From 2f4967745053203be9d4f22738067d9917f1a214 Mon Sep 17 00:00:00 2001 From: Pratzybha <84196704+Pratzybha@users.noreply.github.com> Date: Sat, 26 Oct 2024 20:28:43 +0530 Subject: [PATCH] Add files via upload --- .../Dataset/README.md | 13 + .../Images/AgeGroup.png | Bin 0 -> 18995 bytes .../Images/CorrelationCalculation.png | Bin 0 -> 110235 bytes .../Images/DemographicDetails.png | Bin 0 -> 67365 bytes .../Images/FeaturesOnlineDelivery 1.png | Bin 0 -> 93681 bytes .../Images/FeaturesOnlineDelivery 2.png | Bin 0 -> 84148 bytes .../Images/FeaturesOnlineDelivery 3.png | Bin 0 -> 104255 bytes .../Model/OnlineDeliveryFinal.ipynb | 2422 +++++++++++++++++ .../Model/README.md | 157 ++ .../requirements.txt.txt | 10 + 10 files changed, 2602 insertions(+) create mode 100644 Online Food Delivery Preferences/Dataset/README.md create mode 100644 Online Food Delivery Preferences/Images/AgeGroup.png create mode 100644 Online Food Delivery Preferences/Images/CorrelationCalculation.png create mode 100644 Online Food Delivery Preferences/Images/DemographicDetails.png create mode 100644 Online Food Delivery Preferences/Images/FeaturesOnlineDelivery 1.png create mode 100644 Online Food Delivery Preferences/Images/FeaturesOnlineDelivery 2.png create mode 100644 Online Food Delivery Preferences/Images/FeaturesOnlineDelivery 3.png create mode 100644 Online Food Delivery Preferences/Model/OnlineDeliveryFinal.ipynb create mode 100644 Online Food Delivery Preferences/Model/README.md create mode 100644 Online Food Delivery Preferences/requirements.txt.txt diff --git a/Online Food Delivery Preferences/Dataset/README.md b/Online Food Delivery Preferences/Dataset/README.md new file mode 100644 index 000000000..b952e23ee --- /dev/null +++ b/Online Food Delivery Preferences/Dataset/README.md @@ -0,0 +1,13 @@ +**

Dataset

** + +Link : https://www.kaggle.com/datasets/benroshan/online-food-delivery-preferencesbangalore-region/data + +`The dataset consists of 388 entries with 55 columns, providing detailed insights into customer preferences and experiences in online food delivery. Key variables include: + +1. **Demographics**: Age, gender, marital status, occupation, income, and education levels. +2. **Geographical Data**: Latitude, longitude, pin codes. +3. **Service Preferences**: Meal and medium preferences (e.g., "Medium (P1)", "Meal (P1)"), ease, convenience, and time-saving benefits. +4. **Delivery Experience**: Factors like restaurant choices, payment options, food quality, tracking systems, and road conditions. +5. **Challenges**: Common issues such as late deliveries, hygiene concerns, wrong orders, missing items, and delivery delays. +6. **User Feedback**: Reviews, Google Maps accuracy, politeness of delivery personnel, and the influence of ratings. +7. **Outcome**: Whether this consumer will buy again or not (e.g., "Output"). \ No newline at end of file diff --git a/Online Food Delivery Preferences/Images/AgeGroup.png b/Online Food Delivery Preferences/Images/AgeGroup.png new file mode 100644 index 0000000000000000000000000000000000000000..24d0e9603b5a93ee044d89dade4f7ddf834c5754 GIT binary patch literal 18995 zcmeHv2T+yiw&hVTtzwI93kDFd6%;{K5Ja+ypdd*yNDz^%fRaJLi~&WDM3JD9!$Ack zhZaR7NCwFuIV<5HdDchYdhgz;nVNZbQccyf%7*s*=l{R+g}v8Wd+l>iRr%z4Mpi}& zg|c4$)Cn~TWtBFCvZ8g(FZh=qPB+c*L)1Z5$3flJ%)#0CiYZ0O*un0it;0pj^E;eO zuh?7K+8o+1vR`1|4hshdJA1JM2QK~F1^aEUm>+0nT;q+KthGC(YfqtUFeZOj#7f6l zQYi8f@+XdIxI7!;(j&L-Wt_4^@VK318HwU4*%D(ss+sr|+A!f$W7Zb@)j zk7)L#NYACT&vg%n<-FY!B2csjW1-lcE)mTpzfdyRexs3}1uJjyk)N+Aon$U3`;KO; zBtO^vk6(@mVimF37gD}^!-fr^QXWl>J%!tX1qtRi1|oS$DcP% zQyQ5$Ilbl>51bf1%)NWJSZd%qG46qfB5jY$&1%?eb2^9BC=sXDXj4>wWjlPa^4+Co zE_v-_!@9n3uhH)NHeaGn2TpcBRf*S4F`LCthspjkX%)u^DYmj+GHpQ%5 zE!i;FVJvr=m!H49ky~7|tLP!ircJMcg0@PI7w@vFjeWwj{YZq0)Xa%cF-NthyOmN+ zO9OsSdJ&=O5Tl@|=vQv0K1Ux3HDILZ6xB5{PzpjV>JxRTkydr_1N~L6o(WqA7`k*a z?9tW~3Jwk)Y)VVeO45t!=s2eoa#$(XZHiiMX5a7pz2n$I7w1xCs%4GC%(&^y?5tSa z`M#mL1ns<&D&!3UCPfwtvr|?z(GRIqYHg0Iy|>iUJu3Bl$vH1OIy#y)E_L>n1;08S zxPR}yePxYNEtPjS?h-mzK+%j-``8#oIr_w|n~`EuO(x~z7Nb+t#i?YkxZ}4OoANxe z4`2M+(Oq)itU6L&FU`t-ettgHtekafv{hW?H8s+GH1ni-jB*{8R`bPihCLd3vuT%_ zweUIALJnVY7^vo!T>RNp^5u(D|EBHR6SEwL0-o8iZr&V?-%3hLOEDN#e_lB zEZ4+;!9KI8et&zNe^?mpm-Vc%GTuys?fLnUOC06A#RD}lQ-S&Ovc|^7ry>jKs+H7ZA?mc_jHAV&o24?5lm-fp)J7|1k zG_x;^ZT}_?j<7xY24}|}v5VK{dwDUeUS0a}G~S$- z6}GNdRF77y>M0GJNaT}}!sb-Exq8Ew^Z@*~#4M#JZmx-*n7B_VSWtFqs39;WCMI4Z z?xpn7Ohr?QdBytlv?DF8t->ZnzsgtVdCX1r1R9Bz9q2a?dHVDf9vAO8RFCVaEiEm~ zzx@_b^pMTEyZDKi%lC-Lr7)>LKR+({!O9mm3x&^Rb{WobTrf8uy17A0wI*7LOu6@W zeZQJ@UW+s4Qv)?8H50V_@px8YtH}JNg)!F~CdSQyeEH#)*oSp5WLC?osi{#5>H2di zxmCj2?Osc{9G*Xo8UFUS;?`D!KmPcGO!i@$mLS_D>vWHy`lP{{7+;KSCr(yJ*V$1_%53-M!n8Rj;)*L&$pxU_V8!4COPzMR^n0sK?GUh^_r4j9%JZjesA zdv{HF@S&4QdTG3q&!VwadBnu@9&9T9O=bDx+efSBcS+yAeY>wecb|pN zVR7EI@#100A0IZ!8q#)H*C(Et=q*q4TyT?>m5pV;yQ&+0b^P8tn^sx|;nQ$o&A)A&XGjnqZ<`rQG6K9^Jo00=s z7w`Y>V&hBYP_ezdybAanb+Kn&k%M^p{mBNJL0#18E%IvT&P5c`Cx;r6PnqP+>nW%a<=Rm6ksjtvMy=I9Mwny)>Uvm=hVvrH*saH9Bg8Ck5`T zTWYdS-Xh3sFL9cuvBS(!h%*_(@oOcO(gVC5Wv5WcH^7CmW z7CSFAnQ$8ZY8&x@7*ysZ*y8 zB6VeCWCZOx`G{F(6NUNCE^Uh4rYlRVZ7Jp|nn`+fZDH<{y!q;@Hn59D9>||pLlUf+ z9H{B(>M{w}j#J}S3YU^>w+_2<<;rl3OgWBLMU{7KEKe>rLzdfA{9^mkoR@6;(sa95 zAeVPjvLkZWdJc&r6%Gq=HkqT@V^X4`$1DQRwQmP*Dh zd?soi?UC&{H9 zZgK71x%2q3W5-;38xpj~0&I@__#!^mpEozkSO50UKmU9t<`}PUu;gBmFgrCgG}T}f z$fXo2miEWg8nC^{~G_Gc$G2P9oCmEGa3e9&SwGUJz02VHL7?tZ!hDh7G}f#IC@&EnYL> zg3lQQg2DQv5c3wKjc)g*`T+j34#Qss>SzXM%by9Crbo9l>m=)@L>~$9`-HF{>`ot+ zP#@iE)qq4Ahz~!W+Gki%lV+_wH*m4Rsy;Co_$BfA^X+qKC$#R}yZ5=Kx3kkY|1d4m z#x(5d(_Qj2zw`{%C7sn~;nS*3Z}&{V-?Mx7?hUA~PPc78e_*apdPx@vqoO8kE^o9s zUFFjwc0T&gbY4Eb(+S$i0g)?{%h|*nV!2qhQr#x|pV+!1-*YYeIQa{Ohv_{Fg}F+k z{pzdQS`9?>a?jjTw1R@8$P-FMK@tsa-5kMthkG~9l+R(Bx#d?gZ7-hK(cChC^$X+z z6p268{Mg+gDq?XxtI%VCBB`E5s@oyQ(@P6I$lcEv_Mgpmy5yaw6^o?9s~PV%meZn_ zD5Vy_Hys-h9^SrwPAgI83=aPI8r)u0XdOGrVDHP@_h507BH2ugP z#%}`yuBS`e6I-UcwSs=nVrv2H;Fe#{c6guK5)vyfGK-PNls~~lIO*0^FJ<*oEuI*9 zEjS_uB^H|)3^~m!+Vo1Mels^q8&WZ0pd^kEmiLmd(4j8WH_d#uHMFpZ<@(&-o?pMc z(nY8H&w5_z>!JHEW+Y{Dg-Ux#wUa=k(eG9fDjs9s_oW8`U|N!9nCte!g!$8#Q1Ou% zWv9`W%;HjjyTQ+U!fT(ZNbQvuyV8AE?$P$Rj}Nw3f4I9bAY4$FnIZJ03$o+f)P;sT z@ATP2*}8zz1P#f_-SJ$QYPhNrS3Z`)KuKTam9^s9&bz+8+D=aIkRAr?np&o6zP>Tx z7H#|b@>27=w~ZH@QZ1j704`xN)|7S{vE4q5zL{SyR>7aQDa|?%L$dtr^z-LW3*Zsz zqRX91gyMbMrrk0dZtxpq)p}0cvA)#!Ru+j@GxJIhGYgBUZN-9VMufSV$3(e^i2igw zkfg*V0=#c9tlMstQi5ffYO$}7pY76%50iA??4DRzsjBq+$QkOmeqR9Fc`$(clAdSw zVUKOww#~K4zP*8D)ms5AUdUeJ6@o=uJ*HcoXJ|1Q&0T|o@rN%pol?8*aUU!6%}Qbx|&gF^s}bATIlM}?^jh) zz(r~h-w{Uel&KmO>7Ie7p`l4Qzt$s7X|inrB5f`*8zjD8Qx2C(DlR_7Ze>->}ddVrzxnMsL8d+^`f=&9?b_g@h&pZ0L5mn5_h?)a*b^xCWqJd8l~$shH`kd#wG?)r{SO?pKV>=3p!e}ovne|seXN;s#R50 z)WtPM*-j&G)6LDy1_43q@2qDVH&7X+4SEnb@~gguL4J{&vBg? z&)wAa@G91iUc-3k&>_d(vTc`Ivoz!4;;4}T^n^4hJrmkn?c&YEUX4A`JunalP1JAu^j&TX7FH2OcP*ftO3X|hc+YxHsg@UBn8vB%UA`6sUbp3B;1;ZI?)2ftSD0{+CfP$~WvW28{O(4e+%^;TX_Ssf6Cl;B^3g{5p0a~WRVO(C4iW8` zmciefH*cZ=!;4y5TW{UD^X%(a9sAiy%NpeVU7xQmElkfm%50@$ zs1ATj=mM^<=iI4}aXbZBY4e=BqzW{pajTV3D2l_AwB`Ep45V88$P{{0|GiwNh{@7D`&-cBYN z_YfejIudnPZ?740bD4>+q!}Hwr~l>);LHmgUh|hhz%K$gP1G9Umi8o!Mk8_;wYRrt zWMw^zh}bdF|H}6nKt^lryDg3$6uVuAO%(dy$y2WF6vb)8xrjsB=usW z8n&r6@J=_*(W{fbRtTOXi@tyVeq7({ZxqVtKIl#vO62(6y7jk(`H2cKfB*ymO#l~3 z0B=@Fx77KCg;0Z?5UUvU?HPzFwYlTjKdV&*!rBbQpFdZnJRajeIUjF{Whnf#I^ZWVx zM=i~SFP-W85=zjWtGj#ioa98=p=Uyt)P=Obz`%uep!&hK-0T}SZV&~DUD{Ls<}d51 zAt51cu6?1+S(4n?Hj;q?4@40){D zS9&oPpqQwMws|wrhMqH~xj%~7t~fg%sJcY%rAqh9s#%#F7!a^qetcrW-XdJwnMQ;e zFa(R1jLXY;+VIMix2%URk~_Jd4cu?w2jK~dQg3#ckI%1BF)`wb%eT^q8ZE9%10^Gh zQ<_by9)is4bZKZ?@n>G$!A45G)OWLFD5^#3~qM2o_l&ND+Yi_e9-h7mVPpK*a#K3{^K8tv*C8sbBOAtQ%e zgFx9z4mi^L08~W{4GllYQqZzmGE?3c7EU2USe5wgRZvo@1Ib`vW8;I!WNyQO`(MlU zE8lAJ+~7mn#lvUwMnFYaC0t%V+AjKXPngSbai`%*Kw_M~cqC2h`JX?SV#e9U98MK_ zZ_qw}{$);XE>U9;*tKai+0v&-cH>i1ntFPyF>6+C*3BMDOgVjYTNQ84+mzE3N{j6M zXX`N?y!>mluT8Dd&M<&#OyOe@X7kHJJj0(3ZZP9Q<%^6O#uMr&Qu-Yc@3N z)41GiASw_s&rw{2q@JVO)CS*cLRkeGNpl*}!y!~8fZwLts+Yc2qDk|#pr%y2_(l_$()sKn|4ganxm&%wtJp4O_;{4>L*-bU)?m;(8 zOG_%3w6wH*HSm&OaBy6IzlD1^fDG@xeTttyf2KxucV7^`__dNFkt+^G1_0~^prQ!_ z6>w4{O7`9OBov-_HFnxR2hhh{0Q)5no>2j~($BVaYb^8*_i*c*nxpeAt~0?Bu5Yh; zc#Nonb$>idVqS-hR(zr6#fyoM>t4)E^acK04vs)2a}J=WzZ>nrMc1;u6H?ak6r;wG zdg1f$N&1-tZltHLW?&e=DidN+Se1at$iu@^+-45s%GA}9{k=}c;Cmzk4sig&I%b+ z%ym36x8kj7X?IuGtMA{xH>dnTZdc-m$>cqJSPP-C=G(^ynm{CT!fJVWd5~HBl9Q9~ zFtNuY%$HVFs7Ogkv5H=a+_`HPSx$L1Bvlp;4%(jZt7@o2oUyWsC(sD#T;PgU#v5f`Wpzke3&bno_47FJG=g)&Tjn z!=NDxo&{b;rmh}o`jw2;R58x$i+{@Z=X?cj5`B#6>nbu=QgjAru3remp|q?eA@UzE z#WlOX0N4(FGMsA+|M@bR9-aS>rUeO5FY`(il*kv4AO8lV>;W#zG_iUE2Wq&z2OUS6 z>Ryo2m=IVQpg^ozlmaW%OK5?1Z0RIY9o1DwOhsC*%eZWU@?}zi6nHRBzxe9r-{eygTAod;ZZIeA={H$?29?uV24jIk#Q($_ePH z_wV259naVxIr*5wt^dXGITsffoLioD*KFspdPsC>#)ZECh3Hc!Nzth_%dw_?kuCzc zk~woTSp=T=^PHKadyf6^7>X%<%FJ%)( zjw-WN11;&phZ88k#C`30#3rH)()2E0Sw&^fx#jc!HiS`IMRLloaER0suxMp92cU$U ze6+m^+052up*9KWB7k7ug}Lbja5F&ZYOnzI*$bwo17*R77z|^$7cR3y(K&gqp49p~ zMjh2V2b-)DFCGp-$txbnu(!FvEF})1a2Ayh+o(LY*^%^i2T*quPft@3tQ<#MM4^Sr z6Iq6f-zZNXnwC}LThn{>WQRlyXT{k;r`b8+JCsDoK`5+4x%jtiDqh~SsTR%F}sdyMUU7MpbEw!*H9y&B*a-a(A;{1 z&4o~5B_a=CE$hK^6lX>PwN=mC@am(^R=7BZxF~$7srE%VBb$hgLq_4bQAbr0_@q3t zU=WB#RbZ$k)1GndTEb$cpsa{JuNHA0)ql8E;5aGpL*uN4GUI`|RY3h(+?&$yHuz-= zJ^5Fpyg-ET>gs9){jT9F*RtO?8JLF}tSq^!)#;C)l#cyswHNJ5o!9B-d*(v8h=2^- zXzT6C4`HXl(0xQ}nOIVy^xhQK;hYgpmV`=HrMcn8Wf1DefL(`WuSa<@5+zPPkZYv1 zzy#}iQis=(u_z>+k9mQU)elWg`}px2SU7)SvONmeWAra?$+%j@_gBxc{czij~?%9#P;Odb%6POf&?r3Du9h*Q~1V`s00ufy>>4lmZ3r z#oszn9{aX`*-_#gdfqz$ehR)Ja-(bFdT(qk$e1ZVlW}gvkf5H-L3?9y7AF5_cap~` zBMa>G{v^d16PK8n_>D#g31xH*hK~`Ii0A{<48Z20rJ!&h8eR+>3Vm9G1U+06KmMjr z^Xk>B*C%`gNVO_jG594!Jr?KXtY-I#=LwtM*NcZq;S};p!|4OL8owuyyI)g_Ix)8S zD~uJ`)j3?+%Oi|Be(z4gs?|((hnA<`^!S_POx{z<%8wp#NXGyC=|XrBcFkM2<-4m6 zGK=eDlhZ2CzF{-b$h=}oienjn-CkS{0|Pm=zKf8TPv#eIIcLuz#gAyxr zq4+mK4N+uyQ=H2*)aE{>sjvSWC)YMtf!vj+=RP|Ps(&2d+Yo}Q+xI_L6W0I^IG?bv zCJ`7nNY6*?H^{PpEY7%LL;72@<@Y(_eY=&OMWV7b2mxCYHBY^<80l} zUfweqCU^}Io{Zr(T{qn(6#V-iUz-|kR7c6qZ6vM10n(VaE2>9TkoO5oCdQp~eXiwE zI2|_e+56>2j7qo`6etp!P{(TZT3TTI_1D^aoA#t4w_pVo(yZ#LF}$9>K6A%b?){RI z20(2Jr%ykHfR|FbVwCZ}7G1JWok=wMBuX8*TypL;bi*jw2d^Oa!-};B{RRex;&RDEw$_UJ?DR%%w3!v8lRp% zFj?#ej|>E~slkNg@#lQxD%1B$w-ZF|dtZ@z>RiJx4$v*M#gfgkzEd8p}o=XHJjgE zO1nC91+wG!J02T2Bw|sW;p63v&q!OohP?~dfEu6}P?u~Zy?`jlKo|FzP37>IJOdkn z<xiRc^MmBGb}-r3bnH@>d1?so>fdv^`p)Lne!~CFa~>ytMKj3Hj~U1g z1?Z->UMx94F0ZJlF4gb(^F$O=8*ln^$(}r!fZz@@qrr6(^9vVn%v+5KF1q$I>(zUb zV!8GnJXrZc6917pfM^Sqfoa0Pz<`9Ev8UlcYo!eh4N@o>>FE=#^jdZ!I}1&rI^%K| z^Z>JP$YbAzsd$0Xa%?o#j)j?-OI{4N4VgKFvf&BHt`6hf^4>GLy1HWay*{}ro`miK zt{fz*ar8{=G(SIbCR*LcatVJ1))7YV{yN5^lWZsnVxd_f zG2ufLin20Ag0z5qdB#ImE^l-*|17(-%UyE7?0+tToK#UG0Tw=f`ecoen&tB2C2E+_ zKvHpF93<7CbY*K~HrkSj2zCn)F%rQn&bB>o_Gg!`?c6&uIXvPDQ}(py_uxmU?-E5& zbpfd@P;lt9lGRxH_Df=Q;v-_O-VikJf2ZHBi+; z$)bh0&Q$2GFxI`yTb#8fm3&k|#85q&ogC=;U`4jA9|P^n{)i)}wc!x@#Ypn=E5S@$ zjWTg9ik$Llz+4cbVt@>gZ%SEw%^@gHOsLD z0V<1e-8yyXXfI66{yB(rz1IYaVd3OVhL6_@qfwBTKZB&{2)oEX=xjQ>4<1xSUHbMT zag-$BH))EgtgQUKa2G4m1lvj3&fzjM5dMaI{~|HSW(U;l?F(J}n{wQRXF zDSxtil`m&xzhC}k8$B7pziz_+KmTrQbUcJ&`YD<7kv*w9TIC*@d6)e3zbZQZUs1wH z7BcO1K{VKaeFmXiUUZTtoCMApQiLBt07ZOX9 zklUmM*~&1^XrZ})7=S}1T&o+SNEpdj*P7Nj2*+gQp$dstgbf0(z-;jt)l{ju;X~$u zg!*>u??&ZU;XTBFG(-ycIKH%L(ey=uH~65xw3|Zt^?UNf*ejIOL9vO`Bcu5Oznm3h zvfDK<&=YEK{Q7>w*JfTTZMY;`KQ?kR_s`#c@MZrB(_7xM`GqZ)&^2Hk#+sg0rc)Ip5y_iz>{NpPhpNQLMjxxaZm=BO`MP6c{hsu`RSAQ(vt{96Hdz44U~He1&xg2=lzFhIWKO52!R?$!)M@r7UUf4qi?y3}cZ(Wq;^F(cnnGW7^t^P&)30R@NB1oE-ekPU9{E3-N}#Fa9Kq%w_0LdJmkEbOP-0FS1rq*txemGeZ#mJy zBURBig;onbhZfXG;=!y4_QoZ|P5O{i+7R_IriIP>^P)+uaw&tlW~-&LB=^ar8yMD6I&Yf|ttjmw)Cc2Mb13UT$q^A=fTIQYAAlHQT>y0ryGXtr&D} z45)!slK$0%NbRI?0EUz}vP3`;_b&3OJ_d>yf=jCoxIC4hijZi(X-&%{p6&L>o63uHiuL5hf{hnx_*6&&(QQL6Ce2NLtWuT z!qP^gyKAQ?G4 zJiOEQ4fY4W&g-Kvz@?-U{z>Ao5gJIKJPx_ZMz_3XYr-cR z&BIBv&MX{R{)pPEIb4qBFVI6GrIpX%(>*Bk{B6sY7|6tNux+Nljyn41cr*4phR{Hs z4tbCGZe|U+T|UP!8=xzmQEZwxW>Z3SQd+z#iZ^U?()sUCAq1dzkK z;szNv)uL)Ax{%t(osSvMQQ8@z?xt)A?Hql1Re4=b+x1neeYhr|9|6-2^0l^ zSw2I6V{x9i#zr1a`cle}k%lh;*9wo0j=Ijiv#5IS!!BOG)kM+7CBs9yAB!56R~mRg z1ZE|2hHlfAa70O43{#BjJURjdQ0W#7JYaMf=4N8NgFX_I5wfO5)pPEcCsL0OSBlq? zr-@?c+@Ek?5pQ8RSc4)2$THAp^YA{n`(Om@tMq~|YWI#E1&hxXDCwtxS{u`C!y7X$ zzj7sQH+V`J-fKIP9r4goqPZiEn7i}6@(DXepr-U^k>1K&boQg&ECU zH%E8(e_#RgAIEVQC<|0B4=9&(ap@jUPkU}|?l{Ouq?#mbQ5kXE+72C|z)WeF0{64< zI-(X&D(|1+5Fl=fhUE4noBfZIZ_sbf6BA)IXN)M?JF+Vmb_fY+P?=F7A0EC4U#_Cp z!jMtVw{L14)5k^^x!-Vh&@VeXYeUNABDJX+EbZiU{*nP|Vfj&GH{R2)5B)IckhsOy z;zSmoc)XF}ivglG7s+#TmlU z7Nz$T@D^=-xLs5YiB%0EH|(AR2lG*AARVueR*+5k27J#BaY$YLy6BpOJeOy(XZP+w zRO{=p%6)cv7mvM7NlC-zhxAw8)(f9IQ9V9>Br^edqys$m*HKEXM?{#{3P8 zO&e%|IFOJ~db+!dQBQ+^izt}rFB|rtElHh|zLo+nD$lN6T>*LP#@QyC{@NE$$O-!5 z42qayTDqD1g$Ea^zZn8qFZ!u^;kJf0Bd}Xkv@tR=G6=5qsuL$p1Yw*a6$bM(GD!6_ zE6s@yn^b~e6K;+HqG+0%pB+jrf>kDGvih_cGJ_emYY{%cK6DKjC*lBYJ8<9tX&>vY z2sb)EwyK1N?al^A%G02r{_n2kl9F{n(#lUkbq|r_gmRq_KG1GK!MBx{?Nu1I13DIF zK(~K49Sl3_3^dqsoc}Te?J}6FiG!D%9rmJG_}qytn4D`A3DfB7DP<3*Z(`v?aJGX1 zmY+enOL6&eo_J?Bv9M_NXM}q#X6n8^cfAqkK@`ADY`UDd zcIX4m>AZP=s^k!$We`G8Fh(2#Ldq&4B0`MMFi%zl!8>^T)ANJI$Ma0;W6$iW$O;j% zJP#wR5)=YO;NHA0$(in_Gi?FvuaA3%Ysxc)f5L=?kn9d?Ya=l^!y^}hmDwU@Lz?Wm z-dQ(%X){Mp;%@W;XJluG!1-8{bXFt<==SO-YYaIr{ToA~-K&KT7+ZGp@|OIZnb`)| zh^jIBMD^(d!KtaK$3KOlo^kK)-GeN=8n2B)=FkZiga?aH;z%uBB3^B>x;V11X7+|$ z{bVA2RNiecE`~%=A3*Lny|nm&+PJ5ZI@{E9#%{bEUUhYg9|sZEB|jBY`p8Rob22=h zU(ukfZ0u8o?V|M{eyyH0R)J_#euy39EBSs zRc$LP-ikxVf_zFky=@0ElL9FW3t&fJT%83tAo3AqM=z zBQhjO&jbGKQ~iP-Zu}`|{SWY2g%))cNp3X4LtHYwaN$Vy^W&s5ph9x`Im!-b`rGB~ z>A#H@;{C1xEkZEX1MI59S(n@8AjP$M%V zg9rVjm|ALjdO9qdaWG^NMOAicz!z#!AMp13LthWQBLKr>F5aR$7B1L50+uA`n#oP%#|vq*dL6-e@jM z`++J#)!bM<8LJhb#LO>z@~AUc!batQsruT?#38|hiZ2S*)`%yAt=Z%OFe^KtJ6>K* zODjO?XU8gGn--n0urT8G1iqg{b6lV9Cwv>gA9&}74<95ZU;_E;s{_KvW}Q*z#0e&d zhj1MD!V;k(v&?v4hFD>ij`%Q)rYJ-WO{6&%nA3og_U_qp60u~4zJy@S%+8*KI&lJ; z9N=ULLWfr*+L8K!id|>fOo)C*3Lfy>RRfjK(2A)?dZH0jg%MGA)`_~)FM>l40aIzh z=4Jb}y-s-S9w!md&_3^gZ9q(1NIP&e2MWl+r&dGybI4Z{pku%dCWI-puaXX9l0hG6 zbUh?dmy~_?8|5V;o|2c)MtK`me^O03UB7~ov0@eF=-O>?&p)|<*5Gv}J_3Ce;UWYl zAsV2wTzs;;q(l&OhIFwe>ZO$!w?!Pg>BD8e&`=Ms@{sEgYRL9egPQK{038EWue_gJ zK)<+4p_sTs|2eMUTeoh7v=t$yx?f7pUvvwbLI3+$hbnAYCgKnp-tu6jl z$;QTp?u4V4yFhQIMv_M9J899;(F#-)A;-%I(RKGns@@grHKPNhRDD9k=E@bPQ}-K0*Q49e2Np4CXw6DAG@^Dobzz=XrK7v&%-zMkOm zn9KF+*O@v8(T*!v)Q>{x%$;z3Z0sE4B)rg+>za#Vr8Y0dff7a*g$#J>exCX zkIpL#3yZu7ILt>pY&4GzRa{azeLB0xkwRhoWO2a~d*&Z9uerjwJ%5X`2 zbl`4g^G^Aml7%02&;9-VW4w%449rgV%{mzwwXY0hpy=Gh$A7Jl!XR|@S~R}n+zM4N zZ`!nLApc}K$W6l2NXTn_+s25DjFZLQgpQrpJg3# z!-PZ63rq#KmYBGb+-g-Fc`r8!1t}_lioFB*K#(gN2;?%zu=_)04v}vd6QQsf6_Rs% zO?>ce2p3Wsg%Bl3qnB$mEG5KYiUi#RoF6GoO9MQrA%X;=y|;i7>S_oleYy=si{o4H zr3CV*t10HiEJZ~|ehnAa3?k}0itBZR@m9)gumlmEq4O!F zj}sCSeqq{fVQX9U@-~;{m*=7-pFh7zN0EDrTh{}Cw?^AzU^hU;upblxU#H;jPOS zS=ttg-MZ&an_MUb1_N(Cag@E{ye5fP;vA*4J`J;o+}5$$&&2#&!xYtIk_ zw*ohA+Pc*O6Km1twd7$>B+9eL${>8r#xoGpV0^N^ zX7XhMBCt;hVkkv5H8rVLbtR+~@3vGQ@9y12kcbK$Kt-VQZAJLRunZ#muCAaY8Xqd! z+E*lw<4Y(6yym2b5GC%=l+wMLNZGN7Ft~vn+UuVAyF46iU%v5*o-vleOUMofsqahfePTKqQr`w9xrZ#XNe zRvHOfO1@IFvH0>ED6VQSd*FL+6iteJsuGg(crjptr;c9F=v}UH?L%7_L2>`q5%nJc eb0`NgEJ|mWhXwAk*cngmA}_0af_D7ejsF5KLuL8^ literal 0 HcmV?d00001 diff --git a/Online Food Delivery Preferences/Images/CorrelationCalculation.png b/Online Food Delivery Preferences/Images/CorrelationCalculation.png new file mode 100644 index 0000000000000000000000000000000000000000..5e901c8008c9af7fdebcc878b1fb5bebe93f2344 GIT binary patch literal 110235 zcmb@uWmr}1);7EVrMnxXOC+TmL_m@55Kua$ySt=Ay1P521u3Pwq@=syyVkw;evbFY z^X>P~JC8$IG1s-`9M_0*jB$u1!Pe5o!P3l-(&_UTdovqrPF5aPb{0xg2M1ew{#UQ8{^tZ% zn=dA>7LXBx!6HbuZ#C^95DWw8KbRtsLNf>q1R^6Trs9&ezvSqGBLfG2%v0Rj>h3Ep z7qgBog(0x0i_x@h+tk|HD$u8k@k-vz*D(K(b?{2sOx83^hc^D`L1;|)182%y`rLc^ z6f#X;4HkU=kbjP_=hGFyQ~)qub6J*E3_pXRyznKgXLD_V@Fn z#6+xeJ==m^FtJlFReL#EqAIsMM@e=2vKmWT@*Jmz1X9z$Zq$!E#BQ_L=sn_ln==E^hwY*GTQc^NLJ^f~?M78?UAT|v>{Z9e+=f>Nk=^AY=)orye^4+fv zF%h4Ea}r%E;9y~CGJoBiZ9knq`uqE{yPkf!zPZ5@wGIs_qGT8nfRmK$`!!jtY+zzS zkGHk8rN%JOVz&Wb@GiygaH&;7UA<8uDu$w?qr-Hf08K?jWxU=(y{WnR#mkpyGZnf$ zKVqm)&Ucl|bX(Py=U6ZWoDX~B=s&Po&axHTl8}&qi<6L%kzu`2Qc;mqQo@cR69{Us zT99pTG#WrJDk-6&rQH-c5a8t{R4#buTVDQBP*Bi|cPWL_WgLVTv6s+zEHqN<{zP;aifKVQ$RPHhe3XZkx2 z37wQzfyPxvR@Sejg+D$aA^eYvq~udHZ(3|f5oVg8EA~{WdT>w>d|h4Lc%BT7py#a$ z(`c@A^mx0w^B|_Ava<5|{v1wBOiU~<5JW$a4-CY~$tl*rPE1T}B`ug16Oj$VSMR&a0|xa9(#grmtjfyh%Y%iDhr6qlm)ncY_Ay_-`k;}# ze#^aD!^h8WxHFy|J3~Z7l>FL?n3R+>D<=n5TU$GVga^I2xL9e|(#q;rotbi)uqW~6 z&!phgRO0C}O@Fy0RxwJg>@@_65@lD2PwLrBQ5Yc=)jmsm8p(AW6*^QAVEz1eDN`3ylu z?)}TrbOA&}MA3mLGW)*hu(0kBENX=o2QyQ1b8&5Ll1O6i?w()_T02(VmH=ctCJ4ms zeCGwDvlE}iRLOH59-hTkXAExhNguFV{gEW}u17!l?3P*_{Yy&BD^A_r-6cMJ!077g z646nk%6W3$4~43ep^*_57S;u!1CUG?8eY0x9Y!7>+p=gkpn?nk?vH@c!545g zTWwU;*eIRAr0TVE-R^$XpZHSy80?ba_3>Jh;~u{8NNV8rSmwrfwuF-1!^6X`Yzc(( zy%`M8+jHOW@bEwFU}MBIHHoO-M2LdR1e$9Htb)sY5^-}Vp(jr!juIES+H8Ujm^y-b zrJht@7~a|N%+|=a?BZf13JMA!@Ad9Llw@8zs`d4CHk)NZ$oK1$4J;Cpa109JkKpbg zkoWIL1g~5V7x|#eUS3`%3%YW|#>G`z&T*)eYvElTtt5G%*VJ1r-~)|M=C;5;TfQ>njkyw(HtGyD7d zn8d_k+!oVW;J#fh_lbr_Mig@-k=~{A{hLcX>v15-1dEW(;^w220) z)YIE5Y5bVTqUnc1z?!AqXx-#`Mu&@wTV*^#oW^GlztCXi-`sqIkq{RW0tpEX*$K9q zuaiL)-J-(}?>jj;G1S%7waXOt%=;Y}5D?<%;E>lH7aRNKz#BL_L&!R_dd1srAT)Y- zO0To6NR>q%o8=Ig5FV@fcnc9oZyeqG*tQHVvsgl(CW&Blr4v6tzg}cyCFE20fWVzj4E-;#qT^v=^1MHkka%5yAq0cqgFD1KI zdTk8wlnsrIN&MbaF>m+({GkEj#}AjJl5tT|ik%%DmDlO?@|4lISJK4X{tOG7aBalQCH*|LJ$WFva%qrUcJ(3 zb5X2`ezonKpO;5TMFk6N1{Si|>D{Sty430IT|5J{E8s1SIN0m_Q?NcVJw1K#z1K^3 z#N5QhX$-Qv-cTF}1n7J*P`6+>(TZk!ps&Z5mx;}l;0|TdMZhsw)%D}YTNyrV92~_) zYh9h@FVCrB7{=N>n=7xcK}e9ya=ZBZR#vtlN;?z>gae4f`;^`PkDa?pF%(gT>qUfhlqsK6^KHBiH%KV&p`W?JDSy<+`!nF zj*6NZYLNs4Ntw6z#YII~($VB1xQ$}|@H;b=6b16>VZiZ*&{EnXrCP4hZC&R-FWK=GI`g}wbl(;Yg5)y5n=8=<&uv8cr7~q<0 zzkG=$deSa^X`DnWEc_T8^>BHhjTk7-%g-+x2sT+~%*Fj)cI(tGzMfKWofq*D= zq8y$)oGC&f9YyM!nMvVvxQJwAv_T;+Cn>23#Rp8HbL~PlHpjJV0xcaKJn&5c4Gpish9Dy#AOI+{ z{`hc5DCBmIp&RZ;xpxouby)Wvi;0N|8Y6&B`2qJP_tN^T9$*_o5D9kXYUvB!e}nh* z^aRpIC3(GHICNjWNAnZJ0~(%}JUs!wkhP3%0Yb4 zXmxsNz1$W$l)&uGSrHkD280d^3#$MetBi}ODTAS*;YTB*vx$MRM9*cgZ=J5opPL8%r0U{(dq3$MwY!|a1_cG(c(qCB@jLB@M3V4`GvMZU z-d(!(FLZi~n9o#1LV-)*KyU9`{BanswqX$}c6KZvD$&7MTE%=>yy0{Kf|uG2@nt?T zl9D1p_Uj=b$X^>9dFtxx+3mO94)$7N+@UlkJ)~L=^aLFWwb>;NbzDB4zV_^q`@k`Q!Ga&Fl&ss+pM?$5?JqP(KD* zB^M{Be{e7Y*i}uJz|^WUg?ah%C2-~N z!RTb-AiT00_J-ILtTfxx&(~W7W7EoJfhb{XZ!e*xMQjaH6R^M8AkTn6oSmH=_NLLm zy9uZUZJu|pp~{Z`QY*{pU|z(zrW1-gydK=3kRe|-K^zLB3=DjuDMZ%S`@%tv(qC;f z@Ts6&DIfX#{CvDzn+KJM;~A_k1Q>K2Uqm&yquE*$3=a3QX0Hx$;)*5qM2>^fs zT@vj48(9 z-`I^-3u>hJ_=(%p@ZCK5BoY^biTev&2T-~0IZDB_?8peWJJHT~)Ao60D z78i$(jEwZM{AuhAHGB{T1?y{0P8{gM&<}LDo)rvB!+}&pQm5vV zOm$99jtU=$evGWDCGo>XUd@?JO}xF^rxdGznn(b^s`d zkI<_FpaZQotf&F7uB5D--wpCBkj0&jH~`&;+F&^T%hL!>w{z3$+uL;zpJJ;(J_xD- z@P+c}Lm(&xV%*Uo>C+OpnuxIuXX++7-2biN|mwy*{KJ5VCemzijm(vnjsVp0vN$xyEzd1p$F{OuU{bmvVpn=%n!E!AAk`6 zm`0$q@X`gSo%ZDJ>L?mSUn39&Tu#=Xt5xWPf&^|}+m_9?%+SUdoO24`C%AmNM46GMQe@z9KS#rr9eRxa^7Fs{9s%HYOE=j^Sxf7gtt zAob=`-HqhA?V#?HVn#0Lq7c$N6xqWV`mc%;*5$wS4SLhFJSy=n4gY!L-_i^T!-B#& zaO8O0=&BX6u+HNAOSx1cs{XBJDiOB-bJ3!qJ&fVl?*G~f@ZtYunYF+1QsF{&|7fUW zA0o;BJPQ7oa1}dj9fxxIK=AqJYyZ#s*T1iuLBEOr^Dn~>r2j}tk-huP|2$fY|7YF! zSFq2~3t42L`8D)ldIJS!|9S*1oj{LMsUK_cQepq~N)Q7`h z8&J++KHA46dNAKK5NRWD5M0VKw~lBnN1!_2adkD>3r-jIf()P^N?JPLmK~7(%3WEp zbzn>}x%aNr{l0v#he=Kht86dlurCbx%&Za4>13@HYVzTpa%eapu>Pe-|EN!P zH6!-=MwQKgo1mL53Dz3W!Cw-AvQxhr>?w*YO!1xUI*X;XQMigNP~W3T3A$oMOYNyF6N`$#>7$LE3@jTU9mmyu|B-NFHRYn8h;w3Uwa zxZ~ydFBWyDvJ0qs2dcRCMaUw(AFz?jNkxpt9w3&@53n(zjJB_*`*z$iY&ki<5?$?V z@FY8&HmD@m_+d5%HO3&jlMw~eCXuf{-r0T%k*eYu@4v@aH7F=oG~K+`l#aeLT=A6% z35yD9PbY)FI6_e;FiElVU+(CcJ`ljfyhhG8FxXisB+#liWyLF$i(W=VL;0D|pc&VH zZSnC*oUvzSG;=mQF1X>vYdY-d2Kk*y6Po?>rPB!S?OQ(5#b#tIgUpYH#(}SOpZwf! z%wwthmo&1-1+T|`fj8=|MKkkkehU=7X4@iUR*|oh&5l3{nH|B zG4ISMMbB=o04DZ5y7^z?B87bNmU9x_D*9Cv6OXHn>n^g`+cs?x3SR!CAj(AY+^-X!y+R?6A*Aer(nZmWo6~q=I=Kl|Bej_71-k_H zz@p@Hxx&QWL6o)Gwkx>USWW|r;-ESQMMb=WZ(7q65^JaVaUn!mH&=~~ebSxv4Of?c@-DWrpL45xF8HOQ)}6f^NmKb8c2}VOC>Lkk ze!#Vk!6+JLYB4LjEI=KrT0v2PVY22vLQcKHaHIu|ki&&iM>oyx_*gOG8ygbIbcJ6= zg>}U>sJ*grb4y*At5zE?!Kd8mG`PS>rtoEMW;NQdZ)JuSDVCcX;7JUXTbNY2Z%{dq zvEg5iTJyR)5a7SNL8(tPGRnI$t-EH9n$5M#Nn@TD z79vkN?^iqEoO?As$i`9qy(_)6%63RUx!STakG$1=L-2KFn(uTvLXPAv@(l+K| zN(20!p9JK|=6oBLg1Wor(29!(Ll99|>+J2${__#iofA~H+TJiNurpVQ+vVk7v1%=KHOH&e!^_4g|+fR-*4#XQM zQnYv}X2KmU{v1>M-LoZJk~!}d&voMyjL+>Dii_md6G|rG^&*4b>M=8x;<>r*Ji%@E z4r+>v!-7o69|jIS3jmwhHrLw8J5XE+jElojQB_rJb+WRYt9cI47dtz9EH6L~5*L4g z!!3YkW@d)wB%z_9*HeL+9ezo1_|)e=_*_jk3vbAm{rQ(i6iU5tG_)47ud-qk)D*k& zYX?5}i?}+xTKwsnt+^*(RaGO^%Iayby&5qwa3#0CKi7g!zR8@cJSJ9UZyQvcLObNH zn#6@%Zh5fAX-zles_GA3TU`8^?K#uYrR0(6>}I}hDrI)(DT_9jgpjYtDvO@D;j80mZ)7Vk)tW9S@hzO%q(3TP z`$;I zSw&|1BZy0>J}(^mQPHZCmOkF7jxkxG2`4Kn%dxTZcSlrT|3l4Ei#@`YaRGxe|4~Mj zpTpJ<^hwik*r~lo7!+oAs7Vbml{C3M77bsUL?65{8yhm6tYIE5-ybiTfXvReuHT2Y zLu%YOM#&cfjji0fCQ9+kEYrtLc2p##12-PaIdIIG_ivq@9xQNczm_X zB8~EnKfIwxcDzkSc(ESrR&e;uD6h*3)j4b5`;})w7 zAWK;NLVj^moa?@JxEp9(&fn8Lgl{Eq<)7}4GU}n22`8%ZiLjweGeoS1UP4UqHlsNw z7Te(hmF8PPBKqM{OIYef>YtWhiYlNM6awm3IbQzoRSgYYt6kn=s#4EQM$;0BR_5lO zx4T`4jilC}-lxHde)+<&HIg3Q8H5^GP~agQ`GX2Se9hUFnTcx$&E!j3D zJ1c4>#rDHpo@?g?gJLxv>Tue}PitYfWF{|!`3VguGGzOdRn+{08e%>vt36zdiiu${ zAbQUoIG?*GmJrUhI=|A<)m>X(_X9bw(MEqHW_a!4a3?4rfJ!kvh>gCWx}2lm=|w2w z)uwU_DlXXuJwc{RE!^ZnZUI8>m#ZKzA{2C~5)3=@enBlnW&``6IG^iB^9~e`>ZD!U zJWeEyQ+)_NfEU|Tl3NQ2^g4c&>`PH$kuSExaN08urycX$I+^>O2z%OYZzb4l(E=O+ zfPsR-*AIm)Db>iR=kaz&ifJ?~?0h(5a5xG>n#^MkszZBSPmWY{4+kOsdxF(YQ6#C8 z+_7!1Fd+$ojwfr%99vQLU0seD8hp99C0@A(8u9N?akDFPLxNw$(iq4vQayW?|Gn>W zArga=n$|MeAXqidioNU`66!@>W%|?JCl%(x=kFa~JcG^B;(O1)h#*{m>hn){oR z^F)w_Sg(ODmMvQp@`?mU5IO1xr|uUmc;a&5prFzy!`ZG<7d$Lx*AF!K8}p?fs-|bU zzqcnTn%o#T%sJr`zzO4;YkIwLbK{4Fg;SjFk-($o`ZPret9KnRz4O$p|9qvLoI5MmlGb zz;2S8Yi)Hu==+%6a)+Dm&JQ-k0P%OXt<*sm$Nk;K631&+Su`Wco!Xe8eIZfEJxyKS z-G%B#WoZKNF>5cLt3AH@JhN?m`1_*yoAmQ%*W0R@BEAa*7b1{&#=StFSAV@h`85Hh zFh{0TzN)VJ$&H|SvC|Rnj)Je^Qb{o&3aT?P$XA`tsC$pa z0c7^6YyBtB-+qX*(UtGSc)k9|666v)i_M&nETD;?3(^NFVK5L-NdOHr6j0VgARr*9 zvsocuYIRPM6|tCRarirl1U};rB1DNwv0uJik|Ah`yp@p|JZl1>J|sLmZvJ;)XFprL zzOIfAs$|ZvPLCx3TUa<`w4CqXIphsrSF^`x-bF;dk^RCEb-03l^+k`6#|n!{t-?2u zb6{<51EJ;&i^Si*l_%G_M+7-b|BXIM9I@*6^~5Q*b{X1`KGCa# zZ7kx?pUup*j<6p{NK_Haa$^VP$y9Q z#s2(D1j*B~xVShK@noqs<=tJz^>rEl{+>Y`KmTn=cvO4}-D^4}Z{1H|Ae~gl@)}kn4qVxY2kZ5)n@*C_(DfQT z{t^4}_SN;1@Adwz&IdJ5);pcv-X9fXMuuP3DFmv}kj0;KSx#RDpW2=5vjdfV4kxjZ z$s*SE<1uaT@2+g%-rv7e{7knZM^~qta)_v?l2?a9rzt(%akv!d5QUle$NdruVk&mw zBN7#T>~P5@Hy66$eL;hdiJa=wbG3}b4jJKzaE)0W?Hw+5R}7<;6soo za@Pckrog{HgD3!!M61&Q6!8OM2nu+sNI~q@TE8#sx3f5futx}hD+Zvh7Ry$xfeI`N zG#|4hk>-r{Oh9v(Q8|x(+6i+fH_k76_*$h&GN%mQp&8__c~aB8&f4xKZ61$=+w$aZ z27iCfU#F*~H5`qPsj6z|$s}{f(-huQ<@EWmlE#N-WODOV_<$JT^HeHXwvsTlflV0y zOu)jCtJEf9B8i&v-ot&jf5~+JYNQ43>8};GY_n;$CY+I=2YF_v-+dnOX8m}l#AtLW zQR(BtecIjF7q>$IE!I9OAWzHJOR0W%nbw&y^=+=Y7=~*Sm(6Y$p_kq`$B^iK#J*XW zUAV}q?r~*x*3alKjcfs}f!ULL(a5-8Xq9aOdo~&8^9Y_{!L+j|beJusz(k`_oCb6&6~# zd#SKEI620PuiiE#ls|*)@OZ#O{oEP7vto2`DvUuEel!>#oZk;z(OBCH^3 z3~Pg(qFt%4tvNX4%WU<%A90Dq}-2(&CO#6Ob%@o5oPdrvux`=_uA(1hMj^UA^ zeieF$GRKgtQWHwfj?wMb>G}B<1qB74{Dg89QhR3YYmqqe<@mJt5KSD8ZB)%e%X+)!DhLN!rXxGS$R6UwNh^iHx3YXU(ni!