From 37ea2d84860fcac1d21c8b7637649396fc6b42a4 Mon Sep 17 00:00:00 2001 From: alolika bhowmik <152315710+alo7lika@users.noreply.github.com> Date: Sat, 26 Oct 2024 17:22:26 +0530 Subject: [PATCH 01/29] Create requirements.txt --- .../requirements.txt | 10 ++++++++++ 1 file changed, 10 insertions(+) create mode 100644 GAN-based Art Generator using Deep learning/requirements.txt diff --git a/GAN-based Art Generator using Deep learning/requirements.txt b/GAN-based Art Generator using Deep learning/requirements.txt new file mode 100644 index 000000000..0c91be3a7 --- /dev/null +++ b/GAN-based Art Generator using Deep learning/requirements.txt @@ -0,0 +1,10 @@ +# requirements.txt + +tensorflow==2.10.0 # For neural network building and training +numpy==1.23.0 # For numerical operations +matplotlib==3.5.2 # For visualizing generated images +Pillow==9.1.1 # Image processing library +scipy==1.8.0 # For advanced mathematical functions and optimization + +# Optional dependencies +tqdm==4.64.0 # For displaying progress bars during training From 9613e25fa548f4c1ec540f5c047f46aed6b6edd9 Mon Sep 17 00:00:00 2001 From: alolika bhowmik <152315710+alo7lika@users.noreply.github.com> Date: Sat, 26 Oct 2024 17:27:28 +0530 Subject: [PATCH 02/29] Create README.md --- .../Model/README.md | 95 +++++++++++++++++++ 1 file changed, 95 insertions(+) create mode 100644 GAN-based Art Generator using Deep learning/Model/README.md diff --git a/GAN-based Art Generator using Deep learning/Model/README.md b/GAN-based Art Generator using Deep learning/Model/README.md new file mode 100644 index 000000000..0c135603e --- /dev/null +++ b/GAN-based Art Generator using Deep learning/Model/README.md @@ -0,0 +1,95 @@ +
+ A creative project that uses Generative Adversarial Networks (GANs) to produce unique, synthetic artistic images. +
+ +--- + +## π Table of Contents +- [Project Overview](#project-overview) +- [How It Works](#how-it-works) +- [Model Architecture](#model-architecture) +- [Training Process](#training-process) +- [Usage](#usage) +- [Results](#results) +- [Contributing](#contributing) +- [License](#license) + +--- + +## π― Project Overview +This project leverages **GANs** to generate synthetic images that resemble artwork. GANs use two networks, a generator and a discriminator, to iteratively create and refine images until they reach high-quality results. + +Whether youβre interested in AI-driven art or exploring advanced deep learning concepts, this project will provide an intriguing look at GANs' creative potential. π¨β¨ + +--- + +## βοΈ How It Works +1. **Generator** - Creates new images from random noise. +2. **Discriminator** - Evaluates images to classify them as real or fake. +3. **Training** - Both networks train in an adversarial setup, pushing the generator to create images increasingly realistic to the discriminator. + +--- + +## π§ Model Architecture + +| Component | Description | +|-----------------|---------------------------------------------------------| +| **Generator** | Transforms random noise into structured image outputs | +| **Discriminator** | Classifies images as real or generated | +| **GAN** | Combines the generator and discriminator for end-to-end training | + +--- + +## ποΈ Training Process +The training is conducted over multiple epochs, with each step comprising: +1. Generating fake images using random noise. +2. Training the discriminator with both real and fake images. +3. Training the generator to fool the discriminator into marking generated images as real. + +This setup gradually improves the generatorβs ability to create realistic images. + +--- + +## π Usage + +1. **Clone the Repository** + ```bash + git clone https://github.com/your-username/GAN-Art-Generator.git + cd GAN-Art-Generator + ``` +2. **Train the Model** + ```python + python train_gan.py + ``` +3. **Generate New Images** + ```python + python generate_images.py + ``` +## π Results +Below are examples of images generated by the model after training: + ++ + + +
+ +The model generates unique and sometimes abstract visuals, mimicking an artistic style and reflecting the creativity of GANs. π¨ + +--- + +## π€ Contributing +We welcome contributions! To contribute, please: +1. **Fork** the repository. +2. **Create a new branch** for your changes. +3. **Submit a pull request** with a description of your improvements. + +--- + +## π License +This project is licensed under the MIT License. + +**Happy Creating! ποΈβ¨** + From 8efb8320e4964c54aa94e3a52d096d06ef2c53ba Mon Sep 17 00:00:00 2001 From: alolika bhowmik <152315710+alo7lika@users.noreply.github.com> Date: Sat, 26 Oct 2024 17:29:52 +0530 Subject: [PATCH 03/29] Add files via upload --- ...ed Art Generator using Deep learning.ipynb | 263 ++++++++++++++++++ 1 file changed, 263 insertions(+) create mode 100644 GAN-based Art Generator using Deep learning/Model/GAN-based Art Generator using Deep learning.ipynb diff --git a/GAN-based Art Generator using Deep learning/Model/GAN-based Art Generator using Deep learning.ipynb b/GAN-based Art Generator using Deep learning/Model/GAN-based Art Generator using Deep learning.ipynb new file mode 100644 index 000000000..e3aa4fa0a --- /dev/null +++ b/GAN-based Art Generator using Deep learning/Model/GAN-based Art Generator using Deep learning.ipynb @@ -0,0 +1,263 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "33190f02-8ccb-45ea-9b90-70841f5eb4ab", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: tensorflow in c:\\users\\asus\\anaconda3\\lib\\site-packages (2.17.0)Note: you may need to restart the kernel to use updated packages.\n", + "\n", + "Requirement already satisfied: matplotlib in c:\\users\\asus\\anaconda3\\lib\\site-packages (3.8.0)\n", + "Requirement already satisfied: numpy in c:\\users\\asus\\anaconda3\\lib\\site-packages (1.24.4)\n", + "Requirement already satisfied: tensorflow-intel==2.17.0 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from tensorflow) (2.17.0)\n", + "Requirement already satisfied: absl-py>=1.0.0 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (2.1.0)\n", + "Requirement already satisfied: astunparse>=1.6.0 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (1.6.3)\n", + "Requirement already satisfied: flatbuffers>=24.3.25 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (24.3.25)\n", + "Requirement already satisfied: gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (0.6.0)\n", + "Requirement already satisfied: google-pasta>=0.1.1 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (0.2.0)\n", + "Requirement already satisfied: h5py>=3.10.0 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (3.11.0)\n", + "Requirement already satisfied: libclang>=13.0.0 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (18.1.1)\n", + "Requirement already satisfied: ml-dtypes<0.5.0,>=0.3.1 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (0.3.2)\n", + "Requirement already satisfied: opt-einsum>=2.3.2 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (3.3.0)\n", + "Requirement already satisfied: packaging in c:\\users\\asus\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (23.1)\n", + "Requirement already satisfied: protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (4.25.5)\n", + "Requirement already satisfied: requests<3,>=2.21.0 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (2.31.0)\n", + "Requirement already satisfied: setuptools in c:\\users\\asus\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (68.2.2)\n", + "Requirement already satisfied: six>=1.12.0 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (1.16.0)\n", + "Requirement already satisfied: termcolor>=1.1.0 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (2.4.0)\n", + "Requirement already satisfied: typing-extensions>=3.6.6 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (4.9.0)\n", + "Requirement already satisfied: wrapt>=1.11.0 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (1.14.1)\n", + "Requirement already satisfied: grpcio<2.0,>=1.24.3 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (1.66.2)\n", + "Requirement already satisfied: tensorboard<2.18,>=2.17 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (2.17.1)\n", + "Requirement already satisfied: keras>=3.2.0 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (3.4.1)\n", + "Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (0.31.0)\n", + "Requirement already satisfied: contourpy>=1.0.1 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from matplotlib) (1.2.0)\n", + "Requirement already satisfied: cycler>=0.10 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from matplotlib) (0.11.0)\n", + "Requirement already satisfied: fonttools>=4.22.0 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from matplotlib) (4.25.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from matplotlib) (1.4.4)\n", + "Requirement already satisfied: pillow>=6.2.0 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from matplotlib) (10.2.0)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from matplotlib) (3.0.9)\n", + "Requirement already satisfied: python-dateutil>=2.7 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from matplotlib) (2.8.2)\n", + "Requirement already satisfied: wheel<1.0,>=0.23.0 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from astunparse>=1.6.0->tensorflow-intel==2.17.0->tensorflow) (0.41.2)\n", + "Requirement already satisfied: rich in c:\\users\\asus\\anaconda3\\lib\\site-packages (from keras>=3.2.0->tensorflow-intel==2.17.0->tensorflow) (13.3.5)\n", + "Requirement already satisfied: namex in c:\\users\\asus\\anaconda3\\lib\\site-packages (from keras>=3.2.0->tensorflow-intel==2.17.0->tensorflow) (0.0.8)\n", + "Requirement already satisfied: optree in c:\\users\\asus\\anaconda3\\lib\\site-packages (from keras>=3.2.0->tensorflow-intel==2.17.0->tensorflow) (0.11.0)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from requests<3,>=2.21.0->tensorflow-intel==2.17.0->tensorflow) (2.0.4)\n", + "Requirement already satisfied: idna<4,>=2.5 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from requests<3,>=2.21.0->tensorflow-intel==2.17.0->tensorflow) (3.4)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from requests<3,>=2.21.0->tensorflow-intel==2.17.0->tensorflow) (2.0.7)\n", + "Requirement already satisfied: certifi>=2017.4.17 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from requests<3,>=2.21.0->tensorflow-intel==2.17.0->tensorflow) (2024.2.2)\n", + "Requirement already satisfied: markdown>=2.6.8 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from tensorboard<2.18,>=2.17->tensorflow-intel==2.17.0->tensorflow) (3.4.1)\n", + "Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from tensorboard<2.18,>=2.17->tensorflow-intel==2.17.0->tensorflow) (0.7.2)\n", + "Requirement already satisfied: werkzeug>=1.0.1 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from tensorboard<2.18,>=2.17->tensorflow-intel==2.17.0->tensorflow) (2.2.3)\n", + "Requirement already satisfied: MarkupSafe>=2.1.1 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from werkzeug>=1.0.1->tensorboard<2.18,>=2.17->tensorflow-intel==2.17.0->tensorflow) (2.1.3)\n", + "Requirement already satisfied: markdown-it-py<3.0.0,>=2.2.0 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from rich->keras>=3.2.0->tensorflow-intel==2.17.0->tensorflow) (2.2.0)\n", + "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from rich->keras>=3.2.0->tensorflow-intel==2.17.0->tensorflow) (2.15.1)\n", + "Requirement already satisfied: mdurl~=0.1 in c:\\users\\asus\\anaconda3\\lib\\site-packages (from markdown-it-py<3.0.0,>=2.2.0->rich->keras>=3.2.0->tensorflow-intel==2.17.0->tensorflow) (0.1.0)\n" + ] + } + ], + "source": [ + "pip install tensorflow matplotlib numpy" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "e0ce011e-73a9-4588-a47b-e08d657b0d9a", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import tensorflow as tf\n", + "from tensorflow.keras import layers" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "fb0e47c7-7b94-401d-9973-a66e5643f3bc", + "metadata": {}, + "outputs": [], + "source": [ + "def generate_synthetic_data(num_samples, img_shape):\n", + " return np.random.rand(num_samples, *img_shape)\n", + "\n", + "# Example: 1000 samples of 28x28 images with 3 color channels\n", + "synthetic_data = generate_synthetic_data(1000, (28, 28, 3))" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "c8513c85-c411-48d0-8271-a4b62003ea8a", + "metadata": {}, + "outputs": [], + "source": [ + "def build_generator(latent_dim):\n", + " model = tf.keras.Sequential([\n", + " layers.Dense(128, activation='relu', input_dim=latent_dim),\n", + " layers.Dense(256, activation='relu'),\n", + " layers.Dense(28 * 28 * 3, activation='tanh'),\n", + " layers.Reshape((28, 28, 3))\n", + " ])\n", + " return model" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "d81d940b-03df-4e41-85ef-36950ff6e906", + "metadata": {}, + "outputs": [], + "source": [ + "def build_discriminator(img_shape):\n", + " model = tf.keras.Sequential([\n", + " layers.Flatten(input_shape=img_shape),\n", + " layers.Dense(256, activation='relu'),\n", + " layers.Dense(128, activation='relu'),\n", + " layers.Dense(1, activation='sigmoid')\n", + " ])\n", + " return model" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "3778edc2-dea4-4234-9a77-c1b03edf721d", + "metadata": {}, + "outputs": [], + "source": [ + "def build_gan(generator, discriminator):\n", + " discriminator.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])\n", + " discriminator.trainable = False\n", + " \n", + " gan_input = layers.Input(shape=(latent_dim,))\n", + " img = generator(gan_input)\n", + " gan_output = discriminator(img)\n", + " \n", + " gan = tf.keras.Model(gan_input, gan_output)\n", + " gan.compile(optimizer='adam', loss='binary_crossentropy')\n", + " \n", + " return gan" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "f7011325-299f-4ecd-8978-32a70eb2891b", + "metadata": {}, + "outputs": [], + "source": [ + "def train_gan(epochs, batch_size):\n", + " half_batch = batch_size // 2\n", + " \n", + " for epoch in range(epochs):\n", + " # Train Discriminator\n", + " idx = np.random.randint(0, synthetic_data.shape[0], half_batch)\n", + " real_imgs = synthetic_data[idx]\n", + " \n", + " noise = np.random.normal(0, 1, (half_batch, latent_dim))\n", + " fake_imgs = generator.predict(noise)\n", + " \n", + " d_loss_real = discriminator.train_on_batch(real_imgs, np.ones((half_batch, 1)))\n", + " d_loss_fake = discriminator.train_on_batch(fake_imgs, np.zeros((half_batch, 1)))\n", + " \n", + " # Calculate average discriminator loss\n", + " d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)\n", + "\n", + " # Train Generator\n", + " noise = np.random.normal(0, 1, (batch_size, latent_dim))\n", + " g_loss = gan.train_on_batch(noise, np.ones((batch_size, 1)))\n", + "\n", + " # Unpack D loss (assuming d_loss returns a list)\n", + " if isinstance(d_loss, list):\n", + " d_loss_value, d_accuracy = d_loss\n", + " else:\n", + " d_loss_value = d_loss # if it's a single loss value, set accordingly\n", + " d_accuracy = 0 # placeholder if you don't have accuracy\n", + "\n", + " # Print the progress\n", + " print(f\"{epoch}/{epochs} [D loss: {d_loss_value:.4f}, acc.: {100 * d_accuracy:.2f}] [G loss: {g_loss:.4f}]\")" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "d73fb09c-f12f-4e30-9b35-de43b2f016f1", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAABVCAYAAADOppJ2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9WZNuR5aeiT3LfU/fEHOcGUBOyMya2Owi1Wy2KJr6pvtCP0v/QP+mrc1aF+pWy8QqslhTZlVmAkgAZ4r5G/fk7mvpwnccIIukCohKM5nJYqUFzsk4Efvb27cPa3jfd4mZGY/2aI/2aI/2aI/2aI/2aI/2aL9Hc/+/voFHe7RHe7RHe7RHe7RHe7RH+/8/eww0Hu3RHu3RHu3RHu3RHu3RHu33bo+BxqM92qM92qM92qM92qM92qP93u0x0Hi0R3u0R3u0R3u0R3u0R3u037s9BhqP9miP9miP9miP9miP9miP9nu3x0Dj0R7t0R7t0R7t0R7t0R7t0X7v9hhoPNqjPdqjPdqjPdqjPdqjPdrv3R4DjUd7tEd7tEd7tEd7tEd7tEf7vVvxXX9QRHDARxQ8oWAk0RGoanj1EdQz+OX7JZ9dz6nrgsPDBizRby6JY4c9B3sO9faU46/+EBcdsf4lWlzD4odw+FPGrmd18YYYezhcQdPysn3FT3Y/pbORv+MdOzpgA7T/+RttZlDXNFXgZN5iacnd9X/P0L+C+RXMrjgKt/xk92tEBz4H7oCjP4KTfw7hBjb/L0hb0OmScfoCeEh/QxHBI/yUMz7ikEO2POGGgPI1sAO+BN4CTqAqAIMxgRn8GMeP8NxyxC/8j0g4PtXXnNmGy5/PePcnC+LtSP9nt9guAiXgOalLns0agjou9iW9CfrDEX0eqa47Fr/doNHYK0QROH0Cx2cs45ZnwzuIJbebP6AfT6ZRugM6hBuMxAgk4NX5nE+eLxnbwNXrDeOY2AGDgDpIDhCw4WFjJ8Az5pxQc8zIc1oU4xboBS5fwM0TKA1mCTTA3RsY9rAEFkCsP6E7/h9IsiCs9mg/8qdc8q95zyUt/wtXrEqB//r/CJ98ypPPX/PJX/2a/iDyxb9S2oMEby7hZp2n3xWUCudA44Xj//MPOfw/vKTd33B79RlsSo7+w7+gvjxnxxfs+S1zAk/oUIxf5EtQ/+knNP/tT2A9wH98j+17unpF8C2s/hlc/FuwArP/2/cetwrH/4WX/Dec8Zo7/pZ39ER2GJH8GDugOIX6J6AK69/AuJ6mUAmkZzD+SzAH/HvgHT/500/5g//uD+kuVrz+X/6CbrXnlmP2zClRGhK6mNH99BO0qeCLd3BxCwzAnryyUr7R8hSKY5qDHcfPr7FUsPrq5wzb4+nudsAexwUQkTyV0KMCPS0oBji4UVw0dj4yiEFaQDwGBLOvv/ec+5EIglDwDM8Ja9Zc8B6PcgZUwJ2DrYe6gMNZXqebHYzhm+vMveN5U+MQ7vpIl5T6+DnN+Su07+gvXpPCSI8n4jil4AUVgzhelwW9A8obKDYwkrc8BxwBpcD2FbTPmLuW0+oWj4PxGeicFR1rumm83/HNDgbN0TGz0zN06OmuLtEQSIBBXjDH+XPsy4fudfBT4BWwIu9rMl22BNZFza6oGFJkF3o8jjNOaai/uW93AvWnCI7l+CVVWhPO/oDw7L9CuwvGN/93LKzgEGjgafczPtn+S3TZsfujXzDOt9z8umT71oPswN+AaR4GA04qOCxZdPBkBZZmXOqf0NkZPG3hSUuxu2X29lcQBrppBGcsWXBIILBjTZIES4XGoPOwK8nz7r9wPv0jYyfk17sEAnnFeIGDGgovXI9PWYVThICnoyTwnBVzRrbk1SKUlCxREdaLHUM1ci4NT2VG5yJvyj2jaX45LTzhIz7iZ/R+5LfLr+hcB63A4IAZeZBH4Kv8C5wCR5yx51OugYY3/Gt2PKefX9DPL1mEDS/bN4gG3glshbxQThZ5074QiEZ5uMXPemIHcZ/fjcWHz7ufAx8h9MAOw093Wwr84hP4/AVwC3wxDfAHK4CC+azk6dMFpRRUVwv8vqL7WcH+TwrGu5G7P7sh7QK4LbgeiiMon0CT8E92SBlJr8FuDJoBDltIljfbIFD+BMqPKfSKOv09WEmf/hXJnsLxCo7voF/D1W8hjd/c3s+AP4bmDp79OfhdPj+2AMyndySYvX3Q2AlwgGeOY4ZySCIC10AP9DUMFfgIdZ/P2mOgBoKHUEBSxxhqknj2s0NC2SCHT3DHL7B2g379Kxhb8iwdqTih4Tm+hvJZQEpjezWn29QYA3muBfJEjcAT4ITT54Gf/EmLacVXf/lztjfHhNkNsblhGVa8bD9HdORtAdvJ98ABWsJ4MJ1lW2CAxsOyzP7JZfe9x61A+FNZ8ikNa3oubUeL8ZWHvYBNG2s1h+UZVAan13kM3+F4j5tG8ThftLwF3/HsyRGvXpyy3w389vMrhj4ADVDwQ2b8CUtajF8Q2JIYXEd0A+jkAH1zl+Sd+CnVDwLLf9NisWb3v/0zwtszWG5huaMcL1is/gK0Y1/nd7p8AofPIUS4WwMjfHoDT/fw7hA+ewIqYL/+x9frdw40kPyHISTJroIJmAe17KSYAWKAZYfcDMMBPv+jGqigAoLll+/AnAGKieXDjvy7GBhGMiWRf0Yw7n/qd+zDhBJw+cKmHjNHdmoCWMyHjRk6/fj9lUxBo0ACJ4ZN/3j/c/808+Qnlg8uVpDpzJtuwAl4ByL3D5P/a9PflOml5pHHxPL/N4EokO5dMJnGwqYbn94FiiD5A1N+sPtnFwGHoCIg07WN6f0pSELQfD/GfzL6H94/4H3+kvsJguXX8U+wfBVBxZFEiDLdg+Zx+zDFkmDmMLX8QqffM8ljbxaAABLBJdSUYEqcxjNfLCE6gkUUxVAkKU41j8n9DQm/M4Es5nNBQ55HkkAtkYiIM7wTxARNfOPUAZKMIiRICXOKestrQ8nP4MI3k+R7j5oQgREj5Ceb3mL68CNy/86nielMcMi3l+D08/rhuqpGCkpKik5raXpDOBTnDERxmrCUpnfxu+vW3c9Npjlmdr80sfubQZE8kT4M2Ie1aPe3ZOCnm73/RwHcQ8Ysm/8whJbngOiHxSiaL+3vl9k0F/Mr+vZOkSemTtfBgeSN78NzfmP2n3xNMzaP2f2378fOvhkSk+kLUMvvwEgICS+Kmf7DX8/Xn96Ju9+Dp+G0+330n7jp3a/VJPfPYN+eQvl+5MNu/2EmfDN2lk/paT8yMWA6RC1Nm5bkcTIQ0zzLLeb1Gg1n/3CXz792/x37MI75f84SjoiRpjn4D+fQ/WbjEFx20Nx01/c/6u8v/ABz7nc+UjC85HfkZJpGzpDC8v6q0zmXd4xvvWfBpu/zrWdU7MMz/+6kyGMrJJwpYvdX0em3NE98ub/YN2d8+vbvS5g2/vvf/gejb5LXAIIU04koeV447veEBw4d90vUkXAkFBXLSQn71p77X3w18mEs855mqCjiFSVhyWGapnM1j4VMzy6S/RI/na3fnur3U+H+0WxaWybffF6+u/iNf6L/mbmn+diSlNf/7xypAvJP2O9kSqzkd5b9gDRNHad5e5X7qf/BD/zmS6ev+x0rb5TTOJGm50rfzJ/7sbiflUZ+Zv321b75Ej+NmUneoETQZFgyjEhOm01vWH733r71YdPDfmvznMYOd/+A33fgPDL5JUE8adrvDSgkB7fJQcqHwHS2fftmJsflHwKL7H4//2YeffMQedTStDLF5ZXu5D954m/dJx/enUXFooJmzyDPu/ThnPjwMdNQufulPw29Tb6/fvus/Q723QONkzwB74qKztdYPcAiUiZD7qC6gzYNlPOIWcVur2CeFJ+heNj1oD2a5mgRcaXRnCvFHIKM9LIlxQGVHmyEXiHAJgY+Z4vJSFltOJCePgTG9K1xLKF+Cq4RRp0R7Yg0Cv3aYUlI4XPgCwgJNNJpy2vNF7iPYbv3NRpmNDHxotjjD5Qbhb2Bi9nfe7j9FMPY+BHvRt5XkV/PDK+Og01NmTxPng3MzwL77Zyrd2dIcjy1SENCCLwmsJdEqr7GPGwP9lg1shmX9H91iA4jNgTwAV72cDIQV4H+skeTMFNHCXTXytAqqU+00ShwHNc1hS/YHAj7o4FhG7i+AUmROH8D/prz5DlPBbvo+LqH8VuLYLOP/PZdz6JKvHpleIFfXTTsNyXzMnCw7B+0jiHH8ILQNg1DteTuQLg8b2kSvLwuWAbHzSeR4YeJcLFk/JsXWK+E8R2wZ6yPseoUxRF3/x71HjtbQFPyerVmvF7RlSPd0QCVUdsvKLevod+zsTU2KmcXhm6M1b5nl8hp2RNypLjLe+j1bxIXq5EYYejnEIzN8BW+eceLV4FPX1Xs7oyvfiX0g7Gbnu/Jmzt+FBLaJPpnLUES7347sr4BK9/C8//nwzZBjogIf10YF25Pr7CL+aYrNngC1VFDOqiImti9HnFJOOsPqajoVehHRzBHa5+jkzMBh6zej3z2778iti2rPpIwGloWjFQLozkxIh2by0BUB9sWYZiqoJHCGacLo/Sw1j07DYQQ2VznDTCOb4Fr6lmkngViiPT7lOMuyU5+HBS9TbiZUX2qOAez14a/gzgbGJerB44b/ABIYrxZbLicDYSDEXti+AGOP4PFNifCDksYDHYtJHNIOqCiIuFJFIx+4LbZ4LzimoLGPFEbdtcNmhLRPOaEJCF7EFoiqhQGBzFSixGSEt2MlCLRApXBswCNwnUh3B0IY4TVqDl48O+hEBZl5LRMjDGw2af73AIGlN2A0zVVETl9mhAHe83PMlTQNQ8atmyuQUW4PDtld3DI6FvaYk0xRpZvOlyX6F1kXyopTsklU1p2jHREHBUlagMxfI45GJotoRjR9Fv0YoNJwo5nOAqedFsOtj3erhiqv8Bb5PTrFeICcSOM6kgSGE0pHJzWUDpYj47dbcGQIrcxUJhyxm+oaLg14RYhZ1TTdJbmKrFxSOIpvmp5crrGvLHeGd0OmCuch4cHac8+yb5SSBATi6ZlvlzjolHfggTDng+4sy3jqmb/1RkxRvbsCQy03Nf5axzPMBPiMEIc2RFROqIo8d4pnc40YUXBr0ETR92OxiWKJHgHre9YV1usUDga8zDsBtjv2MeBLwelkJFi/isOitdoWdEXJYMKV5OvOeQPYbb3LGOFnyeaP96Bj7SvI+Mt1CXMjx44bsDzJWDCfnjC5/GIUG/pF1c4Tax2RpFgq1CmnPRNlu+JguyExQWkY8Y4crvb4grFn+yRJ46IED9zaEjoYoBKafpAORoz37EsrhA13GVOCvX7kpGCLhjbbd6G5h68F/qmYKgbdFgwhFNICexLHG/w3YBPIymNBE2/83zVVUEdS+aDcjyMOIy76d9mxyPLZxvkgZHa+ekzAAYxtkC37NmebKiC8eRrqFp4vRD6A0H3nrEvCGYoIx5FtUBDkR1gSZhLpGYNM4/RoturXOp1aygjpAgGyVp6LvAJZJP3cB3W5OS0AgHXGMsfJYoltN2cvj9jr3d89dk7LCq7diBIReFrqrIGS1yR97khVaB+OgcEVxjNUY+IEnYxJwYXir2IDyIRLJc/RRDeNQ2rqiLV14zzHXVM/MltLmj9Wkq+lIJoJe16RlTjKOypiOTa5eH0rAMQPySBt4Pyuh8JQyCSI0uvEUdiS+I3DFBB8zRRlsbuNtFtE2L2u9uPwPhMCOeOaCPtX95BENJmBBpkEMQclrZ0lqveKTpQx+zWOOuNvjGGJ0YQuNtBu4OdB2v4zuP23QONg/yydk3JrqzxS6U4haIFeQ/FHYzzgG8CaUz0e5nu5ARYQLeBYUNyFaFKuCpRHinlEcQh0A8t6kZMcpQlY3Zj9wT2tBQycly2VG4gKr8baBRQnYI/AO0r4rBEU8m4n2FpRPkVsILYQGwYCVzzuws5rErCaoEvR06POqq50kcYpmjOpYcnquAlhtK6C8S3tLWyPoRZFP6wrWm04Og4cfhx4Pqi5vL9OWKeYwYOidzQck3L6MYMNSuV7ghsCd17R3gzByuADsoBznt4FVCD8U32YSryGRG2MGy/BV5xwrKsacqScSbs54HYJbZ9znoWBzcUMzgcT/gonHA1Cl8Pkjfqyfa90vYjT4+U8x8ZTSV8tanQTUNZwPGsf3BVoyJH0X1VEuYzOB3hh3AY4ONUcNg6iidK+DhBN4PtC2gTuT6+JxZL0vwpDGt0/2vwCh+/gLMDbtKem5s9FAEORqRWKr6ibkHGDDopIxzdgd/noHQHOQlxj22YMBWbt4nN2/s5VYMEqC+RMvDq2QEv/vCAt68Tl18I++Gb5zu82fGDmz3pqbH5MfQNbL6AdgV2doed3j2QSbVAgS8dfFn2lNEzi0tKAqfsKSRQLErK8zlpFegvEmX0HHLAIXM26tni6NnT8Z48W+bAnP1dJHZXaBoZQoYzzRlZMlI30JxCGCB+tSN0v5sg78mVu8MGZhUMw8BuHEgJujU5aou3AJQ1zA5g7KGfkCj3gUYKBoMileFfKEUN6Qa4BisjHD/s8IBcoI/A61nH+rCDp8CPwe1h8QaOtlA5mJewGuFmyIFGxZyCGUZFoiLKlm21whWRQ1dRSUlYl3SbEqNE70uYPoKEnOFVh0eZaUeJ0qUZQoUAkUBhcB4zWqer4a4SUi/se3LmsFiDj5w08LSBboDY5RxLJK/7YgzIuKNaGidHRtGAT9Aq4KB3/8Xc2D9uUmLesTo8Y/XsKRQrqAN1O5KuB7RLBJfoi/QhU6EYPf2UlZ7jqRALpHSHmRJqcsZh9x5WFzCbwfEznJ9z3PU86Xq6cs22XlMrHFxBoXkHqMlJkWB52R6WMC9gbIVdn53ILZGawCvecQQMNNwyAwt8U9PO0BpjjnJMWToOTxxSGF0LXQ8cGpynhzMfT57mge9GZIjUB8Lp+QY/GG4NDDCeBNKPO/ZvKvZvDkkx0lEQyVtR3lpKPuDf4gVEGEgM/+DMuzfHHs8eMViEvOdWLmdkpYBNDVaTF0YDXEXQjmGIXA1QSuRF85Z5Da08B3lOjMLm20lWg3pwHA4lZaMcfDIgTeDqCqyDZQFncx58Tpw0oOa4SYds4gtS6QnLW1xS9p3hU84s+5SDnw8jUUxf1kA6JumWXXcFVYAzsh94R8b/eWAB0kCVoAlw5AbOigEXQTZ5Ce4ROjySYJfyMzVNhkTHxjM0JWYNUQ/AejxXODqKEYqRaa3/7hos1p7ZumZOZEHAYR+ct2oROXwZcZ4H2dHBUXZ1RenE4MzgY2HZGZ/ewNEAd43AMqNEoitBjXC/o5gHq4AE0uUBrkOeK8MWy/F6fjDPhzKIMqI2oikHMwb3QIQP5iph9qqgPi8I64Z+e8hws+fq6w5CD3IHApV7Tu2eE52ywVAk+0RWcl/vckWgnu9wXrEh57OpjXSavlXG/u7WNK8wEW4PSvpZgV8M1KeOkyHxgwBPBO6850tfoW3DsDnCVEk5dAAOyIuqIwPh7qs6QheVbogQ76to4CThDXoi7+ipSjg/y9th6iBtPhTPvwk2BNIJhE9A3yeGX+9gjDCFqRIXuDTHbGS0aVVoDjSqnXG4M8pjY/WD7ETuSliTKzUfhvY72HcONOa7BhMhDEosOrQbSW3O9iPgZvli9ZAxXREwSbnU4Xf5tIs9OA9+AK84P1J4cGFAV3fYkIABfMK0QWyOo8YTcBYZQoF3SpMcc4REYiTkQPAOUg/JIjBgIRIJIAFrInjwo1CM97jTAwwlyhq9jyalRV2iw5Eo6BeJoTBkB278VlX4e9oB7wFDdE1PT4gJxhzT3hwFOou4GHHvYLceMb0lUbCiYETYzhLDLORsgQiIY9grOgBty8KuSD4yNDusDLBN8NqhdzXRZiCJWO1RSYRoE1y7RjjAHOyawFD3DMMcuamxvYNyquIOnqjC3Wni69OW7S4Sv64yKJOpllsYViS6uuTr7oxycHR1pDhVZhhH7cPP3sAU4IWI60ZsVWBfPyGkxLvVwGaM7N8YjUF61xPSRV5lTQ3FKX5ZUC460mwgFBM8o00QI24X8DZglRKfFVijhLuErQ3ZNThbkNSYtSNFSCzPAv4w0Q8ztvtD1BJduSKkiGjJQhsiAyNTwFwqVsJNl/jN+4G7fSCeWJ5+U7V3NcJnveEoMV1mnKuNKIn5EDm6Gx+UmD+ecpuq95XrgkTCisTmrKCom1zuv+1xA1A1JO9Yh45RR/pyQV/NCMnyurSIIzvDC1WOgzJUkeuPjSTQXYPtoAtCuXekAK1lVJ9MUAvvDnlaPkFcpB/f08eeIVYQq3yTOvBtbF4SGB1Eqcjr1ZPMprJyB7TYUBLfHkHpORg7qirQpcBuMz7YWb7KryY7jwIUJTQNOihr64lVopTsaJQ6wUNESbMOKxJq83z4FvewADDvMOfxvqX270gyMBYdxjjBBnJS4478+GP+NUYfiQ6SeJw7RsW4JdBi7MXywV52sBgyrCgpROgc3DX5mp3ks8OfFJQzh47GMCg0Mzp7jg8FYbhB455GA5WO/6Wh+UetsgDJkbZ3qCTMd1AEEsb2xZzhqZLWA81uJCUIE/7M6hItHGXpaSolqBLitPadZKzpfXZDIrgd6oW1hPye1SOhJJpwYRmOsPMF6guQQOF6xCm7KjAUSu9cLkuFCBOMfsXEIhoENg7tS4IuJhhbwhMwNgTeYy6yaQ6Rak5sAq5KzGLg8GZ4cPW22F8jQOgi+zGRrEfV40yQWqGAXWu0XyrDXYemCyARGXPi6ENEP4BcTYS/AXzO5NeTz+In6F6XSkbzH+AuSTxt0TCIp1CPV8cQA/XQkVQJNwNWaiZc9B5iPhAV2DsheKEPI4Q1jN0EXWOC5AqjRba2o+ojxVeKVNAb9KcwK79BQj7EuoEclKYNCY+GDewTeEPOQFyGsxS3EFoImqE+uAqcpzqKVOUdKXb0rWZs/QYYodpDNU6wu/v7Gyt6LZBgqORAptbs4u0wOkYGIgUGBYxPIc4gDStk/Do7K+yAiFEBnvgBqpYoCJiDdJB9+Ngm+v2IK4TdcoF3Rux6CJHQw/59fsaH2Ha/m+oHU83Tj1B70ihshoQmKFrhCcLQG1sN05yZHKI65cDMKRSTp1vmf/IRigE0CTGWGf40fYxYQoiI84R6gfOeioGagASFLiERwqogWkEYdjC8h7gDtwBX5uyPRBxGSUJEaUrQZEiKiEFA8slliVEtL4sKagONDen9/EG4vXl/gToY5rlqYt2G+LaixfHFMnC1UG7WCtv4gXCbgK1PBIl0ywDLCDFAPyF5ioxVmzWRufQYkWgZjhdchmdhFU5npOjZ3tX4vSBpxcFsB3GBjacokY4roo2kfQE3DewaYJ7f7zx/lqmiKVdSpPdgMhX5lBHjEkNDSX1zTFE6NmwZlz3zAg777w4a+M6BxvHdAYaxZkekI1MDDCmAJbgjqLe5wtFZzlyaD3DwJk/EjeXUkgE+YzTLUqlKcN0Ou9hnmLUYlA4Lz7B0SMlAQ5eduiGXrz+i4JyCnp4NkTEYq7cwOkMXAWZ7tLccofmUS74zqO4c8zGno40XKMZefoW6AehBBqJzbLWioGB3PNIdRaoLaDY8uCT+hF9hwDop+2Sor7B+xlgZXz9vkTrSvDPq1zCmlhRfY5S85ynCHDuK2PMeCwY7BxHaW4PeWOqKYzaMJcRTI3rgysFvPUkPGPU5Wgy0izekosN2micVBzj7AeoDN8svYL5H7hrcRYm5Aq0FVEhtQUqedz8LXP6rFXpZkMZFrtHLPqf+5wqLwDYs+ev1p0iqcfMvqY5vOLg1nr3LOM+HWDcNu+9Gyr4lbZfE9y+zOIB+iWOkaY2D38AQtsTxN5gv4eglzJ5QLUdmBxtCaonHlpOUbyNsRgrrqWlJc4d+2qAzof/feuTzCHYA9jFVTNSrFXU5cvLDLa9+0nF5e8T+9ackBtb13yHsOBpqTnRJR8sdbQ40aoMaXq9H3v3K0EKJL6eByHw43t3BVQ+1VZzHl/hY0dmGRMfRfs/P24CX7z94L1gBEKdK9Z6SOxq0cbSf1nDccPL3HYdf7BirGTI/JprxfnuL6IDMn+IOG7RXNERIYUKTek5i4gcxsFnC6p8ZYw2bP4ftDhgccltkLpaRM0WaccdPy+f8aPHfMFrH5/v/lU3oMRZgh3xD/Psm6xok++vqZqj8AKgJHwgO74E9um/of/kTalfzSXXJ0/mW/bhjdREeJNwAmSeqNj3PHtg1yPqcQORCryjniY9GOB4z5EgMKJR4vIa5gJ5m4mGKMBoWBasKzBeUfkVRviWIEuuJezY9+n4ahW/DoVMZSFXA+WN8+Yykxpt+BymSRDMcoelgsc9BxrVlyKmHYZkd6F5ACuHoBw31s5L9qmd31zHaAWX67/BxQdj+Jan/mqNxx3kXJtT/97e5Dhm2cPWWcP0OkwKlJB6X3PybY+SsYPZnNywvxxxEFmCFkM5m0FQcHEUODyNdSOz3liOuaw+ty9k9Ut5zihvUw6UoV8BxqjhPSwY8X9EwUuCrJa5uEL+jLq5RF7ipNiSnWOmg8HmgeiEm+0Ba130u66hW9KlGUCpuKNgTuaTjGoolu8MfIHWFLLf4vuNs2PLjr0fcA+ddvf4SDIYe9qMhG8/lVZH3kRcBGsOuwL5QTLdYugGMHkVwE3mIHHz6z/PfjxUamPVw0uUgox7BVHg3zhhjDRPqO7iK9ewJra+hnUGsqHXDPF6iDGy3d0TGKYNdfkg/J4HbwiOlYO0e1h2iCa+as/Peo87RpYE+ddRbQ/7S8AXsnsHuowwzidP9PcS2u/wUvV0RuMkRdtCsBPJHIIdQ/gb8V3m99grmHPgllBXzZy1Hz9/Qr4zxN4k0AJeAwszgZPKf3T6zHa9szs7m7KJyPSRKhEMr8cCWNS17CoySXA1qfyykU0M+e497fZmpgiYYBcoRSkUiEBgpGGlI4JX+GcQTGN9FQpsIdU394hRfesbLa9jsGHZwt3rYuAFcrW4A0HuibeegLYnJuNwPbIKyXMGP145bUzobCd/eHxZTBbkkJ9EgH9wByhHmO4jm2dkM+1bpQOgpiJgvGRZPoao5L+84KrbIJiBDYgyOi3cV3V2JFXfg7yZW+gkfuLcS8S5RWaCQRFEblsAPIxIDe6aTxYx2KnQ/mcHBHFK7JP3mVZ7T39OOdr9BHbSHOTjQVcX4bkGYJ/7sX2xwx0r8mwBfp6m6kiG512VEihF9OcLHA3QdXG1zomhhUMHhMPCqH3PCS42gcF2V9L6AeEKhTwlDw9WbU0QcL5a/5OxwJHXPCeFPGKxjzb+jsztsVUM8gCHls7Yc4HwNixHrI9aP0IMbC1wyGgIFiT25KjzvKz76+hO8L2lnnxPPeo4V/nDz3QOI7xxoLDRTY9sP4Wre9A2IqWAUQU1RU4wCYQYYaAcpUuTAPsN5Ju5T7B2hcKRhIqgwXXrKIGWVmXgfj2J4DD99xwjYB5qqTdwhCYIVLu9+dp8p3ULMCNtyIncFP+aofGIxV1JSW02pZFx0NNIoWO+wVGKumghT398UwxC0yHAJ9T6zaRRSqEAKQghIiERz5OJ1gZIrPLUPNKUSzWgdGdfsJE9uAU2aafJTSquIBS46SgQ/OW+mgqWCD2xAEUxyxUeTwmhIUFzQiZ9UIKaU6vAqWO9h65DWk9J9+mkiMgVBgsAohDEgKsw1Upki3tE2swcfvkezzECyWENaMEpNFAfiiKkEqyiCUaiiOh2AlJNzG3HFSDEb0DHk9FniA3neStDZVPXtpn/rBUsuV+lcnuNBEy4pbiio9zWzzrMYR8IYGJJhapkwSJjmbCZUlilX/CJFPtCrCEXMpTHNQbdZRaImxjnjrsKHApeg8QlXCH1ZPogkWfmcc4pWEJmIaqKoODTMoS+IYySkjpRAtEK4J3YnHAFkmKCMOQWVRQNAnWPwJaNTdMh4W0tTMlIzagzA+YnFOiFQvCVK60A7RPXDQTtpl/BNJJ/nsaQCPxYQG+QD0TCX60tiRs2bUcWRUgSdJYbGGLQk9IcPDjTK6YmdlfkAigX0CRMlagFW0amjVWH88BEGOuYsbxFzhm+M0OdsVCInAcQruDAJOUy/6hxSOAp1VJp3i3AvAGE6iR4kqhQxM3pNqE2qAjFlXCeCJKEyw1u+BT+AxUw4NBwpQhoUguBjkbN9riOZkKKi0RFjzZgOcQ8MNIrKfWDzqNxTiScC5wj0mYeYxSYcpVWoOVISLCqalGhKUvtG7i+RkyPmEOfAFB0z3EE/wK8kO9u4LKogOVuKRqoyMpsrCWWdBI3TvHTyn8+g64TxsDw3J9ol90ggE8miAN19ldtBWaJpTlQevNc5y+cpRY1JiSXLAjLRIJR5uw2ScXAfGDf5s4wcNxV1njNBpzMxOYguE5Rdri7GiYCr032qN8YSgjOSRNQ8zsapkjNOmWdFPuBlJ+CtuAxl8IZLKXNI0vQuvIMqV0syrz6v9ApHYUYKOVNukzaHxZIY6m8EN76nfSiEisfhMaeYy8xpjbn6n4KD5BGUWhIqENTQZLiYKGLCp29h3F3OVKsoySmqGdmQ7/Gedq54Uwpk8lnuxycHfVIBdX5O64DRIcHjk1BO52ePkUhkbcoZgsPopn1VIYBXRymeAs+YckI2aWboOvX4VDzcPynKfL8pgmacv4+GSxC0QIDKSkor0KlKk/kYmWPlS4efC+qMKNmfIlbI6CFG1HLS534FeRwOweMmTzI/v1lEVYkxB5wlOXa2Ic/EvKlNZVB1+YwVyfF1UlIMqMb7ozXvFwgez4IiixekqfrhEoXkPQWqB5WDSrJaXxEdvnfY6NAoWBBCly/LmMvJ+aQLGEqyLKIiEnC+x9yY33MyJOR70RQJEknyzRYoZhRmlJamz3YMqUfFEaMwpoo8XXoiA6A4DI0BG/YQAliJmFIlhwsQUknU2bRZDGR6foHiJ8Co4fBEiZiAM6WKIOoZY/EtLcP/7/adA41PWZEQRg5Zczpls29J5lntTjL0I+2ADuMQxw+RlEibAXMjxylLgbYJ3u4htsJdN2PjS+LQ51LiPTZYlJI7PBtKFI9Ob+0cpeSKNStalExENe5RtELqa1I4AF3i7CnogN714HtmbuRkbrRlz2axIpqRbjvo4BnP+DE/Yq9bPku/ppOB0BXgS1Sek6ofTQfZ97c7jjAR+tMj4tEC6/awu4O2gP0zsIowviPqNWYHGJ+QR+Idwg2fuMSnZeRa4a/JGGqOHVAwdI7VXlAr0NsGZ46j4FkgOAKerxkStLuCJAtIFWIFVoxY81sgwk0PalgcSWk3CTgcU5jxSkeWltBfnZDenbBPxrs+ETVCzLCPwnlKn9/SqJ8hzjiXnpMY2M2O+IufnaEPrOv+2580qHqubn7AavMxm/me8egOjQqXJ9Af0KcVIW1QDjFe5pOgfQ/hkuKlMvtYkStFvkiZxdSXQE08r9CPCwiG+3cDboS0rjAaijJSNe9BE+t2j1Pl7LMzlm+e42PHfPwVrUZ+G1v2CqOt2eFI7PAolcKTLTQObuSIG3kK0kLxbsrI5rJ+1b9gxqewg91fRZwPnMaOxfKO3fmcv3z1DPPf/wBZLjON9TadcZ2OSH5P8itMCvj1p8Ahu+5v6VhBKPHbYxxKTDc52EhrLHRZNUoS4gTvC0pXcruouTuYkXRg/MvrfEBN7HYfE4Uqriyojma4wmOrgMXIPFzTbP9XPIlF2qBAx4KRc3IIc0Veybly2eyfcDCcM5gSpCUVEdIKrOeckY8woCXwa5LzXJ8Kb05hvHlCN3yM6cNAy586iDgGO2dtJxB22O4aw9FziFjJa2u40HoKewyXRvT2dSbzvNwj5wHWCbtQTKE7VPomIoNClQmp2gIIfpEz70/ano+3LR3wGSUtYGOAGGmk5VzeEg2uNDEwOeL3smvSUJrxSew5IKFrIbXCThte2zEBYf/Fmu7rPXVsOIknpDKxXf7vqAiu9UjnGOwFNzzhoeXb5Yuc0iydYxRhEE9yRYZM/HIEHenvAiPQ6JKz8BKNxur6PYPbsBuMflS0h3STqzOMOagq3YKmWpIs0L1foZaQ8b4CJDgKCpeYz+4onDKEknFfcroc+dlHHUOAX3zmWe9KqEoofcbmaZ59i2nmdVbSpTk5AD4ClMBNhsj5OfgDyrHg9Fcdzo+sFkJ3VLP2L/jt+HxyXr6/uRpMHLL4GGbPYXUH797mMbicZ8d3XJMXW0nGeBtMOdujQzg7h7aF9xcQo0CYga8YaljNAI2kcY9FZZxkMLsj4+qFEcZAfN9BLzRJqAGZEig5XIy5QMmQkyrFESx+gEM53H5Ftd7Sy5K+XKALIz2fFLy+bmEdOLcZH7OgJ/CeLaMl3F0uxhHPWYcfwwPHLptQFmeIPyHWHeNyjRLpv+yQlJBugbBg6QY+Ktcoxruho+1HPCPV3ggjuYomDk6XUNe0VcdYdUir8FqR0SjZcUjHHOOQe7hjDjVmkww3hyAfTYi/zwwGwfoT0nDCwoSXJiiRN1yxp6fkJSUvUbYMRFRH7G0Pl5GjNONpdcigxtX7LidaBw9hSeMOOavOHuyfuCcfAYaGO0g7Kkss04glT2vHbKlZM8czo6DjmFuUwMrtGHzk4KTm+OM5fRe4utqRBkdx+xLXHpHSJTve54jc9hQ4juSAmdR4C5QmDBq4GC8Yk2c9JnYhsUzKSfa9sTVTiXcE6afg2SgMnpGZg5vYsu41Q41IZHmkBqHgKad8yjkpjew216iM1LKlZCA0BXY2w+T7nxWzKqHiOFgfEzeHDGmklQ4bI/xiqi7uc6SZBWwz52wVAkOEot9Q9R1pmxguEjYWFP4ZTg7YHd7wxckl5u6Tf9DEkZMUaSwwZ8OAY6BgMMd1N2M9nGPaY/ZnCBHPlgVG379lDDegC9AzCp3z6nLL0vVcyDkX8jGkHcpXGdasxwgVRygvSMQycXP8NVpEZnc9yxaCLflrO8e+45z7zoHGkkBEqMThaHKmU3KFIYTsuGX16rzh37MoJOYXWAGLCWbrIoAQoidIMZViv0nxCeDciJ/wz5kL48nosZIBYfgQ502uieTDRtUjWiA0CIdgPRJKLAiuMYoqK16lOhLvoR3ATGpOOcoZn4k8Z2FiuzQzbHkCD5iMACMFJg4tZzBbTKoLljPr/Qy0wagmcYQCYUHOC0WEnoWDU8l9KT681ipn5DQJsXeQHNKXOHNUeHIOOPctSOaReDA9bAVUWYqw2GUZx558Lx9kRT2kCofREFmgpG1F2i6ILiHVxGaOuTIj5vBWIC7h/BbnElWAuTfWM8ftco4+kOV3tnAk9QzbOcEdMZQJmWlmd7oSKFArppJshbhF5o3EAOzxAr6eklM9+VlVJly4kA4FtzbkJiFtnmWGpxClLDpSSvQy5CLEzuN2M2rpELfJ2kKZUY8RSNJiNkxXgCbBPMHG7mvK91lAybujgKehdCdoigyrDeoCxSwyq0a28xl3JzX6gJKGL4AJ9DEyBx8mWUxB93OIB0SriQjeHGUsc9byQ14sgMasYiHkPjpOECcMZUk/a3J5fOXywZw/LmPAUx7vonC40mMu5byI9YiuMhTOQYHDTxWCb+Rf7hmDHhcbinhAdD0Uu3zQ2B7Rlpp7vY5Iz5bghJuyZt2UhLIkyMmDDg/I+1REqKzGscCsx+IIeJQCaOhY0NNMtRfFWQFjMSk6J6j6jFeOljkL9+B4b1C4HAxPGWLxHqlL6jByIOmDxLDhckU2gSdRS/e7Yogf0kkl0OAwZjiWJGIQYhBG8YhvwITYrsBiRvRZyZgCsbkiOqVIp7i0YKQmycm3P+V7WVEXGR3rHYUTonP5ZY/AXYLO0NGmXFtByRwzxQ2GEDKpsclr1e3zM+qUrnbOU7gmr9/egWVFqCz9OoUbongf8C7AGNDkKVziYBEoB8FrBYOfMHnfjGFOVN3Pwvs5mHPwOefq8rt1uWzgVKi2ES8JN6uw0jMWM/YuC3k8yDwggsxmuOUx1g2Y5ECIPq8REYc4nTL4U8Mly2u2KmE+z8eLuydtpPwcyedXYBhBZUI95f0+ltDPjeQsV4Gj4m2C/fBN7eT+v/eytziBYpFFQ6KnGo1YOaQqkVKx5cSDKAQxo8FxRJl5C2RopYyT0EqqGOMh30ef5tt2f2dOagq/yIXtuoMo6L6fsNwFQgWSmDlBUXxMOZPcaZaN1bxM1YGWBTQVqQmk2bQenE6pkEQpidpygHpfKM+V0IlfXgLLXM1gL7CZUBYs8OQTISs3ZeRCzr7P8llCiVnKuEegLD2LMmcoQjcyWJoYuQXe1dR+iXsoSaPJGW0nJURHkRJlSKg6EiUjNYEZwpw5xgElJoYTh0i+t2ZWolFxSdDgcOMMNy6JrIkCmOHJlbFSjGbqLVYYOYjV7DuGQQijUKIfJHbzBfI17uW7s39k1BhzYJciIQ0omvt2IfmslQJvDYd2QLIei1sSxiTijtTywZf6vubd5HuOJXVsUGeIa7FkmTFt8sFvLUhUDBj6AVLoUsDFkOdHDwyC0OBYEOst3X2PBfJuPMOoLE1SI+MHmQpwjOkZYzrIF5JbPMqCnHz32iPaw7TnOnPMesdShDtfg1vmc2aqYSaXzxNvytwivfSM1Z7oAwvNMMeBgjvmv/9A4zUZsrM43/HTw0C/q9ldf0JSJbHD2DOrBpoy0sc1q/E3YMoBe0ogLuH1EtIIzUqoHPSvRuJhgqsSLs7wFpmH7KiOpzAuQLYwrsBJYF7fgHj6PjCOxXQMRPCOcDwnliWLbclsnxi4Y8N2grQ44IytdSTriIPlpLIDOQF5BtHfsC5+ydD2HL0ZqUbYERhI+Pl76mchl+0fYHN2iEkWhBlb2rFl1fWYDmBvEQp+dNzy6qBhq4GL8BVmyrF11GR//i92sOvyWKDgDhNSCwdeOZoLbkz4UUGFvhFWleSDtheiZbnRPF2z9nTjR5a1kZxju2iI5mHTwK4G87hYoi5xWUdWrsfSFkuewSnJjZnl9aKF2UC5Cyw2I5IUGQNixq6FfQ/7fovtX3931tA/sD9/O+Ascr59yw/HEdcl3u2UlCYFAAZOGbPTebAnvPwSM8NddEgL/rdg+/zl97kUrYsVVrY0Q8/s14k0GO2Yl9nPGHlGYh9L1m1FZ0JQYUR5y4o9A4cve578sVIMHv7qCO5Kjgic2podgQuMoYCrMygb2K9WsE6ZgPVsQJrE7LlRLmGxuuLg9q/QVukvRjRGtuzYGIRtz/zL6wyT+562aQUz4dg6lrqi9HtmKdCXO377yS/ZVTNmmz3N/ilxFPr2a7wlXtDRkLGZKzEqB4cFiBptOTK4mFVHkvKheY5AeQDFDMp2Tr09QpMyrFuS6zI2FOPqODG8gOQ962JJoMS9NQ4vVwSUnhcZzjdbQzHQxyssdESX0CLgfOLwKFI3OSZ+MyFI0mgkg3YbGPcJ175nFkNOXjzA3s/nGMKy3/Jp6NkAl5yjU/ZY2PGCjifM6MvIZtGjFvH7hMSG7S6xvYiwd3jNDdxUAiYRlgtonkE7QH8FMZKqAZ0Zt0MuXY8wKQQZ98zKdFDQn9ckUTR2GX+0NtiCZ07FR3iBi/k1t0WH9gM6DIyWiCnlTMwLYCmUq5HF9QZXJJzPDGGVXRbFWPTI0erB6/X26iDDBGRPIR3uoICzClcbi8ORolbS5oi0+wh3EFg/f49YYv4WFu2MoQ0MGjmI8NE0BF96WAkECtowQ9VjtkAkcHQ0MJ9F0r7hcnuK6kDfr1HJEAxQdoXnq/mcWJTo/AnlUOHSHW5Y41WpLDvsI3HK1bd5YskMnCEe6kXAVxAOOsZjQ3dC+C2kMPWmEYfoFhcup6Dn+1t/nJ34c3/F4RhY6473vsXMaDRRiOP4iXBwcswuKJf7FovGfANFKEnOeOshOsNLokYJ9CgBtZJoJeKhPMyJPVVFGUmxYP+6oAzKizFD7/Yc0DNDK0hzUDViO2AxUVQDRRlIBIZ2gwrsG6GfNYQQicMK7cC2Wed/XkaqQ6h0IOgGnxIfjYlg8F4zfVP0Dsff8dAAd092upZ+ZFZ27KPS3y6wNELYgxmHdCymCs0FShJjqNOE+1SkgyODM8380y9Xe1b7EZYe9AC6CLYDSYQDB40Qe6XdW+4FdwxaQLyDtIeTHl5cQZCCLw5O2M8qZFsi+x09iTdTz5Z+ciNjucGKX+VKxrjPGdknCRbQa89tumMYPbqqpwC5BUZoFD39Hszcf2Cmb3BmnHctR+1Ia4l1gmQJTWs8e56x44yKzkdu645EZBaUeQTdD1zeGmyFg5slFhxdc0uYbbCugzY3b9Ys7UIqOmIR6GJgGC1D4Z2bmhNlDPwwM26OMkwxUIFVHG0LlvsFHcaKWyKJa8LUvtmR8Dn4tiYH7c8DLFva20uurlrMIsHvUSKthokyvMbc5w8au23I6/VI15wxcmORoIFgQrAF4HhJwVM8+0q5XkYM5WRrnAfY7Up2FxW6twydwhFZo3ToPsD7Y8qoHKSEd8b4pGd9ENmvYX2d81SJTNzWe+WCOXByjCL0Y4FX4XBvvOyVHcI1b4nOeL8U7sol234D/d+DTQ0SveKf3SGLLXZrjFdKIjFLiShZ4KUFBgLK7vcfaFyQZdrOT1pevGhZXzzj8uYl0UYGblE2nJa5+efdsONuzFiKJTlyv53D7TlUOzja5ggyvIjE5zFPjMsTvPYs4h5fJO6OITwlE7J2ULrEcrGicJBSwziWE6IRtHCMR3PSrGYWCs72yoYdG1ZTPHhE1uFRWt3jUhZqKUpwL0HOIVUrdvWKdAvLy0yYGydJQNfcUJ7dPLSgwYw2SwfuEs2u5ZaRDf1Uj+lwAq8OGv70ec1FCKTuLWbGx5rnzS+BX7ZkmbgtYCAzw1XGwsOTJitqzHY5yv2ige0cdC9on7HtiXsJnRwlVz5wVEEqhW7eEH2Z1X92JWIeZyVG4LZMWDnmtq1ByAdwVlTieQdnkeIqK9mVQ1bisQRvOlgZ0O5hs3/YwAF/exkoLfJv4gWvdMN2mCPdEaQEukLYc0jJKwrCsqP94QaS4W/BBejeQj81S3WA94bNttgCqhUcvs/9A+6bLv+IyB8ReZ8cXyTPFrhGGDCu2HLFlo+fwrN/DcXOwxdH2N2MAy54zpYr8loJHu7OyFMv7WC9y4P0EuQAmk9hdgoHF7ccvr1F76C+yyI478kJkWY3sOyGB4FYdp3DASf0HKLM0sCRRrZV4OLF5+yOhObdUw6vT2nbLfvuPd4i52RhzChw63IwfupzcqgvAqMjBwMfGizlPbpcQnUElcxodk8IqWez2xA+dKqBbgm3PwRqB9USrOGwMxaXG3oqBs4xF2C2hTow9HcM3OUPLyp8CQdPIwfHsI9wOfUbci1YMLr3kbCBmmtqrh8I/oHrWeYUHYU9T0PPW4655jlKBN4itDwh8DMG1uXA64MNyaAZZrhYkdqBzY0hA/hUgBeMMWfi5mdQv4T1NisBpICVA9ZE1mViMyWx7htz5llZkOYNw8sl6lPulxMnsuvWcDTUPMOccDOLxHoiLwz9dDHNL+kZ8FwovwrMNiPqv5ET1UmljNka9+Tdg2Xi1nfzDKVhR02HdxU8dfhCWSw76toY+4+IfMIwv2T7yRtcijy/WzBrG7a9oX3kiNxdXIBbDysPKRSkcC/ePsM7z8FB5Pg4ciM1l9tj1NoMh+KeKQKd97xvGszNSLMnlP0Mv9vixx0VngUVCbgi0WFMvZBBBihKpBCqw0A9h/bJyPhixK4hvMl7jMJUzbvOMqcP5BkMB5lzdBJu+ThseKORSzdiHmobqMXx7OSI5z885LJtWd9sSb1x2JXUoeBGjBtnFE5pSBRAmjKfZkZSj/NGtfSICDHldZxaR3jv8ZbhzTPgKxasOSGVmUdKSjDsIAaKUmlmgXGMjNsd5oT2xEFdwWbIQfQgsHdIAbNSmS+hjIEYA2XIvWCSwa3eS/Jupq+H2X2+9sQHDoqeNHhkN5sa9ubs9YKec3Li4M0EKMhEOpBJG3gJfELWgrqNPSvpwQ7z5jYOoPsshLMQ7NDRbSD06R7Znf/MQAKqAT66g770vD06Zl8ukLjH7VtGApdM6zPXv0nFjtRcTTwcl799nl/K2I2s25HYNeh2OVWqdkCP1T12vMr9Gx9gphdgcNrDRzt4Rz6DIopnhweeUPATPG+98HWTidVPgtIkWHWBu3Vgtm04Xx0gKgxP70jLDqhh3zCx1HIz4KInldlpXTHlg+45U5JraGMD4xk5+LAC0ZplaHi6hxU7NlwSSZPkCXzj25RgmTfEszt42tPTc3t9m89/lwuiK4OdgZMdXnYPitH2WcyUU/acs8eZ48pyBSOxxKh4ivJzjNel46uj3BjveZfl+V+3Jbc2y+gMzVkznZLjdEvoDiepgBFfJC7PIrtnE5s960BMraBB2GPsYbaEJ+eYFIxtjQTHy6i86hM3bLnlPcHBzfIQZnO43cP+4psh9OCejPgn+frjdc4l1prR3iu779UT+Uaq5x+37xxoKM/BDLfbUly32DbS6Z4ggVgp6mHr837Ulg3l6RGmMOz2WbVmSCw2iaJvKPUEEOTuLtfIuxFmOzQG+jGTm9JOwRl+m/cCbxkNkzstZvJjzseAqeHaAYlKCoGOglFClgpzDmYOfMEs1MzCEpciJQOooes8oK6AtoS0KxjSkiAeXQIN2EGPsX9wH42Kn2EYg98xuJ6OArNMzPaa8MBtl/jsLrCtPePJKRis15F+SLRxxOKIy72CELJSsAGdOe6swI9KZVmfudcSSdnZUCJWSG5c4AW2BfQQorDvHDoKKU7avUMiF9hr1FXgC6w6yAdIa5MknyKSkFEpbwQXPNW6gXZGlMjueEsiEfbAkEV4juShiG+Q9AkG3BD4gsS1enSo8+k+tadsPdx4KG3ObHuAM8H7gMyULuxo437SUVhMi6bFp4Cz/Fg5z5LdkvdAibAj0cnAUCp6rHmlrIE9tGu4+DsIvRLGForILhlX1rARRYssD8j8GOY1R1XLIS3jqKxvItpCdNBdAqsZ6W6BjkY4HUlHSnADuMhxDz/e86Am18pLFGMriV6UygkbHG1MDDc9dMq46mnbLWFIFHaEQ9lIxri2MUCXG+5tY40IhGLEypTV5GyPt0AjivNg3hG8TJjSjuRGdD6B33uB0eE6o7xQrLB8LSBsdcq5DoiLuWkTx2CHVBqoUiRJpLceM2Xce3rvGAZl7DPGQUIJKmgd4DgxH3IM/FC0dz8sEDMqNRxCKB3WdDhLzLoMl+td4I3raecVmyefZL9+M+D6yBBjVvEInsKWiAp+t0FJJN8Tyxt829GkhCD0NERqnPUUtFhlxCea1+1t3lhTD/3NiLmEhinIG6ayuhjeJfAFEk7BDiiiUTCtRVqcCod3icaMYj1jHef04km+yhOsvIWypU65oPRQFMaLiUovpWShFSvh7giVRD+MpDgSxy2JS/w4cH5zRmnGiRbUXhg0y7p2lFyxBIQ+7cBG8D2UKyRF3NjjLdInZR0F054TbokM7CTmEKMAnOAHpXk9ogG63R1p2GOpyw54ZpKiXkjzGgpY7pXlXhlNWKUOcxAlk8/jvoTXZRbPeJoJ0rKM0Cj1DE7mU1L2Afbk7kc4FCs2bIp9PieYY2gWNDblbhfhYmCtIe9bDlrJwtNjMGgVHSqinWW/oVwhrkdnSlokTI3YTx26LaP6i6h5LXslLo3BG3E/osMeiwadIZpo0oAn4mLKzc7CN8EcklndpfeURQ42izbgHCzUU5kQgnITEt6EqnGoucyF0Ypm3rE4eJjDB9DwEofQxJLZCG1gal4mFDR5HePYiDD4kqZuUG9YswMfSCmy6RPKjDlPM7jGLlmyz6IZuxYbAzoxjbXPOCvfG/W0HHvJkCukRCjoNPFuGAlqjH0PUbDYYvQgSiGGeUEXDVYULCMcBGWIysoSqiAbQyxP/zTmCpqVBfgpS+AglTBuHlzQ4Mn+I5wZRRjoGYHAkm6S4skV2S3GW5SVLynrOc5gbLe5WtZDs4JZV7DQRXaAh82kHKK5p4YqxCyMMWqJqGPUHHzgLHcgLSULtgCMFWxmiCuozeNNiWNkRaJFMVlmn6XOfuI8CfOYfcNee0jG7I5MYN8qnSlCibNjTDzxKEKtLKqes7J90Ngd8LOpmnDLli2tqwl+kVs7xIRZywrjNbDxkUXdZJ9t5ogmSAVn5YCYm2jxxkggoYzVyFDvSclo+4gzyz7VymfhGnTKv3nEQRiVFC3z2dY9Qkk1FBRJGELkhkjrShbFM0Kh9EUg+YGmUmazEkmGCxmmKytyMnvnsnaalCR3gHohVntoeuq5sDjoke84cN850Ej8c0wj/uLvqa9aVHtu9YpQJDgcsSpDZaSH4uiI5uUfQ4LtZ1+RQu7eerbr8XZCof8VSQX/5V/Amz00OzhpiaNjc1tC9Oj7AS4TtcJREpKHbW9ZMChmdZ+QpykuJpqbLU5gTMItEAqPziuoPLwoYF5y+vqQl28bnHY4rrCY6N9AfJe15m+AZDNi/CHqG8JL4KlhXBAtK+U8xGb8jyiRq/qvWFWfoSao5s277A2flC9uA5+vIvXHpyz++Cc4HN3fb2A/st7ewvaW0rJaoQCrLXR7WFGxkRliEXSf+QFxjhtmWGxJts168T86yGLlnyV4p/SDZxwLTBSVDpjqcAjmDrHyMHdMW76AxmC4gPECsaxD7Qfh4IuCWiqcPgF9yXC44+5HnxGqDn2nsMr9q/4oPqgfDgA+/msg8Rmf8SVvCaEkhgNy5iKjfa+r3DPgqZ3yRxf/nEoKXLWD44Gb7Rfc7L7AmKF8hEc4il8zH9dsYoYI3eOQE/BXOH6BsJDIod8xLo30x5ZLS38D7OHuK9hegEkkcoM1jqthzk04ydmaRYR5BSefIqdnvHr/mj+UN9zuR37x2Z5OlP7vcrCx1lMk/QBOIvbP1jAf0e4Kwo5P3sH/cJGDy+9rkf8aI3Hj39P5WzJ3ymFDYPzNJdDT6pZOdxR2TGMfA463siW5gTSuYVgzWMV7TsALWt9iyw5iC7GnMuOpVzxwWRZsqwJ8QmQFVUSfTZm+95m/UN1FDraKirJhT6Cjj4GBiDjwhWB+jvHPMT1nGTecjFta1lzxW5KL7K8bwq6g3490u4EJCwLeYU82cNBzdm388ducZ3iIrTdnCIZZxUDHfhax5yuKmDh/F5l1cFsM/LYasbNPSH/wr7Py2sXfw+YOHQKMLd5qZvYUnwSuAlwHWlmxY53HLka8d1xyxMaOKLljTkdaGvt/kUgHAn9ew7Zi3CZiu8NQ7L6R3PR8zil1PWT8bfdD0Bm1Rha8Y2Rkwx1FgB98YTxxxtd6whfpE5I0pPI0Vyfn/wHkSxYjvHjzsOAW4J/RoJJ4vyi4nQP9Ar78iKQjG7a5RK+XGNc82Z7z888+pZaCRltcE9iOkTFsuGPO3/EjBGEbP89V1OUWjvbIaNS3hqixjsLt6DiPW37E5/Qon7uR1gEzgdpR7RLHf7YjqOMutgzqEJuIRV6R5Qh1gX58gCxqnv125Cf7gRtL/G28oxelkynZcDmDq2PkVHF/2uPmCfZ7GEcODX40Plyi9Q+++Leoi6ye/zmvT+7YyRKzl6hFWr5GbM/+fcfXVxFbRtIzBS+M4gCPdgluAzocM+ifIM4xm/8VZf2e/lBJJwHbw3jlkMFT+oh3MI+RAxKuhv5jo2ug+2pLuOyz43KblYZO1KiB3ajsRyaloMz8yKSakXl5yFFzQJkGFje3OBRXzcGXXIee90PCKkGOa/AlsfsIwgnHL9/xw5+2uAcO3hF/ikM5Hq44HlZTrtVwOObkzHAnJStX0lRLjg6e46pEWn6OFRv2cc9qs6fhnD3/JwocJf8Pntue3b5j3fUkg6AZQJnWStrA3OBcYVS4cDB6wckCx5JV2LOJAfOJkNZQ7LG+IzFQiKeqKqgrhk+O0eWc569X/OS148ZG/sZ29FGRNzmeUMuFEi0ddtxAWcChhwbiNezf8uA+X394/S+zmp1dsWaNseIZAwHhjgUDJW/Z8YaWopgzO3yGmbHbKnHYM18bR1tjYTPO0xmGcL29Y9vuoAxwEHMCfGtYEnZpxl4aTDsm7CccpVzx3+dv0S6gf0UhwrG1VEQ2uuOGPSoL1D2F0mV8Wp043/d8vO9p08j7YQcRPvqq5vD1jK/TyOc2ZNaC/hz8DPtoD89GnvaX/PPda/w/7BT4HewF/yNGYMN/YM2vuS2OaefPSTZi+88gbvma3OtxWTQ8OThCxXMxVLSV40V5x6flHV5qKrdEVVjR0RG5W+wZnrSEHm7ekXvF3ZQZ2t5H0BFXOpqTClcIdjeSdhF2I3QrPBVHVlHh2enABT3z4pjzxU/RMnLR/A1tfcfJsua5m+OHSLVOEIzua4hv4CZVXNoMk0PM/zQr6y2+gOKKo48GfvCzzXduEvmdA42ChCOhyQgJktMs4VgoWuQaTqIAzaUjKxVzmWAWsXsVWXTiCGCSS0YT95jaAEOd5cz75PndF8TEBJLDHIgoUhioYOozMS5lQG+ye3qm4e+lXC0iFvAUCHXm83mXS1SR3OeKe2HSgsgMZYZaDxowFTRludeHmBARiahPpHJqBmQyuX4ehzBOXACSp46aabE6HSBa5LTFB3eYD3K+6krUz3NGqeiBRAU504bgvctStZoVp7zb44qeqFkCMds9TKPgXrLWSa4aWXIQsy9SWBaoS5aJWDIhMtR51FfEoiZqRUqaS4GWYRt2L9v4AKuztiUi+U/vIo0bMQJjnBqiYagZmpQ0RFQclRWIB3ElSoHPtF4KDJ8sqx5rlpb9AAcTZdRc0ymnGozH0aQCnxzRG1oapolxH/LEbLKEYqIiyQFOHJXtQXPDIzoo1VEXnlo9ZXBZg1xsKshMBP3oIJaZPBxLiAUpKoMqD4lvp1WXG8hVCVGHJcHUkJglJ+9n4AfpWLHcENKm+rJlRo/mv4AaksCSh1hiapjPVTRTwUZwSSdJZcNrganLuL7a8OqwMDVtmubcvQDqRNPM39NcGXXqcFZQ4mkw1IQylfhYI/gsY02Z2cPmQHtywV8nuciHmZukGKMYgxixSLgq5jUhmYYYXMXgCpBymuvgxXKGx/LYZUnDhMeR0j0YSmAiFpuX/JXInoqRHQiv3OsaOs1il6pZ6OKbHREmMOD0Zxb9riyCRbw5oMaJUnnNBFyzLHFrk8SiapbH/SC3LPnP8MCBA+pCSc4onVE6qCSrFyWEmArMqg80a6eQRiW5RPIR8xF1YJQk8YQij5aP+XhIBtHuGaIAQkoQg2XkAYJI7qOeEMRVSFFQjJHYjyRTIOSAe6KSCjmbj1mWb01GaUIlntKy4qEzzR2lQxZ+TmWBeSUlhyXFgsv9Y6Lh1B7cM0hiFluIkz5H8oqvFBez3K8aeQ0nwYLDpjWqExF+OsQQNbxPOLP8pJbTDEiRp47LZ7NN69rhKKVAxDJvQy0LUBR5zpDu16pNU8ShOISCWnyuYqrDkqPGMS+ygKmF6VU5hys8aIEWPku84/KaJRN8vdoH5MJDzBX5WbNQagT1lObRiWJtgIoQJ8llZwmn2WcwMfIpXRBxkz6AUWKTPMW9bLpyT6m/D/Lvk1Si0Ix5q1Pz4EqSeYb7NaUxT2AFKLJE8vTbXhLO5WSLFj7//r2ggCkkMMtcIPNu4sZlbhVuAldG9+BAo0weQ8kgBAWxb5BMRebZEAyNGYJHSohBWQiu8hQp5bmPTm0HyUlZIw/IvQCKB8Rhks+hfHjnvUzudVwnfpNZCanOzygKkq8b8fmM9QJuqiA5o/QFVdEQiJQ++x6lTBK593vuBw5H7vOUN5QMf3xYYiWnuqNTBmdEn9EezhK4hHglqSeaozKHBptI9EJR5LvSpPiUJZJzEVnzOSEOprWVJhiLTdPPKxRFRuEI03kzPSlWZP+BYjpbRyKZ36bO4yuZfk+RpBRFQTOf42XAbbL/WMas4VfhqBGiOsboJmGK6fNUILqpGe8/bt850HjBfwSMnj1fAvuDxPJ5TxBjPyopCsQnMD4hpp69/yUQSdIBkT3GgFJxy4L/mB1W3eSFt69gmGX5iUWG52TN0HthEMPUU4xHiPM5szXriN2McX2MWmLQO4QRm1SV6qictAk/JHy6REqHG/6Am/oPqGbvWD69xAjcvoH9Nm8rmVp+QM9TUqrRi7+BzVs0FYRwxkN1qhP/M4riZmvK4z22c3BX4JKn0BqPw9cNTVWhY2Dzi8/xIhz3CyoKOlmQRfN6tlwDKStmARRnUP8Uik2WA5CWsOlIbU9VeQ6PFjgOKb78Azxzjsu/YfHskpvW+HKlpPtgDAGeAOeUEpjLDlQZb3JjsI9H5SMO2RD4nJbglOEoEJtInBlhXqLjgvTVR1mveRghRG5txy/tjoc2APsh/zuCUfk9pR/Q+UA62dBH5cvLjn0P8yExj0ohF7zbdTR+xo/nP+CgPKC2OXDCOYn/ltd4Vf5j2/Ouh5g+Af4I/A6a34Dsod9P2fqGwzTHbxue/c1LrKy5qUbWHwWG7S272zeYpgxfEcB9AuUfsuQ9L9u/QfrIzd9cMZZrCheIz2bQe5Z3itfEOO+JZQ7AsriEwN8WeWNNh2AVv+k71rrFYfxfv+e4Kf8enHFwMnBwPFL3wnwjjFF5mwKtCkuOmXHEKCN7/xUCnGhNbZ6VJdaAI1Bym9UJ7wK2gWRPSPoxYzFwcXCFuIFx08LNwCLCmXNIqkgXz7GigNMb7MWafrVgd3FKSonIDTBCKhCbs7CCV1pjVvB+d0UnayR5Ep4ZkZ8DDk/kOYkTrp5Cewy2E/jC52agqwb6HTftnr+29YPn3BNuUIxVteOm7HBLY3mYsEG4KbLC2Vj8AJoX0O/gN/8OnyLHwahrYxsj2yh4epa8RoBrBlqUxCnwnLFIXBxvER8Z2w7Wa2JT0D/PRD79q9yr4XDdMaejlSVrd4YRwN4BXcaO22FWZRvWlGx57q+oCuE2Crfpp8yqkY9PtzgXuerXvI4Dcbil7jvS6Bkvyzz/0h5SSaeJ639CkGYvNogpR3GkGmAoe46f3TAEx/u7M/rhhGM8xziCjvwq/ArnE8smUZbGbaqx4SluZpRP31KKcn7ZUu3hqltwEY9RVYY0giV0s4d2YB8XvOMZBZFneom3SFW8oJidsom3vJGvSZaQCYw08ITACbO44Xz3Fjql7TdE7ymHBvUNzoS5jZSWOLxW6pVx98pz/ScVsY1s/g7oIcYKtCDGQDcOD64GXfL3KIlbVmyBerHnSfMVaTDu3g6MHcyYM+OAMXbs92OmSaVJHSsG6KH2G05P/wpnwrDfENdAsYT5k3zD5xcQA7FV0gALd0Dtn2BJ2b9eE1wk1WVGAuxHuOuIKLfFiBMjxgVJFxz4mhfVASLGag9h1/NyUfPqSFhF+FUFUYTzo4pFM6McPadDwRhgu819XUp7h+cd/t2ArfQeDfv9593zv0Ux1mlHpx1pOODp7pyowmpKHuF2FL7HpWvi+jW+UDwdUkXcmHXsHImKvyV3jFgzAn11zjj7GEs7rP8iJzSm3FxL9o/nI3z6NTReuJaa9eGCfgxsOjAUdJjwiCfAIViL6jU+jhyv3lAMnl3Z8NevGgbLvTLQhPYtFiPEGgkzzDy2Xk+40AECLPqSj6yZHOrvb4kLEolb944rd8OsCBzWSqoFfbaHWjh6rczfO4auY/vuNb5wfHTkWTxpWN/2bG5HlA3Gb/L7SG0+F9MMdJHLMsc+uxq7HQzrDMXHI4OjfFPjnMt9y3AkOSS4JcmPtPMdg98xtsfQnbPwI8+bFeIT29ATVGncKzh4iU8ds/4KkxE9XDPUHe7Ws7yaESjotEXjCF9dwvsNe+14G/VBa/aW/wkT4+5ozW6xJ4wjy3YDolTLDhHYtkfs+yO6Xc+bz9dUBTw/OGDelNxuAr/ewiIFXuotAFcE1kAIh9A+AYnY0y1YhNsO2oGjmfHi2BHUcbU1huhI4YzMMGqAJYmBNV/iaAm8BF7h6pHyyWtMBvyqw4/C4uUTzl7+kPH6ls36l6gapR7SUDMn8YrEZuz49cVbeucgbUADXV9w+f749w+dmnOdYwJyZSuVSnkQEYxuTQ40bA7pGNNrIrd86NzFfe8lQemp6DMl+f7lRo/EGqsCLLqc6uqBDzG/YThEKzwllC3MQKMHmYFF0gdE9pQvs0QdI0VSCkacg9EV9P4Uq/c0hznL0V/mzcLjKChRKiJz1EpoRxhWkA6xcMBDmQbKl1lRtVB8ZZgvMC2Q5Ka4sUD8HKkaxrQh3G5zZacs8S7fmVBy38gLEh+SF9JAcZrxjbMCRLBNIsUEVUNVFbhYU6+P8WnB4XnB0SzQxwnT+TsLbAYc49lScQcWSEPulbGk4in1pIGTE/BWGXFmjEtjOHSwKWC3hDaSC72RgcAd/8kHfWc74B0iH1AQaBVJy5FdMAqfMe6lGo0a0LGnQ/0MZi8ohamKVTGn52P2OBJ/HZkoygfARxmUWLzNKh+hy1kOHKXVVGHB8vYUcTP65z390UgKAx/mwv2LcEtwT6h04Cg0QM9+6DFG3JlHzzxQUkpJFMEXDinTVEXIGSPupoHNNSnWxAfTI41LAKoqE7VnwEGb46JLyVmekpoZS0zWJNniMWo5YmEV7Yfcu1IwIDadrwJqM+AMbTq6cpeX3LqHnVI6WPiEWEns5pirsWcrOFJi8IxujtpU0SQhUiJWUFKytAYzodKO0TqYKosFygngxdExJ8gR68bBqcupKJlKIEMHmujHkRt7OC9oRk8SI/merhioS2gqUBVaKQkUIIfgnkP6Glld4HSk0UOaoqJXm6pFiYJdPm+5VwHOiurqAl2TwI2w28Juj5VL4rzGRsk4jN4o6ZlN0uIi8xxoiJuqJhUwB0ukNFJIYuFH5qJs5JwgZ8yKgeUsIW7g0jx3AlUcqBhyIa+7r7Lk3iUJo/unBBrzEUypdooboCwSftbRFiV+MwPJmOslBWtuWekKk0BwUBXC4EqEGc4P+MWGUiIHRWAG7FIJKUt/p6mKQ+ghQJSKPUtmjJxS0gCNX1D6E3o/sCNXsO97ZUQaIkeUFllEh8REGgKOiPMV6nPGvdQshLno8xpqK0GeO+xasgLgmin77FGyrs5DYaKt3KGi9AyMBnUZmM0DqYC1B8hCmRUNZhEZZTpH3TdzIkLhR+b1Dc4gbnO7I8L92JF9kZSwIFgUkBrPAUkjuutJCPakhHnuMYSMmMEgktebK0EbCldzWDSIKWNX0SdlvvAcVtA6oU3CIHA08+iswBdG7Q06kGAwKuJanAzIDmz70FMCZJZBsEMaCBootWYu5EbC5NyzlxHvulxlH2IuCozgRJBUA9VUhbzBkxgnEX31M7Q8xZyH0f/OTd77NWUyjnawFOiXnn5WED9UIOFe2SpXRg5yld8UNFIPkQphXXvWy0X+sVjmqqa5qbWIx1I1YagmTeAhQQlV9CwppxZr398SexLKIDtat0MKWFSgjWHHEWZQXwtLBFJivd/hKs/y6QHHByXDXvIyIJAXxGRGXhvWZFnoepJjbregI1n61eeGg/sCh8c+fFWIFOAisQpo0aODAxaUYhwUA84FgmVurq8KqE6QVOG1xZzDFhviPEHrKaXALDN1UIVtS9YVjex4GJ+v50uU3Kh8nAMWKTSL+zQFiHd0Qw2yJEYlbka0NGaLhpNCuFNlPQWiI1n0pWMiW9vUzbsMMA9AgFUPMVGJcNg4hiBchczdMWvIgu8z4AhjP9UyWvIcXCJ+jWu2KAMuxkxzKBrqo2O0H4neoU6oqChsTmk9NRHRiO/uRylX9OLo6Tb1d06+f+dA43MybnnGnhMGxqR0/cioBdvNcW6CNmQlBLcfKb6qQUqib9AjB30LQ8sM+Gh69K/JftqBm3HsT+lFuGpfZHGjsoTKE4ctbb/CV8rsvEOqlq4bGe7ITvCULa8wPJ56gmAklB252+aC5xQyQ6sWaf7fjH7k4vYZaqf0/g4OO9LwlDS8IlFjdMB+eoNwrAOvuHtwxuAGQQwOt/A8wmpQLuKIakGwBXpfpJIZi+R4NXqsUVY/d9yeCNXfdXyyWSGWWwIlMp+kBeZxYNGtiEPLemxIAuXQ4ClxoWfY7XDlCl7+La4oed9dcb2CTV+glrX35/QUJGasaFDMDWi1J5nRhhlBPZfNiNV7uiKis4zVfTXA4S1c7zZc3H1JQOnOu4nE9gzpz1ikxGm6fLDj8uaTfLad7uGgg7Y37i4SKZXMxqfU1ES2rNlzROIlA2UduPr511yf3+D/bs+f/GrHU4OGZdbQ9i1IzHVX9dl7DmNupXxqUHt2/QFv2hcZ2FS+BqdsXaDdJ8KQsfLOw3wJRaHU/W+ph4G5bPDVHckKhvhzWjshcU1hN6g57ijoTZlryVJH9mlgF77MUIzTqSy/cdALSyInPGwT3FY5kFxuoQiwGys23TyviEZYzIQUG1ZJKE34KIHURvo0sTmKVF8qL7/KG8Qy31WecwbGlshriAG33mfIRfwJVhzSuRsu3RtcIbiDG6QQYmhJb2HY9Vi8mkr/AQFmFqkxvAWuNGRIi3kqHELPyBqZG5fPjvGFww8dEi/QVciMz2RwbDlmbBV65UQTP/QPh2F09QIwnurA075nt4e7NcSQu0o7hGbYUtk7Zu6Oo0JxzjHOa9Jhw+JupBpzpXDNt4OMnGs6oCfEgbv1muQnne3jBSY16dplR6jZQRXZ9z1xVEbbY/oOUPAjiLG0noWtJ6DYiJrQpwVoyfyk5aOTPaUqFiIpJoomZcl8Kxj3BeI8s7IC8QxhTkwlyobINQ91+b5erxEzTvqRgwH6MHIxrunNMxY9tijYDh4NnkBPwwwrGsaXNeHIM/sqcbq9ZaHK8z7DDPZJ2APjsoSjeYZ7bSxD1ooavBFN6fUdUkTCcYsrlLVdMKQ927TDiJk0XxQU4niZ1sxToKxGZouKSM12tyCGghsdaNkiZeLgKIIXhuKQzle0vcf+4yZHE39cgdbwmwKuPIktAyMP7aq+nl0jYpx1PZ9cMQmRwDjm3JvDGBctOlfmaeTTTknieHcq7AvhuBWOu5xdf7LNibSdV7qF4Q8Gjo5WxN7o3p2jUWB5ACcN7Try/qYDPxKe7tEyEIOHG8nO7AdOUH6usukoS6VJnmLcYgpRI/8f1v7sx5IrS/PFfnuw4diZfI6JDJKZzLGruqsvJD0JgvSoB/25ehZwG1C3Gj1VZWVWMjnF7B4+nNmmPS097BPMvoJwL9P7biBAMAinu9vZZrbXWt/3+0YSH+jZq5bRGJrqkknSqE2DWxf4uCOGjqgEWeYtJgdLGi2DeLa4R78nlg85uPcg+RlVuIEU73JuF4GChMSCKKcUeuSs2GFLRViekJqKehhpNnumKBYoNAlHYEBRJcdF2pIk4MqnpOQZx0AICY7ZXoN2vCrvKLVnF7d0rccFQeQMCGi/R8WAxB1CRMlAigmRguLwgskwpaodl9VIEkeIHSFGHnpovcXGRBF7koXxQhAD2k9Q64ZyjEylf3SB+5oHFIlJGvgluUW4KyBKxfjhC0Q1jJu7TABEscSCVtxPE6tFz7CqSMyIOAa2iE6kOVBBYw2zssQHza7VxCRQnUN9ggyB1HrEJvzJ8f2710inKMRzmnp0CJh2yPItl5GbZXR0/UjSiUOdGK1QFvfYieBGT7ffk5QQiiWmOWdftPQc8oTm7ADGoFcB1eVG9sjj3rHXfIUW4fLwwBdhz72DNx6yQPsErUuCtXDSUrrAtJ1hteb+5JzNSY10lpcIcwLPcCQl3EyAAvQyoE9HxGvi+iLLF+sSnrYcYsHbbUm0nv7LLcE40u0KNj0kC6lGKUdd9Ggl6HCPigHbj+w/7PLbYh9JXhje37EbhNZ33C8Ev7TYixm6WVC9j9SvN7TGEWYhT6UODbgFM3pecDiKEv+3199QaJxhEb4m8oSRISb0mNBBY3Yn0DccHT/ozlO+rcAq4tkSpgVs7mHsqIEXxw92TZ6QnOmal8Upu1Sx6U5yiN/pBJqCcLghjK+oyo6T59cUk4H+exjXwJGQoFFUGAosCxQzhB3CeyJCgeY5Fefo6lv07A8M/pTV6nfEpCmqiJ4noroijL8h9z5WQJfHnQlOGPkV4yOjhGCFzinbe8WXe+ENiZtjvamxudBQFVrVNLHmV90J3kb+05cbVl+NvNz0vPzmk205/9Ytfy00rsKGHs+hrUgUlJxTMiP4G0a/Rs8HeL5CNfDwrTDcAqkAmR1BbI6ayBkbluzpdWJdRkaxpOGEQMNd9cB6eUDXUJzmILovf4Dna/iBHQMD/SIy/tKRSovmM3R8SqP2XMTHE4Def5Y1ieoD6AFWvfB2FzFS8ZxnTFjwkWu2CAtGnuOgDPz5N+/YfKX4cqf4u78optTUnDCgUMbn6UVQudAQdQz4c3AucGFoNzPau6dZTtV8D3qbL3iGSGdts4XZEupaWNy9Yt6+zjLoSgiyZExf0MUvifwLlg0RzZoah/BSDCdp5H7cM/R3xKmQTsmkITeHoWJG5DPkUS+QfZmL+WoPsoKWkhVLtDUszxR1qdiOFQenufCKFx4o4PW/ihxeas4lcfY2a+OXKh+WR8l7L+SZJioIZhuBEil+iZhf0+tv6PUBU/fUVyt05Rneg78hU8v8APzVaVATmBNwwL3k7npNRYUh4fB4QjNj/PI5urAs3h2odlvSts3I4KnA5+TD+rsljBNOdOTXJneuH7PGaoqWxPNxx4WDNy1c7zJ6WMfsa5m4AwsnnLDnJZFUaV5dVOznE6ZjS7URDsB7suXh0+BrSuAZA23s2e+2OZPmbAbTGbK3yL3JmL2zPVhHl/JgNT+Pup8unFIwTwMXRHoCGxyCZYgnJDWlOb3l7Os74s4wvpoQo8JOc6ExDpZeTSh0waSaoXVBTAtCrMkxoUd24iPW290WKzDz0AS4xfHx4HBWkxYjFJZ9Mux91v/OmCCFYf9sTnhacrb/yOdvH1hEzedDiSjFn2PGYPpZAc8b6GMuNpzkANSyIoZrov8R1UTc56Aq+Hj3kYfNx6xdF7BKoQuDNZpn447P4gOhLBlOp/RSocZLgq95kA+49MDSCr84AV0aPjRzdnbGeH2Ab3fwvID/+xKaArYN3JVEhIEt+q/z5r9pbScPWOCrHn6xhe0c7iw5gE/yZz7OOoazjsUevr7JlNPt59AuFCfX8LKFSVCcDxqnFT82wlAL89nAYrlhlAnj7pI01nD5HJ4u6eQd3ce/oIuB4qpD1Z74hr+SMj5theOvVdY9k0VPdcwmSlETmOGwXKue17pnohZcqefYUCK3Ct9CYJeZQY3Ac8AqxM9JQ81I/z9WaKwyQPXTe7E8IoqFT4BohU+XxHSCLQ6c2T22MhwWZ7j5nHp9jWfFlJz0rYA1Oem7kZFp3BFUQVs8IYgm+oGAJ4+HGkZ14HW1BeOQbocMOzLb/AlKAiYMKAKJPcIeyGdHk2qKwxdM1BXT8S2zyVuSeHzqGVNi6Av6kLUWEwZCpXAXGrEa/W6KXteU7Gk4HIMQ//b1hgcswq/F83nM5uWbAnys4fpXqPECl/7IQIulYMGEoBPXzZpuMVJXM2p1SZA9IwdEJ+ICWECjDBeqpO8U7b0QvYLLOcxL2HZIt0eKEXd+yJkCxyb8hD1n6Q6dsmoIoOBAQYeLQtcnvIF9KYwKbHGPmdwTYhZUJFXSFl8jzTmueMfAA1IK8uwAhUWPEd3lgLrHFxpfUhD5unX8rt3zDfAt2Q+BP8eoKeFsC8s9Zas57aeIKfl4ck5/0fDyPvFSjUzF8RSPV0KVVfKos4i9HEibCen1OTIY+MzAacXhvubwYQqLDr7YwsxBXHHcVpCyJabOvXq0PGDiA7GHff/XxlcEhg937K/v2c8U959ZxllJ/P2MdLGk/k87mjcDwQr+pMspwP4M3DlTbnnBDfZnPut+9tm5IKJJDCqxVjAmRdcaXNJI6tEqoSSLozSeKB6FxpYKUxuinRA5IRA54POgWQWMSjg1so0bulSicRRiCW6O6BrtO4wEdIyMu0QYFYxzSiZkqkRCEUn0eCL90SzdZzs4IuDTDpRQIxTmlEAN0x0IKDuidYRhj6gPWAPTmUPpQBsLnDQMLnA7uEcfli2ZzOPJh4+fsqOVJhYDorMhNjmHk4KubpAyshwG9K7HBMWmnEI0SKgICMHsUGpEpwGbtlgCFR3ZYlbgmR+PtYIOiWIrMCjMcIlKy6Mh12BxnHBgiichrEmMSWg9BBFM8lSMSDDEYZYP6DISlbAmN/Z2JhFtQJRBHU5RpgJfISoxKtjpx7pbgCFPnEcHXQSVFBdiwWjCYk9rA6kdKLusB77VGmOEOhrOvSLViZvLxGK0NIcTosC03HFR9IxDTx/uSXSkdJ6lBQcBI5hQU85WCDkRU5RClheIWsIuISFhlePMPTBLI9pnu6SXDIVwBLTcMEHoJyPXp2espw6KA9YHqr6j8h5ThjyinkygeQ66/KkV72jZoh7VIS2UyXKn44NUUbKgyp7pqmesItp5JsFi48BINouzS+iVx3UFO0pqDKWuSQheb/Aqd+JUdGRpY/5kM8ltw5SBpWii1+y6PAXQLCnrKdF5YhgzJpYee5ToDOTD+PF9gj9O7YQJwhKtDVIOaKvpjMGrCWPtECNoW1EOlyhdZEJYDW0/ct0+fqIxygGFsBFNYkoXI00XCEoxThOp9vi+px8Foz135QRKRcCjU5vBDszpj09DEOaqo1CeQhwHOdDjSZRZSuFmYGrqEJjpHjGeoUjEQuFPpsTZBNMLxS6hiRSqxaiAUokDgVElnM4nwp4ejxCdxm2XSJtIPhKj4DsheFA+MbGBQlmqOEFJiW4SzHoYHKl73HUDsHGCFtgnxw2RDZZEjShQE4HKYweDpTiKnxJIYuZ61OBQMbLRlqgtDVW2LB3h1Np52HU5o8GVEHMCsUoVU9uwnE7R1uMPI74T5LCk7mdEFwkEFJGGkQmRgcQNEEPC9bnQHVRLKCKRBuELvO3ZFfcYA2YYmYkBIuOJxZQl05sZyhb0bQ70DAgdnzKH//ZV+waDEJPnQMDHCtvPsSmh1B6xPt8kLfixYJOmUGiqBk4WI/JQsklndCJ4JUQluNRhYkK3FXK/QB8sk5gI4nDjgdhCEw8s6oFkPG1bEJyBsTjKXjSgUSpizAGtMznF9ZlKvxZ1fMaELDMKU6Q/I1pDX/UYMyBNls5GPRC1INZQjg3iDEVVYE40ejQMfUZ8PmZ1TczWVwcxHBOQKY+y64F0hE5AwGnFpm4oCkUxjkw0+a6ZG3wQ1iOA0BWC02CUQgdNRBhVTxSFJIumYVJY5pUmaMU2c1PQeoq2NSlNSalBKU9RlGidASYh/tVJnki0rPM5Rfc4W6BixDpDFEVZGprSYGKAlCi15mqsUcHiTE2cVIQQufX+0ZM0jlen1cKDhk5qzDBDUkNMWzJ0dUdPpuT5EqgUs6CZ9IYg4KuQ73upwGiM80wPCaWEXiXGQSOxyPtp1GAkP++Kgagduz4RPVRMsVWNUUKvQEvCOo9KeW47EAkVDHOd+4QxIU7woaRLJUjExgEhIUOPtHt8cEdwiKXcN2ANonvSLOJ9oh8fJ7PVR1DN2grvDGyjxoYM1Im2J6mEih1l71ChYqhqqCzTODJxEZUSGzPBpZIyVUQVUWpPYxwyeuShR7eJKjwgYvDjSOoUE3HMpoFYDuzWkdAptJuiiwlJeVLoEUmElHNLzFFGnACvchtEjmCjwVRsdE1XRELhEBOotntMgnrf0wAxGUw/IRjLUCb8sqN3nvve/Oxn3c8uNKb0QOLBRu4MJG8JtxMAlHrA2oSNgk3ZvD0gaF0ymyuKRUnbXtJxycDAezYYPN7uKM3IPq7ZuT2IIhOoDV37BNfNKWSgoSUNjs0rISnNJHzBnJdYHCUtgY61/h7HQCfheMAyR/4SHPwrVIAnPGdW/g7MDnX6ChgxMVFESOMbrH7PfDrhl798SlEX/NDPuPMlq4cdq+uH/85U8retKQEFP3U4t1jS8dAX5htUkeCgYafYTU64OfucepL48n5FNez5vj3l29kLxE2hvUIkkup/QtuPFG5LNbQoERYkHCUHpnQ8Z8GGMxJ6SKjvQJRlDP/AkP4NwobENRU7fsGKc3r+CeEbIinm5qkmMY8HZgwcuhntcAqxRS4/4lXgL8D3QKojaZ4I4QT97reYNCWZmqgDG5XY26z2f9Q6BsbsM0GSCyn4exrGWvjTb96yXSTqv1QsXpUMRvNfK8ukVPxPXcPF1vLn05Y//JuWq4cJ9s9fUQXNs/mak2bHzeaOt/0fCDJnCH+HxBreV3BtmDz9F06/+g+k5DjsHTFZwst/S7z6N6T3jig99bDi19v/mSf+lg8J7oBdhLcJhI65/AemqmB18Xve//Z3wA1avqceDsz/o3DyXlg9TYQXkIpLaP4fkE7h+i2wYsOaAx9Rj+iQztXkKNlWbFEsmfGcE7xxvF7c0k0PLI5SCyWGlZSIF+SVo1wLu7sLbuWCqZ4RzVOUieyq/0xnP0Dv0G1AMEQaQFHFjxTR8Qu15x+UYRMs/+5G0RpD03xNffo1w2FLO3ykkJYnvGVCx13+iP+7xqkw4sn9lmfAS4zZUk6/QxWRffES0UvCZYCTNcX+jPMf/q+YMGP1d9/SvvjIzY+O1T/z18rlb1yb9AFQrOQU4SmzYeBp2OPrwPVLR98k2jc9/Y1iXTW8P7nEFsK5eqByA+t4zobPyQS7kpLA5/YV53rDddjzNnZEKgLn2WdxOIF2woW54TflNb6KfJhE+olhc/YZ7fwz6reR03/2lKHlRH2HNXs+xMA7ImKEVAEq0Ka7rH3ePkENLyjCnkn/GpLjsBecwNx6ltOIjRVVf4Goiv0vruFiQ7o5kH4UHrHlAJi4S4TEG9nwDQcCUxxPUTZgzq7Rs4HZMGW6nTPg2dBjY+CXux0L4/kwlnxXzGhMwZoJBUKJY4Kn2HRw+AgyhfgMpMYOU6yq+PIy8Q9XIzvX8e/ffWTdJ2b+15zFr+llYCM7rDpwyZ+Z0/EO4V8ga/XvWkQrQu1IMwvyd0j6Pe3kPa8m/zOFOvD5hy1P9y3XlzX7X02ZDDO++PfPsGPJm2HFipaeyO1x2vSYdXF4giLRmxXv7Z7KnTF9+A1ajyj7J1JxnKruYJ/mfJ9+SWESy6sfuHy+4+7+M/4SnqNUwBYHlHKk+JE6evTNgvjhJSZ5zv0KoeN+3dM6yxNZ8/cnK9qg+afrJbtQQFjm63yEpGjVM62+wZod/SAc9kKXNKuU++hRjSRGpPsC/O9w8zvuT/4LyvY/SbtNGTEl2G7C4v1LTKyoP9tRnA5sbyse3pJzKh6xbp8OSILDg8XvS0rmGC4AT+A9jh7BAT2H0vDtySUTHfnddsXpaqQvDPKiZt8JD7eZYhiXjlRHhr1mv7UIAa9WiICWl1jOeTYL/O4qsI+K/7qFnddUxXMq+wzvDUNfos1As9xhS9gfBlw/fqLc4Bi54dvsEC2XFNMlzaB5ssu5PbNzS9UYhgG6PjDD8pvNOZUu+VDWbJqCdj/lP2/mj875Opb7fCiFjyXYcMbk4bckPK36jqB3tOLpxaMqgfMZdaH4VVuyHBWvU+L1aUcvwi6dYFLgdL/hZDXQEbnDEaQihClgYetgHzgvWn7V3NOlyJ8+RlrRLKfPOTl7ykELdyahvefkYUPhRvZsaNkhS4P8voAkxD95WAtttaCfnTPxLRf+BpMi4eEWGdb4PpLqEpsaZm8u0dpyON8yvBjoNpLzrB5x7Sw9qMR3TeCHCdihpNnNSErYT+4IJtCMQn1I+OqU+5MTilLxS3fHYtPzPsz5tj6jDiUP4yxn1Nh/4cre0a579q88Niqm/gMKzXZ7Rt83XDQ7fvNsTecjf/hLYO81Zf0Z5fQz/LCmH9+TxNH6HYSAOkbdiDZgiwwDDdlLty5P2U2eIrM9YfoWY0bOfnzHfNRMHiKNCMlXDPcvcLbg/fMdm5MbHu4Du/fFz35P/OxCQ2X2E0EnnAUdFDaobGatAC1UkqhSYiQXreiY514pYLBYY1Ficcnk8bIyGAxeBCdjNhqrjOLT0mLEUOKotSdIpHMZQZcogQkajdWBY5oGonJiZe6ffHKDCumodUkiIFWeJmgHjEdMp0GZgKoHTCWUZqRQglEJpRReaZwyubX+mHW8yiFLyAkK9BEfmKxGLEfPQCLKMTRHEvQefTQvxTp3R2NnjgWZySY25NhLywjihM5fg89m1PwRkY4ErxxYYFCiMSnbzDOMUCNGiCZjV6M6mhpLyQgzOXrZkkIdjeRJ54as1AqmGjVoiq3GeoWvPEkFhEj4hF57zDrKHtTxjwUmR1Nisg5fBBqtqbAMpJx/niAeEd0xga8VQ6XYqwKPJpUGWyu09Sh1QIulRBBR2SCJpvCRMvXEFNBHMmFOyDF5hKiyQV/HEh0KlI1QZjSdE0gizEKPwhFkZEgJowOVdijtf0Lz2QqaBUSlSWKQYJCU8ZuGAkPDo56CKvuCRCtEZ2TrhJindzYQi4BWUCZFRHDYjMvsFcYIOiqoFKI0XpegQv4ZOap3VDoaujOesqSnpqBWPaVJFEeDe4ocAzM1Sms+IVnVT39y1wv4iTgjn5CtxuQoVwvRe7QkdIyoJJnkV0JpYRI01mv2AkbnZkQv5eOuGxAle0UiiYSikWNQpii0yidJrRIFGabZ6yzL8Ue/CyhUobJRTud/z8BAEJVyVrMy2KPBV0WBJJQaCqMRnY447/zfMdn0rpRBK0OJoRSdn1FGiCYrADMDEZSk/HJxGXmZjjdPStnWoK2isAYjCi0JIWLwWOVQSlA8vrOcCoOIIkaFT/k5VxsNhSYdP/8smUo5JfiI+LUhUI4enSzJKLzO8tACwGjKQkNMGOfI4NEcJ6Yk5PeIRGqlGEQRRoUf8jRP/YT/zaBSyZcap6D/1LA3WWugdURrlXHSypDQuEwuJvmIOIFUoUuFHWDSJso+l4z2+LzN1+9x106lvFeCzs0VpfJbTsjXD60wTtA+Yy2HfPegY6LwEa0FqTVRNE4VKBJ1UhklHITojyhZcrieCRE9KAozUJtAwKI8x2fgsWLSGkyB0p5SHf2PMcu5ojraMuGv+0UplBgkKWI6OlWPfSZlFbbSaKcpo8Z4hZGM9NXqE2r7ccsXGYvNMcuuEKiSIuRvjGCxAvZ4qA5S4AVCDITgwFZYUxINjCYjfjPf9YheSRHBc4wIRhEwBAobqJsR5z1qm3H7qP++2kzHuabCYDAq70hRWU4vIpAGRDReJgSJ2PQJPw4GQ8JgtMFYg0mGMuRzkrbH+1rJ0Rn02Eojn5WiyvhiI1DE3K9XRQ+qxaR8HogkgooE8l4sA1hJeTKfstUxoVERjM+nL0/OGM8zIZDkkRSwxlOpQCBL8EkGlTRKaZIWglVoEaK2R0xFvqY56UAft1zIk6GoSb4gREvSWQUg3pOGhIhFqhp8hRoEJQmdBH3EuafHnk1wQGLUObB6ovPZJCrJIaA2YEahDiBFIuj8PY1zlDJi9IQ0FYJXdFJiVUYDlRFGL0ifYwQqAgqNiQ5cha09jRmzpHIsYCxQtkAVBqUsxuRiQkkNEjLKmUhUiqDzO/soGSBqewxtLfLfJUG3HtOTQ5+rAlKB9hoTFJoA2uW98jdct59daHRk+VGYBtIMnrSB344dvij45uoJh7rk87t7vlhvuCvgz1NwOjB8vKX/uGKuJlyc1jkB+SCQDDbMKdQUnXqEA0nndG60MJMtFT0nJnJVBNqo+ZdugY8lIxbPwLQYqRuHSZ6yV6hoMUf2uTeJvhzzWejYJekjrPbC8CkPQQzj9gw/NJTnW6p/s0KGkc27a7TTjMcDAMGCOX00TqT9Ekg5zr3YKdQkcnrSE0zFvvycoCZwuAbuGMaWu4fXGAt3XY8pQZ3sefarkWFV83DYIqPiZPBM3AxJhmspMMpT2j2lCqjwL9TpLY3ZYWzECzz4LOcZ5/9ImrymGTQnO0MpgQ+U3Kkl+lnHL69G9gFuhvzA2NcLtKkJ+x4O11gJTK8jlYKTGUxOYX0x4eHJjGqleLb9DuMVnRd8AEfJIC95NLFrkc8BlyNcjTDREaV7xAjcJ9QBTg4jzwlsouDGiET4y39OvJ4ouISXlwUpKf6YOlCa8tRgLxs2LtDf3tGoDV8W9zncJhjGpKjWGyb/Ehkl03oHFUjy35Dda7i3sCoZfeJVWLBSDenlHcWLdZbrREijZvd6RrcvsO9uONuuifR4BrzAvYfuDE5eav5vvze4hzXr/8//E7ct6XYRR+KcM57zBfoRD8IDGa/X1NDUirl4ZvGAmSTMJCN0ytIytYZDEnZpQEXN2bph0lnO5iPm2Rv8MOOwCoQgpK7DhOPBq8hj7TJ0FKL5EscFt8g88i9XnoNL9LcBHAzxO7zckCSh8ETgIw2WhsbueWk62gLua4jKQroCJnAxwuUfSaPD/8lTeuHr4YaLsGJd9zwMQuPWfCb/MyZY9PctxfWIHBpi+vrRe86FLApr0i4/g8rIYuYZlcF8WKKwvGz3fEbLfRz5S39LVAW7zQW91JzMdnz21Tv2VvG60YQoXL8+sNnA/ig1mdSBF0/vKY1GfbyHvUEXNTfTrxhk5P7uPYM4/Oo9VCuG3nJvLBOVWARLyYLPpz2fT0buRfFtzJSbIiwwsaQ0jlJ9j6o9ZpobEcUu287KyYLJ7AyGhO++Q0Li5EPH4sFRDguq9ItHX7u7X43olDi7jbxYQ73sWDy5oVeaP+9mHNZzXuxHfssNbyYl9xczxBr8oHEOZsnxchkZlWKrDySlsU8sWp9i147L+x1Ch+dAwjDakmAMGz/y6qGl9RHnPCJCu/iWcXpD6CKy8Ywp8cpFrJowTh1FE0gLCM9AR83yhynltuIg72jlJgua+4EAXHeJ+5BIQ6TZJRbdnqv0R6rjT2MJ1Dia9HifwT0fUUAZR4oE3WRNt/xnghVSEyj1hIvkOO0DB/bc8h1+gP6/degGzs7uOfs/d+zXNW//ckYaSuZR0wgc0gNbBkoSJSNGhEmn0CMYFWiV0KaAC1sCmlTuoLCoxQR1taTyjifvR2Zd+hQbw7oSXi0SQakstYoK29xgm44YOvzbDFPJlQ4UqmJaN1TAKe/RCVYfa9q1pRkNXyf76CItqdwHOp0H6jKy7Hc82490yrCt5ozmhOfjgad+S9dr7q81yQpvpo63BUx8xcUwo43QVUKShGkFtQPxBwJv0CRqsoTaqu8x6j1qGtk/jbStkD5Y6KeMPBBY54wvbM4D26Ws8Agjk5hp/rvTfKh//iBMh8R9u+XB9xAT8+SwKIbtFHeYYJsJJ/OEdYH3q3sIws1Ys9UFdfA8k+Hx8uQioYCTIMwD2LSm5A84HenKlmDg2QBPI6xHx6v7FUnBTkXQiep85OWlpjso7taG5IVeAlJCH3t8jFg0J6zQKDoSI4kYHa1L9MkSZY6IZduv6MIq4/KrCmVysahQLI3iysChNdz+cZLLluhhFnMH933A2cjd+bHZfAjQRvzlE/jiF6RDh//uHXromawOTPfQ+4aDWvKY512w70AJloFCLBOJNHpH0IpdZVCF4XT0PCOwSh278Q3JQbtrMRKYfuX5+l9v6dsZ99eCGoQvV57lFpyvCDTUBC7ZU5AYwpY+tughQC8oP4X0NUiD67YE9w1FaVlezjHRYre/wDjDTG6Z8sDGOl7Pulxq7zLz2ahcmKcRwtvMael6i3hDuDoh/uoCdXDo7+9g9IxrhxkDk9Yyk+JnX7WfXWh4spBNCpAJTH3ic5UYtOH1bErbTFnuDjwnd9eqKk8X3LYljHC6DCwWCac069bmrnGqsUAkYDjCfyw5gEVGpjiWVjivEkUosX1Fto8qwFOZgCoDKkXsoBDRFPnWBiUMNvLXbDCFT0I/CP7TcCIq4m5C7ObYqwH9VCGrSP+XA/rw3ykvzAzsJ4vY377cCTl0Z68IKOpCmM4CQZd0LAmyAL0BIERP229BQQj5el+djFyejegwsNZZslJHYRYL9pTsKamUZmIOGBWJ8Q7FXe56HH/XTsEgAuUNTG+wacpMnaJFs0MjqmI2c5xdjTl4bZ/Dqdy8gmICtoW0R49QbqBSsFzAfAHuomD1tKHAsTQPlHjKJIwIPU+AZ39T9fu/WGX+/BoLZwa0TmB8/ly7hHIwGSOLY7ZIEfJB8f46d9IureXqvGCH4p14AprZRFPNC7ra49WIRjgzD0wU2JjVCbaH8micSkDQAs0NcAPbGvoFMVas0gWjnjNd7pm8yHQYAkivGG9LXFux2O2ZrD7kOZNkA2d7AWEKT5aar64M49hTrb9huIcdU3oqnjDjFywxj6hw3fEumRZQGSijp4w9oQCV83ww5lNQV2AkokQwvaXyNc35jsnVjsMhsO0a3KCQ6FEjiOWYXyW5qwec4HgC3FVws4RugHCX931IK4KsjhOMgkTBgSWKgqkeWGbyLw8T8mkhToE5nF3D81u4hfhnoIfz8sDnJlP/vIcmDJzKK4zAw8rQrTSR6TGv4nGdgXTsJhYy0jBSH59nKSnUqkK5iiUDnwGSAsYFPBVDP8WnJU8WB65Od5hSeLvI0J79dYZi+aOzzFrhZNEyKUCt8/c76Gesy1OG0NO2H3F+hG4HdkdUJb2egDJEb0EqltYxm4IExQ+DJmAx0mBTTSX31GqVSd/T3H3WLpuKTVVSVAti7EjqmiQjkz3YPVQYGk6Pk4C/fXUXAR2FZzvhXMGs9pyf7dnHku+3U6QrmbuBZxw4FFP0fEHQitgqQoBSR2wV2QncJnLq9fQU6prTIbBUjiQjjpYAOG2IRjMkYdNF+gAx5gmsr1b42YpPY7gomk3MiN2iCNgpcArqM9BeUb8tqEPJyAZkk41D7VG6eTwAT0LKcgjvmMqamsAMzYBiSmL+U9/1b189LZCnp1HA64FQD6RSI9MJRhfMisA5kIO4Vpnwe5On5PPTjvnLDlMueP/dGUkMZVI0CTp6xiPU+9NR3uZsRxSfsCpCzJFtYPo8Tpo26EuwQ2L2IbD0+a4yZAuHaeTYJdXgNbo+YKZ7OETCNjd9PjGFTbCUMqESR80aLYlwOKOlYIbi/H/A35LIA4hJKSyscJpGzg8jlSopihOUmTAPHU/9yDZAf4DB5mfOYOCFM1wMFVGTw4AlojqDHnUmutGj+GukrVUeoxSUCTcTnFgkLcFn+likP2oFjl6XcYbCUnL0KxpQ8/y+WGwzkPTgxyM6Pb/2LAYGQ6TAVpq6VKTUs4sPBO/ZeceBkhLHnOHxHg2dQx0nARYJND1GZUyrtqAMzDU8ASRGTNeTyEyUDijOAicN6FHx4C1xhFAmRp1pZOn4LqqP1y/vtXxfuQBeFCIVYBnChiEeoMxYWJQlqgaNptZwokGcRrU2P8xmOl+sTqBLxGmiOydv6m06vswbOHsK+oFo/gTsqAcoB4gUKD3LQbV/657Tu5/AHFYy1qdQI2iNMhOUNdQqsgQG8aiwRQB/CIxBqH/rWbzsWO8TH/wJ7BX2LjJrociweTSa6dFtVKYRzZgVJZ6MrJZLYEYMa2K4oyiX1M0MGydUuycYqTjHs6TLyobqwE/jMtRPQ0t85t4QwXuDSoa+nNI9O8esd1Sv36GGnjhkm27pFVMp+N8db2u+zKzuOF8izYxtOPCNWucR6kOm29wGi5/VdERs76kFvM4EwC6ecrd/gQ4jddoAkRHoUQRTEGxDIkHI3bdW6nyEiSMmdHQp4lO2Ume5z4iNERkDSY/4hcepxKSdMO9zIm5rQk7g1JnVH0NF70fixCPLfIlmmx0lI2FTMvzwa3zbE/xHFJ6WzEWPtYOT3aPFt8tVHom7qsE/qRjNiLgWLYHFeIuKew49dDwhZ3Pm0Ks65AeRvz3hIZyQDo5F2KPwqNyXIhU1upwR7ch64kFF/KYh9iVWt9R2i46JKREt4HtNTBrGGUGeA4ED74nSIStBpGKMFTIuQBtM0lCNyDaQtvnz3J5CZxRSNawp2HQl3V3A7TTYC4o60fgNdewZVEenPzx+POnmJIT76UgoPWoUdCeMQej3IErxMF4inAEHrviIN5Hb00RfwS4Y0o8W1TqehbcIMH7YEA4jzW7OfP4Ca3tuZjco5envwR3gdAEnF/lA++IjjB66Q8kQLXZYUMVLMNCf7+nLwNgGmj/POEiBpGmWmi17WBwY7xK7+wlSRtLSgxG6WDHuDK/vS4b3NWEl7MqENMK5czwLPU7d8N8UjyvSxheIhuHEkZYev3OMdz1eFMOqgd7g+0ivElnY2CBGsTt39I2n8EL54xQ1GpbbDRIU22AYmFOpCRMzxVnHutowSOTdULLzhtSNqJsOG6DOCrEsuYt5vB3JNLryvEOXMOxH7rr8HEhKZ03A2QaqDtUPqG9KqlGxbAyTEpIa2RJZh5L7TUUxCH1MaIQVgQORxI7IOx7bGKA5QYC+CqQi4VRg0I4ogi4CUwxre8KfzBmb1BLCPZpI09xRmgPKlnTDr/F9R726RfmItMc0ZbPA2hMijpvNA4UKOVUaTZkCC/eBOji8eBxgY4kWy1CW7OuGpIR2lkNQffIcNrCOlhRmiGhC7EjSYnyHSZBEMQ6WpMHZQGyEjshDO5BGYUhn5DbSnoIRNWlRsw+PNxq8PUdIrKee+OueMsLHm8RApKs8qVS8KWqku+ROCf5hj+jEJoUse4znqHhOkI6l3JCUIG6C2Bmqn7KZXCIpEMaOJAEfR5J4Qq0YpprkhJNdoIlC38KYILmKVMyyVjHHExNHC2tPpSJny5wT46cd49ORcTfAjnwyepolcNMHTdlpQrlkWDxlpQN/1lMKPCs2tHnmz/pxVw3IhGaAUFlcadA6ErYh5xVVHqkia4SAZkSYHsUynYVBw3A/o//DFLXT/H5YkSLspOKBC+IkcTrLxvtDdJCE4C0xavbRswoD7vgrAwwxF/LSRdKqxwfY6xKpCoqgsVEz+JK0naKtsJgeKOae0XmG+0AqE/Lb3PT7Yg0nAxzahr27oB8DH8MEIXDAEdixI/FWpUcfll3XoDSsT0r6mWX/MLDpW8ao6fwE8TPuY4HoSwY6tjzgVSC0Hlxir+bcFM8Y0kjsV1lCEgyGAikmxDJ7UUZJOXHde3QMNG0k3ARMn7gIPTM0o1U4M0GXBWYyyWJRH0nREwYhuYIwJoqHiNLwUMOhhF1fQV/Rl4HXi55SJYrdgfPR0cYT7t0pyRdEGQDHFMecEakjD1N59OOuCucooNM9UTt0EpREQlL4wSLa8OBnZBB+R8MKOcqUPaD8BNU3OJcoJFNAQzwhphp/VJtHHAc2aAIjgUhCUsLGSCGJubRYNIM4HORr76rcUl60xCaxGyH6OQfJkBCQjPq2Ksv02ULp4ExQGpoHKA4wdjv6+zekwx4fPSF/JQMwMiCy4lEXL8bcEE4mtxckN6mSaMKhRkzBylkExxgj88EjSmgLoS+guJ9j/+scM2i+vt9hRqEYavaUiDpnqi5Res97c0AT2fsJKRX03vGw7xnTQB1fkygZWOHx+PHAYQNaF9jTPVpZ1DYQ2ymHUCB7AyrmjqqW48/aY8uRxZMcEVGvl9i+IQwz+ADpYEhhikITw0iUQK8iavLzp7c/v9D4+hhKVFyBecZquOGgttgAk1uhVsKHmeXbeU0zeM63AYswNBArRTues+9+xVw2vJAWRWKPYo9C2xJTz4gxIF2PJNgzY0+DY0c4EqVyZqKiwFGxp4gKGQyxCrhzh6si5ccpy/4MVGClB5JWGGYoCkKnGLserIOpwmhhaTfMEFarX3O//1dIWoPbkWF5R4tq4+CJe7TN4Ow+65NX5zP6qwWh29FvO2rnebm/pvGGD/KEjhcIGyIHDIna5wih9vqczc1XTGXFU1lhcfQUDFhCOUEvTgiFYzPPqnLpL6FfMFM3NHagUJ6ZSliEtjUMrQEWBD4jMrDlDaMc4K5C3dUMnCB8jirA6Bv0tCVsAmkFfgHr56ArzZ45limudbjBQVexLS6xE8Uvk+Mk9mzUnoM5HFlgj1jjAlHCx/mWj7WHNag2IQGkBZLiXj3nXv2GJ/KB37Eh2oHNE2G/FDbvNNtXBWcy8lv5AUPizRthq2Axf8H5ya9p6w2vzlYMyucOyAGaU5j9BtQBmi0Ep7jdVWz3EyZyxpwXuGrg9ZN/pp1tGd5OmX43Z2BO4kkO2fmHb5CLHX2a0N83mNpTPg+gFcObmrgt2dw2fP9mCq2CSlPOI8+2H/g8dPxZ9fxH8x7/v3WN/v+t4ctc0Mz2dM87tuy5fj+AM8jdHMoK1+7paPGqoKAh2sT6ckc8dfBqCq9nnIvjd7I6dvJO6Zhzps+5NE/Y2APryfd0jPwY5yhfc3rY8LTtKRAayXVDTJA8uGQIUqHKRPV8h5k7uh9gs8ld+eRtzhtarOA0ob4v0T+UNBPL55cllRWSi6xi5C5U3KyWiBfepgyQ1eQiPLElPjrqEJiegxb604F+5lH9wMetxyZhWQRqbbirn/G6ukL6j8h6jdWO6clHmolCm9/RDr/Bd/fUH/cYP9BLicei7RNs/SVBDry/D4gM4HJY3mex5dn4hpAkT4NR1KmkTBNWVUU7mRILz77Z4EzP4RrMAxykILIABK9vQfUYJ1gBJ5p2UhILoEhQRw6tZ9z3JG/x6YLM94pUjIzNnv7Z4RgS9oj14yViI/f/esfDVxt4Lah/PGqWv3TQwA92yo+mhmFHuvsABB6a7B2xwxPs8FtqueWMBwyBoBoSSzaThofpDAkD+NuMS44PECNea4aZRo+JU5PRt/cHSC1EO8FVT8jGHg8ipKEi7QPzOPJiEklF4ofFge0y5THmmjy2/VKjtWI5FMw6w6o64X75GS2RlT4DRuTT6ON/cC3J+vPNxNLPqsw1XgdUJagzj6rgAc09mobEKVlT/2CzV+JwM6d5+4ynsuffyhsg8e94zi1zTmaei6eeIXluxhYXE7R11ne7AyqOKBEacrGxjnn6SutJ9wc8lq1ucBND1ZeU0dK5KeIuMHXk7Oot08WO23ee3Uefw7L+PnuofvuP8Itr+PNhyj+1TxlJHKQj4hB+BNasFWweu+eAoZ2BVfSfT1GfTcBuUOsORk3aNxAW3OqGW12DukXUCDLAIYIIu8WS/fxzZNxCt0bFlH2lKFI5hdmMhDDmjgns9xAGZntPfB8wLvHUdSQU62JKW9XoWU1xMUMkEto7kh9xa3CugDFS3EWkgNunEBuF3E+gX9BWA98/HalU5Hdux9WoeBVmfByWiJ8gJKwa+EpuOafldgKvr4519CNWHZ8gJNpizcbsswHHRxCFDBVQcMsTbrmi4Y5TtkBixxGT6meE7pxicDSyo8TQxi9wXPz0PXLW1Q/kF+xAHvt7bMjkpiV7KmAl2eOog6Eaa6SIDMs10YyE+yXtuCSkhiSnZI5rn/U/ygM9VAmuBK0V8zfCFNi0a/qPERk9LuS36fjXnZP3waMKjfTTpDTKMXYgkYmeuwkw4Q7HHYFZ7LnsR5JJ3M6gL4GbE3jzgudpzz+EN5QSeStP2DJD1HPm5iXO3PKm/pHAiMgU3IzW7bhzGd884TsKFDnMWfCjw4/7/B79pUJPFUme49srWt+Q/Cxr0WcjFIHUQTq0lOcDpy/AGoNNZ6h0ytBpeAPiDdHnM3QMG1II9HWkn8affdl+dqGRtjNQGm0U6BHVeoIIyiaq5UBZwhgdgxdsEArJRjtbgS1Bx4AaBgo7MDQjMOI7RfIqc+OnnuQjuPygL5THMKBUpNeWJEIVE1YUVkUUjtQoxoUmmYhJibIHfUTbCZFPyeQqOrQItUqUlZBUT2yzLjEFS4/Ci0fiGpFPCYglthaMFaKJhM4/umMgYZJNckODtjPsMFKNiopENU9Zwtol6I+O5+z7Y1bB1AizMeJHjzKBUOUNNY6BEB266CmaPcokSixRskFV6HAS2YWSGC1JKkCgDIiNBBkY04ooI3iPEaESzRRDKCJqcgArOVa2jTROUYglBsF3x1RZXeHVlGQTlO0RvwsSNF5qBqZ4HZHi0WUGepgiShDlISQqp5hacieBlI2PIeFjSyJj7RBBO7AD1L6kTnMmVaQ7rUFF0nqPGVyWMNWK3ihiZ5FksD531ULUbAaDdnI0AgqJiIjHFx1dvcGVjug8HCLlGJilbLJUOks3ik6jd5pqNJRiMg2g04gSSq9ISeG6wPjQ58DLYUr0lr1MeMCxrwNh6X4ySf9tqwRJVL2h3Cik04jYPNYtApQKpQ2DNNl8OglQRtSQ0DtBDxaTaig0+9mIUYn+kBidw5UdYb4lyYiNBUUEIwmtBpRo+mMaV0HCIPRpxEWf98mJh0KIIyCGyhU0FDiBgwgSExwCKKEaDA01kwRhjBCEGCxJFL03SIhIUIhkVGphwZoJPo7E0D9+z/kCpYSi81g84g2JEms0k0qwKdCpjuQ2qNhSaMFaMAtBzaFsI9MukMZIiokgKe8dIE169NmG5HpkLUhUlESsjiSJbIPOEyDJMpIwMcQS4ixSnPUoQk56HjXGW0qxaKrjBCI3RpTkQM0Z4KIQx0iICh8KkinyZMl4UspTpNyzn6DI8AkTx8cTbERBUphDiV41aC+YeUJpjYoRNThGV+O8wkTF5Ph9YtRENFMsc2tR1uAmCkSIbU9yBbEK6KVHjR7bDajkMnBCJZCawS3RPmJkS6YNeZJEko5Q9/mFNABJmKRETaKOQt8rCIqlK2lQ7J3iIBobI9PeY7WgU8IrhR4HJpstqRVicggR0bMc1C4eSceQnUesHOqoqKLFuhJPYpwqVCHUXtA9jCGzkyhATwANk5TPDlOpmKU5pgw8zLMRd9iPiLPk0LpAVIlSZbT6sa9MMJqhmqFTRIcBkUT6JPlRAkVCUsQnjwnCJBnqo5xDEVEpokeP7QO1L1iIRcZEenDURbZQ7ydC50e8bDIGl4CogDIWpRtEAhLd/8rV+V9fU58gKfwuEe5j/v4LwCv0RKGCInUd0neg9hnTS8ygBIEqOSrXEnxLLyOCI+EzEMI6mPYQQLcxm+8JWJ2nGzuvMZEjWEHwRBwebTVpMkAMpF2AMVLHioYSR8jPuyTMJHs1BpMYKwfGo3rBKHARDgg+Dli3IYZITCNCoLeGgy4ZbCJJfDSrRusRIctgU0porbCTAlCkcJSRxR4lOyz9EQuU5ZhJQeFLmnYOoSNNNkiZSG6fNcIlUIGKHbYbIXkSkUSEI5UvEjOxjJSnE0YjtRCrATGSsbhRU8aSqZQMohg5FsbBYFXFEDP61jgo1gqrFWUEa3PQpXIjEgKfHmxKFyht0Clikn+UN6iEXIyFAvElKjgUIUupqoAyjtEJ3meggyarvap4BC6ECkI2oW4XFouw7xyt7wj1DpoHlD5QmIwM906R/EgoNF29QCXJ1Lwk+dcSQZmIsh6K3IRHDJVXzIgEHVHWoU2iKQLWCqHK6O/KOMpDwmhNip6oR1ISxCVs8kxrj5GIRxHRRCOE8PPxAz/fo/HHl4BQK0fBDT7sGaNQLAJn/8ePzM8M+h8T6huhSZGZ5PRKdwp2Lkyvt0z3b+lnez7+5h6vHeEvkB4UaibwTGAQxGeqxsJumGpNawtWdkaRhIvOUcRErx2jHggvoP09qAGa/xKxD4oi5kSJoAaS2iAkzDBifcHL6cDnixHvE4fXgTFq3rk599RE2SPyX/KLUkqUWTC7LJicGvrNnt3rVSZEPGKl4SpvNPeM4v6UExGexg8U00j9dxG9FOyfPfzowASohKKEL5/CkwYWH3rm12veTQ78v54nDkpIH1rYdyxne5bPP5JCQ7l9QRwLOtniTc8+Gr45nGAwNGmKVpBO3xOX9/Qhh/kpJ9j1wMTBJYaXVFzPB65/+S1RBHllYKd5Fg1fMKfvPfdvOkatua3OaO0VzB2c7GFMuWAaCvZyQWLBoeiQ6SG/sB6xitvPgETQDVHtOa80v58Y0Ik1jkESN7uOh/Z70jGZlxipVjBr4fPDKZ/zkvVFwTf/lwnOOKb/7p+YvL6hbYTby0RqFf5VheojMz8wIdC1Jf94PaV0kauwpyAyMBAZ6ZctH7+4I4WEf+dQbeI8dHxJz0ejuK8cGGHxtqT+MOHpoeYpFWOveHhdEJFM2Yia248t1+t7JM0hXBBSxfdJuGZG+2RL+ru7XPD9zWuKTonLdy3nHyHFgsgMyog+2SNN4q675D48QU/3mKtrFIHyY4IRJr5hwiV+OfLd3xck7Ql/2CG3O9TJhvqr94yHmsm3VxS9puEjpd5ykCs+pN9QAZ8xUkngnf9Ar1Zw5tEvduA1w48Fel/xC3/OZ5xwJwPfhDUuefjeg4lcyITPijNc6tnd3+IRtnbJoCpCcEjoQCpMOsOogtN5w6wp2LQ3jNsffmKF/62rXs/RKnGx9Sz1gG9K3LJCl8KicRg1MNy/Zbt+Q6ECM5P1/vaXoK6Ekz8MvPhxw3Xc8110dPifyHDqaoS/v4GVQf5zhe41p/bA3I50yfLnbkKB5iwZrFZsnynaJ4JddCyuBtJBOPxHQ7yvqcOSGTO8AmUznk0dw93OgC+Bzic+rkcGDGt1Qq8mpOmAn+8R08DhDCiw6imVusDEB4r+Oh/eH7UEFRWTVydMPpSUp4Hm1w4TA+X1DrXyfOgr7oYZNcJV/gpuh4oBy+Wk4utFwWpp+eOXMEhA/ngDt3eYU031K0W5Uyz3BiPCaAeC8Xg5Y7X5e/AOCa+BFseKwB6ZtJkmEQx8mKJGy3OJfEZiNQZerYQSy/9hPOEy1vyTL/kDBfP+wG/evcOowIchsTOKanXN8+2WkCyHscnH9/ILoj0hhAe8u+axJ74V+bP7rJ1w0S/ZnGg+fNFhJHK1gWoFd21iDRSLvN8sMHkP+qBYqCVLXrI9KfgP//A9ox7p/ts98WaFEZhGoaDA6ROcaLayZYg9Q3mGX3yFjiPF/g0qDPi4gDDL3rzlmhQC7UPAd4ormfKEhohGs0dCwN4fKLctT9onXPKEuOoZ//0dFJ77Z47Ns8BHHthttiSxJDMFbbCzKaZeELsNfnfHYyvcLw6OpBSrvxj2PwjhicN/nf1oVanQAu6f3+K//YDRkbIYQUkmTCk4H1c8W33PTjpep3scAUcmiMmsg2cafYB6JdgeLg3MC9ig+X6oMDGxFIdB2KiBFgd1i7rYoAehfhUpVvA0nfGMMz4y8kf2aCJf+8TpmPhQej6c36O8YD4kVMoQlxWKMD4w9TsCmjYaotJ8nBXcT86IZkDGlscWuLa6BwEdBqrgqecls4t59jntB5IfscM1ZrxhILIlElUexCateNKd8KL9gm1zy6tnrxlVT7rvoTNwBTwDe0gsvvXoIdEfu++JMzqeEhlxvMsZTbMSpgVxEhmW9xAscneK6ivO+oqnoWTNSMs9OsGX+wknuuFtjLxlT71VXP5XS6EVtdaYmaaQAIdtNj5JAqUx1QmmmDJxe2bD6lGFxtkRp+aHGXGcY2SPlRFbRpZP99i65/q24W5VozEUKEyC8y57qpATSF+SFnf8868/EnVL990G/xCoLu5pXv6ITRXnw1PEK1bhHZ27ozu/ZHzxFdYlZtd7TO+RIBAE3RwoT1aQNP52Ca7k3Bu+pOe6HLg+3WCM8JWZcKINm2nLxnRUQ2LxfSY6rsoNnR1xQw99R10rXl5o6gKchkBFuwts7/3Pvl1/dqGhnUEhFBKp0oiowHg0TpWVp54ESq0wIdsI7TGnUumUqaA6UOqO0Qy4UvAK0BGFoMzRoBqykVyFbPrVWsAUhNKio6ALwepIBnJGotWEymQDLkcjruQ0TxFBJKJI6BSxoijw1CaHq7kBUhQS6siRiKA6lFgsVd4YxmCtQatjEs8j371JDIJGeYuhoMAwUdlrVxQKKUHbBMqjVESrHHRcloqyUtQ2MmWkVIFgC5xSGBXQRIyOWAspGWxMebOJBwZEKmIqMqrRVmAUUpRgLQkhxR5lwKpP8L0Ci8HqPCnRAkqmqKixSVGSu/B1ToCjROGiQiYqjwuFHA6VEqIUQRuSNfmX0Y97COqQb2Ylx12lNJNGgzJ0SpEQrAooHCq3KzOt74iALJKiMgZTlAyTBaN2zIylBBx5MkbyMIAa1DHmSRHEEFKJksBoCsQqQszoyKASo+3zTeY1asjxYxMUNYpSZbJSHQx1rKijoUYgQTlmyF82xiVaHyl8ICFk7KvFY2mxjFpDxeM8zUW2sZuQKJxklG6hwSSMyuNqDXgxWKWwJqIkopyGLmOnDeC0ZigtQQvK5NxorwOjHfEaVMxFk9GC0RkHnXSVA9p0QikQY0liMvqzTPkj8pBGhU2GCQUVHosiJkUc8+erraEoNDFmvGiUnAMxmhwUVBhBJUEnhVGawlrKssQ6czSHPGrLYePx/w+UJEyhMWJQIvleUYJKHsL4iRaNVrlhngyIBHAjiCdH7GUwpEKgGKEeoSrQWEwyWAR7xAU6CgRF1AZtFaEEX4MqPdoGRCtiKAmjBUoMFVblbnXW3uYOrUlgksIImJBnvAV5apCmilRlzCMq5p/j+CoUMVkR8FhHs84KaOUU2lnMFIyNFCSaKGgnlD6hYkAjWM1R36yOXb9EoT3aBHyZZRRG50mLNlCUUFhNqUqMUjkUSwkiJSHOiTLiixJRIylmNKNSCtEKtEKJRoumRGgQ2qQ+jRIoB8MkGKw2YAo0hnLQ+TNPQkJQ0WNiC1JSSYFVmlFbVFGTUrbwPvZFEcwnEK+iSopCKXQBOioqr6lHsDEjL5VSmCLjFbQSlORnlyEf/naVYtAKZUIG+yaOuGSNzrAgVEqQAqBAT/K+K/K0I4mGeMRFHfXnMWXdfvbW6+N/cSAR8YkoYJOhUDZjRveaVGjCFQSt8CYgxYhK+R2oVIEpSlRtSe6RSMfjsimjqPUQUQT0acr3ZQFFlTAExPQge4wcDz4KwvHXK/BMYotjxB577p/yi0QLYiQ/4yTlr1cmo6iVYUgFRhK1jpnyiCYcVddIQkt+Vwr5M6qO4HJ9vIYFeT9a7TEqokKeyBN/opAi+OPE0WCpSBiSKkg6ny3ye/KRS2flh04RJQlrNFVRZTiIDYgISnnUEdqT3a3qWIYpdNQUwWArTTKQtGTViwJlBF3mia/WP+2m/PXaEEx9hB9YojKIsWAKMGRVCuR9GCxWLLW2GQ0rIwYopab8hHDW+V1gW53faVOTA6MToHPhZo4OX6ssRhus0sff6W9fnxhpcvR+ZXyxpjBQW6EoEoXOV+mTziYbEPKZRlCgIRjFobQEZfA6ktRIYSJSOXScot0ZGaefDzZiINU1SSdS6SGZ3ASPCaU9yhSI6IzzHSsK0UyAUieU8SgrFLqgAqyJGBMwCKYnQ4u0zyjy5DDRUSRNo0smNk+KggKvc/H+c2Nvfnah8flvX6OSMNsG6jaw0cIHW1AbYfnPkROduLvP5qDEnIKnxADDzYrdw4DQk07e0VMh334OIpS7a4wcmHvNojf4UdhKznDtxyW9NMRZPiBJrbhfLvMI6eGBuN0j78+Q9nOSSRxOHtAnI/6jolntGMKIHGq0gqWeMKkse+X5w5iJaKNkF8bInoqeWFSEySXTKPyyjZTJsbpvafcxJ0NfPZ5S3dYfUWiMK5lFxaRosbVQGM30uwZlLGU/wvyGOgbOXKJMiodDwyFZgvMEbtgPM/oP/xqL8Fn/HUse0AOYFbhxoL97T3KaMAo+Ceeq5Znd45uaDy8tQ13h11fwcJElUWOHJI3zMwKWOxyCZ9gLp99ZgjGMs89Jizm361t2mzsqAguEmQTm7jUq3LJPBZviK7RNVHqTi5/liG4CoTi6gh850ZjM/pRNVqMjeE/nFNcbhVIVB57jmaDcB2Y8MCMwQ3J2Rg/tKLye3vFwNjByRfp/X1Gngid3lnOgWN1TeMfaB/6b29GTqCmZ0XC1mDP/xQl9hFcnFzz0ivDxkrhekvZ3yA+v8hsgzqEuKPycSWy4iFt+N7wnlYrm6SV2OmF3fcsf+ttczOmMd/xFGnhCxxkTSp6SmAETBEtgS+KW9taR/lPWYf/N69/8gZTg/q3mcKeYVCOzk5aCRH1r0Mli2j3QYwfH/GMEsQzukqAmtDLS8oq0M6h/LimV0GyOuQZruPsewjhycNckLJ1MMHHJ9MTw9dUdsQ7cX+7wNtK+K+H+M6R3pD/3uatkR9Spp2vveBh2BAJPGHBa8TBdMhSWB/EMXFP7wImLZDz5niH1zJ5ZFp/XxL1m/O5A8gpb38M8ge2yFuGRN+zy+CL1xciDOWQizkGRKLiPpwxSMPb3FIwYyc+TtIf+HyFN4PCw4Y0EegpGvkCRqPiAZZ9TO6/B7CKTcEBhGMKSQ5xQlfBiqogmsa9GghZsWDC/aQjSsvumJHlDHM6gLtE+YaKwSI6vWeEKz91nnmEKD3cV3UNNSIEudmgSX7BjScfDac3tr86QjaBXtygvLCRSk9iqgbZMj9tzAE+/QwSGXuFHhek9229HGlGc9FNmQTMVR801mkSbKpKGWAtiPB/SG9r9imHscd2IBT7bZv9C3EJ8DakTwhAJXkHUGFVyNas4n05pC+Gbr0Za1VO/fUJ59wtcX9C/r1Ep2+1KBEOLo2MR9/xPQ0dk5JVe8U1peGg0MjF0AV4f5tgoqOg4k0C3VNycKWaj4cuPNUW0fJz+yG72Pe3e4Ybh0ZNvXoAg7OIOJQMH8QwfElW0FO0lk1Ci4wrPDnOoWX57CihuDoHWJ+7knsL8e4b9iP9HhaJmunaUREILbwNEIp0MucXiAkQ4SZonweKqipsXJ4x2QroNsLnPYvbXcyQlwjAgCB85x/GUlj0l1ySVuDUzHuyCRnmm5Y94CRzSgFaJZ7eR2UMiTQ3hNxVlB+fvO3SEj8uO3YVB6RH2wmPNfG/r/IWDOuCUomkTl38yFFqY6lsKNqT7XSYIRs0wGCLQ6yw0rmxPmgfKYHjen5JEKNiiGRm6Gd3tCck7Qr0CG9joioMq6ThByROSdeyfXaOUw20ncKjgxqK6Cm0T5rxDX0S2HwPy8BFH4Ak9SRneT854N6sInUH1iRgyCF0DF0CDsF7CwzlUI7z8aCi8Zuw6gsvAmjxLedwKRykyc/IDXk9R/nOsKJa6RVvPtb7ljjUNii/QRDG8CQ0HZXmgZ7Df43yP/zADVVP1ggnC/G5g2Xa4AA8pU0VjrIhicYua4aogiGI/XuFiwLsS9hYOFh5y0jdhBWqHzJdIUVENicttRyKymg1sCsOeEas04iy7w4QyaU6HyNIL+/MC9URRtxM+e/2ccrTg7iDcZhACjzvb5UQWTTo2OaU0pOkFyWhoa1SvKYc9DfcsCTwh5wZ9e1azqSyE9xB3RCX474BUM9seKKPKiMJ7h3OJw+oN0SvGroNgmY+Ji11LMIb1swafFP5dhD4RuxkuXCJKk2yNnhn0GChcoEhQuC0+BT4UI/fa0e+Efpgw85FZdBhJlENPco4yTWjMM06i5vl9Putv6we6omWfEu3y59