC11Baexqer5gjDH2H9X3bPRXWXUrlhARubu7U5cuXei3336jlJQUOnToUJVLc44ePZrat29P169fp8zMTGHJ3EpnzpwhkUhER48epczMTKVVYzp37kweHh4UFxdHv/76K1lYWNAXX3wh5AcGBpK+vj59+eWXRETUsmVL0tTUpAcPHqhrCBqMyhWLtmzZQnFxceTh4UFvvfWWSrnKz9Tf318pvaioiKytrendd98Vlrf19vYmMzMzunfvHhERffbZZ2RkZESHDx+m1NRU2rRpE2lqatKePXteRhdfqpoub+vv708A6OzZsyp5ISEhFBcXR9evXyc/Pz8Si8UUGRkp5L+Oy9vGxcXRli1bql3e1sPDg6o6LQcHB5NYLKZt27ZRamoqHThwgPT09JRWntu7dy9dunSJUlNTacmSJaShoUH79++v0369qnJycigmJoY2btwoHJ8xMTHCubEm54v09HSKiYkhX19fsrOzo5iYmFqtYscYY4yXt32mZwUa2dnZNHbsWDIxMSGZTEYODg5KQUCljIwMcnd3J7FYTAAoLy9Ppcynn35KRkZGBIBWr14tpN+4cYP69OlDMpmMjIyMyNfXV1hqlYgoKiqKANDvv/9ORERjxoyhdu3a/ed+N1SBgYFkaWlJUqmU+vTpQ7du3VIpU12gQfR4icu+ffuSkZERGRoa0jvvvENXrlwR8ouKiujTTz+lZs2akUwmo9atW9O6devqskv1pqioiHx9fcnQ0JAMDQ3p448/puLiYpVyzwo0pk+fTkZGRiSVSqlTp0506tQppfyKigr63//+RyYmJqSjo0PDhw+v8u+jMUhPT6fevXuTVColS0vLao+b6gKNiooKWrp0Kdnb25NMJqPmzZvTokWLlJYbXrp0KZmampJEIiEnJyfauXNnnfXnVRcSEkIAVF5PHqfPO1+MGTOmyjoYY4zVnIjo/890ZYwxxhhjjDE14TkajDHGGGOMMbXjQIMxxhhjjDGmdhxoMMYYY4wxxtSOAw3GGGOMMcaY2nGgwRhjjDHGGFM7DjQYY4wxxhhjaseBBmOMMcYYY0ztONBgjDHGGGOMqR0HGowxxhhjjDG140CDMcYYY4wxpnYcaDDGGGOMMcbUjgMNxhhjjDHGmNpxoMEYY4wxxhhTOw40GGOMMcYYY2rHgQZjjDHGGGNM7TjQYIwxxhhjjKkdBxqMMcYYY4wxteNAgzHGGGOMMaZ2HGgwxhhjjDHG1I4DDcYYY4wxxpjacaDBGGOMMcYYUzsONBhjjDHGGGNqx4EGY4zVsYyMDHh6ekJbWxvW1tYIDg6udR0rV66Evb09ZDIZnJyccPToUaX8w4cP491334VcLodIJEJ2dra6mt/g2NraQiQSKb3Cw8OVygQFBcHa2hra2trw9PTE7du3lfJDQ0PRvn176OjowNraGvPmzUN5eflL7AVjjDV8HGgwxlgd8/b2RnFxMSIjI7Fo0SLMmDEDJ0+erPH+27dvx/z587Fs2TIkJiZi5MiRGDJkCJKTk4Uy9+/fh7u7O+bOnVsXXWhwvvzyS2RmZgovNzc3Ie/YsWPw8/PDokWLEBkZiaKiIvj4+Aj5KSkpGDZsGIYOHYrExERs3LgR69evx+rVq+ujK4wx1nBRI1NWVkbjx48nW1tbkkgkZGNjQ4sXL1YpFx0dTe+88w7p6OiQQqGgESNG0P3794X8goICmjFjBjVt2pRkMhl16tSJwsPDhXwAtG/fPmHb39+fHB0dld6jMu3gwYNkb29PUqmU3NzciIgoOzubRowYQRYWFiSRSKhly5a0adMmlXaePn2aXF1dSSaTkZmZGU2cOJGIiB4+fEj6+vq0Z88epfKzZ88mDw+P2g8cY6xOREdHEwBKSEgQ0ry9vcnLy6vGdfj4+JCPj49SmoODA82dO1el7NmzZwkAZWVlvXCbGzobGxtavnx5tfkDBgwgb29vYTshIYEAUExMDBER7d27lzQ1Nam8vFwo4+3tTSNGjKizNjPGWGPU6K5olJeXQ0tLC1u3bsVff/2FNWvW4JtvvsFPP/0klMnKykKvXr1gZmaG8+fP48yZM2jZsiXu3bsnlJk0aRJ+/vlnbN68GVevXsWcOXOQnp5e6/b8888/WLlyJbZs2YL4+HiMHDkSAFBQUAArKyvs378fycnJmDt3LiZNmoSIiAhh36SkJHh6esLV1RXR0dH4+eefIZFIAAA6OjoYNmwYtm/fLpSvqKjA7t27MWbMmFq3kzFWN6KjoyGXy+Ho6Cikubu74/LlyzWuo6SkRPjbrySTyRATE6O2djY2K1euhImJCTp27IitW7cq5UVHR6Nr167CtqOjIxQKhfCZdOrUCVpaWti7dy+ICKmpqbh48SL69ev3MrvAGGMNX31HOi/DkCFDaOTIkcL2l19+SS1atKDS0tIqy9+4cYMA0JkzZ6qtEzW8oiESiSglJaVG7ezQoQPNmzdP2B49ejS5u7tXWz4iIoLEYjFlZ2cT0eOrHzo6OkpXZhhj9evbb78lOzs7KigoIGtra1qzZg3t3LmTJBJJjetYvXo1yeVyiouLo/Lyctq3bx+JxWJydnZWKctXNIjWrFlD586doytXrtBXX31FGhoa9OOPPwr5YrGYfvrpJ1q9ejXZ2NjQw4cPqWXLlkpXv3/77Tdq0qQJaWlpkUgkom+++aY+usIYYw2aVj3HOXXi+++/x6ZNm5Ceno6ioiIUFxejb9++Qn5CQgJcXV2hpVV19xMTE6GhoaH0i9eLsrCwgJ2dnUp6eXk5li5dit27d+P27dsoLS1FYWGh0nsmJCQotftp3bp1Q7NmzbBnzx5MmTIFO3bswODBg6Gvr/+f280YUy8tLS3Y2NhAoVDUet+pU6ciLi4Ozs7OEIlEcHZ2xpAhQ3D9+vU6aGnDN2PGDOHfzs7OyMjIwNq1a/Hhhx8qlVMoFGjWrBk0NTWV0v/55x9MnDgR06ZNg5eXF65du4Zp06bBysqKrxgzxlgtNLpbp/bs2QM/Pz9MmDAB4eHhiI2NRZ8+fVBRUVGn71td/XK5vMr0FStWYMWKFZg3bx7Onz+P2NhYtG3bttbtHD16NLZv346ioiIcOHCA/xNk7BVjamqKnJwcSKVSnDt3Dh988AGys7Nhampa4zrEYjFCQkLw6NEjZGRkICoqCoWFhbC0tKzDljcezs7OSre+mpqaIjs7G6NHj0ZERASkUqnSZ/L999/DwMAACxYsQNu2beHt7Y2ZM2di8eLF9dUFxhhrkBpdoPH777/D1dUVkydPhpOTE+zs7HDz5k2lMk5OTrh48WK1SxU6OjqioqICFy5cqPZ95HI5CgoKhO1bt27Vup1eXl4YNWoUHBwcYGVlhYyMDJV2/v7778+sZ8yYMfjjjz+wZs0a6Ovro1evXrVqB2Osbrm4uCA/Px+JiYlCWkREBDp27KhS9u7du0hLS6u2LqlUCgsLC+Tm5uLUqVPo3r17HbS48UlOToatra2w7eLigvPnzwvbiYmJyM3NFT6TvLw8iEQipTq0tLRQWFj4UtrLGGONRaMLNFq2bImYmBicOXMG165dw+zZs1W+wE+bNg25ubkYO3Ys4uLikJCQgIULF+Lvv/8GALRo0QKjRo3ChAkTcOLECdy4cQMHDx7Etm3bhDpcXFxw8OBBlJeXIzk5GUeOHKl1O8PDw3Hp0iUkJiZi3LhxKCkpUSozd+5cnD9/Hp9++in+/PNPxMTEYNq0aUplbGxs4OHhgQULFmDkyJHQ0Gh0HyljDVqHDh3QqVMnTJs2DfHx8QgJCcGhQ4cwefJklbIjRoxA8+bNVdJLS0sRHByM69evIyYmBj4+PjAxMcFHH30klMnNzUVsbCxSUlIAPL71MjY2VukHkdfBhQsXsGLFCsTExODGjRv4/vvv8cMPP2D69OlCGV9fXxw6dAghISGIj4/H1KlT8dZbb6F9+/YAgD59+iAqKgorV65EamoqfvnlF6xZswbvvfdePfWKMcYaqPqeJKJuxcXFNH78eDI0NCSFQkGffPIJjRs3jvr3769U7snlbY2MjGjYsGEqy9tOnz6dzM3NSSaTkYuLC509e1bIj42NJScnJ1IoFNS3b1+aMmVKtcvbViU3N5cGDx5Menp6ZG5uTt999x316tWLpk6dqlTu9OnT9NZbb5FMJqMmTZrQRx99pFJXSEgIAaArV67UdrgYYy9Beno69e7dm6RSKVlaWtK6deuqLOfh4UFVnZZLS0vJzc2NdHR0SE9PjwYMGKCyyETleeDp15PnrddBdHQ0OTs7k56eHslkMmrbti1t3bpVpVxgYCBZWlqSVCqlPn360K1bt5TyN2/eTI6OjqStrU1WVlbk5+dHBQUFL6sbjDHWKIiIiOoxzmFqsHjxYuzatQtXr16t76YwxhhjjDEGoBHeOvU6KSgoQFxcHAIDAzFp0qT6bg5jjDHGGGMCDjQasGnTpqFz587o1asXPv744/puDmOMMcYYYwK+dYoxxhhjjDGmdnxFgzHGGGOMMaZ2HGgwxhhjjDHG1I4DDdZoBAUFwdraGtra2vD09MTt27drtf+1a9fQr18/yOVyGBkZYdy4cXjw4IGQX1RUhHHjxsHBwQEaGhoqzzRpTIqLizF58mTI5XLI5XJMmTJF5TkvzxMWFgYXFxfo6urC2toaS5YsUconIixYsABNmjSBnp4eRo4ciXv37qmzG6+MjIwMeHp6QltbG9bW1ggODq51HStXroS9vT1kMhmcnJxw9OhRpfzDhw/j3XffhVwuh0gkQnZ2trqa3+DY2tpCJBIpvcLDw5XKPO98ERoaivbt20NHRwfW1taYN29etQ95ZYwxVjUONFijcOzYMfj5+WHRokWIjIxEUVERfHx8arx/WVkZBg4cCIlEgsjISBw/fhyXLl3ClClThDLl5eWQSCSYM2cO2rVrVxfdeGXMnz8fhw8fRmhoKEJDQ3Ho0CH4+/vXeP+UlBQMGjQIAwcORHx8PAICArB48WJs3rxZKBMcHIzVq1dj06ZNCA8PR3x8fKNd1MDb2xvFxcWIjIzEokWLMGPGDJw8ebLG+2/fvh3z58/HsmXLkJiYiJEjR2LIkCFITk4Wyty/fx/u7u6YO3duXXShwfnyyy+RmZkpvNzc3IS8550vUlJSMGzYMAwdOhSJiYnYuHEj1q9fj9WrV9dHVxhjrOGq16d41NLNmzcJAI0dO5YMDAxo9erV5ODgQBYWFhQTE0NERGVlZTR+/HiytbUliURCNjY2tHjxYpW6nnxgn0KhoBEjRig9sO/s2bMEgCIiIsjV1ZWkUinZ2tpSamoqERHFxMRQ165dSSqVkrm5OS1YsIAqKipq3Jfs7GwaMWIEWVhYkEQioZYtW9KmTZuE/ODgYLKxsVHa5969eySVSunMmTNERFReXk4zZ84kfX19srCwoB9++OG1fEAXEdGAAQPI29tb2E5ISCAAwnHxPElJSQSAkpKShLS9e/eSWCyme/fuqZT38PBQebhiY1FWVkZGRkYUFBQkpAUFBZGxsTGVlZXVqI7g4GAyMzNTSpsyZQp16dJF2G7Tpg3NmTNH2D569ChpampSdnb2f+zBqyU6OpoAUEJCgpDm7e1NXl5eNa7Dx8eHfHx8lNIcHBxo7ty5KmUrz11ZWVkv3OaGzsbGhpYvX15t/vPOF3v37iVNTU0qLy8Xynh7e9OIESPqrM2MMdYYNcgrGv369YOvry9mz56NH374Ad27d8f69esBPP7VWUtLC1u3bsVff/2FNWvW4JtvvsFPP/0k7J+VlYVevXrBzMwM58+fx5kzZ9CyZcsqb9vw8/PDrFmzkJiYiG+//RYaGhooLS2Fl5cXLC0tceXKFQQHByMgIABbtmypcR8KCgpgZWWF/fv3Izk5GXPnzsWkSZMQEREBABg6dChu376NqKgoYZ+ff/4ZcrkcHh4eAICNGzciJCQE27dvx/Hjx2v1/o1NdHQ0unbtKmw7OjpCoVDg8uXLNdq/8rYgiUQipMlkMpSWliIxMVG9jX3FpaamIi8vT2k83d3dkZOTg5s3b9aojpKSEojFYqU0mUyGuLg4EBGKi4uRmJio8h7l5eWIiYlRT0deEdHR0ZDL5XB0dBTS3N3da3xsAo/H88ljE3g8no1trNRp5cqVMDExQceOHbF161alvOedLzp16gQtLS3s3bsXRITU1FRcvHgR/fr1e5ldYIyxBq9BBhoDBgxAz5490aRJE7z99tvo1q0bMjIyADz+ovjDDz/Aw8MDtra28PLygqenJ06cOCHsHxQUBIVCga1bt6J9+/Zo164dFi1aBCsrK5X3mjZtGoYNGwY7OzuMGjUKNjY2CAsLQ2ZmJoKDg+Hg4IDBgwdj0qRJ+P7772vcBxsbGyxfvhyurq5o3rw5xo8fj/bt2yMsLAwA0KRJE3Tv3h379+8X9tm3bx+GDh0KDY3HH9vGjRsxYcIEDBw4UOjD6yorKwsmJiYICAiAra0tHj16BBMTE2RlZdVo/1atWsHMzAwrV65EcXExsrKysGbNGqHu10llf01MTDB48GB4e3vDxMREKe953N3d8ffff2PHjh2oqKhAQkIC9uzZg6KiIjx48AA5OTmoqKiAiYkJZs2ahY4dO0JfXx8SiaTRjXdWVhaMjY3x8OFDNGvWDIGBgbU6NgHAw8MDR48eRXx8PCoqKrB//35cvXq10Y2VusyePRv79u3DL7/8Ai8vL3z00UcqPzY963xha2uLU6dOYebMmZBIJLC3t8fkyZPx4Ycf1leXGGOsQWqQgYZMJhNelduFhYVC/vfffw8XFxeYmJhAT08PR44cQUFBgZCfkJAAV1dXaGlpPfe9unXrppKWkpICCwsLGBsbC2nt2rVDSkpKjftQXl6Ob7/9Fm3atIGRkRH09PQQGxur1M7hw4fjwIEDAB5fATl58qTSfcTXr19HmzZthO0nfzF9XSkUCjRr1gyampq12k8mk2HXrl04duwYdHR0YGNjg+7duwMARCJRHbS0YbCwsEDTpk1rvZ+zszMCAgLg6+sLiUSCd955ByNHjgSgOp5NmjRBs2bN1NLeV5mWlhZsbGygUChqve/UqVMxaNAgODs7QyKRYNmyZRgyZMhrfWw+y4wZM/D222/D2dkZCxYswPjx47F27VqVctWdL/755x9MnDgR06ZNQ3R0NPbu3Yu1a9di27ZtL6sLjDHWKDTIQKMq9P+fO7hnzx74+flhwoQJCA8PR2xsLPr06YOKiooXqlcul6uxlf9nxYoVWLFiBebNm4fz588jNjYWbdu2VWrnkCFDkJ6ejpiYGPz8888wMjKqMvBhgKmpKbKzszF69GhERERAKpUiOzsbpqamNa6jR48eSE9Px507d5CVlYX+/fsDACwtLeuq2a+kyjHLzs7GunXrsHbtWmEFo9qM54wZM3D//n2kp6fj1q1bsLCwgIGBAfT19WFsbAwNDQ1kZ2dj3rx5OHjwIB48eICSkpJavUdDYGpqipycHEilUpw7dw4ffPBBrY9NsViMkJAQPHr0CBkZGYiKikJhYeFrd2y+KGdnZ6SnpwvbzztffP/99zAwMMCCBQvQtm1beHt7Y+bMmVi8eHF9dYExxhqkRhNoVPr999/h6uqKyZMnw8nJCXZ2dir3lTs5OeHixYsvvFShnZ0d7ty5g9zcXCEtLi4O9vb2tWqnl5cXRo0aBQcHB1hZWQm3f1UyNjZGr169sH//fuzfv1/ptikAeOONN3D16lVhOyEh4YX60xi4uLjg/PnzwnZiYiJyc3PRsWNHpXJFRUVIS0tDfn5+tXWZmZlBV1cXu3fvhrGxsdJVo9dBixYtIJfLlcYzIiICCoUCzZs3Vyqbn5+PtLQ0FBUVVVmXhoYGLC0tIRaLsXv3bmF+kVQqhaOjo8p7aGpqwtnZuQ56VX9cXFyQn5+vNNcnIiJC5dgEgLt37yItLa3auqRSKSwsLJCbm4tTp04JV93YsyUnJ8PW1lbYft75Ii8vT+VqkZaWltKVc8YYYzVQz5PRa6Vy1SmixyurVK7KFBISQh4eHkREFBgYSAYGBvTrr7/SX3/9RX5+fqSnp0f9+/cX6vn3339JLpfTBx98QLGxsXT16lXy9/en27dvC2WetXJLcXExWVtbk4+PDyUlJdHBgwdJX1+fNmzYUOO+zJ49m2xsbOiPP/6ghIQEGjFiBOnp6amsZLR582Zq3rw5aWtrU0REhFLe+vXrycDAgEJDQykuLo66du362q46Vbli0ZYtWyguLo48PDzorbfeUilX+bn6+/ur5B0/fpwiIiIoLS2NNm7cSFKplFauXKlUJjExkWJiYsjFxYWGDx9OMTExdP369brqVr2ZM2cOmZubU3h4OIWHh5O5uTl9/vnnKuX8/f2rPeZCQkIoLi6Orl+/Tn5+fiQWiykyMlLIDwoKIl1dXQoNDaWoqChycHBotKv6dOrUibp3705xcXG0ZcsW0tTUpLCwMJVyHh4eVNVpuaSkhNatW0fXrl2jK1euUK9evcjKyory8/OFMjk5ORQTE0MbN24UPpOYmBh68OBBnfbtVXP+/Hlavnw5XblyhVJSUig4OJgkEgn99NNPQpnnnS+OHTtGAGjFihV048YNOnXqFFlaWtLkyZPro0uMMdZgNbpAo7i4mMaPH0+GhoakUCjok08+oXHjxikFGkTKy9saGRnRsGHDqlzetrolIqOjo8nNzY0kEgk1adKEvvjiC6WlEJ8nNzeXBg8eTHp6emRubk7fffcd9erVSyXQyM3NJbFYTBYWFirL55aXl9OMGTOE5W0rv2BcuHChxu1oTAIDA8nS0pKkUin16dOHbt26pVLmWYHGtm3byNLSksRiMdnZ2VFAQIBKGRsbGwKg9Ko89hqToqIi8vX1JUNDQzI0NKSPP/6YiouLVco9K9CYPn06GRkZkVQqpU6dOtGpU6eU8isqKuh///sfmZiYkI6ODg0fPpzy8vLqqEf1Kz09nXr37k1SqZQsLS1p3bp1VZarLtAoLS0lNzc30tHRIT09PRowYAClpKQolQkJCVE5Nl/HHx6io6PJ2dmZ9PT0SCaTUdu2bWnr1q0q5Z53vti8eTM5OjqStrY2WVlZkZ+fHxUUFLysbjDGWKMgIvr/kxtYgxcTE4MOHTrg77//hoWFRX03hzHGGGOMvcY40GjA7ty5g127dqF3794QiUSYNWsWysrKcPbs2fpuGmOMMcYYe801usngrxMNDQ0cOHAArq6u8PDwgL6+Pnbs2FHfzWKMMcYYY4yvaDDGGGOMMcbUj69oMMYYY4wxxtTulQ00/Pz8XmiN+LS0NIhEIly+fFn9jXqGF20vY4wxxhhjjdErG2h8/fXXOHjwYJ3VHx4eDpFIJDzxmDV8QUFBsLa2hra2Njw9PXH79u1a7X/t2jX069cPcrkcRkZGGDduHB48eCDkFxUVYdy4cXBwcICGhgamTZum7i68MoqLizF58mTI5XLI5XJMmTIFJSUltaojLCwMLi4u0NXVhbW1NZYsWaKUn5SUhKFDh8LKygoikQj79+9XZxdeKRkZGfD09IS2tjasra0RHBxc6zpWrlwJe3t7yGQyODk54ejRo0r5hw8fxrvvvgu5XP7an9tsbW0hEomUXuHh4Uplnne+CA0NRfv27aGjowNra2vMmzfvhR/yyhhjr6tXNtDQ19eHQqGo72awBuLYsWPw8/PDokWLEBkZiaKiIvj4+NR4/7KyMgwcOBASiQSRkZE4fvw4Ll26hClTpghlysvLIZFIMGfOHLRr164uuvHKmD9/Pg4fPozQ0FCEhobi0KFD8Pf3r/H+KSkpGDRoEAYOHIj4+HgEBARg8eLF2Lx5s1CmoKAALVq0QEBAQB304NXi7e2N4uJiREZGYtGiRZgxYwZOnjxZ4/23b9+O+fPnY9myZUhMTMTIkSMxZMgQJCcnC2Xu378Pd3d3zJ07ty660OB8+eWXyMzMFF5ubm5C3vPOFykpKRg2bBiGDh2KxMREbNy4EevXr8fq1avroyuMMdZwqeuBHFZWVrRnzx6V9NLSUtLW1qbw8HAiIoqNjaWePXuStrY2NWvWjBYsWEClpaVC+a+//vqZD0IrLy+nmTNnCg+p++GHH5QeSlX5UL8NGzZQ27ZtSVdXl4YOHUoPHz4kov97YNvTr8qH/1U6c+YMde7cmaRSKdnb21NgYKBS/sWLF6lNmzYklUqpb9++NGbMmFo9uC07O5tGjBhBFhYWJJFIqGXLlrRp0yYhPzg4WKVN9+7dI6lUSmfOnKnRWLxOBgwYQN7e3sJ2QkICAaCYmJga7Z+UlEQAKCkpSUjbu3cvicViunfvnkp5Dw8PlYcrNhZlZWVkZGREQUFBQlpQUBAZGxtTWVlZjeoIDg4mMzMzpbQpU6ZQly5dqiwPgPbt2/fijX6FRUdHEwBKSEgQ0ry9vcnLy6vGdfj4+JCPj49SmoODA82dO1el7PMeNvo6sLGxoeXLl1eb/7zzxd69e0lTU1PpIaze3t6N9sn1jDFWV9R2RcPV1bXKeRGJiYkoLS1Fp06dkJOTg549e6JLly6Ii4vDTz/9hJ07d2LVqlVC+VmzZiEzMxMTJ06s8n02btyIkJAQbN++HcePH8eWLVuqLLd+/Xps3rwZR44cQVhYmFDOzc0NmZmZOHDggNC+zMxMREVFCftW3kIzatQoJCYmYs2aNVi0aBH27t0LACgpKcHQoUPRoUMHxMbG4t1338X27dtrNV4FBQWwsrLC/v37kZycjLlz52LSpEmIiIgAAAwdOhS3b99WatfPP/8MuVwODw+PWo3F6yA6Ohpdu3YVth0dHaFQKGo8V6fytiCJRCKkyWQylJaWIjExUb2NfcWlpqYiLy9PaTzd3d2Rk5ODmzdv1qiOkpISiMVipTSZTIa4uDjQa7bQXXR0NORyORwdHYU0d3f3Ws0jKykpUTo2gcfjGRMTo7Z2NjYrV66EiYkJOnbsiK1btyrlPe980alTJ2hpaWHv3r0gIqSmpuLixYvo16/fy+wCY4w1eGoNNCq/FB8/fhzz588HAERFRaFt27bQ0dFBUFAQWrZsicWLF+ONN96Au7s7Pv30U6UvyLq6ujA3N4eOjk6V77Nx40ZMmDABAwcORLt27bBo0aIqy82aNQsdO3ZEz5490atXL6FtEokE5ubmwm1ZTZo0gbm5OUxNTYV9lyxZgkGDBmHmzJmws7NDv379MHHiRKGdYWFhyM7ORkBAAFq3bo1Zs2bBxcWlVuNlY2OD5cuXw9XVFc2bN8f48ePRvn17hIWFCe3q3r270n3r+/btw9ChQ6GhoVGrsXgdZGVlwcTEBAEBAbC1tcWjR49gYmKCrKysGu3fqlUrmJmZYeXKlSguLkZWVhbWrFkj1P06qeyviYkJBg8eDG9vb5iYmCjlPY+7uzv+/vtv7NixAxUVFUhISMCePXtQVFSkNO/ldZCVlQVjY2M8fPgQzZo1Q2BgYK2OTQDw8PDA0aNHER8fj4qKCuzfvx9Xr1597Y7Nmpo9ezb27duHX375BV5eXvjoo4/w008/CfnPO1/Y2tri1KlTmDlzJiQSCezt7TF58mR8+OGH9dUlxhhrkNQaaFy5cgVEhG3btiE4OBiFhYW4fPkyXF1dAQDx8fG4fPky9PT0hJefnx9SU1Nr/D7Xr19HmzZthO0nfyV8kr29vfBvIyMj5Obm1vg94uPjceDAAaV2rlq1SmjnjRs3YGFhAblcLuzzZJtqory8HN9++y3atGkDIyMj6OnpITY2FgUFBUKZ4cOHC1deCgoKcPLkSaX7iGs6Fq8ThUKBZs2aQVNTs1b7yWQy7Nq1C8eOHYOOjg5sbGyEVcREIlEdtLRhsLCwQNOmTWu9n7OzMwICAuDr6wuJRIJ33nkHI0eOBPD6jqeWlhZsbGxeaO7Z1KlTMWjQIDg7O0MikWDZsmUYMmTIazuWzzNjxgy8/fbbcHZ2xoIFCzB+/HisXbtWpVx154t//vkHEydOxLRp0xAdHY29e/di7dq12LZt28vqAmOMNQpqCzQ6dOiA4uJiJCcnIz4+Hj4+Pjh37hyioqKEQAMA3nvvPcTGxgqvq1evIikpSV3NEGhpaSlt1/Z2DV9fX6V2JiYm4pdfflFb+1asWIEVK1Zg3rx5OH/+PGJjY9G2bVtUVFQIZYYMGYL09HTExMTg559/hpGREbp166a2NjQmpqamyM7OxujRoxEREQGpVIrs7GylK1XP06NHD6Snp+POnTvIyspC//79AQCWlpZ11exXUuWYZWdnY926dVi7dq2wglFtxnPGjBm4f/8+0tPTcevWLVhYWMDAwAD6+vp10u5XlampKXJyciCVSnHu3Dl88MEHtT42xWIxQkJC8OjRI2RkZCAqKgqFhYWv3bH5opydnZGeni5sP+988f3338PAwAALFixA27Zt4e3tjZkzZ2Lx4sX11QXGGGuQ1BZoSCQSdOjQAZs3b0b79u3Rr18/HDt2DFevXhUCjTZt2iA5ORktWrSAvb290qum3njjDVy9elXYTkhIeOH2Ao9XG3pamzZt8Ndff6m00cbGBsDjqyV37tzBvXv3Xrgdv//+O7y8vDBq1Cg4ODjAysoKGRkZSmWMjY3Rq1cv7N+/H/v371e6bQpQ31g0Bi4uLjh//rywnZiYiNzcXHTs2FGpXFFREdLS0pCfn19tXWZmZtDV1cXu3bthbGxc66tVDV2LFi0gl8uVxjMiIgIKhQLNmzdXKpufn4+0tDQUFRVVWZeGhgYsLS0hFouxe/duYX7R68TFxQX5+flKc30iIiJUjk0AuHv3LtLS0qqtSyqVwsLCArm5uTh16hQ/u6eGkpOTYWtrK2w/73yRl5encrVIS0sLhYWFL6W9jDHWaKhzZvns2bNJX1+ftmzZQvfv3yeFQkFNmjQR8rOyskihUNDYsWMpNjaWEhMTaePGjfTFF18IZTIzMykzM5MmTpxIrq6uwnZxcTEREa1fv54MDAwoNDSU4uLiqGvXrlWuOhUVFSXUOWbMGOrfv79SW+/cuUMaGhq0du1aKigooKKiIiEvOTmZJBIJzZ07lxITEyk2NpZWr15Nq1atIiKikpISsrKyojFjxlBycjIFBASQpqZmrVadmj17NtnY2NAff/xBCQkJNGLECNLT01NZyWjz5s3UvHlz0tbWpoiICKW8543F6+To0aOkqalJW7Zsobi4OPLw8KC33npLpVzlijz+/v4qecePH6eIiAhKS0ujjRs3klQqpZUrVyqVSUxMpJiYGHJxcaHhw4dTTEwMXb9+va66VW/mzJlD5ubmFB4eTuHh4WRubk6ff/65Sjl/f/9qj7mQkBCKi4uj69evk5+fH4nFYoqMjBTyi4uLKSYmhmJiYggALV++nGJiYigzM7Muu1YvOnXqRN27d6e4uDjasmULaWpqUlhYmEo5Dw8Pquq0XFJSQuvWraNr167RlStXqFevXmRlZUX5+flCmZycHIqJiaGNGzcKn0lMTAw9ePCgTvv2qjl//jwtX76crly5QikpKRQcHEwSiYR++uknoczzzhfHjh0jALRixQq6ceMGnTp1iiwtLWny5Mn10SXGGGuw1Bpo7Nu3jwDQ7du3iejxf5pPL+EYExNDvXv3Jl1dXTIwMCA3Nzfavn37/zWoiqVnn/wiU15eTjNmzBCWdK38T/XChQtEVPNAg4ho+fLlZGFhQSKRqMrlbd3c3Egmk5GRkRH17NlT6YtBZGSksLytp6dnrZe3zc3NpcGDB5Oenh6Zm5vTd999R7169VIJNHJzc0ksFpOFhQVVVFQo5T1vLF43gYGBZGlpSVKplPr06UO3bt1SKfOsQGPbtm1kaWlJYrGY7OzsKCAgQKWMjY2NyrFZm8+9oSgqKiJfX18yNDQkQ0ND+vjjj4Vg/0nPCjSmT59ORkZGJJVKqVOnTnTq1Cml/Mq/1adfVX02DV16ejr17t2bpFIpWVpa0rp166osV12gUVpaSm5ubqSjo0N6eno0YMAASklJUSoTEhLyzHPn6yI6OpqcnZ1JT0+PZDIZtW3blrZu3apS7nnni82bN5OjoyNpa2uTlZUV+fn5UUFBwcvqBmOMNQoiooa91mRMTAw6dOiAv//+GxYWFvXdnHrFY8EYY4wxxl4VDS7QuHPnDnbt2oXevXtDJBJh1qxZKCsrw9mzZ+u7aS8djwVjjDHGGHtVqW0y+MuioaGBAwcOwNXVFR4eHtDX18eOHTvqu1n1gseCMcYYY4y9qhrcFQ3GGGOMMcbYq6/BXdFgjDHGGGOMvfo40GCMMcYYY4ypHQcajDHGGGOMMbXjQIMxxhhjjDGmdhxoMMYYY4wxxtSOAw3GGGOMMcaY2nGgwRhjjDHGGFM7DjQYY4wxxhhjaseBBmOMMcYYY0ztONBgjDHGGGOMqR0HGowxxhhjjDG140CDMcYYY4wxpnYcaDDGGGOMMcbUjgMNxhhjjDHGmNpxoMEYY4wxxhhTOw40GGOMMcYYY2rHgQZjjDHGGGNM7TjQYIwxxhhjjKkdBxqMMcYYY4wxteNAgzHGGGOMMaZ2HGgwxhhjjDHG1I4DDcYYY4wxxpjacaDBGGOMMcYYUzsONBhjjDHGGGNqx4EGY4wxxhhjTO040GCMMcYYY4ypHQcajDHGGGOMMbXjQIMxxhhjjDGmdhxoMMYYY4wxxtSOAw3GGGOMMcaY2nGgwRhjjDHGGFM7DjQYY4wxxhhjaseBBmOMMcYYY0ztONBgjDHGGGOMqR0HGowxxhhjjDG140CDMcYYY4wxpnYcaDDGGGOMMcbUjgMNxhhjjDHGmNpxoMEYY4wxxhhTOw40GGOMMcYYY2rHgQZjjDHGGGNM7TjQYIwxxhhjjKkdBxqMMcYYY4wxteNAgzHGGGOMMaZ2HGgwxhhjjDHG1I4DDcYYY4wxxpjacaDBGGOMMcYYUzsONBhjjDHGGGNqx4EGY4wxxhhjTO040GCMMcYYY4ypHQcajDHGGGOMMbXjQIMxxhhjjDGmdhxoMMYYY4wxxtSOAw3GGGOMMcaY2nGgwRhjjDHGGFM7DjQYY4wxxhhjaseBBmOMMcYYY0ztONBgjDHGGGOMqR0HGowxxhhjjDG140CDMcYYY4wxpnYcaDDGGGOMMcbUjgMNxhhjjDHGmNpxoMEYY4wxxhhTOw40GGOMMcYYY2rHgQZjjDHGGGNM7TjQYIwxxhhjjKkdBxqMMcYYY4wxteNAgzHGGGOMMaZ2HGgwxhhjjDHG1I4DDcYYY4wxxpjacaDBGGOMMcYYUzsONBhjjDHGGGNqx4EGY4wxxhhjTO040GCMMcYYY4ypHQcajDHGGGOMMbXjQIMxxhhjjDGmdhxoMMYYY4wxxtSOAw3GGGOMMcaY2nGgwRhjjDHGGPt/7dexAAAAAMAgf+tJ7CyLdqIBAADsRAMAANiJBgAAsBMNAABgJxoAAMBONAAAgJ1oAAAAO9EAAAB2ogEAAOxEAwAA2IkGAACwEw0AAGAnGgAAwE40AACAnWgAAAA70QAAAHaiAQAA7EQDAADYiQYAALATDQAAYCcaAADATjQAAICdaAAAADvRAAAAdqIBAADsRAMAANiJBgAAsBMNAABgJxoAAMBONAAAgJ1oAAAAO9EAAAB2ogEAAOxEAwAA2IkGAACwEw0AAGAnGgAAwE40AACAnWgAAAA70QAAAHaiAQAA7EQDAADYiQYAALATDQAAYCcaAADATjQAAICdaAAAADvRAAAAdqIBAADsRAMAANiJBgAAsBMNAABgJxoAAMBONAAAgJ1oAAAAO9EAAAB2ogEAAOxEAwAA2IkGAACwEw0AAGAnGgAAwE40AACAnWgAAAA70QAAAHaiAQAA7EQDAADYiQYAALATDQAAYCcaAADATjQAAICdaAAAADvRAAAAdqIBAADsRAMAANiJBgAAsBMNAABgJxoAAMBONAAAgJ1oAAAAO9EAAAB2ogEAAOxEAwAA2IkGAACwEw0AAGAnGgAAwE40AACAnWgAAAA70QAAAHaiAQAA7EQDAADYiQYAALATDQAAYCcaAADATjQAAICdaAAAADvRAAAAdqIBAADsRAMAANiJBgAAsBMNAABgJxoAAMBONAAAgJ1oAAAAO9EAAAB2ogEAAOxEAwAA2IkGAACwEw0AAGAnGgAAwE40AACAnWgAAAA70QAAAHaiAQAA7EQDAADYiQYAALATDQAAYCcaAADATjQAAICdaAAAADvRAAAAdqIBAADsRAMAANiJBgAAsBMNAABgJxoAAMBONAAAgJ1oAAAAO9EAAAB2ogEAAOxEAwAA2IkGAACwEw0AAGAnGgAAwE40AACAnWgAAAA70QAAAHaiAQAA7EQDAADYiQYAALATDQAAYCcaAADATjQAAICdaAAAADvRAAAAdqIBAADsRAMAANiJBgAAsBMNAABgJxoAAMBONAAAgJ1oAAAAO9EAAAB2ogEAAOxEAwAA2IkGAACwEw0AAGAnGgAAwE40AACAnWgAAAA70QAAAHaiAQAA7EQDAADYiQYAALATDQAAYCcaAADATjQAAICdaAAAADvRAAAAdqIBAADsRAMAANiJBgAAsBMNAABgJxoAAMBONAAAgJ1oAAAAO9EAAAB2ogEAAOxEAwAA2IkGAACwEw0AAGAnGgAAwE40AACAnWgAAAA70QAAAHaiAQAA7EQDAADYiQYAALATDQAAYCcaAADATjQAAICdaAAAADvRAAAAdqIBAADsRAMAANiJBgAAsBMNAABgJxoAAMBONAAAgJ1oAAAAO9EAAAB2ogEAAOxEAwAA2IkGAACwEw0AAGAnGgAAwE40AACAnWgAAAA70QAAAHaiAQAA7EQDAADYiQYAALATDQAAYCcaAADATjQAAICdaAAAADvRAAAAdqIBAADsRAMAANiJBgAAsBMNAABgJxoAAMBONAAAgJ1oAAAAO9EAAAB2ogEAAOxEAwAA2IkGAACwEw0AAGAnGgAAwE40AACAnWgAAAA70QAAAHaiAQAA7EQDAADYiQYAALATDQAAYCcaAADATjQAAICdaAAAADvRAAAAdqIBAADsRAMAANiJBgAAsBMNAABgJxoAAMBONAAAgJ1oAAAAO9EAAAB2ogEAAOxEAwAA2IkGAACwEw0AAGAnGgAAwE40AACAnWgAAAA70QAAAHaiAQAA7EQDAADYiQYAALATDQAAYCcaAADATjQAAICdaAAAADvRAAAAdqIBAADsRAMAANiJBgAAsBMNAABgJxoAAMBONAAAgJ1oAAAAO9EAAAB2ogEAAOxEAwAA2IkGAACwEw0AAGAnGgAAwE40AACAnWgAAAA70QAAAHaiAQAA7EQDAADYiQYAALATDQAAYCcaAADATjQAAICdaAAAADvRAAAAdqIBAADsRAMAANiJBgAAsBMNAABgJxoAAMBONAAAgJ1oAAAAO9EAAAB2ogEAAOxEAwAA2IkGAACwEw0AAGAnGgAAwE40AACAnWgAAAA70QAAAHaiAQAA7EQDAADYiQYAALATDQAAYCcaAADATjQAAICdaAAAADvRAAAAdqIBAADsRAMAANiJBgAAsBMNAABgJxoAAMBONAAAgJ1oAAAAO9EAAAB2ogEAAOxEAwAA2IkGAACwEw0AAGAnGgAAwE40AACAnWgAAAA70QAAAHaiAQAA7EQDAADYiQYAALATDQAAYCcaAADATjQAAICdaAAAADvRAAAAdqIBAADsRAMAANiJBgAAsBMNAABgJxoAAMBONAAAgJ1oAAAAO9EAAAB2ogEAAOxEAwAA2IkGAACwEw0AAGAnGgAAwE40AACAnWgAAAA70QAAAHaiAQAA7EQDAADYiQYAALATDQAAYCcaAADATjQAAICdaAAAADvRAAAAdqIBAADsRAMAANiJBgAAsBMNAABgJxoAAMBONAAAgJ1oAAAAO9EAAAB2ogEAAOxEAwAA2IkGAACwEw0AAGAnGgAAwE40AACAnWgAAAA70QAAAHaiAQAA7EQDAADYiQYAALATDQAAYCcaAADATjQAAICdaAAAADvRAAAAdqIBAADsRAMAANiJBgAAsBMNAABgJxoAAMBONAAAgJ1oAAAAO9EAAAB2ogEAAOxEAwAA2IkGAACwEw0AAGAnGgAAwE40AACAnWgAAAA70QAAAHaiAQAA7EQDAADYiQYAALATDQAAYCcaAADATjQAAICdaAAAADvRAAAAdqIBAADsRAMAANiJBgAAsBMNAABgJxoAAMBONAAAgJ1oAAAAO9EAAAB2ogEAAOxEAwAA2IkGAACwEw0AAGAnGgAAwE40AACAnWgAAAA70QAAAHaiAQAA7EQDAADYiQYAALATDQAAYCcaAADATjQAAICdaAAAADvRAAAAdqIBAADsRAMAANiJBgAAsBMNAABgJxoAAMBONAAAgJ1oAAAAO9EAAAB2ogEAAOxEAwAA2IkGAACwEw0AAGAnGgAAwE40AACAnWgAAAA70QAAAHaiAQAA7EQDAADYiQYAALATDQAAYCcaAADATjQAAICdaAAAADvRAAAAdqIBAADsRAMAANiJBgAAsBMNAABgJxoAAMBONAAAgJ1oAAAAO9EAAAB2ogEAAOxEAwAA2IkGAACwEw0AAGAnGgAAwE40AACAnWgAAAA70QAAAHaiAQAA7EQDAADYiQYAALATDQAAYCcaAADATjQAAICdaAAAADvRAAAAdqIBAADsRAMAANiJBgAAsBMNAABgJxoAAMBONAAAgJ1oAAAAO9EAAAB2ogEAAOxEAwAA2IkGAACwEw0AAGAnGgAAwE40AACAnWgAAAA70QAAAHaiAQAA7EQDAADYiQYAALATDQAAYCcaAADATjQAAICdaAAAADvRAAAAdqIBAADsRAMAANiJBgAAsBMNAABgJxoAAMAuT8TSRP3RJyoAAAAASUVORK5CYII="},"metadata":{}}]},{"cell_type":"markdown","source":"","metadata":{}}]} \ No newline at end of file diff --git a/Sugarcane Leaf Disease Detection/README.md b/Sugarcane Leaf Disease Detection/README.md new file mode 100644 index 000000000..54b74d470 --- /dev/null +++ b/Sugarcane Leaf Disease Detection/README.md @@ -0,0 +1,104 @@ + +#

Sugarcane Leaf Disease Detection

+ +### ๐ŸŽฏ **Goal** + +The main goal of this project is to develop a machine learning model capable of accurately classifying different diseases in sugarcane leaves. + +### ๐Ÿงต **Dataset** + +The dataset used in this project is the Sugarcane Leaf Disease Dataset. It can be found [here](https://www.kaggle.com/datasets/nirmalsankalana/sugarcane-leaf-disease-dataset). + +### ๐Ÿงพ **Description** + +This project involves classifying sugarcane leaf diseases using various machine learning models. The dataset comprises images of sugarcane leaves, categorized into different types. The project utilizes image preprocessing, data augmentation, and ensemble learning techniques to enhance model accuracy. + +### ๐Ÿงฎ **What I had done!** + +1. **Data Loading and Exploration:** + - Loaded the dataset and explored its structure. + - Understanding the distribution of the samples in the dataset through visualization. + +2. **Data Splitting:** + - Split the dataset into training, validation, and test sets using a ratio of 60:20:20. + +3. **Data Preprocessing:** + - Resized images to a uniform size. + - Applied data augmentation techniques like rotation, zoom, and flip to increase the diversity of the training data. + +4. **Model Development:** + - Built and trained a custom convolutional neural network (CNN) model using Keras. + - Trained 3 pre-trained models such as VGG16, IncepetionV3 and MobileNetV2. + - To get the best out of the models, I implemented an ensemble learning approach to combine the predictions of multiple models. + +5. **Model Evaluation:** + - Evaluated model performance using accuracy, confusion matrix, and classification report. + +### ๐Ÿš€ **Models Implemented** + +### Convolutional Neural Networks (CNN): + - Selected for their effectiveness in image classification tasks. + - Chosen because of customization and experimentation flexibility + +### VGG16 +- **Feature Extraction Power:** VGG16 is known for its deep architecture (16 layers) and strong feature extraction capabilities, suitable for capturing intricate patterns in leaf images. +- **Simplicity and Transfer Learning:** Its straightforward architecture and pretrained weights from ImageNet make it effective for transfer learning on