(B!tL zPv3+`{uF%^gea!p=X%9Xl&>4sL4SC;@vIGXXxBLLIKsz9BmzO8(C^g!AgXMdAj3b za!6z6XKMMP@6xEawCIKLaS;)ymP;*oDEKU(I-2>({rdO?U{q9F%&;~!HLU`om(uRx zVvJtN^uz=X;AQyd<{DKTXgha6i_(CVRnLfYZFh|oCM#QI@6Z(&%s2Cf277I=$KBQ` zp`F1u&Vo_!q?I1;a;J-ow>2?#e`2}#nV(2UTo}&ji4ba}eFtuAEH=A+_X_ZE-9M1* zv&wYp!gXm1Loi8Gndbb2X{b5)(K7Pwy#h*08M6X%=`uQoTO0R_y#>pL^S!UNQ%kA1 z1WRG!V;K9x)kCW|lJxq1{(gs-jV0A7ZX{bm_yTJ;_Q3NkagHIULO-p^a}I9R7ipHN zYZUQUY+IGZOei1Civo6L%lfq96KXpkwcCBhIH7%CC$tc-Ws#8?3`&BvZ6s(7sHzDY zSAudPZlW(%O~ND*QKJL13rap^(!Reqc`bWed-|IHG0C;f2i!~=DcRcgl>#;$cIfK% z6(X&U?pgcOgvpqgx-^0w9SC@82ymA}^PofSssf&Va$x(8`1Zx`Q}JR+Ppl_Um{osMfq+zN0U9WTacFrT|Nykz%l9E zPqESuL{msRIB)?n1(eNIT<*9x4Xtzm>O?TXE4`2BJHK3RPH8U>mzXu%Iow0~cYfsp z3IQ4_xga6n%>d@u_ZVvFu)c0OWa7W$PR@Z1?$a1A90lY|TU*7aN>)3IP_*Lk4{X=Y z*>!}yVJTJ+40?uc-oBR+8*zINfiUC0>!}zir8yya_=S&g^c22<;JmhR*Eri~1gD44 z;p03ZLTi^=|2O2D`q;*OaV{d#qmS~ycYv(eY!m z|BAuD0%(N<;zy)rdn2;94R| zuWH;1KzaHFFALg(K=Sv&H_r=#WUq6hSQm9C?e?t60@{Mq~|x0g6#w|-8P#^+29I$;C9@k+nO#=;)mYD&Ov zvuXsOeQSKXURYSTF;zO_a`Bh@Hzx-s7EvHb9XE`s&e?Q;bL2D`%k^5~mwNPX5Id7^ z^0;KH(B+LLYphJz$)&1PBlrOq}R2*c_L_69flYIJ_$7-q3t)6#OYEAso@B!!?O z=!vU7dbhrDM`@|UN5II)7%TNgjWx}0Nn1^Jo##IHCHc}5K}WC?^o;$LX7Wln{j9F- zTOB!V1hv=bO5gl)s2ncN4Xn+m9rp{P52*yX2)0Peurd2t-C^C1gpa|Pou zC%&NNetxmX1A(w4i(q`?v5M~dDv@Oj!2AMqCYrhzHz z-JH9mh<^{`<|mLz6{%N}J2*IeX`g9vw1Bcc0OM{Ja6~}MHwv`Wvc7B%fpUQ$JSrgs zFQJSauv>;!0Um4SI5B~$i$wLxYI|Zw1{$~aZm~3!WziWgvy2fzP9-DX@9N(zqPT#x44=1 zO++TG>l;#tN|_Q)J3>@%jORj?>j71=wnmT1B5G6OPz&b+-8hBs;}`_ebNg0*C7L zeaLpD5}Vbgbg@Zq3Ne$IHs|(0vu_2Jhg-6^oNmZ$z&kjN{M`j`yVWWUf^5hxSyiM^PWPfK`DpHzq zxjF+$Nm|?`)URLTYd0QA0#6S373@ZTKke*(M&m?5!AMHI!zIECgpml6(K`}xLA=8t z7f<DXtiH$T>- z7e;j9P~wG(!uOUwoS4K!WcO_)LT)QOE-rhwvpdvpe!3+1h9`9fn23S4jGIWAp>inY zg(Y7upvu$#NCs7&6xGZRnlzgGG#rAs-LFOi?L#>TxeSpnt@Oi%wAFhi7m07kGnSB~4Gho2s4EnT~;fFJxy6Z2+kO!~4m2pOIZ77QXp68L9M6Qv^-BTns&1I>L z_J{?S_pDaFu}_BjQ?(} zWBs3`4pMo*C7)K> zc^45H0PY_2C?Z_5mHp@LhX{PXdP+!zntb~&r&P#m*8TU!zk=`ogT_B%z&;6+tYvRZ zz)kJm>8PL1v!pU6=$#s%jqcO0e1Ei-M@DF&3|s<=ARAy?>q(D{~HT|H|>8D?M^Kov)Xqs zfdJ-Wj!#d!4;C6bi2x6&&(_Y)7fe0?Ce-oOiZ_@A$yYc76omf}7S@h_@zj}&kpt?= zN6_hkeiSg$)(#HPyuG~%Nl3QCI_O3CF z|GkL}nfR@kz>ru31oZX!1qEASNr{O;fLoUhSks_dtPldg@fxU4a$M;GvLqOI`0(4* z{o$5dK8@EGkX#Am4QkF*i`?m6V ze-?J`3KT)v04K9drx_c#l7TLN1VGOS2UI(}ACG6Yc`XFpz?WmvGe2$;B1m z=Lah;A(7t=sN@EK?!-9~fP^!iFGp~GxI_Yh4tvnh(d7WnA~eni1lFyh{98{L^q+}$ zy=r}6`26{EJhM7Fn14tL2$iHt6Y(Yoe4xY>I)JOxCEkmP!9XbS!=HLm?%DstK!IJ| z*zgAgo@|es(;|&(D!>|z0JJ2KPryN-GfWy98gI8I0gD$E?4{&f&F8hv&A{*9Mc*Z} z!HlGG$8l{T!~KUU0|BjyU@)@rE{zxK#fulm$H(7+Pp1h_Z*#wrFWEi-3}|0KA{KeN z_XoVjZUDHz3Ozt`khwEq?F=r@6su1uDa8T#Dtt9o70S9|^ZFtOeLDG$7HU`#s#MTd z5hJ+cfVqilDncD^;M@C+o&qoW+mcYIX@;CUxwbPm?F_GrEiUt-b@dK z9pL*PPS1ZXxexK*95=;|`(dW9@!tQD%m2#E2?V|b|Gye17UJChjjr@>o>6BNND>V| z4);GUTYMJhiVVmNIuYXG>3Oo&gRrx+1EtTU3pl@Nv|h@pr~q+jXlZu?!FGRD9z_4H z`B5yP+Xpo1q*&Mfr>ptr`%4|@YuPW@xEm!04&f9U#PN!Gp~>8KL4wO=FGkMrI}MG6 zZj*gfLgH^!FND$WoXQ4r5gM_u$dN(eMx{uF40PRmTY`)Y2zXY`OA~@0j`hY*9Q;d~ z*$*4YL&kHrH`B{0oTi;AJTMMKEgfje4${W!k8F8)p=^?Ji|uOf0blmM;=Us?9nN;_lW;5-L;w@UdG z=E%aiPfn~-c7igXi2SISYWi}B8H>HKw(~cN^`XD3ck%YyE^FGXzjAOR6`;|mHH_}e zy5j;G4b4$uVZPy5L12^T0V)T_Z-t>;4*n|=6f#|Zojci(@UBmpmmyK8Jv9eO*%jHe zj%g_Lmy}fZIOk~Zf1Qu%6)Clvb*1|VUXu&>`6FDu;O9qnazfwX`G}dOtMj=Zl%Ej= z8mziXze55719O~LU`&^D5>(P~ItFZiUl9V+g@H`Jer>vv%{ioAq_Ok)2ESS(LitX8 zbt~}UtxQC4xtwO*E+5PrwcKO(D9tk({t&jZbrmH=Dm#?EEakz=XfNE%Z%; zCFm$4p~>qJ5{t88aP-&r((}>x#Cgc`X3{!MpoPee9jmI!?#)7mk-?q{zq%l}wggUu z^^_IIbFyZ_L%hAW?cQhWSUS8Ncm|ov;;QfAG7?C#bdOG+YrWCzHDs6H*YzdI{AsoQ z*Vn0?-lK6*UH+i^#%ONSsVh@xp!+g>ul>^(jAz2F%n1eN?LZ99Ie+S(HoVtbP5As) zo{MTqq3LlyiB6zPWMwH_i~JhBJ`6s}K8QU!vKCRuJX)w$Q_6JSd5uWEY2VR_v9A*h zY6+f-nXOp|1Q)Ii2+kE7;~8i!1n0=IvO^4OYWM(A;%o7Bs!gsKLDpvMa-WplA_ok@<$Uh{4>9QA_C34%E?s=33fY-SMBiQ3 zOf2t$-Y1f3ln0;MbY2kjV})L40<8AWBM0W!aB)B{v$9z@w62bh>Hu^H_$(kCu+MQU*^_KK>qnaoZMx4VbT+i&PH8ZnU zF>GF7hmYHj6Ao*3prpH@_1wfER68#WiND+%l+d;vbtVApu;3H>22m*~G?YSgaW^gV z3^Qwefk>fm`0LS5p6q5_@)~pe2EQi7Lhjb@_m`U>7)N@2J~8%e=C}O4l7U8>X;>Ur zjb?o+fOWHp-05OYfo`cEB{F~2Q%8F@-sb6TsV_j{<;=R>xw>L|aY|dJ-w02}@6^Bk zx%8unO>`(uKNVf{)79jpN^)vSwsy4M_{2mK(ZKjP=91fa_j*2amFXaIyxrCJ2(!53 zODlyJiGS``Nf$zx3!SpwSB4V4wxU;2nXGbi>a@{&Lg4wZe%#P}Y%K)oF*)>ajzpOr zJ`BE|eJhhj#ymiEuZ-yysSy=pkDl``&~3Kn6R&WaD>?-6;Tqnsn$XJaLvN95@UNVo zri;9d1Rbpe1Wqw95R+)j?)*4`UmZu!BGT&NhM3GXgxjBZetI6=GLkNGU_>sQ4B_h+vL2JOAuI)S~>6$z5H5wHqfv>Tk+X+Jcs^K(*;q2u0jIoiiu+bzs_Fz_4?^x zy6KDwY|z*u3?3eLS=!0Lp65|NBk4RpM&#puw4(iGcXvM#v&s2S)k7vnZKMAA@Yr%! z6N*813cvemw`tM%iR6B``S(g1y^|-5!OK%q^yNQ?X&<6HD3$U4u5)%@AGq}vlj=d#?Sg$nssD>A0 zy;&*%CO|?rq8ZM_O@iy@T06Mm&Z4~+kgNyHWPn%?2kGtY%>tZ%HVzIyFctK7ve+NcA7n2% z!Kg17x%&u)89?DBFe(ZiI;RK*$Yjz07;!k5$4gC3W#i=R@q3Q)Ws{zp8xPEH`haEP&ScfO+-&!UM9W{O+@OL;Aw64DWTl@;a8Ia#vuEOFXtN63^W zURA|*ci%4MR{Az8Tt?w8z{hO*1ez z4n5VI%FZoCfK=7g2ah$SFl?)$6&NSl+P@0E)V*7OJlOj&Jj^h8iXU)1p?>`3w_yPJ zO}!25k1wY`SSPK=NxAp9{R8WT+)zp3@bFZ1gq`0R-%ku&W<{9La#>A1$5(SQooE)Z zJkYhBcFv@cPe@(1Ju5;qQbqxssa)mC?6>l=y{%cI5FhvEp&cFvD%qs+XW-rVvl8F_ zmjY{mWfrI=58S%_fOC%7w`GPsRTOA!30qTx6la}Mi^cdER<7db9J;CVTTMeiuEygjYr(YBDx-fwD zi0$RDS;|Rzy6$+by8dL5CW)-;d8*oZNyI5$+ed2yBosM0hl6PxFphleebUAje)=BR zW6}p}3I9Y-#TE~;g9=S^$w!n^l-Av%EGjh z&}G)2wVz9HA4OH!v7kxdFmstsVVDzZT_0~TLb3v+xgB;y$SOXUbdUEUTW?zAI!zq9 zI20bc?*XDM>#enP&$Q>NUiNDi%d}rs$Edw;f;ZOEQCtfIygispCaofe>b1WQ55XMV z$@|pQ5L@fvVuAR9AFDAd z^p@l;gPlt|7?iWoSuAzNKOet?e#bAKAK~2(bHXq?f#|wM*alh7Lg1W~ z_tqZt@9*y7^MsG?n}v@MwA~5PPDXAXD^g2^DdL&2ap6%*5T#VDw)+FlQGN)I2P~d8q;qMrXyku#z~AJXC#QWlDQ2MLEM*pbs$_7Oq33c#wTBP^dP{&n z^3m8jFa_uF&5Hbcw&g;M!^O7Kkv1AyI??yKxo?9q?>mQDmR~6hQJW-xQ(%x}yh29w zIMFap{Z0_QwxuV=R2E^9FSucnSGcjh+oLcu9uTQ}NM2+)C=)t9`TG$g|C${un*xi3 z%s2K>FP6;_?d7aM^QO7w=bvvs3@oURDXxceLAgdhU1WZ@d0vpF5D_Weao5)Qcf=G= zdik$(_E)#>ja%%fq&Q=8{+^%_nwX1^S3RaXMgnm5NjtlfT1be@*Z0-h;Tj_n4ssyK zu>zjLO#nM&c=(-8vj-N)^lV?oTz%c|#wWUj0YK5#sgwmtS$W1UQiAB&b3wopp{6FI zSQhlJ)uxq6R$vH-)23~Epo%Q7MYy-l5H}QO0n?6$E4;oD=Ulw;!|vCnvP!U%+{i~~ z8812Zsn-puR+ab*QGrQSIkH6ZJi5jU2$3D>iv(K`?S5%ZJn7y`;xqfL6j$v!NLY6u zM9%LP)O>k%|Lc87A64(0K!d+kTZAi>!m?yr#u!l43_VB@O-_m=-F;r3 zxqH|%QQDSe!0pa=pnc|CNcHC&+B(qQT&}ZpO6sVkv_rj zQ^N4Q_v53}-QT-~k#<(=1fNJlrbW(sJzvo}4c;`R>s;jHnssqK!=O76m0I4mQxq<#3#YZro zSft&^3iP=Aa`uU~mfZ9sHn!?cYg8%lSGaFev%#>xF~`_(=j= zXXhv58&LL$No5jxNAvO}-jMzS+kIkF6JdyC%J{DYa=QH7(&%W4PgjtBN$H^o3X(YP zdm7f)#EgT3ye-}W^G>_|Q9|&mYwg+^y!NDY!#Y8+`9HTtr7cm>50@ia(4MZ>+9t-r zpZYHz&riySx!Bob#vhqF8Y+YhbMk{pgqrNper`Yb*G=N?{3S9xpZq-jdpe+R+b(T({Tf>~CxIrKD(!o2?*Oxki+H z#%^xJ(=4RnuXTgFzyCm8%cig=D^-~rYH~Yd8*-cSi}XZ-+J*WU*&E|G@Yw5yS*14T znL`gR?d&uo(S?MBifwgug*;rIg!S*x-Ok{tgE7Rws3rI*5H_!F8Vzl4cUC2Xu;`JN z{#5?oXSm#ssF;}p7atgW4WfYAYMd z?D1~a(a^;+vBF^>w2P(du}4me?M|>6s%=;VIKIjV zYH$$4+#ZyYkmf(CnHGD0UtHUJUeqTOYObufHUB-kbFMJBX+w&=^%$PakG&OSp&^9W zew=Z0IOKlzrhn^Ls10Xg0Ik<=%00U{UzzRsu)kpE05O*piZ%iP7#5{o?K1*wYiLt; zXVF5#H~t{$>wtn86SM-I2b5ld20L51Q2y=v_kExO{r|D{7Eo2LYy0n11f@agl#)*A zlcgE(ryqrYg?3%OHj z%upc}wa$G*TTyn0zklgOG<^FeGMvov5^LJ&s@kZWbd(V@{AKQtVc(jy1X$kpz7?VpR){-a=vR(2ZGdP@T|ew&6*Jgfw^^&|uLg1#8-4 zV`vH=F4wNlHuLB6@4qcN-qg;RZ6+89Il*D_;$y9GIJp{uwbEpH>Mc9})ZTLEhVKmx zhNbDHzk4oRfzIXV)6t=W;PIm9hI~QcQ}ya?Ge!yk5BkUn}u^S}q210-ucGP=xp z{9hzThQ=0wFAr76vcpg>N>YQYhx!E-C2^NaZ`Y>&-1eS&<3gko8G@6;>Ph(-u&_r7 zI;*(WnN1$xwzqeM$wzJ?KaS_|(5MY)P3EnPc^|7s3E1x4z)o7vDrIPnemU}tVzU`n zd^s~e0v{S0I@|DxecqAq1qFqPt4V4oGg#WJZg0N;15?llPFuXzm zL_cJQ@`{UTuW$FRUqAI-&Br2?l#uWN?N6Yvc@7H;TX@OJX5TjhoUM{Uu3kgHj{IwV zoecBh&eMaa(gXk-0u>6PEm>@>WH225X!N{OAAR@XZa?9=rq&VQ2_Vw6+J&5(YIVon zZ}`ILxv0^r-`u>Dl_l)%9}UPR6&MMW+{2%_-Ro0h*VTn76y<}wW_W|pu^@=zc*x8j{ZuPG7 zTpcr@dD<8wub>MfL2%}4QBv;aUeR+S`GA7l?STzf_j&lE2S2ji^}b+1k@-7m?WX*a zuV$8e@2D_HxwYJ~y<}uq&(8ih%TQ2IB&BLYAOz`Y=xD1^IpQdW$NJr;wJXG`MLO2u zw!@9r2{9RP5Q)zb0g-wm=knlZW9j~0c~}c>Fl%Hz+eB`#lAX z!G<3;UO+&*sMqrGw!!HG_WVT#xg<6|W>CU}Ti5g)jJ3NwL-Z%FQkiQlC0gna#>NRe z3}Q`-C(JPw!#Rs7S}Tl~LzJMcctb?iEX~m~{o~Tt2wom3wMy|5ud=lJz^xYd&Di9$ zs6)V6sMob>lZW*z_eR_DiN5X;SgUKy4(hqG-MV=%3F8vKN-lOjl%Ct-A^lAlE>jAD zIHouWAH2~;$0kH!leHEJgk7HpR4n_n159FQG81?Gc`rK zb6^UY|Nfx|I8Me|WI49Ih@>nHt!YEbzkNe8QnnWf!hRUjboGw%9O&#t27HzmsQ1t8 zrLQA+zpfR#EN@aj1@`U&{dWFDM*Ya1o)$`McQ-dua`Ip(+v8 z>y*j#+8C;8Lp|!8o09#2M>(V9vgRyLvp??7W9vjuF_+(}4FAkKo+uLcA6l`&n}r4Mv71I^}O8wCpZnayz)ll;8nGXQQ88 zx=A&**iEQu5C{&R5#KJW1*NBqD8)8@%DaNEJ`3vd-K`$yPX#zYi5m~j7vbWl#1aWd zSt~FN4OshkY?Tt>XQKioVSYs^aNrM5ky@AwQ{#Yqayrl+%SkN>?{d3~Zk29~s;aJ{ z;+Lx{+2Rqa90gcE&v;v5Q%6A!S{<~8*zWea3>3KMsdz``fc;u>3*k(nK3-N`48R@K*wf4E2xe+7-?tQp)Y3 zjNz&6#70{O309D?rdtUIqNFLZ4@YZHAmHL1yHCl?j|FeXJjTJo`2GD*%kq3vkdjGs z`~ug}p0!Elty{atDWlaN2^a{mf0YfAr8gU+!fUj5;ww0VgGCL__s`CdWDHI8Nd{u;6Zx<3vJE3pXud*&Y=JlL-hJ|1B$kbr&fjo%Mjpgg;|DhhzacwAbCLM4F62nve<&=~_Ot8mak zmG-pb;o->v#lbeH&dr~?`?K<=7xVmH?{gek?#{@3au9T}WM^zJd>_ zuzeuF!7=7zfqYNNxqZ-`<^}3l2N5x`)$`(a1x1CDZp(F6^FE(8Xgj{o;tWU*G>pa-Urzf&! zM9FO57@MEuo0>%ma7Vop(vcfAbsAMOOl)?F8{u>`pbwWVH8imDU3XUllF=83n4dDX z>Wrm6HmH|`X+>~DAiL}bp{2ABzO~@HaJ?5}guVmR)CmGj%jG z+a`02i&aOB4rhgX4WvO-)F`xRPp?*y7p6kXRTR*x+LqNQ2rYq*pyb$$l z+p_n}IKOYT7{}P&!O!xn_l5Wb{g^krX?SwXR|8|xUNGv8j0f|&nSTXoG;}Jf_@hri z!>rCZK*_=FvRj4RH%|+$e18@smIoeA2w7DvjSSbpQfmymaHj(cf|gTnzn3P1g0iwO zz-epLAJki*RZYUmis(H~dc#+Veu)hDEH1~ZPd<#Kg#g+88dw?tWxgOF1_3J03nT(g zG#~+>luLsG^2T$-Q3Ha5y8*lciXjXM89*hrTyAldkdSx>hVWl=a|3^M2LpYS8qElR z13@J(NW}aE00|TT`b>aJ6Obp1`1qvVwNNRCXzjgG#m8H>9ue`*zGWcOWr#+~4}XE0 z&;+xll+F5p$A#-&SK516Y6*(D5cGA^&Ovt57qY!HY~${$5(IPg$f+|7evN@_9(_N2 zEDKATQ-P@teLJ((Vy1%sC*Lb+j{V?D$zLl!hEUT#*%WwqrT%stxL$`qj_Qeea`a$% zWGcR@7U>b&RWfr{*weqyAu}{O3RjH77T&TqqJgUCIa4(*4ws|Fl1i@lEJ%4ZMBt#FCcnwcS#UiIiVJ1{~5o*mId zKfaw--*3}nB#O~Dlh9M(YOBeLE4}AUlX6)-f*;CN3q(S__6cCbOTa94CF5tn3wACS z(s7s`8)~Oy_=1-)*|ud1h%6;ZJTGx~%x!P)DvmNqUYe|(jURxC2NnXTUhHV2?5a6B z#~KXW>Dts!*!pL7yG2d zyRXAL{&Co%aE}<&h9M_h5hYa#_#`9@c=;EMk9WtW>Sy@Xcv_kG`Us&?+dLMSkw{)k9RJ4F>gElC|}0JC9MRo_>*zu4!2RzVe&R3L(uVlnh^()Gfn} z5bUe_)VP_I5AV(!oW>*|oM`c{8f#lDu5YUTt>n z-TKu0ezjpLwyzEpVt2%kVPTY2cz@jB@@y}QP><9+b0hEfJK55>8c@KWprXQ2FjG-l zvB>INh|zvy_Z*!V-~XOx#&ue(tM7YUCa6O89Om#vEp!I~tq zeD}{Ps$j#7swcnUg@vRi3WU(@4mQj0sTzG+cukE806KJC;nIedFq1_cF^f`AEVj5| zJ$Eh_2Uf^%nc=bHs0*{RUS6*3ObRq_t|0%1a=sVQtq3zm3=PJevPq0`;h7kEFx%>h zDVkRTFT6$jXsXn)@0MWu9_Be55yGn0qDC7Z(m(gKZ&ef?jjPiynhxF<^;|u+EMw|8 z09i(|-{axyBf8%M9^(wIrdb_!a{r>A{1*r1Zv{p?WBVRWbUV%eUoG1I0kxF(RmBl$ zZ?)`Sa;N_V9@7C-cK;q8gAUj*|7k1V|I=3Ppwf`g|F42K$*XX0AS?WrDD8#)AE+oT z`y%B6s*7>B*n`T@MAtW^puf6ki2{YpC-l@JsI*bkwxte=K$?pG_#ND;q`Qn8E&1AD zML}_G?q3qM&;JinO>pu52|eK|^i%&k+|9#_|HuIPkMN#{|18Wwe*y44ivOc(@$VgY zBTC_F&qlx;Kw+U{O29B{X=$+qt=*4(Q6VAFp@;$K*ns67D4*8>J@fHg<^gTwZ`RM# zihnDj%LHOJ;O2lbU;&5;%Bov#^F-9uT>=!Wztu`-3sSPOq81iKDoLTC2wClb(!Ur(Df!!ROle++F@GG#bfL2;9{gsdhP%-^QQ~Fyr z2IjJe+}zws3niM>pAw+JYQSm{22Oc$sKXd2{<;Cx$|Ug?I7$k18d>0w@t(bU^$M`9 zq0nA1@T9A;N3Qr=$mwMSWN?8|QBf*MC3+2jMGEcuK`B>@fN}-stkI1}K;^m)0J__g zg|DE(JRl{5779B%J4vkON}ZT%wEx0i(Uxb$!3vVU>;zv4z~%*l{ty6K1q12Wdr&z1 z^I?oK3U{XFxOjL%K;8!BV*LXD0d$ds%ZfwnB@?^-HjtO5(DA z1HM6(g6q3dJUb{BE!va?W76v{Ip6~$Sg;*lyn@Q;zy^)hdP2Z_2g>P^OXsH0-2V+m z22jWrd0RpPrd%d}1i*-Yl}Tp7VKIIYghEL3$L<+yp~Pm7BM@H#l%8O_*L{WCxkce6 zc*Ov)xPvkj0nfv}EpnnvmxtA6QRCDNaLYJ7u9yIl^|V%BlR>{N9AHp80EZ0>k}4`H z-T^&lh0PK-6)mk1Kz!k_Tj2ourI$rJnAiy&%+~_^k8TNmEZ@A=S4mwXGYhJ|hiXRg7b1a#(w{w!Wd6kXTM2L)~5&z&oU<{rVbX^&r?- zMhnfS;(JXOgA#+O=Vj;R7|K7??eMy{D8c^rg}m!4O-@9&&Lx5(vy@3m+MwJOJf_lD zJ$(R6pW~yc>d&Ds0{yaI?i1*a=h=I6HZ?qfbP4<0xr~bO0&om7v*OqUhscx`@_36Z zDwUTP!$7%AyO!%L>JcoVJV!wa{<_Vc?+ZS+hg*1WMfbz!21BJ=pJilxt1B7AW@w*t z*ux~-Me%z@NK)EJ2U63%u(K4=F07bAuhjT-O>)?dC?2Ho%pHbs_@gG~hk3j}waCY8 zPb1IC@)Bf6HWIxS$NZd!DFmQ$tNff;6D1y7H4gemtKGJ z%I1b*(4(9xr1!m!KpRF>*^#itCxYPvzVWZ!#@o0Ho5`Ci%9d!W&TuhVo4-xHb0ulka|o@yT!PJPNS_5jV!J_V|aQM)lA#Zi3uh{7vdJr zS3a83?A_DLjjIS3gkYfEe^Js^YyUhZ4FmN#Hmbum56YXr^ldx8ZPK`!VC_Ihu*OcT zSue+MOGWGSA(Cz4_->pY484U#RS7Rf4$Y=asATB(0chCo&TeKddMFYoxzZpET$~{WGFA8%Rk=^=j{YB zvmI^)tFoxj`ylej#t?)=Ir@+|?5;}Jqvzxlrd`uY$mTnw$+vVe{}i6}cZ`D_BT!k~ z*=XcjR#LqMBfvD+_j&`qk=k&kPo3`buU3H;4R+V8Q1RJLSY6j(-xG+z2g3-Pd$Eq$ z$*1P#g`BR&*qbtVez2A(@3h5HJBgQt$g#4vzA}S$N7rqAd4=J%4Ag>VG@2#qiQtt2 z`ZH@p*X#G2FjVc{fi2Z>jQN@E-F}FuOl^X$4axWhTe{vzi|+8jx2(QxK}Ex?DT7j+ zlayO;;@-XXG(Glo;B`CXjKVV6Xa1^XZbn7BrYb_9(w0PZPiv+rk1cDlZLkx`6d;+K2&pYX*a2c!j2uJ<=)XY5RJc3MNsIPNyrLxjrRjcV<9b|euIuQbh- z(B1R;(X#G)>4mX^J*#aTjkTK-irM-SY&SXHC!!Q{v>C0aEfH00Je`wyP`r{3UlrPI z;<->1d>a59J%@bDr|2#-cAQNpiKG?B!Z3;X)aZInP*2T8etf6L`(j2uO9pS zrkYO+W{8aDS|rU@N(FdnReH~dOe+lfaE7&7B$dja_%xeRoDs9@opP6_%JFcN`ed|` zEVsc^U3Gc(CwHgXo%F~#;PWB}^qtHtfM z&1?(@?mwA-B&jRUfXh;NQj1^9c=k!3yY0!0+(+?dueVtrtwJVl6W`zOx8X2fYGiC& zG`qg+cN!Ml%ZM{LP=HgHx9+}~^JKPYV`OziicX9TaIC)VSe%Ew@3VdiNn38mNZmy3 zTBU9V7+j#92&%1i>uOaZtJ%IlRf>CMYrJ5!ugOQG8%)n|_Q`u^@q9s}$%Ikt{2*K@ z@?v(~9mRW8BYa6ZPgtMw5;@^k{$880JyNC5b;vM^SB(pE-5Wlth3TAYyc!tA)xvH zT3n0>0|UcqJ&yrUy0I<97#Pn$n+q^{p!9u^mC*~B<==t?0XiBN@MAkcJA?%71xPX> z=ktV$=fS}YN|Ps0Octnk0J%UwClO5gJ3vbWKwkq>Q}F>%d91=vxJ0`i1)L!o08$zX z<(-|?7^no|8l=B67(g!;6(ER{Qc|)(jRA#~#}|Ww0|EiFaj@2h8ZX{W$E^TUFkJ#F z_-DWiD4X7ZX9Jil;4F0jWVdh-()BME%x?ntsqYs$qZ+(8@XA*xjHXZ3nI@IRY7yLA z^LEA-2@GQjlbUzg^jf4uBwT0?`9no*&E$@B{})Ua%jx1rLoRUaTX2{~0vuCk*E|s) zT%>PkC=Ej<&zrXoJ4Wsbebp~h>UN(Z((=^oEE3mUFmUcQ%fHN*lKt4=suECH2n&Ev z40ODn@#np?Y}|BC|2rLTz%CJ zQOxxEh){yKagKDK6iJ10-d#B^hdlGi%1beRdsS3fe>Z5PV$alFF;8U6HtwI0fn~v^ z`FoBk{!1R4W96d^>mjdP&%!Dz-4Yg@Cn2l~-JgTzt$#7THWxk6LvmNbLPi7Babvz%cHN>c}myMd6ZVTNWZF31cr1z zhPMv`|6*fx{)3Gb2-sM1!~(A|^L%O(>-!_9CM&aqg+GMlkyO_NRtjtQY?v0xQUnD_2D zQu`I91W5S}ZWgq=b=%MDPaO?y4*V`)K9DiIL6Se(@Vuj?uEOhW3y**xWj5#eH2lYb z!G;1}sk>a)I*%zD`f1(R&_k|n|L9s&)6{s46Wgq2vXRQlh=QV8-wEOjU{oHd8+fW|DC+JMYCH!YDTV(f#G` zNWD-A7R+RV>gwu#&jOVzBznq-(|Vqj*W(HeXl2E~YUW$k2NRP(nCDe(cX#*qCt&k* znpMApPaRe}ogd}}APvrVU*9A z=-5&_u&Fi_75@Tj4Fa{5J}@>LCFacbaq0v^nsUDai zW))JjXQ@9%{S)!U&V~9E6XDr$6HC z?u1B|eDp|*_VA90ghF3RO>Iv$f`#aZMp>8@0x}{=iEg&eA}Mk|qaCwjGSscuSf$`n z8{V^Om!z5b8|um$6nwdShvrU;Ijdc?de?5}+D9!_8ABY6gN=eelV<2gW1+=V?I?b{ z_gtVQbMm(f#HT1o&UcHsy=s@uyP@&RmjL)cA#iqj=kxdvRiSTczxuhBCgZb~=*Y+Y z0hqJBMI8S71*7gk*UwR532p*!xDoaeNBiDohA1df-=qQ(C^1yS^AgG#gUaUYX(DDA zi3erkVlpC~%QK~O(LoieIFDFix0!yq1Q*xR+ zm^CBPRTUc3UOqNQdJUfV&IO1-vN=!&9-sVp%h{+J3w^KPXX3YkVF~|tuYIzWMv6S7 zq-fAy1iUzH&#cWnV+9TzL8{?v+?1t1mz(x!+0hvpPabDJDrU)yL>q#g8o@+rbztb@ zV*IU;lolR9?qrox--@ZJ$k3Ioc!z&*EW(z^2&ux{v0vkMJ`9Jp{SOvOn(3hCRiNIm zkD#|+YO0-t9yCyc7Zj3`nwm=P0gO%{;UQtz2*`f~0ooi)&KooKpaEC|D_~bo;`ijf z0sLvON_|k^ny)eUpU9Wb0hd)MClnk<3LskqDgy^W20*G61O(#Go(h&3UGC2*pVqgw z@+E@f3fO30laM?CO7XFoQ9M6GE2}$YduU$FbC5O#oo|9>0DuCDK_h*_GeIuPq{11x6jQBsmG??_G}jpea$VUwa+B!JhI!o(sS4+$t0S2RR0H8%>FzY zx1gAmO35jwTTCB64o^LxI)-6Qd7|>*0?}c`3+2|G%`c>mJNu<_bbO+(Y<-52!Z{0$ z))3*$ibvP6@JvOWFkyT>J40x;=a(|4X>~EHma~eJq${Lt^DVypKL9+Hc<@5hR)hPj z26MbFhUf!QZO54AQFLrdbAG8Fg>?(6r2k`TydQmscRUV03S?|7G2>4`mbFh$!)N08 zU=8xF!27p`zgFSN{$!`_o#(7o?Xk5ko@*Tkx9qVI>b91z?UB5BldosbxD|+?YSA^@ zLy!e*Goy8ENpI(#D{qwsDhNIS>%3xYdGRGN`qfpHr@yi?+xTU&!oo(Hg65lk&ZtX^ z6WcLYeH&O45%AXH+MirJ7t!j+5cI{$64datfU-k_}(Tg>y`Qz*SE7NM1jRt zJ2?M-hWn`8Yr7L>&5ego8F&!0T^xz!TdnsV(_12c_E_iPULcNGoN4eh2?LiBuzh@0 zTrl*}2!G{{B}6_bq9Zf?7;8k$NU*?+{U!3_yV@XKFl`P8Ye>%#br(UbKdJB6UPV*C z+`wZmEYFFkCl>ZHBc`oC3XW-Gpovf9b3W_Yz*kUL6{Kez_1OBdEiF3#`7H~J5Qx$M zA$K1>_r7N}|M?7rgEX$eK6_>W+CI=EE6|=I=d%R>kT{E;1V(*+^?72bU1=D!>p&;% zosJFxI5+_q#P8cT@`B=GZ;n>bAOlkDfSrkaXou~uG%PTgGWD~Kw6U7Yy}A(hfO#*_5>9bFDNpA8xf@3kz#&O zuEO4z0+7!2>EaKN%r>Xk87KqIV>9O5L*h|AM5CRyc#DLI3f^gY*Gz2%dYHVv{je0# zJU)Ars#@9RmKvbMpk+4Q(IA0u7g#8=^C_v)1s^CpZBK^L=`!D<#BF^Xo-zmrbMwW4 zZiPw<-N_3ZlFZ?ssP_M2obAaQwClfyo1*gH-!ZHupdV}WLxgnnilCwjh=F^)F5=m- z4O(XFH>VkmYP`COn00kO=FQ(aw6?|5Ym@Cv8DKBaQhT-anDDTos`m1$8<*@p58?d^ zi!LN%i9hsh^BYOMdZG%z!s2Zph8fDYl6qv*G z>1I>MeuTdbv8SlfJI6fL3(R*ZqFV2rFUyI$eUalR%H1P%(w%>M0BMx?7DsKg&Pj-McC+AeQB`V>ONQ= zahZ^-#G7yoN9i`89PK8YdOX&j#udL)dcXj&8sB$A2K5e1dJ*Qr@L7Simz|wmquz!P zpss)mZgq1rsD^b1^938Lmltf#*RQXkD;^j)qz)iwhUV>oUThZ7fq-7>ZI+l0J0cnc?Q50AN{o0?a#^JPm4J<>!pyeto*+AhcPiH;!=8dJAh z_LLDb|I!j{js-{mHxn)-79lDkB$n%%7~zVw7dBJ~fS!2Ht5W_3fxL!{Ai+Z|Ludx4ffwIq#^9RCz1f>>Ka zQc~~*_A9=YD9Px3Wko8V)~qu$8h03L-m7CHKEA+T7waM|NN$X-rQedyVM}xV1%eZW zqPV9_+vDTuy7B=G4sYY|x_mzi-o%82VJT)sL8_m{(cnYsTXA}TIrEYW4-3eXlgnXe zW_a0`ShljX(#WTL0$LO`mvboetu4Xh1947Htyt;JdJ|Ja&3b@;_dw&t>fmTn{u2T6 zCJzfpxkV+8pMx@|e?t87_~#>hQ%w;C=Eu90R)tzM7^FM*E^pc~jt2DtidsM8zO6lc z>{sxFt!ajLCzXm7H3>_WMTNOQMfk+7@+Y4oQ2&ihC$w>u=4HXMA=4)%&2@|vB6&2a z2d^9;7ATa)kjow4s%!A(G8Ro)2KISBEdH1zR{dEWIf)QEw-Ff?;d6n#AqSNwM(mH) z2B}SNk&~!3=>g+z{O-6twKAp=cDmSm57q!7*aCAiqrr~dW2O;m`?(@n#X1Y+o_;Z? z$Moq7+l?NqZG3Gk30LocvcxwS0YW0ZQZpQim3B;H_ZQLApuuOf@GDM(+m4gKy2QBe z#Qovrk)JTr{gD@JqG`63s8@3iAfJN$TiDIbt<2R5f`*F=50tETe?|qMB7UiOD&Otx zM<;PLO--&Dix?=|9tiG$H%*~XiQ+Hm)K&YE?n5jHtQ;O5j!sHS+N#uVaRG=SiQx=B zd}uT#NS!lQjAQ(R^jckujEt<%R0#x3{`!HxGqni%fY3xDI^8A=s4oUgUrw$n_qo)8 zp$(chaLqyUBsb;w&SyLLe8eajNt8U zEj*w&OF(e{r(m#B#fXoF1?g=cst;hb-Jm4DX3O*m4T|-9DwVYRYkENej85qK4!$bH zSAM_k-}}NMO8P9QzvI|GM_y9!$=_hO;GTs7mn8GYtB72`#8?_J36UmacjDNf?OCLF zyODvolp=^6JIyib%}G{N(csf092ydC_RDM$M_Tjs!#I&13XJ=r>bZDTwk%UCvN@z- zf~+j-0Otn|3OmpvI;P$x89o@=Y$S#{;N0^_JC5k)kr$ro3eO3gdBJL)ryyqVHc`UA z3K4O+Ic7-HSv1bG`{dX?5&ZLf-l%=S_EQ2OF@%(?D;kX$QTM*&F~P?3u`exGo5_9W z!?0cxZVu&-=MW@ZHq3)2j1g3QRW@XtRL}~4EB)MT4{xn^J+0pdv@KR;JB(&|hV*R3 z6eZ!OFDSnK1oNX77Z3ak1{34FClKZy0DvaSkEXx!e2pc0=r2{9k|o;Tj_@_0s<6ns zV{B5aDp`Y5NO}g%SKdBRR9;f5qgg%5VEs3VJ#lF0U_}Kjbpn72k{l1TvrL$o?Fh;W z-C$Q{Xig6bUipLz~4IKBr?4nPTd`!bMB$(@m9qH(^WnVloc5Q-VE2b zmf&z;Vq)q5^C>V43j#jQ`>o)Ox%v4uu#X=9`Qx9PO9Ap;ft2&}*_i`0xD(2E00Bt$ ze9edMAXya#q|ek?&AkM=AwUQ21j93EC@y%Q%%^=I4Tth7KrE1gx_WSJEgOjDgeGP} zV=zI+9Q4}q?ZVo~2nMv=*88KNbi3F_PsiQKPH?dp2geJDQ+*FgC#9{AU{D3-k^x`7 zU{6j>ReIh!6%-bB_H8bVHc%t|4V&}0i}#Z^EZm-3eu+MA-rz);&)jC_L#F5Kp5hZ1FkD-SbUEWiLCxsN$_{2Iil6AN z7#Iz036Dr|?nvoXHr iZViBx4UigE$`dc4@-FvpQ*4n!tyIG4w{gkLR>g3gK^hy z)_bxDj|&tqIm**|_d2$=uNx`pDJXEoFKmPw|B`Ec21|&v^ChT<$wjpoan&BiW)T9& z4OvE`BmfW`^LuNLs8v7a9|}hz%4{1`cxz|%Z=$`V8=m8%{sU1Xm^#ekm-_LnQ^Bdp z{7%cBA^)J%o##G|o_HIU1R?==3EK($1zOLKsdlD|aQE4MDyIyoHsnw$Y;K2?Dsar_8@JM~A~+c) zfgwjoocM+Dl;wHVZY>~g3ypTXAZ$YZrvjDm^LnsTw$(LF18CPn6{wk=IZq(e1CpE- zmSi+)g|NDOFabdxJtMNTAgu-7d9(yp5Gf+p{f(+>wGCQQl4eIog;@|f;zUZE0X;0pm#~4ehYcH}z4emX(n&rzG>OsSHHIFGz*q1Xv2Tl=jrPR zRKu{#nPg=bMFLVqhx3dFtIZ|HBx|TsWf_X>p3!`0gso$RAhkHp{smuf{G{F^;B`T( zwVV+HiKx)!5a>!6{pt#YT1WdL3B#ayfZ$ZLJ%8Tczph@QfeuZuczn1=Cm=wQm6eUB zQAL2Z*}$3WiE*jIT)Ve7w08$`V1Yj2CFrAvgL9qHVuPJVlLIv`A0IOaK)gHYCyw>h z*3d8*jHkwV`vD2swJ+0ceh;0P^ElA~wSqs;G(uCO!9pu;H)LXJsuxtcz|`UoY@6{6 zx_H2i=q6jAUJQuM5SZO6O2|zr# zwX!TN5j_y3dqe3z+8t_*C?r@qXIGl(qH)(T_3QIlo$zz+39iWBdEcF&!R9KR14?*A zr*FC?7_Y$NyPJlmwBT@O;wys$Cnf25?k`mSzTNqTE0I&P&DNM8VCeX=p)uB!8Widt zH^*4g3~BFxz?rqy(cnnq>Eo~-jPza!@s0eQ4cXbm^8l|K9}>P4$qm!nacxnR(?_}d zG<=%Ol{c=spB^|N9k->=PYTpe@UV7uyYR*(sWluAm`PtLuf8t{!?d=PB*I5~`Gty& z?KM9Iva~6|EPVM(C&aPH>m$;i5?Wp*k^uv~#m?rez zr4)sz>0!R1RcQAM`2S!4Dl=KDRsgb~406KP(q#L%fp_ZY{7W)fxmi9S^@i6wA)Fa; zWoy^ESX&Y?h8g$R{ltPVdnklG#lXa^cd>!#Mlu=&FUl! zZ=NRBFRNew)u28@&!E?&f2p3bkSnNjAs;cV%Cg~YtAlgJ=*e%#dT=@(s}#?)VI zTBDt-Z;QeGP{ysfy-_w*gAH}=dUun5Bk%2=o_p0QUYb2)X&1eib3r7mq zu8^`2Xq{&jKC1gcQ9i2Ij$DajroeV2y7~E3`1ONZHs<|G(bC1t#}^nujT1Uh<{A*a z-2m*K!U0?0BVcY%HP-G^@`@EoFYT% zQfEVVDN(c%^Gx8O-{aiM3r|OceB-45j&r*gdj^noRCdQSf1&aI$823(xBY z8bFMHPmubLO2R0g|HQ>3CLzAijsGW8?td0Fg3LfH>WsfdQ2$eyoi|X!{d+g~@*@6({v3^q>r|uzRN=sA6%tA`*HpdypDb$5=p1 z4!!k+sp}o|4~(oD1HF?}^&vd>QUC7jFOH$&!?EGYzZX{izxc*b)${3;co+WCiT;oI zfDixD4~{?1Ht%g0M6&yIw>P+djt;O2AXj)TVe4#dN7Y*@VV_1f?uk{)i;AqWB0B9@$3KoFtz+)WtLa}wFRWLzc-c*iLsUX$FoH)w!beb z=*70u|LcYR=ZAg&(e@|)Kfk8UMS8yR8#(A(25%Js4YvpW?-zPP`YZmgk0SJWKPJ_4 zi+XP1AHTj(^!fh!zn%e~kMWP&jiXBBlK*cT^Yp<$fCXdp;UkN`UxNP~EKAxca1(?R z@+9guJAo|Y(CX^9^jb9r!%57ub8{Qc=gaeeVTcP{{oulmw;&I+bjit@4=Oal4rUh8 ztu$&$$=jdqZAjZo;Wy1Cq!M=)I4U8VOo8;<@SaNBn3+wU3M1rZc6ti1l;#LT z%{<48%$J8h-vfnZi6*N*NK%MSNf{Q;rJX1oeNj^K_Htu(TcQv7A^vlP!3Rcx@WSN4 zzFUIX%Am36{MmV)@e*12qDh-Xd!E;bmLp5=2L>zydMVb{4SsN(4=QF?T#Wuoly=5# zUXSl%7v|HIL$S`UJg_mtXeVgvXnaocttj4QUh_nGsEAV=t7SCMx)#D4eAZKB1s{&c zW1Hvb?N_%ydStQDkU@y)vDg8R_|}s_H*7P%vEJp3m1OA5`(6*-RD4}#fy2ssIQ+Wa zzPjk6Xs%MF=Yh_{Tzf`90}k)K)I{5iGbd+rJNwEn-Qu}+N8m8eYG}9}tLuM(u}m>l zK1wj-54ad+zYDd>=?VFXkvl?!Q#JXWYo@F6>3BZ}sxCi7EwnklN}VpJASERT493p9 zynRWmFHmYuyohSNQPsQH=oz=V`r6HFIa6M%W?I626^bZ1YWq=CeIe2X`QG0%kQ}1 znXhFFb2a>;d|FOO!ORa=pZ#R=qrgq=#wJCARIhJDHJAMrK42{)AdY*hF1RN#FV$(*4kXo8U6*#n-7~M z8pkm9-Z+Dwsl!+j>di);=`4l4M8_(ryk9MA*J!^}Z@PFyK|P9UaNk3a-jwT^T=e_7 zVYzuX;$m}I`&>rgm@x62A?@hm*T;EbtKB6G?doBHu_wdG$RN%vib68nL_jYB(Mnf)5yzwOw!GFD@RYegKbJm`RI)@J238 z0z^(jIb^-Pfn4^i-d}$tG5g0-NWTZ|Ft8K_2qQ{%cF*Z;paua#tn`8cDu8hx8y`0W z3&!0leUy9;V3z|6$bO*0l9rYRjWltf=eRis%`8R0cLjoyAfc>|!NE{@f%|ySHr_ux zy!=^G$L4*2vNf5@c_<*c`6X9yR%=Ib{PDb+%3SJmxTLbc`?Ywy@>{o*ihEn~`a?=| z48UPuLhqrZI{7s55Jf==u16Qv+LG0EtyIdDST+d6ZYXK*j9p%Ul%qkGl?-~?0>yTU zsa^K`id0H)uy&1oPs+LFfI%b1?vA-nHCypy>XlM`_e(X6NI!D@;v8|Y(M~a^#J~B0 zl!PHD=m(FfTjqLjopQAxEsct$1PP@&joL?vA8@6B{4W`K7_3e&;F+%WpvTI%5%Q%K zGY2oRfA(Fb?3cq2>5|X)f5=XvHmk$Aw?BA>Sm=!)73ty$h~qC>(G{ppQVa?H3T80A zTv;UGiTnEF_OzL%G4Ftqflk*wGl#Of;T2B*x6E=QQ%jL^sSC}`kZ?H?UY2#m+!n&9 z4D#cnjRM}1MkkttP=B7pi3-(^QVHb|Va=$za58UbNCOb_QH_(2I_h#&3KvoU*K2iu zw>Q64+{nzV>%>2m^(QVKu93NQxmQwBifPM-g6ovXG6oLD%xtOj#Kx&bI_u?zNVtd; zg>pf%Pz=Sfj~%bW!^3CmO}|W^iF)2`FIS_oSxgU{KDTT<#oU>!eV!oDF;|bRLW7xq z$(Sp(?sXMk7VKY4{G&;pjGZMZb*uV;z&)WrGGbGIT|2LBdWOso#`V(?FR}oBaCJ6@ zlUxStK2zjmyhvI4a)$N~S4;4**4-18{=~Im&}w5-a_DPaW=P41FwKmZEZJl#u@%g? zq4f@#f4oE-M;Elx=TBz$%+Jcd{54EcGS`$EwKw(6Jbl-tp^>RXULC~V%+)=9EZylx z-jyyEb38e*?O&>8TDjQsRmxo(&Mn5xjfmtA^F@{yMcAod%-vWvtAC-)aV=ZJ{%dFPs^SJBZ`>k~ri# zzm`SLE|_@@tTd#)tNnzPl)9Up12Z+4Z1lCfdqZ0@*lHtw>}$V>Xn@jUd$wC@VKQun zsI)PjRcmxgY!`6&QC%nz>FVl+ekm##v40$4`>CYNHt6Vd-cc7FC)OxWv~03B9|)*z zPYCIMArw*%B#*@6;o#XFU6?2-SECsHh>WjcE#nLOn%$h^mRc5xf{7Wa<3W&U(iZSr z1#fggD5o(Mx8~u6vk;3{4Xr9oe3+j7&^X<+*uu|NyWcE&r>FWo>)e_FN9ckLA{z(sj1wtkkjCQ4j$psl1dIgs+ zGRQ*GBR76m;Czw5v!j^#<%gx@g;urvHGjR+Z}pBRQqXJ)zU?u^Li@ z43+NAxj?kNmXs8Nv&~9RyMyLAz^>@tNq^bsJ1;ID&^#6mTatmN2ytE=zBFPSe}XGk<%( zphS~UqJ4}!g?HI8o@?e*oMNP;q||6f8GV`?T3o-gyZcgMmyBVh<&T;P`5VfZl*B~y z=!>I-J=TKAdhsb+m78_ zMh0%>p#A1>Cpfu-`CsuU*3H#bi@hf>84cF2comO$@6R%OJzSga&d5KS-kw@z2xS@k z{3dyJu<)hPe(SxN*=L|l2CvM?#bt6$1T11(K-&i(=cphK2m<6!gW|-VJ>Vdq)^FpD zet>OsIeAY<_p>}^7bH1?N1FnpkJgZ^loTno!~Xi=Yx~ zdwvlPQvPJt1eyt?&KMf07EOnBw9tfJR;^MoilxKG8Jc#$)*!#wR#veC` zti>s7I-KI^t1$LltuG?K6SFd zII1z3pXb6G$G-tPb4R@!o4#cKbL6C#A1OQc(_9whF!eH%+L}7D?E${?KRy<+P(0OO z9h&^%%KJZ|nebjOC62NLEa@+=d?TKzScYdAE{}+ai;HKe&{WoqBc;~V)%_ap4tCZ0 z(t?GbPW03AL!m3(54!!&Vbc$ukL>$typ=Wd!@nXX%qQ)h!il{Befy-O&!#=1Ti!T! zRw`}_!}>dy9}+Km#7xS)Kmit6Rz{StYZ^&DARoib{Ea$cR!iI5s=l`BcjtQkN7cR- z6K}(hMzS5!Fr88+QcBfIkU+wH*E_nT6}2+c@85RrF7D0F&JZT=1|D+(Q{}xnf~hb zA~7FWPab23?SVfTEy@qrBf3A58k--|=#svEwa`SoAeJXa^Ozn+dHag5Z`e&l zMh6d5D*0_m@GCM?{3{<(kN!gaui{}>!UUFp3sskU=E|N80wV(qQt zqFmdBZ4?y&0g;kcP?45yP$_Ap8|m(@!5~CRy1TneQc}9RbLfVFA?Ceit@W&D@Auu$ zxAq_3`p4hG@gDA(>%QVVkMlSSv(&OKYAmhOs9Mf%;;q2hk)hBsSH6z8j+1GK*FIY3 zN^9rPxpcy19u6Zf;PZ-SHj7wpH~djqueG5#PlTc)PRhiOZ8&!^!}{$KWwdy+xrCWj z)(tD!hIYn~vv9wyt9;4Z2f712w@ef)OH{&qk&_G~4RxPjQqG?cyRMePrDU+&i4{oY zdOAQM|GP_udUr0K$mQ&uNvrWnaAJ#kvAc_LM?KcoQ+tLP(h~_A8evOON}k$L<@_Ei zOqY_L@7GeynnXEBAkG9XPSy+3yO_hq(I|A#Y>qxcttST<`xDnd5MJ$telv%`VMuT?Jjei>hm-AzkgjkVeRK03AdT3ZDyQk{>H=Mh z+%<}^-#I!syr+v)%kage7DEo!Aj`x?S6F#|HdDJD+bfoI3izhZpfaJGh=_4-hnmJl z!