+uP7vQOHv6gEp5LzYJkrXcFSWlFybvApMxHft2kDttl0gCvxsZyKN/s+hw4ynp9hwVFZYVBQdmUXPuDGNIOFGMKA6hwcUFJuVQHCkMh/kMURq2B/AtajPDrD5Dmsj424jMW8whYlY9PoVsdFOKuimZWssDhpXPXq4gAEJO5RgRW0E1p/KBZ2rHJAX6Q8fu4EinIGc82gzuih0KTRP31LGhNCO6EkzSlLcVxheY2R4mLcUIyw5M0rRjyVaXrP2BDS34KWw+o0RzxgeueMB5GFpIQ0D2a5JXRCZECiba8cL0HGrPu2cnDFMDhyXspxA6cFvAEDknUrJnDezQo6O51aSyQL48w83P2A0H7jaBEyJLhArhND5QR7iTz0j6OUb3NOotWg9IMyALT2FAWR59cCmr65zEGgCfNavbHmDKSEU6slpqWiryACCQD38OeFgeeFge0IeC4ntL4TULNOfAsjtw1h14D/wLMKAosiuAi0nD5xdzVknzF6PY9RZ2X8L6KQyvYFjlKU19CXaCiecU8YSZ/Mjz8CfEgp1/iTq74GG75h0dlao4UXNK4Eod+EoGHDPWLEk0KEoS0DIwsiUckaOPeoF8/g6iol2f0N7NmBeBajqgg0Lf1BSDQZPpJcbnWhA0o1ogao7jA17uUUNN8f4Mg2JCNor2HexDRhcOcZv7NLIAzphNOq6udnRzx/sv1xyKCMOLDI1ve2SlwDr0eY+aeJwLtMMeRUY8OlWwrWqophziHYe45TRltGIBxDRQAOfzGZdfTAkPwu71QPCJsTjgq/HRL9xPqzl2qnod6IqRBpiP4JIwDDW72ODZYcn18yd/aPsu7739T4bHM+CLPFljRck+//UGijYxjyNg+Jgm7DjnUkdOm8BgA/fTwKATJ13DZHtC2xn6rUOUhfoMVdSodEDHlgmBeWoZVaA9A38G7ViwXteAI8WemsTFEclrpxWHqynoEW3WKBwTApUk9gqcebyxlMVtllxQ4VMJzsN2IKkCW86ZqIpKVli2QMHIlAQkO0IR2fYrtsNdvk67rIM+I3/+Qw/DA4wjrH0iJIVOuTO8oOBlVbJpLD8890jhKbYLmofn4Cv6YYYGagYqApo1ActUPBde6FXk+7Ll2nAEEoDrau43FxRec4GiQdHWwu5CKA+a83tLEzVDdY9vNrghT10fvU7yP/o4oOJAvwe/yhM2GxcU0qDoM5VwKGiGBQlDz8iGiOg1mLeZ2/qmQVNQEZgQ6UfYjZAQPI5Msssd+0lSXEVNbyy3Jw1xYqBbQ3sAP4H94uhQiwiJHTMc5wgOwz6DXdSCoBuW+g5R9/iUUf02gtnB1MPwpWL2xNLsEs+vB0wQDs3AfpmhG/8jU8j1Jx+gCqASdtQsPxRUIszTjgKNijlrohfFxptMTEIIJKx1pHrEuoaT4RwliooOy8h+rNH7E4L0tMWGaBXdMTg4pgXEp4gZGJaH3ORol+Ab2FaobYNqEvr3W/RipD/cEx52FESWeLwqeVOW7Osp03FkGnNw6iDhCDjNRfahgfECqoPi/F4z8ZrW9TjnGClopeSxJtJoyIjbKagpiKugP8WIYaZrChzv9Z4tayrg/DilvUk1UHEwnoO+zQ+/TYWiyqhXhPkucrWHvYKPFgajjkmFFWFS4C4NQTTDYYHzCR6KnKQZm0ye0T1MVpk3X89gqrAqMd+NeAKbasDVkFSeaos29G12D5UB5iFRlcAllGXD5bunNFhiuCexzwZuHjeDPM67yKdel1O3mxkJA8MEFTTG7yk5fHqk4LXGTUv2swLcBtwH6Kfw8SkmltQYGhR+FNw+EcdIuxqJHj4F0tReOBscQ11yfzZhMBbuIqSEOEtwdTbIz3MYtAoDhhGTRmzUeBQbExAlhMESN8UxOtfliYv3lHjQMyZmySIZlnvLREV83BCrgDI5Cyb+720G97cGkmK7Ldl3lk2dcJVHSuH1uXAfYa3zKDENmrD5NGa1ZCqwpUQj4rHcEjFEGkQV7EaHrLPxx5xAheDuW1IbsUNFsa5JVvDtFlERWgGZgQQSr9EhUt2v0HuHHBIdQrAJqTxJKXZJMTpLiyGoJTYFlkWHFiHloWXu2PTZbLWWgVYJ/bQmlVO0Gak23aMPy+dHZuBoHIe6xStw4QSrEs1ZQCvP1gkMJcrn0blKFf7wktEtMP41M9MSpGVMP5C05W7WMFZfEHSH7w94HzkYT1SCrQPTQjAuH4zGviS9y0ZwtY6okJA0IKyOP2EH2GywwlHpQGEXaGvRbY/2a1TwUNcUyXMahYlKxBL2RtiFls3tDWp0HEKPVgE5rZEnU9pNQt+lxw40uGomJAEZYzaNmSnb8hSsIZxsScWO9OBI2xl9EWmngSAFqX2JCjMm/Qcmqw8Y76iKW6yp2MpnDJxSR88keDamY2iuEevZVY5YQK2E+J3HRMVFq7Be07cDIx+IrAhs8t1zGZG64PZujVk1yPEAY0Vx2u+oDkLSU2T5OyodeV54GhX5WDS0xvB6m/iwWZNogczgHudTQv1LUt/R7PeP0nyfDEBUdGqCq0/wUrPblllu9ERRKPA7jTlo6qQ5DQVCRccJo8xRsuJT2HSyefjbhRlOanQqmYQSrwNusSOSsF2H8QndOvx1j19F5EBOUv8QYD9kvSIdSEBC1ka3SQBFbSyLssKaCXN5ivULBq0YbECRsLWniImJT5gk9OvI6+9aYisMPhK1EE4j8TmEjzC/5dHd0aG8QRB6HKMrWRUJVQaijhymO5wa8MNAcFmhph0IFsUzoGHCigkrvOppi2sESwpzYmqI/YF0tyOFRGMiuhQqdsyInEvFi3bCQQvvx4Fee0Y3gHc4PwCHXLEHgVgwxJEdI58yokPUuNsJ0hakvkKmFaWHWSypJDBMI3elsB4G2m/WmENg5rJco5sLhxo6NUdtTlGP7Kp8bSekpLhPJ+zcDNhDdYdX8N52rJXjQS/x5opKBaZ6BCI6GnxM6ORR1iPaEk2DQbFxiTEmvPf4gyOI0E+ElIRyTNiQ6MfAdh3Yt54YRsT0uM0tpBGRghklaHC1J+hENXYY36OLAdVkCUWTMp/QzRLuIlEdLE9aR+kUZXAY8RkO8VHoR8Xr2FKiuY+GQ2gICab/A1Xu5CH/U5KiE4UfBIk5hZpqjdJd1pKFE6BA6I6ijAqhRMkBEjn5WDsUBpcWJCzZtp5IOiLlCCpQuISO2cS+Ty1uDBQ3e+rS4bcF0Z9mXXuGTx/TzxORB3qEmh1nZDpR5RQ+ZmHMQYESzTQVWIGYPD2Jdp/Yv/MMg2RjtcB2C96A2sH0U2jRY1bZ5DOfz39GFVjZLIPaAwaNcg34JUqFHPqKYkhzRjFMwwE7HBijZm1KorLYdIWWUwaj6YsOYYCQYSFJO7wW6v6Bk04RgmfzsCVoD/2nY1UHrJEYGdcDYQhI1wGRWCbCHKIVyuCY7wdoC/r+DBUHZjZSpISNWcZm2sDkY0CNibvoMCh8WRCLAu3BjjzKZwDgxix31CTUAF3oEH9DpRVl01EVAW9GoEIdRXNCgWIJNNjUYWlJknOCwOA5I1Gz5RqRHaMWkgWjhKIKWCWciOPqJjAQ2IQNLgUYG4h1TpBjDeLAHyA5Doctt96TfEesMpbd+QvGWCMEhEAZFHOdpWg7wCth10b0W4/vW27Cu2NGRYsAGx5d2/IrcuF+g2MNiHGkaqQ0mr5pSWjCVsH+nJgUQ7AkZakOJ8xchSs+4Iou+3LVgURBxxWB5zCuULs7RASd6zmmJlFqwZqO1faB1FqacUepDf2hYcyBIqDu8m/lNBLgNnqsCrSlZ7KsKFSNtFOks3RuS6e3Wf4oAIqSKYaCVhQHWeNE8Wc0hRIOpWNoDCsnpC797Iv3swsN96ZARLEeFoxuysCBfvlAX0T+fCpoC9pYtCmI9wa3D8SUlWmQq+IJBhgpeAsUeP0FSZ0wdHes2mvqZeLqM6gLwXU74n5H0V5QdKdERgb1gYwjOwM5Qzgg/AntEtN3uaQ5COwhB4qdCFE0D6uYU3mYI5xS2Y7LasToRCsNjgrxHW5/hxfhI4LRhvbkCXG5QK/X1B/7ny9I+/9Zz5u8IV+rnrXaQl+gtleo0lE8vUY1Pf51BesaJTnmB5kzbH9Hz1Mq6zkp3jKmHd7/I0FXvL/4PR+Wv0DWN/DwHsQhxR6lI8tzx2QGxUNN1zb0e0v6JlO4dAoYiURaIjfkNkSuoDpKegrmZsK8PkMrjd4c0LJHWQdNQxUdT1ykUpG3C2FbCff7HXdvtjnoTFJOiLs6hV8u0P8SMDfu0wjpb16fzxfEJLjDwIDDF+fcz36DTEf4+p9guoE/LpDtCWXt2Vy1SJqTwv8JEz5juf93XByuKYqeyfQdUc95I79mwzmp74jhQCo+Es/XUDtWpwPr6cj0wx7/XwQT4XneStzKD2xQx5e2ICXw+R2yhLde8X6lsBRUNNRJYw8rdNoQ9Neki18wsRt+UX9HaQe+Xcx5qBpWPx643X7MN7lSYEq4/NfI+ecsb2+4OLxCyd9+Yn5yyAFzd3qOm14yjIHx4YxiFgm/6ihPAuOPluKdZepKnsSGJDV3coUwR/ORrKOFUIEow64/hWA4SXPO3JJh0nI4e0UyPeXHLaW/Q++EcQ9Oqdx9R2cduHRHHvEOJH2ijLKLsEM4tQXL+RmlmnHmvyK4M+5ry1BGlBkpaKlCRLeO6CLvPwZe3Q2IgCTJo6wnIL+EeQunq5+kx3/z6upXiCjasaJ3Ew7G8bGOUAb06QOUiviQc2X0mL+PSIXiN8ATZvyBS+5pzZ6hbgmqInb/CtIlfv8OfxiJJjCbJIoy0fDARFY8cxf8atvwAPzxWHh2LOiZHGl4GyCCe0DInTj109hfSN4yvDslqoa0VMgCykHzrBsotKE9G9jPIw+rls2rjkmCkyhYA7fn2Rcu96eo97/HxMdp5v9tMSMkzT/GZ+yGixwQ2mwZlOc7nSe7SV4i8mtqvWZRvMIkR70VwpgwpcNWI9E0uPqKIIaPO88QIzLsYdxCGZFTh9KJ2SZShcShc9z1jk45woceONCnnkEUDXAKRA2rheBKUGsIXrCVRV9UFMqwOFSMwbA78bgXgWYrfHEYKYfEYRxxMaB7gbXQSuRPokAbUixIfsk0epY8Phl8fp3viQPqGL+WCXrYgJreogqN2p9DuOLTyEcwCDOgAdlm/4VKWDMABb28IMrpUe8esrl7+galR8p9JuAkcaziltR5yldrDJ6DXBHlBNgCH1HHDnV+g1/juKFGeEZCS8G21wwYHlD8f1n7zybLkjS/D/w97n7EVaFTl+quFgNgIIxcco22a7bfe9+sgTBbEEsCAwLTPdNd1dUlUoa86ihXz77wk9UD0IysisExi7qZFZE3zvXj4hF/cQessDyTJbUKmSMHPLv7xN1D2ctuZh5QvIV8LKJOJ/HRCFto1iUJnyoYHH2zZ1j2iMmz+qSBfIWE52zMjmfVGxRD55/S65pz/xoXj3TG8sEumGxL9ldFqc9+QNt3VOrZzLzSVI94N3LmO14N7xkV+sPskp6hcLIGYEcOmf49YBUdy5rNC4gvy7NaPAysD8quW7PrL1jYI0/rgZqIm2pyslT7kfUhEjTzgw4kMcjiFBZLTvuRJ35AHgnZG7tCUrJ9aSqNHNnxLU2j1CcDi0Vi2i8ovd7CLoAW4Qo4pdb3LNNhNnyEhMXzArhiJHDHa0RKjOgcrFcTbQNP92s++y6wZ+KH5gbMCOMlhA1ld7sr7WKvKMp2HOkRXK0s1krWBWP/OVO4LGeLdrRm4sIdsDZyC4yiTLuIvZ8I6vk27ws34h/0Ix475f47SvT07xj5wERy4JeFR7bYCN4KvnqK8oIYHP3YQqpZPjwFbdldBvzle7ABeEBZcOA3wEva4fcsxlu0VsxZoa1ctJmzCrbbAx+uj7gsXErhC13nF0xclo3NvAUSDGX7+MEobwRWixVPr64weUG++4y8W5Hl7+jNh8JpTgCWmjOEDTvuuc3vUVVez7uaLixsHPkhofv8kwsDPznRGOfAYCrPHU3QTIpmyFUpHlaxZLtpyvTaU2jbExCIKTF6JSjkVtGc0DBB7oEJkXLTaaiLgHeMWDLORppqJKjH+EjSXCxNjafOkUVSjCimKSpXMgk2FMnLFFcASDWBJDTEYggoCXWKis5ycXHmyRUZ3TEXoqIPgTRNEBKS5dGKGIMv4xONRcVhgqXKRXUoj6Ci5FiDrlASYfbOTLojURFdj2khRUViQjSSvYexSNOSYnkg8y6dghAnYTSW40mNz0I9FcyYMR1GweQemxNILp1MQ3mfLCyqgFlOgCEPkZQySvkdwSYelkoNHBD6IPhYoCOKooVBXjCG24JRM2vz6OrycYrkmcjYYAv+O5WKOGkFSZG8xrAk5Z4+dKARl3csaBFGJrVottTJliqDi0TjyaFD2aHaFSdCcehQSFoeQ3duyT7jDxMxZRJlnhQXkkIVnHLhhCzmWDdZIdSR4Bw+GSZfEVceXW0JHDgyUElgCDVTbPB+IiGFrWnzvOn0kPfEemS60Efx6P2hmAelSUtVMkdQT86RkCc0J2Iy5LQiKBwJZITgjsUkjQJBUqPonBUU7LklU5Fw5DygPqI2k7MjYYhGmFwhQzaxiAQEq0SZsBKoRcEWgrM6aIOjjpaFcaQcyTLhdTc7qA/QFrnyo0vEmKjHTEVGVEjJzWH2XFnZA7dC7jPJ6SNlgQvhVhFMbjCs0dwVx15RiIIYKZKLsUJTIs4aKkpJpBITkxiC5PL/NZEZEQbEeJzLGFFCLrWLj7c52MT90rPLnjTl8gCNR01PrRMLzUU6uVEwsJyg8YVMrTiSuKKNbqdCfs6g4knLQmz1GeIEPjpyrkmiTMtItEWCN41aJCDNkce6qu+Hsh78LOKA2kLmNEq2FowplHQZUDMy2QmbAmKVyirZRrxNJBMIaSSpJZlAcrmINuQCESBmMIrmCjBEa/FVIOaIC5ZaKzJFVrii+ENEKYRUNXNODyQyD5JJAoNEIkrOFnxF1ohfDWATMWSSV7IFFlKg41MuJPYQYSpnSSQ/urKc5mmcaVEahCLxbkTpFwlpMn4s7x1RjsT5E47zO4R5zYI287ky+uI7wryJakQSiAqaLR+lAERKRdvmDOQi/2omaiKrrIhRtCqxfBOgilDAWUXAogi6DiSjqDSosUhVJORnQiSoRbQim0xqi3FpnsUuxH60UnzkFQNkQVKFYNHcoGmDaoJ61vu3hZEcKmFcFciLM542juQcOWboScRqKN0fjWXu6ghjkWWNcydGtIwBUQliiFriCQCxEZio1bPIRUK3ayBVpTmdYyHTV8EhYmeSbyxtidqiMhFm1TdDS6Bh1EyiJ6tBZrGanASNgSjKuBDMIyEXZqZ3O61xuBJz0IBmRjOSrRJMoa0H0nxWBOJc6sjSEwml+PZx6tsDiMPlkTrP58BMHo7REkSYyPRtz6i+zMuYUTyYiUonlhpRo8SmiGyYqaiSSi5QapGMMQOm6tDUo2lEjYfKgyRijEw5kcRgq4akpQuqUG5EteC6qR418+4picZAQ6YmpwCjRwV8Y6GxBOtI0TAl5ZCLf0hwe7KMqIwzqVmLx5EkNA6gRwSPVQqGNRZDwGAsYzb4lIi2xHshJjKRZCawPZVMLChOz3FRtl8zCDIKdbLYqcFQE9tEShM5p6JRnOZYXiHaSJIJL4ksUjbL2es016BOsc7gXPXfPtF4PxSIQ5414Vd94mlQUqXcnZdCQnU0uN4xxIFD+pbMX7TBD4Nn8Im8hPTSlFbX+7dwMNRVpK0CxJrjN2dlp5y2VAysV0fOriKjzxyvAyEorA+w7rjoLb/dt8Q68+1nI8dFpnpjqa8d3j+ne/hnUCWay7/BNjf4+yP+3pNtZFyWw/647RnHgVSvSKsrcgrcDQ8lmL/fors9JilO/6KX8HOvr2+Zg9cVcMkiJy5TJAd4+B4mI+AvgBd4HtjxLQWp/78QcfiTDn2qyLF4Q9iQCNfX5LsjpD3EPR+PKBXoJsdgLbtnS27+5Qm1D1y8vaMePaRbJBtOp8izPhV36wtINTBEGBPTief4siuh0Y3SDUr2Al64X2X+7cuSiKXXFbo3TKkuaFIToD6WgPmbHl4n8klN+Gcfdf5//vX71zsEYRUWXLFg5xNd+oD6Gq5/A8sa2xdFB++v+f7umkofuAz/hitqtgR+YMkibXjanYNrGZ/cElY31PktzeEHks8MN4Ysp3BtwBgOn6/59v91Qd4PHP+X7/Hbnh2JDuWJwC+MEoEfjsX+5FcTfAq8W0b+08sjPQ3b3RPCdkP3yxvCv/ojD33kf38zYTtH+PpL0v0FcQL0WNqny1BAzf5PsP2B/tzgf2seNXRvvwJUiTHCrIFu9RpS5HAoTsj58IrcP+NWt3T6HWoS43pPrKuCZUDR4OHw8BfR9DkJO2CJPqM3HkTw4RmBE3RRkS4aXEw8eTgiMfBh9cC23bG2mRe2tNBvTwox8BfNCa+2JxzSyPvuHg9sqzsm44jrBTxrOUjkD6aj9ZF/Mirng9KwQFjNNbQRQob/ZOGPhsl4dhfTo5WTNkOx/0v6gsynpOkdPh3BZRJNMezYLeDQEnLHQW9QJjJ/C1TsbaR3DdkkYi6HaMividywWPaszkZSULYPikZocFRY/nzhefP8hjBFDq8jjFrwNPWOyxz5bcy4BvQVsID4PeT3hWmmbJgcHJ8f8KuH0jzqIdbK7pOEUaW/yfhb8HIKzTOmReDDsy3YQLweSdce3B1sjo8bOODffRdQzQwhAqnI+vSrooZVt+AsddPR1L8na8+bfE+VEi88rBxcV5mbSlE/wKFDFWKboVUYMwwzwW6nIAaNF2Q2TKsV24sdhIHTmzUbL3TsGek5BV5ReM13plAYWlOw7wOR/00zAeGoA16FdHgO758x1gfefbLHRQ9/q9Ap/sqgz0zxw/khF+vxwwhdYspw/1gzA0rvAAyJF8AzaraseA9V4PvnPfkkM4VSwDkQ+SMTkBl5Takzz4lGA+kZJXD58B6Od3yMFCSmEgNKjU9rJhoq41hag6pQ7GqUrtlCfeRpSvzzmIkV/OmqcJzPrmtO7htaDMsZlrU3W+7lDl8toX6GLibyky2qEfkhY/fg2FBxQWom4qtrtP5Ly9E8QH34RyQaD/egBpcrHCtivCB0zwu2cXEoWUFcQU4MJ5H3rzwViav7t7SDY38c+fsjpLrHr78jG4HJlOw0BHhffMOOmjHASuBEBNWa925RUj7TYSVhTI+YkauQ+XwoHbQ/voL9BvQt6A00ueHk+gyM0C0GwmJC2wNWMyFkbjqPpArDU4RLkvmBZHdYbVnFTxF1dP0HpvGB7qRi+qR+9OC1OATDmqcsOMeX/jFZRm7qQG6ORNsCGw70/IEDSs+REbB4EwgulEA1AGJgcYTacTEGXvaWTi3fJ5iycBiWdFrjzzz9L74nTIn42uMmJdUHctNzGTK/mQpq4O5zGJcwvIHxAzQRVkfI1jOc/AlqRxgzccponYmbRAb6u8xxhOZ0TXNxSUxKGCOaEoRiuIjZgHnGYwbv/00BnHW8YOIp0t1jX79Bz2D7VydwVZPfLEuMpEf2+RpxGXfhkIUQxhEeStGI0wQ6wPZrmF7jOBauRqzod6dEqbg1K+6lIVU96eRAip7rQzFYjMt7aPdchsivpwwrePgX4E+g+l2F+7pCujXm9SWxsYzP7hgWgWm3h61FJyFvE57E++Udx3pLEIOyoKpgsxGMUw6LiakKLEPLxbQqBfifcP3kRGPK8JdGU0l9qkmL8/s0F/sHgWOpEo1MRbJTSp0i5UTKOju8lAxJzAgUY5rKFgiE7x2aDW6WfjM2UdUjSXUOHARsApepHKykIhgwjaALEFegR1ZrJJ2CjUhtMUtFjgnEFxKMKZWEpJmUtVRxmwoNmfyxABRDUb3VgjuUR67kzs/VPWNADDZnKs2kpMjwsRlZ5Co/4mmLpsFDqUNZSE2BadQfDbb8R2OoiZJXl6FBIamQoiBisEuHdYmmDrRxKp2LDMtYDloRaKqSaORQOhJiM8e66P6nWkhJZoa1EAS2bfllTkE8JGOLM6OR2aUTpIvIUZDWwLJ5tLztYYwYhJYiLWo1lw0iCIwtyAqJAUMiZ0eMpS1qdUsNKA0TDUYdU6pLtUuOiJkwssXKXWmP+w1gi8WuCEEb+tPlXJE3c3dOSKIYgRUl3ql8Ic+2sZC9dlaxdel9eHXYVJPchF3fkRGOtcFOphxihwoVW8bMzSVWo5B68D3ZNPj1snz/Z17Tj0bFsUAH1FN6qZHkAzrjpKEmqCF8/Dl7KLwK8WU+feyG/Lj+511A5lcPYMnGgW2JVU2sWiyR1vjy0WyBf1hb5lp2UFeAMyysZWNrfJ5IKeBJTPXI5AB3AbYm2cSxSkRJJFNuS4wp2pVqIPm5o2HK18bAJY92t/44VUVqjFkU2dJgZ2jGnHB5B7FG8USZZTD0UEbcVERb/4PkWsvY4zE24KpcivJaqthWSpfEV8px7ck2kc1M15UANlABJ6bsk2kBuizFndmSFHClm7hI6MojE0hUqAufVz52o0dIlYOmRZ1laqq5tO+hF1iEIr/7yKBlO8yBtkkleVblx4emNSIWYwasG8jZM2kiS0JN6dakeQlichmcTPH0sKUThp2HM34cWYfSkCyEZsSIpzKFlD3NZ4il1Cwz5cD7+FZmfpudzso9MpPgk8DUkO1YvAKkSJpKAjUG2qoEoB9NEmOBJZXT8dGh8vyRZL7bBcKIpSKLMlSGUOvMB81EVaLOv//HjsY8JgaoypiL8Yj40j7EITqf2Qhp7k4qBiul0is/rq8IJlIrnEpp+NY12AZqa1nMyTFUZBJejkxmIttFgX9WCW1KT6moJhhEKkQWRcq+McU0NCsoWANO5PHQqRQptflUZE51JhSbIsktxpfkQRLZZaamdOBt5WljYGsTR1PGFjvOOsP6F4K6Zz5byzwSDA7BV5apdmQpT88KGJMQyVSiLOcj0dVgGsCVOSYqNFNZe91KSXVCNOA0lKoylC7yHBeoFO1jowYrLUZdGbscSGJIjTxarMaIzJ+npmJB0gpLM0cXtnTc55UUEA4lOCLNMzZ/XGRQ1oQkjPWIhUosLa78ZAYVIUVLyo5RJrp2mOPEeahFwSRqUdYIiNI3wKIUpn58LAkQxbgeqecORyj3kdyP/bvyvJxBFg2SiscPImWNGxBjEdvwmMG7MVBWSw26KOX+sZwRQVyR6lVTjGbJeAKigaVL2EpLnOkpy70FVDHmOK/7gIWyxmMRJ/c0KC1iEtYOqGa8lGMJk0pXOCsbEdTCtFLsCbimxMSaLHl0IEJsJsJmIE+h2A8EIYkho4wu0dcBpAHjkEqwTUk0rJmjVSM0tUN+4iH70yUy6nkHMB6MMsSJm/l8D8lCEryJ5CahaYGLr8oYL3doNZUkZKQ4IL/bYETYDHsaPKsWNucw+Mhb3eKD4NOEZJA+495DyAYbVzRqiV1N8o5tnPj7dMT4jHufOa+hO5SqM+0Di/M/QAPxXAiLU9KYYUqEvGa3f1HQKv5bVmwZzzzp0wPmGKm/KeTldFrmz7JTTvfp8Zvg8qrM47MOVh3DXrj5YNCsTCxJLFAOwFcklIEzhEjmgOBhX2aTTi0hns+ErCOGfWmbQVnoy/mJriI0mad55Iu/OyIxkg+pKONUKya3IOjIwJFalavRUmfh3ZC5GXMp0gUIlcVfnMN5g3l3wOwP2KmmPW4QEWI6ksSjzy5Ir55D38H3e8wUudLAmkR1E6in4dEdjcAKQblfRrr2wDRVaD9BPMLNEZwlTQathNNV4tXlU8jK/QfLthdgzwUHlIkHFMmZk4d3XBzvGccjvSqRNMNeDLQlEc4PEP9tRT1OvOpKIvP1InNsoAvweoA0we49TA7+1MEtYHr45duSHN43mf0icfaD8vJOMIsN7uITYu14e7pnH28JmyOcTqUt8lZLPDpQ9q8xwb1/XNBnALQodtQD6j25n9Cg6Ps8O7bewBcDdCA3V5AT2u0LJE9muEFsIJ8D0LDFMnKygPMVDAHGI3jN8OIWTo+sOsOLO4eNGTd5cs5IZ2G6opOR1+ZIJbC6bzk1lvth4m76QNJA0HJf7pWQ12AOPeaPEa0jaZMgw/VUhmf3wlB/VpGPkL+KMMbZqUJ4Mia+vHtUfgbA+1NAMtP6NWGxI++B6xclmDluwXRFTYkOqgaWXwIJujcQuwJ8X8+FgKyYDBchskiJsc/s8nwINiVh8E8icZNZ1Y6zZgkhEhjJCvupoosWNBFzICb48AGGmsINB2oCS/Z4a8jnC7hacdFNXAweb4W92iKhKL4oB5ke3HWJHt80QF2knJoikun6x40bUFquRuDFG7i4h/sAr0ckGdoj2MGR1ke63OP8CSfdF5icuA/fcp/3xBrWC0jaMMpVocWNd+CHInn4nFlODjRmJvNAND2NOKSrqaKyMh5bJ45GiVJzlyB4g03KxYPnyirDCG8B8YaTrSM5eNgEpmquHkhHuw+8+LCgDo6wG0lExv0z5PsvIHiqcAdMRB7IRK5Y8CkbzGOTDVeKctZcY+WIJGGMDXmqyH+2BQKUgKdHGGvY/3L2wXg3z8XyKJEWri+xKjwZdix1IEkmiscb2NVKFNDpAHFAtSbFBq0i6UKJDnJfw1Qx5MS7mJCUaT9kxCrHvuGODQaDoyKZwH61J1WKTYE6jshR2fmL4h0ggpwJYbUgrA05OvR2heSKtYy0EjnvK57l5tHFPD5ZAxDzQM7vyP0SdgNO4cxP1JrYjzuOk4cHC/E5UTL3Q88xRo7VBFepVEH2yxlO0pcSfQEilHl3CxqFnhWelnSeSZ9HqpA4vynoJx1bsq8JOfAHHcBD873jaS0Mx0Q3ZhZ4TvWevDC8fyEcLmrOrw2f3Diiz3Q+EGNmzK+J3JLbA7pRJAT89gayJW1GaMG5RL0feWx1YFoXpa5sDhyNkKaa0C/IYSK/mxUvjhMUmR1S0cBFCYB+zIshVBBW2AxPh461D/iQ+TMRn0tjCCNwMkKTceJZvClwK7uGvDLY/gVmuKTJR665Q0Iiv824WjG7AERGyhmQESZbE52llswyZZgMt3uHqjKGUoQNC0N3USN9oL0eC7wpFSf1hetYV+8QeUSW9sWiRPnhDtIR7Qfy3qO9oP9+B0sH75bz4KyB/wnNgenhd5jjPakg5EsG5Vc4hJdx4sSMDJrptSQniS0Zi8oexLIMidN9IGniQCYaQzV9gQtPMXnPQ7yGQ2D8zwOhTWzvEkM14tyOqn5LtkIXjkx9wByUxcMCjRs+5E9RIwztn2H1gFw6zBNLPiaOX0+YMbM2iQsBt1D0NP9kUtVPTzQqKKWHAKYg9ELQMtAz3yBJJFUJKyvqdAUCaTGiTSgZ5EipDD6sEIQlPWs86xpO17CfErnvCHPTBMBOUE+ZjMWwoKImjwvSWNOxZeSBJmSePcDSQBcyI5mqPrA8fwONwW+EUK9gNUE/kYYV3eELTIITbmjYklaR8dmANJnq+2KYE1cl2VgAp4fHYeUBaE9KpeTiDi73BFMRbpqyqbGeH8M9sCezxvN0ZgAMQChJmjdobkj5AhBqDlgGZoBCSTQWzHqQGVaZ0w+eX303EnPiPZkBiOuWzm4YVTjQsVI4DxanwnFS3vrZYuMIeWFILzdwsUIeAibtqYNlNZZEo089SCKdNfDlBdxZ+MEUXX4iT4BmB6vd41viiQZEObY9x/VUyhZ9LKWK/Q2QyVVNdo6mXfPp+VNSrnh/77hFOMNzxi0jgS1gNHN5fOCMd9xSYP2l0Tr9WJygBT060oclJnsuNVJL5m0DrGDs4aYvZ3y/LdWn9/PXcw//4g5SpXz4JLNdZ559gM+vBZ4tSP/Dp4yV8Gb1H+nDe3gCvJgf/2v+y+LkMcOHIsL4sy+hbALNsfSZu5kOlSicYgE+38GzHdydInefQMqFcEvgxyKWVqCnCIKjo2ZkXcPZpqxN01Oq1hcHeHGg+QEuXpffU9hZAmMhDU4YJjpahEtqVji+p+M9I63AWSm6Yi4EewluN2HfjgXHPd/S1heaoD83uN848m0kfZfQsaiaK3Aa4MvweKHR7Woeu8tbOL0FcwW3n5cO53gPfCxFWXBPYPWicKTGu5JoVLlogBcYOCbCxiZOgWsPvS/DygmlEPIiw5PMSYDTscE4QxRDUpiCpQ81OuOiQ4KbB9i7ovhYln3C0hPFkTcrOG9ZV4bnU2bfGLZzlzQSyaRCurRaksjdZek4tA6qkl+6xzc0yvnggCf38BmlVP3WYpKjHgsCvLMjkx0wwyWr/edoTtzxgZE9K2DVgA81o5wDAv5QiLVXFMJ/T/EjQYnuSLRHRKAaiyx4bdpitGohWcfBC7tgWObMX3WRDYlvoZCWo/Ckc2gN+6sE6zR38EbqIXLxXUMbiuuGB+r+HMYvEe1xOSF05LnGe0LNLzjBPba0bMu/s3aLM/coJ0UTPwr5vS0P58kA5wPYBRyeU3afe6Bj1l2BUMPuApMNp4xcMBFITJLoLOyauQodB4iCaktWQU0inWpJgEMFx4YpRx6SxyFUPlMhPFDxngVlg3AFtdAaaKAaElXw5ODodmusGE4uhGYtpAtHuhJ0Z+Fti/SWpYusTeQ0Wc5oH5+kXbWgSk49OY0gE+wzVg0nUVmgTGHHMR6Lalf/lIxwUBAG0mUoLf7ewnY5WzeXHYwzytzrgAcgChMLJtYFZ/npETsm1p3SZiH2Nckv2TNww4iL8OLG0GLwZEoJIrLiWAxgz9cMLxwvO8PLdxkfI9uQ8Clz4KbY0NaQ10XGPuz3ZBXy0sMG7JSo+58c8/0frrAsO2dww9x9amDIpcv58NGpOM7jkeYuizCXS8om1EAh26wwCOd+4pLAa5QPpNILT5Q9cRHgVLG7SH0DVGCvQCuhmS6pwuckbtjRIzGyeEhYyZhU7uOjJG0xvKvBOhYkljkxZcs21iRVZk1YUm1IG4fLiXby2H4iz6f+momr2dTyZ19Pm3L2jQfwdyCQD/Mw/SnxI8QEKBPon0D2xO47+FHxcx63aYlBeGJHnprAuwxbhTB3jpT57QSaZDgLpjwRl0EcbXhKnX+D4T1HBhhG4neBRGZfZR5cpnY9a3uHWmGMgeAzbV/RHGsC5zzwW1QEqi0sOuTKYH4p6HsY/qPHbjOXFGGN+Ezxz1LhAv6E6yefxU1VF7xsyuQ4k/IcBXvb5NLxCAoBNEeSFsq7jr4Qu/0SS4uhxs1V6lBZ9hZSgrQtFAHnS0Ew1UIWoYkNa78kVjCcB5ILnO4CbeeY6OlRRKHLhlFhslqI3prQ7YCpHKfDBnE1XYr0i4jhQN19j4lCipFRW8LhFN6cQR7Q5+/R5HHRUm0NWTPbJ49kMwMsDyCK7UNRwtllNGdME6k+65GlYXqoCPsLjG+phwbRhBdT1qYuC/FZGqgzaCbHUgloazhrSh43+FJ0jVKCyu4gvFZDksxdVSA+0kxsmiM+jaU+ocoPPtFm4e5SCStIR8gfCj/t7EapxgKNHp5ANBE/HiEbQmwIWpF3Cb59D2GCJy2cGsbDyGGMdCvYnvKPwI8WUnIMiTSCeIvQ4IyyWUScVQ5VRe+WjHbFh4cVOQuTGWAZ8WFNF36Fl2VxvCRxyJGkBVKyXBV4f/wI/5v30BrPie6xpB83SnXlPBMtwWNMIDPMzi7BthA8vOsg50w87nExcFz0/PCLouCxsm+JajGppkpXpLEm7+uyCX+akTGxvHugPvYEp0zukeZpH/e3qbyYqaVig6kyzdMDtg10m9LpFYkIexBFqjgLA7iZvVjaygK0TmhNIYxtOxjUkJc1WMFUHkNiITVrFgSTuGl7BqM008iLYOiZ2OPmXCcykJA6cV5TEpMAeIO9XWEnR9IB/3Qs8XoAkmHMp0Ra4l4J3x3RwaPLjFi4MEJrhCYr16qPDfegd2W+3qfCk9hRCIg11M8F0wr+0BK6BiMN1Rhncr0lU5eFdrBAiQ40w8AtpurxudQcVB0ybSAb8t2AJg++KObEIXMIUniCkmlKH4I7dSUwCQ2SLXE14M+n0oLfQY6G+HaD6dakPjOddsQ6Y44eqwZJGzC2FDgmVwKEqw4xmaWbqI2Wzsdjxw1KwGGAXQ3fV3A3B+61wrMGXTQQGojniF1geAMk2iphTIsEx7h1xLAo7+Uys/k0yxGWD6UQckgfCywGnOCSFi+nStk9iYVPs1UWnRKj4LXoc92Ti8vJieDWhjwJh0Phkth+zUJtIffKjkkS11cTVcz0e0uYWg6SwG5ROxCXHeJ6qBLGwhQ8t/6AfawOeirVtayl40DyZA5oJXAVC09Fc8GW+VDA/mRc5UtSJUvytABdo82SrMreCylnnFoqrRHJuIUnGy0IoUkRaRnsJdkGehJJPQspnSGnyn6GDQsRRRkuUsnmu4zcJYwGVmMsUs+LiD0fkd5gbyKSBD9Z7rNhqFZo1YJP2HOP3ZTOaRY41JbYVjxWVnn5UCo0PkVi0qLyqQbrlOX5yHKRqDugb0qN4Fi4f3UTcdaQckM6GHIwhMojtphYNgpTYxgXlhwNwRgUUxJqe2DZZzbfW0yEoRMmn2lMoK5HbC7Q66xKR8ajTK7A3/oErwNoAN4Ii94wPHje2kC2pViaKEqQHoNOhnwwaFBSTqgorsq4FpypQNrHatWU4hqK+Fi62VNCNZYO2jMtKpK3FWwbyuCVfkKpPldISEifILbkfElG2HEkMeAtbGwxBRzbj9BEAzsDvUWyJUel7yAboQlbFmLozIHeFKvqMReEySiGbBeoJiR7RGHVFVdyMRF/EdGQWR6UnHQm0AODgVuH8Yn6osJulJ7CR+hEMZIf2UnzJWgYcil89HxsMWNfKdJCvg7ku56Cd/hDCaraHrEG9WfgT/mIncpk7rQjMDJWsKgLTGyYSdrMOV9jlfNaGQWurZAEqvGWdbZkdhw5km0gbCJaKUuUFZBSZvITKZoZXikwJsQlHA8szNdkK/iwJXcBfX+KhnO0H+A8oAvPcMwYr8RVIpxOPxk28JMTjVWzQFXpjx3TMDJDB8vXOpWxmq0AMgHProzOsWCTK31Gy6c4hCWKSuB+cc1Qw36ExfvykCotn39aWcLSsOrOuArPGdqJ6y+/Iyx7nv1B+KSDW5RvUTzCXbQkEXSR0DaRQyB92GO14bk8ZSkb3jzv6J+NVNXEybBFvGHfLxjjBr37BPZfohd3pH/1AHVg9Tc19ZuK7pnn/ov0aMw3Z7eQwV1n6m3hopADdg2b/8eAewH3v3tG+OoKu7csJ4cmz2QMURTyKaSXRW2r7QFPHBIEuFrCpxcF+fDhtgRr3a5sB/cq/F4NyRq6paCV8uniyNOm4yYq76QoxNyMCbGg/xT0r0G/hfQAzQAvvoMTk3n9Ujn+EvTgkdd3yOSYwnOiruH9Dm6+hvMK/vqM3AjHb25Jt0fGT+D4m6J+8JhrTY8qdKOSIkh0VLpm4RKfng8sF/Cda+ntKcfDhj+9Pkc10Z/ewfLIsP+CKXyOykiub4CBGx+QBKencPZJGbPhfiayUebhkpFnOtGr8juUXuBFA1+soK9gXxV+gkQgQHUGzZOivvmHEYiR6u4DrTHc/VXiw18pp3LgF/p3mFBh4qe04Rn+cMKUzooA/18HjExc/M3fcjb27BfK/So+LtH4yEnty1fFhrX+knoRuPinf6a6PPB2X4oxIh7