small datasets. + +### MobileNetV2 +- **Efficiency and Speed:** MobileNetV2's lightweight design and efficient operations are ideal for environments with limited computational resources, offering good performance without compromising speed. +- **Deployment on Mobile Devices:** Optimized for mobile and edge devices, MobileNetV2 is suitable if deployment involves real-time leaf classification applications. + +### InceptionV3 +- **Multi-scale Feature Extraction:** InceptionV3's use of inception modules with different kernel sizes enables capturing features at multiple scales, beneficial for classifying leaves with varying textures and shapes. +- **Proven Performance:** It has demonstrated robust performance across diverse image classification tasks, making it a reliable choice for accurate leaf classification. + +### ๐Ÿ“š **Libraries Needed** + +- numpy +- pandas +- matplotlib +- seaborn +- plotly +- keras +- sklearn +- tensorflow +- cv2 +- splitfolders +- PIL + +### ๐Ÿ“Š **Exploratory Data Analysis Results** + +**INCLUSION OF IMAGES OF THE VISUALIZATION IS MUST (RESULT OF EDA)** + +- Distribution of images across different disease categories. + + ![bar_graph_distribution](https://github.com/atharv1707/DL-Simplified/assets/77221646/5be69072-61a1-4660-84d8-0143f5102acf) + + ![pie_chart_distribution](https://github.com/atharv1707/DL-Simplified/assets/77221646/83f0c51c-5f96-4655-943d-7c059620a10e) + +- Sample images from the dataset with their respective labels. + ![Screenshot 2024-06-27 125351](https://github.com/atharv1707/DL-Simplified/assets/77221646/fefb53fe-5969-44b1-8973-32e381ba04e0) + + +### ๐Ÿ“ˆ **Performance of the Models based on the Accuracy Scores** + + +| Model | Accuracy | +|---------------------|----------| +| Model 1 CNN Model | 84% | +| Model 2 VGG16 | 82% | +| Model 3 MobileNetV2 | 81% | +| Model 4 InceptionV3 | 80% | +| Ensemble Model | 90.5% | + +### ๐Ÿ“ข **Conclusion** + +This project successfully developed a model for highly accurately classifying sugarcane leaf diseases. The ensemble learning approach improved the model's performance, achieving the best results among all the developed models. The accuracy scores indicate that the ensemble model is the most reliable for this classification task. + +### โœ’๏ธ **Your Signature** + +Developed by **Atharv Pal** + +Connect with me on [LinkedIn](https://www.linkedin.com/in/atharv-pal17/) | [GitHub](https://github.com/atharv1707) + +--- diff --git a/Sugarcane Leaf Disease Detection/requirements.txt b/Sugarcane Leaf Disease Detection/requirements.txt new file mode 100644 index 000000000..4e41f1b7e --- /dev/null +++ b/Sugarcane Leaf Disease Detection/requirements.txt @@ -0,0 +1,11 @@ +numpy +pandas +matplotlib +seaborn +plotly +keras +sklearn +tensorflow +cv2 +splitfolders +PIL diff --git a/Sugarcane Leaf Disease DetectionModelensemble-learning.ipynb b/Sugarcane Leaf Disease DetectionModelensemble-learning.ipynb new file mode 100644 index 000000000..d3f5a12fa --- /dev/null +++ b/Sugarcane Leaf Disease DetectionModelensemble-learning.ipynb @@ -0,0 +1 @@ +