^krAA-ZJJo$N);mknC7XZP3(P5V^B_l^(L;5ZGH{B^Y!9>w`RED75%8e zjuid7EJ2~0p$|(W25(%ssw>{8sD#9*7;OR5SxH4d ze7c#4Ud5N+{fFs8XAi_ZO#%r1VeciSXH=9jSoa?herqjsR|3LWpo;^N|Kz%KLH zt-kA57R037n;&oK?+*qA+HAm%^ym?L@l%(x9b$Urf)pVCMCzt9<-5SHv@%K|Pmwm5 zj3;cZx!`^3TYk?tmY}4ls16{zWy|EVT^7lLGQSl7mkyB6H2{^{ig}9YAaIk!Ka`Nk z%Fh0bQHE{jKncvhE8uGU9<&~7TVwgax+7nIe(8k^AUa)8Vt440{Jy*G8Nt9?h0zed zfiUzC$;=4rjwfSns?li}`c`*dG-f@M>G0*{o+5pS8wp8FOVx!h9*q5}l+UE%lHG}o ziCNmv6uEx6v+f@mBrw5b)FwjH)@cVDH>~%NGG!EAXhv}^)+2F^kbFMDlqe6ih0*yY zH43WeNFMLlK3RG?Flq|NL4?|}DYH3s&~@~yidNrj_Jnw`T{v&CkJod`>nxyXxQm0% zY}}3pTsODIhWavNxlsiKzVl4k96>s$_#`90D|~(vVdq+>bTS+vY2_!PhwvCQPRSOx zrP0{)Gxyb>#|im0#fng|!UGP~j+Jcxt7>-}de2m7FJpP z#@h1psYC^v*_58a1^YDG{l4bclse2l9cj-bGsDV>isf56>3clrId?xE{$!M<6!6xY zr?B=&UM#Um)6)Y-wSIrI0N5+TZhSyjvQvN+v@3#%ojszWf}M<P5Y;SfB?7gd@zS2PitV3UfSOu z0MQPxK4*al`-8`?K24PyA8%$SvjX!Ect>vA)f(Y%gZ$eFszdLbAPIc!F~ zgS?DxV6zJ{;z--rWSuj!*YzpUOm%kgtF_%-utmivHy&7D2@zTc;>X@(AsyWKZ>^J_v>nce##k}In|+>UXFIzMfe-!kwaWQ8urDl-L)nc8v5lD-s13MO+_3g;@? zu3ErjuQ~_9TpuM!FJK2VOg(-poe+kR*?R!vFg&_~VJ>+PfsOd6`5E!d4V+vYN;Szx zXtdJpsyaiMX3?&`7wuQKQ6Y$f387k%f~(f33yT{{(&cqOZOfJeFkbc0_^^3emLQ*nCzK{^bo8SF+ zY&ze0j)h}yZ=uW8;tSHKt8dPwb~QET+R>h8$yzT*hF|IkY`@x?9j`Yeg~T4B&Wn1! z+*;`z@7tD;mdwz;_C>k68d2QY+1VU!Ao@X3dUWsx-XNeLuYit;xwe-$17aDAnv-`w z0U#|&u&bts>*WTq^Zsl{OUswH*uft6K}7GRPBkWCC&8}}G}${VBAYtGTp!0Kfq812 z+N*d-PGoED%Ax>SJ}&Oj>uWcI4eBox+O3nl81yqOD4IfbczE_21s0fiSLgRG$02e< z!>0!?lMwliTN@kiYu^xITPB7ShVyZrfe#iKI8#)o0-c!QseJ9-W9jk@!6;yU!llTV z+RKI&gGvXVN-bUKKFe1e6M^@KMn*bkyOZAbTT`H{Rh?0C8655SoV&W_ShM_yi4Ym# z-JIZ%NvK3|*C2&Enqf8{1fS;{b?X%iXUAw;%(=J7jb@#{dL(K| zdDZe^`NMT4jj#FPs032b>%jbX*^IY$$JAlz4_$D8X*JVHV-5T`}@1b+yoJA>ji zUo282cmwVu9U$e3g>ew;Bw#iHQ`6m_4x3*Z8wGW|t~o$Bsb4Yrsj#ojdM|ND2xSO} z0D);GMYr|D%L+7u2T8uKl#uh!V2k)ZT?`8pFT4dD?dV0mV(#08Mo-g)Mgd?c2FXEX z&-l+o;OhiV3^pCe#d9Dgd#$1p4T|!Bq<&|1vVli$rSX1Xki*8ruUl+*T19gb2FtUZ zB(QJxWn9g}{40$*PUG+gdwbqKxlA8QO*QM{e^-xC;*!S;D#T`aOB^Q+*47G8U*dO6 zzKhO&O53YWm|-iRWo0&7M&IR+&JfGx4>phA3F-SL(!Iu130POBsDVsuY=9nwQKcR3 z#48U_^HK?%9Bs2Sna%#b9H9_K#*+IhbV2>R!tzC5YNZom5 zw?(x>j$vFkS3FXpic7VO7wdfTNY~c?oL7}CTZ{435;aM*Gxc&<+EiMP70)U01p^bV zl)mtH&|$qsL7-k6Be`H@r8~#>)|Klr-N;#T>)iMkN)6@AK=WVqUTI3Tj}+&dq_6AG z23OWyN3C6^4+HacS3wLM_*N7(sgrko~#py2G%Cxkx zdu4PvkE8!4JbKK0J`oscl&?8Id!Ik9zv>?JTICNKa5otQ9{^hmR*#aYh=s$QnTh`A zFIe%3e3*3t6a3bW2kIIdZ*egtE-nVI0oL}TK2&7$`>Dy~*0J=y*HyFF75#Yo=+3V4 zc`w$O`S=T7-tUn;ga85f?3YcXPb1wv{o)#7Ve;GbE799J$b=H`&o;=APfS@#W*TK!%bF$&tgqDIFQ#K(qeVVvvn=WLI$%H?$A6+ zl$Q#XcMIK&lQz!>NAuM~f9E`g=rn{L{C@e}4PO`TEIhgt@g`N5Wa7wj*7FnK?HVs7 zj;E(6cH>6MJ*7?@9Bb_nxO_O|)SQA8?xf~)=g}$7e#(z;CiV$npedvoX5wha{5%CX z$Omb--nw)5uBq0ygZ@OmJNND#0k|!{x}hdPLPsYVwCDp`@6!S+r;VKX3dwJSlBw@s znGB{#!@}u*t7F$hE-3vb5{5(fUPFbI&e|%jirzMIPZ~QyRG#Wcn^rt&%KyRKA)9xy zE`oStwSLhwtqbA4Y34xwxHnKJC3lBkv2%Gf9`71$Dmv$CUF71)(qJCANR+ghqsw*$ zXkeHDvY1=wc$xCZ6c14Dyw38G0oI*b&&#Tgs{O{x;Fy@lkc%}U4-b!5?7j2d`)af{ zY_@-41)-$(a44h!@P~f?ehRoyZvszvO%3;{StPQ01>|&q`v!PTrTrhp>6QU62TE)e zl>KjBp={05D)0KK8JItSN(dCg_!wdhMb;o${pm(3{ zFCf8g^3yF;@VkB*pTH*PJ(;ct^}YQU7^b0!)^~pq8xO5zjQ+)9Oda1Umc7t<=C1J% z%)|x2A=KXgmQMH+2ziVDg!LQVUqHoekrrB?KYtFcH;ZzK@c&0tL-cvR!a8lN|G%$s z?_ZzXhfnXgGyl9CmAiw1)l25CdBVTn>VJHhhT(rw`TALc{GT@$ zDqvT>&;R`IujoIK9|3^;sQ%}RmGK%Tg~k5+ef|S3^9Kj>4bP0eo1tf)ZZ$w$tl_8* z<05V3qW?n6#{+jZM;19`11C>ik$-X{Jh+i#l%kDy)tTT(G?EJE7`(jYUE~ksfG0(z zha!Kx|L8&s_3-JBr{(|tLjDEY{3eY2f7zA)5ri3|{a;WuqCVhi(f^3mSbXT(ig1-Y ztNQmZ^goUe>ZSk9tI~#%l+N>i93UF2MhmV||NN%^tI?)m;MiUN{GXl$iw{r1)&3X1 z8uDsNA7NFXf;gVjvis;%*bh53Jzdzqz#wT%;$IK!3}0WHY7W^3&?f#(?c0GDC}lX3;i#BI1w*(KCyz)MWV+evl{$vaX$>|IryQEb@Mjcl(wQ6IUh8m1015X7?=`?Pyv|uNg&LyWXULMz}TU$b_f-JO~;(mX# z!KctZ+2Q+<*4SPqjTi|1TA+SI^YqPt4b#rs>^)CfmBujmskgUF6ti}7?uxj7kblds zq1YG66m+NlHBPaSQeM#UAaf9eN;^0)I%!J=>HO}>szzym9_jCr{R=(1LZU|| zWC?RR@%#H)`ICR6N5ffvphq0TvvsaXh51JIh_mO&wqYO6hrLFvACqLk5Obu2HfysB z{22A0!G>dm5D{*^>k*FpI&81iPhl6(>w5+lo;Qn-C-hN_%3jH^t9r^l4Zt29PsBx% zA)qfqCOsln$ zZRS42#b>pR``(ociM~P)ze(u1*FpbM1PH?yXg9=x7OljNMqx}2wGUkcUMDf3X)f%SD~O!Zn*T-@F<-4D0)M71=T zFq3~%rSOiC@4Z>{pq6)X%qlZSOu=M=ZTpyBD*?B3mR3{(8RI!$8J*l;XFkURl#=vj zcvzT?ol} zjD^q+8n_T!{SjO^XEM_3)5TVN%>FV|o1CCG=6#s#wOn{Yny1bQg$MRrv>p}zTwe@N zSMpbJ;iH`KTH%4-h>ZX)ml_v=Tiffa&W`h4rA;^`E=y$a2alycEG%2hoDkuO;~1WO zSyMH=;MZw#i%rg!$iY?$LjY0#(owq?F}DLgcCc)M zkaL`my|JFTx!i@M(&v*~vl%R{rc+ha0+-k#a&jTf?$twMeRTv2XO=hNt$ZrOn*qQM zUQ^=PSKOO8>-T|;Q~zU*=Mz_O7PioYQ}4QmbTpXIVq5BT%yxM`7Og3iiO(YLWI2|>g#JgM5faPJffZ+5>it7Q(;1n`L;;cug=gq zI$qSyWmMa3>{BzSp7ZHopWg-ppVMl(C1*(gT>qB`5G}D~%1KJLOm+E_jO889v@BFc zfnnIQsM|`bl=m#WBcye@JFHVK>7$iZQcs~PSN0jx>Vh!n(&$QuJb=%^F}ESR60jk@ zL9W61ead-W(O434TRUcda6AfSWIH!^lKUAlADkLWi;~-g?t)(&EPl8}HpMT%93LU% zfLs$!z%yXj6V=|=7X-3iIn|bvC7-E8zrW9tCJw3q51_~CmUldKVT@p9V!bE;lw(($mvfdWc9!B!TgTg@Yp#oP;f= z%0$f*SC*GSA1H&lpN=FmT%b%PHkO!$g~fX8473G498=L@@i?~uZLn?a?DPOUL}E%s zO%1ZUIG|ZI=((+sCW2mNIg`c`9WCta1hp7)znVA#`iIE+@}E zdohcz>Gs)c|K4k=<#BrPCLXrttTaCb)|T9f9Ad{Uu3v@Uz6hfFel)P?y%FH6$XaML zBsc6P3d_0%ZxNG1;HOGp2R7np{7Qge#)bh^dOfK3d5Zt&9 z;U9XfHx&7A52d4lK(V|K0@Pn`0-sBk15m3OgOLxkN8U(l0Eij`V@O%Y{r8V6WL&pqX76P2}FwyhQuk6<)%r3o{}IdJ$3;?M{;#eyEQI{R5EewsUSWT z+kFqfeJdk!LSs2>&1s?mCL>u`goK3Fb7x>D2;9CMATb%sX-R_jLi*$W{0TERIEMns zE|1gBW1uU5f>e!kA}>J$luZmA4KqPx+ylOut@+cz9{_$VpejsyDI0V@X9Jx$)_@o? z6SRYO*qe<7sMKJt0u4BC`+*2KcyQljN+MX?q5b5bSWRSmyb!<~R6y#q1Qfg=)V^3a z6Nx83JX~|e@Z~#(IKXMh$?1Ob*&RxlL|r@zQ!wTCq7PcP)E)Gto<;9FKLj%qw;PmJ z)PixN>FkvwWKINX=+5J^{h_F8O)DcK0|<;|0FI+%4a(9o9X88mYakrr^VE!tK}|T6 z&w%v`Y-8**dJ`5+vO@q8LS$vo8{AGqSL-N*uG7AaHr4O*;M_CqORfGa@n}1)dwc;Z zD*s&Ifdhvg!heG--(B{9M2_Z}JpLPTq)`9nPedp~ano+g^5@T=5p-I?@e{=+eW0d? zAm{`ovnLALA+_mwEx3HrrSI+In62sHkfkSLl?L#{PaJa9N1phQcns~Ol!-Y4ecybc?mfUN@zOM%kT(gfa2SI;p_0DI^G zy8*u^9RJhe;zy^Q$yAD0jfG$hVR70~{Z7az2_mca@8AE3xH;M82bP&mKuH1e92FFO zcaDsN1Nv{M#?~!o5kyOn<^+&z>geqBvzq(K^065Oa&;&k1Tz`VK=*{7q=J1Ib9p3Gx#eQ{#clAl5jg5NDq|MaPBQbt5F37!?hNnE? zX9_)!P$W#O7bC!-S+6XV*i9>XFy#`+hV!LdX(8beIk}H~Zd->K8%V8B`+ht4#$eZw z*z687nc31;=df;>1*X=~jZ%EtBe=Q3QCOuRyqTWvg^a$tfixXwl$u}N`~zu&v+qw{ z^t-owseH;kxyk05g4rQ9EzGi|RJOWQZeTS#G9My%r;2lv4FfkcZsN9>$cua(_i&QP z9Tu(;<4y>1+gfzY#>*;{@2_Hl z-oql|W0JwUN7sDrWlnf?>Ky0DS94s8^>>b?KW>uU5Iq>VySE5ze@>j5hC?h13jM#iAe@9e&jKy^ zoa84nUoFUy$(6qdiiOSGKHIyrDGCV+kj2sBsvO;E%_4Ma6E*g{4L79A4Ews>)Y)Fn z;Dce_blj4_9EcBpfrUH$l_V$MTw^fm<85Fm5nI4!?7G#J$k0>TrB1yaq%^0q8N z%Pz&7_n*xt*js;r(UN&Hb8&(1Zew#mT3qVRlMMD-fcd_IW{%L+Nqu`)5WYbj#h}&# zSiGL2wH{k%=WLJ%u%0ks+`mX`WS&0;tV_+$pUW%h*Qg%5(;RVJ6ZIR_;Ej+mM37WH z4V>%QU)qQf%vUNi=#rlK^7Sj&x-ElUpk}>GCv%jyGA z8FLHL3tKEPj^YbA`H$9rLq#Ep04nlh&Wm1cHpd!9I__n`C;OiVjDk_i*N5Ml| zTQWX3@8oR6?+DY8W6LKh)XfQkyKH9{s|!i>FC52j8lqV2oe>hOT>CUfGu+O3Q7py? z^u7ZlVN~+GXf|l^9M3T-UG`s`lHhhLjb^t~tjso_?U4ny?o!tjlaz<5lf_hX-?qwy zQ!fnP&SrUQ4U-{(3y)O8{i^3qipP!NM9N|3Xzs!t6gg%}CT;GX&kcMVqr1ms#Uq>4 zGpY?AzrbA=aBJ;%mjiM_^G>JbbDgA6X8FI{9v?}_lFk06Nyh4qgk8VyOXdqegQ3R4 zM|!V{B#RUPT6ubwB|gD~;^OX#3tE59IPYaZ8h&2LXXj^El{k;7o*pY-d-XWQUXBOS zoOFRMdfKtOW!^3t`<}@)Ac2(Adb-}*HBW@-DIH}dtV9w-&nM#cMdv5hw#V{`0G7El zW8GvplqL$OeSr}wk}21LXk+wp;h7s3;Drhb$^?Wl@&pju-EH=SAEdZJ9J!#B(Q<9n zVr-^k^q~MbdCLliu~f_QBQ`B)6alJ$mIryE>toz}CIuZ8G&#OL8}>iIohx02tB9%jCHSUmWD!3B!!W5dPji|~SXc`?@uuW0ZAcQv%2r>X zxdIl}@W9EGD(OSQP?r1UrJSp0bCXq9nI*nM4{^ zX#qZC({M;y|J0ZQbx?W$4Q{Gj`N9vfljTc(`5suUBWKgVt@VM#zE}mC3&`|?on6cZ z9$|{oiVA6K82vRj6)USkL|0u&W$CYmZ|fKdAdW$HO@mOTIAu~2Um>Zi7(IbdQj+`D zDs@P7pU1o+)2xJDM(=8{eXfhf8M@hCQ=Q~q^YHQc-QqsL%xO0I4NyUV8wTiuZq`IY zef=wT_Emr(Y*_*yeuAK9+;aQEO&o==urTOwI-hXB=&&{F4-SEB=Hm=S+6|H*w_u+! zO9bYdcCgmfxE^PXPXrLqXO#+}06DNP=#1b-xaS$cs1XG^V=wRSCT{AQF}cv`QHns|yS=dSTyOI~5Z<+Eo40_QYoIdt45R>kE^U?P7iV)=f67Q62W&n5h$&{Bj+S&z1J+)1Xc{ zys;2>oMm(@IjUx%6||6Ce~NZbhFXv7KGeai(}Zu|B-hV3OSrNKYCD^oQJAeMnG%Ka z=d%>)YF%!~1R<2BeJd+4Tq5R#u}P=H1-5fRIneMz(#(vGx43{cH$Oi>GIG9{oGh`V zvK-pA;zwedBnWx;6iwXjYpFl6Pr~;cO4%Z9(4gFYWmv*7&ih>TwzW=6tN3Nh133I% zjVmE^eJzk5+;@DmT#8FlXVDK#Wlron0_dZ^NsmqhInR9T8+E4+mM^bbd;+&mheHre z=Y}hnnwjz}UV9d@WJ28;v_i|PCrb=Fw>Ec~ws!lPpln6I6zL*?l;-m?q;X%%3am9Q z=jWvzRe%y(dH)iTX7V7YuhiB?MQA6Xfu)?G?V7Z6%rxwgo-2vV=N1aXG6r!FlC` zZl`p>*7rhCFeypEz47$&B|ZkIWatEpEjkv~bK1?_fxV{gjt*Z?^Tz@-nk4KdpYrp! z-J>&QKngwgL;5{Hr5l0z3BZVlfOWCVTm}AJ88|a^f$Ty$fjbm5p8zY>Bgpls3TPe? zR|vaakGDRDCVL?pS%B_+P@w0rn6Kvr5I zu!pGIrHOImUP*4V?kuvonrEXB?XcTb<4&(iTs3vzXOuEbDBV^66*4zLS+>+dP9f4( z0-t5PX}tD!GORzY_f#_-D&weg-u;MZ6yW!;Nv^dw3XO?)*8tz7;WoNDL6ssj)WnPf zTkAQ#>RNXwXKpU7w~vnh*Hh&@_|s`xm5|J?vexg!KEX&yFdu9`5)Xk=GnT&vD=?ScLa<>(JnAg|II8$m3 zbHd)6X-`M{%n-x&HKXm$)~H-lqwDxd7lTgy>%_)Q8cS}kGkgus0)UHO7O0he1L6L` z8a20#l-yim%1DO3VIipf#d6af0rzgO%<_1AN0x9UmG>RSuWknLi+n?k8LA`Wnx0>G({U)90m9V=(XB4tfK3Jw3HW zfm1otRk@b{4UXmdRC-;(wI>yDOe^M%z16asllzG*aJ&&H_4{FrGg;-v3E0jLwXz-8 zEUm)HM=uX}!3_R^Zo~!OB~kqIgoI@8%*=Oo>!~;aX3yk-_+w0e3IEZ;h5Mh9z2dsV zM2V%g%pu9ykBZhVJ#J>z$OLObQd`Br8AVdWg&TKiX$meAKB8V}@vDEXZmP~&2#12- z;4GmQoMVPlAOa{^GReP^1EOK5O6B7}CpzM@srcM@M%^Cb?$nmQsm4d&aWAVF>mp zhmIvivNLg8Hr>WUhZ~I!V$WW%#G=>9;SolE%Pf7`PG+e(Tgs$;Ml5u`eO|+w_lD<& z-!{nf64Cw#45FABxb27cT^@9cOG~3xE44reN(>h_Hx@_>Y^#yt(W3%eLP381z|T5o z3PKAtH_V(xh=51WrC8SdPG)39L`9E|PfS5GKz&d(+0y#;5HI_ER>3-*%Z24iXcs75b-B5|5FS2^}QT&RKdr%cz5E($(#&wI{}EiKX^8AAL$k7dF;|c*aUah9hU)7=Mt? z%g@UGOm*eP2+}U~%4E_+nep-~ffV8L&T{v`{)_y5T(pDJ1C|2SvQIjYI1vkJ_A_i* zhmB#W6{Ced^@`^_Jh7sfUe7sS+yjN|`Y&WUyQZEGOludr;s8Om>gkNjqhPM$5*DhgLFbbu znzNqgdMCFrcno{BEp(3Qv$2h5={Ee9EN`8g?Ih!0=XfwxsVkhuRr-Gq)&rIETl>eh zcv0Ec;eVyJU^9Njd~gwVZ*0_K~$A6L1A+2_p{Ct7nfgzVWBAUR6uydOS% zV9;t@cC8bL<=4HE+Ql9^N01Xz$RdjGI9+*EW@@dN3bB?C!<#I(dmw>6RO1qveoEA2K14AR8J&3`5IF)|SAL3kB0AW{f{KtPxU^uzQc@237ssG)YzMBD~)1;L;L z%-Q}zNNp{k48;G)J%2+yAoz24fH3;o^ntkhU$~A{gpn@ZUr5E?`_2EZ>KN#YWkd6M z`?<7~1spk7M{^a_vXCvpK*d>SN5?%aF81xN)<)}9Wj1`ld7$~efpcP_xK?Rb+F9HH-AwlR2qNmXQ*ju{Xys^ zNE}qFk2@g|JP@cIX>fP`4pQad>JN94ycAQKd zJzY?o0jkdJ6vk|sMBYg7;n{BtJ`D^CvOjJ38z?z%GPbr30fx^vZ{Cp1eEssp#?H>o zay}UX_XoqF%z8l(90DTa$L_4g{R>BF9vu8(x7KaSAbF%08V0%p8OK@!)j4uAhSZci zeE5S%De_eJ1$nupKgKh^XqMMPy|2hLh<-<%q79_+kcIuZx$CnRI;y_;nsJG|MJqbA<+M( zr$qjX?Zx7v_z!aF9}%KI*pL68*dRv02F?E`HYiv!Q-00)d7IzT%`Pbt0kVBQ&4!!; zl0+UOrxBkzPx(Jcpm@3NV|0;3@i!kMn*=p@@M(e)z)&LgyLwm!EQRra^}MPTC9bd>fq#HF`zMd z1-hNiVYzsX2G-Lr8rAy`@yVnY<^@d0(rU%x`sdtn@yQZs_d8|c4-65FwZp#Esq(p# zl~&lDI0Zm*dC$k1c>3(I%u{0+5DWb@CP1rVqIy9W(IV<$I%fH74{6r{g=%Gn?Q*mA z4hb1;E*L!YISb47fRaUf!oSMm&e;nck5p(A@zpa`_+~d2_o2y<^5hiDuCi|$#43X= zSMS^r5g35PV&0tjc9WJ^fk|}#yvT} z=<>JqxEL`7_1VWMqSL@XQB|DSBXl_t{*dTvwvOpE436!`MYi8sr(Eu}t(QhEY-i0mX+ALN98XM4taf}n;p2benHZbk7d?9V zRI$7TSfNY5q%|Dy70T-ov-{IkpBYJ&afxw*>->lW;1AMrtPdGRD23d9jP-cYJli0a z_0ifKEo25=_LQ6EtJE9|FL)jI#gE66*Icg4)4doc)ZZ)M)5|Ecu+UnHei(WRY~XAazMu|2gER z+u^f#<^GkS>zT*I@$WO8*wh`bZVNQ@3W>KJsu=AW^Nu_t?7*bFJ>`5BGMG_3LNl5NN-{| zvStEIYxVM}rT+t*_3Y>3N14e1UkYCjv;m&}8|Z6e#t;6p+r0+;IlMvbPEjO+6(B~S z*A?=q7*1^pIhbh?+BliY?oB*pOQOIK3#O0~F~}GPP8$iZcN$99AhNKusK|;Hu; zX8a(OB^!tGI>=1PKA+fnt$AGN!hHf``i!hK#h;#ql~wm!uMd-R(F<8;PhZeUCmOZS;(GIAWk3gYh|gN@0WnBtn2ztk#ykhg7m5YpO!=Xz ziO0T(8h^sXrln+0^QlHRBP%YodAd>(B<$qtd1WN+Zd0`9E9C0lV2$cjSsznj?`w7e(+JziCBb8o z*jL7O3lkLk<%k`rhj?+?f<~ zp+5C@KHXzT^a$tne%=U!Hn-ogu^fxd#!E74!7rW3~yhMd2}qh5%-N@ zH`^)n;_B5g7m3&GBds|cghgIbEbS1HwarET;e}QtEDRKV8q!09GE3^t@Vs1?CKoQ% zjxLKUb_atfAs6J%IMy#hh{FtyirIsr@VWUHHNKcyFv{(P+CcUi! z{u&TUJtQYCk}Zc1Y-)1bdqY|wAI~#MQ+cg6%!47Arbs&LdRVyQ-po15NsqupZ<_}X*p4xvxory|MKZft;ui1Alg@s&e;(Oe6duVK6;2jR1;u>-U#2K z2eIYR3vH}y4>geHMS|lURX=__e1L^D)ueN&HVK-^y{~h!WME(b1W|@&tz80-y;yoM zb5nJ2uxwT*CJv=w2G~%lYG{BWYAGP01(nqvodR*5+gw&zw(0lS3v_T`fS%`05fbYV z+nFzyGk4QTPV<;A=c_ay2XM|MLs(@bK~)v!R%aJ5O6=^25cs`M(d+@Kp!I*GA&b*O3^Zas^ zzR62_T94etxkxIuzWT@B4cXJWm7=<726~2~H_0oNIy0fFc-(0ewnehF0grr9?tu^^igyeOim7>KtPd^1fNFpZW za}~*EOA~wx-4yaXEWr_ZgY_fp2i&Kc+@4Q*JkY8bGbQK76^rI>8>=u2?h23y3*!Y- z&Sr%65B`2EW$u33+BV9+!Xex@;Q*>ATrcpIwkmoH*YhmrYNFhN;yz?U@Mgci++h27 zU#z2JXQ5o!9KNeD{vk{Au6o7ZCv)7p&msru=2$;e-TYP}aE z^k!+Py)b@a)Rd4hK{#AaeI!py{Ckc2;UE&Gdp%z4?{??`{)G@e5U zDPBws=x~=AV;vr{j9%B6%W~}(TFzAX{=^c>a=Ol{Avjz-X7<%HG3fo=FjM&lvy|DR zl;XNQVB@H8U<%cCal0rnpSkBqLQ2XP)VUchevxB9OqPfNRVoJ(lbxBWFe6L%4_SJQ zV5I>;5qbez@-UC;%$ zCxpgnn&IxU&wE+Tl&OFykXyZKaA!ofWf{H9kdo!t{+c2J{pxu|M6mHjQyBoh|F1&G zJi|XE#2Cn+k>o3QU~IuDPrb^b3uJ0Q$_EV)dn+IvtPc=9>(eA83bEE5`Ruu2Lc3a{ z2M-ey(`atED+zfD0Ea+k*baVTiYzAw{~~_v_4>)?$ktQ`z>hwFmJoR=aySFX#58Ct z0W4!StG{uP*&sk+1d(u1@$g&}ZYAS^tW%BSC8wcewDKP$j_c5qreW6OQM^#mfX`1#)^G7LDF|B0d60^^S8BQ16JnAmpaMa7>-NFl-ouf0P_%wbkU>Mb8s#&4a*;Y7`8)?6 zEA6HNZ!g&Ul<4D^-Ghc8EguoAQMGbB+60ZqkY(FWax_^QvRx)E3n$yxmGp z^F|}^_ZDi!N~4jcBl&toQOBf9=c3T4xV#TV<@sn;J_)0y@(S{-iQX*i>@S}4_+L7+ z$}VcwxqN3s?4*xC7mS*Isr}x75}$Igl)wH^@yyxUsDYAVw!zn$whywWQuYX@J?#us zc?@vFJG<^dZQUK(=4x`3^SYfnO+%+W5*OnG?Owv48(v_41UyVkym3O8IpBPd<bGe1LqOa&JGUjl9`X< zRR|4AORLtGT08f(_Ihr3Y{Moexk*OzK~a1|aZJv8lwKWlW47ut>KCkv=1Dah_mP~- zQyT!K+!3nHhRj2iNwjVe%|h+sJIb!=B;m@w)KS^ z#~`bSdop~8oilz%!`&EE<{qxzFme{3$1c)*KB0h@kK2V%PQH6x*#Z25#@Q0q_;`Q^ ziuJ9mG>R#Yti%eT6da7B0U_dim0=BynTN!oxK3mF3$ND)Zu|j{^F~e%2Q*2CdvZjC zNM;Pw+!JuW-5eJgusK~$i6Li=y}!^}6Z-YSbx#kYu4dhUtzGJU0Ds4MA!4()5`jFf4u43L>x`Sf_YYTRn_yOOqn0#Mz?7X11Vj~nkvdnSy=z)ciLSQKFM=(L}W8Hzg(k*D=<#p69E3AlEZX;a7gVVsUs;8Sa zJH*0x>arRN`XHUKy?R-Jdfv)b|fPX8WDz8@={G$0o zx!vitcDBf7H}G_QGdymB!eY~hxLz%;R5jE(p6Z--L7&^x$d|fNdkE3Ne23@za+|8l z&3=iT9z&=heM3h&pb6+hP_S#%7Gho|UGCb>%w6m9{t%Ip95Abrf@TY%B(chA5B@*I zKU;5R^K}D2nohl%HnO|ANDj1KeyR17J%mC)4@^EF!j0w(D^TGDE$hgVJ%N#-+S(Y@ zq$AbOAZ|NSmU(8bg^XWE>p;5ll=5FH?i-tl1$dfRrZ2(%7_Gy+0y|Xf8@I$^1qSC8GTe2UFiRq5p}l$T z&LM$(lL>l#6aoT@-dTTv_vaB=TE(_J!~I-`OiF0Rq8%J&rn#G!poiQ8`}{y3m*uop z8=F&ieb>uz>BYTFVGmvx9zsr89_X%`>6VHQr6_;7_H*WJRaJF>tBSAE2k?l9ihZ=y&*uoK46@8> zr=-%6Opb_X>(0a^7BqXbMwj77MgM=ZKX~j#Rv1Bcnsc-0Sm@pUS^iML3<%`-h&GA8 zrd@^R?Dpma<1LSw@)uYdr)j2j%=76!`+K5IA#R3*j9~f_a*dha=NJ(e^VPRZys)?1 zJ-VC3@76rgYVWl~iooC?z8uB~%cZ475fS&%w~V*-NT+VKIUa;~FftT?Z-|;#vfLB+ zl(r&i3JZ4M$;dnvWD?WoWTK;!)_3d%YSN*_@L&-!Z{TNrV{(8u&YUdswDV-@)I3_& z{^n$1XTJUcGOjN9yg?&6TdD~pO(&Kc&V+N1icgNAi0U+Ij!V~*ZFsFu-|_W9H)1~; zei77@4Ymuv2aCqohZ(L+@6SUFFWg!vXX`!UI&rKHt?SCRIB!4L*A5UXbRR14M8M2e z{NA2YHk|DUD}fO|ogm;&2wXv6e>gNI6T+bl4suEL&cJI4YLY(!dKYAV!*sknkEbYr z76?=^pToC{HwRNu0RcbE`>oFN67)2w&;@?23bQfEmC7>1o-(685)e%(sqm=VP6Oo@ ztc+vip+WB@-%&m$Iz3yzy1-N{OrYQ@Ql#VYx}i#DH;*eUyXCY$=LgPs1oRODPHOwz zlWh<5!vkleK-`a^U>BTo?l65n`6a36!2sLW%#gfxQtug@;A$RA=LQPY416Q|dZlsYEknWW325C^~ z7Nt9+yPHu`=?>}cZiaZ*c;Cq=;k-q2blP zR7p9SVYS;f`1b;SWebvU-*R%kfPC1K zGIGdM9bVtK+7n%w7UzNC{q7P&L5Sp^&R!(K!&bEYR=9LYOhvgyVr`$pIrdNd9 zMAMemw57B80ei(d4da2yR%3-*56mbcC7SSJzfz+gIW$3TP(0jmiX*ZTvA)&)4- zle=YZZzgCgIevNw;T$n^Maa;O*P#H}^S93fT_Qb!PNu_^% zNP;^h3tPO-3dazK4~q! zU^0g-L&0T0b08m{nwlCG2np-VOt@2qREI|wbg z4rK93wF5@n?r83Pcxo!6KvPZ`e;kk(`5|rzO(+2f3>pf!d^8ax6Rarl7>xr5%dfN+ zXn}qmI?!slPoxzCRkK2sgW0*QmM{gat2L?4)YW8}#%~@4wr49IEe&5ilq$V+3%O+> z7z!o1x*D(SaBS1aLE+;QD4cvvi4pEhVuZ72*!|d|j5Tp5_)(r0y|b?^6s#ibPevR( z&}1-NLQydc2RinrrtsIl%87=XK%QCRI`IM+zs~|ZHX9Bs3 zzAx_e>hs4ErW(I_jSNjwH};C>zF{|UF=Tvp!rCR#nQHYw2fCm`=JX2t;bP>L!!m{V zq(R^231BcXaca#DHgf>{{#W%zul`a7A$$O8pjS@Lh~%*)k%5Nx;%CI zl`H(}oW9mtLv;E$mgoEeet))AWPy3KY?6bMb0zyrj^_1-7b;o=-RfdTtjq>X0Hy1h zGguA2pP}aQJRq4u0vZe03VUy%e?=05fYM7)EtDiUc!GLHDxE&mpHz^uV`;s*~)wjU8 zQ#Ng84c&1iNeu%@N(mA48wNJo!IijH1*5k-xfmw&SI{+wt|*>T z!RXyeh6t)VJ_z5KBb8cgQ6?CYA{!cLx^hj6b$HO27nF$n>UD|Z6|$^x!Fu_X>oOc4 z7gN^35c!bzolr};c9-{Sc!UETP-I0^zepiHgt3P5EF|BT>IeH(@x4c9vIc>1`iWjald;K013h0k8`Vm18s1RD$JW}KBQOh?M-qm{*`0dhM zr@3d?^!vdkvGH!u&(A^B9j3cMCz5LLB=Ts-Yi1H5BqkHPnkwwNb#FKRL<0 z*p-7#G8-+JP*>rU<=pAPVI6zbShj-5wX9!Zn|7C7rj?DZs2E+WcSj2vY;JBICv*Pf z<4e(*6hDZHimq^(e`FYBYu4;ys4-{;SB25HLy~2&#Ji%Z%7UT{I=?)+IUc1pG|H-Q zwa*fb*CXPF+D>FK0*WVt)+K!fD=X;O5wKhE$_+5NPn=(vsFpsAyS=zSDIdtZ*ezVoSKgLr|WHBh!9o%YVDL}v!BvXW7Pf$ zmZ*Rr&~vD`V0G##1-Vaof~#t^zHndB#n|*ECE@!Q_piZGVVUL?BVGd6>Jcl%$Gg!U z_V5asTB4x)I92UIHjK5E8LuC8rAno8{Qu`H>A&BaWvwlN0#G^5EROiq@l5&)O(x&{ z3oVGahmii&%){lC5$M&2gLTXOplAKJm2}%z+_$C+PxK#$CnZ~ajJY>^84H@{ zG^FFbtXh;a2oD|{9UsFkaX=2v1t~g_+h1snhVewyvji4WHib6d_@B>c-b^;kn0d2L z-m{sp?{UApD{Im(HibzM2-2?Zn`!*AEmUB?iRC4pCvR(CjR&lk)5br*k3O38mXG?afKJN|bi!Jni4Z^=N` z(Ey0@Keg-sjgevOxhegAPx!wJ6aJH=nH-q=J#sDhxXlcpNB!Ykh4}-?x9?iabAgziHRvd1LF_u zJ>r1n`>*nAnVvu-xln1%9FVh5N?{C@8?-ZwZs7d$8QfI?%iX8g*w`)@z&UXwATaPt zTwEY9w0FIil#~Rb^xT?VAXRNqzD}XM_!l(j{}Ep0{a!`==ZFBHr1r6o9(333IL)i- z>Lfvn48)5^>;VZCX!HV$!0PI$+?G@5KU$5u141GqrBa<&KqglPa}!KMe1$+_$3#*d z5K<9s!2`Z}vI%(pe@-@dR5JbqAfJDVi76cL1UCUttQ{O2fUSr01GvsCE-z=b=GrcP z{|F;R0zds|wS}@;nI4eMnQ4^26Dgfg{1hYb0m7 z#wy<9=nE*OW)vl3^=W_{0<}_|U#<(@-9MwLUI6|bAj@Qlg*$0$0|)R*srt9YJXHmsDnBHAGL}iIhqgC69vn${?QYC<7k2X zny)NBDC7$yI%w1pp_c!rUGnGyL|Dcu<12QO?|6K+Jq-5?grpwj& zszrF9PtbG0RyhJxN?O(C(ex&N(PuJ>LcY8gw|IGN;v78<_Um-o6AY_MK#@W~unbkyY$bZ7OVvMo zt3BOf0%VK)-#f;_k5#up+n@VY(*r%28m85hsr$T)mV)WAJY>Y{H*Rq>C!NRR10;_58TI8Koz75+kO@LzzJB_}3H6;| zxhR!)nQ|NzONFb`L4L{e`B^7=66#!_!|4fi2kp5L97tt3^rKrs(E&mpa1@aJg9<8@E^A#H}JY)R}aRSFSk$_a`j)kVV3aJ55@((1MYf z8OWvH7pJxh4MH1&U|K1n+b*BGi&E9yh3l+z=wJAvq}!YM{u66m&SYpEGbrDMg|)@s zW&5-b4H10!Z|Oy`(m96E-woUEJ+EVPz02yLUS`!ZLA7Pop6m5wv#lNyRPy5yp*$gYDYDzPh-pn@npJ+BS zO(HKYbZr>WDDvR?576jtm+AU(7f^|3nucXgy>egI?OgZ>I)p>((UqhLFI^}zh(A^z_ymx$-@A^k!lvtIiu=lrS1}5q} z_}bKWkH0JrqS2eo?3kDOj8<|^&)25+3(>UCtM z(qEmPfZ&Kq1W_t%pVTq+?ENxcPiuS_1LSM1_tkk2Cs1b{@2s|Vhy|EPd)h-ChlX26 zM(;{wrW-A}(6mk$n+S=oEc;%EUa1c!anX_rRYsXW2D4m($h?G{u=dI3Wl2vs6*W&k zCQmZ4Lc1%*EDu?geKci-bBJWqZx}HS7KWuZ^lP7<#M!C}wUTh@S-I2W_y6dc5bT~g zD}~X4(g7Xlu8OHIL4X`Xp1CXHE)dumOMq?kse|+TT&D}Ysi`T;w_g(yKD4!m3Eo0_ z`U@dd-pTi?hXb+I2LeeH3uWJb{`7D73T3NN*FLTkRq-RQ+`nlJ6k`G9|ko9Oq_ z=RU1(MlQT+a3v&nC6qiEwqj-BFqjV4`}WP)`$qZ8Q+vmgY>PZrJBIt;(=GgsPVgvJ zK`F)WOL-d1D9kXJvX{(OHu=36L5N3j>iE~O$=$G^IyuE!Q%PPleHrM-Few=slfB(E zYTC{XgZ_p2id2Y`;{u3hBaXTo5h6={INbY>&@p_zXBDIy9PGZC zG?3Zi^I_){+>dJgsA$VUweYthRqC;WT{*BqARr)=mzRGBOqM}GXgEMOz=7=stOX3m z#l;0Hk$~%gFndZR*h|kseA5B&n+Q}0ozw1F$U!3oP!%TJAYe_Dr9d|}I65*y!0*Na zc$gqN6NV*HDSJptA1e)89)ddE^XJbmq0lP8bRb#4_v9+eknqD(DT5+2*`_&faf8#= zC~|ipi}QBAr09iaEn9^4`^@rW#1h`~_PNn05R{CtW!8FbtJ~SV=b=;!Q=N!!3D_fG zEm5TKxo^5dl{K%roqxOBhW?KDy|}s@8J0|oTR5%`k=L>2AXe+kzW9EmQaX)Mx z`9e9ZQ79(6lu3R-S(wE;%C_j26qU-y#Ll=GHo#|kG=Cn?EJcZEnqsi@HR z=5jf22N_dp|3{1*HP#QYf;8+Wt{G*#y^Z?8yRqO#F7a3Hg6SA#WV!rMno{-7N_7^t{X zUX{o6L_ihCAY|xZK!v#21JK2~lkRh~+Q7 zodJ!7l-ar%qWESI`tkE8PmtEB4@@WJ1bu#&(_09W5iRRCGH{pb_jf0) zH3P`c*6mG>pq1fubNWJG7U<3%9`36~3HAV>1k;1(R(-Oe z%>eTr3{qqHg?fT*S-5JxcNXDb*rgAuO@q!98cLvYj-ot?&hhzb2Q>JJx0sGI(i2Fy zw}G*thyjLg+AQ><1mNw1;lEFfz3kpe(2dRntuBZDmA!4v&>+_Vh-<^koG;q=7zR7v z-d%;K-SFf;fyi54{Qj7Ud9d6r_~;ZKP@#gZ?d0X<0c{7Arq)6tB07NqNPFgVhz=1E zF~VwD&(z8)EG;d~gX=&S#w!8s?x8|edN|m52fV1`WwbOjN4FOXRlv3MQoXdebOR*s zT!F~Gd`)GjwThC`(>HID3=lvCfq=*|eK{&5M65uzeME~Lr?00c&MXR{W<4Ynbu>xv zC8g{w?}wb4b;1|D@gpGB>+!pj?MGg}Z><26yvpjt(dV)hLwViy`)ph2=Zx-r73ta% z?GCe+KtoH*fk51oON&{2*^~yNTLx3XN-AEU2AX3m-V2WGBOyY@B*uoJX#&Opnr0W| zAORgoW2eya)=rc!9=nx+NR+~hSYT}CvuX783n_S|t$yFL8b@qR!4hQ}@)0xc|MT_RQhtQoC27>b~1>e9hT3e)>oC zPH{>8`_i8`(?}j)<_AUn$l%LY%G|4W`5)p3kON)Z(j;;V0ju{4aT#B)4fF5ZmN`wY z*7UlWHP?>Dj2Pn~44=ocg5;7V@Zh>56p8fI5tK9 zJW85mI^Dcy6hI8``+;YietgCKx{6BxDPIZyLz;esiT&X7lshx>8sb`s9F;F|Nz&bV z?PHTa&Is8O!Au8a1ccIY1u1(TDZC(B3u5BWbxzJoJ7Z$$baW~L0$)1oMkh=YB?^>4 zMN4{yY@x8sZ%6PDQR1|;y`MghPOs6jbd0f1r679PHH@yAZh5IcW8S90<4Rxp60zKK zN1yt6$7t5uc(3BM`=C+D+6oU5388~z&@}D5PzT$n0+l8jI9syLdiN`8T6EjhuY-@* zdZ4Cjr_p=G9tCr^js^zQ>a;e7_r9!e3g71X9;PfRCX@g9 zRoj`Qk!{9g%|DE`w$jEzf>?++fv;Qp?B*iNE|FKob_fkFkFwLv4XQstrgfW6(h&lx z$n}%KVPV-o`Nv^B^%+=474j7*$oSoa0aovgoZP_sE5Kt*EVYw)^Ts`o&CtjQehTD% z0SPQo86lyG_tGv1Q37kk@~&E^i%Q$C0Rfya`3oLvNa&O95eZN0y4af3iBq+~QEdSs zBT`brz%!XJRUqkDS&#Oq-S0eavn8b00;{9t#m(23C-!gXU5GGTh-B!A85oMkEh>vt zgc&1n*OipNj=R)VzW6pzhD{h))TVAlxQ@pKw3#MatIvSqMP}!e3+OOHhcbdtcXD50 zYG01NYYvMw8M+i2KiF7Js*q7eiCU?bUKz}qRWt)<$I z?GywUx$@e9YY#X{T6_kE68G~}ESj4K^^Qjj+;%#-PDNToTN2)LUkhu9hVFOzimun5 z%gE4!t71s_khQw8@k6fK-xs1HifkENp;SWoI zW_9|(lUEG@m-LUihVa3>o#(_igCac+n~P4*YK7)VyRF~#ZlWzhiieUpHl&B7g zpygGy-Ij%oyZ)+w3~)FG79l;JWzjz~y6WeI1hR#U{SE-Tyb(&{E1T*j;i5=f=GWf@;AA9PB_!%HPSgVtRsr$k>da|b);U_j9@h6YVR;2J zV$dE3z1Ez1k0TB=!7JI8y`HPDZdbYY<}X$^KgC9ng8SzNn_XjM1H#PyY_sg1#8z(^ zee=x_H_IxJQ+S2Os~z|aE#^((IzGGAefY-oBf}1b?MZ$rak+X83By2tFYQs;XF*S(FM{cY#?vpHnqD($O!Hu#QUiJ6&rv82ed+~DQ?qtc z)uq>t(7l)b#EsWNv)31pTU*kf{hb(Y`-fo}1-sN6ITeV{{Q$07A8~sIav1nZl3D_v zl!VLnv9kTr(2)T0AzRhpCiSQl9qL<2FT>XiQ9zvJwO1UqmVBvx^>A=GDVm};_o59V z?bM@Ubv3`XPEBRx6dulb5s+v?vA@7mN;X7I({a2y|43RLY#hKzc3zVBv;V|%i^Yv_ z;@q}D@1ibt?WpxVNggGkjhFKUC49~Nz1z+fv66=3r*g9kj@lr^M|Wm+%+I)?1KMC? z5CI^;@664Af{WkQOdWGPv%cwaM+lL{?A#pCwHg4~HiyN?L*RGo>t`?H$W@@b1j6a7 z(@}X~FlqyEYe4(Odiu1j+F}&O8U;8~L(nwR&@wIVEY zh5B{n({ch#ok?sVf9 zz?T7aCxQHJeAQg#;ZG|Z~nC!Gyb)M2PtWzvip6_+=+>Osn7w^%`M_A%M#NmAUy74 zC^oP)iJ1-dRh{fUh55l(fd zrhQnK-oRuJ$%&qiWVZF;^V~Q(Ew;UvJD)=46slERR0^o>Df0Co55R7hoMg^xX;+UR z55wlQp&@^diVZ3p3v10!dls!bhLi{!nHuAkCcp|G)KWYmv?a+AHMIOP?RioWhd z6#=ow-72sc5+KPApeNREb3J=d|2@kj4p9b&b zgyOt8i}s;8=(gYL%G>YPix)^3812B*mzkG`NUZIS;o;@QFWBsxr_tRV^~3FM_XU_M z-&v>%cXGyHBRvFAN7BeWJ$U+L`I)QQPVjk%MKjl)h<|O&lq#^y*U|R*k!yL2K2>du zN}`L>_N#?ufNY*_VW5aZjiJt?U5=+2l+99F-W}{l6q#Kttu*0pvKf~eHeeZ$W8z~6 z{4B@#EUkQWzD5NHb_7(;f;Nb+R1XSWW|lVhW6N(;4n${04i->oe_b35;u{o>AAE?A zxkHpxzq<2YKYX6!5%d`HBO)wFaR@?*iu(3&|IBDtPY7jSu+!jTOA#S%qKCGLb=VN@ zLrrS0-E9gF+5>Nb`aFRJ<%LeNF7cLV9IOC;?(LSSGc)9e2r&i2@EaHmLGJKo30hN2 zr)dE!Y&A+A=u?dl-XGmUa5)ct!vp5MA=t`k9r+k1oa9_bn14^8b2`aWFsP^VdDW$P9NsnO|iYM`Bh z4b2OAL#lmZpj)o6o#PEB6CeW1aDTw^0Ghi9P?31q18R2$U}l1)ZSlJ9hl3!Rcfi=R z6~}2YLVdbBjSawgQnIrCvd{gZqA)<7bSQum8-UPg^NC_YaDYHipLn@W%|z2gv|73!a|U``Ve`_l|@z8VN*k5eV>l9@x?AWOT3C< z3k%oI-bsmS>ZhP`C|=Ej`hGxflh0JMQRG=`o+t!nyvK`^J3z@4Msi(vy2))y$id-c zs_=ENM-BA@wRCuDvbqQfAv~=*MtBO3dbAuN-nF6y@!{!_M%if#5- zo%>LEcpBj0{9mIr`&{7w+meK}H7ampD16g+!C^NeYLS1n@V2u@l_FZqpts8urR2`*D;0sC4+T%P==LrAnJuE|8P z)?>JQJO%6rL94T(I}q9oMSNkU_L((%pN^hVEqDaIo4oNg>+<+>hCUOkDlATearZ8uIUqd z5I4mORqQ4_a?MziIp08Ywkn_N4vJciZFBzJs2aw%g9`@k;9&+*UquX`*=b zf(&sY;;Yc^Ocl>>G|fjP%xMR>gvUe)qUF zB5hNjI9cIWZ&qPOl69)8u=n&ntSqzZ$@1D+_}(}A;-s>Eb)l}}^VdFSqcPG?TANlK zz7PenQ{MFp-+X&H%xAuL9W=3Y$G5ND6;2x@x6wrym!J9!epGTyDt&)93z<>56o4Ge zO@7-(r%-+?v)0mGv)V!gv~J*M&A__j?^~43w2{HEpGtoWs2bz>KY#!CJ!JE!DZx(` z!;;%YVP_f->=()`9sh`bZf(VYcCeUO42^7_%6~pYbk9TZdh`wCN&Y;)B2$~hKewEv z{~WpJX{20%)@}&ZU%!b@1^??-g4~-w&!gGqEIn@c9}n?j^o44ufWx1=i!~q-|8r~f zMF{NO(#aUJeQXr{sXm1*`R7hCVdYr=y2XkTkf{(p&;er_e;-7|yZGnGTWzJfF zBTI}jItv~V4wQH>p9BDmy1KfA#y>px`wYn9w+89QEUc`G*U5t39&vGm zBqXTx^z=CvNl8fn!Y>Ly%@~Y89*PR~eRrl$OillJpcSCo1&4+zT@!O!ssx%yMv@?Z z6h7>SNJdo(y2Xf5iU6zb;?7POh;hC-z4>QIth)M40fRicv$KzN^)iUE&r;5lTVPn( z-hN_bWd$TYbZ_O~yb%!-dkFGKAg_FZchPdP6pf0C3asrBwY0Q^aAxBFb^am%h%d5? zOz%M)y>=}_haoG-wG3JA40`}4moA7_pb`r3R%X2E;KcwcmS?jUcw`DQ|Zwh{$=EL;qzUcG(h@+|<`0v9L+ z6B9bzA)vdzkSKL_bye4z08pF7-QAn^9aE~mCXG$n#Kc4cV4+KFJ=onvoyISjd8t}R z*D~-VSNZ9m*Stpg_ZgVQ5G_4UDstEMA19D22WM%Q|2(vFl?(CyKAnOcvAF&^vB0gr zpHVSRDp9UL>0jr4&wn?6P(n+B@^JF`K3I4E$5#V!;W8oX_>Xr{DrltossG>2BCBB% zIv^1lmUYNqH2`q@nP6bPs0b%$2thPq{ZCQ`&6ApS99erc2Z?