DDYiSF6Gs6a4tBpFz5Ggks2pgU8ExwrsdxNoSLzfQGKrFDmcSa5Zc8ZSd89ycvWPnJn5xf+RF6HiPo6MlkHnHiCHxdKW8PIFDD+/ugdFy/u05jVuyf37L+KsR3QPfA5Mjhk+AK/jwA7r/c1FgOleqSnhVWV46wz4mvonp0ZL8bOvyuisPWLJislItlNN/KVRPDNs/rwivT3Fdw/LGQ0wctSKzhL6FYbba0i/Ikjk0/4Gx7QlhFhbLDaZ7iUpFTNek6z1MDTo0hAzXSRiBpSRWRonZ8FprVCvicInYmvHFNeOnE8ebkvgxWfLfXyLmknA2cXx6i/cJexepksOHFyR3XqoSXuD0CF98g1mMXGTlTJWHGq5bHq3YxZLS5X6/gm9XpeKRtsX26F+u0Sdr+GYFr5dIuMHK7zEmsmmWxGrDcVpx2C+hFjgpHhI6Y81ODvAqFhulcW6S4yw0jrqLnHQZf6q8+6VnWsPJf4aT2yJ6BGVJvJlvr3lmaT5zxJvMzd97jK/YbC9ZdWuO1TXH6pquVb75XJFsGL9eEaeabALq3sNqxH96j7QT9sRTtdAfR75/mB4PsY2lmBV//B9z56wF/gmllPjNEn5oYRpBv0NMpllMuAr8cIrvXqB1g56sSRL5sBNkilyy5mneYKyn2mwRl2iOswmmXbOtPyNVEyMBtOdTOp6YgXuteEMhOyseNZn8aYRfj/BmRHY7qinx7JBZGwhPJvyvPe0dnB2ENAhf9Y47LTLAxBbTROpXPdaVYmRWuL2w7F+0hQPziOv87REFdkmJM6LDqqGuEyevjpyceW6OC+jWpUrff8CosNwsaRpHPixI1yt85TksD1hJvEyRC4W7VcXtpsUnSzJ1mXf1Huodp/uWL+/WDES+csIg8NJOnKwClc/IUERD7rU8VW2BBewm+F0qXeHN7w2nxnA8TXw4GbBRqQXAMBYrzeLNMTpUPegdYgPrtqj65liT2n9ENW8JKMhxxOw8qlrsUxYC/9zCVQX/vp1bvQofIVOsgRozTrhpIrMm62ckhHfcYNiycXC5KOZuN08pKkavDVy7UrDTTIzKLpRxupR3bOw7RpfZN7kUAftSaKjdGueW5DRBjlRJePJgWRnHw8uRh5eeaqec7QUC3IoyCLC38F2NWcLi1QJbG47qGQmMQdmOjzwpdJi5gQrX/EhhlhXU/zfFPFH8vx3IdwPFdOE1WDAnGWkdefcJ6n/LR9JZZOCHfIuw43wNVxclHj6EUozPe2CEVaW8WmX2Br6xhoiyyN9xHr5nR+YdmVgp/oXCGn4zwecT3B0jX39IpGTQ/QLEInZCqonKHGmrD6jAboxMk8LNK7L/FXqyh18fyBVsX3sOD4l8FojP4k8WJ/zJicZCC+4tWSltPDNv9CpIbEslInuEIlVoqpkoVNh0iJiySSNF+14iqlokOHNxfBYBawshrcHRJofLwkTCa8lWmRRNxUBMTKZx5emORslIIYLl0kInOVQdEcWTUG9xU4sNCTPX7VRqFItJAasDxk/YYTYyipasDiHh5PHk0o/r0i4K74YROBhMFugrcidoNOACxmYqEXRGnAMFI2lDKaPjSxlkVjdJGUIsVflsigwcqYJsiVhGIplIUAUFTQ4JDpOKAjuiuCogTn8k935UyjUoMXl8cog4muYUMwaqPCAp4zKA4LMy5VCIwVPEYmiisiyKbYWr+8hEQ2gQEaq1wApcv6B5qGlQbDotcsVaQ46Y4Kljh5LodQL1GDyWQDaBXKVSQUtlLCIQk6DJ0KaaKgsml5qaS4FBfUEyzfwxl2oq73AxloqKFDi0FMgqOm8IQUuP02SDqCFJVeRuY2TshqJiOAXWIXCUiUkGjFHaMeJMwFhLXLUYF1l8bJv+zGv2iCyKjhaapCxDxGomx5oQFuQxwBAQT6HrCSQtMnfiwCykFAt8LEZdWjZ+T4H3F45vwiqsJsdCauxkOGhxaflI8kuieBRFcFKkTmkiWEFdmiu5gmksml2RyvW2SMhSF5fZFCFBUCWT0TQr/qAQpCA4l4bUWhgUN6bH2t5QDFJKd4cKTFDcWMYgh4rkG3IUioyyZZ0TqomBTJjJr1KVDVK8IqpkLXK2ScpaMFmpUxE6CEFIVBgvTMETCBhTAApGyr83KK6czNBmclXI0zoVmIvqEmiRqAgTMcGkDSEHUgxo1B8bz1ETQTNGPZUknMk00eKSobaZWv8RSdpMNDbOIosKEyxmLLeto5B7IU8JwojECaseI3NxqDbkZNFhARkkZURA5403K4QEEUFdIdvXanBRcKnIZ4ZUupPJQYwVSS1YxVVlPo4xF1PTbLCTRUORZxV1aCzi4llykc5NSgiKSZkqK1Wh/jMxYXSiCQFjIuq1SOb6Ir/5qAX7Dy6pBakEiWCnIg0aJ4uOBomCaMKaiKvDzEqyqDrUGmgTuFS8d3Iiz2XuQGYiETXT5CJuV2mJEzKJpBMpT+ATkjOatMiBWiEvHSqZJK5AJaRkejZEKhI1SlZLyIYcE+IzGgw+uyJMkh1ZhSqkma83kmMqZOxscVkwk5CH+JOhGP/HadeiFCQDmjEU0V1RmOKKPraEIBAyNhXxYEPZvxJCtjW5XpCtATkW6L1KkYT2kPqMToIlY0yxILa5ok4W7zNeShcqGQhS4aUCjbR4kijJlTmSTTm6VYsYhCKkmDEkYnCkuEJjxGoBWBkyjhnFoLlIkhhFHFR1Td1a0uCwKaGP7aTVlK68U6zL5ASSBM2CThX0Do2gBBxxpokrozMkY+Z9HEzKtL4vAio5FbELZkK2ljPUGMGoxeSK4kVdzpOUCyhrMolBlOgEtzColvlZ5PMzWXIxsZPSZUtVJppExiK+RVIuErcWrLZYdWi0qB/BepIvbQEjgsOSg5JiftSatUMNWVGJ0GZMFKwXRA0yVjAYRD3SBCQlJM5wKutQJ2UR1hOCYCk83FSmL2GO65KWH9OPsDPKa58LGkGNAkIULbJATjFNRlqgNqgTQspMWYuCP1q8zqScubgaaWrQSNYBVcWqxalDfEamAaYRmfJcFDAkI6SUi2Hff+tE49NxSZbMw6bnuIChh/0OmFrqm19jWGHDdxh5S72OrF/2aK4YXj8hdA1T09MvvsVli4ai0ZynCTMUSfQEBSN8Bs4avjyuedKtuEmBP+kb0hBJf/BYKxz6Fe9YIIuBJxdHJqcMdSJIor1VFltIuSXqFROW13gEj31oOeu+QKQDeUvWiGoPjCx1YpPfItsAfzOiRhinhq5eskR5OfZFw/4x1w8tUimL/yGw+asIf2/h37TkQ0P3r58S2pZp8QHa76lsw4YTMpkdkckAT++LA9uBUtn1+mP5fdvNmO9ZOEnFkHZXMJ4Q2dNzXw6cMWG8IXVP8VzicuRCPKb2nD25oWpHjgdl+E+QdiXxy5J4r3cgW9b153y+/pfoeEdO/xkXA081siLwA4FvSOgxwd/eUhn45Rh4GWB8C/3Eo13VM18iTrj8VxWLv3Ys/h5O/mcl+5r93TO2pmaSvwP5hpMk/FV6TTLK76eR+5RYhO9Zc8DXlu1FRTaxSMoN0PUG/9qySCs+6z+hSS1rDA3CTf7A7/gekcxpDZfGcLJ7hts/wZo7xL5GqoR7BbkpxlPhO9BoZm1/i2dNoCbnJ5CeMG3vuP7972iGiZfjNev4wHfGcDTCqhJ+fQN1ZXh/suL9rz/ndLvls9vroi7yM6/PKQn76RWszkG2B+T9twxTzZ++ueDw9hl+/w6Ot7gEm4+Uggl8ENrLzOIiwjGhPwQ0ZHZj4MFAXEI6ASFSjXvqwfLbu1NepUveTQP/Nr8jaUJCYKOwS4ULI6bi3J2gCyF8uURXCf3hwOFdR1zVrD45IeeK8X1F3xu0W1NvHetu5KW/x8TEe91yJBHSEZ8pSfyk5Fq4Pm8YnjScfT/w6euAxP/TIfo/ua5KcPr5Dfalp3rvab7akUfL8atz4utz0n4H3XtOpjX/JDsymf9Iz0iPvTLYFxVm31F99w5CZvJjMTGstAhM5JEX/gfqbMlhg/pzDtrzmrdYkzhpPdaAnzIhKieSeGEiuo5s/+kD04nFfz/Q/w7wT9H43wGgfA28phta4sNLUjgyDRM2ZT7TnjMst3rkmh1tTrwYAk0WzMMJpltysuqwp7sfPQF+9rUVsIbFly3Niw3t+8j6j0Ic4Po/wLFS8vAG/I4qedY5oo1y+7zneGpJb57C+ALRjN0H0BHiB5SCWe4VUtXiT15gTcWrhz0Xu5GHrLxVXwTb/g7UGrrDFSPntKuR0+cdUQNhfyCFgL+vCXdLqrhgredgEuP4nsg1aQlIS54S8cZTJ+XLceQCz/ea+SZHVp3nyz/31CbyYQH72tBOSjP8Y3SnAAPVyxr3rKK9ETbfGeJQcfu3Z0xVRW1uadwDy1q5XBf/mre7C45Diz6J5Kv3mK6lfuchZEL0ZODAyEhgGZQX20RlYPIfiy0PjPnvkZBopw4rkS4qU7KEy4bq0w3GQXY1KgnuRvj3D7SjchVAcNxzQtCK9U3HxvccxgXvxitisnjN1GReTCOfxK85VpGvhkAwwmJacx4X2GYiLm4ePe/ul18CSgx7iB0uwSr0SFjyzdt/hd6vGfZ/B903nMSaL9IaFfhh6tjlHl1ewuUX5LAlHTtyHHk9GT7ETHibiHc9VoWNEerW8iJccupX3GrHV+wJmhh9Jotha54yyBWLvOPT/IFcR7onntgox63Q701JpOePeqRDMGj3EutfIGlHzF9j8ZzSUzMSMQQsYjNumTCNZXX5jPrZObzews11iUofc52Xe2kVFq2SO0d6qNC+Jv/NOeoqpm6HN+841cSvNZGt5Y/nhm1rSJeGfGFYHXY8//4/wqS87zqOATpf1O5EwYyGxlpO0oaWDQNb3nEkkX/skbzLyp3CYlnx5IsV2WSOviOkyLAbGQ8eMzkav0Yc3D4bYdVj91fUX38B5kC//AEW0Bx/QeMv8P4GH79Bu8T9IWAMLOuKjVtzjJ5dGB5VG1h/8wmYjD65Q1/sae8dmx8aUtdy97+9xLcLRL+nefEO20N9Wz5jZxzBWTh5jyweqNlwaj6BnNndZqYBjn1Znw5Ya2EouGSwWYiT8jez5HS4UJw13MmGB5Y05z2bX+7ITtjmFUEt7+zAbTMVOgvQGsUvR1JtMJtfYte/IPZ3dO/+FqJnqadsWJDzEeU/YLvA8o89WOW2WnGsGvR+gL85/uQm2k9ONNrkUJPpK8EvioKAKJAsJqyxeorV91igdkq7jEUZwTXAksl1xPoIyREySCoVI0kycya1YHvrEiC1ueLUtzwQ6OjJKeMOiqXYGPVS0bjAuimHt2lL9dTa0gAQdSRaMoaxIE/Z+IqFX4GN6MLMwW8hNFkCjR4hQH6ALIZcW4KtQC1t5NG6/PS2SLCtI+4VcG0QawjeEa/XBFmQX1xD25UKMQ2GGTsooAsPZ77gGdTOraRSc/SpfNEUDDlW0GMNLCjI0FB+NpeWTM4tKa+BQC0OZwzLxtAsIA2QDuW1VPyVjomAsJKKpbkgiyeqwSmcGuVUlHvVuVIO7KZZAEs4wdAOSr3VR3d1lTUiQn1as3xRsXofObETgYatv5hVu/4EjDgy69l8y86UGqsdtYFsG6SZSfmuzLWUhNQLdXIspjUrXXCKpUW4Z88WoRI4N8JCDC4sIK7BdgU3bUtHwywh3kDqmBXBit6fUhXMvm6QeEkeA8ODQQelYeQMzw0JR6aZYBMsdWV5f7piXC056XsWSTCPOECWc8XutFVONpCnSDJHsi6Yjs/opiUcKuiKXK+dKxMmF4lJWynVJkES1BRdrj4X0zegEPiy4mKkTpnN0XE+LXjPyI2UCXSmBWI/UqgiCzGcGFekfDeQNxl92+MnYGGo25qUXTG7y2CjK9wSn1hnwajSEBhlJOksnTrzFDUJo1rEOdZqaQfBPNKNHgqW3a4c7kJwR8XZSMxC2LeEwRaMnB+pUsVGAknzLOIYkTYjJxmTItZ0QEZz+rGYggUjmdYMtBg0bMi5pqNjoKcyyrkTaiMkrwQtjswLo2Sr1KcT6dxgvkslsKfBcAnkeb3vCKlCp5acAiEaRBMLSZyIp6en0gONFtRrE0owm7oWJxNNzaPXqwkWUUPVOpoLR3u0LK3gPehDkRMveL4HhDIVsoHcRMIio/VM8EwZCQqzxj8IAcUrhXxcLRBTs8gDJ37iQKnwpcyc1QopNiSW1M7gFhFRKXLiGXJXMOLO1NR2hUqkj4GgHcQGSS0SBA4ek2EtmXOj3EpAdMKlwHrMNKpsvcE5wcSCX340dApBRDALizuxVJ2hMRYbasx+CVJh1ga7jNQWVjWkpKAVKTTgwmwCo0hazAIKZcGWvnam0mLy2EihWWZA1JN0h5nXs0WJGLwIOItZu3IuV7Ox2bXCncdmYZmFjBCoONJQj1P5e7QcUktSR7EFzCxyz5nu519azlg7VjShpuo91WEiP3LwglsDimYPOWA04sSTVTn2p4RwXkxAuoijYi2uSNrnREihdIOWSxhGUItmw5CVITETFAu8uF5CazMb7zhPKx7w7E0iaSr7kRo8DUnWxbCPqsjpN4JpiwIXQT7yeoGPqocJmxw2n6AaUC3+2xWJBQk/S/eKKJVTjBPqakFdbYBuzhof14eUqhS4bQNVgOxBxKLJku4blAaRLchAJXAiBTlR1+X80zXoOYgE2qZHkn7UNSBp4Y2aINSxyKzW6lhQM2IZS3/6x+BqUGFQMNZSLyqwGV8LJBjHROoTxhisKXLeY5uIC89y56gPa7SJxNOi0VybJZYTcr4j6YGcFB/KGlvXDa2rmHIs2fYjpl3dLcBmknPkU6gHYWEcIdXI/YZsl9izGnNSlL7drJAuMj/9agB3xEimkqdIKhKySEFRxlSAy6d8ZCkIDsMuZx7mkM5ooUl4Kb0mqQMnJ0I2gj1YYnIMWI4iLEQ5kyL8Ja7EQVI3mPYcvCdnA1GwVNRSk3UgcU+VoD0KGIM7qaBqkCmgR+GnEoN+cqLxeumAzNAZpg6mJKgT1CZ8vsboAQkHJMLkM8M2lBZNuCkB16KDS0/qK6buBIkO61ZULpGqA6naISj2kLAqbP2azCVdlThpb0EEq6cgFu8Co9thc+b+vpBLJ1f0gadoySeGNghPhjuyKh+IDLOKk7CFHNBJEQxVLotTKcdfdhA2ZSGJd7SpIQyOD+8fn2isqCFC/J2wv6/JeyWdD+RVZtxtSWEk7YpL5DhF3uc9xkJ7Emlb6JZF4l6cUi0zmOJKm/8BP33l4PNTcC7zw+GBh25gUw2ct5lgKu7MBUFqtiYyyTvy5MhdjfhMf6uYSpmixUfLOmee2UgyEIOjU8Nwc8t1/M/k4UgIAVMJ/tdLFpcb7m970rWQs5IEkhq+9U/ZphO82TJONzwWT2AkIqoc/zQw+sz9w8TbJx1pNBwfbgm+YpgJpfsF/OFsrhrM6g/jxYSeZ6IJ5Kqad75U+rWz+6rXnmt9TU3NO9YIDVt6MkrMDffhGc40VOceu/6GqZvoHmpyb/FvArnK5F253wsyv6aQzv/Ijq06Vh8syxCJ/ZYxlDJ7IBNRXlrlsppVn08zwYFs73m27dBx4Nv0uMPj1nyKsYppH2B95BAzd0Nk1MTQUjxdxjKhQ1XMpKyFpdGCtbaB40F/5P2VYsAsCzVGeAjUNTzZFDj9Ww/vJ+FuKeSTcg9dQeYRbZFybfOIi7fkXhj/lPGNwt2IAJsh8PzdjqSO7ydlokb7gOTIIU58lxQxMJ0I0hhkkpLBZAdhjUbH+J0jPhiyr+ifNI9WiTvlA6LCJi5YhBP61rL7tCZ6JR18CTxEQDYcGsPXy1s0K+EYaIKQ40QcMykYkqnAKimPoFpEmXpwVATOAMeeioFAajOnS1BTs7PPQCvidEtiz63OSLFeGf4QiI2hv23AbDjTyOf6n8gkvuWeAx6NA0k7ch5AM+oy42c9x9MIu4mTbUGIvS7KlixHSzM6OrHs7OM7kL/mt4gqy6Onub3jqIGbT07wI/jre5gemCWjSA2MGzAOzm9hda/sdx84hFBgupRSqNYV6l4UvkfoICfk9gOI4X4c8AT6ZWKxgWQsk1uRcfDQwXEk9Y7hbUMC8miY/wB1YqEjz3NP1syoEx7Lyp+w0guq1LHQCeMy1y9PuT5Z8PAwku86enH8madUWEIQbIJEx8HteOxet+ZXoEp9fKC6PZKHltvFkrQQwuIObCaPR+IBDnWBL5Izojs2dEwa8MmjORNshVSQ6wzO0IphIRaT4Z0vCXqINQk7l5I8FkNlTnFi6VeesY1YAu7bu7kknYBclJfSikVOPMeTSdwycCQyRs9uzGgeafQapcbUT8CuGOuBD7XQJUvql6AOaSvMSklB6SYeDXf8bHFEFfbe0Ps10nZMZ0ey7snj38O4AP8ALDhuhD8/PyCiuGPkwit9f83Qx1lZTiC3QCpFqTxCjrgMJxM0KNcp8JaB3dlEfhZKkH9fuAF5eYc2I4eu5c3DLyFOTHffkl3H1ClKxqCzzxMzrBSy3hYStoxgQ0lGSj2LGsVmJaLsC+2V+itYvoPDDrYD5EfiHV99VV6tKUXeMWd6ph9V/BThY81m3MD754JFudz1nN6O3OXIvU9Mo/JeBbHCOKdShowlQzDE2wXZOPqhUN2T60pRw1WYxUXxRdpltFfSoeLDNy0qnikdyRrQ3rGYLI0R1icdWRS/jcQdhK5n4JZF7Hl+LAnZnbzm0N6zqXY8aZRRaj7YS5I6XCc0k1BpxuRy1v/c67e/fE82yodV4CG0jFXNhycLUjBM3YfChTjsSWMhw8dnFHjf6LGdQZ9l8lMlhJHdfgsI4dQX9VBP4TvnIvJTxCxWKC3CwJoDkg12aCFYdtYTN/dMXrn/aoWijMGTkqemwrHgLHg+qY8kVUYPk1dS+EDYKwt/5GUMiMncnPRs24j2I9qDcQ3dyROsqTkZF1ztKnYCN2Y/z9z/6+snJxofWlcOrK2BY1HQy0sDZKLel8g8zS5hXuEQMRppY8ABuVU4Kzhtn9ZIbFi3p9SVklpTFDymRHWbMcFwYMmRM1y1Y7NKIA6jG1Qq7tpbDs0RdhY+1DMxoS5JyInDbyzNMHAxPpA180CJl368VJBgKSY1iszDNVCwveMJqBPWe0cz1IyjZbeTnzyo//XVUqza/VeW6Sslno/4F0NJWbsDeF90qo9FlX0iUlXwbA2LddnzelOw9lU7czN+1LUt18LBLzfQ1Mru/Z4H9iwreLGCwVTs5BIvLYfqmoO7w+xXuOM5mpS4/fjJitFVaxMXTURVuI+WSS3T/QPT/f3c5oywdHS/bKl+uSJ+XZPnRRGBoIY3/RUf/HNCMkzh9idnvv/1ZSRCVobvO+LNSFj2TBc7dMpw/OGj9TwAXQPfPgFyUc4iwLQJTF/MB8FhWUrrH290Dp8DA/d8wOAYuCCwpkSxSqRiG58jZomcfIW8eEP6UJPuFkVdaPwv8TlnKP+cSFG392yB9k44v4v0DBxmWb2AklCeWnhSw9sW/v5M2ZnEZz/suHyAGwdv6scRcx/MC4xJtM1EtTpym5U/T4mo6aMzUiknA7GCuAHn4JkrMtF3KbLrI4wfDeyEzAqoiuubD1QruHhajLL/9CDcIMWH5BJIMOzKM/jomKbR40ZPjDC9/i/X5GaKXN0cyVjeUpHJZWzHQMTToYgVVhtDtTFwlJlD5yCeQK6Y3gamt5n+0nL3ouGxpeUNdwiGi/QFm/CM6ybz/kUmdqE4EB8nWBhoVnT1yHerLZIyeRSaIEzRE/xUiguGMt5zEGBTEXOxUhGrc7LU3DOyI7CpE+enEKTmLj7DpwViBoQ9A3CfKdPyz3PAZzZgTtnoxG/SH4lEbvAcyOQ0oalHZzFNdcr0aqR/5ZG3kbWWwsqbBDHC08lwMjn2Yrg1j080PucLRBNN/2eqh2t+cDUPT1f4IZK290W1Yr5yDf68cAVOr0F6JeU7DvmufB8AB82nUJ/A8ACjh5CQ4Q5QdpS0xbbQXkK0luDWZHXl548H4njKOK7IQP7Yqqk91J4mdlzGB7LCu2LnxyKuuYhXNDhOuSFZ+MOLE26fn8C3N/Bwz5RXvOESQ8tpUpZJCc7g3fEvD/tnXks+A01U/YB9uKOLNdumJrsEZ3dQTeR3idiVpHO7KGTaEz2wpGxrPlGSNNOV9b1MUBtq49iYGj8pN10mROGjHrrQIQwYLJXZ4ExNWh2YTgaqfcC97v4r+OYKWNDguWIioVSzcaxPvqAPmGiZEKmheoFWJ/jlPXdrGEdLOqwhOcxaMUslH5Whf3yi8aIdyBmUmhBr1E34i0COE3r8c5GtnSETwzLw+rMOJ8rT7wpsNB/vGI53lBryGVAXmWqnZYHMf9z40pT8msANE5x4+DwWxYFoYYR8toX1A/3d5/S7TyCNxXBpFmUtoftfgq8fNUh0i7Itf7Fl3xfzF5O6SpReoRvL0X/ZFRvhicJFfiyv6tn3Zb1P5wV+PeTMQLEUKPc7V+AVpiXcfiY0CZ7fDywe5hzLg0e41fmGpYy3IeLI5Gjw25aEZcST6VHnaRaK1A57fonYBeoT2memznDbm7J/5dJuX2BpqWmXkdXZQMrK7q7oIkRGMluWyXPVZ4xkbhcf6Cq4WMLzNexNzU11RcwNbpyoQ8Qx/YPu0s+7vvj0lgQMYcEuNIyupjuvS2wy3oGPpG4qD+Yc/MtS1HHfRtwB4gvgCcTOc+wO5YGv41+q3lIQ8mMA0SKpHFhzgnLJEZsNblqg0dLXB2gG/NDib09mDu8OiDgWLDnjrOp4teoJmviuAyLk/o7IjpbMLynS5HcnI4eNL4WFCWhquHiKswuevnE87wyvXc9t89PPiZ+caMTzHeSM9iWyKzzguWSJlmAirBHWYCe0OaAoaSokKIOyGCCFRHATkInOg03k3JPGTBUMS7PCOkefRrzeECRhzRNQRbwH9dgcWHlIXol1QpMW2I4aJEQYDNEbtvoMRRCUFkU44jnSYjmXFSqWD65hEodNAy72pWXfR9QKcRoh7gppy13x2EqVn7eS2M6yvUstu5UA7Udm2EmRsNUIOhVlqqlUcVd5wo0eHRbIeEmOBt0c8caT+0zuEqoFzmaBNgdOyDht6dKaMTuyDsCICQPGRMSPqDsU8tyP5mwZUmLSitt0gqowzNKaGzxrJgxQ4cjZ0t0f8K2i20QKp1QpskkTJhvydChkeulKBPvIbXB6ViqEOYzoGGDj0ScKo4W3JfC1GAy2yOztI0oiux6WEa1K8mR9S7tbgodxsSM5YLDQOZrK8OqkwhnHm0PDdqyp6wWLxaZwBvodWXukM8jtOTJoOYSqXFjXliKr4Vu6XPNtWM3bs+eExMZmVq6jNYmVW2BFOW0EZwt/YReFnSaaw8iJZDJF9MlLjeriUdMub+5RqxzbCVyx5Miz78LpqjhMT3Z2Q06G3FdFotMEssmIbdi4smoSBhWDbyuyM+AzTANGYGkstbW4RqGNWNPg/HM0B4JuUYk02VAnwzIJNQIU93mEEh1lZaLijhUZQzAZZGDlEmuXcCnSToqqcJwMk7WoX4OaeWwKpdBRvI5zTKQhPtopd9iUc3KnA/6451gn8kkskcZSIDSsmppl7UhyIPQHyGVMbatkWZCmBdkncpowmtjYSEPG5xVTPqERYWkKeMDJDN90jmZxjuQK8QdIHY2O1EAQw+hcwbC7CKJI9EjsCWq44YxEwssD4DnRyCkDjkhLhaSKeLuk14p0n0hdKkIRtkOBkRFT75kkzlbijxu76+V7MJlKD9gh8uBKPSXHhJ6lEtseLfSWGJXjEawqNqRCmm9aVnVLFWHdKxjLXWsYlhkw4FsaDVzkgFPlQMWIRW1G60w2guoI2dBomLfZVMIxiWXNFmQjCIxSc8MKxcw1C6FaJxbrO6qpw+4SqFCHhsaviOFASg6TodFuxtFn1igHHehzfjTPYOIGSMQ8YCP4EFDfQVYcgkiBkSWKoIVOpQ7r3SzOEindhtEWIlW2RTI5R4JEBomkpFRVxlgh5ImsCWstlb3CahEj8NkTxwlMMaLbtEpWYaIlYXAYLJ6Qat76z0jASA9EViZxakNpFs/c12mRSMtEyBvi8XNiBFO7+WeGIlHtHDw9f+QJC8f2WGTN64noLDQ9ulI0ga5n6K5fQFjC1MPNhJpUmhdLCAJUgg1C0wuSYSTMkCgHnCMm4pqOyiimiVB5KpdobgrcaOyV7MEeim5L5Xua5Qdy9HSTL8gmY8HYQvBPdk47yn8dsXyZIltvBWyuCNkUQK4xoIqrChpjiiMHvWc0AXWbRxdWtk/KvhLaolY0rSk+P1FhFyEEHBmHYCOMs5LW3QKac+hmqKVLhuXUINkQW0uqDepH0hixZC7wCIZSOso0smBhz8lqGY8DSSaczxgy4mqkXQCpxEIKhIyGSEg1x/4cRXDJsyJTAHwThsCBAl+so3AK6LTiljWTqXE2g05MIbAnMbBE+eRR8+71rgAkdjExpUA0WkRvaoXFvM8M67JAU4BxQCWRTyOsFJeheQM6Qd6V3CCuDbkyRVY9FmpBQ5F9DiaAdKTVxHRW6Aey92gwJE3YOBPm11OBiFdF1CIdPb7vOGThTXhGUsFrIYYbOoSeYllsERUWseY8OMZsGLBUyXF6OFCZnhgsdwidseC+/G/P0Ri/eF0m3iHDPT9axZcieAIsxj/FcIm6W9Lma1QCE4qEIoS23sHkI7t6T6qEsdoW8yifoItULLisrqgqx3fjln18B/IE7G+Kxln3R0zoOCdzLjDWmcPSk7IQjhMawQ6CGWHSZ3ynf42hZk3kjMzInzhyZCUNv3JPEbNgu3zObbVh2b+lOf5ADIHxrkclMeUtI/fgnkH7ax4buRzpywM5rdBzVybikjKeZ7lMyu4ljE9KVyjcQI7IXpFOeZruWKc7gp6xT/8jvqrgk28wF/f41xO+n0ipGHOrU07iAcvEmM658b8g6EgMfwLtqFOmzkpwnqkt6hrq5kSjizBEDvmEr6bfohgCtygDlzzwKzpWWJ7SkoLw77+55u2HdzBdEIZXrOLEF/0ddfLc6gc63qELw7CoeCxFcv9PXyMJ6q8V91bRTxR+q3Cs4OtXsN1Q0dJSo4MnvzuS7Yiefk8+OZIXDZqX1P2aqx8ukaTcfHFHdybwtoF+zcnS8t//qqGtLf/mjxu2Y8t67XjxsmGaJl7/8IYwRtz1c9ztL6HaEpcfiuHLcy2A59sL2D7jZjrn38TPqVS45I5XDJw037BZfsO6bnmxusBUluOFYVoIX18Lf//OUIeBJ+/ec6GZ3RpuzmEc12j/gsfIncVnfwYL15vEdTPH8/ewMvDlGk5buK7g3kIKFdPdhgQc2BPFc352yvPTKyKOnoZohHwe8OtUSuvTnhrh0ta0ztKuEshIxTnr41OSHjnkvyVx4DRWnI6OBssKhzUZW4dS3p+KJ8+BFV/xOYgyuO8Qc+DZGr5YKasRnt0qIQv/7mj5YazIeQO6hLwH/QphYIHSAOMkdFt5dFX+4SVAZpt3yO1AfhbJLyYYKvjwDJElz+pTXrkNd/0H/nR3Qyax3ijtShC5QA8vSePIFG9wyfNZc+DSeX7wT/mz/w0L9pyb31FLz/tYiBtVc87J2aeMfsTsfkDGgU0qRn8H5/CLFdlldNWBjdiHDrvr6bjiD/yCTKYzAZEtr/LIb/PAhooXLPGh5l9/fcmfv1kScsYnRemI8h3IxH7xwGG9Rf0KHc55bKbx+6v/PDcKE/KQi/pTLQVk/EkuBZZvauhbxlH5cD33GXLRzD85OeXJk2ecHZVfvin47f/1LPPmzBcJtfGUVR75Z3GkUeU/6ZIdLdIEzLpI5qXjHomZTVZOKIWejj1iMvJRir2Iz3DIK/7AFxTdtQCSaZ/dcPbLP2HvMvb3iZgaluMp/vCEYRjowh1VVs64oUV5ReaMzPeaeJPjP2w0/6xrz98BIKFUEnWa0O4WU1vavMCaBaMkJmKR19pPZAv9CqQStNfiA5ZryFcUH5cAkhj1lilfU1XKZl0q5Yc4MSahap6zWX5B8iOHu6+JvkN3Cntl2SrPTyAYx0HO8DQ0PLBkzzh8xn/Y/o/kDIE/INzztEp82YyECPsBglXuLwLD+cTw/in9+19j3Ei1eUtlRszhQN4f0Zfn6JfPfzQt/LnX+9NbNEF3hGkUOMnwZAayB0oz4f4Sds+L0evfPZCbxPYTkAvIWjiM9d7w5DtBsnKdB3odQZ8CLzBVx+L8O5rW4y4nWCvLDxNP/qD4BB9iZlKoj+VI2KweuLz8HT5mvrsZiRNQNdC0pOAYxwYUtGD5WHBkzZGVg6drEDHcdEv6VGPF4owlC9RWSWSOw5Y+XDPWG3T1/NHY7u9+2wCgwwQ+ouegJxRpo99PsCumoCsMk1f2D5lcwcMlcDlzOgdog+PVboMTx+F5xbS2dHdbDtNAq4kvVua5rAAAcQBJREFUOFAhfIOwR1iYp1y63zCljt317xnjgXWaa3ftBnv1pPADU1FC1G1AY2Tw52wf/iUWx3ne0TJRhKvfElHeztHGiTecB+FhfMbX8issI0ve0+I55swDSuQpiU/4yfJJ/+D6//0AKITkiWk2dnx2hNrAeV3Mqe+egX8Gfg/bN9B60qdH8ipw8h2c/k05m6cspMpw3BRUDscEYyqqhrrCimFyPZPd4V9l9n+t6CHh/90RPRY1tEYgbjz+WZgbc6WgPf3pSOx7+vSMd/1fAw0ZcKJY/SOWrwgI11Q4tZz6NadDzQe/4a2esJo6fvPhWxod+TbDWyDYf0Ju/5+F4PMTrp+caBgfmZXjSiapWrzjUCbJZEnFbbaZIRlzAdvpzL+N5dVEnd9EkFyos1nzj5l9oshvpVmQz2jAJkWzkkwm2SJbqVpI5GrKw66YxWDLDZJFCdWMWogZ1TTnvRVRLN4qxmTUpFLpmklJGS1kOnRupEN2SlqkR1cMzExmzOogO1yK1L40EsgR1eJ2GbFgDWIMBkdWS45CTvsy9qqgqRgRWbC14FohLRSpYAy2SDKmQgFMqoSciZqRXDCeVVKaXDolUQ1ZhCTVvEllBCVLjTc1ipAziBYJwCiOaAzRWpJVJCXsGHAhUsWMy4Wo5qxiQiwlNp1H8ZFjp7OsqaQKmx0mJOrBoxNMuUidGtGSMFlF53Z3JbbUiIIhDoqMGQ2hNN/qmmq5JLcVqVLUKkEzLkkxFHIGtZCzknOCj08nJaqUUJMRzaUSZQ2zDilomZ9pWYjDcUrknIg4vK7w0hCqBa4yYCKGhNFSPROdP4NAXQlSCzkLfXgMehRES7s/e0PuLWZUmphoTMYGj9gRiMX4WwXNpcqWYk1SgwZbDDhjRrV0H2qbMFUiVkJ0FdkIUygt8pRy6cZlhexQyvuJFtJ4pWCMEpwSjWArR2VskcnTsqZ9Yab+uBKzOpJakkBolJgtqhmJAcFRNP8S1iWMJupkaHXGE2d9dFU+59JMl6yQM82QaPtAnoQxRbJGRIrUt1rBOOaAwZLVFJlJLZ+hDADY2lLVrpi5+UL+jLOpYJ6lqnPKhCDEQFk7KaCZH7HSH2EMIjViHLNmEInMiJKlhCwoZBwJQzSOUFcksbisLDTh5r0gSQZX9lCRYoqVbYKFPrZ5i859gZQsOThszrRF6oOQZhTE/N5qhVSXA15iWQdqlWwz2Zb7ywKmsrhGyM6STZmPCSm5QmVRU4HJ5KBlsGJGYmahhUh5IHOcZaKdOowa8nzWqMwdtDwfbqRS8UsOI2AaQ0xVeUZhnPc0RSWjtnwuSYJVUxRonD46wVXK/lRlSxUrNBURAclgQ0Z8qWjzEQU0Cwt87M4UKCEzTDUBkWqeY1GlhLNavl2ACPrjl874TBHBGCncDxSjFEn7eZ470SL9nmekkHwUYS+na8YStSVKJtpMMhbJARtHTGqKzKeJOFOkvIVcbgEFm0sM8ZixCwnNYLLDqsVmqGIucLJcpHo/7hcfu6gqzPuczHtFOft1nq/8uH4z2PJsJ8pnT1KegWaLhvrHZ/UPV6qmWW4XsMZhDWQ7m6VZKV2cDC5njCrGCGpsiTdcOdewOmNXFf0YJ833WirSM0qpnVm+j7hyBlQx0RQxh0oxOc88qQiYOVYCdULG/jiHDKCaZxK/ljNTwFJTS8X4D8DppaSgP+5nWWdBliil4xk/SrnLjOwohQOxGTHlc35sYiedf9+P7+gQFqiJhMoDszwzgn7kZRLB+nmPmvd4mz6qB/3scUvTvCMnS5VN0aRNRbY55Yzmf2CM5wCriNGyJhPUAez4saMVQQx1dJjYEtNEzAWpkj5Gx5pgPitTotg8iBTEUBZspshZzzB1Y0Hcx3Gb+bOmfN/Oc06xZBZEEUZbYa2hRrBJZ/5X2ROzDSUmD4assyz94qejBkT1p4HnL58W/4vpaAmj4YnJ/MImPPAHY9mLgctz5PQEHY+wu8HFxFPvWCQhSCJIZtIFu3RJpmItNZVYxuaOvr3GRmHZNUgShhwImjixK67cGaEOfDi9w7tANVW4YMuZomWeXB4tdRQemNgT0NUJevUKVKhudphhIpXQjqZWTjYRY6HPtgTcw0juR5RMlIRF+FI3PKHl+DLx8GVErfLd/+f+Z0/IZ/J5AW7VDUNV8dxs+bV5h1NFQ0VWyzf6gtc8xa09zdMjNluaty+w3RLqP0L9FTbW1MMZVI7w21K0Sr4n+w7tHfpuhU5CnPbkOJKqhtgsERXqsWy+T/TAKSN7WXBjzwimZmzPSKbGDj1mGtF2RTq5KsS03Vfgt6yqBctqgV1kmiuPMZmmO2J9IA0VsW+olpnTz4qr6s33mcO90rfCcV0UvvT65+uN2quiS33Wfc56esbF+oZPLr7FJ+WPt0t2k2NqVkzVEs5H9LMDVVaefLdgsbdsbcfO9hAspquxdc3J//1Tmk9O2P3wlvtvv6eJyhNvsOq4qz/laC+o/C3N+IYcI+M4oTnzlJYzavYm8sFO5NYUB7+lK2D361RMC3+xQDI0fwzYbcbZT7H2E9xJpv3C07qJ3x7+xJW/57CH3YNwqBN/Op9ItfLXy5ZXdcVXEf6mmMuiv9v/rHE7OxUQQaszsl2z8R1PuocCJGyWZOu4bQa29YTaJdldoLEifViig2PpHlhVD8QEQzAYK7z6TDg5FT4cGt7sF1Q5chEGjEa2wdPniNGnOD5DGYj6B4SOT5LhSRYOG+H2SkBqFuEpNrc86AcO3INfIMNFOejDHeSJhX3O0j3FLjP184AQ8W93pMNIr5ZeLVUdOT09UhvlYrtiNTR8aCe+X3VFaO3m50P2qvW6VMS0YUnNZ/XAv1jtmTL8zb7hPjnG8+f400sMDzj5Mxoyw80pcWxIm0DaRDQm8tFTG+E3T9dcrhrevk98/yZRaVEzM6Lc5SNHnajqExbLC1IODOMHcvbUMx81GkNwFeIa6s1LjGuJu3fE4y0iC4y5mA+4W5SJNZ+w4hXuNND8Yk/lAq/6IydhIj8UlbTDMvHNq4HJZeoPBfJxfGbZfl6hFvRfD/+XY/VfX784F7IK9/6cY1xzKR2fmweCyfy5hqMBhhqmCp46+G2NQWlf77GdJ7c1edHgBljeKsbWyD/9Enl6weFNZP9dpPI7Tro/YJg4vHjGeLaB4x52t0AJCivgfzrAPxvhK4T/LxaViqfuisY07OrAsY7EGPF+hqqGktUtllcslpfQOuS8RU0m+DekuCc8jITbAdMo1aVSWcsv75/wpNvw5mTLHy+vi5rRn35+4CJS9PR/ZS94aU4I+ciU7hhN5l1rGazBGyUYhaXCZUkOl/fgRhi9MHkp2VxocWJ5UbdsnONORq5tj2Sl8RlRZcolSTXmBGevcAJrE3CSsOMOEzr82jFcNlAL1XnGVEq/g+kAeTghPryajRJ+AI4szRVLc4m6ibh8QCRyljKtZqapYhgrpM7Y8xFrMydHQzsJ1xfwwwstPhP/6/bnz7sXpSPhu+fE4YLzzQMvLt8xpcwftobdJOS4RtMCZAJ2pbjWXBS5JfbAAROFZnCggm8gWWBpYeVwIbHZDxhVjlcbpnWL21XUdzU5eXy4Iav/Sx5YL2mXZ4hYJDtA6NyewR5BVmCe4JLydHvNwvfsNxX7kwrrIvWiKyqKB0c9meJBM8Bo4K6GLMKLcc1ZbLh9obz7hZIt6P/89meP3dmFQxA2aUGbG5p6ZLHsSBEe7ismb+hPI8M6kZY18XJDnQyfv4HNUXm36HjX9tjBsLhzVNrw9OK3rBZXfDj8mbfbP85KlDUG6GfoVGUvad1Lsk6M4TWqA/9/0v7s2bLkOvPEfj7s6Ux3jikzIhNIgEmQRbJYVVYts5LppWX6d/XQZnqSuk1dbWRVV7GaIKECAWRmzBF3PtMefVp68BOZKMnUyrx0s0AAZoF7z/Ht293Xt75hhqFGMxlFV2pUmShPHbpI6F2B3hd41TCqY0hCMe7RMWB5hOUxcbFmeP57pJgoHJigaNYN87sZvkhsVyNJC4v9gnqs2V8kNs9j3u/+148/ad6eF7lYsXKCkSV63qGP7/EpcbfXjEET5ufE5gSqFhY3lCnw4i6yHIWxzzERE5oNJUoXfHb8hFWz4LK95sPuQ6aAYTPzT0WiSqiZRi0MFs0sljmHpgvoMTKUkd0soGtYPoWihvGywd3WpLLCzxcZuL3rYQxojvOfWmNPNcp4yukNJmwZR8s4WMws0nw2YoxQfJhhtwXtFwWbPyvzvP0Pr///ztWP7miUN4dK8sDZbhKcp4ykFcQDJ2xEjgykCQZBe0UTFAvRdHwK7cpDobDMqKjwZY4ojST2Mvw3dP4iTizijkklTJWgVnit8drkG5gXrGQeW4Nij8/1nwkwa0EEb+7IKsoT4JhRTYxFizKBegrYFInyR7pilf0SllJwQUNR7fCna9ID0Zb6oBAZXAWupKbnAkWpEglHRHNpBjBdzmZYBXTSxKualOY4VeAtlDKxUldoNFpW6FRhao8sHZMWNk4IvfojNHICNWGkwMgZpRQ0DMwBL5YiNKBrXDwhUaGlwGCJukLqAwK0H4GBTjd0poEywDJgdeL5qDhKYKLHBo9RZMehEuLl4YL8/ap52FB3ea0UzKk446gd+KzVjHje0zKgmHQk2ADNCGd7bNDUrxcspoYhjejoSTgmBoyqKcsZi/ox42yNnjlcn7i8A6IlXkSYgfce33YHuCdfACpGZoyM6WBYZRTEMlMVwg7l9pmjeZa5wWNxWEzxZxA/g+jArGm05sUYUe3AohMal513pgamWjGvDU+Kgus0omP/ICqG7fPfKZYYaWiU50hrEpH7fcuoYDjPZixYoNKZS2pXQEUMW8bQ5hAlcsdwpg2nWrMrS2jmuNFzs822ikkCMJGYcOoQw3RAvDQpo6oWtgswGFZDTR3ndKrMxY+OSOgzIuvyhW9INYM/ztTC5YhWjtX1LVVq0X+EqFUVVEYxM3mVVCpkBOyhHcgub+wllhmG817zy42iJ/GKkUFp9qlnrebMCsd5Bckr9tcVw9TAfAS9PSg4QYwhzgviqkE2a7S6I1GxkzOUaJz0QMI7j3e505SH4hP+lqGtgFIVJi4xakGQzWFmI1F9EppmxL1VDa06h3KA45GmTHxZDjweW6TPnP61hcsFUEB9k91RXRFR5zE3Ih8w5i7TUPa+hDCnInBK1hR+WpPolNu5tYELAyphNooiKAbjGWJG9vcajAk8Kg2zcsZoA2iPVyN3uQ2TRflLC51CbQ47TpNN1VYRHgEfM3wEYmhCzZw5zuZkYNEtyuxzPkTIcz70jxn600x/eD4D67C336Gm2xz2ebjLTw1Eq5m2NY4l0Q7ouTqEaD1s5AtfxaM4z25aKLoEV33MarklmVvSAEd5Gu0mg20eDgyQCGqPQjPTiZWu6EwEaxF/EILH9L0wPh3sFjCGctFQakWhOwwQ0OyVxRjhtBooq8jQlTjK/HvYHv7ugJE+Wfp0AqaHYsAqx3G3oRoH/rjFqETQohC9IJoSkRE1dQ/WVZW7Q6fGN9h4xHKYeLxV9AledgntFaI7RI9wwNbBQl9lCubBmiKRGHB5bakyw8Klh3lPGGDtyXZffbZoCr4kqjkogxzoN59+ekwG72qstqzKCqsVk+kyg8IKlAYdEo3xLJjoigLX5Mtbn83qaGzARgiKTwcqMUFSmhLNjJqqmFDL4cHdoHIdUSgaDAtqmiKynBRecg6LVvnzTDOg1lBUaDEsBzjZwVrn9PpIolWOUjQqlNRujo1ZwBGA3fett/xFfHT4g2tLDp7UyCefqhiQIavejYA1CjEmd4FURKk1KSUmlVXNJU8RLgiFEFYaKXNwJ16oh56Z6hl1Pq6jUdiuoQGmukedbh40d81hvyipsMzRLmAHzZSE3SD4kIjLCeZd3ocbj3aRZQsnm2zw3ZM7Fo4RI4nZWHESVuzcFiT3CMfsU31ok4G0Cmk1UhqKk4KyzJoORQ4XZcz/vPJQWojK4m2JKhNqtkNiRDY7cjf8iMQZGMU0Uyg94SbQYcx+IwJRKzYLgyo0F7dF/r5Vhzq5yuv4R4wffZy0hzzI7Mcd2M4qXh4fIxjmrqRImr3r6C73WXNRK6LVbPsZY7CMs4apaUjeYds9pI6JHo8lpT11EFJp8V8tcjqo6yA4/B7ae4UKlqfbU1IHd25g76fsIRwzl3EzM7Ra0zjDz33BFBK7293ByivzZldFYFWOTMpz3/lMyShOiEVN9J68VQeQfMH6wEgLFDJRRXmwve2WO4QsVwXDfu54ddqgrWaqF0RjudsGaK/R1mBdhQqRMV4SuSXGDckLNmis5I5Pe+1xrUeeeTiHUBuSmmUh4FWfw/2OgDOF8YbmsqaYCvbO0IXMC50z4Q0Mqx4pI3odKBwo3xG2d4g4CHkDPgoDR3KPQ9h8SIhKjEPW33i9YFotUTZi32dRYNd6HJFFA8/OMif4ISNf8xOtvcbbCVMEFvUFE7AJBW1SuNDB2DK7C5z/TtBa6Gcj7XOhiyf49Izl2PLi/h0mwP0rw9XGUnSGL1qYLNx9Dd4kJNxBHDEne+xSKKeas6vnFK5C+MCO+3xpAlRTEP/0EVwsOXWKo0uI+zvc779DxOezF8HxHkfCDIny3YTViffDgjv/M2YhMSeyCRNhe0/oEn/QCzYsaNWOpwx/VJ7/+NGn/LtFWiBACWF+BAn6VghBcMOAUROVSSzLCUGxaTSuKAlxhsRlTlWdaqIIV9OO/TCxqVrkKBcD6VnMorVrQe9AFgNyeoP2UKxPMe6I1m3xocv20QEoEpvj7Mle3ZU8X58x2shuMUFMLH2kiLBfbNgvhUoLJx8DRiIxTshMUbsK6yoIkW7b06uEcwMVAT33fPWMXAg+YMScB8/eBpzWvEuK34YFozZ8aCpurWGwCcIlTBPpPqKiYSUl87qmd2f098sMuIQN0SRuu5bOTLSLAf/LvKaj9qio0ZeJagdV5Whme1KsaLufEaIhckninkpmLNIp2tQUj0v0XGHenWIGi5GBMm1JRDqJeIRK3VJpIQyB8VVLtIFXKrDDsLTC8ZOUMdybbEPc9yUag5kCjzc+0zEeMO59pnhO6dNcKkYKHPGHjAQhUyM2Bv4rCAXT/VPCaPA6U0CMKCqdEzSGtxum2w3jNqHahCgHCwOqptpN2GHNbOw5aoBkCGGOEs3HOPA/47hTQmVAKmH9bGTXaOLtMeX6iFKuWKY7UJG4yNStaehxwx1pgPA2iypVNUMvv8TqLdrcEymYtkckKbidLCMTszLyr5fy4Lk7bhRa4M7vM0VPW2LxOU4letURVWBejDTaMXrD7q7O+TGtwo8KzwQ4jFgqmWGUZqMine4YRWh8IhUW//kSURq5naANh5tcR1QlO7fCYHN6s4UyRn62G5EBhgCj1cz3BcuuZPKJNq6JkggHgK+mpeYjIUS61pMMbI7PGApF3M8ImznEEdVdopTHhgoTC0wKPDeKh3pSbzwgQkj3RBzWDsxnmilapuGYmEqk3kHVUfnEqgcRzU4qHDModHY2w0HaZ5BNAjjPDFiUJV4pdqeGFBWrWaAuWwpxVNHlfxqOiXHFzu7pTI8SC74hldCdtug6UO9rlt1zJh/ZdXeQDt1gQA2Ox/eCU5GNybSW7XTGGGdYt8WyzsY0B2OiXYoIntRNPP4wPHjuOg7X/3nFvppTB1hOIzEp7qVhFMOYuizGaCPsd4RY8lE/YbOasRENm4AF5jOD0Ybt6iNdtWan7pAguWgrTgCDGu5QLlDNJmZHa1K0jO05KWhi2DCkjqgSYqCoCk5Xj6nnNetOsxsVWg003KMlYpJBY6jYU/GSYdhz+y5mXdhRA5Wlrw03M0PA47sWQdh7y0RBFQw/H3nQO5u98QTDHk2gCQ2r/mu8VvgjwRshlVtwW8wI9XqOFcNNPWPzqGDoNEOnESINHqWF2+WO/byl3YxU44pYC+HxQWS+FujBNppqYdDGQFnjlcInTyw8ziSkBCqFHFuoNct1YDW2TEmx05qUEjpkauSRdRwVe6LyDOstQQW22jDVF1RJaBD8lGg/BpKBtivwFJQYvlA/Xhb0kwqNPEYgsp2VTE8vKCm5aOeceEPcfUe3vsnG+jNLLAzbqUGHitBcEM/OMf0dTX8FaeQTdlclqAOEhSV8dYTUJm+Ak8O/V7RrmMWCZ9tjLAYXL9mn9nuaqhSa7VGBlJpftJoXYtmFCLc7JhE8uYZelYHPZxNb79nuAhFDODmF4jiL0umBAWQg4fnAxEciT8TzZfohBO6njq3KS/LTfbGd17x+viTVFe3RY4ItkVev4cMVys4ppgskRHy6zMK/2GWAOBms1Jladt3SKpcFSMfkN+V8llHp36zzDf1cob5U6MFQDxXFvmSdLLsARyQumAhaWC8HmCXMECl2IL6D7Xt+MN6DozjwIg7snGHYlwQFkxaiVvTzBd3yKeImeH8L3nHAdLio4auzHwLhfuo4sBNpi2va8hrmp5THnxMoWQ8NXdCw+Q66G2YjPL+DWCd+9ycj6+MI8RnEr5hvr/gX2yu0E/79a8P124IXVvPCwv4M1l9DqhO8vYf7NWaWqJbCom14sfkFjVvwlpEb7gkcZBm1JX39CPninNPvjnjBErf/A+3+LemP5q7lPR0fKEbF8r0mqYr39pfs9RmPoucJjj7sidsdUXm+8XO+Dac8NoEXRmEegMwP33cFO6BjLJasV+fZb3VIEBJ2SBg3MTORR+VEMpphYXBFRXQN0S1gqsAdE0lcTmNGKpctPG0zQlrOc8iPgPYgFwPxZzfosaGWZ5i2oMVzmw7W1xFiIWyOR3QhfHFb8Nn6jM1qz3S2Q0nkfAezCWS5Yf9kQ7XPFowmwP1SMcwUFRVzd8QUHHfbEU9ix4hm5Plc8SfP1IPXXCRbsLZmoi2h8DNm4QSnSz7OV2wrC/od+KvcHbjL3P9VU6KrBhmX9K0hV/sDyU7cdF3meh8Bn3PgfntU0NR9LjSWlef0xOOcJYxfMsUFwpQLDWacylOMKVCPSzhVsDuBqxMqrlmkGyIOR35rK3XHUt/hBvCvMir1emV5X1s+m0fUSWLfwf4NdGPu30DJhZt4vMnpuQ8Za/+DVCDDGZoRi0N9z+PmwDVmY2GrEAqcPAUyMozWGKtoZholjv27f2DyVyg5WEpUBbJaonRJtZ6ouo6LOvD5XCAapnaJDwWvSfwaT61hboU4T6x/MeKPYfn3z1l8+IISYcHvweYsztTA/r5nP9wRRkd8t0cKjfrZz9FHJxT2DVW1xvcl/uqc6Cru8Nzh+Isy8K+WOZjrIeOkViSBW2l5FfcY8xhb/Sw7AplrRA3Mi8SFcWy9pb2bEaJh6nS2jzMCZsIkTcMChWKj1kxqpEnZ6TY0Bv/ZkmSLHE7XOjAd1FtiTOyGAmKdnQItfJYiX+4jXsE3nWZUmovJcuoq9owEtjjSYbfPhcYRnjFqhs4SC8vm2SmcLuD9GWwvIG6gm8h7kwU0z8TwuXn4ObH1eb0F1kTWKKupZhYfa6bdY1KcQRNhuaXq4KLPWqyRCkcD5RLmBqTL7fg0QbcF75lJwaOyoC8MnSohwUq1nKiRGZaljCRX03WPcbEgFIGu7BFnkLEhlgF30sJqYOU/4/H2MTt/y9B/QxD3ydCWx4Pj8eDYk3cOj2HHI+CMOW9ZsiGIID6fiTsiI47VodB4aAe3B1CKbl7BakG9F9q2IyXNjjM8Jch1bhEMAe4dQTVcnixhdYbsPOw6ikpzdFJAkbhdXtKXY6bVTeSMjNkpYFGhRbuOZjZx+ngi+gWb9Bw3Nkwy4dMmd7Zs1lOeLD9juTymuwxMU6TmhhmX5Ii6BouloaWhYzt67t+HfAdtGlg29FVJPyvBD7AfIAb2h3SSF9Hw8+lhHgSZRC9kg+2Wo/glVf81oSpwjyJ+FmH8DUzvsUPDfH2CmIqbzy6Y5g1cW+gsJZ4VLeiJ2+VrpuMNlVtRrY+JNcTnCakOe2cUimPN7EmOZ0i+JiYY2DOWIb9OnwqNoxKpDQs9shgG2qAJKefOmZjNiz8rJp43LZPfs16/ZVCJ4fQpXXPE3CUWJCbn6T92B2eqko6Cz5ThC368hP5HFxrn83x0eIEgBkxFmOYgmm7s8T6ivbCKcyKJUHtICVN4VFTUdo+1imS2uIOF56fXokgw9xAGIdwGYiVoKdAyY54sKwxGaToL6EM6LFmUlRJZuAuQcnrxfUr0KjGVQlCZ9mGUIinDzuf28WcCUSd2RcdUa9IUs9AQCEqDWJTMQGr80LO/8egHtibnh7ZXpCJh0brEWYMCZusWxNLsLNV4TjCaqZ6ydbdx5NCgBFUW8/VVQEm25iZq9F4w7wTRkaA6VDQsvFBZi580443BTAXjmBNQXZlIFmKIpDEnp+L3KDeSbMKvhCg55EupbJJhDKgWpi6HFf2cLA7fqsSohCJGmtERk8OVPguF3AqiYZwGbrf7B12WAcqj/LdKueMslOzLI6LSKNVSRk8zaqrpjHk9Ma06UgGFRGatwqsdXl0x6jUfTyLaCcN4D8EwsWMnwuDAjFkEVXWC3Seiz4500wCbKAxKEZqaslyinYdhJLiE+9gjsqefRu4Xa3zYMLqGpBRqPiI2Mo4wjUIlwqkAIqxTQ8+KmCYGBiZxpJghgjI1WFaI6tkVFVr9dJ1Bs8rvlw8HHZyyMMzQSaj1DlN4CqmxqaaoIv2RI+iJENYwTBB2+WBRCZYHBW/y2V1kC00BwSi6Mqfozp2iNuC8Zlhn79w4WJK3oDS24nvxquhEYkJUYqgsm7mhtY7Qa5QInUqEEiQaZq1hNQoXJLQRtjOFm0GMBbFtyHLSbLaQk9gN/QB3t4J+4KXlYnE4PlKO8phSwZolEU2ZRlZRULpEmUeocsIt9oSkiKlGhxneDJm2Gfv8AADGGShDwUQhI0kJk8lBG9ZVuR0dHAwjEgIpbUhqojgaKWZghsC06VDRItvsGjA6CCVgWnSZ91RC3i4I2f5fCRxJFmFORSJUWYow7Q3OQSoApdFxhUoLQtiy348PWnMAZwfmppMJT4fFs9OWYDXpyKEL4ahrWA4VI7AVR5REjFtEJmyhKUqNLhRhphHxpHECJxiTM1tSlXCFR2lFrQILIiS49xZJBp+yoa0p4MQKWoQigQoCnUMsBLVjWt4RUw++RBlBHQCS5D3CwIzAZ3gQzd24o+8ENZWo6Svwmrm2iE24WOFF0Q0D7+4U5oHIchkEEZinXFBFlY1rNIlldBiZUKqm1RVOZ3t7EyK+DSSgqCLFDHRKhOAQORgNhAzmnUQYg9CHRCRmsS0TOgVMECQlouoQ67EnAb3UhF6432Y707GAoIXBJ3ZEeq0Its5mLtFBSvnfkQPdXuARidy7ln4IJF+QmGWwoplAeRgteItzhnavH7zuTo8ydWo3Qu9yTlGbEkKgnLeo0mc65bCkTJ5+PhETRK8zj1CNEBwZSB1ReEo0lhI9KYZtZBJB/CdqcpboTsGQXEkKBb1W2YCmgkVNpkWPOyQKca8gFUyjYydret0R5ymL84OFpLJlcUqUCI9yr4KtapmURiQQZXYQZ7tMSC483mjGIrDXD2dcnC8BBZME/DBinOBkBip3WQtzcK5xhugV7mB0IWkPSWPmLaZxaNGMIUIUoo5QCM0EcwGvE23tSDpRe6EwisqS7+gpoU2LrRyFnqDM7Nk+QvKR/X5LiJHJ57uQpI6UEpFPqepkGptWJIlcJCEkxbYLjNZnmpsvciVcZv0N0UBSDEFxt+VBwMqLZ3nNbbbQ9RDVSGduEW2pxoBOCRMSOqxQyuAXkaQcMXUwBcpGUT5T6CkQNiOSPKkX0AV6UhSSKW0KnVmi1UQ5y/uR32oUFhNKjGgKDTR8r1vWQdDbiO6EacomBIPROKtIWkilIiBsk6cKHVUceSQJT+LajeyUgmBJFIi2SHHIpfI1xJKpG1h/1Gjz497XH11o/OVnAyKKTSjoYs1OVtysnzLFiaH7NTpsuPBHvIhPmeYd+6PrjOqOLSjDRbPhvBY2LvG7Q5P303a88PAswDhE4rbHW0v9aIZdrjhxkcd4Bm34di50RWKygNFEL6Qxc2ZFEgTFpQ/cOk+qhHiUK9VjY6iUZthXvN43PE2KfycKqyK/WVxxdXyDD3PcfolH6HR2jdbuMTqe0N1d8Xa3fzBi8AwQpejliIljnE30TaB0nue/e89iG/g8vOBJ/Dmvyjv+5uQb+uRJ7w+rvxZYGSYjXJddRoWvDLQF5ZtAcxUJdqKbfUQbzQtb8Liec7exfHhTEESzThNRjaRTT1pB2Hr8VSQmhWp3aKdwc8GdgaSExIixsHoMVQ3697D9Bj6TxL9THqXgf9TCSw3zaWTVb5kqx+1JS9AK7r+C7hm3m9ds29+i1MPaQaufk3maH8Dcwbha8H7xM5QdqOVbarnjuXzOY35F++SOq7/8hhg9i390zN97Ns1r1vU71mXkP/zCoSKMf/gt3P2BTTjYL5ea8raiLhWPPjhW14FrBW80jCK0IWJs4vTxCUfn4G83DG8+4FvP9DeXxPmWK7fl7tke6RvS7Xm2fP7iIyw75COkj3Ac4Wuf/cjX8ZwuvsCz55YdQYToDVpFjuScBV/QlfBysc788Z84zr/Mm+C6zZsgUw335xTK8bi6ZF7tqYZfUE4v2Myuef3Vb/GpJ/y2g3udDxYVczbXZ4eO3McAazhdw4vX0GrNN0VN0IYn5cCjauJ+p7m6q/Choh8qYiool4a6AdXkDnoqIoPaElHcrBTrp5B6TbguIFnGekIvEqux5nE356kE/kKNSCm8vYi0p6CYoe7PEGlJKucPJFkBc27vApudf/D7+pefZR70H27g/Ra2zOn5jDI5Hrt/opE9pvg5pvwV2+qat8f/leAN6sMJdBeko9/D0bcwRVgHiBbWj2F9xLy44rT6wETkWnVEscy6Zyw4xg53RPeBIAMu/h5nDSdf9Sy+0kyvRjb/20fiBP7bkVQcvEgWwDKxfxJQKltrNg7kFvpbxVLgM/Ie+d0icn8c6W4LNlclnYV0pMAUFP0XWPeU0b3m7btt7jg8YPwLk6lTXdoyyp61aXhbLImLSPpzh11F/uT1I3714TM+pjv+Pn1HnzxDtyYEzXwBqxOYrGLdGGIUUjflAreG1TLrSDaz3CE7McIj4MZb/muoSVIgYtBK8WIBLxbC2MFuA1Mf0R/2sNEMWjE9X8OU0PsjTPAsunuKMOFCT2LkEfB/IaEj/N/Wb/hDZ/D+rxn9/4GZ2vB59WtsNXDdn7D3Sy7vHdd79WA92lGfSZLzlO9EGyO8rxI2BV5sd8x9x/vZC96oZ9TzLUfn75DguN85pjGyOE4cP4Uxee78huAV6WOCfVYn/gLYTIl1P+FtyGACPUVIzCNE7ejtR2KhaX4ZqX9mmd4lfvubkDNOFxmkciFyO3qStaTlaXZDau/AT3SiGFC8IPDfM2BS4m+2e944zdR1jBKyMPazDRgHHxrYVLT7iXe9fbA74Z/+PL+z37yD/g76JEwhUhYD54/eUmuNuTzD3H7OfrHn6ulHvFLEjc3GBOEKxndZP1RGtFKcMmPOjG47ct32BAVB5cxrSblI2ErJXo4I2jKUCjGRs2Ph8wV0m5ZN+4rgLeHdEcnW3McN2/SB1CTicci+UfsZuII0OMLoWJL4Ck8k8Pf2PR/1R2Kc48I5gQnhFlTAz3t8MzCpHPP30ELjL19kh8Wbm47NFQypYSePMYXj/PwdVdXlKPpdTR89dykQtSfFNxAL6mcj86cj/g42v1HEEdImX0AvLPzcwq4O/NPxlrE0HC89R16T1orwViE2UJ6+pVgoTnEsgNsWXt2C6ybevvoObXXOIZkJySf8GIgC/hC4FwtDKgynMfFXU0b+f301cHnnSH6B+DIj/Ud17vwNBXjN/aDYv3rYvP2f/10Gc/7u1/CH72Cy91w1/0AhcH7nqZNQF6fU9gXrWc+bz+7wkkjbHjrF0Zeesy89/ZVw9Z8FPyjSdQG3M4pomONwGLrUoAWeLAfOio6bDbx7qTGp4ogGqzXlc+AMxgHaPRgnFPcTNsB6suyLAqkUcUaeh3Oghu5dy5v3nj+Jgf+TRIwIH/f33LUalU7xXOBtgZwWmYp8v4C+Zn3p2N/bH32v+9GFhlWCIGhlsr1iNOASkgJKHPpTwqKUKBwKcxCC5rA+i88pzwpE5aCaLNhU6KTRB66d4uDHlTQqKki5TZgAj8aRLVkP7mQ/WAke/ndQmqANSieMPtiiHbhkUQQXhcPrnd0hUshouaqhVChRZAWnQimNIjsfuocBLUC2NM4ajTwzkrL1o3hF4SKVcxRJYVKJFp2FsUSULRFrcvoPAUEIhy+jtUJrMMFivEUKUEZDkStgbaHwimYwTGg6a4gmFzwoDvbiKVuVBQ06W3VKAyoKxZRt63XWvBF1nusA39vqQa6gdUro6DAxUKEwSuMPEuCYFNH9/5qZHzF3h+cKBpH8x6mIVoFKHFomtNJYNQPd4UxBFKi9QU8KbT0UGb3qFaDBFBFbCSpqQpihgsZOxcFmNqGMYKPQjHm+pxK8zcLeolCfgkqzJeROg9OEhSIcHTq+KkvbQjZCoVSWGkt5WMXZGDcjU98b+n+SZgqogzVltgrIP+unjkJn+0DNYfGLgViAyo48JYJRBqVLRFmSypbIRczIbzDZqvfwUh++cEbzbNDUUeN0gVI2V/NKZRvXSWFzQyxbWaIzWlwddDqRrGx0GVmKOhBnERUMNmW7x3CYFVIWtFkUUWWLxKgy0quVoFVG1v5IYgooQlSEB9IcIa+5oA4ol86WgROCUgmTPGV0WRuWCqwxmOLg6kv+3tnSMlssfp8OJ7nrooJFpxKlE5Qpf2Stst2laFKweTXogJgIJqI0iI54XM4smAQJCmYpB35WKYOyZCdFFHwyv8waJzk8xoRKeT/znsOcHl5w8gU5JXD/nPf18K0/0VWVUjhrSTaDiUUBlbY5+cbUWFtgI1j9aSoCygSUzvYLoLBGo6zBaP09uvfJ8hMVERJRMpIXD9/3kynwp6aWCLljOGaqjpSJWEwQPz0aRYwKHbJQuSRS8oNzrAoewUOIeb80OrMUlFCobCbsotD/M9Zd+nTGCN/36NTBK7HWkZkOaDQxFcR0QGZFoQ9nbbYAze9sihyoannjzuexReeD4nAoZsKTITcbNX8k11YKlCYqYeSP/EXkkHZfKFShMDbvCfF7m9v8XPLKihgEGxJ2Ah9HUD1KjRgVQB8E7kSipO91PQ8Z9vCg9GGNiAgh5IRoqpQdvQSKUKHVhK+zzb3RCUUg4UiMfK/0R6OVwmiFSpoUbRb51wk0RKcIMbMrJoEggiMhCpLOdvPKpHziJwGnIRRErTLarxL6cI1Jny5KqkAwqEOadg6hy0LgbBKdX257WOFRHSytD+v+AVI+yI+SpAQTIyo4oCQiaCVY7SmNJ0pBSvk366I4xApk61iVPXoRnTN/U4RPDiYai9UFVtm8sVYHdsJh6zMHbQ1y6Pyq9MM6lAxaeBcPMP2nTZnv3/BPqzais8sgh3dWQPlDxZ4+rUmNMbl7mY+yiKTE+MD9rjxsnVp9eluFoAY0QoGnFigkoZJBiT4EeSZMyNpWrSK69FDk55jQqGAPa9ViqQkYlKoRJSilUCpikqbwku3AxSDGoKI+/JF8eHpImSWGB1yhMiv1cD4krRGdzUZUCkwSv7cgIWXLJ1FCMCa/DkoOT0WASAySA0J/5PjRhcbLDyBo9umCXi6IMqLSPzCzjs+PW2Yl3N+XvNnOc9jQ/TFWIhcd1JPQOvjow6HNfITSlmZpKCqF9Cfct+dMx4nur0fCzDNdfUTv7tgHuBGFxDmyO6HRFaPd4fT94dJC3iVXkt04ihXUNTPpOZ/uQRJbH9mnhPctgZFbIn9zQKrurmBYQ5ob0vOK5GrSegU+odQWzRXJjLjy4bvgUcqN1g07doyk+6fIb75GmQG73GFWI9+sB369WzOljrJPGF3hT39Fak4J3XfEu5egSrQ+xijFSm2pVyNMj5DhGRQl6uyIWAhvb/+Jm/uPnPiGn0nJaCvU4nM6UzL2v8Xv94wObhOIqnDtz0h2gZwLnMJiv+bZ5jWEwM1tzmjUk0LNcqbfncuL/CrkzqeREUNk5kv+9P4xRlm+m6655SPQHa47DxvPX0ISzYf+CfecEYJH+r9FmAi7LTj4MFas/ZLxKrL7D8/QUShujijGEmXfQfUuk15vwCjLxcXnzL88InxY4d8e4V2gvWpJlWN6dkfxi45nHyf++29H9lXFf/7C0NbQhDXH67fc9o6NCD7UhM3XUFzALxX8JSy/+cDzD78mjT1vXo90Bfxq+Jy/dF+wky3/iW/pCdzwa0b+wDGWMyxZDugIBFr+iY53+KnP7ekHnCDm1aeNfI6ONcISqXIuN9MMIXBjHfvFHdo7Tv5wjE2ao+4pFXM+1K/4uHiduTUfVvlSYxycRYQFSS2RWsOFIdrEh9Fw76HykaXPrG1bXRKsxp22+BOQHaT3IFKTip+DWcDnb+D5RxZ3iafdhEzwwSW6EZo0cpoCI8L/g4gTuLwRpIOyvWNe90jM9qRJEmJ2iO4JKeHiw9fc9n0uZlxBRn78DqbfAxErPdYLw3bDuHuHnm/5+UWmomxYM5EYuoHBF7mwc8t8OJ5soL5laI+43/2KsHLEr2+RKtBebXG7DUVXU+0+xxtIy4QUif27NePlROwCPiREGsT9aZ6752t4sYXNAN/dIy4xhXyIa1+hTM1eFN+mnAki1y3Ha49Nga5JTFhk0wAKH74jpjek1PFDkfTTxxjzkd7LGT1HTJVGTjRl4fj8UrO4gXgN3+1gtzimePxXLJJwNIJy0Pk33A5vMXHJYvwFBsuivqNc9rT9kt32iFAn4nwE4/lgPnJntpgUOBdBEyjIWRlTF/kuZ5DRC8RQ4+6+AruEkwFWI2XoWbo1+MAYHUOCZxqeFflu838P4AQ+fBK/qG9Ab3PhMmXIYB5fY/Hs6fNl84Hr7qN8AqQO8EOYqPsNcxtYnQVWBpZty2K4JTnHZphBmmOGI+YUuPEjV7uPRGeJm3kOuvAVlJZ9fMab+IKhGPFnH6Ea4GYLKqdQn5UwSU07fUkaa4bf3eDebZAezN5n07ORfItblnA2p8FxntaIj9xoxygwx7Eg4hD+J/I54XqYjRDVhr6eqCTy6KPDINz0a1paQu0ZFv6PKp2fNt7fZuBnGk8oWZHGFn97RzDCbZkL2eOhZGmbTMm70JgYOb9cU3X3bOsd2wXgG+gfI6LpyztSsydNK+bjE9zS4/9sT6wC63cT7b0/hCrekJKFcYlYzQZPbzO2I5Ar2TAHNYfaQrmk9D3zqzsg0RZ9dtFUz9E8p2fLt7wkMNIGBzES6BEdaIh8kQJG4GML25/uQP3/ve7e5rv+3Tiyx+PpETaolKj6iTrAravZyBI91yzPM+A3Xh8T9wXh/Ru2+9ekXmeqLGSwQCVaeca76SsGIuFRS2oc97/v2d90nLbwVGCMhvvdnMFoujhRJM/k0yHDqgD/GPQMZE5OOr5DqW9BJaZ0RqSmDo55cgTx/E4y+LBNkZQO+obKUJuSp6woojC4W9x4S59ykvhD3tn/8jfZYe96c0RgjsQB+i22SJydCUclvB9GrsYdaXI07w1KCqrpHBNr3PWed3ZP2CZCyCTgReWpjKfxX1L6vyZqQVUDqRy57HrW91uWU82flkucNLyPZzkG8WaCbSLGQPCekGAdNBqFO4qwSNRJOI4JRs39q2OmVGIGh5WJG4T/K7ls+0het9OsYFwuSDGQdjuIHu3uyeXJeNCh/riZ+9GFxnqfD5COGSMnaC4xXFHgOa0Ty0ax3hu2FJhYUfZ1DtGaEjOfuAsT15EDWjBDq4KitFSNQfwFA8+Zao9/viYsBti/h3XHkAw7LEYSS9dQMMOZT0l8fIKwcrFRk4VsrLAOVv2GFBL3o9DHT1t4vtK9Ic9R6CB1ZJvElcmI177OoU/qFsUdojP74aGj4pOh25jlmiMwnqOqDv1FgZ7B3eB5tx+pxLPwYIxFmgti8ZQ03BB7IZusztFa0az2zOtEiA2OR2jTwOwCKRLb+Ipt55lTcIIwKMNVeYK3NX7T4Ls/Qo3Fgj+DeJJRwlmiGhMnXpNGuNrA4EDVoBpFB9x8Eskc7nIZuYo0yXI+LCixfOQt2cDtwWcHAEfr7FzzgSUD51mo594gKZB2EEbNHksrFaFtmDZLrCjEX6BSjQqb3L4ZBW5BWc38yyOOnlwwtmcM6jESJ0J3jY8j0wsPT4UXg+IrFbm3hn88VrRzKG4H6m6L9vkRBrEwnkF4BosGvqiptolz9bfE0HK5hR7FBSt+xed8S8n/wls2eBKXCAnDgjkrLI4dGaEfucVzmxfNAxFSvYGMUhcoGiiqbLKQTL5Bx5KuSNyWPYsYuLirqVPJuXtCw4pdcY+qFTIY2NX5sDxT0HhEzRB1gswFzjxSePZrxb6DUyUcp+wwFM0eX0CoHWmezVzCnuxzyznoY3h2B0eKchJOqkhKcHO4dBZEaiJr4FuyXoLshogJPbXp8xJUh46CnvKfh970DmPc50IjnpHPNTeC3KKioELugIZpZIg75qbnRHLQp6cHDN77TK6nBBb5vaq3sGwJ7og+XZDMgJwPyGzATVtiGojhHMURQYPUDmzArXe4Fn4wzTx8MDmDmc7pxyNwr2D8YbloYzCmZBJNLwYlieNuoMZDJfgm4qNGOp354axJBxH8P2d4yeeEZ4bjmGgjNBGjEkd7xSrC1ML9BG5eY+anmKSYmczrH9KawSuqqWKxvaDUJUfLSLPSuOmUcbwg6YjQgprYq3v2Co6UcCHZ+abGozBcu8TW5fpggrzXDeegTmF+C5IwaaAOAxIDXcrodK3gscmxON8oGDKIl4e5z3+kRuIjRAxlWmNo/9mztzv8PZI/c5kiMz9Q6kjVpGzjPHpK3zN5YRgtSgoW8ZSChj7sGCYFg4FtlQ+taga2ZJSnbOOf4MyWNNtB/UMbyRpoKnK3bTiBOCfcdoTb9mA2mpFM5Q8d8RMLxyVF8CyHgSSR9WGTzyqMxAC8JF9DLnx+jXQ5QTVhI6z2WUu0PWgixEKY8eDDYteRO6Qh69tCyJ6wSUFvyXoeDDNTkAoFM9DBMUtXzF3PWLv8uqYCwhEiCt/co6oJGw0Fx0jlUE88NI5xHxj7iI2RQjmQAokFiGWUxGhybnEN5LZoCYcOHabEBKHea0Ql+lVA6ZjpoDzFU7DnA57IlJXfiPYE7bPminzduf9klPnPHPttfk49gYFPoXk9SrLldSGKEPMZ2xQFi5MaFUvi9RlMFW57h58ObeCYe4hK5U7sFFfs4nMcE2l+CbOeIRqGTlhNOQ5GkiKMllHZg8bjE0gUAQNpCbKCdEz2dBbQL/P9Tc0IsqBOPcUB0D2k6TBKZuGggVJjdcERC+ok7OIlY9gTyRjkQ8aHtwctHxWJBZ9CP7VJzGYwn4FLgTs3UfrIclDYZJnJHMuCsRN265jR26TQKlCaidp6yrTE+p9hVESZNWJaOl/RdbAQy4WZ0UnDG2kYpYCuhn2V5+vwBAcMSinECMwi1icWfSQFxW5TM7kZWrUY7enQ/PbwvT51cUNhCPMyb0ibBD6g2KFpfzJ0/KOvz0MJohLh6A4WEdPvaLYRo4SbHWw6Yee3UAtJefzQIyLcpIONYl/C7Szf9WObw/8GTQwaNWZhi+onlt/eoOqR6kNLsYZ2OGItTxEMI/do7gh1A9UvULpD2bt80WgNtCpfCrwwxZ4bn7AC5zZnQ7UBupiXb67FNMIRUHM0aE5vOyYPN8M2eyAzHITmBbjqf3d+/vfGG3J7tH0scJJgcw+X/0iKwrieodtn+E5AbghDZLiaoZUF/xaT7gjdDlgdGtJbohL2C8e0BGMjlgnbTJzIDSk4XLonAgOWb6jxSdh2L5mMJpg5LP8lVBuYf0QnxazrsdFSe0d1E1DbPVdtInlQFcwr8Enw42EJf8+PsBA1worIER3CK3YYHdmfjjCHYt8wWy/+iOP208YrspA1lIGVdXgJDLeCSoqiK7DR4FZ3uPlvUeNEtd1RRLB0GCwq3MEgGJelLiZFuu01zvYUakf12Y6kJrS9RWuHud1jtgNyW7KXU3pn0B/eYirDWhqC/jN25xvS55fYyXHy+h3lMODfGcLfGWZv3jH5QCgh/QxkKbz+cMe///A79kVLsxxQKrDfC5MDNTtGLb9AfIvfdrgUfuBRTiafkg8Y94dHNFKQqLPewt4QkmWjfkGPYZA7SBtEGWI9Z0qKD/IOHRS4G36+EwYfuJWWoBSp9DBLDHrLrQ54FIt3mkqEvm9wrmDsC26lQiTi/J4kkSmcEGONzFp4cY/2nnq4wcQBtznC//ZfMrUbPu7fomKgrOGkgWmCNy6zrOp5PrhHD6FXuFSxSzWSAlF6UIl6ke9VdEum7QkiD7NOujzM3WAaKKss6J4mQoLbWLAXxagVk/FMCaZdnW2D/Z7AQKLD4A+Uz3U+9fYOHOhuSymv0BMU70CXJfZGo/cwjacM8mcQe5btP4Ld0S8rptMnMAyw3UGcsOk1ilviuie9GijvBhYxH6j9KuseGTxp6KmU4uhApxz9CW0q0LFGTzO8mkiLO9AOSsmnQTeH3dGBT/TTxzUgSmgXO4ZZZESQTcJL4CoEtgJhviaeCMWqYXZ8BE7jbWQiUTnhcfck00zkDaOCTbGjrUeGWcTOs1Wz8oIOgaMQaBI4OWHLYywe4Q6jJtzJI9xySVIb0B8heNhcgj+4HU1HhMnT+hxGG1a5FrkbNb8fDK1KxCLT/yQcQaqZiWURLJbIJANOIqM4PHm/lU+XyQeMTwyO1GgoNVEiU9pDSny3DdQabmPDsDgm+Y5iukUJCIFASRIP4RE6RgpGMODPHWlhkPUb0p2i8B2PP36EYmDsLEFOEZ+47hNeCrxcgipg2cDsl0h1S5y/BqeQ9ycwVKz2hnlWmufLbsyukaXKd8Ath+YPh+RoDkBbZo4SErSSKd/+mJwJElQOTnng2PeAEvx8JJzuif0AG0GJpUpHGCnxp5771TumWiE3muQjW5kYKs8QDWZvkQAp3eTO0uRI0aDDgLGXBBdIr3pUEZhfe6o2Ed0RTi4QInnXHSE8BXdEKu5wj95ll6itAW/zuu0hBZs9twQ+HzNFdAgTt+xItCRGslF1k2fR1KiywaeJK3+DlkBvAANFaKj8ioeuu+3hGY2FItls/lIUQiW5G6iC4FUPlRCDYbi0qGjw04aIRZk7bAkWoc6OLfQp4QVUeYcpf0uhhdnLkWQ9xa3HDGDCCdc8xknAxjWNHvBHJaGZZ1v9aZsRnyF3hzUBzQ5kYEqCMglztEWXI3HvaFuPUgFlM4Sn5BwtMySWSF/iVORaX2FVYFw6wkkJneF0VzyogfupQPF1lx2NihGqbEB028HYgR8Cs2nCSATtEOXQ6QrDmjqMLIYx8/IPmjgfLUEZZL6luPgtxTLyebFFGBl8h58MSY54zRdMknDpBsRnrrQ5g2IHVYuKGrs7QvuS5RSY7yPRD+yGLSklynqPqUfC5PDOUajEcZEp8TZkbGxye6b9O4KPjGmf6bwnjjSD1M5gs/zR97offYvpKvJvf3YDT26wNzDzgjj4uIYQITRraDaIh9ALIcEVAAppH0H3CKQF3iM4xu7wISXj600/8uh3H6j1xPFWaAb4wCkb/pxEy8j/BqqD5pew+gxVfcTMWpgi8uqAzjGAdIwErhAaDX81gzMLH0a4jLlAy35OhsyNOOa02/An4Y5t8uxcT5BE1JI7GbGE6eEv8reQqbLPgV8IvLyBm1uSb+hvvkLUY7y8Aa6IXUM/HqOBWfoOIxNaVmQcYyRxT9KB7QrUGcyLyEpNWNOySt+i4kArGZvssFzTkKJD2t+DjrD672D+p3D8HTxZYwKsPvbUQ+J0Gji+zMK3320TUcHqGJZVFhi5Tr4HaVEK9hZiQfbI+DktG37P34PukMcCT6B6N2O1eYJ+4MXl92Re4XHlOZmNtKNnugItilJqCm1xzTXT47eUW5i3ijJBceBnaycZtQuwEFApst9c4jycz1esvjjKaa7hnug91Rso7gWRx+zknHYaUW9fYbXj9vyvuVx9BY9eIn96Q9VOPL1/ybK/on8ZGNYR03UM3uPnEP8C5HP45j9c8d3HO+ZV4umFZ65ykTE5YHmKevY10t/guldMfsjzuwS2Bob6QZvgDfBDq6/J3rP2ipCOuFP/CsU5Sf4W5B3JzAnlMSEF1uFbJrb8wglf93BPoGXLYEHq3L3u7MCVXVPsLKtXDQwFkWMcM3opGKiBHpn2WS3nziA+hflHONmgvWdxe0k51OzXf0569RWjvOStXFLYwKNzOK7hbpv151UFp2f5e8VLRegUEw0TJ2SsekKbxHwF81OItyvYfZW5Cw8YHwCUQuw8e+t3e5h6fIQrKiDzjaX0qAQ36waVIpXfoA8aHAtkD49DAOkmPw4jayo2VEPDyavHWF1iOo2e4JoLbvmXlPGaJ/v/RGHuuH70OdOzC7i9g7FF+YnCf4MWhbupSF1BPXoexey1fn0KLCBcOULrKC18XoJSJd/Gz9mlc0w4xYYLpL5FVn8LZQ+rlC98l0vYf/HgQuMjudDoj9e48w1yD7wHH+GDqHzzvLiDz285rRecrR6hBs29nRhJLN2CC/cZPTuu+BaPoy8FqUHNBopli1YF1s0oBL7wkfMErzjjA3+BYY/lnkKPTBdPcZ/9EvR3YG9gdPDyPbQlyJcwPMKPI9tJ55PwJM/d9ZXhZl9mQ4c6oTBIuoB0wiLVPEsNnjVrfoOnY39YhUJJfnEfdk5MHP6vMwNLQ3SRod8yRGF7Dypp5GiGLM+wQ6SadihxJLnNjP74GMITdGypeYuyjvREkR6BvJ5Im3tq57h4d49Rie3+nF5OaH3kg/dklcG7fM4f/xu4+Bo5+gZ5/A5aA9unqGHJ8WbHk23LGuH14bM/0ZkUcJfgLm+5h9SoHwqNlNv6BIGt5Cw8d0Y+gq8UvDH5YvmAse3IIt9HAzwWuJlgJ+hoaeJjCj2nPXnH5ou3yL6GyxU44T5NqNphphmmmyGHbjMIbrQ4ipw0WezypeEPghY4muAowJ5T1vwFwj6zH+ghPIfpz0nlP+GefiSnoxrwBcaBcYqEZY9iBnwxwmOE3zDwmg2GHQ0DWae3AmYoe4JuTpnilneyhRSQGiigHBcs/TP0A9MO7z/9l1JBoyhKYTaTHOB5lc0H/byFuiM46N8BKXeRBYWxUJZQi3Cicp6KT3m6VHmNOblHJ4v6wxyCZt46ygkGzrjkLxH22Pi/MqenPVkSnpxAv8nAypQ5rCqUGByGnkTPJIIykfpijV0ppvdC3+YmXV2CUgYdn2HSI1IciVPPxJ4PvAc7wUWFnNWcXFc82jcPiiDZQq6smz3M29yeOQI/wfVL2LQQJbBgREwgFjmyWoUOI7k4p5dsTS2GJJpNrBix6NU9zfNf05SBF2WHSZF739GNljUnfMNXJLYI/xXUBsqvoHmadXtHH1HOYscVhV/waEg8iYmbsOH3455oAmenW+oKtlvop5zXe3LQy5cpXxX7aUsbW6YkuBRJRkgXwGPgwxy2n/3oc+JHFxo6WhBIU4ReSGMG+iRCTJYkikpFCpvwEbIkBuR7I1uPkh6Nw2oNWLxE0uFCaFHYBH5KiBJszPXraMiVokxodxBFhwkZx1zJGY14yW4RNlGqREHKdJlQUQr0MWFUDjFzWX7FTEcS4NJIpCMw0OEZjCLVq/yRQwfpYO1mHQ89QIR5JkG2Du4CthWsCCUBTe78qCqgy4yoiMst0jJZSnLuJRSUKrC0Ge3a64QDqjixcjvEDjj/6TsdogeVIer6B+WUJDAt2DtM7Cl2BUaEoEamIjCFwOgSYdIoaVASicHhVSIFjcJgk9CEgFKSHRSIBDsQig3QI1Ll08Up2ClkKkAPPETQDJ+EXUKME5PvCFqQ5SrzRwehkkBfKZhb0qgIotApd6sUijoljkLC2kRx7nPi8UqRKgUS0PsBLdkDVoIQvUIlxYBnQy5YtRSUognliCzusNJS3QplK0x+zCm3TjPrNWHU9FLgoiZsAtSC9IlIwEdhGLMNYTycxD72tP0NftgzkzmFKEav8aOmKCP1U/+gmZtRQ37bDsLqAD4bT9rqEl2MeLshKU8Sh/MOSZGQFCkZhqTZoA+orkM+JYBGUAG0CDIlpiq/e3GcDly84oDuHVJyJIIewOwo4kC1E0wQ0uRxQVGGliJt8bpjLLIlbQgwTpCiRYvFkDCSXaRqsuwumIC3EyIR5WcoEiHBFMBGzRn7B685+fQfMaB8tv/USnLnRxqgoDGBunC4CF1ISIIoFUKFwqHxGK1oSo0oGFQgICQP3guqiPTHI9YatI+oCbwaKNQt9sCPVhjUIZWYnQcpQCvSeYQiMXOCnRRFtEy6JulEdJ7UJwpfUlFRSyDFMQvZVU+pdxgLxgpS7FDK5nd29EgMeU9dtQeF6k8fJTajoy4ineTbc4IsSLYo0aTokZDwQ6QNDj0qgp8QIh7DgMJrj7U1FIZpGgm7SN1HGh9IWnIoFsJeAgbolSepFkXHRCRoIcQW3B1aOmxSiNcEG5HGUYaectoiaiQdGUQXuGhJfT5PhIiRRBkBJbjSEYsR7wN9mPD0h6dcQKHRWiHakNQnLP9hswfk92iSfGaUgo5Z42ASpDCSpg34Nrs9iRzOWUGiAmdQyaKKHC2thgibhBk8hQwohN7MUVoxaM2EwxtDsg1aDHNfoCQxOcF3Hq0sxp7ABMF6mLV4FxjCYc0VK4TAFAeUBDAVta7QKVCE4cBwLpkwBCNQ5DI86PwZCDt0O+RolVp4KO/xDIsIdJMwtT7zLA/UmcCYkVcv2LEkTYboAnjBhIQ6ULqFApRQ2kwVE8kHp1IGnUpER6Ka0CqbUjjA25FY3UPqqaeQxctpIoQ23x2iylkSyw4qsH2kHIVYOVgqlGj2+4R1mbqUGNE4lM78hRKPkYkkXdY/pBGRGWDynaQMxBjxRYd6IDjwvbFLAnw2BQk6b90qabQoqmg48ZoQhCnldZcNZlMWIR/MPcpZdiExo88UqJBQU8hGMtohVhO1QahJRpPsgMYxCwVa1TilGJUnVzJFVlsveqihHjXNpJmMIpQVUmiS88QuYVym5yH5cyclpDQhqUNkAPpsHFGcZQDBD9B5YvS4mUaln/7O6oPVhISEOMldhWhRSaGTxYiCOiFldvcMoSKlTOmKknOtvcvGLEeLhEii85ExQhojae/xZWKnQSehjVkZEe1IZTckaUnOIFRELAmNDgWmn2dTo9VEnEGM2SAlFoF0EML7lOnJQQxoQ1KCT1mLFTAoFKOASwmvC2R+AlZRxT12PyIxkJoO+ZHnxI8uNMpxCQr8ZU/cT7gBNh2Z850WKCyPio4n9cC9aF6aItMHU140mi2ajkobjssaBdzFjiF5ZslwJCU+eNZt9kC/ThWaEt940uklyg8Utz3KT/j9HbFLSDWQuiK7rJQDqgycajjTChlrZHdMSJp3Y2BUiSCaiGauHc+LHYrElb+mTTe0OvLSRlxxhFv+ClEFXP8O9pdQTJ/y5h84voAY0d9dod5tmDk4DZ+ugW8RpdHnBcXFirj1hLcbdDQcccqCmkRJS8GRVfzVskGXnn/QE5cxctpv+Pq+ZVPAPwq0ujj4wCfEVFCdZPuBqcqdo+I7aN7TdAWn71YkG1k/usPPHP5mznA/Y0wVZZoTCPT7G5IaUKnGMGcVHD9r9xgSa/EMBPaL92xOrzPkHc/zBnFbwnuLyB3evn+wIHxBPkSn8Z522iNnJ8iLP8EGx+nr71iMLePJnO1nS0KELiq805zKHIXlPEw8jg7/eKT/V2t8k1CuJEaDehMpXq6xSRBJxMMlX6G5osXToygpOceqgnh2hfviJYsrx9P/ZyA6uO7ucBi+as94MZxwnTQvJTFNHv8Pe/i9h20CSYwjfPyYm0Hh0Bnajm/pXt8wS3M+859hpObNtuJ+X3D8y7c8/1e/Qz8gKfI5T0jANRVbEvgR9veY8p7FxR1FZdiPE2HyOBfY7DJXNqUCOOJSau6piEWPO7ohFYf1P4DdQb2BUMPdk0QwgfjuLvM4v/ewyeQ9VILiAzQ3LK89n38bCRHemY5RDTyfXvKENV255/rI4wV2bba0t2nBLB1Tx5E63mBUpDlcrNazjrujEdwMff8MlSraPrMnPxu3/IJ/+meYEOTN04wtet9RTonaCklbOn9BlAXPy3e8mN9zPQi/7cDFAi+fAwsqbim5Y14Znp7XUAgvzZ61drh7CDegFo7Nv7zN2qf/GGEPpf7IUfm/YJJDu4SoBlnt4fEW9gb8AplF3L/do88DX/yd4Yv/V8mtNvyuLHFEwu0dIiPH4YwLnkDcM46vScpT23ec2I/olUEfGZCKNJ7ANCPeB9I0IWcb+Ko72JP89HGm5iQR3P3IsHEHKBs0mpoFGss0tPhNT9t7Xt7tsB7m44glsmfHPZqimDE/fYZomG7fMX3YcRoDn8WBvhReHW8YdaI79KW9WZOK3yF47mVEqUjsv4Wbt5RdYrXVxEKxe+YIp8LZ+/ecb+6JZwn3VYNPc66/WzFcFqhwh+aOOgrHo4BJ3J+uGWY9u62nv3dkT6UCpWrKZcFsZvBFz1jsDm5ODxnHB0CqhX6EpcAFVAF+1muWXjF2l0zDDXuJfIyBPz6VZNRZf1VWcHSEUg71fod+7aj8wDJMTMWSN8uvcLYkdR8QNqTmFDk+p/Se5/eBynve3XnuNreUumRp/pJU9OyOv8Gv9qxvLujvT/DVinjyFBHH3fpb9LhjuTjn8eIZxu2oNi9JKXKpz2nVktQ4WExEe0TX/AqlLPbuP1NfviLOBf84PLhG+9fMCUn4/fXEu7tDUFzKXcWOazSWeleyen+BmxztroMYqV3EJHBSMDGntIblckDrQArZlah0p5TTOaEY6ecfSdox+kzjdMsrpidbyinx6MNAMcGNv2I7Kgh32W2qivDzN6iZYv4Hw9FrgztLdH9tSdHwu/8yIdeJiQG4Q+kBUyaMSjRpi5Y9Xbij9VnfCk8zv6m5guWOqRgJvMlr5wGjOPwdRk10hqAirclFkPYVBsuLseapq7iVyB9kOuRXtEBAhoIwVczmBavPZmglXL+/g92AHgTjIqFOtE8CyWjseIweZoRGkY7fUsXEZ/sVZZrj9MQubTK/zs1zl+qLt1AK568vePbxjLva0j+6wOOY7u9Q48hJyA3JMeVmVv58lwgbkEMYc3GOPv23YCrS5j/B1SuGxcT10/ZB1sAVDYjgu4kwBJSv0HZFEQrmaUmjLOPFJe7JHcO6YXhzTPKGTnIqt4wgTniymvj6iw1aRfavEvsNpFuL39SMDXx8bIlGEUYh6cB8fsXFSUS8YrqZEdycTuaMSVPslyxuvyDNJ7p/cYU7GmnfNNQfKvpqROZCjLC9AtVDMg1UC1xy3E8blAheGiIFkiaSDMh8Sfzyv0MXFefXf8/R5Rt80zE+ev2jGfE/vqORMttSO52tsaZDEJholNJolU32StHY7y8b8EkGrXRCaYdRBaWqsiMO2VJRGzBKEQ/+qQJMyiDaZhJjMYBM2d4Lg0oJZMr9eHfwGDPZM81oRaUhKUXEkNCMouj+6CUUNEaZg/FkRB9q857Mr0umAFWiVAlS5q6Miv8MVXO2VFRjgR4tGTtJB7RnyoCfLlBFiTIAExn/MxQYbKHQVjBWqIxCHyyB8QkTImUMWKWJvjiE1hw+qAGKA0p0aFujJpCACg2mr6CAGD2eiRArgk+HT2Zz7ydms1VNtq3V2mRLShLWZ99lpVx2JMorJT97P4e+ItkdqZgOna2fPvQBIZWUSJnxDUUNSmXL1BTzApIqtx8P3bUc06ipikRdCGMTMgupIlPhUomKA2ac0EkOiGu+ECk0UUV65TAKSpXtNZUWlPZoHzHbDP56AhMRklAmjT5YMLukMa1CDRnYytZ7Ch9sXkdlTlOLcULGiQhYTA6IikuINZpbilow9qfPXYM5/EwBAkoiKgZ0iuhyQtegfAmSkcCQ/TC/b4UGa4i2QAoLNhdHcvA41l5hvSaWOhvb2JSpWYT8/NUnq8KDEE8SxID2iXLMFnxSJYJOaOmp0Dg1YrQQDohUDGDQaAoUAdElogJG5U3aKEEZj5iI0gakIKYqo36xp5Qe8+BC40C5ShEVU/4aCj6xzj8ZipYHq8m8QA1KFVl8bw0Yha4UhdWIEZRVBxswjVhDKoRQ+IOvaH7ftPGo8h4VI8mnrMmSmBeaVKgDFUxqhczAGkUTs3GpVzpbFcZsFW6SwWJJqmCyZbY61R6rXLZBtUCcodIxkgySCkSq7ItejD/AnD9xZEtwwfj8+7NO5VPw1CF8KmiYNGnQTHtNiEJNxBIIFqZC5cuyNSAKcQoZ8jMoleAkkZIjimShNmQL8KJDVCDIwTszORgjatTozuR3X+XOd8FIExJeDKmoiNGiQglT3jeytahCY0Fli2ZMIOqcR5RfihKlNaqosWWV7aDtJ2XCQ8bhjE0KJYJIFjMrpbAcyvcUSCmgcw8jb+mf/igBHdFGcrcAlaknIyjS4X1IOGWZ1MGuVXuwCVXmc8Vqg1UJHRIEhxKLpoTKoU4cqhiI2mfqsVKILkGE9GmetMGYAqMsJvsQkzAEDNlW14CxpDLzfqxU6FCRJKJMfKiUjxKVqbJegf9vf0jCkSSgfIEdLdElVLQ5nykpipTDR9EKCoU+nLHog6W/NhjdIFryd1IQDisk2ECa7bOMQuc9SyWXdUDBoSeN6ITYCcqEMTZ3/YxCV5oUycGHAJ8sz1U4tPKzJa8lZY5/nMge4p+MJioUFaImgp4eXGh8P1uiDppLQWIGt5Ic3gTRlNEcbgW5T6TUJ6vpw9wZDYU53JfyT5WkSckghRy+X7ZxjViiTkjRg1JoZX6Yu08+1dHk97ocs6FEOVFqjzUp/y4xiNMwqsN9CbRSB12tyiGSklBMKEaUDoeUyzrTJ4MhIvn8esC60wdLZyUm2/VGe9Ct2qxzsgYKhRSJZDRRZiTRRHIwqNIqnwtFoqw+ufemvOeFXBAEBeMgBEMOdFRCbR2m3iPaonXW82ql0DqhBfRkocwmLakeiYUhGk0yMd+ngZh0/uHq0NHA4MWCCI4MyOcHKPl+XVaoosGkhsI1SOkwZvrRDNsfXWhUtIDCTBUxLAhR4USDTkjTk8zAdSho1ydMoSLG5WHhb4AJfSKUp0I1JJqbARUSlQS8gHuUuHvqqbvAz98I2sG745J1M8sX2PgeiQWe50BBmk1Qe7TXlEOdvYRVl1tCytAryxQiu3RPoGDiEZmAfA/cM4jhnV+hUYgkKgTve6bUkaYeCb9DqZLanVOaL5nSHePwAR58cXkHKCxzLCcYegJbhMhOjXgluPURYXiMHMJmwKO4Rqkt1a8Uiz/X+JvAP/6XCWmFzVCDtbTOcVk6BoRZG9BA5/JiodnAo9/mjSt1uTfanqIujxhdz026hRBQt57aQtN7GnoSBkcgHjzcDZDKiVhG9qcLvv36l2ilmH59Rbja47oA8eDtkj7kuY7/Bqov8eLZuW8ePHctX6NI1FyxYM24G+m+2eJqz9vPAkWtaPcr+Jun0J6A/wJwGP4Wqz4w+/OK1V9U3G8Tm3+CYSyI4ReU6RGVe0Oz+I4YIs0QMCm34OcUdLVjuwqI9eznV2AqZPsLZn/3jNC+4X38NQpPDcwUNJLLVg4+FlY8j12gUTn/7r4m22pWXwIaM7xCdxuaeGj50vOeb0nM2PNvgefsP9zz+n+2qAcQSE+4JgJ3h2tITWJFCTrR155uLrjtE9g/ARNh5TK9qss2dvXPR2a/cKT1hPtdIo0ap0+IqqGYHzP78gwd9ujrb1BhQLrD8y0kQ7BaQ9GAtrB+BttTxrjlZnFFVA4xHYUKDGng1gdaH9i02Rp0FQ+6ZBw9e8aqZnj8p2gF9XaDbQeGoSOmPagRmb8HNUPk/4gMv+TG/x2/5uU/o6PxGBBSuUFmHUkUYW+QmAh8QJTlQz9n5/+EQRShMJgicWp6an1F+7M93c8cYa1wv/XIBJ3K1p11dcHi2Wd43bP/+5fE5OH6KbBiOuqRF5eoMaJfOtQgjN9WcNtgd1AFjwyR8R8FmcHmg/CGxCYNxGmPtorV2ZyyWuE3jrfbl8hxTfyTr0An9Ldv0fdbwgbiACSHhBswJfLVc+TiCO4+wKtv+CHU4aeN90WHQrMI55zHI3o27PhIJOJo80G7L2A6Br+E9Agh4viWpLZMf1rh/rwi3CrCP3yALjG57OEZZoZpWeNiQDqX90mXQRzmEZ7sMuBUxFww3zyFu1Oc37NNN0hMxA0wgh5yVkG/q7n+XYkTw9TlTBshJ21P1YL70+egLdMwwN5DqqE68JjqAazFNL/E2uf4YQO31wfV808fhg6lhKMFzJuaLlnuLwummHjtekoicAocMdKT9BotgbnEnIvzdIN56lFdQH0YST4xRo9oDinhCjWN1Jffoo3B2ZZwMVJWNzRVj9KKjwsFTtNNAfyE556WNYQJfd9RFUI1bSjLkSkV+HWDQXgklqY4pgs917tvUDFiUi40h7QBtYMhZTFnuQdasCXqfIm6+NfQ96Tr3YMvy7+mJ6HYHDQNhpGCHULCE0lEit4x8wWiZijzAqUCq/AHZmzZP3HoZx3SOfbvHLjczQDQTY05PoFg0L2BoPD+iECDzHvMkx2xE27egR6EoXfgBqoEi7gieU/7uy2pSJTbyAwh3CuGv9N4EeL203oZgUgsFO1Rg1EatVmihpIoGxL3iB7BvgNdUO3Ose1TfLjBhbc8NGTzk3FVoiL7ZE0Z3FC5QErKcRkd+9QysiDwCK0ji8VIUbrsPHieMP3Em+sBmYR+zCT1wZxza55Rpo5n12/QODb9wA0QYyC6gIuGP/gFOlj2dw1mWMA0QLdDykjqMo1wXW2Qi5EuCeku5k5pKFCmohOLF0uYa8JnBlEJ3u9g32N1pDCQZlvcxX8kVRUsDUxfI2Mg3PoH6SDTLOeuFOUpZbEkxoi7C0wmcH3+EVNE4tSTvoEwLZH4dV5P/B6lNjRfHFF/ucL4HW/ae2RKdKECVeCaJe38CCMjJ+srSBPbMdtvD5Xj5nyH9DXx6gioKGY9x0d7wm6gbfekyRNeTnCV89TqmWHwGj4qCBo9nqKoSGFA0hqREidPD9qqDQUtASFgIXbQ/h2prNnUTxnPf0nwb3A3v/vRa+5HFxpFjqxChTk6zA8ceIsoB+UOsSP7rmLfz8hXpxPy5TJrG/QsYc4Fu3WU1wPEHBxWAG6eGJ4Fik3k4gOUXnHXWNZHZXYfcGtIS6KcglpAdQ3zDbrT2L0hCdkZBIgHQlJPYEN3iF36pGC+Bzq8NKzjCRrLEqFE8DEyxT6T5uIlSpWU6Utq/XNSKpjc5sA9f8hYk7GOYywXaLYkJgKOLhu/QddAe8wP1JMB+IhSO+xTqP8VuD/Au/8MadDZiYGaqYBtFQgxUY4RJcKUWZ5Qdplv/UkTmzRq38D2mEDA06JjpGozEFekHLg3YAgIkUT5qfNiAqkKjCdLxq8f56XzsoOrKRvNu0+I9jY/86qB4gnBvyE8UOAH4HiCIjJnx5x7GAP9OBBXgfXXCU4V/LqBb47JGex/hqJF8TdotaZ8dsTs35Rsfwfdv4d+bTE8xvAlxaynWL6l8FCOGVM6wXBKwVUZuVtCqCLueE/SE7Nvzqk+/gWOxJ7fYPGcK6gzjs0PHisjRgJH4SDhr+C+AMoaFs9ANLq/wrgNFVk+OuK55AZPc1gDp4ybBW7zqXj5aWPG/tDRyKOgYEVFUJpdGRgqIK1gfAb1CPU6dwnHzCkuLxyzXyXi64D6jRB7Q2BOZIVZPqU6e05sr9GX36HGwPdO5EYODkYHVR4VrC9g/zl+dsXuuM1FiB4y5aX37PH0KYvSNHAWcyC5I+KYoJgzrp6gtCFaTcEe5yPiWygDMl9nQKI/Af9L2vCW9qHQKAArICG2R8qONChCNAf++BoUbNwRG/c4o4u1pVCOZfENc7PFPRvZ/HnAvYL+7/0PvqVA+WjJ/ORzpn5N9+YdcYqH3/eYOPvA8GgLXYK3ZITxegY3DUY8lUwkl3DvMsLVj8I9iV48KXRobWgWS5pFw3q6Z729h+YCvrhAaU31/gYbtrgA+e5+MHesKrg4gT/5OfzGw+13mbrwgLE2Do3hLC54xBO2CJ4rJgIjU77UjBWMc/Lb8RjBE3ibedxPLeGvavjW4f9uDf0PuRSp1PiVJYyCbNThhnQo8KsAx9MPNuei4e4I2qdENAO3+fkNkjVGLuVO9ijsLw3+IN/nwDsHCEWFXz7O6OTuLlsblSYrJ4spC0BtQtljjH6B9gvUpkAeWGhoRjSKeWU5WRRIW7DZ1cQUuWcAhIIZljOisiS1xyihjolaCcWqp3g+km6E8CoRhgxYis60SBGFip5idwMawgWwBGtbatsSsGyrY4Iuc0HgA5E9I+9QKVL0GUgu6alMT4oFamzQyrAqa1amZIw79n4HyYLkjBboM233kx1r7KBeo6oStfq3qMWX8HGL7KsHF7hvcYe1UAOnaHYUDMjhpFOHDnzpPa6ooHmGNp5GvWWutoSjiHvh8NeO4WUkjX/0OZYFrOaY0dNsFMopIg2BFbpM6OMdSWd2I5DJ985hyVq55A3jsMeTO8wFEd0pfCf/H+60eYKSKXCzFVoVNNsjijQ7GEus878x9yhVYofnlOEJgsNlC4sHjXy6HESD35vxAwjogGjYJp/Fz9TAAqMSVW2pG+BRhBeR6QruX2ZpqxxYcE4tcOYZq7ThePeBQhxrPC0qnzdxxIWCPhQQwHQNepodqFMJkYhk92B6O5CWA66DtAGSQatjlK6YUsUgJdQGLorcCbnbwd6hdQ4LDeWAW76ExkL9K/CPkauAXE4PwkGl9KA0RTPDVudM7YB0G1IZ2D/bwXzK+/g1ZKA7A1iab9E4ylPD/Jdz9Npx9085UX1KBVARy5pxUVNPgdl2QPuRnnwr9DbiF/HA5Mmd9Krsmc16uqljrzZIkGznX4BeKOxMYSaF2gBRo1igmKPEIbFHsESODp2hLZYJ+dSJTBNMrxGp6IuvGctfkTaRsHuVC9IfMX50oTEdXqKQpkP7J5MIhEhSMYNKamKmFVELrqhJCFPwRPFEH3FthDFxazIdo481Xixxp+HNBt9H7n2T2T5dSZUUYjTJapQSLCNaaeoKikWFixODaonGk04DUoJsI6nNzgciNegClhOUbfa27StKFEe031O3sugqcEzFhGIdDZGCJCORW0SyvdhDQw2qMovKhB7HmnlqeRwGXBHZnWVBbb3eUO80wSyYqkdo0eymmlHmjJ1luC6IG4dJLQpNYoWwYkh33PmWlBLToRSKRtBGmLmG5c0cpSJJdYgkUtkiT4RpaGl3glhFeFQhtSXu5qS2QaIH1+Uw6eMTUqVJroWpRfUD5v49Smvqeoe9cIy9MHQlIAcKm8LIDu0vc2I4p/DfsIl/yniPkJjoAIg4ajYkFXF1IM2EpthQ8ZaKPUsGrJlYHW+xNay3jtv/uGd7GXBTpnGg70iqYJM63vQVUyzpZU4EbgvPYEaCKjgdH6NdoJl2KOC+n9jREZgyJcTCcAyxFNaxR8V7thOk7jmihfWFMNSJtt1Cu6OYDSyevqE0msdFz2IPXbdi357kdqre5M0j3YG8Ano056gHrLvXi7x3tgVgIY0J32bmalKS0XXlqOiIscV3NyTtCHWLNB63FtpfC+k+4n2mfSUaYEnfDdxevcS5liQlSi9RMiDiaWhY6BUpafrOEsWgwwZtJkg7XLdHGk/8PCINSLSYvcFIwkQPGto5OAPDmG1lrd8y377BKE3pt2gmjIHSnBB0oB9akgrgvoVgKNM7mpxR/6AVt2CNIDg34QdyOATxBxMvDZQbKDQlcxZykTMgtGfUjn6IyB255k6Q/49ZRO6GwP72A8F3xHhIhTdr0BHTDxRvjtFTonIBBYT6iFCuwO2ZxpZUBdLPBBYwXgXU/YRzIMOMpA390uKPNdPmUGiNI7y7RApFXI3wMzB7w2xbEJPk7kBM2HeCdkL8IPwzsg4P1Fdhm3bkHXtHR3awSwWZ+VEojNUUbmLWXYOJ+CeKOJvlu9Y/DnAZssDye2fAGaMZWJcDLmqiOs+/z3SgJtRk0VcNxiQWts+d3V4zapNtjkUybeACmEOQBa5riFQYZtm1yTpEJ4iCRJipkYviPVoZWt3hcEwxMrpPHdyEaMHpiGiPGbac67eoByLLaZ6TpfcK4hQJPrGSSCDRm0jUgm32VLUmMWCVx6bIYifUHoadsHmdkL0iRoNgMOaEmWmIYcc6bRBAU2QsoM+ofaoqhtkcFTSr0YL7f7d3Zr1xJMkB/iKzqvommxQpcXZmNDNrGwMsbMD//9EvBgwYtrG2d6W5V6JEiWd3V9edGX7IqmZTszB2KD3mBzR4dHV1VmRmRB4RkeDp8FlNcKoNc94uNXgjjDKQTLGlJb1LMNawOnNUU8/22sO1IZkYpieW1ApHtWHcCVdb5V3eL4IWwe1F9RK/UcxqS6ZrHrW0TBhQgaIu72OCKjIavFGq8Sicglwr27YCu+F0eoWIo7ENqw7ybUf1Y4nfgOkmSL+PrqQYBetfId7R8Rng8KMG0juSqmT6nUAJvg7LLfXY0WQdnXPkXRsO7lseYFLItzlSlmw7xTch0Hx6sMSmGfU2py62jPAcm3B6urFrxDbMfUeqUzpVNp2iJIivETYINY931xtQmNcwhqRqGG1Dl6lcmPsdalgQc0lNN75GE49MG+pRGIe6d9Ddhm6hXlBmQAaesGuqDUaPMSwQCqD3va8BpxitERTcPLjheUBalA5tDdTCZOs5LDxFA5UPJ1vPntRk447tnVCsUow0JKMcYxwmtUgyZ0zDtGuoC6jOwY+ULKtIki1dW9C4zaOSEHQSxo5Nu6ZTsE3DkZZ4OnLCSdszDBOEJM3JZn/GGMXaW8Q0lFqzuaiQVYu9VSgNo2ZKxoy6NtTrLXQlIx+SGdkZMAJrRySXU7RM6NoNaIGpFLOxmM4GFwt0dyCGtAZTJn0ypeAqpQcGTQ26HUNxiBkljI5vsUZZlDWjDvLaI7XgnNJtFFLHfHLBNB2xlQvWWRVce/8GftM5Gqji2hLnakw/B1Kh9/WEpS15aivqrCOfjWgUbssK1zV0TUN321J3ljwZgyRofYS6CVxfw+07Gh1x4Z9gSenWCbO1wS0s3bHFGJjKlgTH8RQWR2PetyU/yw1d5uC5wgH4Hx2udHg/ondkhtMCFhW8dVBMmNDxBbckhDM+auCQMcdMWGvCtptQYvEUON7g+52Qx7r/TMfBM7FkTSUNZ03N825LmSmvv4L8EOYvLzlaX1GlZ9wtnuDUcOVmwVd7NUVfTbGXOWlXkiA0HON4Su5qtu7tg7LZTLEpHNUzvnr1BUJDyxu8rWif39F9ec3tpbLNFT9KaL+Z0y1HtH85wb9dovUttBtIhO7zM1jO4dUrWOfIJid9+5IkE44XnkmqXL/LqIoRKgppF2b5zTWpS0moyHgWlMijeAnAFqUAxpQsqHAW3EzRBcyzdxxxyZKE5/JHTKbkn5fUh/DL+5Kf/7fCt4rvV3G9vQC75b1ruKqnwfWOKSpKOXoDozVP9Rlfbr9i7iqelzWJa/hXrbhgBf3qoksh/x2YheKbDdumpFg9xZXf4rOUi993yIlDX/wIV2vGJxvOfv+CxRj+eeo5Wwn//faEf99+S8cGTV6EVBDtG9AKg2L54lGhQX9aAgJ+DozB33iaosEJqPGIFeZSsWRF3d6Rd+d0SUtxqriJUr6H6rvQrIIuMYRdwSM267dsN69CbJadYJIx2jlUW+ZywHN5TuuEt5uauutIk3ckyZrKOTbrNiQ0+lKRU2CVYc/HJNqQug4nyt0B+AnoTQt1y6gpeXp1SyLgmt4zPXmCjs6oXEmdV3jfgv4n8D0TOk5l+ug2d8QFXuGu1uDuXev9El2f3ZblFSyumTTPOMuPUa+89g25lOFQwXPgmn5twhB2LWaUm4pq+yNoi2rw1SV5B+l70s2S6c0pmSpLX5CIkk9PqQ6OKXNlU7/GT1r4R+AMij81lD80aD6B+hC1CetlCs8EvexjQvICvv8ZxtB9XeH+Dqa/ZMyqKW3b0fkc3zmyF570O6XxwcPl0TRB111yw1V/uqLigy/vBMggnQujqWG+LnlarfAj5d0/CMWzBfLLFv4lDwds1vTCfg6cUSQ/0Yxfom6KM78L7yU/gc0xxYRkdcKEls+kIcNxbgx1koI3YYUv8/AlcCy0+ZLy4hktQooBcTRZiyY+1LeDhcn5w+h7MhFeG2WFcuvC4As0qAGg7HdrTswVX5oXmEcuqrgjBwp3jWNVwKKuOUXoBNpUcRbSJ3dMj1e7CI2kgWUH4w3kV3B502efai1GxhykXzNLTyn0By7aOzKEI0akKkzziiz3XM9mXHBG1no+z7eMW0czbmnHkEtLLYoXwScJYgz+QDFzxd6FAGuXCldfN7inDv0fD5eGbGY5+UPCbCx8e2s5KR3/9dZzmSuuM7AJM3Z/d47nDUY7xvr4Iw9lRBgZN3eoX5GgTFCcTdgezCBLKW9zfJuzSOGLgwy1ynlds+2gXje05w3iR6T+EMhoOUGZkvgLRv7POL+k0n/CSwazP8L0PaNcOPwPE+L8nMML3M4d7UFDU9c02w0yGZH+/XPMfMrqzTk3lyVagrZKklgOnj5jsjjg9s05dbFlJo5v7JZUDLdJR5UkTLuExC0o1FM2jhZBKDFcI5SEUeVHTDYMsCzhSUV2oxyWYR7QuTD3PyV0nTYr2S7PaTK4nFWUaTj5vbkF7ecPOEPwaFmAr8C/BkYYzvpckD8B67D2WICow/oKocM5xbksxHhIn7KuGSEYFquGZyvPDcKNWshg+UXB7Fjhh4RiNcHYksn0Cms92WiJTedMug3TtqHoYJWDS5TJZwWTwzuK+o7Wvd+5yf0WOgltrm2uobph2cCZhl2qpl/0XWI5JWE8vuPw9N/C2CzzYOGlK3j7U4HmFbxTktZwpgcsWHJdFhTVGqiYqCe1kBwBS0jKKbPXz3Bty7a9RLXFbJfYbhZiSfukqX1IDKY12DbBVAloAonFP7WwMPBmDkVGMiuYf/OOLO04ufJMC7hZKb7uaFvY3oIYx9HJLzyxt1yaO/Jxif8bd29/02lgKjAk0+tzFj54PziPhGPwRPrkkkOkGqFShnR8w9XhgIngrhECB0MIHtp/TMO1w86DoCHwRQQzlGcIOjV738XelxsNL7m/VxjE3SfADH+HXZr7Qg/POTzrI1db7qOtdvca4qfEAjYE8pl+3VgkhPiphEAs1IT0e1768g7lM71U9solfcw3ICpYb/odkPBZJ4qxHmP2RDUEchkJK+p9wBuy956EG4sC3ofgJ+4vv7/b8DPILdSZ+YiJxn1DHu4gPGxb4W+HDes8QSrGIzasxnSN7m1GaQgIxaGqIQHBrvEovr+nqmDUYtSQ+JB6WXZtQO9lHWLS8EbxxofP9wmb1ShqpRdQaE/GOqzt48SsYCS4fmhoBHvPHAKr5ZHGw+03EUsf2PiwFqTvq4aQFQv190X1f21XtL+hagiuFIuxhEawa5khsM8Q2l94KSK9//vgg23Z2cYPW45KeA3/EFXEu9Df9b5FhMBj01dJv+vQu0kIQ1/+7QS57OmfD5uucK9TjA/lCh0uXPqh2tiXHaC+T8W0e6v/ElXEya7shqDnQtBl388HD4d+d0DN8PleQ+4UyyDMMADCyV5bCPUk+6lWPIh/vI77kEGbP3xOQCQEQRpBDL1mUsSa4L+phB2kbr8ofX8SQaXvo/sKXwgV4Hfh5uEdkYdjr73+oLJfy+FzH6aeCaIOq4l/1bzow19FfR9G+UgXW7m/l+qgx/XehAohIYXV3YVidmINWZZ2pkr6wOqQllzFPKgNQXZmU5Td4Zb3plIx8qHG2OuXZvjSIH9vFW91J28RMIlgel2X2CGhwgey2w1UQnj1o3lgY+9HGEE2srNpw/jFit/t7PperwxrCQ/GJrsGNPTZIag9CE6Cd1HogsPVgw2R3mCKBndRa1EjOxuzK7oYjDG7/ij06lF63UxIiW4YEip8+KxD///IvrvTaw+HbftmxKPYXufR6z3Vvhr9/o327zA0yg/s2V7xh7Hdr9F7czuIc08CYoL3hshQ54qI71/Bvg4yG9QsLug60TDeCitpHyE77XX3nqz2JbGz8KYNCQMsiJWQFMXr7uu1fzYzWC4NBd7v/7u68SENv2ivZ1UZEto8qLidfPt/DB3Y0NuJoQ8LYj3Sjw33zci+HTTqMXSI/Hr8//8hurP8kUgkEolEIpFIJPJp+FjHvkgkEolEIpFIJBL5FXGiEYlEIpFIJBKJRD45caIRiUQikUgkEolEPjlxohGJRCKRSCQSiUQ+OXGiEYlEIpFIJBKJRD45caIRiUQikUgkEolEPjlxohGJRCKRSCQSiUQ+OXGiEYlEIpFIJBKJRD45caIRiUQikUgkEolEPjn/Bzn2rXexfAuLAAAAAElFTkSuQmCC", + "text/plain": [ + "