-C?Rnx(K|(1VyBNN;>Zi6GsqnE5AG$JZG%GIS_C5ggypr zr^E9j@ouI$1G|Ha(CwS@Y(!V1`~4D3NeSQuK-2X={}iOY-ksEoKlpAY7lL)I=#yeK zS%7~d6Q|m|(CpKRx?wfhz)i$y^>y#){v~)kYo2F=;<$2MKN0kz+VnZOCr8 z6FQT|M;3PlsbgR=qKg;Zg)Oa+f3~=Ku+zQLHNBTV=Yi8Rv77Lq=I1L@TRK)?0yZ}megOf;dagv}Gj|j?)Xm=y4Jdv{ zn`paiMgY&8v3w5Q!Y_OQhi#B}@)*p2ENO!_<_Z+)4?MkjPxUG8{!8r|M?)&B^7 zDru~7=dh^Dkj6=-YRUDz`q7SJvn)+tDldYao`8({`Sn_r8__9Tt|^}Ms6Y#f(N>_J zw6Cfam%j?#ut>M>`D3R1?#B0?VTqM;8eX% z74k5+>?19AI_?-L5WphEEmbMiIWtXYJPuzjQ*5FLy_j!BZ9CrbUR+Tpqq@6BOhp`Q zYe_b%@IARnDJ=Z5;yJn0x5Q{ZYJ@5wJA-6HD!`C5yODg>>aa!dzBJwMy5H0AR9_ot zD?-GTuZ5q+)~50_US}9Bgb)b%azDPYdjUs?C%cbkVfhknalA^HATc59@Do7BG1NdT`?jBr!Rh`^cdTduscN06?OOqRbW+l%BO{4t6cmEA zMaRkj#2s+v%Pes+k;>xqW5M3hp?l0h6f5>kiyy*)!JR&~Vu^&nO^rRLbZkK|Bsa2a zCw>suM9p@#=ycL-Q3?s{o?qyTi`QJU;$z%L6wz{Ji3A~U3aYiH+NI2({aTnESTWdJ zjPTg&GSOPE`kqXCcs@-^5K>&pZXG+!G8D9Gi@A@HkiV}`xjWl%qETas`@6=%uQLp< zZG8NZQCDPu2E#zPm!TnLu}$%CjuS1=I-6>M>|P?#z+2?EXm4c`Ik4#CnMFZx!aH;0 z1V7FzE|-)#uXD+ned!I57tS#_(WrR$<$%Zm3)aU|Q$ZzU6RRj)Y7Y`USA~?TyzB&e z{-xz*1Q4Z*!>EM=Oy+%Q7`uGv2XmpIV~`~+>^;TTm|>N^1d^P8G+-mLGx$2+qvM=0 zM?8Kz^JCx#A>;2e|FC5INOF}(Zc6@#JL-Mn3z^s%nFX^=-wJXbMHe(I4-Wl&$X%u< zy!OE(bdW3WmoZz4Kr?bp(z$T-m+^NSs{!Y?xfCzia9qpM2b^2k5xFz0&rCsrFtYXT z+)yQy$J}aX={Qk9dac^!^c_Q`!p+uJ-tFS;#ew1!uY1-2d5eL?9umgF7xS_ANK7O% zf&Q0MBt`7c$}S2-lNIwcT`yw`pLm+dJMRk-F8@@RZGHcI^h%CwD)<=wtzxN`(G+ie z=G&-y5gAGR`?UEYI^~Kk^20+$bQF3%*qAaXY7It3k#O7egcH8nju@`&MRLPqfbT^( zr_(JU>ru4{o>5oz9oK&Tb?LeQjZQs}oBtN!oykGOb?W`=aGr-zcIkc2f_1NB6$^&n zx#1Q?FF~Uzn2+u{ZN@Cw;kgFH-`VbkYL(DFqj?4YaS~%q#l>d|$Y>O*-s?UbD@K!) zq&?l@Mgop<9`_sbz%>E>mf;2~d6hyP)fenbGT5|(!e>M^i<_&c`0CuKBy1#^nG|l< zoer9F==*b#+ciYMk>UYDzC@y0+cQeC!$xV@?&N^S3>mVVGnB7MJjKV8tqQfZcRA@8 z_G`j50V6c_u2jDz_)|bw=7*Y+!oo9MwnS8QIcwpZ$1Q*}O*(&R7DX{lcAqL%>e%k5>VZneQt?Bw@|rR$Z1^`aN`NBCQCbkknCBsRJrTHyzFFy z=Y{Rm%#6{Q9_>8Ip(=m~J9e!#nZWeWnd=JJ@1&|^$=(myp-uHLV zM;A_Ole1)y5oqcY%!@c#QQKXpxh& zc%|2Bs$D*(qy%#hlAB7NvEkw!qd#>Z@CuDllO1Je`4lE;z&}_#|Ld3AEx&>VS*8L~ zdRxvB|E6u=31}p*EU-i08JHj{JMGA>ghYjXY|Z?|Jh4709?&9QOpP-jXtBl7=pj+= z@*>oA(C+rwQCaB=obVPD7b#$9XsjzakK0#Z(HcB`I6x4$4-V?Hz6GVZ{B$8Qfu7bq zCN4D}ie=Yd#!_-}T_<@_iXCP3hDi!^Vpx!;Za14E;8XK)CKtbvrh7}jt^Xv7+{8-< zM^a)DvJAkJ^;riAd1EcoKSi_5+B|7yc`r_TO zcr{5!(87l;K0>`63^c(@NJu9~AQ!k^ThnWB#7!gHPhhhl(yF!fYrVZ*`8gcUe4YQP zaZvmGU^bY{#?oNyJ33FfCpPHrRccW63_5P)l?8rTOSlg{x7P;X+zMS|(5gntmWX%_xSMcrFmxxFo!NEEK;RDt z2gf_mp|#rSlb2#=^S$#5C*phpVuT*S!Hxpve&y!$goI#F`CMB4^_5Or%?A=tR7B6D z*BlIb;u*klLde7o7EvL%Ppp^IdvMbD6`7-6YX(B+L>Rc@AezAil)A=^iR6=cFA zUrhZ}$>L?WxPCtsTX**bGftU|NB@)*2WqUQ>bUIGAu*GTx}>swIO)G84YP#Cp*w@p#*vGz%(1zt z0*$1eT>X-Uulb)$@ft1GuMPFBJ~;rS6Ni0*Dr0Pso6T4K*EFx zsZs%sZ<)pu@&!Ohe*Y`Z#8kDKTG}T?#&s6lqc74a8f&X3Ow1J1>`ST3{utKg_ExrY zgY-1EGgnB+7dxjweVdKIF1+B7>$5!)I3_Z^N11_-d&bPubJi5jKTA=kpW8)`ID_ju zx8@W?=po|DVrIMf?{CN;Gav*wn~bK9afimn#3DZQ9enM3vCVH+FrM*9XSNwM?ZUgG z_6=vQ*Dxjhv%Tv+YUX3DnOzlP;S&%by?y&OhADM|3IvX#Gcz-TddbV&t(_fuB73-Z zMn-;s#s?=1`fh?gH^Cqb?Zy1$(2y{IEK&5Y=aEQ=i-R)`L;A?l(h_C^3XSOj(iciF zU2@?+ADf)w6Z)rG&UkpVk&URa43Z2KRwgnb9O^vt(kZ}eNI|KryYM^GlIL*mS;{V zMcHm|c>lOKiI2orP7|@DjESk)^A@M~jwl?gjoT)fSCV_HM*WJQ4$d;ay{-G9r9Y$3 z%+1X+Ee6GTnjKKrF&H0xRCq8jZ?dFS{`3QX62@`BnhgH(Sy6lft7mJYsA9n=Ek?Fs zERm2479;I!ix(W?M4rut4I<-U^jWj7JGr{Nwb&qXlS&+d{5HkcUyDmikpro#4<_oH z8kW|I)OnmQgSChpUM)!uYHxGemRv3jcakP0X=$_=Ki6{EMPp>NQT0z+Io_uG3@P#& z4~8o0Z@fo&_{sSq(*!Y7A;GpmKiB0hI3a-m4n#l%y)!e*J57s}Tc>>p=8Cq@6rwS? z0&cfX7s`Z$Vb5?ZpS@JN+IEcLL7-GVLEXR#=^LHnC!vY_u&F#KH{>_-Sxh|3H~x9( zMb3zdwN@397lA2b=Ot6=Z(ZC9~z57K8Lr~zr2 ztdy_kSH8zRDlf0RuX$pcW&Z1>G?kQ(+{M>mNU7_?-BbZ~oxsfDJP%0|6}z=$$Qf#Q zhS@uR1TH!IBf3u%sV|q$YewlbGb6M5pxlEjzJ?eoNamr9zRrV=q`v;1!D@=x=9|K{0nR<1_-hNksAzwBH2$Yl$bL2LWf+ua z+edGKki}@e+%nVx%#i?3975kcX>_>TcR-(;0{oaa7Wa7cZ}G!AS^C@VY)mbmNFqw+ zSVW?u*E?@5=Rl^bb|F5@r9I3|!fzY4D(n9W!CWP$@jrQdE9F zW*!z5_M+`qz;)=_tB0jrsCR>1f3a!yLW6%5X@&n^x>3&&sw! zBAu)LVPecih#Jm#bUbW=bLq^MOhE2;!MvZLk<$n1P0uW%h0roAugE-vG)76IjVC*1 z=j1$cb(IIZO7fl-PSK8(Y0=xp=THVp z_g^W0OwY(RLn0Me+nXKgcsfX~7Z{Q4#U~#e^`ptmRk3or%x(j;hWv}{G;=J7H=IR> z9U~NqUw@Td&q@J6nMW9|uCuL9#A`jjAjF_R4786RO+g=`J~}yxZ@18*oCLhAd>Wbs z8?Ph4vZ(d+xDy-6|208ar4Ls4aUPh_P7V)+!CW;2>czzx6$rpa3v1@??(Pod4@af@ zgHQ!>z~~EVYT^SiF%{;+lt3@yQ$;*CJxvJf4*=vJC`3O%K|xU|PQK-AuQ~5VnvbOaBx7a`F&N< z+unQ-?=qGys25*u`D#>hbHeUhvtZYA7B)4q{MVw&*p$ju&gz8#llXB6Bn#!3wv&_? zNjyY=fsliYn$*AdbYZQlz2~X7VU?9-RQzWAdwlKRnuWXByuvfSccWie?VTBsXfN7$ zJl&|CVy`IXN*lomn;#O-HoGCU-r*X&qicgsMpby;>f2wuKNr(3m#3ucg6E)M_hJQ5A1+$M*PM=FF*b zJ0^u+3s>C%?^gU+Jb2XH{w1Xk)b%ia!C+FoARNV*TO!MK&A@p3*vIz{b& zXJ{Js*;Rz6!H9_e24QhoTO`M&Pb&L)Ka1}^_yi6=<>ld@AIwDfcRW-nQzV9Cu{%di zNYu_S+OUONO?+gh*L%PY&;cT1ZUkvUo=jneCiBVtu8$k1rH1@v< zt!w@GgS!e@rNCz;PJ_*kXqLZuX@AR46nZBDmYao-$G~bkiT#o3I-dDV0X|%YUb_&B zkFhVwR14Z2P46;Ltht?^VtJfHl`R?^94cVKOJ3*x%ZB*v=a@(exe|yeLggguk5UXQ z4T45J@!EclJ(<_%zp$CpPhDIg|1bi7yvNT)AvAu#YUh?)Kf zRAnNfR43S*Z@xay1Ri~WpB4obHZZ*cq8Q9^BAd*G1{!M;Ri^#0kqw|@N~{Y*nW9Ha z?TCP@g!MWT6P7~_wosV3xH)v}?#ITU8)*nutZsKVuf!;^ZfoMfUFoq)~sIZ4Va zo3?oF0GSY+e0p2Cll?&H_D#$O3Ej^z1W_gQ&nX3&h)U->hhSO+XkD9Nt4Og}v72tQ zj!lOYrM-FgQ?ao2cN@DAg4yx(BTqOvYcQP;o(z!8`-7x|ge2{3^DUzM@#>(FM)LW_ z;FTtI3Yu5QFinS`7sV62-szZ;K})WE|BenfYduy%hl*kQ3#P!kd+kD%gP|xpOsY3B zP4tSbcv&>jJmofouwDwEXXbrEPAG>GSZeYk-(cjS+x&mDy#-X(Y1g-XAqq$%-GWM& z(v5^DqNIQVQYs-S(%lUrEunyffP{o}moy?$($d|{_3mr#nfrO3Z{5$#`>pkTv)0T~ zN3Q(GdG3Ae<9A0V?_w*{y!F9W+k3U4rb9LKwYpAbLe8M(!JPo>J=f8`^%t=M@nx%l z3d`pi-}$Sq0rem+7$GB_ba8*ZrT+_ZQsLVDJN~t|breSzHm3*O%#-8x^@j#Tv(ORP zF{a+f$uAIZ2$*cl7DAOiy^Cd0&m`&?T1!uR;-(FR2+@t8#@Mix-vsFPc1^zb21t7Y zvGMR!D!F+X8EJfu4^*osidX1YNA?H+5b-wUUATYB`WpmZC9vP1LSZ38by`71Swx6n^^6?NF<2)CEfxV_T3Cic7ZyZ!n3 zoLgREf<4;Su)tB-nr7|IcdrvuE2kdSe{^Js7B5xV8g(c;bvWquA1@!Xi>_=uz5&pY zbo6y>=v^F_cvKm7!1n%3^g5rqsVG52pw#3!I!S@U+GrTGx6`es8{_%a&c$7voDF{= z&jU)KuCx>Txv-4O^QpMYhbMzM%H&WtHZe7u-S&$bF16!-8x^JhsGiJ@s#JEobtJ0d z_ED5nEU}==953ADBqSstkoppnQcB*swfjhS8)ZaN?2unu?nY|*^2ZyBXYQ$Di_f(t zoVj`<*cRf&uic#&2>L#mE~qp}=YKA7K$`PbWiD?#>YetHgeubZ`XB@2qteF|bs;k; zb;dQu8$Aq1DQHA5 z^b4*$>%{{(nM9ghVpTiv9#7{+CZ=B%1BN5i{a8 zANA9SGJx@r&SY11z%tvC7}Wwq#Lvs}-1SXZILA{IFJkf~0mX}y`<^=Ku%9iyLH#CR zVh;rYQB2grPY3?+|C7DxxI(!Dukug+=0Afjhj~{21k1>0sk8nq`4eg5s1Wn_ZTSTC zaiZVcf3@9@??Lz9WUP!6R)`E&g8E8dYC@3VX8e?5we-N2=>)L;P@d9mrjyz1ERoSedX>n{%;T|^1L-&4TgxJJE>y&?hioYwYyUS zj93ae@3Q3U)rDWVp@2Y;aX#^d(zD_I>PTT}Y4__1SU?-~Bng+p@TIxAxx4AvUu=Td z%l}E1I2~<250qt;L&rzJSoBpAY#YEM6c->oO9n(Og^+;?3Tx!{@yMU_kkij>m2{qG z?SvVokC*(=QNi~h9cO(o@Z*Os6cHiWn>X2NbE<(wGoOZv-z+*~ulP^e=<&9wY<;L&dx2xtlVmWb&v_iq?o#wbTgZLfB_a}uS)C*Rc zewg>pFoo&W)@r96aIpEj503ixVfShG;6YZ`Ww_*_I%Aa%8{u=EaX|k4fs(+sf#jN6 zt;+#EDnt%QP~{wTR`|e-hwm>eE@F|B$Gv|dDgQ63jPdv$JikA1D><44;qYyxN&8`I zRlLghZxjmG*iiRh5XSpwkO0Z4UH0s_wzzo50n_zp5Y6B(&WGbD3^S`M>Mu_0KQdji zvAuV))CK?kaDVmxINW~;LTK}4$lud&pjc9j=Rt#vzP~P!Kd$O!soBH-hCMna!o(D| zwEaY|u&ReW5^R`*0Mk0%R{OD2?1Q;)G?btG2b>wg?!32-&dptb+gaqGb(vEqb#LF25w$VtWdiALJ(RL&U2y#pjT;m@ z^=cfkk>*c>3f~a0=&yMGq&;aYkQHt@sVd8B1e~0RXrGAc-4kn@1L+X^nyK|icTI)A z=Ib@4tmSSU&+)=bZpu==iA%Yo89uo463);z2hP?(UgT8?0ji#qmcEisA+0B(9=5gj z+rCcyO63m>$My+JC#Q0tL6`r^7<|wqQQO+US-g2`Q4&&g8gfl8@vRGi#DFaLmX)4Z z^R$KS=KPTxmY*~U*JEP5QM`cg{M!#7397*}WgT!dhS?&o0+#_4WM5&EW4y<#ts@{0 z)%Z zC66>ocgL_GnNcYg62qe;?VIYBVz^LK&%rrmUX`>a6m?jW{=KkP?NFfT(e|{~*$xfW1yw z^zU0~`{OY0Lrw>k<%C>+S(^z^*2nX%#^L5|TQw_0H}C^$ikY7{P@|C(9G%ls)B2r_ z#ZFHrvj<|~_@@@JLaK+i|K}5_$@;sbgQ~(Pr1PkjIUmeH(8)uG$W3p!kQu_ndp!S3 zGDLlI^F_wUyESO@w-$Pnn_xtxFY|#YhfWCvSAIT)s6B48p^g6>jKmmN7==AduB!j> zV>hwW{Zt4`K7z(SB;-E6?71!QCSKjS|;X==Tx@kJ)Qt-U&EFhSTwAxZc)`>tHVOJqvx z7bjwsPtIkwlWBdd7GET%lWCEFr3A+1x4KV zU$AEal{u1y6}Qe4$s>yNw-F?48u+sdmbVL1d94>lg;#%-vy2}@0BF&xbrZ*9vd)PP zcIA78T4tRQOjl9dT2(SJGl6YEkXD5& zCEU0$WUdWbE{w=ENzuQpx?L`*pH?aJjjU}yuW3m}yFY)(B=lVonuv(A7SGYx334x_ zZL@b&ID0aU`CQNihbBq9NMDt{<(xYl%TMSQiN|Z2(5)Th?S*q<8|2Tr;lk@yt}i~i zAJr0NK^+ZR=-{kNh1NC}7FPZF*$LW5r9Y?<3|tCN=>Ifzb>V_CC7#Ei(P5|v6x}2o zT7*Cy6c!cT2F#OWqXru0phxuvz5v!$Fy)2gdU~j0dJdscAEdl4@Z7p3J(RB-33W6} zS`XxzAne>fdvK+Xy}jJU&TdUJ1I*u>%NmsqfEaa&b9d6_#${?ZPtG` z;C9lB7t+d|c7AXlu!mjw?HzmZ>D6Vw*#LXC4j47Wfew2^$0+`Oc)rP)9pTKZA>4M< z5K?Al*aCU)0tAwe89qEz8y*&Joan#wobA~}RMa?Jg1BhLJ(t5=(v*Xi3+;BLb0>JO z5(P{(baxdrrbvFl&&U;!|JLz9rGA3;K~-o#Y&chb@)#Zh+VNzJGLxy#drb>%c74Or znV;;x3;)W!KD*S!j_|D4HikN;A5(H`W5>@+_?CYCd7X~Gs@!P|8Vb}^k-ezrrJwZd zz;kJ6s}sqit?tV^!IhQwzq(l$mC&>B_~Vre@9?~>wx}j`YOil!!?$=BEa`j}V_+3p z38`4*Ai|XXOoe9s>UFcHyW5BKTpy!0rDs|bodd+QGGxNy};aLu8&O)W+oT3C?N|CCNdL$QjPP_@?2{D{X97MVO z5(Tt;`U;;DkQCbZYNpN{rq4-(hZQQxd*cQK+r z4^Y#|q5lh{IhR&c$D*6;aUHYj_u$8lv%tQuO`tX6lKwP+@{MeDTiXzUI>lMUNR2T8 z>Hq^kz5ZK25fr+7!o#`3X(dw(oQ~`#NFT9j_PiEF8ZSIV6^9nzG;D5ft9II_B>y)` zWzxxV%L!RnL6E+oGy|GatW?G zKgNN&Rbvn_<@JqYsqzFO(+F7~4XLDmE(>h$_LKH`l+hRKg?BG@cjum2KG60*6_ z`(9EW;AhgEjo~76VkX6Un8~!BZN&q5)yJ0~EP!a4Z4GOJzzHG>3KSw>02#T#>MD<5 zKE4%}ds7Q>_Ay#ewe2mSpcBXL`u-)3Q`h@#hC-^=O=O;b!gE%jBewXkP=HG2WmrD3 zJ-GrRicag4tcdk=<^Hz{1Hp%J4FifDkm@+wRa65b$G%Y^VuSN@#aAKEPWmc|;ch+t z;#d*gi-!~+e3g62TB6nQ;HmCn(Z^59pr_Llb4@w*AvsCmiQD%)D4}fqUQ#_QpBwtMa%U1% zzOvd_V0turFHG;Wh(YPGR!)I^-f546@DnSmLT71_gI7XEX_}(Kt6L?t!|P~L+S=q0 zIpDa*u~ts$ctB-&>T+exIkd~!ulOq4DyQL%RO|hR_b(0g^Ll^2uTt${vl0*&ML~~; z=o=LLwog$!vt$2sHRPm6(rUpgf)0q90-XwMB?1S<1OYrw?XR~d-Op@(FZP=U#(!ah zmwUI_K;h&|trwAw820p$;68E)UZ|R^6Y_vnRb;>kfm&Ht9%IxEwp6TMkLqwAtE&zS zD_4Sx&%+e4Aixe&p&XkK%dYwnt2Kh20RBN4ux}_t*MCw=IFM3IxOEAvur2jo=+jF} zL2qx|H-rru!V{(wreRw>{N*_gWN3#&9mfdxDj|n;8rT!#BjP1JBp?|&7$yW7J3DdI zG8MfF3JSi9z*9sB+s=Q0Bh=c)<~9V_-h>QkXc#dLlwTnxW{A8SeSU?QSBd%%#x^cO zrHfJRU;IRSV0);s8S~*1x;BLUf!`B+!??y;W z8}p#_q|C&I0>Lt#g#j~@^T7wTWYnCG8YiPaANPgR;TEp(+Pv)yt(Dh^k$jU`x)%+pU&<|U0LOL54vJ9sVTI< z2=TH=2Uc1zXb1D368Ag5Sq7hJe@xV@&A0a?Eb#9!joIyHt%;n8y$GI@3u=OGV9feCIWaM847^)9W=#8Z zb!x0hzW-2%vs51$9oKrnCQVqjij1cmxNYD>oL_pyMOGZZK zIy18jTTB{YPLqm}9I77!zrTc-NtkzerX_Iw`o)dOI(evv@VZL!@DSqT<6B!>D=Y5o z?fKokF0HSB6;)z{M9AIc3^7l62o$rK53LT76c8YToN*agpP;5!eJa5B>UcP6S#equ(7~gcUbsD`sy3KmtV>bq;gXR3O#ldX+|XIFQgKZ znw9#b1_@tmOsb)?TbM*2u5~>H5r}_dD8I4HE;vU{v3ND>~R9N0I>tbyo8E!#Y;CLqgzKa|GJbQMGiE;OgxP-Rs zMrUUSCtNzj#D4WxM7er0w%EHL!ZT)b-AM7wg=ZWHW(^)XQ!hlewYBK?|3E9Wv6l0R z6}NSDikYim8_9Cy%%*u+huz3O1HVj0e z*&tgqm+q4#aXh>*#RV9qBJsziOygVY9y@p(+%h~&0axM~K-FFsY2m6BTM;~Yn~;wB!w(F!OBo&U7xIrK!-xeMlJeep7BGTTV%Ice%uud43ee!#5eORPL^@!^;~*$ zBw+$u+|b~lPw8j$JPX>XXPT)wQ*B$EO~Sz_?qB4o2~$~^nA zbM5(H^qn_~_ad{XCy+*a`+GWk<{v9?|y7YNk z8S~fI;bdQ=q%bmkAG}$dlg^@+=juknu1DXmVgS1=AH;#)Ss=GE=pXA(X^|?gJMC;|>;% zQ-p3JS;H4k*DCyK2imU%@7s#psL>F&+OI|_^w&JT_j*wrgA|?0czWPa;DB*Zeq_=|e6>ok(jc(YxL0 z^2>ZNe}G)Dcj9}w^)+UL+6DsyBiQA~m&C|OqNLYtzRkDowU(Q#)UZ=%{M zeKE}CaFe0gu!!;bcR=xhwvht^G0Bc@#Vffj53dWC^ubdGtU@}BH%ihZ{;L*T`!3c7 zyFLOkalNamFfAu5!oJM?KDd83LlxAy)O*x?hZ)bw_I8@yW^~j@?kseB)j+r0WI}ol zPYBWX<1GOaIn`qq&7wwGpXEO{zLNd8z{!87+=aZ+r)o$gONG6qup?iWN#xDH7!u zM2(${AP^3t;QhGVh^Gc6myDVkwLMp@>ttzh)rU`?(R-!mzQ=rfDB_IKceHHF!&g+l6QHR-ySroyjL8^^ zF)?d>-xRUQK1pb)_sa?kv105HpjY9~qEWQO%`GU3Dp$hg>Z|3XT*a4din)^mT8R4H zh>KfUS@99vm|%SX;4Ez(hpnahLveBRMYlb-ckxfIZm#nSxr>;h;GiAm1C){~OV zShA#Fu7t3-I=$Z+u>s2juY>&5C$vXy-487#V8z(nR5hfWmRGHL^KksWtS?4W_kH19 zn3SmB9k~3v6sJx9g#jM3rc=7fZm69CIgXW{Xb99FjDGBv^6>YL^xwC8jhC997~9Ai z^-W*jJV^6)oJ#%e+BN3ZwyCoa(aqdpk%2kX_UV@dB>?|YD-6^OU##0p@*xevM0diu8DzK6UZ zy;!9SX-n-dQ#wst;{#?ZuUqrje1yrnKPc z;t>#dD5x8=%x4BX4|7w?IHqMvtx%zSW- z%Yf>nhT=-7^oEe@!&M~SKH3I4LX~KM*0Veo=Df6fTrpnw#m>j8 zi1n#>Mc5g2RysUp;TP})G-u2vPXAWH6{$RSbluRS85N$WNrMrvs|#KYLbj-_M}25MM>opqw9DTYpkBj-*)PGXKr_ zk$Xl(^$t!$&y28R`p^9(_l$rBApny7-!#Y@&v*R4?ap8J=xD_!rgvsV-#j`$yL0ZL zfDMYzt<@1*pqU$cernWqwTAIH4qKa#*P_R;X-M_Wwh6iJQee3CpQH=`+H_(0YeR#_ z`5iRCi%1GvQaC%W-YWL>SYiu)RouGg>yeO?{Zw-TvV#gaHMnUAj0GWBk)-*XkM^5* z!ieob>I-iO!j+4hjm-5#VZf;s_Br*jk31T>a|2bctuLnRvHaGrq5FoHErF%d#V7L0UHB?B{SVx_g)q--{_!&8V#O6(pzjj%EW{`y64G7bSj zLYej4X>c@#%$wz0i+y zGr}Kd7>)5q~!HaFuXiwM9T z()YYi9rh873=bt{@*;~q86ugEADK7L6@ul2k%0jX0@Rxz97Es0zzfnu(LGP=i@=kK z!tG!p*c(PEV2HcOL}hfx3&Nv=fVMG!s`%ZzcclQX>8opkE3&jd-a;`iIDLHtM{7{yABmx${SUm3L~zWATnGQ9HYP6R899JAh<5o>XXO43t|W<2lOPKJRwiq^gN9+sPJ@kj z`wK&rwjNmge1+!g7Xemp9524ws;GMbU1pHqFz3fcFz_|2I^uMfZThYEcjdnlvB%`| z_>jjMDVYOaowqDovGk z4pXPj-JSp%RCf%eY4Xf0XLm~cUOrB?T835LOIXXh;L0o*RBDX#umfI2(kfc0Sk@QNj2sNr-n#;KbTyR z5M#XHhJmYIJyGF8V81@$!{~=&@Dta`twv1z=DJ6Ek^MM^`9vk&&r8@JG$YotHA;io za{Wafh%mA;(5=KhxDC2#G1pTb$5q3O4PL%OPQ&YjDEA*%tKjr-&cUoRfj-;a@tOQnD$Me%~C9ZvalzWf)I#a9B zz^kM4jrG|8FQYiuQe>UVDDuAhDDuEc7b8fBW}oXR1&{sZP{}o9!F$QZ5aw;7Y~+yq zk%QUjwhRF4-ABQnw4Tyl+IF}Bg!F0iWyI$02o6f0F+&oG;vo+DbJl8(b+2Dvh(MF6 z)#%v%g!53+h#E)djsh-U~3@>ZYCMwGVSXCwci>3~JK%)c`v zZ{2O$DSvt_{<)4_!qD?yf{OpbSuRJNsQ)i&k3S)jkN*gf_@@7pte_nr5{18oNG^lQ z+siqcnlys{z1$F;)Q=8JXrq`6Pf*_J8X1a) zN%P*XLw#`{E01;xzb-s~jQXbYFJ1Y=dt{PEoPTVWA3yEYN|)fCyB`&rXM7 zrND>?vPTeV zkhl~)h->oU>WVwt+s8|Lf7xiZ^O~Dw!D^CG2T&0Q=MDgEgh8^w7&M5B7cW9zeP($u zm$HW#Xo_6Tg2s*xY#`)hV6UiL@#?uwwc}RSQ172S&D>)sTm}RM0fz?@q{Ss&|AE{| zS~%KSKzM>1<^yboP=pbXtSU9mc4AK3zq5Y+^-#})6xmKJkaxnU{IauIGU`;)?>yIv zh`c5bOC{Hx4bWrP?NYiu6kdZUFO*KruqD_4cDT_0XoO~oyV>Kvv@_crkgEWJ3#ZB> ze*^oVlry|ZFiVSp0CP<)-#F}!3-s#FQx7GKuB|fzvx9;10>RS~k&$6Q`Hs)>7X`E< zd@3rA2smc}*MVAZ!)NWUQws}mYd5hkUO+i(;MUNy{~XBzKtirO`Ep+kUa;h(-J1`hGAUyb;4l;Z z8(F!t^DksY<%ROsRxF&O4<*0IXpcWk)6*8$c}tos^bZVIBPkf0RjeIe)xY8TtkT!S z-}L3=VM<%1ZQRyrwip9LW~j}2Uem(hS@(HDY~#f4kCM6 z*08E=2pO#CuCg+aoxRWv$geHJHjBOqAGpt0+|2iHddd6ofm#kJ%Oq`=Fb@7!*?0#nI0l4vQKm2z>21~Ku65a zL*TQl)?FTu)%EA7>5;Ija5a6&jq7Uuln{eEF6`G6=s8}f>Z(< zZ^UDcF98E|@|Cm6kJyEfo*YkbBh6&Yh!1<%-K9#>_L*q-hHeCljSw_0`zyz=${pK* z=uJ;A^ccG(R&9HU$e@9TPe86n^-*7;9X&{LKczhxY5iZQ7P%4B$Q5{YCOI|B%pV7~ z82+kuA_iU-6M^FFpj-iy=RMYRU}+d09c5%;xodh1Cy+|k!(hvwJ9D+<^)BfgcC2amcRLK0r!P%c<{aH_ zy_##hZ2q(ck$e*BS!H~iX1orMw~e4V@42Wxqe3067=CrgjpDX6xqt~4jV~9@#T{^W zGV$7?ov5d#enYvo$X2#3rAhy}MZm|8vfv*jg&(d@BCXOlH_Xw}06DsHsfJO@OI`7^ z0?n*j%-p(7jeDXz)$*bwuN_+UWteX|F1wm*^IUqtw4@}2bRqPmB2`E&%%UzSEiE+N zAi{ljiy(2~p?6G0bvUMGkIK7+?KPM9GIQ~qSl0ZvB4>e7aruV*l@^D^#`1^G<%Vqy zvlO?S1j@MHp$*`!oMG{^Mc-j4DC_J0-k4bvaMSTShxt26yx4iuNs9zSznhg-nk_Fm zIXPo~EEwyE7GZzwv6M~T=hZhfhzP+X(_fg$UliN7&OA9tWFAt^Q`OcI1urPh$->Ng zIo*DzRR$A}(K@xaGt)ELL|nC`HU^VPxN+$U%=`H*BTd@%5G@!RS33r zPoi_Kg|0Zwepgw2B1!$(<&>a@&d=t!?*+%Z@6^O(>pqb|+kUkJn1awSaOL%XaG$xp z=Ns`%;2W#h&Uo@42~ zK|Qt=#QxO0>V=mq$ef2UndAJp&;|!1L@aGqBQF%mu#LP?Yk%hDQsh{ zI(Hpw9e+BOtPbOx-(a8mUSSk3YIiZSTQ5r}#l!w=`>`0FGeV6w1b65R6ermlxsfxa zA`uG+Yx7=_B#9EzWK2bGzZlwm3*BI-#v0Ce>n2zp3~|#nNxoe8V9|TidW*wX4f89i zt`%Qm!W}C20_K~gX()pwMezN@eApSKCG`ikKfxcS4Q-CFJ+|-(49Z0HK*`sNxX}tEm?}rG>a{sZXjI zR|&B;A>739^l*y>0uWD6PYd18oW-1Xu|V2z`e|<`rJVi;wBeyGF?+Z*o2^rEi-wjK z&PUoLF{djaJ8O!+X@qEZX@nuTT)u+4*BgNzMIgX1kMM+hD|}5KVB!Vg`KNgcm3s-Y zQ5gCR1xX77E9<=?8aUUx-b?D4jsVUH)Q$Iy8v-RKy?DWErj!jFDZeDXqTP78@BMOm zxv+3gI!u6Lz=#;UN_WGjG!oPi%xn{615o6>Y`(VfEl$R}v$uTllcGQM0XpgP zE*Muo=hCUeLwY|gWZyi?HO%>PR)3QZD?8MAkgc($0pDYP6^oYEf=0|vqG_8LV^4Zu zbZ~lU<|4C;cIfK3+|vygf|w3dQ?tfj>K_kz1^ATZ?A+rOnVLL|1wJUQO;~eNA?}M> z{a8CB2N%TV?!)<$1Nt+Kbmfsu_%JTvSRlEcekN8JT1BH?NXyCY z5JU-TBuXet6Yb>tRUe@oOW|i(S5bnR{A3W+3}6bRxk{-;fBs1!fNyCsKI;LknwGk( z1GX5Kof)Esw8NhEZnt_Fg*?nLXN=N``jl&GZfPo6N@X0^OzGx{U<)~>+6*NGk_All zdn9;F()qEcJ{h>Zxm6HpnlMnc(3Ecd{D;Xovw4!M!HYR8?m9Cbp7Wx-*wxpL8yf1L z2MHftSZ)GXN%sUd09p<`$wKi4N9iXHAF@46`AkOf?eTj|`tzB=8DM?-Vf(U{tRvRX zg7}bH8D=RN-r1M)bpu;EAglS^z?qGrT--+2MG4|@ZDd(2bw#6=T$%CBrTwTLsMI=N zLz!{l3`M=Y45hJ}Rg7-dYH`tpxM$snx?x)&}xtF`lih%?}UA=0R$az(aF5-Pe z#L2D6b5@U$YA0Tp$wVzye|**^hcV20r~!~}Ff%iw#+4!FG}shU8yivdIxM$Q`XRXA z0SCi8H9sHQ&vvWj&MyMk7}rB)Evjg}xWr1Y|M~Oh{xS<~^T}G;TM4UGoq!ZjA*R57 zfg(HYHzqziZUFLvg^P;<&x`Ci8LLdV` z$T2e`W^s`+)l-e=VqNuFQ|GTFirlMXxhwU0odMe7(n|^6~1rr2D>1=iR#svI=I$&XdlYSbHJ| z^10{NZoX`BmX&LJ_Hy+xDd{;`(OYF9C)SNga1DWW=rjG(a6_a3&(XtsdsqZcn4sa9 zko*4KU>7%ZYE^}zmwvJvh@9Wgs@>_Z3K*Z041n6;meV zL658B4sHPQu@{^lQdgBHdrO1>X94%ha^k+*$})AsL@CyUSk+l)XUx3}$5#g&U3tkx zrk0vrROt>3e;m!+YV~18FpKukQ?Z!D)L@0{h6#PK;ZFN{KEbCQczk z3!LT4{1!MaS)l`YX!^*Wu*LpNvO9RIp6FGApGsAT_f=}gPe9_gzK0h&HKT&n>r-1a zE{WsYOMVgz1OG~q-xGS!5nDz5P;2(|#~^NGaex(5Q!J-82zJ6?&y@GL7{lM+loq$A zrw26{|1h!l4opP|T1{L9dH@xF%%+~bIj}N6v4bLrFF-$yp8h@VSqO{-oEfH0tX&gWbE zxfh}(w&HPDLD94Q$AxQ5oZgW|cemWTk2$AS=P${~7{N#@)vm7W^}s`|cR|Wu3a$J%=p_!gckS$yGfF&SXS=y(7EPRL zSE*vD#HXgI26 zVsc71G-i0?{r*OQ^Zng05V#y|ot<>$n-<#c1!R0)I51ZB$-e8P8!Fea$0u+zKsL!n z+$ilDLriAlVQ$I2YmvedwJxcSHMZj%<<6vXaN*|FdHCwpm7iVoK}@t5ORTenWj%TsnZy&-z7sDB#9o|`h7a+OQJNnJd>iL11sSHGWe*1y%eXT8t1 zcjotuxMk}X-`Upb*;rS^0wpc7Wu|2I=)XKUw{#soV{lGw!?fvPzplA<9nDOjb;*VR z4-Wsa-TSW=*P;qMa=RFgmcK6Zw%8*F7Ywf7Y721S=1pRTa;yw8Pr8Mw`wJc4nZ~p4 z8xAj&_YGhdeR@|(TLX1fJU%u(+Jx9_sF2{orX8I*%W6{nv^Z1geM){@!NWwG>@oXB zB~IqWd9k z+?lK$90H*G1k4f4O}||~1L_D=fH2&2<$~8$T_bK`VPWkV79AJL84+@5~SxAyh2f11?+ z(-YB-A$EM1jPG}nB8#x3Q!&z-i4+FXn~5kVE)pOZBZaT)#l!_(yL#(UZR6+MTuf-3 z)c-_VpYXd`V$7Q)T11bR=+I$ZVfobW&AWHOC^q2b`x?Bn4I)ZPX&Dx9XUm#8%SK=rI#v{BA+Rl;^F3cu6X@c@8%)*@ef<--6?_VDv^tmH`ZKl zvps0Zeo^*?p83IywNSaMaTRiT z2bObv#UP-|d#$Hq zZOtQKHG#@P0KsED9BK3tA2Za&owj9{Uffwz(wtCJQycgUM5HJbO*J`?u-xL|xv8&634Uo#Y>P86WkyCS zDFimOX*#Hs>#TH5P(a_c{Jn#zhp|0=O zTw<}>fngPXPR<986~eQvH38Y`Pb3U8f&1;QBIwV1xTm-iJqFPQmyu%RZ(G`o~cY$9xO zO_r=~$RQ`!7@=EJazYI5nov11tV#z`e6H_b#=fQ(!2EXaa`1tkxEth&v>CPk zE-frMKexHb{(2WTH9hOpjryI|jMLO}EzwN3NvrphazSjcXPAWPK0NIOX)FSb^RwW? zL)Ezm@;CIoHJelGc+nguEnBBOct7$Ex8B(2cXaHemIVjTJ%`?3 zp*B9ssb;k5_}Ou$9Ncl~437He#8`1+;8iX~9ZRX*r*@O??tT67e#dw`j9ZyEpM8MxR=Q5bD^#jG zMDM2U2BL|IiYg|HkRp@;wBmSLO@X?nfuHD3C`BrtVtGsqDe&>ukT(k2MUan^Gcj%F z9)QGSakP~E{GbjAv9xg%lI~&<%av75pAVEWYN(uw&jbNFHSk;C26~kBA?&M@MC`EP z@1k}`iVq&Syy7Orn$oO5w@lK)kIdi=?OwH>YnP^=&~7NT9<}w}=UBTq)QHCNq=*(V z^$TvAl}?0vRa{=N;a)Qn)U>+SOw3jo;eP3TE{bLRUZIblkYV-ANM~4-w#@Q|zCq#^ zX=9RlmdeY#c*)C<|7^Xp+tPnF_9p&~XUE_it8(YU1J6$hH=fw9;vljIKitR+U-xTr z5ojuS=A&rjB+~!o&Ey13!@(YmN)m|u<$QG`_<$$de~fSOWLg%i>a4%`?B^4TmHMbixD^7#}) z3|A7HrKt;`H)*Ib89lEtx-DN${uvF)29}cF`$3McXRlHn=wMsWqBpx&4k>7(vS_w9 z#0A($z^ff7Ge;nb=Ypgd6~W-SRqU1Gb$4zrPvbB14Ku35R$q1l6%^FZow87-FYQ3W zsf+h$xt*GCkgBB3zr|?!w+7+EbwBI*J|^fJr<)J9A`rxCA-I^lH%m*rKAt2Up){CkK#Ng z?_Dkm#JcBVV(|>}aO&`VQ@n!GA~o{uHCJ^c01vn^HKR)f>rAP>WZp$SS09BHECejL zTDP5|rXjKk+7v=xtf;SCxuPsAeUQJ$N-$WKKmP3HQHgciv%AEC4 z<2^Bu@QojbT|`h&Cf2uWRcJo_LrcUfM=%CS%$ppGXs#h70r@EsDPoloV8xd5V=L9q z&YZ1)^^4S*fKc_0737~arg@$cp`);rlNq|6idmP&g4d7KbJ?w$f132+za$UyiK^m8 z%@q9h;zW6Zj?A{@nNdXAd9%b_1qG?N+iH=7 zQn?c^r?{+|8Zm?gHGjMp#bfzPNIg%B2pE=22vl_s%s1KUpRT~%K!2s(%a&PmgcJ5} zP--gIxx2;3$Lm8r(30~EO5@5P%Foab z82MGcys#QnUuJ*K_7jz}qpPjK$aah7VSWmQgn@*jM8>4ApSwEMqaK)&J;sGRcmeLV z@UTvOixtm?bfl`7+FfWNHjQa&Ss(MjFarfuV*TJaCNi<;!hZO6WH(=F34G(1S10xb zVVK3>aXkiDs-%;-*Q3-*J-0ImS%VrT#|{{DIJ^Ri(dWY`Ki*|Or69wfCO`09m2fBf z#>z?|Zk+J_Ri%KHrzPk2l$h5u-}&30Np)}6E!5mZo4YSVLmF21b?vsV5H=lGc>GRX zs>0s+_S1Orwuje*Z(Kqqem>Pn<>I7Dec8#>M~J<(I;c$}>~i_0jZGmBX{vg^^x{M% zYl%m(aZ5~2KP{xO3f0QhdW=<&$`{vqu&+(d6bc3+4Ux6Bw`)D%cJ|ctap~9t`P45D z&=6m_Et}?=Ob^m55{CqIDIewZm-B)OtLS+PYHXsZyNcrY%<7XWf%IbA*Wf#3h-el) z>YH!x()=n@KQFX0=H8_)<{L+_R@^%h*@oTO-s~SXdwH7@>O5Dm2rRd-^7xXCle5kf zEy>*UnZ2zwUIgNw!f|pu=$`#YUl7IWb(AkikGA&&KQRzmP|f>zod)nNG8nzcbh-2E ze>Jz%O*AFYn(;6Fq4Iemap@10&sI}?(f#PJCsTq7V{YHDOHuO?=bt-a=CEm^1qZ#A zOU3-)Pgo@~9yyei`u#YQQ}QAX`=I2nGtC4NZr?9i0&GuDdgx#XvDiRx-JUihzmVnq zmG)Q8CHTh-z<7FVaXdT-6@K)@Rmj58lVH|jSxzg13hM`N}elB$6^M1>pZ2Zm?a8f|014yd*LJozN* zYkuGos{JnlLRRv>0(!1{%#)t^|NN|-1@aKoKkk?R83?(T@&5snz!(Kw$)mqFhx{{F z5_wNpB!lg5DVd;9KyChBKGXgTc%7KPmA?F6@H!~y=RZCO7PNx{-ZGRbC@MAsOK{Wd z2Mg5svqfoQ3~C;4oO%aG6ms;o<3#Ip-Xzm+Grl1yJX zk>}uE?_4|~oAVbi@jsH5{);XN6H*lgP5>_35|iUJUGO7EXe-^$3z+aY4?dc~kmMiV zGr7r#FUqxaANsaPzU%q^K8DDM<%F8w<`xdA;Nl}uH+pr?U!p4?XPzVM~ zD{7Pn)skV?$diHu9K;j^*8~Oysn|Y)ZS4@mDw##Sf4B{w4g_3o&39AV1*E+~6`cXn zKx?PAhIwOuNS&jhp|RdyeY}SuKLRZre4tVMAoLlVj3aQUKo1>pe6SG#W6s&al}S6x zgX|<+IutO(EInE4Mnpx0jffYvWdhMi=KNydmtN3|s{lz2cdQu@kRUt(-!Ou|Xco?~ z05jo?aKjr%4X9{pYVymo391c`upOF@kiR@Wp0iF~HsFsk?I=B>2VVi>%EK!A(jG>24!JFpZ-K(>Iv`RUOz z9v3ELBdMwkao=EKni;QhFbfRC>Qi?>L?d0D-fC9aTeR$YdLmFd5)>n2^jg>$57#X2^ zNqtyQ2xxpzyA=-YGF;DUc@5Zobob9C!N)NLW;zzV+G>bkx*|S=3)t zKk+rO?^#XO`a${w6{Bi09BZjS&!cojmgALvz!v>sYR-I+=ns90T;ax~NcxqtnHC%p zb`6g4*KpP~x3=amq$Lf)8$x)(3J#S4F#(Ch-VosfOPh56_CRpb@V6H*J2?pt{?HEPh|VenlNinVFdoU8Uwg!KMim6phGhEI4~G5iJsD2a_J@<|AL0 zaXIA&^Bxm}52+1~IJEW^T4G`!i2F*1*9u>u@dFqJh4qs>jKvgMj0v>t0u5yZUmfZT zn`?8fDlebfUmLT2^-A@fJA71!hlkm$IZ4;RIMKf1c6My1rKOcE%$UXppLxd|eC7oO zGjrsqVTM#`zfCw@`K%^rKtg~(z|5Ceq6iKGB!I1;P(pQUVTK?VE^r9~7F5eWKKZ~g z#t2GW95Rl2_~5oS>X0+PDr}eWx!bxDcri=O2E7XkxM4vJat~^Nr!JC_kpW7P3rC5{ z?c29u*{E8%1cPRTAuTxscjdN?Y65U6y=&c0P)Id^A}~AH1UE5MUgRl!JgCP-Ra3?p z2s4`CEY@)s|Ay{~f~kS7Mjel299js-2cr>wbum0VoJFhf1L}D6INg%3GIKWm+Ax$^0W@(!pc(<_%LcSiaOKe&pPr*| zadCn7h6zfkHaP7G;X481Ee&QomQ=HLs6h1~=61|CUUM5jqOJj-!{2Sr4sfo4=kah7 zRCDF!LNF_i0SC2Kp*|XHqchewUvS;f1g~ zv_~lv4VweS+}=9C2s)fEn6SrggXFv@c^Tw+T6Gw-nvh=r!W2kE%CObW%VP-yY7ec{@Eclu=nv}i$j{F&hkoEY z0gGU;8s~^M(=^c6owCBzC<6mSu#18O%rpnSW9)cLMMZ_$Cjcyv@tXTLXzUDLzD%6{ z!0hA)EoAs?c;H)ZZfQaLKc#(nG?xAM^=)X9aEk^JZpu(02_Z_iSwcdSGNmLD%8;Q@ zrUoJs{;p=WRV}J>%Okfbexg+Pp?q~}4)TOQl=X(_=8warLI^MPje0jYdrWWCstR+XkWM+Q) zbN~c<1w}<_snqGQUplTH9zueGd)ow`=z9Gb{oppfnURT!p;Y5!`Dv@S**|}mKj>+E zA%w4uPF7;7q4d>__1G05ZCysJGMBOO>Oa!(o|~b{%F6cgymB)zG~|p`_6&kO_{^U_ zg$Ocjf~j<~j7u*pio9H_Ud&xI7{V|%)_*aWJ$mE}`YQ{*#{ z>F$S8!%DZzggJ==JT!R*QC|Juwqf^bs+jmB26Kv`vaE*vmQqW=N_hIf;DqEDxRX(Q zkTA&XCf<6ODLj$O=f%YLT32^>3ry#V>c{Vi-RL-_g9(1@h%O9Sze69oClZ{II1RHS z`N_OzLxV}1dCD=fjOlLkDF*ESVZee`e@um22)x{4l8!YR%X(^)Z$;6J;?SU@tEr_b zvX&*2yN&4tKBOC8BCo)UOYy<-4s-a4{5#&b8AQj4u(58p`|GI0a%D(B3InJ@BN$`= zak@u5q7&D;PS$Rnf^$#&(1?*l#^TH*<|E+Ig4OI-EP4hJOcF2&zfS7po>;yYBRJ$x zrmqEtsOJmPhCTpJ@+6DlwH6>l6pQo2-aX%*J$S$G3l)RQ^FLlqK*UkW!NH)|$`meA zOuqG+6E{f@foWNa*vn{Z3yZ6Wpb1u=Vc(Dekt}+YzncV0VOSZ0)0~KD4*;$tbbR3& z$L*^Wy~}ASc34~oM8d^Ibk}G?9+Nh6V)Gqy%u{0<;$94nQA%rVi!8R2w+`L)CtJSS zMV>$-07m4P7h`~ZKvM64SS9i|#|Hf0W$ZYO9}h8%0Z2fy&jP;Cwm~6dJAg}n5&jRZ z7p&gQfIvZrQwXt)2$BAgz^b~RnrAnq-9hnz~!j`iP)!~CYiv8;caj(Rb) zq6)d~jvP6ew=j<0hty~Q`!~Q5(Y8cx9$CAT$E6qU1_!SsSLWp8RP-8_bqRZYm%7f) zIL4m+(02Nt2A8CwxZ6bhYHG~HcB3mM6+1`}0K_tcW8d+|R7wAsS1lb0IZ<(1H zO>}1z`cEhrpO~N%8w1N?)}&sbflmmb99&#}xXJP81i4NR#Y80tmqmfw-;3eo{%_A< z5V!;u=F@D5;QpzpV(<)1{Jq?%_zKgqDr6wm4XJK!C+~a}78dS6EG60WlIX5t@c)SK zevy%pH52ji0^wUs*na%@VH@->^Hw4lBl^;DH@V;LJC@_lefC>gLE{U{?H7J(?$o$9 zuAF>BL0&#(7iZb9>jB=>RtRvbv)!DKujrw+7s1J3hlB-^9_62vJeb-()*VLy7Jpv< zf&eeKOvoVazfi8%y%oD2tMk0Q(L-0?ANnheFu&#>uMs>ohYcX(OUZgpAeuVf;}yN% z^HiEM&t6BwPXLbUW78OPc5xYZhT9>A6Gz}%=X~QnFz>HkgI(j6Ib>TVa?4iJ=X)G^ z$45sC@V&Kdw9rV%BTiyJv}u-upoN76285z9-K~O<7AMi=qsfg*%XSoDmn=%T#jmoI z;_Bu`oP|*v>;<;Kl}x1`$$V1N4@k)_CMFidKaVs32*-qrFX^pKuBTeutgWibMx; zY6*Pv&n_%cA1hQ-q@?S4q^*|A+BNz>8ogz*f~3sBmbaC!)~1Y|%^6Qb$hO22yN8CN zg;527l_gBdPPb-lhfd+~@8x1D7+v&-xV>zn60!x1eDsj za|s2NQi4-=MG8zbuCehw`MvxVM%$6meQ~y+T}Y65oSOSA#p#?C@+Pa8x5yI`2b8+4+@20Gqm-7>@T$7Xv7jBbJiApaadBD}g{xH@_A` z5V~tGlb2msQNf0XV4}o4^9lex@l<(~Tl#h(E|xqu!z~=kr5royNF?h1Fsj8+Spp78 zRek+_Iq~iWcv!_Jq!^tA4kS~qDDJLf=rvhqN7>WK&F?CwRe3gSc)E+TzD#nmBBL_z z^~;xq@0_~1ZUxV7#UubG+Eh=UPKlx=&V`_|O@$0U?dV%J$oH>dAu1y9^UJdrfG>4?cH~Lm=y$%a7HXuc0#gBkvSVs8R^#E2b=;`SN zF{q3MNot7Bxf@kTLgI&w1)bk1& ze9N?J;)L4|F|(}My;#%Mw!2b!@d7j@t`j}fZ|TQZq9~y3!F(>nP%I?g+VoOWSvEL6 zl3v9llaKptkYTp_^|_Wc2+vq2w-jJ=Oid^q&n(N~2O}vNoEJaEc`pPatdcWC0v)mU zg-ZbX*L`gMq9x&54|5`v(J>-80x2>uM*<96$Ua_jukkCM0&I14c8-;sO=mYdRNne` zpY5P$MBZ3}>mxb_ibHn=A6X}Z9lP4r<7NBWd#6jP#k8z%^6nyg?c!lh=C;sudi~+t z%e%-9ciD5z0ZdSP@F(4U$2+$s0D`rUNGyjzZ=Wz4J=jK%a z6;T`c`N`m-d25!VZIG^u@(H22Z-Mq^qj({Ub}%f?cJmkc4oDt}h04LlG zva~LoR5D_*FgJc+k~xWS_C-6X*Fx99>0xXjAesVa)2g(?JCe>^{zOUL;L)jR4e9k& z)cKaEVaa}6{Hq!ZapA%AGdMP@5^)hzwL2(24<2k_Wo517HK@Rxq#BA|$DgI4tlul2 zGBsJrircul%BQ8JjoIZeoP=i%aU~=Yqdg0Dr7DYas}UhgoUC@0U{nTjB){v|m)X{( zTtOGivLpYB>-?Xc+1c3~{QMb19Ea>bhixJbvp5w`hxCoaB^wm;lo!K#E`6HYYh0X_1L&9R2kb? zQe13-R4wn)$At}}HA%5Qi~fpGW^cFPG3|p2_$2hW$jbS(wW|?tN=|ss`=eQay1{O8 z*3I0&zyJu?*tRt3@naesNU)~45N=0x>#QrFT`VBT_~E`~Nxc{}D)C#fdIUB4PPMzQ zfV+b+*wl&HqIJ?%0T%JT@bD5+QsO=O#?HXW@5yw-32*b>nk3iRu_QteWSb4o&CKZl z?00l@IN#?+se-P=!B*PdN7|UmsVjq9lK1@NTF8BF!chMtme2LEiIx1HSGh*g_L+KfzmG70VM$9qu;e_7WfSR%KQfR zmCTH|<4ikk>+}IkhVXqsi~P!$@qteMTRKTrdSASFaq;|cdtyS`xQb7njlRT%)pV}a z>m0^7gTm+!Oz6zDGLkKwOVp~i8Ppo@Ym+!?xSncuGePUYa;pTRd+&qftjddyFoo;p zGr#i_71tD>{xY{PBHto^D)xlZc)3k`hSOBEYi#$e>9mjvo80fi-9j`TYOwqtOQ6&O z(knVsBV27DeCO`nYe;yOSiG5#xXvg}+0y~b08@;_NfyIn)lW4d4p!08(e#qDQ1~c( zc=wKIcc#xV3fS0Y@&GEh4rVqurw=!0ei7ZkbN|7E;F|*Ppd~j;zGomFL3-7fJw2Uq!%}4skXKb7`lvq48h)b%oO<}YP?CzQeX_7L z2jBy*yu+UJrYWuGpm9ZJxVOWG?d7Xi+b<578kv}UgzF?|Q4pY++ZO3`scc}tj^xnU*;&d^^!>wc?A9Yl zF^dR^tvf4XYRQ`%Y3dtOPD74^IoA_AP`P_@ps^e_tOlBWhX$R(fzBDsen;5WzvHq4zyA z{#akn9p^c<{!~S@m_mXuP!sf?4p&7fvz~H#mGa)#)yU0&9S4s1dNYeZRi+nZt(< z3rb3|Bdqpd9uQT|kFGA?&Q1$5@d)B%4W9ug292<@z7V;@Ih|k0m4oo>_V(%VRyERC zc8}tZd|<4VlUGy>zA3y5$Ch%bV%6k8)4^`Lsy4keu$!)bdXv@E!u?+44t-Gm(<78U z-R_Z+l0u>2ZOfjYYEd^SJqAt}H47@Ps=qZsr5xn6>F?jaDtD%HB^NihAdSWduA=nw z=e?-xtQsCSHg+eufnq=cA-jYKBXzn;0CSimZDK#w-Q!F?AGU7YdOI$TJwiLlDd*86 zX5_1sXV17->so-zFG-H`3IfMUpc~ zgUveu;Cs^OJP*>+wqlL_S)1R~^_;=-G^SZB)%r0!%#LahhK?OL7&tp68_s86dHM3? z_g1IH6fIrdx(c16d0siy?-K`-(T+I0tFZN`1 zDFc9<`g-pQ;3tdrDR{Q-0+hy*iaQJxEIP^u4&Cn1v8Uj3K+5hIl;_w2oR1P+O+!%V z6YXZ{9^8}BpLY(>U;%@IrL?@<9}AXhh(QVkbR?d2M_$Xb3mCIT_q(hE5l0(gz@ zLD3ZJ_Io|}xFxvR30?E{NHax>!`VzaIy%Js^-3ks+qXTbk8IL1S{eu2KA3dd+)(#L zeIo>IH3Zk1Iy$SvLqhI5dOx8_#}DWJWkV=-Z{YVB*bW7e+8){&Ah7t%Om1M%IV^%$sP?*0R=RfGkQ*snDJdW+dBC~u`yl#gr|s>RI@tUgjciH! zH4vHc7hlTz6a8Xt(R}OBIo-$lqGY$g%-rt?8shg?cf;qD_duUTv2m6uq366C}^x$_&*rpg%q zik4PYq6RyPhZWjd^t_Tb^<&ereKgL!VhWVd7bN@BgoHA`cZzedghxb}qkVEu!R1MZ z^PnVJ0o^W}fX{KG*Ge42`z~=;;&>3d%AEd5)icCV6h)waW+wcc4`1D+b2lIJzjzbx zoZAukfs17cx(gf_>PElhbFL4QPjdZ*ct@p@FJ1+6lvq6t8T>wq zi(Z33#W?U-fAXmMqUfdr9%!qH5QbX=4@|o2R#%v*%a^bfKRCu7eJ+wK~{S9Uw(msr@MblH0e}6&B#?nQ9_(I5yqE&tE&?b5ctR3F5|!K zGcn=J%BNuD&^%?XJA9r(b_jq-2nq_S!j^^{4+aJXeCZP?Najt#mcd1%#*P1mfdg7!9k`DlkB(Kn5X<>0YBElaX4`k16sMqKk8ibfjNYvCzy_~gr1&co; z=7Ttsw<{$X&gQd^;{Qq3Mk2M(H@f!f!Y^$yc8d;b^LMoLWVarE$&483I-D~th2^>= zCoIlZdNU`VuaPcw67JiSt|o3Lp!{1_Z)m=-qZ$()2kcGc!{YF#MjO z0^*$nI4mjW9{oY3?DKi^Ywq8_ZwknS2IK2WZ1XiW`g*Ye>^gLf+KOgAKl?F~San)v zWPJQ%o2M+AtuJBG*gP3#mmi+@^BmfQGm zbI?q#xVX4_xE*m9n9XfVwtHM@?%+8&?t&#l>e+jxAYJErG{|J&HL)H#(CeM&5z~4l*O2N{q*i8#l-&9`=~JU&;YwrfGrRqdeqo85c#jh>GTee#qkUwK7Ky zmFIrop?(Kw+NHWe+W@MptgT7S)+~`Wov1JBfLfVp^Nut;T|pTcE&$f)9LbV#pZu5x zgjxT_MpGkWV@3+z#A`Sg>w(#Pz`~c6mBky0d%JAvHn7C|+fi{*3#RP%?%y{@1EQzp zt)vXksjqOP16^ZI`wrO8rrJQj92Pu76-M61q#bT)i>A0znG6xKB=Jpt)amZCBOQp zU`ZngoqgTiNaAxNAK6nGX*?3jOdqIhC+Gwi7 zqNBe&UT_xG@;=Zspstb{27VjJS(k-hcbC|?^H8U-#c3Iy%Q!(uZdt<|R_}7{JM&otv{!W47ugyRBcug}24CK+ za^(2%u4?{OQBhYo?6Rs%6M1IN%s+rVo{YazPb@&2nQSD21@LlhHNzKRMJv2y zWU;`ud2yqXtCY5mj)A^DW$jwBKWw?~=4~L3a<+wEsQ>ou8n6ooGPW8tqw2Rd-gw*Y zz7p?VLLznjw)9U_s#Zt4aVzd45&Xo(@dKz;J!Hz;cjpdD1YT4HPW>ZeX^CbcZbPn6$#KR+6ccQeluE@?8q)YR1UFg=|O#XjjOwa2}SeiH=i zwl3GndXv!_9Z4j`jk|-0>;gYYJIT;Nf!6gY<7%L$A(9AanI-6)=pQRvQ8}ARi^aHI^9HMA9-`WjYI%A2RZc4P z?Lp4aM{u=(J3ceqF~Oe-h=?phMvC+LBZk_?u_K?Mn!0K9OT!->e}DgxsVVjS`)}Mk z$@vOY{)vULwLp>U5ACf5?SjS-2)%>OT+;F1z8PP}EiA391kdQ|O8P}$gQ(GIo?;Q& zO2}|fzto!HwDQ9Mz&ZEzk7#+=(y5=Kg&DcHWWG5YhsZq@UHaVo%`D1}XG_C(vy{qo#_73rt zGz&=88y%fCZ=4JCP6RE_o~a!<64l{XLq?>P=O+%LeJG%!!jDB|%U7=a2xw^Cbiejq z)Uhf);>?5h3`pg1%A41%;67r5QLkQrf5 zMo!KWf)~@5R)M&V(l1{=qR(FS&dG+AUzwNU(D`WvL0m}r``|^oL_{VUeQxY9U__%D z#@+b(optI$CUXc$2lXE%(z6JQYEYH7h;;rab ztVsT$dn4}NB@o0m^T<^9brhr=DCAmOkCBEO=v)%Uz0OM7L_|aYWYJYs84)EgerrWY zYS3OY9lq?OO5#<%Z0f9=uqX!%HP?S)kt|ksPPaLA$^wnIW1gF6T3}OXS}2MHVan3I zM~MPBU=FB^tdENk_OGimvTJ#>ioE@+4=7y$z!8LAgJ2$I%*6Y7&Hw2wXANIju}_AL zJbgVqwm0@|Ed2cZluPd`7bY{jiy(8r(i8z%0qSQSFbiSfNZAr6a#=MrG-CP@Hyxav z!_VEhMaX)XNl9jpT&PZ_d@uc3urg$@%vY@kRhVBmi0{Gyr)K z1!4{Jlw_vS7tDkAkdA{g`I@SE@6?P6hJ zi8oAjPLB)^kB5I3>Yuf%bs5q4xZGp&>;1DT({4eY2e8Xgo_K|ejgVSFU9UJh>9#pR z#Sc9o1`1M|FJ>|S(P;OhqEwOh&=$N}qg9F3Xy3gTbIhobAZ^jS4p^}%6usdmXIp@zFb$#8&jS|v4nTg2#Ds@hIlU@R}KRM*o2@l0yGE6lB`+61icnAI3 zP6&m_BooSrb=xhNeH4$1MWQ&y6Ir3xkSi@MP1oS4XlvucrzG1AAOwY@A|oFEK+D@( zHi=e#dHwVWjRF8}I_GIy+d|NuBM2>L--aO<(~w}%G`Ip*s>81?7LSrfr3MzzZU!{R zAmMsJONNY>Ur{l1?AWdS%P05PEr1S>+^wAfDQ%E?S~R~tgQ$q@yPZsN5tdKqqoR1S7yk4U`3n(E zP{_mt6jCEVcxCP$ZICBOIsMip*498S3Pm?mAKpG*?KQmo2Ixk+#^(&^2Ca?`2?+QZ zqQ*tn2qnZz2zmD18RYH!)2r;PlZbWRIn>GPpv}$ zEiEhKS*h=2NiB*r2-!1u+kZYrt|KC?*tX6hg86u8hl= z_K1y&5~ppXQa^M3OPS%?^Gm$Rx&2XjYxmST2-^ISX4|G0@H2?!Bq)f5N#st&{6fgE z#!c^bY#(BuY(;lUSWlHsFZLskK=_)8L2Q=0u@ppqBm6#4=Z8i_ECB+mHrPb=KI0S& zP8EKLii&#f)UDT4j*Ld*yn>&zo(@6=r3rL>kDQL%+dQJgXJxG;>P^t-j?)>YNVNd* z#C!oU-a)muRZ(s*{mBz?&}(J(ikrv-v$IpBhrM?lrD5%D2*RsvWg)|2e}_m3`=q_S zJxIlmNH zNcGSmZlL6AP}o(E3R~OQEW=w{y`2@yOLSW7y+J(nRQ>Q?%zpjmO#&_))g<>l{5(zN ze?N{8sJvJm2g*xdJOcj^wOPCOq9=kyW6G)0&rN7aQ7ASQ(R(pKj^6LlVI!Q zL6d}D{uj=PoDCrgFZoAMk2iXHPGdN|v+I`1wGSUY^tjel0CP}Ud)3`0`woFB>}|c| z=t!jo;{zBslHP$!Pn94{EG)pEiEiEc$*FSpb$;(TDwb>)fXjt#pNIl2GZCR*0H;Re zKy2MRiH09Tu)m}|N5b@dnx0My2G0-cY7);OcjF%>TNEn3f6>o%MY7=u+bhvl~QH@UP52XJ^N}2`4X%oj{pDs7Gkf z6@a2cr&JA7)dPcrY9+KlwcZ&G;aL*U1BT{Ne=_@fY*dC7 z#Lkv>5DC${V;*D(kLZg3z4N}J+qS6zZ-j+~RiS)@3djYLP zxmbXn>{IW&LwvPsd(TZ8WfUMn;8^tJjUA-%_uce^*!IxJ>Khva;AI8r%Tl!0iy?<6 zq&1j{^uo_b*=tae`U9Lj1P-mQuQ&a0aU1yxYK-bpoFl6%sHrtM$%}(yEu z?9WVq5HwpkSf=QUauL=AbL6|81L7s&O`EdTDo zTGS=Df?{}(5yS52-5zT|YNC+u630(AP_(dIO{4v3g9P0NNVKr2X*~#ce8V+gU*8^6 zT*AvwJ8+>BA8_Eava&$1_Fvhri?U?ZJ@QmyvpA8H@>bLPxBGjq?Zd;hg=tuv#IRbPGKeRp`m=8Vd2`59CB zrZO0e8O)vAR2htkg$%}o%I_!PCr0wWD&h}m`|Voxd##P_o%Y)rF_iY(+Z?vGKWuj3 z7e^yoJ2Pvm)#6g(D@A`XwYRsiTQ4DD`R5zNt!+&tDyDva3I~~Dvs2rS!I-t5{%>4_ zT(}uy9D~8!wps0HKx?J5o;qh_^i$usx|*zCawFC?M4M`Dlg{ILwd{iE1%4LWXrJbC z5v#gmixZ31oZ3<7e@NSmY2-J-_?D1`J zXlu^#^wRYf9&2TSo>VxLtekgp|Mxf-?n|xaL*w|b{}B=MeIZVV`?~Yn4-3BjeEz@f z$CANDc|Lp_9HT?>=-}o7&kq%ypSQYoy>X`daB-ZWT-wDcj0pZ;*E94^tXjRAM?fIX zv8_DPeRv?sFf(JlLvv_y^18N)q=LdaI#EesX=&{xSD5(U2B-GuS5|XRj-N2WXw`N5 zmY5_BR~f@&pH3LRxOVI9+qdSKnn#Y@H8}ciVozh?*7o-H&hBothL<-a_doh>_;an7 zV~kl-QJBK+-5Eo{-gRb4q&d$$qS7cm!izf>l+t-t7 zXYDaO)K%bp>C!LO*4C1yuQp|$obme1?4{8Id?#;7+to*C#~ah*9_Z_c8y@V_)Umd* zid~|7Gde44)AfAgM9T^dyM~wQ&dw=e1(z4gA6j+2yEVSR{N1Ay=C5yGcwro$F*-7s z*RO#~uHjo_`(fvejn1n6Qr7qNM8w5QHgr4)acxftFDl(Q*czYOU+>RJK5~%5)>MA@ z@S#h?4JYC5)z^2O_3|pkQ{<%Bncyoe-zFCpIa(=q&s%M5imPOWYQ*Sh-@h(x`{A^p z*^{$8d@J^O9y@mI&{}^^xS<9j%y71$>Y}#?ZZat~hQ<>_(u5ur=e3FyHW?orhUUtvu#HaS;+L^@C^7dPW)+}SXJVWa*mFK@NrJly1%SG^V1ne&$J4!FZ_@-krM^z0RrX7Zcb zx0Q3&x%NhfS!0bJ>B^UyU#jnPqptickH~c94lS)~dkhS$Qe=&C=VX_al|9SPm&6Bc zZEdIX^70;hcIj7*;St>P`KRZC=}t~giqE4 z2v>7g9XidiDCpS`o}B!qu_)}^%6(Z3b_;9z(xpoej*blTv`aj{ChL}3cWh*+|D@pJ z)vM#TRLfNtteC!dYu-dIS8T011DRyC!N`bPK5u(4Z@2jqRD^nVyYtrBG9V2l{MG7NJeUY4;Aqx*8 zd#dH|K+hH2`#Po)`t-T1Vx2Gj8v$@pJgY*2#Ql5niV~tC+SLzyi3_F~_ZRk}G-+e=zogr5xAt9km@szu7h8pB@^YYR{ z@9tW1MYjLL?ELGiD@(&>)i$t?#0JDU^ObRW-eGSn7yLAc&~C(WcbY}`xgNL z{0IcawpG}u?A{$0_?QFL0<&47`v)9K^-VYh6%`dleF3;@=6F_XkAK4Z*gBU& z)y%1?s+u}&+Fk{Pvo8arLvUj%of~ef9SpyH+Z;bAPjiYpd-kkosYpd_#X`H10=ZGW z*Wt>VE-tC~*Ml4%U*Dy(W_c;{6&zmMa%SnxSF@Ej-m1;<5)l(qqODGQnG>U{Y5m~S zjtixS6mbqb3l_v&Uu|Ok@b`($rE!5LXD*0BWR^FMFB9)$ct-uQ4VmVTQ>RW14G;HJ zI#sKiZb*_J5Rkjm@b;9GZ0EDZQ)kVJvwv~lvO?#^h7B7u%L`VVSBy=1@IcR_KhLnc zF~m!wyed|I1G`Hu)}6`)@f?}Hw;_mKA|fJ+2ueOYuRMCoOahzkS6J;0lyyt6Z&K|a z9AsNnrXr=CP*qhG?#_HG-SRH`l%!3~CM4p`xatQeG3wsG5B8EB*g5TI(K|2Rv2&}d z4Hxe?uYxtS9(4$X;OEbuukBMv(p2&uK7L%#+uK{cvG3)E4%5yA9Sr!yR|*0MYzC@9OSj|x`t66_@V(cwM|e3=U>p~JndeU(mi&COBD zvi*gIxe{DoW#7==@AAjSdZA!ANaMbP_j8AoFiPBB7T7UFoko$0t zW`BQwS=bWYg8{CZ=E%exIjsQKr7eM#_OF#vn{NAedwC3PMbUHi%$Y(zNsI2%%#of0 z0zWcZ&&m{zs}b(RbBIC#$0ubKfVC@1I@=;GTI6cr`?DY;-v}|9*ojWQbnz0GZeTeevM|~~&+AD>g zn~N-9M3_a>;(UgU6@K;VoD2NYs;Eje$4bOQb5Ejn^=7daA(~2Bl-2ASL(2c?>I}*u3kv z#_Ryc35CZ%&GA`O+nTq&xjS{{OpX2fZ)FVk>ZW(S+^`;D_e3df45N1yYTjwR^AO{2 zdW<-4-?pvsrfd72-McUPh-wF8yU_ku&v3G_xg*#_JN5LBi`9~>^tW%{ZiX9Rd*sL- zHMOhlnWOGJbLKR9YZ_ek@=^|)W+?svk*kol(6eVdDgGH47z`jOvAsn!o8R0$NR@?< zV3NEN3MrlYhp(f^4Z*kN=H$pvm^2+nK3*Xlg7M5L zmTo;cy>P;;jX^;{zc5u1kP}P_7Ul;?@5N4B@7x)R@~k*SewLE|+8Bktz||%f_4M@< zkM-N4m{R)n*I(&iC#TOlz=^|J#UgwCT3Ie8(W2Cx6QyqJBp23sR$jZ?ec0+fXJwsg<8O5PlAQc%)amzQ{?c89mGugL1v zd$B}Hsr+0Tcudu6W9R9ip`kTL-fweub+tf|=X(qxXu!0$wQKMX28p4q# z*?U5Eq;_NsipF(RB*kS6bt=Ya$L~PV(fRS?s|!+95y)v3bz61E1x4-Jp)NaPCaoX5 zJS`Zm!4t;*&e%5r{n(e+T7;;7@#C!v6C z|DM;+e|E4U9kM&q+9xe7?Kqp-8jdK+2kJSbmyOKovc;#1L(koyxB4WVO-)N%tv#8+ z*mPlE8td#eUz~l`kK${jOlI%E8@aE;NHkymnl)*Q{g=No{yjgA;5L%UdJp$%N~eCu z(7bfMKV*SEn#D~QYOICyl=!8+OoaYBxA(vIF#gN$E=>*%6|A($o0gvm3t zdYX`#QNVCMWlfl+)g$fF9f55UjOdz&eZ4n)x4M~`nUX9)C;OZn`1QGWF9#cFuby6j zRr0$@Xmy$qB+@3$;0x`@95p~hzSBKl&i#RLzMqkF9QwSv7StLu=B?W1?(RPD{+xvU z(B~r;7Ru;2w3KkL3-v<^Xvw{q&0U2y7b=pEgm9c~ZSP@6U%hsnga?UiX3*itU7cXQSpd^$ZPIa#e`HJv2qM4KM{sr5WB?}{K2 zgSNh5x=SKLZLqk0>avw9_n@M`n-CTr&PE>X?CD9=n>K5frn`GaZ%4IZlN)NGtAT;m z4s?vf86sTZL<_6lqVvP^)H)yC;xI+tydJ7&#B>r=Hf{3kZL0{+S?IcJ@=X3$t{v%1 znYp>S_oluQ(ta6#@1AhFrm8B-_+@~$k}@F)ZzhlJxpOEK-H^P?Q|!VyJyT{c(aLBq zPh_JaqKagJ>@h9N@`T8u^q*$WMnk<%x}cyybKkywoT;>;qo}&Z>yjXvC=oP{756Ro z#vA9qtdJ5E+{UtReDy1n6&M(Zv>Y=KupueYE4Az}?JEvdOT}veGhnw!zFaXKpSM7S zDMwGHlW6Ynu(Y)@O_TMZqeFr@b;b-1qB0xRq+(#czf@jjrT&fe4pBa-IEbfT&8r_| zmM>>Yy|p+MmnUiURtt5An!UaK2_A8IuZ5gTziw5_ zba(6j{F$021 zT4n#?*^h1?A5P|zaY-2HZVEv;$7Ip+LqB0w9IxNgG+dR{MIzNFim-dDvg43S5NtbNf%l%9$Bu9N%cUKD>H zFnj6lXV{0>gUzqQy*fKPKeV;Qpdz8toy7&J7Hn`-Lyc~g+O))N=u=KA8h-~w+Wvt7 z1(uJ5VJt04G_aS>oy(ip;U5?%F>BT=G|hKsEoSKb_Ir4&t^E{6>@V}WY zEUMvR_0x35+cQzM|KnYR3uAmVNnElGT~z6Z=U1pzk5Kd#XN5*bi{frQd;R)#6dKI9 zd-v{%x{b^Y3bc?b)wqth<$Uz0)K(>&+W2Awfal5sE-G5xVG@4zHD@{${=VNm<{-E$jYpMOj!} z{356R%i%rq-oN_64Y&#`6g3aRA9|jr7Z->yb?)r@Eg&FZ4%)Ne;6*1+ow5Kl>XU)h zh*p?`qJ)4QY$($g*H)t9*HDt7wu4?Z!ga5Hs9bS=TJI4D2M$X}kt$z*H=P92TWFV_ z-3+5`Os|?ZXb#5y%81DSx8ciUNBrNxuK(XSwx@+2(gLMXJo@L@=!EQH4Mh(G$hc}C z8k)aNzRS1va71IHDLM+>f03WR1axt<#ArL>n9}Tod9xuWcS|QRfq_b z;Mk@E^tcHXTx#vb4WexbwS4F&0HyU1evNt^PAmF^3QT69=eP-iOrVA;ITsh8ycVY}l4@^YwytgiP2oti z>S(hhU3(A9^u9UhxANdgJv}}CPp0^mETe;CrIHBtF-s6(f~kscP*6~q^YhQfO|KC} zC9SLUnwpwep=j$I&{t<f87^-xG?(Y|J5&LPQgLjA` z!)D_1YjWjeW!780Gy_XoUPEFY`x7#?n5Fkh|9p@Nj_y=+Wo2lcp=;5rot~|7?AQZ91>wNVqSVOUixz{BC#I1Lyd+m6ZUl!~L9p zz@dWp?)*gDPx8|zPo69n655WkEd$A0)b*O{(W4Ot=`QFVR1P1G{^_TmDCh%x1T(?J zfe8)}WCA{={%ehS@iNo{%G%o6E}hSp;*xUA!F@6G3c1_e)8Z{4TR|oOzxdRQ15c)2 zSg=8Zm9X#Ocxh?rieRXZ+!8J&TelFB4 z1nG>mC8g`KSBSsK0o|bJBU*^?bGX;6F!+S*K;vRpABs`y`2WXk&0j0&b!)a&-#vIL zI5>FD4?p~J<#{MFyKbTvE?~)(=gp^2pT5&<*Ic|D$o4Z-LpN{UJbU4S`sU4>XUI;( zNzkjt9Dy<&_yT^a1E@1!_QxN8T<<=VTz3?BaZLHa0|yd3M%^u|9%zGuDaV&B*>z2& zGVE*f6+6y>-?uPZU0f9v8Y6Daf#poEtEU|sSjU{~7$il8#0tln6D!roq z8XgBWQPQ8S%IA2U1;O&$wwa7tSXtI(ip(%izfD(&EUy@&F2`*p;?I zFx$9sqo_Pe)I`~@O;=6shgWTS;)foe{?R86eRdSGWhBa{@(i~$!0B3bM`nMkZkO)- z`Y|;Xwr23Cc1uYNCzLsR!Fv0hEb4j*)s#i-0$F%9->o=ov@IUF(TZEA(}jOD(NsG< zk|&Ybh!O*&nXe#{v9Oes=Dd0Hd}IN85wWyo%NBn1CG>W@YJ}h6`~bp=vU7!&qmOs( zYez@#`{2O?f&|c(=M@wvpPD6565=Hr1;j&m<3>GJ@!f;+fL=_8K7Z25IF>>|3T)<& zi+3#h<(I5IUSAhNvcfuhp@Ew+t^`gHHOabq=~B=_85dJTMFL5HFWXmGCPktkrBwvb zMs~1uHOQ8{xopiijZ-rhtU)I*W8p?E)C5JiuGR?oueFWdcK+0#(hW1+S54109t7-Q z`*0=B8s+nWf_q~Zhwi}sL>o7R&<{2#E&5+Fo99a@+r)0Zz)*mxH}+@yCXT`>KKV z=Gjt_4!|`E@JTP50_LWPTvWl+&yM-43o;H^V=#%rZmy=dj|oRV9Z2J$uM1kl1t~V= zr-c3>gJ*woe+2r{0ThCDZEcojc1Ml?9rFsfaih&Z5O4P!&3?d-KO>}l6PCK1`&q2` zo{=IJ3)`gNra3}U-N(K@lVJM(V$bGlz8!DwZr!tI&(!a~zXT>6O?6B;@}hU8rzI4%|Ey%ui0{ruh*}d1U&0Qept_N;Z14Vm#T8FICwH2Fz<@$cyh9hihQw{rJ z7yw`)YChUzcp%RYtgB!Jv*b)s1q?K^ z1SWYh4 z*+!S4u3vPsv0(^Y9iQy651~%1T?mJ^3M^DzRW2g`GQ9 z2>7%tUn9L?g9RY#)VBK-#o%**APYmc5a`x>9j&|3d0?1q)Wv-3Y=S1uS{RM`qzTlC zWAS2o&W?M+yc@9?H&_n>ZZ-%zfS)n+HoCsd8|-OWn!V!ieGe2Ty!_edp|J3I-IVd~ zH3}+N_&_z{*Gm8Z081B+MsUX56+hW# zkGI(D9}6$dCP^}dHv$4Es)Mk8V?pII!}qi^A)@;X9f$W7f}2I=EWWvwK9{_W`#HuS zt&1sBrf4*r+}{Y!VBll+EJ@=RbJONf9aA&JMKT$jIE7yaz_&=S?U1MeB)6nA+TvT+|fi1+2fg%**Zo~wHw{FO4_QShs2D2!i2|4diktw~ z*w|QB=zkjN)t%Siduz__kK;ZNMnx2|N|>*KDhdl>y^gmj@c@b33v0LS*g-5XdQGhp zYqM7*;MU3Xf4Gu5+*<+4PAWzxQ307NK3Z$^-6??ta31Lh|5K+-*%N1wPT7=r2fTru z8$yp?bGmCjVfu_W8eu=k0K)?;#uMv`^^2wMtAAC{$kL0%r7<#KY>%{U|@c8%mpZmAIKfM_^j!i1jwhCt0^ z#Oy#&4>kABu}1nP|0W0oOh>;DxNZWPTlCgBQRx5(0ioUNj@m{VX%k7~=Bz-KjR6eGWT!?NZya<@dUca&m#c(4Nx_ z5OL!^SiLDxbApv`tXE&Ee6#rYEZGQ%u9z$~o4wGrb*0dfCFNl&(El-2(f4t5)#Bsh zX`v|wQdL_@PFPpRe?@F{FJ4xP2f{J_|uTdl3gyDY41EOw(TXlBYp7`UBH!(ls@Ih;%&TyB8 zO$-~mz>d%c&|9~1rJEbINmE4JD87)y395j!1b+xU#RbVHyFw3C! z1B?^_l>!Nl>gwyGG~*1)!3TiL6N}RZd=F(40pnjcdWvU)QaZPPyM%MxQReS`*3U*B`%+ zmmpIxK8)Dq;EKN<_@DDj)aU(OQ#t?SEj+vD5Ey_!-isxVg3pxGfMo!_{W7q6R6sn4 z#E>TP9peH5BV%Y9k=J9*B{QrI=;G_(?dKA}ccPoqMFXvJ^k_1L$R^Y@AyC;_;4NQJ zh&B5k{o&_A@h?c{PgqA{)hbm;CcN*1!#gpJw;9-ZF~Cc4CinnvMB_yFVHe8l|Dpr+ zoLc)c4^L!7#53EQ=vZec)85is2x%MsTo(s5C4u^)qAzUov$MB?msL2Z?;=|0B>e!E*j$x8_*Ps-~&`y`dHvE<>{_Tz-EOACCSatR|jkr zRsgJqWS5sNUE+(Q@4CZ#-;S;#==a~pqo2hsx_&(piX{{mia=5b6PGl3$*&K65@>1f zn=Z}ECw}*xY2zy(I{&QDn(4xA7&?FC-sM-+Y-W0RPnq5hkM@?Vjce@#FCfBxNDV`dhP$vzJ`fP#BiSw=}N+X;D;#SlI#0Xx?4BhTV!4SC{Wi*q=R#G;OH! z*E_aeBW>hl4XPsOmF!1bmlr_X0xUoE};iU$yN~m#3tjblbQZ$D6D9qm~HS)IN zS42Y3$b49#8=#ReczQsI8c?-BY$*IU+|GtSxt-w$2eG67OuqEpH3jAlrx*V8Q!r>S zNN4w86YND7fi63S=zrvOadC0Nm|QN5u{kd{{1q9J{DzV#sI!yo&YVA=aI6wV269rw z_H#eG0J&60St0D@f9+btAAfw8=j`q-yZI|J74*AK`cK0Jh>ILF3xo@yF#++Rflfy~ zu(h>Sp-*LWaeSF5a7#ArdwO}wr3G*4rhNxW6~zdNYe-UoyskL-jkH;RM`7&!=vIO? ztQ#Og^MdwB0Tl16y9aaDxDD7-v-08D<$nf|^6P&+*BW6J_SSARY}*&hUnKYqph659 z7&9ohP>cHrifP?}R)RL227v2F+1ZKEs7==VN^>Ra6gRi&ffo!pm~#d0+r# zXI}laGiS~q>c;cSjSksK%F))aX?pXL{>+*Ph*Kw{y(GpTC}DB%_G#&;fvFJje!7MW z%=ZeDL@46tv9xdV{GYBwZr3iz?avwF+M753Hd8=W)WgGL;y2bXY#4O;dI&F&Ko)2T z(Yf@0Jr^0QKqwJZQR$F=1|nO1&~$v#wxPgTsYAo|0DSQrFf^2~s-~t9LmfdXs(IEitx;nKh1?e ze#e5dt8zrH5YxW54aj@st+P11r{BYyT!sUGXS~_OeJ}mhbH>=!{{KH#$tfHQx}I#! zkHzX2#mC+8{~`~Xyzk#F3euDObpVVA;gK+T2txpZuoD)dNT5S3^F=3Kfm+w5=VpYI5H^)J_dd2Oq~q)j^Jp zHTI1vc|Fu10LDkl>wcmXRn1m_6VVTaDRx<48^@#EuWww{+N|18&+X(?=IfbSxj%{9 zHj367l-?3ULqm282*ZI-IRYYXN+=LPaEUemRwXV0`c+XlHDY?k`wEZg%?8j=)`44S zv_=2?utT|615gd5i-0(7?3X(_McUcb*J<*)cZ|Q7T_8}iZfHoqOxzJ)d8$!;|5|^e zwf-@&pcL2No?EjhB`vKhZ!YTB>cEH#*t-1sTVk>v3^hOQ(9b&ZxqkxxslZH;(kCzS z<37*&*%Iy$AkL@~EFEMvY|ur1n;Av5e{%1aXVZ9gR-wM09#Fk#I8L-;fm&K13!~3- z*k^<{W+k3TApk0NhvpM5%*40a_`FMRYvg?E2YXmoD%CbDa7J6p{~|8O!4&*m-vl_;@E>^`y@qPQxc4Il%BfHa#LS&X2P ziofrlHlzwNl9#M-nrObTYhl(A7K>${JwpnP3nf`uS-$o55i|MM)imByQTo2{H=Sn4 za#T?h-&PKcjmsR-LH9&j73gL|6eoD<#QfP%oq?Uo(_)gHX4cAUeT<7&e0*+0X+k0M z3zAM^BNWr}z9-H1fqJpA|B)d~CptswZ4j^Fu{|s`l>N}F5N%4no#X5Yo+8K5xkGtP zi&@@xJVR5mKGw5#Wyd&vl7SML4$TqB^x8(-eI`gP=C^F#Cf3#Y4Opu z+T$y(&#yl-YBS`V^l<2<2}i}Bati?NAFP_N?&9-9QQZSj+plqKed8xKiF5HUrph;eu6xG6 z&tS=can7Bz3ttSD7f^yD#+3L0{A{3nUFwOwIoxLLu@`tSECIrZdX=_$VkFoGzE|7W zNl#8^KhVro*LS(p{5DxQ0nG_$A2a;O*Da9jkYouHYgldkLIp^ugzMYf(6BHwlyzvR zRRQ8UR63MWUx}L1N3G`g{r){ayh2Z-MA-f}pvCP;B)1 zErs#|>To{F4tMXB_dRNWMjjqUCvGpEyyLq`lg#t|BnQCiiItLm5Kj-1kD+@x!0Gpp zD5|#BuI!-xv%YGNxYMVkNZ`hz3d14E;X-o%Q^XD&(_*O$3Xg(SQPR0)*Gi zbSpM*ez;vO@3xXZQR&WI^^wruk*gA*U3acX9Em@OmZ#i+yr|tSgFb>;glDNtw;HT1 zv^B5EA^^ZL&ko=nd|eTH7PEN<$oU9MM@(~LReG9{UiJ!-} z_(Y}iYg1SUcgpq zvg}Fi18Nt}t4G^8-8frvS-CWY`PzT1*-SSITw{8p$#{nRm_nV?fM~gD`c^RONvT!f zdT&5rRy5k{c>e6!A|%*IJWz-Zm_?){f!w9#hErAHA5&%vGO-TOSo!$-`wNn~mb4&5 z;=+%#DK5R&uj**+41$hW3AS|#BshG9%PG65C@HO4+OJJmMoew@Ci?w7hGjQq-g1Yof4Nmp91w1 zDVa!DK{|Alc<{tr#tz@LWbX-AulZ6hJD~xHf$3xsDdvTjEmJ|;jQb$OM4nCwmEnN6 zM3E?mt~(O+ASE8F2cMpvbC+SP8;`!WhOZk8r8)eH@J7a?f9uYds-_$Er2`j}2VBCb z*n^a4HszHN(BJA#pO?fFLSu|Z*2fXrH#TFGY)RVM*U?0qI0Qm`!ybevA_5u~PCvEb zjKjbXN}#5`iv5q9YYJx>oW;x&?pWu=u(gsA2`h>XQ$9;=|At3E1~notl5Z0fvl^rX zfY@)tLed1}5q97g+taI%=*jadkvSAh;Q`pR3siez?5cvLix(6BMHdUPSTRU@g}^q| z83M9;B+#ay3h;nb;aJ9-UwQxYK%>?s?;eO)kxo|icT1@QzSb2 z@}b12P~1cf%OzKuShC&mxJ_trAvC^(VnbaQcV5h}6xPgp`PA^&e2;Cq7eY8eGk8$F zd(VtD#}vFEyxD|@)C{{T8Jq{o%5^>+yT~scjCiR|@+Y~GPqR=mnE`1dsSV}@z?SGy zc#!PXFpU;P>u zo!qabFS303-D3-|HE~zDl5eP@d*I|Uhq)HCDElL9d&NJaE4JZ*5$Ntnr*CE>RF>pU zKD@gM(Z&TyD-vPOhqKx@3JH@00*)P3F*uGQ%YCp-iagQxqjj1U7ujz(p)!(PF2}S8pSgL7g7(0mJ5#kQHw5K$D_|Tns z;X9Z%+k`KSl5LfhnVE@jXIV9f@Jmot&x_Rs%T}zw#zqY`RZ=nPqYjz5)Z2kK=Dv85 z(7ZR!KnAL@<-o@f#+zT=I!?|lirT)z#~3OLxPd+icox+kMCs9}20Up}a*$ZUedv=s zU=R`Tra;Z9TF3Q<1F$4nDwhvG{N~O%mq9batN?XDz!(J#6r&#S1HyVuvPqJDA$SA;gw=@=pP%q22 zkAsX~cufAK4v_l;_6EdWFzjxFVNnB?If_f5wT4(v-4JLKoH`8PYuJS}R)|2IXwDIC ztIjkebK~1IEMls6Ra7oviN)c%s5HSpm5_rChOOOzlj4Z<67!3b09*+L{f1e;dk;bw>567=h1l>L<@H%MYcw2n~0)T>q0d+!%C*CH35Aw2|{TW9G`qlvH_@W<%iK!$VMAvrg^qR9| zgT8w8>eNygeF*q`c6hC(>kRIs7`U(4fF`o)#-_iF+M%XIa($ZweyAcs;UwYgJ}Vr-{7o@ zRU_}P&H)5}8nHoPhK=DVWIQ83G-?JiY}5^Sj1C%-)CpM&B{BpSMZf{n_4E!mU4g1* z`QFzpl3!S37=2?TH(dOm>Z=C#CZi4XlJAA zwIj~4ZW$|u(TUELG%MN$JpoTSfiE~xU|)}S%2nyE6C<}Tg`#-Ht;_}DL68vyk-6R? zF;8iH3;GI*34~k|*M(Sui8Q~^fEpCT2*MhO^ysx@Dv=2R1FD^HksbMbklfE8(J!Is zMYyn4xAK@0)JyXUbPgaHVOB{P$S!>|S2%hJaCO5qvO+<3G{Mhb3?Pz%ltp3icFbkD z3e}-KRx6WA9-_z)lP%ElxV$^T+YQepjRGo0xuqJm-UFGQguaNov_x>6+fW2Gqn}CY zhOVQO9hX5)d$abpDdd~j9kA{eN)tjqSY!*sa$&L%yl#7pbOjDH$c;vleXTxybf7fT z9HOUGl+lUM-%}t&z{RANZ6`7y11dtPADKB+CqZ=qb#qYa`#hJ#LRXK*G0CBZCd4eI zmvB=FiMS%^ko|K>tVd#ga-UP5NvQ$14{jy3#!N7nWK^bEFqG1Xeu91wYvigRRqaGy z2%4c^@sVy9;C-%VdOr6&wjr${XqXQ;kYI?4T=c}QX4Mg+9S7=P@ODW(!7h)*^*05M z4uu~$aA1wc$T2K$Q{WbKGlkzeA!(7#9Dr5mDFJsa5T~h_FF?j9b5xC7k0^8{IlPcx+qYO0X5f?$#=&`$WCHpy#sPIgZUI%2=^*?l6?O9{8>SP z6z#}$($e!#$f%!iM^OdC-cyLdrZb2C zoJWY)yZU-#C~cpvn4V3&Q6Urq*(*k*l=)!;s&i;5jgu0bhnCE@jjw*q zlVqO6xG7Gebw>ZwONT@a9=x%&M4qr!?t?lX&jNYQq=RbAUvz5uAsKAt%FPFsSDH88ajyKQaY2F(0=RvZIrN z*_dhqJU6jhY1b~i7nto1NSW&f(A~@cMNo^%hVDFW&I~Yo2cgE-a5!XSG!LROp4bVV z>11^={|&H>A`4y1%Zd&?S6F;Y;tb;=B9;Nuh~JWFR}u68nTEm!y8FYuDQc)D3IRb` zOFJDoLVtsrEn;dK?%&0qy8c{0w2F=wiK=uK+M!UN$N*xn^gDib%4tslW5A{=GH-^!9vrs(53NLb_<@{ zo$1-H5FQRY$e>0>biNzl)Ka2^e${tPPIT^EB91YXgT`+4S8N7g(2jjdnIyGwaJ2Br zi|Z2g)@Nyq2^wA>_0KFC0wL4=YAZFg08ltBCua$W!w#C~3=m(ismiq@u{=)}$Q1xV z8vG!_EQfap>t7PHCx+33`(U1tHu_VI3iVTwC;4Knw8dOm#Q1;O%MGL!>sbL+c2M7cp_!6WM@&$u}q(UF`g=W~`2rS)zSX2RA zLe>K*`s>$w}X!0Oej* zSVPK;a2pBDTAQP_u1FE~MAXK5FfX^TFU^5k`@ud9@%e|=)@Ybpp-4#1tySR7{2k4A zN>R(xK-pi2?9mJ)b2+#-O=#5@EnZyL)MVy+q-|wRbn{$PBdTzU5cWa{2JIm9c=i}W zrQe<2rk+=K&!Ku6XRm>Qc$3FqFzzL$)8wePGWIDCIgazxc~6L1n{PgG;kI*@NaP3h19OWF2vk855F=i7n?$A?FZb@j%L7$}B;t-KG;p<;@I zaJ--9kC9t29q#3|gEZ{}Pcd?LpsZyg-!OJSLV{sbl$HO{l?b~rpu7qCBBcvrm65EW zzBtx7jmg8E$IeXBx!^8cEw7unlZDUZ11F;PiKd@mY+O-P8vsOV zE2y_pf@~9ypE^+*F9y_4ZEnk3g$poWx8tEK6D>^%?Fqo5ha*=dvpVtxy= z2z{#fI;z8CXP}`(L6Jw;DH1_hs}yV%7%tQVxF8`l1Nj!B4(JmMI@1fp)}~yOZV#hm zis(Gjo0Qo^n0tGApFvu6Z2{dAtXne2Gz*9VhDd};muv$x(@Rkd>V5c;OVRJdfHj-i zMl;Ux+#u~CyJ6yE5_dvtEQ~rIEf^KxD9FOl7BnW78oUN%L4)63|Kx)G`I_|9)T?27 z0ZBdx{iNa;YbzH!7{E7&mIfjMO+mq(DM94y1{iJH-&u#C%N0Js)4Ux1ZP*G~5Nndc z1!a>$%k=NRe?@9n6s?5HSf}^+^tM;Bfmdn+q4Vy}RPUidja2l&p}!2xJL+FDS)&2o zH;=GEJnt)2E-hm8ad1QchZMtH#V1XiNCbvUf1R&4if!!MX0!^$s2Zui1+1OPH^RmP zsZoF?AG3A{WkM6w^LVy$BQg)A3e?x#BZD0@4njkK;d1w-n5gsnGfUSTc>F!hI090} zBdZx9Oi>Ch6ns5yM*NPSS$fEOm}mA%Q6fDQ@jw`m3_<5~i%6=7lo)-d;g~uR5wLDk z0T~N`h+1{5D}q#sfG0$SXJqqtj8+=sX?__umn;%c+JPHK_Nv!lwQ0Icj9!W=5vKs%QG6QDBgl)kCP6`P=kL9H_b%A5 zOaidfBJLs{6QWJkmZpL8b};KM7#~OzE)@gm%235gq<6Cjb*1*4f)uR_q(a>beeezu zR7p4iS_Vl7tNaD@y7AK}JXjL)AWjoU@%ZuMsTGg$C>Xriz>R2<6?HZwVj!0>dKF2O zfizq}ov-WUe5+ST>D;kD(50a&BcMw0wD_>KqHl4r8ZkiRtew|&jJ5~LJTug-g#IJ~ zyaut!#^%r&v&mbOQaQX38LaWT$<4x{{w{SjwNQLF>52$JX?2lctjjs{af$`Q^Bm1K zr3}gYb~cHFHuW6Ej1pQ)7(TZZ5>H1=$gxq{r#v=&##7`mMPEcqJQ0J7;u9IM^A0x< zi4IRf9!cqOTCY*UM(`RO-3-rZq0qQ2$>U$h#UP*g*z=^*#&`g#voDHIh6=g$Pm`bL zjKBW8=0ZSVMot^!>#Hm~Z$+|};>g)e#q~c0&xWk|H5;f*{tBoWC=onQJWHj^a7tfqz z6SN(8Yh6q*-nFX)C8^5dH?g5(4m_Jbrse0C{Xut+`}+5Brenvua|?PF{52wGZ0JQq z*s6LjNBb$CXS*B3@ed7wk`wtd=7m1+Ux9QWH(!crURZV1C?ca1x4&SWO;%I^06`d{ z!_m{ykWP~KLGZ60NX!WO4Vr#RZ%4xf@~Y%R$k-_&0c`nSnNUK9Pd;0G-6g0FXdo8EYnpV0LTb$G0IxPy$R1#;MM_eYp+w-qW>boxR756|?gI^7$w4m} zn#}g>$&;{0Zs*RPRZ~+tMB{1VswRJh%k(arb8a?%6)F4=y!_u>8v7h%2yCEN%~TDH z{(yynj0j0@ZO?%bT13NkSm;ck#furhi&TC^4PN60QhMzyy_rBnAyBOQj83&}hzv3G z@?`(EHOa0&Ah0%}C>gB-KxTM3Ln0yrfD?_J-vkGKskXrqRANj6fCn zZYcrYt$DX9QXc=C?fpJPI%RDa78NCY8EZQn07J-@LGV5?FEJ1JAi-Jd*OxaBKp##X zkh~Osf8Cxr#M>1AaOz|uqV*L)kc$P)UqlmH%%a~XP9usGH5QO(QlbIyOYC-Vbku-K zV9D-)2+T5|A;J(~6ymVv%`0&>I{rKH@AS%f#m z3S%?P$WGoT@J+gSw=5i>9h^K~t=fEe4`V(Q|2=5f%rWwUr<^!tLc&OmPb@c~aJz5h zjy>B z5^gV6AuJ{0Z;;H=vEooEE6-4)8dPo8m{|knlHV|b6npx`i(&wxNTy-v!%*xyionCl zu`7_#eAfetovaTSJu88MO=02T7P(iKbFpHOX?(8q%~@4rK)EToKT$o@4ZSs}8>JcF1AK&M6>x1xTOOJ52~xEs2o?OoApLu?B=4M1~#x065qRJ6)S@f7OPgR-`d>gq{E#cYtU_QTHFY!ei|pd>a#$ zW$r->xkh!&50e}Op%D2OLC6)NnIO3cs$XwU%oNO5m)c;@qV>wW1A@X z5P{B6X2S?FHj52=?LV5jzwG5QV%;%plE%%l=3oXB8f7GDt%1Xpsp{B&kQg3OyN<(S zP|leA9#88|w6JgJHxV2pT16nPq45`kK!My2s-ktJc7&LEbYGZ$wg*%? z37b4U8S*mZ2ec_08#uGcwYPN-2vwR}!6exviMhzC1_+3%Q_G~v+u&-KuU)GFym|nS zGrD&TP1vKcU?8B)F^isTM#O)}bCdTz-Z91epJt-KW1Y_@=6vMZh|bDzMWp-}$EN1s zME*^hatx?*!&Q@r9xg?6%E11tIkF(0$RDwI(V|CD1!zb?BQHk61s^DkD*{C+`FReV z1YVwOWb$t4J@Hc#9jqPP2GAQuR-anPIugvifWcw*P@;2}F>pL{e3{>h{aYNk8hrYE z@+7Lf7B61RGjE=Al`QBE;BnsfiH;_3W5z(U2#Kp$WTPeczd&{{8oC)_H+@(paNeQ~ zyhov14r&qZKt{B# zOx9P!U3fx*8anuUDPCV)Gz{LBvr`K_`s;XU(m&ig+yO^OxoDoVi%gL9f%<5Y5IOhH zFA(BSy`hK{W~81%W@FOgU~3S#fFX>Ls5Wp&t^KbK(N)k zi5LC)CPDrE-^_L@SN=l^`;V!>=RTawG;gaJiIRSc0Jb{;hghred?Ca$Uf-pWv$|m8 z-t4jQl)QhR5F%eWg2bX1ZXV<5UU3_sEJ@{HLSlb1D&?8CtDaPxUL;K&^3NxIC2_XkvWR_#Y3y!!7r_e2KaFKy z75w5C49w2&?Mh_Q6Nm$xSe8ahIqO}(mvOTA4@M%-*ovdS{}+Z3|Ib~Zm_s7~gCtlD z5k0i4r5IQzp0tF%miITV4<0is<^%)8*9Qy26B`K0943*J8SzqATl47aT#lDv_Ep&C zbuA=4K-u8a1wfe0kZ6|^4Y|`*gvVxD6bC3yEyUy+@hi^-VK8Z`*xG{e7hr)aVyKd5 z@Qe*JFn=j@q7jrAs$tS20ODK@xs{?nn%Xh0;Bem}s?~-Bz6~r&M=!$)MO-sqP8Cnq ziN74mgM^^8j*tgWjG+JGZ<~G64Z=IPF$6u__%N5 zNd9h=&iFs)Z~W^aImQLf{ZMHT>x-g@@-L0y#Ml9IGfd?K!&gd}8cL?Ga(8Ur^@@SO zpUnU?(olX#lxXH9VQRqHAGDg#Bjpdnh!udp(ZE8XTvP&SOj5)%T(B)-TyKCc?^sm~ z2Kn^@r?-11Sqsz@M{iue)vIU|J%PzUTW*5c?X{9YGz}wW9h~J$M*Xm1(Cv>3-g_-da27* zc!J|Il8;JCN)%9_`6m-M`s1O%f;d2nMnX*~!a`PQ!A=|npBMd7Q9+>_zyD!5++85q z?kMi3!@lfL2=v7iE7a8TzO?WIG%*+qNQ!#023#x^+w(OmglwLK%OF(D|@#&foMcT|5;RPU)-;Bc)eiE>qU1e#fse~Xrjeg4Z5QHJ0crdat zpk+Sj`-n~^AW){Ej!Jhh03zpQAe<3ex|D0WfaMD_27|CcNZSXC!BtEpsgop506hQ( z@hwB1!LU2ht@wWWgRY_$1B6DQF)(sy|L}o+4G)dwr(g7-Kb1m)jXRd^KN+|o-jsoN zZL-u1`@s#QZf`7oC`)K;nu%Iw-oU;>NE=Kc$EEStkh2_l9`_ICF8()0WaK$hW~n)A zo5Bq_jQh9%2~km!^U;(Zj1nir69zsSZwV2U9kcekv7+AlegS4#!q8SkGyO4hhA=0P zWb5ho{3!q9?zdBmu7~G|!M86{##Ad%>qH;oMx#V+hI~L1KUwJh`Q5pNOEG1GW~Y#g zAmMK(ZN#FqFvD00vici68Ti^aW2fVHL7fIw5k`9*a0$I3fAFuK{Ma?Ueq&=*FwbiM zt^+nr0>Cs6>h&=~gr;T@L(}n~>!SYDycaJZ2KJ#5&ZT4`hL0b^RKHGJ<6xkhV&Grf zhuz=WhXloZdZ0?*CdR0qc1Kx=jjxg1jsYA=Nf(SUnM3u&Ae`1;$8vOyzDes!j*1!{ zt?f9TJ8s*iODlgovaI3P$$|~P9(lIL?3L(|hwwN?uZZ!}c4ne)Rs&$x!#y8^R%bu8k#%1o@+wH(tjS->6u z7DuB*ik8U1(oDSTVaSR^eXh~QFH+;HwWal;p&2UZf-MavpjG19e%x3|40^ zgq|E;t83h>SBW=zcHVyAl}8`#46@xblYRjPJqSR+Q4q(oLh-wTG|)wb@e(J1jj z$k;LP*JP=#r9r@cl6m(!-oICkT1h32&~Jj=ITZ70;9NP)eI&{Qb0u_hp;G~`t66@F zZmH1OIz9Zsn4^HZ@_*QS6R@23wf#HRVy$Id=FC%36f(6a$}F)YO3IvMND4`lVl6{d zNM(p5GE}ChOqGR-2t_4Bh9nJ!NGa0$x$d&p+Iv6${rva)-_QFV?{T~x`*{|s`~Ka( z-}ifcuj{9H!OB@<=mh@c%#t&Cy7L$YtBxz3tKx%9NhR9=YkZWSflz%YTTExC`EZZ6$k zI`XGSjO4re*Spqql|3wGh8y&J-M)4`wK>^FE*m^78qCs=QeD108mjySbXPoj#lH{S z`WI)cf4K~Bg0HxLP_qcKwFs4GTqX5BHl{Zs_ifuYsjp&zYOmR)*!lHdfOJXL18=PVylX$p z;!yYy!)wHo_)1zdBt3iu1Ax1hl(wpdLT|KWp+C=)t7zV``V(kNvXFaYhnR_pt2O1= zA^uMW0OI|=?ZANpBoq-o#aO5_(I90g|KJ}KWSa##IqkB-r>%L18|UawhNU0$FKtxI zYRct{`}yys0T82?l%Er$Mw|d?E@r!x&A@4=)zOI<`Ow6g-dPb=LdM@7xew|yFm8GV zvR1=NP9Qv8)xmX$gksE0n|7s_m}8zDuxiz+R}g74L4kxyg69ps(bJ*~CQL|iY$(N7 zu&(-DgB1p%20}-o`H+J}(?OJC+*h&42LZ^3A0~X5_6MX`v~8GodtWAD0(;dH)P6_D z`S*~faOhBVbpt3=MkE#O56E`6ow;k)tq0Z8vM&Aw>M=d17fhCx5~PG?V8%x zOL7?1dx22W6zrsV^X3PogoXDTHsz=p|X7+4Gk&OnAbgx|Syr_iS+Rk?Y4 zq#o4>MFl`=dzri=13*+Lzew@N3~??wd1eVTT-wp0pFVvmEN%Ul2Ogq$;C_zcBp`Vs z9o`Yd&tN*5B6z}r)Xxla)KHiwHu``p^iR9+S;6DgC1737ZYoyC|u( ziMt=?`s~KbT7Gq`27BUAyY$9wPM*nxT$-7pf=z}(d96~>ih23`$0od#d>O6rFVCHR zJeP?YBK#H^b@f;r4vzWh-3AO8@MOR}IaTCKEn=DfNIgl55P9O%BQ=^y*pyV^Z-1nR zJJ|mD?>P0mR#vV4d8ObGwYxXY>B5AQDTiFh3QA3J>hbSkl18gb$doKWdYa?#wj@it zi@r@pY|uW*(ow{FUP-@>(V^|HzTI|`g=^4;aksi7z1P>TH5F4k+O=yZwx3A+pO?S92BQFXOwXW@6Rz*qK63jN!R;y+SwEd|xTXcUe@ozd`Dup8t_B{XZ3GwMEt^ zQxC~SMeqko$4Ndf{SfQ`!KxoJPuceHM%gOQhbd0sOAXnr>eN?I>eEs3iAa(o4ME@C zu*YO;Xk=}&Ao(w@`K?J=*@`Ew_8G2)O;o&V`7%yrwa%S~5hNr1E-;SE5QfLYkZ9XTb<-J8|<2Yw)kK3tzFS|1bT(jyR zysjx=x}c6=iqSnfG6X3%4_cZu4LMgNIGG@`)vXlaUCpN2f9cXC-};gqtJUO!^=zO& zO7}_p;izY3#w_`kx0H8FRkUlCdtQ}^7tLE$AKbRr`ZSOc4s=`YlE}4a*Ut5dB?W`3 z0eFjQJK42H%f4ll^j9TY5om&AMW{svz7(Q+_U?7~mx;{Y1CrTp@~O!l<&04givrVJ z`Y15ocD8HZK8ox{bNX2$u+n-B8cYFs6FG&>NX5C?@oyLFRhaQZ-MUy*9QO;62R&}f zZ?W<$6<@&-UH<1Y1bL@_H#0JlRjKB5tlP0Ojz6j$X!^2Yl;e-p*KF0MdJ)RsPFCmF zif{azN!EyU1|hu(4m76%wr}5#tW>n>4|G&`v8Mr7@5?G_VX$s&NEHfz$*5kx+2zos znTk87kh0(2;fFjd>RC#2d`f@+*X{M~cj~#vNl8d8Yv_xKSeOii7VZF?nq9iDza4R8 zF*{ViZ<`NV-*Z~4&8`|fq65#J*i^r)yUnw&Bc~-+dPWw_e{(xLsm=OH)1UdNuWKFH zD(~!`Cz)7Ql*CK zLSF#N6?MUfcKx7Ji(0U`;%JVLE+Xg48As)Wu#=X{6;+>FecS#6dzbY~t@@PHc*eP9 zLT5G2t#OO`Fr*v$B@WzxN>CkfPJl{G7*cKX_E;wfyrj(Htp*3OsC}c^>pnNLYF*Yn zx$m3X&n=bLvsn&%cqqASFfOX6GthdvZQJz5@~slU2^@lp5G&6gGI zGYfxYP4~O+tamdd<#j;SsF7I-+!imz%UT!PIXcET{%BP@=Y888$41e1OFQX3YIUt~ zSsj~a*`ExDCBDr4x_K1x#r@H`L(hY1z|sJU{Jr0Zut_8G_?(;qeE&GuJ5K0d-p z6JenGjg%Dnpbw!PEK0hjc)aziAMeN(a|i8!SR%CuiRYq+(Z^c$ntlW<8SVe0?EQ~@ zY3;H|g7OZW)1P+fZ&%vA-lkJd#ZUk764i9K&rx0<`{x9?e2T}1H{N=C;2Tgm^Vh?c!)Mo5WEGC^JLN+4ku(G9Vl<)QEogdTQ+v*3^H{k2-O$tl=$f-WwwOtg(0 zVfQBN`DIeufi`z|Ai|lIZ1?G)$hrx$Yv888*<9CS9WZS0tHr5y~Qk)w!GN6-xUC441P&&WmEfJ=rm5dVlio?}=p zlZK86Dgl!m3fo^O`0`4VY*&B=0S;G#Ec*Sviz z_NXpYf;xJ&{EifQ$I}X%0?nIH@n;5O`|||YUmM$ zyMFuaH=z;XHmozcu2Qbyw{+^(Hl>W?)6azvm1U)22T|JSha)GIr#@+eUuFbbl<`$# zWCAd#hl&CAg)-Xeyo`S~g4(5#sRuz97|fquS?B~#DMnss>}!tscuYagqPB1Lzn6x% zj9MP;({9&cTcCfsrV7xJ02H3vn!=ZN=st)rpUkQk)Cf<(yJ_n`huWM^{nV4R5bjHP zb}LrBqM%z?qVH_8o3@WHwgzZJ1a~(@360FI%kq}sn=4c&1{)rP>e7!|D8xX22 z6ctJSP(LkOu|jOA(zQ6Hr2JMPkiKwnpMLDZ%s{bEy0~f*WE9mEE7jCRDnT6+5n#Rb zAbT$#Nv9u7AqJ-&AbFJ%4H2jB*YmBwn~(XND_wnbX6*Tt&$$Jazo$*TQ!Kc{y_0iB zh07$^A2iz{s3=k7RqLQeo zRXu&)Z^&%)*>X^;=9`h#u#Lt!#g%LSc{nC-!EjCn+lWm&u-d}6c1rcfj2Qz&Jds6a z%scTy$LY*xWzRuhm{VY}h5K(CU%67Ga~!dRDpPtrCV`7j#KUEYD@#g0Ul?V-e0kR_ z<3?@_C_tc-Mxff#Ho75pfgma3_-vr<82?T?X?4B6U*&$Rcy_r?!}fzq)>m>HUeRZj zadZdURw)AZ>7>O;$5zkUI&#b@yA>;@&>lXs*_(Rs!wj zBMAx^2xW2`0E1P)B7hB(j#D4nHTItfR6m(FW){GQw$aFP{n*t|6jUl5dKcl52vo25 z#Z=(`t6 zP(ntgQsEt-Gd~)4(Npv-M83Sy$0zzsIno0WEL*}wNF;E3u~ORt5cH+`oL-Pu|6#rN z9aM)5d2DBIuSKHaoA-%xNV$GXjXu;^-snc!&}@o+hDAk#_Ji-Gb>kp-_wnNZ8ODN9Az9^+&pCE1!~2v2Pm%eR>j1R&NlJ zwnRFrj{#oD+>$XgKDFpH8u$b7W90JC6}C@oX=OAl`@ltdQR~rIZ=<`I_X#O!SNiy* z)Y_0kyny}Mi1(p4p?F%qUMc_h*3Y`71OS7l0fVvmjc1 zE)SW_{zd3Bu=aP~d6T-l7_^#HWi%b-2FMQ%uwq7&$9aQSzFcUrHNMHkmj3On@}qK0 zV|&Z6-_RkSrG%C*kM|w}{?l;!KjJi2qk)~JCqRzDTl&?j9&-3F;t8F2&{a`iYIal7 zp9y*%+-?xXO$|wyuqzaCu>{6pr>MR8ehrc`;5<5I5Ls#4oiF(gtoD+oCAwZ}BvIFW zxF^s!taSb>WvUJvObS?DuQN`Egp@#2^qAiU}Ri*%?fv zgvvx-ApQ8*5f>K{L@;eTY z+$jDhNoeTX#XFV{0%H_S1uF-kUOw2+6xs=)Ukki~MENMSyY%&OLcwnEanap|teSd7 zoa$3h+ztKo^gF{WTmgc)2S*`ynl7RG?k@wLK7A6iZ$T9?KeRd;fBr=>$HqOeiDOzd zj1Q%$yKM4Yqd^_$lM8#G;oD`?JVN-!}~G)jF(YW1xnAF$>jC)Fhpl(7ZN&2h4 z#M#D*u|3>(&73ETlg){oP_#PwyVR|iuuOuc2 z>3Ve)J}_vNVx`s+XBv?!KmC* z@7DbeUCOJYq?$+^a{~PxpwgNg`bNxZa@zGOmgu1P|0FHt(VGd+WVqf8iEu5%(a6TD zqh5AcgnQN3(IZFxZly;N^a^H!Ngz6|Yp<|OO8LZ6T)fK3Xzsgj%#7bT@J`$fqPQ|S>pR6uT1)aoeVu) z%_ZVhG{V=O;}P$cHZkN9x)U{gz4C%wZbiC({o;fb3~m+SaaCVFOq6ntdoen6oWB># zyEQLGuWU5BH*ci++3#FWi0N7?^z?9m_cL0D#_yWThjgW;UQdR%jhbkwJE8ETJ*TgQ zKb`sO3+^4+rnqaXUThnq@flVFcbb+^KqM932wyp&c?GX_gVL0NsZHWp;pd)-DOHDB zmuBt+*U8;jTxGrR{xY&)S}X=!$E_I23}vW23&*yH4}C4&&zKZN7A-{tBLKGuPdH8U zNm$Z3f=HLw)z*`gipKmAXd8ypsGb;}KIfxgoYA`-a_H5O|Fp_IBX_@kacQY3_d!JB ztm-fj1}W%F0@-xJWuY>Q@iRGUJcm1)@jH8)AurQcoftZwB#=7dC_SekPb?cFru*nR)|ftk1IA-u zjH*wP$l?4|g!nQsD?LeEf8?@270jcdUk51xgVt1-a8HaO z@_o?w_})=F%+b#7+V&&2uU}W65+RC15ib%b^Ch~%5wc1tVa*T!X!5gr)dmmzfjP=f z=}CvVM-aSHabghJyH&Y=$oZAi7xmqxa#TMj?Xr(`6;7{a0l#{Bd#BSv*4#4H&#da} zPHpGgMt(_W+dTOgbO77HLaD>}tX7gS$!Eg=A;xTOZI2K^*>gQW!QRAuwv~x-=T{Yn zn9Km9;G_r@wIoHmj3#^j{Q3LWhw1-TK*?XyEipDW)?XSn0-4Y@{H*&LB7C5AJS-32 zujXB~=&6Xe0FcpP>F9}GWYJsl#sP+^dg7shf2Be#mIa$i*dgSGGsOSh&yBn zo<9XhqLX9dxF*xv8&o9l$+$et!b7bR#8L}|M;HziP6Nk`N$OHoUnxOAd%tE9lIiw} z$s#$Jp}1b5t8`#f6-vSok54v(Z7iBJX(Ikv!u&-8e)GZ23I0RkcKMvO?(<)k?m&9K=|BTg4m7M z$xZ{gJmv#SKU!*fmUuom{x!#4JJ7itLH;F{D>631jW8!hDa=NUAQZLwaGL&$hXp~) zU$k!RbyxLy^1U75ODtAeM)R@A0O$$qe z85~4nk1FG3(^36ibIUzUrX$^EnUTZP9`PkWewW6rQ#Fv9jXdU%466{wAn~k}j83d; zmloI`9=|I@P(7+*yfN?5p%BII`-Bjs$f)SFS^c2oJvq)U5a(w>)5VnMMpBP4i0aT18AhHbCLp_6 z9AqW~y~HAvgy9~!i5OShxVe{4An1!&nDLRDap;On(=_P`V2dQrA33eB(+lS1Q$8qT z)TrpHO+9g(*F8!d4++SJnx(2m;RgVI4-4w`KspgN8N$*Rt`Dh`15-3a6fEhG3HD~S z^+wY-lbry9n#_ws4ZSrXK^LDVD{Jc~B~ANBUu4&bGq@zP>>eSv1?(zejOStDW{5`x zCqOEWXN+mrV9OO9>TsI&!@)9mG z$@6`k=IqL+0VP-xEqs2}6Cq}E!@WxS>VFb|>?~XLnr=k$B#zEW9bCM=XB#yQP>fQe zqxpj@Y_@|a7AVO84wYjq9^E3ILkSk(GoRX-(--JCKJ7U|ExWr54v14B0e=H{1 z>AirqM5qLH1E)`!=y_r2+uZy?b&aHD=+XB@L8t!lukj2x<+zI1KASLosVkvhXdW&b zpvA{kEZX(!%T}ZCunWSc2yAvdvUE7bQ<05f)U*@=y2}P@E#~41@GgVnaEc5i1!h?MT@3tmJ6&tD6F>>LkHu{_Ih&|_-!+Z!XPJKDATYb7-e zi3oLt638JIy|@8M*-AH81GG*MmAFkk+UDH#eg5>RQMbgnb)uz}3*Zb9(Yt1@h(w56 zCC@ka4g-9k#bbOl(SMfl7t%qerdg$~*-rav1)uyB(^ko^s|@oBa(!`0M5w{ ztDdgWE%cjJdH*$JB&lg&+}vPP;+7$$JFzN|vy68P_oG0<$la~|ZKC4;fTSVTt zSU2QcdvUZ7w`IsTK7~Oyh<5a!dLaguvWuL6=(RQN?p@6#U*k-leH=Q@_4V?1uqh_}|ke6n~zX9PQITSy$@Ey|NT!*G}I)lk-s5y*z&934=cldf!YEG3qvhLCN5 zawH?`;Pj%2WJFGLS2{SPgMJ;V^410`c>OY#-6|)zpNmSC3%9CDMytGcT@s{Nd)(#}%A23jie~hVsFMB_=W( z1k~DIuOCotxOpP~ySVC9?z#Axx@2yXar~ST>+E21%-n=N*Ik4|(~sPT2{@-bZ5}7#UjX|HW>r<}ATea9dv~!@fsb@*k;T?B z9i`;P^D)(H?H3euoDRa3Fp0b}W?jZt(CZk>_PIy3AXDGOIhB;ePwW`AMCcErNu;gv zsnOZ(0GSqepF5iWr0Q#oxG>Q|nkYe=vbuh|97^~wEWQ-Ch;-3XeWHOuD#oe`FQ%mV z*4ARoEy^}!@g)^$8~t>4|LwA~U=TegX5j#Fn7sN1kHohGQj2Jj#TK+gbef!mlCKPy zeMw2iuLyQf&((+J^vQ5_&Sa!;F!l`4R*EBpsBAd>r%U2SM~oF_KY5D|XOZ;#_&gcX z+nW*RI!)>a^1#KrTE}w-#6XZuccRDC;}QI-f?Q21sbDcZ?u|HNUU?7iSnb9!N8=q+}R8v`cR=P65|Un%Ka5jn4PftYq_;t z1MPwevXBz&KMF7~x|j!ZpeIc9`!695x+rd=-&I(2xCvQ+y`nm3=9 z#pk@x`MR>U?ew7NOdtCXZM$w*x2`o(u~R+7tS)ZL1yJN_KUK=-t~xpo-xU{Y5!L5T z2Wm{SCEQc-Vt{9=W!RV4YL#xy!}6xMndV=`prVBeZ z_%h>|`GCMB$1`T=nD#!h*fMrSzVBD~LL&6{-PC;PFzG`{JwtN4)w*(pMdpRGb3X$= z-lIR_z${qfmjonnA|;I*yy{)B$!Csdi({49EK-BW=^vi2ivKRyrZZKul@W@$beRS; z!I$GoN-uSwV-y7g7TpscQV{z0Zoe6Yn`(wvhW~aBhM#UO7i_&hryXUP{0d|pgNj0n zH)1Meu*3r3OT7K1zahsfU2Y5~p4X1QUe0kLMaEI_k^rd={X(UH3>lEfpEpWh`7tFE z210$eAZ~rkd2T&al&E`Egie$TF&d{F)4k)m=Q+cd4Fjg4T$&m4m=4r_DH%BjnAj;7 zEH>N*J&c=H(m>tj=U&8lcJkgV2Zv*&i-q-a`;#-fiL`)WMthiiBt)W`xXK&5AB&H_ zEqRj4wBzL|aZhR)m7atG>(`YfC!Us4gCOt3YZ3j6WRX~$rreFAGhAM}eb%|+nBFZl zH*y3YH3>HrghvehWE!Y65}572>Wbwo=X_Q6)p)7NhT@^hLGUZpn-F89gZ$wvA>grl zRVC@89ET?7-dDx?&2VcJw7Oy;6y97HSE{jkP66CmwO^;kFL?j<>(^0x>WJJ!G6U|> z9sIq-Kb=Oj8!OiQ5RN2}sd&P^KBd#0-NSg0~M%@Pgrb^CjKF zWnJJ>YTM+P6#N=g42W;rR00ck=9OL4!#?lfITFWX!zxD4#R+5%Gzm643Oz6 zw}+JNk!*zYLiAs|QI@4xih&raU=qllw|5Mi!D0sSyiw%Fz3{t8@RyDcbo-dy-a)_{ zhnEQ2HDlbnx2N5Jcf)0h4d8jyptf$Lp%@*cF;;2b0G(A7Cr%GqmfYy`+uF6PO<}k6 zQdhrjJWCmDHIBtq!eN(;$S)a4xBlZDVn{Yob_E`g$*$X9LEA{>2IMkB?`Zts(N&*a zHpJ__l~^DUgPiBY`+)bfr&_6Jtd&tMD&mh9Gbo_m$G&Ny?g)u>6? zZMDG$_pfe!^B^&%8VWRf`@=bmYaoj<3R$uybH^Ym#j zRPVqfLEpu9m1dG~^mISM9+NRQGnu#xc_Z&A)QTtd?MBNgia_N0ibF!Uv!O-EA!SlX zP&C0H9VBPLfPn(ieZ-v1EUJFv#yjRHizq5+=y4y<6SsbhTj{ljmd(;-=h?S)cDpjL za4}7z1w1oT%e!E8`Q(lT4`bdo{QT(xABVAV)4U&UVb&ElvDNwB2C{#JSVhJ_#;7&1 zQjgJLlAP>@gOs~H5dUtGF#!8mrI*5APiYqJSGGNjbWOuJqK?26J%0JcjKAJozW2Ce z?2-gi;8p{ts)bugyenRjZcl;l6siIAB2&7gieP`Xcs^c{tz;!2pHdqmzMbMEETt+t zKpgm}<&fswu+^fR63_v$gD)>fst|sm|QyiE%AbS;DGm( z^hjnp<+hLxe&qBdPTu3-IE%oyWXuj6>2&N!#qMP=eFVXyc!n=_O-W^Fy$nK-u?K`5 zX6bFWK6I`m^KhG4tDe=7q?99D%(?t`?+zo3PUBq5ptVuI@{4q4z__?`u_aJy<@}Vg zh<#!`ZDr_5u|fbeJ4z=-<~?v?jzNu-PmH`nv-KnM%*+xBkU_{iE;_$5p^lO{3d)e~ zlh!h52P{j*8p!lF!S{t%#6Iq6yr+(A0#(C+BlH&+rG~5%%W^~+La0)t&+O%vJ)%jt zIO;mq`>k$6WBLZ-#%j2%(p)-p*-m-wrJCn(*-kko&>+!Yfbku_jd=DlxMgl-BacXL zfo8h`^+rlML%3(f8%kSBT=kb%zD?^(=$9Huv@q#Olb0;4rbnJ(M!OWL^r9!x-iJBb zjhoi%iKU>Yun6+Go8_zR^GPA5u#!2u#{x9UXej~u_YPVboNp_qnmLd!k z$_)wVb;d)p12SefK32^?(Ywl(7b;Jum^3{EwS?p;r+Q>3OF?l8ZzFIP-yyP~$-=X*lFd zQ3ZXg1(i_LuewUXuY`+i`#{<*(n=sHr18_kOP7(cb!*1 zy}Um^dgL0MOImOXTL1REN}*8JU)bZ-{YS?QN=O&kE>7d{MgYa7RyYijGu9WRNU;dF zPaK*`CL_8w#E2vCN0@|DTj&A@uNq|;!G1f<>YjO znF{&z?8e${0v|dwNradnqbETNZ%uZDPbamDG@KQk3z)3J!=sE}oNf!RP~ylLS_-ng z#q^eeV1|W)N-Mrv>;&e#l09s!yVd6tdp(2pfs2kKHA$Dgkf19(UWwjf<0g}Fe8u1D zWB%PSBIQc=`dE0KNp?VI6cW3NA;x$#O}Kw|U{G6L-0#p@AHCOuo5h~wo9u6zmYogY ztO|Ccx~7)_O1-UgUP+p)PwyiUkodo(=CYK&%s6KdGK+15jy#npqgmBrEF@4k>n0bf zO%Nu-5gquM2@%_Pd#m~l8fc{6S1cM{B6sq+u^|kBldilU5Le{9>l4aaVUB|p#0`dX zUZ1=1o8PWc>Xc|lCGBMc)_mpoUBIDby7=xV+|xJ%Okek&6&JySO2$fQ{=RCx^VPX^ zYc6t111sll73tqsQ00hh2mE1L`iAxE#b*Z&Z$Ko?)}FNTpyh|Q?^W|l!D~+yjxUk6 zBD*M{l3*>)@IoYE!UAFY1P8x4_9gd#STqXvxHvn52u~tH$;j0HXwfxioS#DJDu=ps z$tX!&_Ezr>7R%a`yf_u0%tVy9t0J*e8ZvY;6g!(rG)?^NB^zcgW8~|s(@AMbL_Ej~ z-$_o61bY(rivTwd3;nogk7WyC35fQOPKO}vWZdD-+pqh*m43WoAibZwqiEoNRo^Fq zDx-@WKWT3GQ; z1!#7Tm1-|}a8M+Ly1I|TT%rDnO}v$`IaQnWF;ensf1`0?Fxx-krn|xhz{58aW(KF= z!}+m<`}D73El$P|#<6RfOOx)#-HZTPU{+QNiF>^!T5_R-lS`_l|7tD*l>zN6esOJ^ zQvm_DEAX9=YYEeLiGxc@oBc&Y>N`hb$EeHITK093F!zZ*nzti+a|p|n4$(4mU&n|= z2ONDWoDZ+Ng9IoPHc*%00+Y!uuhw^{`3cb)-p)2Yx=DG|PsPNe>pXIS#PM1pC;L!> z-{=R;-t{u#dg+;cZo}5nuI>N@Uy`AH*f8aH#IUO2!}U;VNsgtra{UKcrhY$HE5_>C z;I>ap^XF!-z7h@DdzqcxR$Ot_M=E}-L3O_=_`g_}tc`$!@fjMk$SG%X66q%KwHRng z%=Y-^A$o|SagdoqGHqi~p6tTr+SPA-#=UAaIbC|ByMx;Y8is;-`pP6d&O4gdd4sZT z28!*AaKk`vWYQQMc=Kc1rF-u;rdr)DBlr3?$T`16=3{^_=8`v=UBr?BS56A}~0J`)9-{0Q%B z0kEq0Jfaqtw1m=*RF(_}vAwYCN!TQ{rCC3K3DB?;&!3t2L+;3b*z8K{&X79_N>6aC znSs!M_9Z35N?I7Ae+jn~)Q0or##h{A#3n^%Spm7>H;_qi)|fgqGi@;ShEnkTtN{vv zG@D-M$>1w}r2QxEO@g*>|_8CA3p`6YLyfw`aO1VXqI7MGy zKhDkiFV+G#trZ)hxAyL*T?{BAi~&-to={Jx_xnR`R*OlyW;ClLX+x7B2C^Dfxc!T) zpTbQ=9i0Yb(SYyItH@c;rHi9YN}T1~xi8+lvCV?WXZU6$ui~*R7-5Y71vE^C1};Hk zMgpZ_0SKV!Ftz*HFLb=c7)jh_X|#!tG$_cFg?q#&z^F^IP17N&s-t{gP{o_Pky75U z=5Tc5v&$%*h1Mljo^AydJtN?bOcpHl>h@*Tee27i`|G>a|G%uy$ z{f@2g(WU2UgB3L742_>Vd(C*YXM{*oc1NC zOSUidB=szk;0RnSdSJdHvyxOKjb(kvSY1h4X-oRhXN*g z&(!%Nl$Z3~`Bc)RO@EL%%0Z3UctB-%$6T+C8}AUh2Qd0s3|*n+Ln)oiNh}+J^M0Do zH2i^J79QZ<-1y^3(LV z{wL3fV9Et?7p2PE3Oq)P(sbbQ3NiZ|hnf{8J$@EjM1^ok#13R26_fGMW^%_@LI0Ki z{%=+Rfrnp1F;e&gz^$}s^Gvpb>LCSTf!ps+2hx<2^uw{`3{0Y;j!34XSapONK&&9h z8LZS#Kno{4)hpR4768e~kww->oI8uzSnxb8g0mN#2CS0i~j22(|;m9GVrW{V~+G#KfStb<8GR0;1j27mZhbC-Ccmbp?9S1>` zd?v|FXfc(dyo2kzVdNrUFlOll85I{+EPcS`)X!_aQ_)D4q-(hn3AAP z!gmu&SnRvY^>^zy9_MhGx3Hh%o9VIdlY7dzM(Ufxq)CjG7%#m&%NM+}e!}vadV`}= zd%W|8Kl8Ty??n*r=g~KI&kX>9dkiiVbjo*%(8p2HiojR3azK4Ih@py!mi&N$3!q)LNt6?n4a1Auw+PdASH8_=^E2yvgQG&Jaq(jyr!o`wsy1F92 zyFnVTUN}tDa6-JVO#M{nq!Cw@b~!*?bjE=H9v1EB-A9h1h`p$-$R;74`ITgv>G1O6 z6T^L#5oE#!LyC|_DdXqs8-h;)^eaPO)QFOV!}J3NO8&zcV9&+2>edrFIi>PE$)`FU#64Ul}v zETvy(U*IAqpYJ2Ie*&ZgkC>s1UuTSQU} zN6&<@aPXBD1MCuy?x6E1YODM0g&y_1YfvJ|2j7)$qD*oWR}bj0cPS?|mIyDOAcQE! zoO4$|ASyx)SRXp0zh&b`eoS7`RKzM`E{Lvv!D(-Tp3F~yTaZ>?yvpRu&QOidDvw>h zW>5SdGPRNy|97)&BfJ!8aB~0#9M)wi0tH^k+9|KpT|z@3CCo>N5%yB`Irm0s7b z2QCSMr4$-E)}TZ?d)0`Ey2ZbPeRU?6#X`Yw@AY}rwkm#W)7tFl2t$_$ByR1YHvyml zc}R%mJ!#1F=GGb3p5aUR)%k}XevnN{IGGi+nnIvI2;f{#$!68mM~w@CJ!2swj2Q;w z_uNO;fqpIjjI+A`O?v;q5p)4(NySmD)~CH3PG164zNE}|^v_?uF5V|$+)WsHTP$~G@OvHF=c#F~KKvyMZ*?@5ae zNrmX4rADKw#en1bvYQ0l{m#FQsyDH>`&r3v z^1pEJ+%a+$SK{%wxw_}jxmPz9X2dfMeN;U;B=rBN2`)h+CN-*{$9gOpCemVVW(CX} z0+wk+t*!4e+&Z?lb*l5!%^`qCpX;W?QO#0Ce;?{k9qdb%Io(-%PKgR z7c?1N9CZ19GRF}~gyhbfHD$pCUsUr{p!{|{dq&gG5o1dhZLjFBa_|dm-B|aX2O@5n zW*%Fd*fyZzFL{k01PSb}M-~?s5Bx0Q0R2I_+~6tA6NV_lx2@GE^INL8O)YxTrvZRR zA%s#>5lejE%|H)5r&y<8Av5H2(P^PG3Kva;q@3^nn4^#?rBV)V*8G*%ztn+EC)fWd zd6VDBDtrJUN)g)0u=5=ZTE*W|E#MN++j0ivM17S}w7wY19;MGelPop%sCFG_?p8;yqkrCGgAy7@%^lm7g9b^fI3iibDhhwd7cS_ZcD@rR)Cr7pPS<2LUuwxw z9D3y2D-|8e7%4q?F^(2lVmwZF_6hS+m+aslR5ECHIDYFOT(K)hO(&?Mvh|^XQUeF|@G?PyyNU-u7 zMYL1IURFu7N^Vmo6y3u#-^`LZX}YrQWQrv{2m||s!y>c=r`nPNf_@OdVOJ!w zi>iG1M1CsR?{EIO0n4ZTD@*5pa^`iWP!fHUXfz)MlsOcsGK(cv+J*bTGSj! zMW*>nR1yK}08X)QhrpkfzZEioktdj^z7$0nU5l%;+oR|`qOi%_f7wuB0T;Zdx&w!! zu-mBxXsCdWKKQw~xbz$}sQi#(w1A!EpRehR6gckF^Ub=sqW-*@Tv#w0-Rp6bJE-<1D9tg*uW?Nf%Hl zdtHXj3w^^d3#dutC^zCZZ#MKylq>REA2_bs=6Jv=7Z;1yB8q_vV?qL^X+=vLb#l+w z3Olo=CI_p{h##GonSh)N(hn!W40sPJbrfWbfwi8L+71+!g{9k(a8X`_3)-r-Sj3Dh zEhCX@v4QAD-83$RDA5zGJXzFWGFxe!xdz zang^f;lcamd~Wd?1=1>He+iR5?!R&NE0X>_FzyMRE7N^3k5MrYe)+DE+JPz5=m{OV z@{UG(%&I|&HBgI^nXpFY5o>z^HkN^Je7w8*NXd)*+CfI=ziM02D)Vy^uKjyfJ+bf< zeKN^t!QI1K5SOgLj!Mc?I>#cGEK-(J((Xe|_hu`^g91n-B4#r=hZzHmiZISAj2S0$ znhA0Zk=*+5SULZmk5FVV`fEzS(bms-q23sWKcZ0kF7oKdb@)pO^sl5e{48Jp2RfY* z=g2!*Db(aM`hmQ01kgok7g0H z0^u2og|+_zIymB+oo_CrRNYLxiq^!Mm%|B>a(ygp)wqT)*|!O80U}* zJ$y;&j=!uqc@dBJo~;Z@@YWFkL=cD`GJk-I!NdtB4DK+R3MisC=rb66fF@b+)wvRh z<;!oD)lknk8cot1r%QZ&@(y3$F3=2Vf0+4yR(P`}%-<(Hx^Fi6Z%+R06YE>K{9rdk z#EY<(M34tW*TN#c#__sB){T5k8BYh;83ih~fyV@~qWUleftRFJ>L30Z0GYE|*)rc@ zx&Y!|z7#bRMuB_Oui)E zm|F1gG(HNolEa)0_5#u{qIZVNJmWkcI!v2VR>l z^6tV69p(T+>}PS>tB+C~iH#JU=NJ#u?WPZOey`VCVd%~;Dg}T4E+ItzAYb?Ylc2u5 z;HA3N9dE^pi_xjym};NX7Bj1Dz~vi!RWC95lZWPik8`bOpE7}Q5^{hkY;<9(Uh=2~ z!6$Oj^8d<{eQ%e)1qT&^Lk9v80aOx{8ni{|tK{B>f&X;~uSUk@>UwO#r2VNgOZOk` zgN>2W2=$Jb9jLI* zoxFeYQNh%s5Kw(2Q(cVUM*Hy&1uoKS{So;A`D!uk+)mG-RPaKVLMkD4kD9rEF+ck( zXl;49|1#mm$QM;D?SO_??(EdEJY)NK@DgULK@c?kNE$6{&1wfT1fXJ%iQhw7qgMRZ zk&|#c?om&$<0e3o6eb=%$q^4$Abb;}O-U19Hg%|hjagx{q`Vden0p*u3(diwLoYGupBGQvfgI`>?9T@2>sI2Y$Z(|usFc#34T}| zp2-=WAfIW6#7t@2#cItAKr@+~=7Kyr-?!qL_ zL~6Qu>W=pI>hIDv{k3m2Q5;b9wR(KGaqdOTj0wSpxW;T3rZJ6HNt-&lzN=NJcxtK| zLx#-oMJ=(=#@X)yCy+@wDXOL(u?@l8O56-GS66Kr!@6dYi_>F_%E4CM;QE)|4sbLnr-O2@d zSTwCM0_OVl?LPr`90o}ej-R9sl<(DcohqOJE*m7bebiSu@H?gCaK-8NeRHGgvn6I{ zJ*{SL_$&xjP5^c4xrLCtA#SJQ5xejoEUj}_cXO^bE@fii67}VFc1AP+0Iv7F)%vzo zN!AU0ftKj{PL1r9J@TsB#`CCudjZw#_`@+Vj=N3lDDf@$zku z)C&vf_$>SKsIy5ow)lRrD06(&D)$G4ceBC_+HlTW@3lTD6Gji}7`u-Ij^;<82xm|! z8J3guNZ!nb%^fsfER;}gEL<uz zzL3Rz>z%r3w|x19Tz9SHet&p4N4jqszS!`& zw!-rJQCoNQYnWxbpE^Ph^-`(_=6 zBI|yx&Jx8KTzWk?N`!;G7eKof5m4-vD-EgoCku03CUq&V7nKQ)YlTFXNpN0Yx9?Ez zS@?;#G=cd@%CmHuHy_Tw3n%)<>fGc8j>(&W$tUyKq%kil666@-?IYsF*byTJWrR=d zEf5TOBU95oNzqIY%Q3BSM{*9W3i!Nc($JF&qhwWsAS3ucM{j?ZQX43xx=$=2JK}R> z*26yJ-D-5AC^CeJR{@Xin2e9G8Cb~Vz`M|~jz6@$FacTN(x4o0!703t&PcEKmouJd zy1Q3(DLcnSi}W7+^$y6}VIk$y-O1!Z-vf}I>(xQu;78^k5kBQMkmRUgL_(Q<7wE94 z{expyE@=+)Jw+nuvSCe^!OX|&e4YI3w4<6@2sG%nRp9uq+t;o43~J?QZl^ajsxrc) zfq3mLeY@3230PMfmaZ);e(!<@*H@D{K4)ndeS0KbX#_J6FcGn#D6stVp_f7+mPaG7h3E!SusoEN^NhHiW}eb6kIBDy%J0r2|5JnZR3&-|d z`R0++xlJOqzq0FriGE&9j ztlvd3k1oO(25*BaMkp~EuG2ODMCMvF1K{_DPu$A(&V=qIBe)Q$gUQD!@HiU2&iI6V zaJz_a)ELJ{_G9Au`G&>^j5(J9fFdUA>}_$}_Wip1+!vhR3ei>xD_Lx@1w&tUlTPvg z{4GSI%Z;u`()+p}8|OoJZl{QZ3Hu$0Sc~C0gw2YN6WRhUS;&%_nJdPly?8P2##d2C zVwtlDEt*K~MKdcLd!ZE6Yd^xtUdGyE0L{3DGvx-Ui%+~}*!c=RQNDyj=s=M>ixjUr|NyV5+pg+o$6hav?FROZRq3q=D$g0Lq-~JkNH&$iP{^6}= z^zk*^tu?vW@1aUeVu|XLKN=X=o-4Vb`eARMjj3lpcj>D>K1JDk_#%~Ytqu<_Q`cH# z>=lT`Q-=apbxsQV>7c0PxrQtDIL7{M2i;b&&=x7u7$GS{=>@& zoSNU$>ADIVRY{57=p~}_4-+O#z-(@RL_`CkladnH(ezm77EoiaB`05o5Xe3qKEq?h zTI;tKQBhI%&pY%SK4OGDzzHeGvb>0{-`B1MJK^_-F-yA+8B%GoVZ3>hjvco!W%_DT zQVs&0AAkDkS*+*1Y{y=zs&$Bsm^y1;ovVdl>s^ZWlNG--f*WG<;LK03nf{;?@N>(S zb&&(wo?E}ZF1-o6!VFC$Uci*?EmqCM`A&gM+U{G79PMwq(9ieY--ezQ%CiuuyMsE1fany_%?F$MDKA~;| zPUsXhz00=QWGrLHjk`=VlJ}G=0tueJyYvkW;39n^qn~L@Y+^b8qN9_8X;AL*c+Ll6 zN$bIb2alaFA%S&hPs%|LDgNts@1kE7nY+H9?_nMie|mRdU>5U*cgDuLS#KCVxKq!b zo52vZ&^jFo4NU-P(b0j2$*WmsWMo7fKklQIv9hq~`%3#KD_5?( zdFRenlc`f3S1uS?7rYtwon0U)r)V=_i!roY^Lo=@fLL!BojvJx^hV#YDn-P7#Sc|f zM1J|=TGxYSvweQgo;`PM+Eh=+{`vQoUZ+SyPJ4KGn8rL#TN@J^>S)3CN*Y>OGCBJq z6e=xdpJ5V{$N}`n=Bcx0?Hka)|3$k%K0pJd%nDl7Tc(+tzfX(6V&jTt>b}fJk8bww z-~ViYjaSsy>CaxgxJt+PQedk#ZIVZJNv&U&Gb3Qno|{T10R^&MXUv%K=FxGpQ){(K zOLj7k?Cj$uz06K}V2iseu%+in8*~(pR#;kg#jMJDgGGqmTk4zfQ>X3-Tpb-{vzZmw zk9$~(`ug2VFib5yz4(=7>n>hw^*F}dycR>*m*qRYevnY|@#DisGc7bzTU)}c+fZvZ zjK&kr+FvKlTjKfEHM|NIPG3&A#GN)z&cUuf%?fxg=E;snRGl3h223_JozLpq>QsdV z?`6#HZcd0Pty0m_+O}}fqR5I0=j<;`y@;gd(n?e&g|dVtdNG&I&VhheeTk;c@1~~C z8NPojt@^d{tcbvg%9bGM<2(I)k~+&Y(?2(R&g|KjP&POfGK=qb9cu_C)-0=wF(+6Z zyYxHF&dtsBI#m|0I@qDA}Oyj$%x%+LG?2W^9qT2YbR*dH*&UH{ny5L9`fjWPhE-SewI-3%IXp;_0i zkz2>AoQ#S}AXigTqRVg@^yQ@E+nK!R%4I8F%y1wW9tjUWaOzZ(rk>w(gbe}>BKiG+ zp{fnq4)ijl`&A#KU(ydHB~G+HNM!ctI5vVhahaz#>-sOPL4MwqmX4k`PsK4d<`rs_ zDSEFss($?OM|~E0hoP=NdXB8Ege~Q|&`?$K%T=FiJq^wF_zXSg6q6fNR8)dPLTcl~ zapc&sC1u`0+)x!&)nfA?vabViaUF!qtljQDPagM*HrUjEtWHx{(Heh&-l!FhTkw1wwL;?b(3uI9%> z^PX(%d}4#Ye~S}VC&#J`C%sh4id#;hLV=s38FTvd2$@cy#oY?tzyH~~%BN#Sj_mZy zFUruUj~qQZZ1Uu0{Ra$~b@nlz@!q|AV;^@UY8g$Lay54d!oj1Ta&mI4e5&@@kepyq z)Q)TeM_n(1>|D0aC&qJaW}8c=w4lN%WAmH#>FMcb9p82+di~m|@czSxUHkQGcIoa1 zZH~|Ehf_;SOL_R$ZrsR;O?ej=GH%82?71`*ep&vq0m;_ylrt+={&G;J?9HA#x3-cp z2A+ui*e#8UaLC!-wd-rfSdJMrs*a6~%~>a&&)F6EO-XM&iR3e%?YQ{(OjOjI`SZnB z=2oM1*Ys7I8dTn2FlWvm4uQk2-M|{{5^upQrSHG{?zct_2kN2}C)RcyJh%<*vn$kW zI2!#3UuQ(g z-?9Wj`msTSku>M*%HLbDt=h867M^Yz%Uf`wjAgu8k21E9quS^+``+i54$)IPwr9`u z4en+OQ{VqKhfHPGP_x>c%E#+xSkri&btf(D`5_A(M@_v=aba(#yOjN&_jbbV3(g-A zcj}%*O3GatVQ5&NBm2jC^_-tM6S05x9LYhj)%?)0W17pqyh!+ccxQxv-f%=M$<256 zvu;HHzx(7Jzn*xXT|9A=TS&9_E$4du@$g|=x}JD0c4@IF`@5!|2h-zjTzi;w{rXQV z{hv1{JW9&QXh}`TAE&JO>cb%b`>e^xE|WOd=FMKZw6{rT;GD+rK!4q|@nU0^tSl7< zhRhu0w{Be>cF`*T0231vS!9(v?^3ef4AgE6E-y!V=0tbH#lF05bRvbkxNyjjA&k=c&|zo7T&>;{jE$R0 z=t2EvHf`FlY13K*wO{NnL&QJZSX%ye@uKd|ojb?6eZRKs!?wv&r?w(+CX)UaQwB6T zvCq%%ceJ#ZZrrF({9Ehk`BSEOGo>?U&U9+(xhm6o^5pGPo}@cFJ7YzgbBJg+Y5Me= z6Ue_ublKKPP3=ddf*S}B&@qx8uBRPwZ&3UG3w|aA;Kp`#_?1R=_OnXW_IESf3Qahm zsnMD;OaAAKmrJX(?atL*7xtew}o5+JdF9Dm^xA7{kFdkBC=m@#4kVV!c>etPlhM&{ir$UY0ZA(+ z$=^>PK$5a1Ft9BvK?_jrRwM6gv#QC>F;-uDFLJ%g6l zg{aEKOb9QRc`rNrTGbQ7CRg?#y7^%S20zgZ)~4t`^EoGC|NhQ=sCRV1av%dHkvA0Y ztNOBG$9#%UCKFwvbY=|q1}-prwu90;Mw2`x&$@rnsUOSmBqGi|7*!SQWGqaV?%jVN zhA_Nl>!PRyHa0Tki?y6XJ*MOV<={Cj6SMf$Lu|7zdNM}s_YE5?Vb=5>`qSI9)Ds7e z9{q_Yzj5P6!c`;Ui(S!uEtuzV?;f$+x@c-PB-6n7Hi-h|>>6_m$pmPGUd9~hcSt)x z3eR8(KM%EEv0~(c1!{7F?A_atAUQLxTeogp&Wq!u$VNqvFYJhEh#eAJx>K)Sjo46} zzUx@%#GpQmf*3h^bO>Wtz@`+Dx_$e~vc?^pmY_4bgShr+Ih$UsckjG6T_q9VQ`ylu zTcq+{J7u3x%5t`_W+4D|H6W>mNvIyuj zhJU0Q3a#6J;J|?|3wD5)rQW&Y0R!)kTelifFkGc-JR5m7K3)(1G$q~G!)RZB{J&Z| z^SB<wW)xKF>csN&4OQecji29>;MW*Lk88PTI6-95FKxTz@A%Q9 zxdO(cu=uonvMcQY4JxiABqm0a1xbE=?r{!kNuXtwQ=_u?>+0;bBN>V*7|QI~v!hZ{ zjKTVkBQO)D0C$b>6daF@y^7S7%_B^&Te$i2h=!`nF$hS%IB8r=PmiWx9tlI=A*c?l zqdazcpOKvDT0?8DH8skLii`8}^93~_vz$h-vsPArhtOp};re(&LXmK#t^uf>*fRa? zv&tMqxjbII3Ot%~WwO3rvYYH+S9kY95}Wae5ia1by*i_Um6ZvK8d`%$PV&a^Vl=htS#1$m3=+mbS8KCOiZ+8%Nm(y_CIUCgf zNLjGzft#mF1x2hk9=Crgl>GGO$#?U79~U2Qq^PL)sID%Lmwv(3VV`u6m_l&@?h}hn z8+WLdLDkz!nQhE8er+7HmKVRA_UOlt9J#`|t1S5Ikk!+e@)+^7p~09RPo+ibqsGST zg|RHxMj8_q6%+)~?ZSwJT~&Pp)nW~^L0*?MH19^*EQBJ~PV3c3?80ef0L=dHY7*V_^R z9-pgAg4(TKy?XhDxHtt#q<(H+@_OD2?DaXcc7nqDB}XDyisqd&?d&FDV)5yNj^J@G zRT&vGaNoY3M4KOIUqZm~Za9~*-UrSbwSWHvTidQw6U;q5^{79|kqn}_e(rlfnU)S8f{Mu<$fcwpUesYXRQL{L#!V$VroBuZT`i%b1pr+Q` z{U|tZ5nnf5^Tmzv4(Iiu`1p=mT3XP8uOI@Chv-xV0S-8IY8XY565CI5<3XKm1jF|O zREXZsQt6-RC^zDU;8R;?49bN@1yQLuVb5C0+}#z~oQ(05<5@ZGL*JvIVX<(bV5B{a zoE3&Sp1*N;as7)IVR)GEKP&byc2!bRRyL$dGabGy$h*L_>e5uZQ(th5sHmu9O-p-g z)0DBqVO#rl?PN4DlcX)HFZng$#fjk=k_C}g?TDmj{*?#$Z?A-82c`k!xZjWAQ zjyB{QTcXJOHW}&Qt;dbhYoFggcf>5ph&TnBnLeqne@IrTZM3#_#Amh5s=ptPpqs9J zR^1O0SUljwiNT~0BqBp>_o>t6wQDmciEY|^P(`5~;5?sF#Lu+_s&w;JFIyb$}bNXwOt^kdug31SL_*F!i228y1G09<@*^FKn?>*n8@g{ zT8m5%C+|XHgba$tL5JevD%|e!sJ{uZyr+4T_L^w!)<){7sR@e}zo!3y0sRIK?!W_Q z24FT}*m?W!t+6aatG`+YYA@}`vqz5}m9ez;jB*N0)9Dt11lP`*yGPTdFqx0>>-?mC z^kdAYeH|n20@$+(?c}%#gc3%#QFRWH1 z9A#1ZNTyxCH2vac$8Tb=DZ%Vm^SV#(3~_WFj)~dInqo+apj<7R})WX=UgP&;%RMV5WgLU`K(&h&Yhi@ z>{K1mxrc!-$AHhKckbDwVXQdIvM@-n@8FvTD^Tdx&D1>FCk>I<%8xzIt&U?ap$+V&{j`h}ea~ z0Jpa3Q`6+*CrPi~uY)CI=KT4g z5a3&P?!=^~c8iaXmn0Eh8t+9qpmp~FqGoJT0uKuE{!d*3FcT}Xs1+ID{&047t_G@) zLaW%{pgaG9I@Nu17K{SmHZA)&9ne#tS_V9SEyVtI*itUY;)pOnRRX1qc5!-sMvCTVk4^it4% z(YqCaRT*+U28M=zjqA5tfw0xXY?CQt9({RvRY3$5=iIwXFE5PrxpYtc#~;(}9-lL{ zDOiNXL}WjqT>u>zuc^vscpmSpppZqFHss8p2-D=qpzYh;j5luBV9F7+AkcSnZwv8p zIHiN~7F7*2GwUM;1r#-X+eS6-S0s>Y<^&H@+)}-)Yko?2e#x7K%7^|muODa=(>)!&sGO{`*Jph-`>Iqkw^9|EiJ$|J=>oj z2zn1(cQkt;w`F|%mCuzm0~?I<9^9;YpZ-^n&d1213x zqWPnl^kuFUQZxSgQJX%EqJ)KaKZNkt{GoQB|EHC$s57HI-2t_CTd5F?2~0UfMM{90 zUvvZx5wg%I?`jFrb=_yv)I9#pIzl%al54Q6wEw9WxsT~awTNz)?=FA&XlAo-cyL-# ze!e_v{u5?J-O7oIh$tUgY0`>^n_cY@-4Mz$Hl2m%Av0B3Z5SD9ulwkjhJkGS{vsl_;UwsSkaWJyWQVh7?=F8jA#(&3l5L21o!|Izq<-k0J*A2zonN-BzgAR~ixVi_2e3qn zr*sne;{tAXN6!%*!5ouNA=nMx49ttZGtfW7tQDeHiM)pxl8e?8_F(fDE&4@N03S39 zH}g(boL$zX$6^$HcVjAAS{a#{biel%1yOE{ET5d5ymUk(nb&|;T4MU2P(sFKm9?3Q z)w?6E01~?pPw44|4w8+kv+&*}wN_dYDWd++vhc{rm@{Y8Bm-*vQPI)aWo2C$T5V-x z+Is9ZDP`$Q$pr0F8?5s9y)n4 z1gsmAoU9`1!9W3@2Krzt!<9uIWOD?AR;DxxFifZ6FiaLY0|v-*2ILB!o0$#{AyniF zH<*$dnOooCw7t;UHqcE~YrT%TL?KH|?G-Tqb4?!39H9XMM?(Aqd0ie4 zcV?87cDIn3bLWZ@!-)-`i@xd|v3&&7{L$MhtvJeXt4Yw)5V5B^3O;TXJg#=E0SQXre<95vh&18m5yc-b-7g4x6Q~LyP*6PcFg}2GOqLLe7wh1J z9bCX%&h+Vrzv0NM<0tPRwSFX=SwWV zZmAD+F?o4y6+w_RtL+<`7$0-w$c#C20!cC=-cd@ZO-zc53*wz+j7E3*W@S;_3!xiH zKqOsEm8gwO0Q)i!vm>PsVUd_Ysui_=(c?G{(Ys>_C?_bw#1ql2%nUQ=_JTNO4!Z$1J?huL|xSQX#$+g93MhS z7P6G)uTLSodHD6J8yiFEoh%{xW`q9LHBdIuz)VD8NECB+_Awh49thAv!EHjEQqnML z2OHZ$oI&dvyz)0lRM3tc{%CSMXTc7IifCtNxA}#nVo^0^MM9?PAi>nv07(wfeV+K! z=$-u)K&v#@_cC3lLgf}AH4BD4W=t>0s(x#D-4$70Q4z!^zx(ikZ5nk)zyDXJe{`kg z#ED{K(M5LoT7&7VXk$#PcA&4Pt=)#^1qQ~(IY5CMmp6YY?iBoQ-Jv#IRM%RQ|F=Jm oqSFof5A}oZe$RhP%=l#XGN$#GforS;+kU2Mdq?761SM literal 0 HcmV?d00001 diff --git a/Online Food Delivery Preferences/Images/FeaturesOnlineDelivery 1.png b/Online Food Delivery Preferences/Images/FeaturesOnlineDelivery 1.png new file mode 100644 index 0000000000000000000000000000000000000000..44d52851c7c0f329caca4ed599bbac3ee2c1f811 GIT binary patch literal 93681 zcmd3P30Tg1w|0BmHbS;-rU`|lQY4j6%;U zo0@Fl7vUG&#Cg`z(#%3kK*0F>8~9Dl^#rPzXS?DcbIcANw_svgaEku_A!28^KGP3O zOwxOIDcJ;cFsv;X>yAu(DOmSpU5NKVzn^CB^RwK#-)rTZdviB(dKUe(?}`g^PMlKV z!2@1vu3T^aVW0djN9D!-_<`s2uDw!zQc}PD^5d_&%_qh`Kiqkf>z9*0GPc?I6&6B+ z)fU~tTPhfa&6T$wE!TF#b$ol}tyK?T`}PI>opN!v$X{P`%H4ZU_dfl~Q`}%VdtNe%NakV^enK_|xC`n3!BT&W#D?nr4q}V>oEL?cTEo zS5gwMdwBic7WG=k!NC1)%kTaE`%ikVpUjHG<(gltX0i_TN|?dqHR!fd_|U0Sr&=rD z+~95g{j672XH|+EKYztYdQ@E2@S)-`ncxptM3XA#i4m>z)}h{J!~V9?)=FOGsF1;0 zXDxkwebE(~vAx6XaqXq5T9fz7$zg6`QT*)ET;(`TiSz;YRU&N#J14G}8k|?q$?s=a z*XlRqU2CgMigs{x3}o}zBNHU4fyXQto3&DBY`DK4Z;m*4ZB0JQOsSvo%pMyT78XV+ zhI=GDmtsFEpZz=TH{;{Zi6Ku$Us;S=l3jnBW#?Dbd%G_wMf~FWD}GupY+9p!b(uif zbsoiz9`{Rgmql51Rt}GJXR{5c(AW989)WSM~GbyrtcJe!rvmiam) z?fh-@@?qZ@c}weaJzX93j6e zE_1+7BdDQ4XFi9ddgJRGKBWfAXU|6byny{dLqmgF&Li92GZJ53EZTTHKE$}7KQ32olw5NcaB8w+bveFhFgonOM?$AnECV1uiw3sDUDVw z&#>+7$Vs)*`uwFn*Rbrt@r`Q94<4vQv)k1DU|gHUC^H@X`X&C@CNcAdgK5W3pFXV= za&TdwxOIM6vT@ZmVZ*W`l9G}ePb5aH+pa2t_g#(BFAfv4>bT`5XjktpqJ&$b<(Bc^CT2fily*)vRz30nyX{_f zcJ`j09)+t*`4aUC?x^MXczfT!w)Q}j!%z?G%_loMyR9@j95-GyJla<*M+SxytQ8Rv znK^T2r2Sx*m_?IYOo2D|VVy_E63^A=SQdP#vG0C$`caFomeaNCUnJ7v7_-h*#OtO_ zjE~Ubh8|iHb0TRYgEpsppxF6_rlzoX-8XHSgEjS8wM-X)QW>jOnCa`=5yVN*9Z z9lsxb$8O_uU4G4s2wzRRS5|J3yDu@X-076zCTKMl+sHe2=_dIb8N{nBPZ8KZCWcJvA zKfCkjxuKzDAG(G2`Oyj9!lu zDJC)bf#U7B>*25Up8YQt$(?<9Wr;!I{YzZ>1$QJ2D&j+eCYdl!)H;pCz-@$LnOmEKoXbL_efr=X4Dswm+|T2N(kxrO?FPH}u=O1$#s>Yw z&PR=p_R8^TW_*Y>H86;}fB*hscJ^4>SnvFV{WhPv@cJfSbWNuH;o-qMQpS~ug(wmbG+g*zuk zgAoPjg4?Q6;+{QwmT2?k^!d(8D5qO> z_T_RoN0@zlX4ms-y|B&alaBa1`Nda1Imw~D*i6cgPQT=mMkG(=dGFL$S;;gyf6;TUc}G;sU5HO~*bVXrs*K6CEU7CfM~^0=V?#Nv_wDawKSfmKk+N?A@VWl)nefXY33ncoyVoquxK*Xr0 zDoEJ%$)7%b|L1wj&E7ojK2uGxcx+^_yxwzX>@qEfqrL)KWpX>mLX4}DTO-5oD3E>N z{@Q~*C5vF~mIV@n2fg{6{RFiyM=3?#M;wiozqfn%(^Y}KXLGU9_+%W1`%>#2zu>C~ zn=hYMZZo2 zgJXge4P6&-l)*MiQ%tq6@&~=Q+V<%5x0lP^xpQYYdtzj#w8F`gbu#sBg~6_XJJBsI zXC+2D64LDYqqdpWJcv35jy(1Ja^>T5 z!OxyQ-{P(fWJ0_C!o`dIxRH(Y_y@a6;Y5vcO$IwEg0Zq~_)uwdT-L?~3l`7@p|~qK z)~6^j@Il)<{$}xv$8%;d9p9>#&$^c9xofFGQoDU?5qEkkuWIZqtY7U`lj;v;+u+mI zz8dW>*Sam)Ou(rA)2Gw8T%&SHi>4!MU%`_$h6&a#cNNTek(0CX>dVs}tfHq4+lxZ4 zUenp{zEZb5<;*+3FaV0=R^2x@S4f}f`0yw>8Mwj^f$qgYA^7!F{T=YOTfE=u1v%a{ z(L8a&PcY}!E1&hNq?>TYAmf@FysAfFXSE~hz zsy-;B8ZCXCmgX0H zz_VsxxWBbH_wzO69IPMD*zUvIkKkiQ#pOLWKE1r^4}73zf8>bUHJvEcI1>d01*1+F zwa~sRiv?k-+j5p$e0(;uzP;VhZlFVdaL1P~UvhGD*K3Tp)7wuZo;_DAxuWqohhyKh zYdYJED|MEs!7-)6N@6-;T{-Y${0Fjb&eD|g=1~awL)5I!C8iVpaI5!QI2U7MgmIyL zSC2clOk&RqnDljx!=)~KwM4cLAvBO~Jou(Yu;Tn!%iaDThI-~{_zmbr7cAnFM<=Lf#o z>akA7?-oL2rTK(mFNf3DQ;M(&H8mA;JEq(9MU4RciTcHfcKrtFx$xng!;jO`tHvd* zy8`lqcE%ARgHwr58W|owUw|gqE%OQA zOUAgLKYxC{@%0k6olfdS*?JeaxVRz|!)2{(ui;U`SDD^!A08ey07|LMc6JVPj4f~# z(8_u+xioO|TosK?Y+{!00qHyWUp>}&^=oKoXe7)hrTXV<*RBzcH%x%pj2){P)ZLsa?y0e@&9BuWG$f?u?d>g;3n0(iQZ0*=DL!4| z-CEBb_e)Aj=9$LbS`y?m9Elxuc>%{AlN$Gwr>_o~48IepjX>1es2JuJqh)6H@Qz&@ zkK;&Z%5C=AQ5cM6%lp;HG@e*FjO1)5OmV)wtQFz11X-TZ$OO)K<;s;JSc7rxoOtiz z8F{R}{Ikre*d0FaNVXDw&lVIvP0ldT`L_JBtO(v@UmGa2kcquw~xc%4_4f`{X; zj{Ld)&U@_c#IuEKG6yORg>uefD<#{%KN!!gD3U&J1etf|m3$HVF2nkovlHWE!+1#X z8FC5nPT&#pEw!`EV_Mi&uJk)KlC-1g#Q6En0|6qhHwC4gDTz30P#osomEJAMfR{2T zdvN=X)383C@4K?*j*5hpqUIrz<6rA7ZOi(H%o5JLYpAaehOdm2_E|@0O2>Vruq8+Y z##R=dv29)*7O+aWcI2-|k@6Jvzli`nu=vQ!tIJe%bV8Q$t4AF6<>wI=R`%REZgbhu zlU4LStkM>qHA&BE9^a--Z%u~dvd0y6@4kQ-70c5RX2N+~7`HOV+GW8^0YPpazb0YHd4BHf5%Ry%Vt*hFG|xW;-5c3yFJFAWg2 zAS9JOa#v4D$+}N46FYw+7uQ}VC#RGS`{?REoEvc5S7=8V!WuXBRqKaG+EEIjhc2Hx znARHO$iljvQ`_w_3tQB^J+5ayH21X@rw!KFCtN2}x@5w{l7d{GFdRTkIexf=mGuFr z4nw$$6M*G0LFwt~@F5}iar+yA>=JAwdZxlA)yHZbdfnAEG;Z9y8HVo~e0uTc3dwT! zSqtKP{rsX1a5yR3y~~HZ7n9ki;6MCHR<*-Z-s!?Ra(hdjHj{SKBpQ zJ3t7rC8=Dq7|88>U(3;Sdws1ccHnA7JT4*D-kcwuRql-J2iakVxQ=w7ZeDY(4QIdX z9dKZr>veC&Rd4i6z3DtQm_4B^FE5|wR30?{&Nak|_PVDRhevx0`mqrwHwNJ1R=^s9 zW!~cwylv^-S;f3@8TWyF^NNcVaSF024N0S<6Q#+$c%7-k}pgSI3%nPQ2=S;rU?kD&SdUX8N^R zjwc?SzN8X!A{0<|@}SsuTg@Bt{3W}eUYu1LBE3lY!Lg%@*2^k^ZMm|T=RO4wpLH^? z`=H5B}s`UpQ572?GBcKr)k@Lf5PN+nemPzX62Ut34sH>OY%t&na;>;y#rkSA= zBiR$hSUY3iTSEw9xG*0}-@B_R-&vV-=+L2f z-r=sQ6oJEUeEHN=vcdfD1=WWKIVk||F^)4RGd3O%Y(W&$wD~xbxH-@t3WfLgl}0J^ zrhf==E?~Xl=9UrMoOcDp#6}*TSN96erBAGaPe^^5G|J1#S?6J~cIVEW@RBk>4T=g1 z-iWAiAQ4-Tgs{HiRPkBhr zk**yS5eVMK#3XM7|sDm9f2&G>a26U> zh)$M04X-xEm4m`52|c__=GNw?WmZEyjh6K_9#x`Ys>w#jDV-wP=w^Of)@=mt=(C0Q zSFjh4b*9udeEQ_wI!C44{HvDJ5O?vIeW!T~f<}JP#FKY`JR-RgX+LZaK!8R>VhH@W zfJ5>Dzkfo#xGyA$xG_j77e+Q==BK@Brw;41HGbF@b*YSIvRe@frLg z1~nO}v6`7tE4G~ZP^qA(C=5Us{0-VlB76G! zl)%7rZ5Tkt`KGi~negsX0nG;4~>%I&T%K4Wp zTNVyW6=P%oY-=FeCg)}(vs?Qd!;WuAjELA^Yj58klTxDqvr8LFd7X`2p)Jzc+8RlS z!MxS2=ajVH4qNlf_51eke_c>Ord9-cuCMOmf-^Q1uf;#MwMFIS9RwA4WW8*_!z7OF zW}J+%Ek7_xJ#E5KaI<1KPDO`nNxg@fsr!tUvtlgTaS~_mCB4&T~FumN4<#DhslO6%4>%pkCu_w~QK)zz>9U zUq>J+`fWdVp9lcZe20Jr$^ZkEV%0^*;3<;FgZH}^g~|Ar+}}4Bw9n+v5g~}9B?7~{ z4{vJsk&`S$tcpW?hz3VNs|4OYj7SYneU=e^TQ5xyV1dkfu_!>67 zy&a{QiJZDE6roHGo30ehnKI0f?|A%PwPd40kZLA{`e#C!djVt?MIjKs~@zs z^0<2Ss^r(Y8F+fp@X2juG5%edgPH_vky+5SWqtj0Rot#?RmxNB*-{i8h^k65EH48j z=*OKJf+(Vkg`>DrwK4$~>>Wa29Sje_`wx%mHF8nA@(Rqz%p@j30{4pWcoU3p1U4`c zFT)^*lz{>)XPLyQrkd*#*?=?L3iBSv`|wR7OOn6fisC>qZRF83+CnLmj$Z2mYqGpW*ltTz71>a&Mt8RWeP>)&?`ku0#4O}lxPK@q=HGJ z^Mq4Xj193b_-=)H-2=kQDsh^`m=Y@np6F5^HVlub=y6bw?<_@^EnD{Pmf#+`XrPah z7&VcZvu3q}0WHRA7_A>X;=fG>xtk(_Rw;u24Iah)$lDYE7sUQN6kLX@N9@{sK5)u+gfP=(y0ri%m z;IjCaU+yBUj@bL>uioRCv+}{@_O(UFAt2a-sZ>H@OWYE+NWaIYtT3c>l)52V2Ql7j z*^4?u#N)@?Gr#1lvKwSr-?)A~E8B^RIBtRlm5GrmsK|JEdCkl1Kqx2g0QW92 z)ZoLSQI0Dxgk{+cHTnu$w#Z+)eAxgF1vtX=^3IT%OiYh&gHFMsgu$2UBLHngRTS(< zIEp1ahqZtD`R6upROJyzgZp6N`on##J%fX)aHd<&yuBsv!53XGiAv##hbMnqCmRp} zHl2zZ#Cx{KWt+73KAEwg#a*Q4J+eS-n~j9--{0FqwGJxHlxsO_5YoGF;X(;6Xo-NP zIyQUC)o|c$01~e=1$SbQ7PVeGz+Q;wPbh9vT(Nj}##&WXRlZ{nrNC6F07NAraXHex zD{u)QQ!(uUgCScG5gU}B?)k9 zhMT`Yi9uT=6Z_l|EDD7`iyuK303{p``1YQ?$h_06I-?NwTJo-~C7#&Z$EP2WkP_H@ zmId^FFIO{96Z!{}*IEjSo|3}{!Q7z&c;$~j-UAr#yGBTq$*gL7@Z>+}3%oh}+s7uq zl)CdQ^vz@@_TtY)0E^x)PoJ~ejvrOLULK6dy#eVPKmTY~;n6%EV2xdSG;d4f@zTG{ zMMSwTnMebS$OHc;JjZA9j)H?z{PS1t0Ji;EyJY7uF)>GtdaIgLCQ2hYDn{5l-_syX zISM$2q;~}mT6W;+W%j)0^$vlDXve);^=fN_N{)^@Bg)cq2tfB2hP15oJvDDs145id z?qa|B1Vi|crwQJbdH(#QMk%v-=Jdw*4JjEth*=bDsk}o0z~33?OK$~ujRJ3AP@9#h zF#_|ZB&e#d(}ZL43|`eTbcTtE@>?}EHC&!dOn0Bu3H{-*@B0nxKX8B&rsAPpyLMR> zBdgvfh`k7U{Xm*6fJQRvXUeb{ z@&c-HnwhP~;0xfH67BK+y0X8XlgV>U7hj(X<$O;MyirMyr zU8LeJpUE#E?-6TDoiKEo|XSv2RPM3`X6vGuH1XEzFlktpm_&VUjV zZ*-~O$748{)fBnoKo*etzcJv-5t-!%>-+=6}07`8sZH?p9E% z$*pj~`k=dedV8s&#XV+!{0k6*;j`c8wBGc*dX<<}LPQ`ico0ZYc`tDu@8v)Zb5m{^ zHrCy{cfW~D?mnq{r0t5wqT`=sRoelM;w<*5cL+lBv7F_|0C*TZD$&X)PCX($2GjzV zE?v^Ed-9vrU@cb7rT&`v5Skd;%7$tx_l%)#M1dzPrPC` zLNYB6qv?8%oMn2&@Ruz!xGpaNhw2VtJy-d=mg@aC6ZYWyc}p8^h+fTrG@?Ou>R%gf z{q>~r2CwkR2PbtWMZb6*0S>SXPzIbpLKWr+W3z>Wm$|c}B6bXfQCoFt0Kq-iFhQtCYlgDZ8q|}b8yNrxX`$3qJGL@o`HLaDV z@~oeTDV1aOjxCpyl~pk}k2e+*6fFF~aMH1X^5C7i;UTJ|5dTG6o@k%6ArS68{ryQx zQn`7+?ZRTfq^e!k&H*6E&CMN{J%9eY;xhX?>LdOS!C_)J6D>^I?Y1vxjO#mTK(y`Jc z6)W0?#{*W}e0Ry@L9nAPZy^KmiX&7FrXbPqD%eqQ=`jGk(%v9Mu0v!3(FX}+yh8wP zcu@NL`0=AC`#^|EQtU8=$BsIl5C%xaBaI5P7ydzY zJzZNjl#e4$zq~@cJUw3kP<`lFDwYUMUt9VU+(Y`$sy-Kna^bt^&E?1L>EMIo-P8{POld`8 zmz)c3QAZ>jpRY{N^CTn>_jMNO1wf9fl`HH~o^y%0)wd<6GlJggiiby*J_o8LaB%aQ zI~nP!$UTdYZ77G!vPl=As0Ora;m)yB6Rv{Aa|JvT=aj|LVe&4_U$t!mC#MuFR=&F? z^L*3W6;&BPwnM|il~=007q3{sgQNi=n6FsS$H(W!ty^aY@wq24N58pf7d5)`rh=e2 zWO@eJZUlQFE4kt4w^159Ocl8cLkPRU8&4Z7$`&?}ZQE3!SV}%{_Uzf@Sa>8Ur>CKB zrZ;ZgQsk3oN7CUpNO(f|H7+p%9Jloj6VxStpXywR{%9Etya9(Y#7K-wOPyknT%bSsSle?;xc_2EGy;+Up_qpJ z6bo8v@TdX(gJ-eZNCBjj8pdUY!KB*&;BP>w$3;PtIDsSxV+dX&`G=q-FxjYLjWh@q zWe``37cUMWtU}V1Ed@J*LD3WUW!}^_Z4h~Dr+h|OFS6!#HII(~H}GO&LYr_EI?p06 zbs-g~kSPchR|Q8@nQ9SEyeaZ6!-0+pV)~IdZ<6-gqUV7UZwOM+wtKGZMIyBh!Ju)J zk#HYHl8@Zyo=A<&o;{c66@qPm!0wu5fqy^%RDn8GmXO>H#BQLqoO(Su6=2uevkFl| zvnV^;;d%)CGI1Fw`6WwY%PIk&faF^*edX#^%B7bqUw*b7HT=*QFZL4Df8PA3yZa4K zPtVSUCuIvdXX$1#|43O_@w6wI+vwr*SH|)-o z{?x2IN8|A%+Z6!Gg(zMbd%_?^ZH#dsFCVG{V*?qYirU(wk!C3kZ&!p&4O^YxaiBu4 zGQ~6q)?-{A_phCnY|M06cd4o?Iqa(yCl@3++~}*-2O{Rohy|?dcubj*GsV&dw<#Q< zx4i(GMa0NtLwlsw{U9~lVBw_5Bq|0ETYqGrlVqk``T!Ng;1bJKY)_}%0td0|jeAE6>WOfI^K$DZ6CS+PrFVPMdt*0>m`Rqc3a~3#$aAfFA)<_-G86Vu zaxyNU71xd=%ZqE@-n}g(VFN@kc7$)|Gc`3;1|zAbg2&Hfn*;t&SSRlnz)xwU7T_cr zW#BnAvLQ=+RZ!qr^%3u)SE`qyfJRNY90#BJV|mIi;3kY_Ep&8nXz1$V=iuPzZzsOZIyH>mn@iZZQV9u88Q}`z-y|h9!9}HE3qNmsh5dGNJ*=3Rb2mXGk~tdg zFFVbq&dSt$&fwli<T_Ns={($WmzIEbvH zQVv9l1hN6oMUz(IczH8om!wj`5iq7AzX^W1@m;^_Z10e1WK_*E4O8F@6k#}WpZs#_TjM+#y!j&%hctmm5HzAhv_hDgW3L8SO|e0SiA#65D+qe1P9dBFnf z{ghtN%LIOdu*8#v*fkU|s`^kxOtc>~fwqwcVF0Ppxms-7HMQvsYkHTJ1 z915ttQd;;fKvWT+n#6y^fuee<7qfKo@Jud8zTtH3To$mBdD|q;zUP!yfZAs3=@+y4 zw6fH_NmQ2JSQe*cn(m%|VdmTtD6defdSTTbz@r$}aBy_$P)sHZCNH(Y7I846)%aYz z`Q*jm@xQ-z>YI~XH-(hy_%r3tKTO!OK|X9^M_I+{sY9%{IQJbi(08g?{#PaS)7J^? z{=XvRM|zg1?*n2c6f26&h%(08Z2~Y%IOn7ArlfhrPe@HIcJ9;fjOC~j-+X!ck$uM4 zK$U35I$X}o8Q+oO%o=2g%9(cOQJdgnWPttCFOSt&DP|c#j~Ar;5qJ|ts4a{8*`N@V zy|Y8#zOTJpVEr@L;07~hQSooLXO{e5I;a@Nn>U9M`72iP;!}TRZYEW5tdRPXM=2kN zaPbXdIG{ku<8$?v2&?`cK8Q7l4(Vk0Chn8D0G+pPn|hYRak_EvunnD^#)jRs+1bEG z+%QL!`mL|PX`@6UeD2eWBe_&p2QOl=#t8n&;jcysouddOcN}`8S7?(+Gu;;MA%09F z=7ca=G;!9awY8DdY+)5xw=Tyd6&C_N@QmDNT*1)n?@O6?0Xq%Kh_gUNR(ckCTswBC zQ`85ws|>1n-pH|-vLjdP@S({9JpRV(@uh#*p4p8;l#-xW0Zz=Eb2l#Z!uJcE#8m&3 zyO2r{%rhLT2346+rCY+mAs|gez_m5|7NeL3&m0N$Fx4+XRsYPw8Zj~2yc5!IDssJs}(tvRVVge{JXi#%tZ)rolRPqcFK6BN&VAT z;$=VO@3WSoWQjySMkBqf?B=aoB#`1+vu5{yl2zDv)YuAFVV*^_OK z&`))O83Rv2*argQyWj?+LFzKkom&hHw&d4e?;|%j}C8YZW zVw62Wu83Z@C%dd%CewJ}-D}2n&@p+3Ow(U0ci226Thh$5<3Z;NVST_(G*X;VJM;9y zObT*-TlLo<8Kmq+G3>~zFXyLk-pp_^_;@vw)#ltf(yX>=DauQSP-T6c=sA_+-(vgt z?cJNd@!OME^r%i_!~Znr zUcvACS03?+Ep~bt=)yR|8;9*JO+P%`1#_k12Ra#IkcWO~f=u=mG<+%zH$za!PepYL z+xfP~3XritcvWk+Zr!R@{m&%k2PCWWUgy(OrP&YAt-<#-|S@?Olr5r^C` zU6*-kOF-76Cr0Ts)PSb;tm0Oi)XJxgpDwI!yKJWAP>f~Ahr$7Cgj{8W3aW2Vdks`O zT{h~`r5mG5+y40FZ`UBYNj0d@F_;Pw)ENyA9mrRx5y22WO`=)+-ws;szATEx%4+t^*L^{`V&XqB zJ<%{TxR(z4OejZ3Yy!SLt8qE@I%TYDpHF8^^x=lnwr%X+Iv~B+NU{c@6%T4H=#hAH zlP|&F)U6P5D-ttWTU$dCVgS{lmE*ro5Y6~-NanxrA9DuU@1nrhp=fyGaxaL2Xn@bN zpaVg!`tR7WV=*xO8()E{Vau-SqbTH}kOJ;-wX(%;bM=Ilh8|0A?o72_el{f!? zCxSeGM1)g7fDzF>mY*qtG{{+7?zcvL=myfgSP4PFqbQGLRo%i_<(a$`v1(5iny-o5 z@jr-wr%>cY^t za1)Y3s%4^1e_q{^md~21XH0dohq&Vs|B6eT1*tK+t>ISD6NmqVGCDi~Fv4U5+aA{8 zQ(hC_ZeJ*F9y7By7j>dMefl(c0CHx6Hp!Au!6d77P0?WwjBW9u?fJ$_(iX6ZacR3z zhaXDwnsAXR?|7li2Rv(NYis+=iEHt4{@cOl&Q(NIEQ{4Jo3erW;t5Po!s>lUabwXeO z>4{T2>r#MHCf0(5wvCWCQqiia4~k+gX%H-h)u|TL6NdJoqu5@gzQq#@CyJ}_3h{Bo z(1VXdNQi*H@e|U$GNbGl98M%Hc=sSm@^R>GYlr_miigy>X}L72LzB_j?6Bx_02&q>TeIto*hazrC~Cwq>F%-KwCus(?)_1YRx(Fw_?qyFW70E z?W{LcxBZ)l-(QD?GRy6Xcn@CjZ01mt|4Jd9KZ5J=U8x_g`G_`>S_`t`R!H>9k;{am z;C7T6{!p*n&|3RO0gWZR=&eY015*YqJ{UFMQ}>7*MGo?I-~%1qf|ba#4YzO-$F6Eo zQuup#K)t{;^Pp_gb%;!(eqFQ(4R!mVqu+=?Xqq(?CT88WiHK=mF6!sxTLyB@-#Qpo zpsL1Aq0R*@ET|)e3F8=2XSS=LE-k+~wffa=xgB4AC(*@$T->|Mk6i05UXv6IkK{e* z9^%9BoaLw!8Rgh6nv4iZiT4Vy6Ao2M52bOIyKYv~sB{nV| zNOcgVPo!JL#5@d~f~=9&-8C#%2@rVXJ_6h8a-r3Onc>R9W^PFY+lG_oLg7ZGQ8#KF zdSz&*DMu+4qE+PXpNrNMoTU6UhXYukom|q6BqAtVeNX0LjnQU% z;8XD&-yY3I%OG@An}~sDfV%hUufP6^QTG6pWSKmqG$+l0ar7Q~%|cr% z;oeA}0%SB0dl6sT8 zFIAj<@eymKmT?sGJHnuRRzm+Fbho=8oUuN55~s|oosKIF-wmZaPOH0xeDgn^6o!hW z>_y^7%5LuvU`FaJWSPT^x6Yg;N(unh->6D`_vE=$pG%ZBbTQI-L7PD=sR|yBQWKP% zTToB-@K}hq5B>5FpCVsHJrqEwlRDyq2j$`Ds5gm>mRencwXuRyl6(JQJ-b?p8mSY7 zG(yBfR-)F(56nZ7CUV5VpYYVBBqzlf-ycF(i(40UI&9v&S;JmRiph5dJ*k_2U**Xg zKCpN1*{`2JrXkwLbOMtWf=OAjaN)2zgc=0wmhLT(nUFqbc#q*TT}@$bM(=RZ=x)d9Zu4YaHCMKD{K9jT zWD$wlY-=S+n!pUyoR`Om@+PLuLG-rjP0YYpdX<|I40hf-ghXHdgJ>)e-%2rhwA~}W z#RJ&J%*-rpfP|j7acj24_)*W!sTqWQOoKrA*CMJ$q+e1nYrPO_PX`!c|}Dlw!vT74E{#O&jjP|sz?Z@Jo)fXsPiBQ9oJ#?Xo)+E1V6cTn$1(I#`+GuM0`MV zK03vNL3kUWvDO+*wg{7I#m{d4<^{SwUKy})REo3NWk`D70iy3y>5ogl>U4uR%K z$8ZPUF|$x(Nm@cN7MK7n5_mQL?+|9PDCh%i0Lo6DpCc169EnML1J<^p|(Q^dC zJpu)!D9H9T?OM5s$D%#wvj%`MuhzVC1p_$9I|K<+g+^sFSih*F!IxtSi153ajt*vI z)P`!3YgM9!tGbH`UsOZBJO18n#g?ro?ocxz37w!cilZh8?EK?te(&9JEA(TkBCmOA zf=~T;7Z)Lv6Joev{`^u%Y6E{kgp_)E-4M|8ujI<`FyJqwbmZqPx?D7)D3_mmmg+q1z4y06tt%acWj$hKn~10=wy3lwzME{ina27DP^e^>@V>=Uj+4SCcXe{owbF$5CG| zMb&(0WaJH+Az>%f_!zJp9u64lyA~)u0%lI4+0HMJC{#AhXWcGOPJ)`dXg(H{&!k{k z6ihxN`)}33JYK+LX#DP4c4Cf5IrM!=W*>J?!VqdCpzQzwf9akD64yW4{Jk_HSBHxq znm1V%q1%vJim?Y;2BsrZyb%rrvnK8nAnn!)OmbidGsWfQ7L7e{g)~@%g+3 zlg4uQi7k4uY0%lpCroOq1{Epkiuv8u)eu@&c#9j*=_5d~Op53cWGGU>ZRLS=Ho5)e ziPR)ReCF>Av41(tozr=$Ote8h*|av6nv@WGAsdDtr__X69U$$ZY5}!4z?ir5DBz+R zwjp{aXG6Ua_W83JVU{3=ocpTC!OZ4kPJF#65 zFy3YK&&jH+Jg39xms|ozSO7G`2Ug1oqDO!#s#NJx=zvSkYu0oc(oKRqm-;M`6mNC- zYDS&>2rX!MIf{ug6cT8R668C`mlXHz-FsPeHrDqEW2#Ey0RN~>LxeCj%>cenROd)n zC}=79&!gyP!oB$r1O*z82H>hpJ0FeFHvH1SQr^=L63rphxdq;`*r z>#h=nG@vg&H8mi1B9y7W32G?eDJ$V~#2tzRcB7#dkxC!hAJN4KQF&1oyg6dxzyBC| z?9J1Pan`A#PdByKQmoK`c{8XZnuY~oyjb!G4^~L?*U4kz0+`IVOqDDLAy~0QG{Xv zzJ8i-mN-cDsaM{@=?d-i*Dh7NzHe}R>z{lEY9|sGbKr#M|D z^=$)c-oR4}MN2s4`$U5w38z^KU@RzOg0R2`Dp9lvhX3)$Y>B@2d-DHY1@w|JKYwoo zU8_p?m?iYG)Sg7;QZ)F}R6uDO+caGRLXLVIb2LZr#SW{xqWTszBCz zc)}#GNrBtX?S?s6oFU!sUo!S&s{cO(1RNwfh;C?zqnVO}l?FhNEb72_X^)3K28 zE|YCG%mJ$kGAghrsO&?Kt>3N)FH5v5v=S?prlAQ+7^4;f<}Al4Qz3eG?87{Z77!;% zh8Usc+u04)X(Pxvi1i8)>69VAwX8ojCB5`qhM1l`rGwZYFC^Bx4&n(6d%A`URikzq z2W&?H?ypL5`W|G#Qv8L`7{nZVv>Uy=s%YafsT6@6h_rOS1{KF|B#c$_2-}+NKd7$m0 zzf_xD54zwNFfJ}{&NX;NP7yLn8f8LF z6agYAXFEB<=H9(3M6%K#pq@r-_Rt-{{YYd=srd!GjHO;pNvwt%<=u$##>S9`6+?Id zD)3tIM>?r5F*h_>2}Bu|^~1oi#Ix79s9%a&M5(16n$xyWUrhykwEyKYt?i;Hjk=7w zPIY*6Guqy+`gbx-bMrnjUOqQLkwA`>E298Ao8-5WIjx!w;qcd9Tu7GQ$2tN9(ELm; zeRv)7bLWoYlqi`#zz_ipYn5cwf@QtrRX5qQuY3<}!*JyPTSsk6}w z_1B00XFVU&+Z7*|I`dCZfb;NQ3Ou~ypThos(`Wvxk4_~l<>GxsQfT0+`(5T%10mI^ z*JHlFx)Si6|3cyNUHwKM=9GISa;Xcbi&}o$)c$*>fy%Gqxhd%W7Wd>~bDo%r)tJ|^qqGO7X;*2KNlZ@4iu z%T{-Mm*#C$l$$t?zvJQVdHvSxfzZU-xVJm=czYN0ydJ%nAvBTqr}mAdKDk>8Y4!+O zsWH#@PY4nW4ZAU#549O;>JL{t1MMF5G_vdmL*z9A8Osq&IyAFdo|@CybYt?CC)UJ` zPE3~Z%=Egr!r%7l5%jF3<^v#`NdgQ+e9AoE@6H!eVVVhm_DdvB@xq#V(r5=q*D6Z2 z>rm0tbG?}UBDz9dAatv%BTsJoH?>nwK;LD7>D)X@39PX@0?J8W~v4i8!CX zpZ{9zU}Ip@b$%9)wYdz70tvvLQsloKm2xO2La?@eA3TLi#^t{oSaZYBZfgKRrF1Lf zDM1^ECR92%VoKqk*ASmL1y)m`>j`5GX(IAOhdvcG5|sm$Gr$oWP5mU6mg+-rtfJzH z>dy_53;?=X`7i#S;riEQKO5ilA&=M8z5L+#)9-7GTV86^aQ*o6cCK%Ce{u37runDc z1oK&*Ev#`I)S&)Yv@#P_N6JTJmwK*rD?9$-Rz@2Azjv%+TiiXF*E{&FfeBw@`ucz6 z46KdOM2=$mp@Rp_tTqg(pa3Y037LAXKP;YI@x{(x+&UJysBtk(J*BGbFzd{~DYaSv z+s`iPdo^#5Bc6|bjTM~!C4w^q^?T+qyBTvZPBc?oGEL<-)d$E zh)w?F`_1GIUR2NFEJw}qsy=3uMuIf5#kg0aPSAP6<=s&z@B5?vyaHpY6)`BL7!;+? z_3JwR0_GwS_ZG##Ms1NlF4AQ0gF=wnM-Z?{$c1#WWe{z zpf-Qb+FAsBO!jdQ`WitGas*LR?**n^g?c-tjW5%F8#A#Ud9)Ex?Tdc>^)#K3hWjM| zNFN#8qY0vAW_@d`KGi`{Dw)-bx@qOR3Dg~BFt5(7)Ib>4vK4JbN%n#0mdgdOy9Jn6 ztrVs7iiVkjyVBKHV;I;s|2%W3|IFL$5s|H1OCG1E`-3(2Lx(XyR*>Z*O`Ok;=1tr} zs9cGM)C-&R$9$MoSUXG~rL~(gd-i6`yMmZX>m~=G72*O_OINBJ`8;Pea<4GYFCl*pfkGm3&#zwD0|f|d&R@%8PHS4++&!(+7e0Po7yJ;Nww{rVB=&C{utr)5?QwZ=H4Q8GS0$GON-BSyA~~5riUE;2u55RcVu|) z2nz{Wj*n~sS!sbn&%BWUv`SCT*A+x^xfOztZCL(wsI#4d7dV674PB?vF9&@5{0yLF zJ_U`G9%gQwLV{`le%APKP8?q|j0?L>&uM%}F9H4qd4!IpeW$Qm5GM7OUEiqu8tS8* zQ5am)qg?ha*gUtLyinD6N!A5+;6sx$I^1%eKVQr6uN9_gnkz7ZX9xm|x5%R2VFHgE zMp#wA+Kh8QVvC^*&6H$l_SJ39Js652Ov6(v(8@w)Mjw52BBqJ9Orz7A7+MRe0AkiJ zcHU;ltb_qPut;D97AS(v=*61(Lk;!L0kmclYWOm~JCNyo*fIL~`5Bm86Q=fTp^;{d z$**4ze$ZOw;J0g3x-A!cX3_!8>TQtj{;(BB2Abk? zK>Q6cLvnY8IYAZ1qA{O$&4=(CAZW};~p4UJXwf{rn+l9 zU~Qb`4g@uK^%v)ud+gUEsHq~T#a$T9Iw;#}gSe*RrG>cW@hz^IkIijB-<%LMG$J`4 z)_c-!hA1yy&7`;K9j!EMXJ^hWwe_BmMhSVp#cFtU4b7M_L&n^^N2b0S)xc{y_Qh{` zUj+;1Y&stQVll7ETdeDCR}QBSsLy}U{9LY+IEJaJCK!BWG;(rF&MjIsGC=U$m6hmV z)#kblU1m+PI%WxWI^FAsIP4Zcj`rK^?6QsOj~^b-uz6(c1j>vDqP{Q=ot)*07`%lH zae0*`G*Twwwt&xJ>(o| zc(wNUSY0-nsg1JFutIB+ikQeQ-^1>uwz#BR4Mf-xtVm}i z4d>DSWP_YSZQQSKKZrm<2l9@L)*4RnxjqqguY60c}%is-G+u66>)c+@^ydD=;`vB@`cLswcghrN>48C;pQmkP!fBk?bB2LtNVJ^8s%aFiryi+FEP_>W15#_JU(N= zj*}^G`>O_MoOJ{WO3AGcjG{Z77MO)x7`Cgzl7R{Ctb~sj>g-0#HUujhQI7!KT!cYQ z!GLj2WoL%G0{Y5#}1Hv!8zZ{Po$nP(nj7Ur?c*ku&5j;$tZ!=R9@L?VMMp-_=6 z%$VUZW2sw~WS1;iqf%rUGZeB!B`RB%M9q+zO7(l4x6F9fT6L{qN(LhbMLS zxj&!x`+8s3d7jsKeOt7y;ivI6=XRaCTwqAeu#qQ@Bh08)wdyvbR)--dd1>C4c5x+H zt1Uq1%`hp8t1-rk&PMY-m$Et7to(kv+k=cTdkWOJ^bAN8QQp5m$GtmAwuZ)1K15LIUJz`U5J@6`h{hhL)Vg#LG8h zRxh4_6H8Ftlo+<9UFmXcT1TB+KxGEbH3&xwBE-=`tOlY=UPhmS(Uh|fa)9eMmbNC( zmhsu4PRmiDr&ky`Xi#E{sKHJd?|7~J_V?LGt7_m08yya;DU6$~)ZFs3SX^(mt(?8| zcT%)4)UdDw8itT_ASIX6D2bcpB2JfPDN}@AkC7#Yo24ih8n0n1qjE|E~q#wzm3#IJAqJ(F3m4(Xoro(RSpu*AD{QT z=kHn4mE_TWduZrmIMGUF2c|DV!Zoq+z+n)U5X3WN>{w)(MVdXGuj*{G24wC19*KP^9}^d>TyfwM`8Qo`j{1VMOKAh z;4tYC&7OQj&L(4dp$m42;P^C{M7wkuPlPy(Pek9cO~lgeNR?!!16+Un{!D9<_31@G zKkcX9KKbFpIdkTO5sze3tEn{P;C%@Ua?F%-GkJ3yw%{M!oC_5-dM>!0Ze*3F+FW0OuGFQz~eOT?gf_~J8Cro!-sQK<4zkv0L)8Z_0UB8@} z5b&d0*W>lSsQi7-@I73XoRvTuMo+5E*$DFA;KkFML+B;mgD6MhxQSE|kt4^8{m0v4 zA3-pXHjf6~7hNxz*aWwgoSYm{@Vx_@G@zWs8N;nccRVBHA}O63WzMmAh4(*I+)h1u zH#L*`XZGDCjju6-2>9BbRP_c9RuC>>u(#KX=o%eHi9eXTqb}ZK>lc|xD3C9=Q0-aG z5t<0I6?5Lh?F=2t>NCI?`ZG2MN-84@Hf>t`uT?%xnM1}aYfx6kZt7mEr!MGSTHrkj z$G(9m913OeK783+h#YLHp_i0`pYlp#lFbBH4>YE zBs{j&m>_Q{Zr$L}68cs`Sj4;dN664CoK!NzR9Cp6)URY7A4F#{EhLD_Cl-WV;_91X z8%6$>NP_H0xQrzY&6@XpZ~&^HU1Z?mOtp~ct$0N9?==F|R*-*s5C;A2Z-3JO65Vkb zrC?-tnOu4oqnDbWzgg-jvK`(8gMW_HK>1)_zdn>Olo+{TpVhRxU*WPD#?Anszd|)# zy;?Ohx_~+0`(Ym-Pb@ysc6O`Uu4bGsKnsc?*86OO{TDjM^{BJW^n~xTx^ES}Yps7Vo=FXKCcWfLn${e6sZGD59luD7 zf7B>nnW~0)fM_VM?8F{FLrODq=FGL+uONI;u3DCHvqk+=`^Ukb01D?5^C%A4ln*zz2v^6-J>GI(>oaDJ8m+_g_ngY*zr6cy5DRu)h5Bg;*MWk}fC!XuDEUSJD*O8a)S#Bay68s6Du@d83v zCP942VDPhGj;7~Cv>@c@S*s5|wB+es@ClxBGcv)pP1n-jw-x>qjzL2Hx#5ER9GAAH z)Uwvll=K?TsZLQhGK}lI=9mkdu=X%%OF2>9S-LeDMwVWByh}1M5O+J5s&(p2#=T`U zsnr*SmGGb&_WC5=E4>~Z<>fahdz>*zOF3oLfUGK0^q0-L%sl)kHR$Z{K*nx4F{ z-uh~CFN3qpt%qV4IJO=WMegO~c%lhDg1k+@L{I&F9rO=cXPdr%K;L~Zm&w!}UgwKHV>bpkJaCP^ z-~QnQ%F15~7M87GU}3*}cE%&Q?rMO7oQlvP8r*!N1GB+mv)Go&06JvEVMq!(npa9o zE@ zxJKHJ}XZCnqpex9>(ecBywXmZ3M`o3=H!8i-={b|qE zdAFk`x?B9^19WB4CkYL5dz5hmR6sKI`E(2<+^!b@b<&tFM^BB`tll*9$eQ1t{`^g_ zI_Mb7vscb&Zt;fMRH7us_nsWsoc4UScL-3Kl(R*ofS6crr!pQ&?t9?q!Eg|F@wH!FJO{UTlrG+^{Nn#G?h@Q@+Mn4y`pfIr z|JV^_!NPK9lGIUdM^zT0n@b(V+kG*DWJlu_#xK4zHFFMMiSvN#HYGFv?z``f*4nYT z&gplbbwnW%uI~izPwY(M^x(r10gY{1}=SeJ-a@X!e!M={F)9O z9T%TpJ{MD0(~iSCmi|tZ*%6$AtdXmsYqI^rcg{Bw$c~P8ecdx2=k2F$dIjv`ZE$i# z(@cb-)js5mzKU)0lN-#KT)Fj|h6IoE>FKNqF4iqfm077P=eGJl;KfsKFz)hxR#w*1 z%i(nk(Gkb>p+0@V^n^)p&XIK<5bUMu#$s^RkTJE#DAVcoea`U^f_Qb7N#?$@@fNdM zWbBdO;f(i8>MVc<&wS75SZ8{)7sKu*KPNQoM5G{-D^8Z#cfS9W^xrLbJ~I%dqC=A< zoxA3rQPP~VEaU7QNMPf_)T2nnG7MRVZ|HA)s-9?#6RGaPNcDGfqA7=cQq+zklJ2Xc5(e%3cROUtk`gam_OMz~eaxpfRH(d6U;M zo~%zIe~IWbhA9KCl;-*x+KWJg;WNA0Pa{%jeBGEci?n(lO5@bfuDCCQhuC>~dP;yE z+JBR0uI$35h(tfpmD7TcQrz;BI6h#K0w2v@8; z&YxX?J55I(KeoEnNY6PJQ5@SDR4eDsb4Q`|EHwN15a0pn+ARC`zvQ!~C0+wtBy6JM z)08Coims_=RBa#B3^Gswdq3=TzxUCHG3o2`$60#;3&_O~A+u(Eawy9TbMpCl+!FZd zKECD~M8Uwqtq$yRt9I+r-^ogiHkuP^FI6inc9M85pGtnnE>_;Go^rI7bj01?-PTv? zTTj@2>PR57d%%pJei88Z1oC+|kqor1=X z6Q6^nMk5k$wXGzkPgUOvmQ_rGvry+e?=7cb^ZX%75>?;-Q?7v;u6I=_uL@%BU8}26r4`KI&N7o!|kk}Wh zAnuo6jP_pYv|?cs0@AviukVu%tqql-`M#3KL6);_)?^-h z%XTDGsawV6%a<#21p*6!)|v!4Do4AC+SKy<>^bUlkziLTu6&V!{}SmDp8Uh_2AM^w3h4ktAmI=x+z9-h z)Q*eb!A#z9%meGT)eW7J>Cv@a=O2H+T9eIS19DPSBZg*)Q9Njj>TIHgyjw?{m^Wh3 z4X+y&?#ICc3L=(v9l~o87hZ&c`CgEUVTNl5Ms=s~99p=>C+dq*lphv&ilq8&E2%B$Hdr01 zTI!63+)BY|UaLozhR4bF9S^+t)Kq8wh*;eMt8&3yG6X4sUzttOq^4~;T3g4LjKDBR zWh`g70M$ugW7;oBYt1{qjClxh1rlz?$=ruYA}KWafxCR~I6ucE@uZ2(Uq4_PV84F- zRF93*+FLndJRnn}`K2$D=i;n-0n19m6AIJZb)>8rp--tK;FC$Ef4DapbJkf*Yu;0c z2$7HR_TA!g6ff1QZSvj~GqvAN*HocbDX?>Z!N$a30PlfUAWFos<P|HSwJrUU`=t>YXWb0Ix@;H+nvt+C8MoP1(>_Ueise%Ovh-S*7Ovi7?HBAop^ zGmg1Gdyp_mC{VDUFMPbl>7`y*xh&*p!iIXCXJ0?8&~gUZ2JF{q@k^SEnK`0BXZa7$ z!it}t2uVI#aLBG@M#$3oT{9f_4og}$f9SroiATU;CYlA2z&DESbSF*J+C&$;)dJi+ z(~gW<+B%d2C=@cnGMk3|WORbp)}1J*l>=Ye_xRkx3$zNX%Is2qM!Gj0iIO5b;FebI zWNDJM!q?}WxN1T#z*r{VKoPUIY$Qe?>NkbVw1;MjVX^S>cA*<>#z14b|28p7bQkEI z<_A#9IFas|+u@0j!n0jD*Xl0unZrEmtEcE))d70Ev}h6{iGK7O3__Kz`*gL{sQMMD z+_Ui?T>M3*FNqH$ z;N7aGaOUnUBoZqVQNt_qFBv`3Zt86tJKs&Uy23lC&y_>gB^$D-S4Kuge7*T(C}vqa zcj}bBTdx=7-r5f$aJ|#1y71iI^>S~8a=Jp|?738pNWSBU)x&9CUW33}JvKhJjmxg` zZ1dsF!8&;HDa0Y$wE&fCS2);1&aOQr{9@9oF|75@-ZQf=$C7HPMeI83@+4 zslino3}x0GI-IL9=1@j#Zfd`l8QcY7C9E8LO_wR*20k4GBzz!iO}*&Rz4vbleGqeh zTh8-QDV-O7`>k551X~EUCg8RMrXbg_xHA52Q$MW5zxD+Tb|TZ`lr^Qd#IEQ%;t)8{vWw@<$fw_A0|E9H7!O8?A;2oLC~I~Hhgd@ICQ+DF_v&@lv2#VqG1Q7p zyuL=EW2Etztz^jQ(zzPtCl!0iH@PGG?$w2mdf4YLS`;{S+Oz~sUMh0L1maClD!1=-`< z8}+%HhVY>CaPgWtRsLjETC^It^*egLG{UiZi(!t5>7#Q2Ta!-AFLR43zUI(hCf}^J zS&y!ssVqfKHmOeKW6K{rd9nvX7U(?T|8%8Yq2A9U(4G6`7xODG4h3e;Ctzq;>z+bH zh017{EmZo>y%HE(N7PRm19|WU?FJjRj)@&IXxgp)6o<49r6AqF&%yB6&(?SUK~K7b zF%EFL$zw6Z=5xsOP-_q_8(xO~(|2UX>;MjgCD_8u-<_Pr!g(sy>!g~#gZ)_()3Ja~ zan-QEpauGXyZ4M4PT#!!t|KEB(vSPOkRdv->-EveRIY|jA*+%(lK2qn!znjM_& z24Qm`YHa$W%h*VKWPn!324IU8C~b&#TXzI*Kl<)NQum&+e!*a%wdSf(qU>twvzYd0 zPB?ikvdx%(IA-M&^IvG%LE@53w}v`>s6!bU-bd;O9Sxiv(qqdnfqGaZHRObB-jjb_ zZL#VA%idFRearLO>!{(>1jxE_;w+OVEl~5&?(26Xv*8rCgtW0W0=8}2md~*w({k`q z*B>GW@(`@Q_(Fa0GNL2stgLgqs*V>sW2A@%^OezvxK>W4Y=T}2D?>d>!5-f+?+Nv^ zl1XTl;Kf~*<(cwE4mfgXWEBEr{0O_rvZ7Aix_fs_Cbep_4nMZ`f0;GNI*`LmdqW6@RSk<=^ z7}d&D;n@?8amH(0bRLUU?shVc#pPt(-Fx=_j%gJucS*n57)G3(o&=jU7-RkoUHpb2 zr@GdsRczqal4GQLs!u6Bs^VAa*cFIG<+Q=FKLQldCN@OzI`m@u$ z(TvFXoos#;xuYhxu40u>Z}{$lrT2dSwWZ0gk3&i}U^gZ2PLQJ661QetHLRDIK(n}5Z;tF1lERC#huHHO)OxCNlp^MVupJOW;(b!jHCmjyb<@2@8thZw(V+hS39qfXXn0%{Ruye!PI7&Y=2 zAw>8a)@}5yHvL}r=!XQOi5nmv2(k$X;ob0McJIDl?SSu4edB^Ui?+NT{GtD!`op$Z zp4}fW)Aoe_KmMOdcy(a&KVAza|6}Wni?MV1^*_fs{a^E=M|ZIeS^VR3Kj-Qut7uS{ z1O|P?R#CimiEJ?``$X_ms#NJQ9^WJGUFZw&@4s+i_eGO~*V9~-ISzDc<-&yvr5Vp1 zFsOM$@6&k($EB1@4sh#FtA4!TL;9R;elRl|9&e8tvu5d z>Z(>FyUdzB+vphzD&l$T_=cTj&@!RY^RVjHfl{%oP3;sS*_k^SFZ7r&H3USjZSjEc zW1K-ZGw&cPGD;d?U8OIe4$H69+F?B-HAHuCU_PmfW6hCXG(c&>2(eGqq7evXcfH6- zchQU^-RB!a5WVW6!H_J8ZWQJOkt|X-GIh&+(`&0H@j}$h_GS_fG<^p z#Jg9IBP%W;fd(OsaBz#KNLdHo!Fg)A3sgX8H&0j^s8~jq6u}!t;GD{dH#B=ProYAw zX1~tu&|d1&M~aLbgl&sI53i2!N?DR2gjoFu@=rRMYuqW8Nq;FZR7sXvw{F~thEydH z>}T;8`I?(xt8mLEZw#&js;<#lUOqn8G`m)D3nF>|_f$Ya?tuCe2s0Q>9d-{x&%I%5 zyzBCMotySLTQM+lT&RR99@*qEnoM5LV&k0cDXqt~zj*PYrS%ar z_?|hUMC5=apigCH#8PbX)JQ>X5I0=w+pCp-KlVYiO5x8HsLddH=c zEt+Ml{owW$w~{FyCaD)W^QCLF0A&+hz(&=ib+gA `$%bPjXtu7P0fnvZ#@A?JA6 zWr|KgL0ex)#%*nF?ar~XYx!O>+KyMRtTY3-agvG#X?1{y-33|v~9eOQ0fwc;8`)zt;Y zER+7?z!35R4o|r%pCtm#W!-JcW0!-Zt0REv=idH}s`YR-;x6`1EA^jEJW9PT4^Cn6 zcKf{HJ4Nu6^B=kae$4Jp>L`d!6IQ&ChMB=d)Dh zwoW#lPdwTx&fd%51NCMvwMdAqnjgzxTOwvgQJt#!^Y^m>lufPSZlV3!!r9%q-SWVh z+%$#fNnpAvSCck6_WQ!)Mmt?Pw=!wWiq4@hneIewOFyFL4sN4z5j_(;@>J_nQaJmm z%L=^CiFrWAIEjD-R^_L09phs^ZF}d~t>VYqzMES{jG>S_F5H7HFdW?RkTYQQW1|!N z(5|hB_`Gds?xBC6b7kj}kn2vKSmQNm2(Zf9!nW}zKQDb*g4ge4EiR=fiy)6`^s z=}0W(F4NPN#~q%)Q#Isdn5W_ts*ydAzz0(^AVcL!rzF_27?F9jG;zrDCo1n_nvT?y zkki=_DXv#Rd?v>h{068mn9oeZ4=;6kzI1wn@UKsOYZQ7@bgo^y_N&t?=Kp%Cf}*_u zBBqtFl>31(NHJ<=BrWjYd%-mg?LH-=>)|UUD!@d0QD0uEJ>}RIxW7q6ELqM{DNMXt zK*=k+Bel)QLYYKUGB{N)^ak{k;!$iesqJIxv?zwPHM2{epNm8HM>?vwk=ll`B9$=^ zn5~neqvO`v^(pp4sPbGSP$nd`^Gy39mg(fuv#x^SsZg&m=U6PKngs}#?3dbixX693 zPAMv9b6Oe@{MVUQ&C7Be9vTceYrd_3vN{Mq}94T5`;=~`neB{dW!Zis@ z{&C>sO{7uotbRoX2`^+JAbb!f)`{suovDQUVAK?wwPrOO%;0$7>o4&|%4W9qWxjn6 z82nCb3+3O6BbmwtItRyA?tF$yWH&{kCibEvXlADyitBiGl)YXyHo$XoZ6?o~{4{Zn`Y6&tJNf`^~fvN75*1o<+iO821am1Vtvt|~^zY)F)*mxi&B5TFp&VPBYzCr5! z?N7UtzOR@JvH+*=wtLa>_csx|>V%yxzOe52qn10toeaL{K z!gB$0#P9JCwi5A&ZTn<<-t~IztzHsdG(ngEK1^A+La5ZT@Zt784qx_G%<0|fQOsD~ z^{-F8t?>{L)=|kzn48SWIdj$D{8!a5vHb=Ltd^Z!KSHvl-~N#&JloC(4sk#{i@oSO zVIIIeJq^*!2@5YC9y>cCz>Ue=?pIww!yG{P7oTY!ub#`{F+TCbkIlTIJ{c4%mu=gC zpW3!@LIMd#I&JFI&*kB+E}O5(==}|m28eY>?h zg16E0E4}Imal|^$vg0G!b7C)R?fZNoQbp%%X)kTt0E%r)$S0c{Lqxeik-sPMySbVw zZt3T+uD<#9`DLYC6+t-MuZmX;)Wt9l0!Mqul|I)BO7GEn#gi* zKewj)ir)w&R%)*0@Qptcv_3F1qhj%lY10lCUV!PDVirX9>g>TTYC~pY8O;g1co}Df zUA*~s@O=m&1D-r%)zz{aN6(Yf%@XTTpf@XDzRV?!Yl5kjp=nr*iFmYP2#kr>P*8=9pW2vU-e5*TT3 z^eL$PyapZN&&?!j=6DKWxnQ&KnSF5qvNBktJ&~PeJ(G71qdjHW=63ajxc0hXiQDRT zH8GiaWR2@=J5fw*q8I2UClPYvE4h@OC@W#iazC-G_Qf3W4aW4{+9{l8XPJAlU!QqC z`*jQ(_FVBc7!EXV)ab#f3LBTQ@WMFO1jXCWRo-S6{Id0~F@ZS`&Y)O4RI^H#?Sl++ z8o$SlM(w$$kkj?t`Sa(`ZJ^gk$eJX30K*51G%`kdjOml@>}rf?awpA<)3eun`gX(j zhb*BCN7F$G>Pjj&dKC<)QonCAgA<>biq5%`?x2YQ|UZl)5X;OsSIIIE+ge0MJ|bhU`xSloo_zd8;+tmceHQ%1n_@cXw@ z!|pgg&!kfaz^p;rL1JlNI2gnensRkKPfaYZG-7lJ2t!o8j?^(}2akLAh@+88*?>z$ zmKL$PJ$}fjSn(I`qYiL8-<1`)!0Zx>%2&zAl_EeDU1blyAmNaGu$RxV;upSf%guH@ z&&zYvcEB{%E__J=x5Dja-4w)RhT71K&+InYZl`1i$P__nf z8dwY^Z0vlq(W#b04{U~>|12w~I4pPi6oW;4)1pR`+eSbQwSd){G@;-xxHyPm!gkQ( z2Ddfn(a@@kHXke7(7_^oK9aaS&sUm`dbGK?U{l6fVpzR>JW=&@py1M=(5B3Dmk=pD zmp4H0xwgs3-Z{7Oi(A#$Zr(L!$WQa?J389iwSM^}O3ZzvUFJWuYS1{Q>+z75KY&;D zAxm-+f&q&siEO;@c=`^beZMXCZk**=>NBOwY|>SvX-x;7$eUgH4w;5|=ii^#Lm&gq zFc^eWc9rbMNY`nBACJcgi-=ct(r-f-zYg(7Ru&ib*%k7vWKP#!fI|^xnRP49ii_n~ z+D;DmnBBMEeonWI{=-}T#uLD)X%ctJuy5pvjgwEnYCuOO-xxPL(^;8xLPRS6-nHEW z@ZO>49lR&6Fw}1Jp!GSs!U((0CGbQV@GGNz4Z4y}3etBM^{nixUi8aRUi|X+ z-;8tK$cy1a7ib3uHvtrnr)`M^M4J&SyHg<5$=`XPe zKBdhmC`X+);B)PVUD_5?R`Q*D{ED1a11`&wK*)yMCQ@D7L0fn1anLYR72jYPD~Hc3 zOIU6fyYL_!mi*O3fsw*a=s`|ZkWn!0osCcTAQyart`%-bz}7|dg5Lg85y{3A9&_J$9(CLwW}*w`p+A* zZpHQoJSrhojz}9t0Lf!8?^apq5K?Ys(1{-PP3qOf&ns&p@T3g6s9x?rempS(_{M7B zNYTM)mZjz91GNVW65lFDbMIZuzV8nv(^54_#7lGQ*?eB|4~ik z4~^CNKt{EY<8v3OL+H(qmnWw0*e31Ukt0Xkethm8ux{&gwi|;L_aks{`E-%Fs!W_^ z1e@8HQT)=XdPtLjUkQvuOK^O(0kpO3KfR1(GZ}}oujgy(qOxht1k!+3!_y&fl%n~e z$fFXf9KrvokUIyT(g!CDFTO#p(auK`F`btd2{;BAIZyfez+@E9`wEV5= zI)5IntY+z>S54k@?DI1d817`3zaLUdAP0(|uOyeCKD_^A{k(z?02$Rphg{Rn@aa=R zdtm6(*)wN`%)Gu4B)hkPA&`@=Zv6E-;}zY2E}HVut%m7-53jJ497!wj*K;XeQ>F3l z_@`YF1wQz;kYi9q9W24H)3Ws~7EVeHBmD?!n$J?_iJc;di17{1M{pT`>eQVrv(mRc z=mj3C_9B3q9TYug!@5AQ(FFV@oT3AWW&I<2Gi4v4DwYg=<%Cq04Iov-V$XY2zu`f? z9F`j$Pjt09KBTvIZXow<5Hg9wz;GL^z0XYSN+nJ-*bwTGkxlo_W#D?&#!<7yC;Lt< zdw2&jpXRaNXKIM>AVXHZAeM|@(CkW4#X>(M2N8_)Wh`gXFv$A$9Dy!M(l_4iKXXbU zi(v0ORBE)y&sevjeS2#NpSYPSW1&-%-~nmNY&2|MSzL1s{G;<%5a{#VLaux_IPTDt z%j?&#&tvgsLrWf-)wC0vP-}sn1|e!$o}S_K+tNCG`mry~a@m8ItWfVD4RrqU?^xNL z9_K-lOzq3w{@{8&bE`dQxY!^&rLEa9K`O$3ya20y(( zJl5Dcrm;!!UBPJKv;kyS{QDefRy6%c%m!tZoG)h=-d{5vsU59EBLs&o`aUoO@XQ_T z5LH@`8X2e=9s{*H@yv*Qb%Q;SR-BjQRTMNSds8GXSzgV@o(ohGnMZRzbcr_|2#IK6 z>;3Mj+4e?0HRMCP$&z*Jz~UY`V&{*EX8$ar*NsEtSMaIUWPbE^Wd{PS`jn*xfDCO( zzk^#V+aYvZP-w`qfM$G08N}l|Ps`O1s-7ybD`Js$aAShi?XFgFB!2)RhiCmDMwYds z8D5}HEg)oM=K!JF`*0aR$^`gq(L3@N0H(?kR03p(DlD_ziH?XcLQZ5Zs&Zlo4^MD~ zF?NHJp~x^7VlEDc-h(M4F3Mw?cQ2K2KlWu3yE0xzg`I@D%6zeS1ZKSn^fi09+MH>N3o8m?`; z@8Ne$7A)l{TgYVqJC4huV-Vn|)drLnyK{~;5YfZYh0{oClu97d0G62t6z-b zN4=N>fS`dfqIP%?hC_#l!0Xh=ON6=j*oszH0fLe=O34q4HvxHE@_UO{Xemp(L29=Z z{g048xe)-SIFi_WRO55gq_g==qDKK`9+sMvm97?VS8T;1* zfE2kj**p+03Gbuzwr~F<(7Z0k3m-;8K7!y-6cHSvh*n{$5-h3@)}#RF0pe z5nZC3yt$_~-B3;P5seD`knqB7p{>}<4%tQJa(WHwN^7}M>SV*`_pixd1*ZRE{`0}dfmcleD zt6+0l3-iJ&3prcYaXtmHEo-spqy;zHTJZzHKw0LGH{DpDLkt@CbMlxr>I-`XJ~{gUu}xU=Q#YC~G_m&LH8J1c(h z!6A2zKi@?!CkIJu1>PWQ?{S8keS4$LO1M>#T)aIePFvC{OTf5gOMd*Z&*6(D)^|{6 zUm)q9^z7lKDQNfAN_@d(O6=I@&b7u|APCr#IrJsrSw^#vv2z-l(H_lN(nB7cIBP1u zv(l;~uvtqNcHY&$-7tS@m= zc28Ab+$5wkmLuS|yu5b$q{5`1b$9?=*O$<;j7)15>3D+L2)dNyIW&w1KJ5B=KB9Yo zuF6je*jqsuEX&;J9{%NYDkdOc4R|nSPGH*Q8e>$AI6z0-Bh%)Qj$^Lp`povH0w0W_ zUJrI$YIpy5{D`Q&zXJHxwhIM-u;}1w5_JC5+Tt^rfDVsDdP|-td$9J)yOzCl;2>9V zAd`WVp-zD;DD2%-}HRrB)qS+G7?6rX(HW209AdZc?z^8 zY}2apJScgAdZ1Y1`+>GGGaNnRM>+q~K8XOK z3=Hk*R*EDh)!*_wxD*se+DIKbfSsu=UfccJoRR$ofkPpck9j`hj*0DGbKmsVbZf?k zEC1E};lJ1D@cjA<`d61hK%au!#G#_0<~?BUn~YgnT3S2>vD>*T0mb#MexMO@aUOBa z+Wu7o)#B{ynePa>+#(CQ0tz_XSN7LIk73E0f?33#j%%#}XEvTaT!W5lYMYH`;Og~; zZc!op61$kkaKrT-7qM+=5eQMyH4M0{7VL*t0~ z%>oERX@rbP`#iD$h)Te@KAfG(b0D|Y9sGt1%^W0^3>@#8Wn~_@AA7CJ59@hTw#;aV zT!W&yVQ%KYUI6;5u93Hj_=(SV!M7WZGW6uhlV6=@YfaaB1!Rhva?1&>X0T+hY4p{UvXp{fd>k*eXd|u}=2~Yj& zxuZ_MMH*oX+?+(BA*2Lrl7`#5L5S<+{{bzHPRLHc>qZ*RH-wG?PY$+3Y=dT2kZtPI zN({gN@=f+3Kk!+`(l^}^o_+cLhZVTJdYOjZ1h!FM8m)10r%p8(5%u)(l8Xh@SAfaJnl+qq3$PuQ0MR7=N3of%@b3mjP)6INvV zRD%FTO86^G=1H?pcyIq1&iP9`7ilJ=UjEKfKoh_*x$`x2(Uwch&m`WhlN8= zFcC*$l&T7j)Sy`qixfTF}vDpuBE+m{O7dWF<6-bmAwCCitu zCXOL4F|#AlTE&MNoVhxLmIeAwCIVjAd1`zE4P};;TY4?H@M_9S^f?$>-6oZ`uy%$J z#(01X#)WQTngoS^_|2#niG5lzeHs*^Q)1+z z4{M5WnnXAEGl10pB0c{MWBkwcK4JST?$#RN71c6_TzlRP4DT` zSA~U5TBJb}dYQU+x}xz!by{tS^TUWyI2i|Slyf~K&7kXYe4cpoz^H}bUW2JcE>t47 z((7dRU%%3?4Ugp!OS_dk7eyait1+B`M&l7VRT^Uou#XBcJN72El!gPqW+p+)3RacZ z37=6DvDm<_-+c2;euvk2M*L>Q>;;pjZ~#au)V`~F-v*I>QYdYK%y2ab_X&PMe!mj} z#?BzMie$`)q^Y$WAsyOJe|)X)5_M$qvU&V!s6!-WZReU}3?oW6kFCgq01Mih_hI=g z8JoY}A)oo<_5WDi8~1`FZV$9~6C_a}8N#h2o^Us6f#6dKn3A@WLumGr=657mA`{p{ zg*a>0ta!>&vdXKVifs#N)iLp^@Q1+IE0!YwZlX8CTV`(^OSDe`wLqXfK+RlK>w77A zHLUnl=t!Id)CUj1I1y;}2Hr5JAOf5h^N#*uU)=2Y`a>OvqSD_#6{vhLXNd`ij?F!*>+34`$Ej0|PQ z*@w&O>Qpk~%Bt&`Iv(YgZl{Y?m+&Hk%O`hSohHux4gH)lev)`oj+x2h?N+ z2}sC-5t|)sU5y5KlDu-AAxnHWoT3adbderF6cuB!)jRwfJ_>N@2%*9#;KNYE39&#Uy;s|V1SJ0WXzEZC_cixFNH3^V;V?VKr)H({ z85|}#ETNX5Ew|QzCeHZZ+i<2)@rmE(P*mJNzW2`JcjO9W_U8f1eob20x>4%=%EMNl z8z5!;j)#T8p@JWb~c_svI7Pzm|CSuCJ$s7;89@A*kv^)~r9w-P5zcM?o zpw>N+Cnw9?2fU`Y0UHEU3T>{sFTpwGzhuQb$-(<}{G|M1E1#{Z&>43HxhkjI7EZ~q z1iH#duCD=3nE$5})as3(z|X%vL9K`3-)M$X_flv&|1<0p-VzCOYI9$bPjI`Whx5jq zSsDOx)}CR>V{P)vFT?OEv9Vo9<9`!$DC;yamBP~aS}^?8%J6E(>{q)%*h<^a;eR47 zkSo%7b=Y~{!;5tR{!$-%ccpqKJg4?8f8RF7VQ(gx6F5}YklUi;o)Ym3^NmRZ7yw2? zRD}u}b|(YDB9*=r1G^<)I$M6!-afVdDG|%WB#8uRw{->?o`TgES@KzNo3Ys&-H{YECof%8jg@+`tY^71!k z@5a|y`9w+y$tuWldq=L|d2sjz{_ReA5ValupUQ3j?0?NEgYTcIK|ilhc zW&&u5yo{t>wo8P|!YpP7k6OwK=`|&Cg~$@WVlcKRfO`~Sk1YX0W+X$mUKgYx&ov7r zv+oSQt-*gBWp2}1UmDxX9Zh16%U;-%iR49wkpEDZc7CHSJyVwh!KTt^%E0J8jQY{b z#_3Z{0%kbfA@>6QXElQ<8LQmQ^8AJk8)$}{^uq3(e}nE~5GQqM)M(LYGDMsA-BNvh zyw{k$dW!|?FQRTHBQ|Et^;(|)B&Kaq%lJRi+Fn${dYSI{wV+^)(L(faubw@Jou`FR zY)|lg-<-57)B=0E@LjfDog*)A2srY`1@@-fW;pzSnyHgM0aIZOG~>WE$nL2;pM8Aj zjZ?Q?TQ0HRcpiS&xL991{N#r|1x^+(mbCbfJK1UXzsYjd6sz8QK>HmmhFvp%yDO^( zN(tbDW_E-AYojZeM*W2?xzY>?lr4*5 zFs2!jlgi44xL^Q_j93Q$z8myiN?#fHpezt8FvA+3G;a64{%_pVUU z?F|wH_*nPACX_M;M%$He*ou9E&kmxT7FOdrBc-ic5>tF z!8P0j8LgXMt(jZ@8_xGX`9=Q(5xzQ#?@7c(U{=!uC;4Eeu*9PIYjb9( z-_q6sVKD&7%*olu>4zF1ZTUdbOucL?y_%agQ*A%c(2!R3v+$Z0XG4~@L+VXG{RKQ= zBBZk9^3n|K9M~}Z*sQC|175$+4~JfLC$_mEYgkTf9WsUx5rBvaF4JIYmhQK1&VLCk zOCoF5t{n!aq&?cG>hf|#Xu;2~&hK}n4+HYfhITZBu)wn+4J2MNv->lgL@ejv1)SMM zBxw|#KnHT%&6_vZF*u}6sg3ai^O0X=Qkidybwg(>xf(pb1xhOFx8vkJ=5}QD1~ama z;1{rYd&U;X%lNOA>P!&GHb7%+^=ebG{NB-b9-%T%av*pP9i4JdgJPmFV7q%TG!$vG z{X^T=x%^k_7PZ6%>Kl01DiOTpP83EfYN=ND`sTs~i(3G7vcjH7vjbJyW^Ud@)Uh&y zGK(iAFlf@@Ay;JxI>eo;rZnZ9y>_ wPxEWm~g>#T+ftJ9YLF)E-yZrtOYn^Gags z)b(%}328-k-^ZZ2xFj5VN1n(SR_~9X^u>rVyqitY-C^eZkrTLk%lXQT?kFjPgz(51 zQsdK4H6S;O*1rBH9`WA(_pUeGF&V5iV}6;Rf)7ffs~NF#+GFmEsBEwS2z|5qHRwch zplVdhgY2rPtHra%oZ;YHkasGgH-DtH82o(>(%AEa0qRw|O2x1s`&fkAU8d?|%z6^w z&=33*8d265va})3cnq_VM2q&GE>MSw)Codcf$Y>lt`-LT@etS8`%WMs77drdZ4NP2?_FgJOF5CDH3({J0fzS#y$K>HfF#*i5 zDH6Yk3z)}2fE!k>bcm?{03Y^<@dJ_<3N|d(sa^OukVk=}#H;odvx02S9O&iB z7@467Yg-#xcex8v;s}^SI3-o8nR|KGASuMMYT9&|q^%8Z!t+TSxcmKd7ThYc>=BD< zF6*c|(QD&{ix!8%&wW2K-1oicbH}?Lk5mjYt()3#|4Uk^b)1v-_BDumRcE%GvO|uh zG^MX(k9_Y*t^>_l3_V~oZ{9p%1zO4O2YEi3KG;3n%BEhVa@xkwvb9Zuj`_Y9*XvYW z9TL_qvOMxU#ei^0M;n}$6H zd;>k}yNV}jW7)L3pDZyQ&uO*0WjHWyb1%^J(?(z6Hy2$wW5KPNp*av73-`Zuc{n_pHs zn+k*RRTfH=w7Y?JwRJtG@m{9OzRv-?&}@2HLc+&RUd>(&ae20OT}QL3@87KGYfEO) zcEo7D+2%~#8y^gK=qd=Vv~eSj%^b*clJ}f?@4_zOP@)z-*{dsmcG$6;ycQL6l+TYk z)!du=fN1RStz&n$lAX46vqN6QD3i>|K|w?0<)QKv7I@{;djvR1eAu8tp8!Ncr-gR& z9d}1R_WE_QB+>CvznNP*SZ~6DSKw&RS;{}COcxH^97WUugAn0v0@kfSKYujx7YDuq3@AHk; zjML+f#CJpv+T>)e^{nmXbBz*=YC9zFhMC^0=9}-ezE%4B=?0lRLYp-1Y^9Jke35az zWPPJKh^FKFT)li>s8x{F84bpkiwOBxqWR~%Sthdy`NOvIpPvG_Cqe==>8jh0`spu{ z8;^LK`)qTuXFt7to{cMi_;=jC>vAkIs=VcT2GJk>!-ea%ev4h4%pVOQXbuNSkG^Iz z-|0Wc-+|R>+Sz}I7HP}n?#@|AhBW||)JJxQnhK(2CHx}o`LVcf#Dtpo*Aor; z>IkKGUMO)EwbKAc$3V_#4GG~4vY(AtU}DFf{8*;VKYhSOEk|PMsNOM_+NFt;UYX7a zCU*x+&#Er8*Q?2!w>V9Yi|e3wt<}IeUJ{I{p-Q1&@_X2(< z4%Mb=QQi{HX{gg|(!T?kcFe)E)5Lb<@Gt^I+=j%wuL^j7)tFScHxFyHn55uXm#%Ml zijQRa@Z5#<&qxbY<8m?zd9_h*LquN zm2>6SDN^SvooShaD{C}x4kvCqj+pX2GIHF5K+deecuztIdOZ<+&5<6}X56SS8|98Wxa!&CJ}) z_4q#@JFZ_LEuC^GRof^*Gz73<0`~XG$Y!Tf!D9LM^F*+4C!S9PB@6~!Z`8ptqDmG7 z-ud$vaoy^p-04Sm0{G0_H+~UPhe<3$enFt*-hlOR7xUys5pwj?Ugkox#&ss$os?Sg zCYkfkzr)uDHPZ;ymXxnaH1F9Z(&CDi&Q!hT9=+?)EGfO6#Y0kJt`7jtMue^ASRC>*S z22k3^e9T29_9s90rSYCpgLKTCetnvaa#JYpIXMpGEf*MI?Z|o|*Gz`^^SD8Z9*VZP z_kYT%)9=z_$^Nq$4 zQaRG|2xDbep06+ZnN7POZ&l4%_ay+uOOpQ1-K4cDJvYuToh3^I+?!Xuf!^+>3>=2t zmUJw@NMmjL>cb>8tRB<0manZbY-3enMJ9X)T z^Qq12)k$sDu_r=}1$#1C;PP|6M(;YQlP%%x3a!6;z@Yyf&}8S?_6=~iUQ7GjM;DtH zWHboc%!W@cyET7t$UkSnnKNFaS}Qwgz0Re)8UpRRazxG>hrf|04_}Gv-3Y3N%N(#T z(1p2(u)-Zcc4+iGvbAjul$Dc{p9`x>p8|P=*^}EMqoLtdx2(o7ZOJ&YJfA(n>(w67 zcg@*~mwJV(Ge(2CYGEKF&v)IDS4_&dby3!DFg;gWkLJ#-Z`SA2n5sGc&Hr`hn{Cgk zWVa+!j0-QD$B?6scJ0_0?%oVbEy7SkQMIp-uDm7aepjbo`UixpPvsHyXo;YNb7zj5 zLDB0G4U|a?LaF}AC#xSAlTFgo*q>N0dij5#+3{e!5$;$3tVIajG%IJ)rzIsN5sV?# z$!(g;3i1hmnGCsWxlUWc2PeC69StpS;V@#Wt7>yswhjx;kE&8kq$OJ+_B(rPnO zLJc!hCMh4`Y&t&F5mXL*75`O&meX!o-FzqJ`1kdny4Y>%)TyColppaj9Z$n~j0D&+ zF<_^sprZ>z%1Hfi?QvUToaPuYBVzz0k*qJpL~;PnSjw|8eHfqEeNAPy6pJvCEoD6T zDGnvBrWR@upI<5dPb{v9an0+u#(n%B*O5)m%IzPdli5l#10<#?cq@-}f2O2{iCvOx zqw>h{FTcCI*@8OFdD`Z0e#zwexx|0Kv~JJ)KZTlf*?OhELVRw!mggw_UgapS{?Wu_ z*H1>+ru_f@3u8U%k=N_*3}4_{{jaGVzZ-u4-okriIVQLN_KL$V|Av3z$^K8xt4vc0 z@xv)cC0snv(mE3M)EOf0CQe$(+(-JC|9V5Y?BN^@&J@qh2k#krCDac%M#e*j@##?e z9UWXLz+4k{s5IBB(|fP5p;{1U8e1ql0h9F$6Ib9^iGky8l|Ll%Vjz`m;FQvXaC~UY z&#!*oq?|8`?#ZP|&aK&Uhxxk;6icLgEBa3*LNvl$d%?_Le6A~~>eXiPYb@?Gg5q5w zVG)%r5h^Z|d*p7GPbu(0;BCF;KvrD=?`!*+=RTvw3gj#%qgI!`K zdvgxMrbmWyP=ubJ!6)_aJXfX~ILhEIxi^w?YBw2zq)t*j;zO=cTdi!3OVg!#j9oqb z%qLJ$$z*9S@E15wZxezsxZ;&q-!_#}tgtW(mIodv+_@Dk9)RX{o>$+9JYI`o9)S3q zH7dfsc)?rm5G=y=?ys2xP%wq0myN0#-ZI50O-jgQa9X z8Qo!m&!i2+lgC6ZvgpV$ncRuEi6X^=$yYcsU8L!Xw4iU$Q*&0)V!uVLds97 z;MGs^rNhGlvn`+T_MPw^TY` z1Y4N2xq+9UY=|)QAEq8kn2Hy4jNa&|9KfxCym=^^w}FJ1iN$O{2QjAi*AEvL7FtNF z=kcaiFRv2twP`OeWKES<`gcN5-}Xv)FS~jaOMil*amKmB!L#VIRrd>ax>5aYbTboQ zuO$lpRa#3PDLheN(X7bMJe;)8h+D?R!8e<@z5B)jaq$4IlWIg-5IIb6+XhjUB`mat z4&j7~>aHDQ?XtRF%*%|-EB|giImh3NwbjzoD`W=}{Kp&(!nWE=a0UIAT=p=2WiN`c zsAQbscXIk|L-c1%F8te$WxB4rsF1<`kI5Yb5UzGdv zUw<8def8daTFKpSpZrDxBp?fw!SJp!_{@K=rtaqX#P2;NoHf2uf8lv$zT!Bsky3Mb zB6c*Ba}V&(ULnm#JnC2Rk8jTZmHwd{7npk~u^KX*7{9k!@NqrDN0hI-@^|&J>NN*= z=#Q7p#D7O0y#D9^4Kd#T)j#^DzR1*i$m$g^GSTP8BveS1nAgO#$3Jm0##1Nm^G<#% zqh}U1nx)7n9~yNZ;lqSPZ?#6>fI1{T_J01rUNw)paKJ6YBy^Dd=%!7Z>NYID-~QD$ zO6qO1JPIc~ner*!=Jb}McxPt0$G{IKjsFh^$=RLd>$RLY_d3Q>RR^))GqK7v0Avxc zB-b&s=+I#p#vHpEF)9cyeJ44Y`e0;`Pp*`3@rvR}SPkd{y1(`je|ABR@=dFdX-&NP z5QWBLVht*wR&sD4T(Grf`~bp4;ms1Qq9y9~9bBlL?19asgpC1@VglNpE^ovmv#7su zE7q>95v+90x^}~N`3!D#ontQB-&G9G`-FTEA|MPMt0JNqVWt~Bzx44O%*v+v|NGzn zZWcx2{D%m+=VD@-NyjlEru_Jx)2SJ6b&BITOn&eX??hA=x{}$T1$%#}Iu?tIehb=5+C^TDPu;Jp(xt;v^#edim&fWX0`u0#HS#uw)E0} zS7w{~B{_roO8uBdDT}P>4k1uvP=xov-~U~Jy6rY{G3#YPTC-6ho5@ZacN}y%w(`SH zlS52j{U+DQCO$jH8=q*}cu)mH2sK&iVS2NN$m79G>K(O*rpH8ZBnpR7mv~Se3oa+T z&6uT%gTR!J32t+5+kUAi`m^nqe5UGeY|*j5cac2%XO$;er)oUE+=X0QagO0o8!P^e zn`YW^^s8mjP=`kyzM_{~^`+Ig=l;{l^R1TX9OSiN&$q@W5Wbu!+Gv_KfB7rz(v^(z zpEQ2Ozt;b2>GA(u*ZlgT{{I(+doQ=}!A@+16!%d7B4E`F-qDPY;AR} zfmLRW9oKOG1?#wG-j$x6TfcC9n}@dU{VW28G+I1qm394DV=vMX;?1<&I+?4idyN|& z=JR=Kr>e2#vlHZ+E}_ni(?9(rWddEREw6NtwU;vP)&lMKJp8jMr_G??AqIiiX+2yE z%Z@k+4!3lVw>VT%HC=u=5L#fQV-Ha=V-yh4S=A1+IAh1kZ8 zFoaZHg3ydRxBoV^rFW%^V=tbHzToV2y0G1uN3h*a;Nh{|;|KAZADme~=v>_s4Wr+E z*yiEw;ScJpKfk_V)cQWp&i#DEDab4Oeu0@)`Ii@Z2YF{M@-A#*J(eN!JHDrBj;1<~ z8_1!aRPEd7`Lk!|4xV@~`lCPJ$b849{s_wFEcSnT{{g?Jkl$1B&wp-crQg%5mut}T z`Te~o2}buK{kGKK?XJM_2GyvB;xRFG!{PHK|d$O31UVbBgD!h;$*R1~XTLJ5JL;k$I>2Vegi*Bv_$FI)) zyuz5J2Yo-zx`X^b5h7JuL?CU+*^o-$(945I)+rKXL9ZSn0sMdS>iZAf5FOo$nIXeR zD1Ui<`iCT&ul!4mz2)+3U~xMtrhWtATa81i=N2i9ZH{W|4S|L4CJxF++sN}KqM zZ=k3TE1^d8;C$dc+SD4P=i?`A0U|R2MQ~PR!jrr7AZjX?#x?)|1KG-iUFP>mi_I!q z0B}3WYyr_oex-K{?0)YuovM=aPpp9a6k*MRc#?bPfuRpT_3@;Jd;Uq^@y{~wT$6wy zW0c7f{~_Z#9j_g*F|OI6me0=R{lY)TH4CU7;4rTL%bTm_1UQ7&_gcMYg?HewwADif zJ-Rp=VL&?=_z}@wzhrEAMA?~NsX@9DARsjjE}PD@aX-cY$SWSF)%}hhjT_IibPu@M zb+Jl8YDwcTH{rD~U@yJ7}MG!dt$ zF-U|EK~ph_qNs5e6pb<{BA_55AZRKntyFOO6%}zv9B@KVQ4mltQ9%SGih@jHqM*p6 zD4-zH*NtM>dsna1XZ1dPcCT*M%1Vsz^Z(!Xe((D{_j3=6`22^k8~}692GowA$|?my zFc`zQ0RGPHpHx;g_$+UcR$16Xe9{66!}yA>wr?V_`z78apr|I}%aa3LyGPm#UFy?w z&B<47U$=0oIh$x7+s?wN?yWi2GdtY3Sg_i#skCb3SN*#8>z4)_Dj&^ak}Ucs*K@_w zPwl-6+At9O)`SBz440ZP;?asRRLSzRb}qTR$1Ja=rpAoI^7zKW!Lp>wUB;qFXBs|- zv4ss*w)oKXn|k;(l*6k_{QM+#&HR4YEA615xcM_q!n+SMgu1|PCGu4J%yuADnVL6h zss}^Drk`c&Vv2O}?AfzZ1K82hWcP`kh%3EpI^vGej0w^ePSq}(=84yYZ*UGv#I&9j z^3r2IvjwS@amq~@n2m-JJDUA&p^uL_eVREl>7ymBgusMqLw>%ny@Ehw1f9lg6SI-Rbc+yy#(;&jGF*4@j_73wC2Y@nE6q#5ZFi?c-omO0<;vi9=P?0WGCko$HY0X>Pk#MQrH8EHy-;kKl;Q{MI`&v^Tzn7%%5@3k2kYcVI~-DQUKAXFEv9%G8lN*olXb`Y; z%H{QCUXYTW*-oNh|3RLWeB^I`V3p(LdX3{gxvVg;@a(yBAv`akuoX8$iVmSslaSsn zWyz0zcOStTAvZ9(dJp!nIeXe5h(7Nl_R%tQ=5g4+`V3FlQk2n3OvI`pKNFNYxdNhQ@shlToXOC!Hp#&)ko53ITZt)PC5|d)$v_lao6+ z1ZkQH)5$jtzYmwd`f~FJe1y#u`Ih6VHuoB9q!klI8qEVDNkdp4Ru7{_rrch2t8pLp zl2FTS3un~^&V*roUD4!R$xz;?GQ?AQt_$S`=AicaL)*6IoayG$PwELc{sa!78O??> z{uRYENzR}lN!i)v;|vQMeZIj!^XsoS!vNpR5v5NMf-LmREsT%r0(m^6?pIX}WQJp^ ztAas?iL3)S{YE5@?e7x%INpnfT?ukQ1a)?{^1A|;^&IXD#-SfvPYB3c;*Xw!M0j1K z&O?@7OA9s6(3VE-9?a`BD%5mlm+2Twq@iJOU|EJ2CFM8R;^lFaaIVlCI`{q9lCm9* z-SEL1Xz-R&&1#7iBd6$7*TMH%MhDL~sxAZthbDGP>6=NlnZmv4`weLXLf zeX}gyvzOSqaZQh*TfLexOsYOi8Q0zYK)YJhwv`Pw z+qt~@C2XoW4_%ajIM8v#f!P;Ff@L_VtO<&(U-Kz09pUk*kO$_=elxRiXyfCtJ8z9M zq!(ECc^p2zs>||M8ppvG9y|d*Gl!t^N`Fd}(LlQ4L;uCd85~)Lt7dtp8rz)w>8GDQ zu}*3z>>*=%R?El@8<=kXn6_n5D$n$s8`lT#Uu9Cv*~czKSsj&q*lxKkCX7S?T$@SS##aFXU_dY5$npP&snm-B;usGQC7xhNx>H1 zF5DB~Fx~eye;kt(yyV~B3tRf$y=B>7ePiNu(SK@kznX`&*U!{-G>J$%Z<5!4;Y_&* zfiQ|c$m!?Uf2_6jIJo;)m~6GK=Ro<`;CN)}qViW>YwQ(o9$0(t-r<~t1wa24g2(F} zI_#J42HHFvJSIbcM(DD1<(y!1jwm{}&lIGqjzGL)cJjl%+fBV5c&)eRyfe#twIwiZ^r^jjZ+GcBbiiijyc!rShoFgYO-6=1G*Ja>D1FkqzS*ZwpO}D%qYpYP zpEhd5h|l?TrW>ZvpITd6E0IKU8hmSe1BYrVBfYG;1rGa5lD|>L&O>Y=;}Je?KOdjk z`CW%b)vlG=E5bhX`$H^{eRnLF$ z?Ha0@d6cxcW2SfxMTH$Y(@_Obakg9bvfqYm+_*TeJ(cHPPJ0)Og0f~t%_n|vbw-Z? zeHGr0gLc7UPtOZkUbrh+5Twu)dpSha%vH*~NfbZxyTk(_$&ri>?oi|X9ps-XE?dL@ zqCkjfN^O>riEcN-+qj~IQfGr_%g)@e`{6?jVoM{lKBzQnQ&N-dh@x@B#*JYBPPZPt zvdCTfR&K{$ib+f>w;$c_nsaoI40f;&xl3IiwLgyv(yjjDMX%s(8Lb@4Da*4VvJLv; z^m3chQ>RWTQ9;=g8p0{7jJcRA3uxrnvDs8zMK>0>nQVY`@S}4f=S}NKuf;QJxn?+a zI7l!KNnxYgtL@r7xKjG`y`_usA{#?Z7~Q9ys?@#HOx~;*RwC51vx{V-n@hDWQMX@R z$=)9Joyu76=i?;B)*1zwQ+A7CH|)(jlqoS*#pTZ)>cc$LLycB6J=80k9_kP;{-}rg z^Y_Azc|0ks{$jR`Z=+>vhd2Bi{VQiJS=D}u^C#SHLYOD;kx;fzbj?9(g*dRkMjlkQ z%1#&GS8DsnC|vHo6U&oyk zyhL}r2=aykPXX=I4}UUjGJ!!d#E^HKxcoW^33r$GNT$=*?s9k`ux+}Fiwk$;X8$}W zB6fO8bsCZq`w>{gW#XLD zkg-bE&e(V0Ne^zv9u~8_g@2-vZHnq)+6bzb)nkHt^-|~Cu@^4RX%%5TdNeWS$y%M% z4Vn@%q#8#F%WqrRy1duuEkYM0&XU-lb_<%3LfIH0gK>OHFE)YMsTM!Z4cE#FaX8Rs z%tz2nHKFmTKgl0YqAS10724@tW9+|r|Am`#=MN)D|Y4LPz;y;NRX;ohq zrI;G-g`6^A{e3umM@*!Y}v5l>+-8t5&5S4H!S(AOkr$6Oa)2%{Sjj zB~b0x*FNqT|4;tOw*B5X^|(0HEU}JD70%7O!ZE6;GFv%|=<^jbC(bEeoIPT3gsJ7V z_EU<(S3Ztfx6tY0tm!U8`C|}&T)(h~(Q83{%3o>pv9fGGq4?xV-?Z5SmQ`A%MgIBb z1slhD_vU(<3cXq82UZ5-jt*xp@N$sP^MQGQ#^L!Se4L%gMm;|kJTwHdI9BDrP zAcDxT@N8q%t~QC6OB0d-vuz%$--8LwXdc)ONVj5%csgDHnll=~q=E~mwm?ONNd~1qB6<9zPDjXral= zj6$X$R|a)9d}G)Sw!(JIwvp@k<#`R|8N+JCjCM2(;=c2>!?VJm=9@*<79`C|E00XU zb|4f{P$*OFo5Vv4lwoZt5?sOlVakYHA$Mky3^^V3JFpZT}8Mi-;b9(;e%a_B;jYHTZXgEU#xo$*m zbyPP4h$RfWfMVLg=;&>9i}!15&FNTr0v6Ml4LCEWkPf8@&EiBRiDZxB)9=H-%bHVd z>q(KzrrcE_5SWbWCb}TKvRL})@Nv1o$yQAu#(j`71{Lqonp}wO)&GxeAI#Znl9Yzi z_iF=YD-egf6|7wky0mG$N3b<^8_SDt!SlS>wRjRieDXG3sp6s>_*~O&;yUfHEo` z2X5!tqfLIUQn9GF56Z_HQIgWQIC2KZocYnpjC-Jo5>Kz{D-o;^!Mqo9#;;qE-b@X> zNZ%ekl)gK1%$O`OIy!e=npfZXrR5uZhIHyMrMO>GaNAx94Pe>-Y?Eg+Wa(5u z!HIO03fZ;zusA>O(U@OOA1W_QoXM@00jai7NmzNb(#sDoSR=g*k(}zY*Z(Ia1j$wEc>xK2Q7QLG_*eZrPGJF*s94_E-X6p&BCIF;3-1} zd%b#dWUJavjXp(gL4CTmZu$N%@cuVGPp)hlDqMSgWxi(a&0ot0|D~mH^@}MZS`Hw} z{+i-^sR0WKSj`oZ4!PJiU znUUK|QRm*6^~I5?7>gV7+nh<_Lp#w3KvK$Y^C_qK1R%CUc|qo1u58Dzt(CtMjlw`n zYO1ZSCaXGIT<*9Mu{(VgrB|yxyLaERv#}@&Y-?uPX#pe0gLYV#23VlaK0F{hc?B|6 z&lPd>gekL+?4wqywMwpvZPm(cy!9u4nK<-tVU{Z6p6AkUrk{K?jO&+S67zDadpBHZz(K(0U*IV5 z?6bvHx=<(rB|HII{dhiyH6UWmLC{lX4SnQ%r{yhMa9|L*>>0R_p{eVbayb^Fyba^- z%KEnPX>B5W;htP#Or55&wT@SO9$fnTHl~@C_Fc0UW}or9e)`Pn4h5|$EciAUf;pD| z`daTV4((v02eB8i4y`RUU8eKmYPQn|wqccKJpM{ylBr||2SkTE$%VhxdBBh%PoooO zELyZ^1ArGA*a#{|#UR>oIvbZ@l6%Qvja5$$QgIO#p+@Cz+$S&j*wlU!F#vzOi)km^ zeUzwfmm!b9UAMyXR&nv!V190Ok7*|+K@eol14(GIok~ zqud!(!E-N548v}c7V{T>c7?`l&og-DQ#~3VEZjLdV8MdJ$^zz6j^RUTiq|x4^Rrfk z&qETPXFkB58y*pJ-EWj?XpDAfzrv-aZlE^gIiWy!8~dD@qB3ExPQSUqsSKN-Kn+T@ zgA?3&92xJY?+}{Kcg)T-8#HK=3OMM7x9;9OpjaxVD#x>C?(mL>03+@kM|m!|EIYKM zioyMC$8+fF<#EwW?T0DtK4z$*EUBvFGW71V~#$buLST%gP6To zwjdvxZIumuQz8a4H(&-u@G9j4%HR~fTN)FM{c;6-LpGITfdZ647Ygq>9g7~2w?;_kz~?97;Bz|cLv9l$Oc(?KU!I(>Y~On8 zEs?*E2Qs44Oqs{_R%KMiHAtvN@7SwC6O01o9@SVZuYw%raB;=-j%;{ctda-2xF zOK&$4{8{0sufP7flbb(Y#FWv}LF&Q~fec*ko>>T9Tz$U#8U+PFW~>9rn17e>rAR)u zb{U3UQ~34KzoeDGSQmo%9iN9$lSH zng~Z9z02D9$v1!}*knc-a9G~Slt+?^E1044j^8SMbDEE5n*JwkuFM(bFhwCa1G4^4 za__?yzJtRR(yd%ksAeDJ9ZOuTo)oxx9%N5hoy=cN!O&Ylaq^g;Q@V;0h;)6#xkwl#3uZp`7D+=7yGjR9|=6 z9BDF#Mu*@1n5|W*2b)>lceKdLlK@Wr2@KdRSF}QDRFyZObZh?J>?;rKd2XEWwX9}~ zk$2dIpWKO<)BAegr((K-dVp8PfrsIJ>6TdmKA8=C5WIHncg$Or-z~#j)pB&MpT7LN z)<6Amz{&4e)=nMAa=~;d*v8-q)MVV^t;5UvvF=z*wwuzrj!D{HAO(dq=f-;Ng-{kj@9m0+#i#R} zF+m4kYIXW6C9f(ylJDu!w(T05ys7=(u+C1J&C~cH8L(U#(m|U1lJa(VE*H6XISbG0c%EKPh>gUv)a^g^+F&fw~BZl&&!_zjc zzUbAuRsJyWo%gvzrW_PzYf$y~N)6z8&*eyQENJt`Kblg`ryVQj+#RYkvnX6#8RFuM zYQ_xI3^`=V(MIr(rjcAsj9Z>F5s&k?!?d!=^B~z_#6a@qr$n#mqcpR$xKnUj8FtbF z+0{@ybcEVbx)_u(op>LQPzNP}CE-k$8aQG6_#opbjtzd9W^D#;)|{i3%N&AyQCN-! zDW88qNm0rLEM3g#8SjH5qeD5G)ec=d8->y$)XaQnB9oR5Gb%NTX2b005M(`aB*P{h z46Y5F2(yhtz^kWihlG20fG!2MOnW@RH0L@4gXtg5Gg&WNKmapAejL({FI;O;5FmfbV!nEG{8!c@&F zh7gFg{ct#NBQnG>vtr$FBNK)y?{Y6!h=56yS|#*G_)o|+9jl@iq6AaCi9rP$c>^{2(5x)YnzzY8Lvp*0O!>f4v!Fu;AwgGjWbH?uH9ufGUt4YDmlnr z5{5(?Sc1T!SvU%(Yk|2o@J37V;aP@kT+D&(kX7MZvE(tZBM)wo$OFKELy zuax;)l^oJN#kfZgC*K4f8&l?SN8QQ7&VE>$oe>xCp#6JMw<|Si`|ZEJc6jwAUA%s8 zr1oF)$8H`sd%e@DB9@-3?~ozai|<3po>mIFzK6XDjmT_ag8*x)@k@A44ZFEf^LW|? z4$8EX4c4~yPn_b^o)7s%qYRR9?+FW&6euQ08$9zfBru_hUqhRFs_|*PAtHV8YP`xQ zp|OSB0{}cSF1q!lZJnbuS6cRFf4hl>`OXJk^TnAqh8g%)m$VzDC=EnrSbiG`CH~xy~&YGxxp}6?w@PICVnY-coYJz2bJ# z1F7_O$8Y}>R%?|R@VX2>w&Nf}WfXo-#uYp0`B{(fj#M$LL zxhFF_F}ryHI)>8;x3qMdH=@ESlQ@TiK?PU^IcL{x*x=Z1IFDs|!*BXRKj+%M!+b=w z-0-deni%F+O_eenT`i&c1SwmbATgAL!dVX z%;;yWI4`OS5Bs~Fmp3d-E9VV8g6DH|`e#olLFN%+tZ=$h4=xTC#%wnK+IQ>>cX&GF zEXTI5$rit6vQ)}w;orwQM~rYov%&Zlr02AM61c|3#}^I^qqda~9NY&AP@&|;CERM1 zYZIvgaQzs-O~5Q>DucGHJ?T;YHgfhzjBNXkY2Wz3#!VYGyv8yZNmjDWiY1YSk@t&- zMASa$mOrd`at1y8l6ycfIewiswWZJKTJ3$)U|@!2*sZt7$B%Nk{mUlT%N z8yi~LF7VV7ztA%7%DU#UR7KKns?t+u$ti<5Qyov%afo76{i8ij-d`bOS_(MlJEi0@ zWFCx6kRt9KOUvm(G~lYsT|9Jgt$*tf3P6{W223mWu?I?Z$*YM;D8PsHH-?U*@zFH^ z?+$^-7Tjz&AL;*j@>QUO9W0l1=Vp(aJ$vV9UuZwZeTFCXwJ4fg7+*Xod(-a|7oJ@F zU~2h49rz`t*GBoAp`2Dl$%CXL9K(g>)2_5ytUlE9Dif<<+AZF*q{xbc)Fb)5JxfdJ zY*ce2*ugIIY&ag083b!VF^uPuk`7SY#8^de#~8aI`IMlp z`099z;&Nzrlc+p3J-c_l!fJNJj?`6AM@=;hLxFH9Y(5k`{rYs99pcJ_r8DZ@jWvU9 z%(kst-F^GP)k4|p=oijfE39**;d}WI_8MXftCl{0{(S4|HI`L>r?GcS`ZHc5mnd#L zELQhs_{Qn6h!U-}!+}n7a`P4YBV`3di>+^6Li9aGH-mjDe%AwR3=S}J?>T&Ua_fcp zmi`US3|l3RXDWG&ot^q;+MI3qdb5J76a}s+1^Zddw%EWZGP~{y$e^e^-p|Bj9Lk7O zy8`6WvrS&v=8ruS~w z#I+|qi~ga>mrymoLuiH#sB z4xT`CQWU|;@)GNiTXf4LvXiW>m}Rovmk8hb_~XB-gu&&qUtR#bE3mM+u;e}@@7DXX z%yb!Z;%8Dy37Q4ab%2|G7w9yb$8}z&J2z9)A=%OdAOqFBi9>kKp|)+>C~q9{?2&$( zt}HD-o~;mb1q6+>vALqTJKJ<6&4kn6t8zd;(ievuI5XZ6c3MOQ~o&D>p~<`b$^N|E7DwfyWjp zJ2d>}0N20U-s&LdJWH7lufEi^~{!A+(EP=Z| zPK6FDp*pFP$CF);Jj|UhT%1~u|5z3cZZ$8^hesUz@h3Vwci;T7t*O;rzgykeV!S*y z=;LJ#m3yoY;Fx#tuCKrTjSQObph?_yyW7Fa{;9!z_cCp8frm!oiv9L2-?zQ-?ycfK z{rHmQBMtM6otAvPVuf9v&6f95G1cx#d4%dt;1w!vu0exCsB%}Gl^Se9K~&!-*tk)_T-Wy-h(+D zhjpc`Ibt!^AqWoLAV`-d7J7M^g42k2xDMZ*o2^*N zB45;co5CotlfVeXsyvB(qggehK4-S6FiO$p(H+=9Mws42%W>f5pbQUiucoXh&_NMF z*?tDn%p?|hQ4V(Kp27gEXX>MuS}kuVAq<4U-o>LsFd}w-QpG?%6c6sr6cC*NSQS1b zrY7^ln-F}h$Bs28p~!>|LhtQSUELNe$fBswrX|Iw3&K@&0;Q2gfJVNz{%nf5mKRv~ zw4{(pIecD*wgEPg{yNM8On!w5c~LqlulGT&qr)`}clR zSQJGRLGy;ud7bL*xNoQp!Zg#P{BEK)a?oT&s{-x7{-OyY(sX4!E#=6{s^d5l16s4Z zo5*nJ<7ca;J~R~PBQ-~D&Zo(YNnD*Z7VTyr0GZBSHY|Hx1_*>xL!Ui#9tuHTvv7x%BN z%6{UB$Aod1C_3zy0bi`~9jfh1JFcZaa+apAh^VRkbm`?TnD_k%gHUbx=~2>ODF3|G zlVPi4F{6IcjtX9f5V^AZ`Q?S1zV>qO{5;E|)q>jbd?p5o`a~{nBgXdKRCbeFS6JVX<9CMuU2fU4xR|O$3>P z)C{#ly1jT`gNN_zbhe5+mPQFi{jY@I)G*qRFGpcLr=?p;v&Z>B}` zGJTVO+x)7B&3y+9`)#+e?Wt|voqpoG&6_v3wsyA`7fVb!8p;VzDS}EN3B z1s|YO>-tJY*vMby{tjbPPXlz>u^n<7z$7%sfCR3pRK8dsp%$L28Stn#1T*SsXr)`Fy!2edq$22y8T#qdYAF zT59~Rs;BP6IJ)U;`75nW<6d%{N2My*n|3|wR0d7LmEG3uG&2F=yaFdiX>9wcxa*kV z9r{DMpl>x-h+{N>0Ecs7TB_}U9cGSIF(uN(#J~VqSX1l9sbk|r@4Ri{w#}RO3D1UD ztemhWgJ9?)Q(zV{r~D%h(|6H4$f#5;ArocW+8w|F8p#5>&gJ1#z&q{HYp^gWSBGRe zybJwHbU+HsrXX@osd%R#8QsHPR}`>nQV!j55GSj7`_uATL-2zYFa@3#MA+kWUwErP z2^|#^&<0_sMl=e=rY2u+49GH<|Im~}SPDLGOFcl@|41mt!oB1WjwEh{Ul9`>WMVCH|U04xwOIgqOV66~(d0FuMC&i*h% zG(@egme&9yhX`(RDef#2xi;PuA*;F$oq-f1i-oZ)?>3|0XJ6M|VW%DV!82Uz0E0T` zeS`gL!o7cYbdg)gz0z-PXV35-%^`k;(peykwFsR``KCnsn07kYST_CYU4f-kvRRKu zf`G%z0e(Lis<$Dc|C&HnzC8XJ^Q<*il}d?m@raidY3Xuqp+uaJK=NYf*M3}c%{_RK zQ?^XC;;4{fo#EwNdR^Ay@o4iTN57Nm31V+=Z)&_?;mz;gFoU!+DgIc{mydsaj}d}5 zm#-*e$4ogW%8dp8-TpI9UW+TFEoOvxKCh;c=i~xu6r>HFA6Rl7(x9qc(O_8IJ*@Sa zevp*H>MzpxyuGYyw#sbN3E^Lac(I}l86rS9u zxg!iwSHm;|852y}>N^k478*3dbJS65PZ4<42J^Hvxo;qpSii`v=R+}KG(hc{(m!R( zhJ;HDA`fVG&x6Uf=^S0@!8Ya-`gHr!Dr+S3^>si!cEeJythGR3y8u?9OYAnN%f( z1yE4Ay~+;zFLQC!7?cv=@R%)gak5FXufXz?-+W@eymdscKQIFsctx9<@G!W9t`h>S zO8f#!Dm!tdnm)148y=~<;MBI!qaX+ij0kWx^B)`)P&rw=@&1LN8}wS?wH<4#tFI8Wea8KvGcEJb(wQ2W~#_jd;6k5y^ zbu9W+Fk_S^n|^}IM1}zMg;<&urm`E8vH2BNLm(G1{!QER_l*$+c>!EV#ecB$w1nsP z+N@DCo9nsam9G(|rOLs$go%q;xkum(DblSwRCHQ)>Pg*$7e{Pa*HN2ZKHm+U4d}Hj z00v&M-_gaNowC03)l=(o8WQ+C`&cUnn0P2X4J5aytSnry&s?6#44AugO~wfwWt@iC zNJq`ANS4jHZho-nY?Pf*!x$Nn!=IHct+Kw@-ee8UwtDzos1nl>meQdJlZ1N`#!hg6 zZraQ=Gmp?Bs^alL;#ttFs(EdcFAFu;E}AiPX7fhY zt#;j=->uybwX+1((Haox*-?v@OvZlR*goE)DqTEx&N-!jz+m9S&N#YFey-nlK&p>^ zWX{}8ISCd@%pNyy-T|1#^GsbI74M1aN?T=pS=T8oEFlDbG<#&2oL)fk7|L!_sBicC zGnQ4zsNHl}16xnd_H$)iF<=jjN%~k>*<%BCg_&D5Y2tPnf&j54l2C~Fw9x`sXo6?2 zNT7HUI46EIy3Wt31*$I&uAJJgz&71^87;F?>Nscat#&@yT=6Ym*;aS+3M@L6i>x2{ zgm<{>vAs(vj0Y~GVw?$w3qQV;wWF~r{L*(ya_8qMPhPCh^zeI}ZLVx#e!qOv>sEPr zf9rXGrqZf0?mU-UA@HU4n}jzbGJc_z9}9zGtbLQKhc)KF$c^jd+@HR86WM|17r()6|-IePT*je|*wU=~#O%eMpG zhpUGlfNdV73?+eWZK+t{Oa(&&DGLT3TOX1ByT(H1$Q0APhZU&S5cQ;VY4buj{nZ*^ z;(?Q3NXe*|gJS|@UM!~~Igkm?1IW?;2ej5W+ zT;th>`jSteCf2W}tPiwUZ6h>E0^p7paOtZlN3|Su=szo6`jJ260zy(-mcIj8R%z?o zMpk~kVLf&Yc(_iVhko64F!-?8Y<%!ZZ0*$mJ_phIXfTdyYi?9otv5Sm^mczhAx$lq zZZ+&$LIr;S!iWpwMyZx0YT#H`z#I9p_uS?TM<+9B@7Nua!N67UHbDB|o^KH)3D_&= zSUGJahHnQLR?X%4GV@k7soe(+%4AA711%^!*dFlxdHj;B#Vo{3Hr@!TSq<(P$W5dY z(mY%~_I_X|7@v2PT|Y#9S$io?o$dUW)f<<-ILq3;OPz64)jD=+nw4rTD)tz%ITuUj z19~Np=^n22aNt1e=h4M?1T=*fJduQNbQKq!t;x5Ls(Ycc`z)r84QOM6iP8;<`&Ni zAOw3Z_^HfIif-N74M4602-}*OIQI*7S0O8FSg~igK~IO9tm$Mvh7zHUV_)e>fSsp2dzv6$if)xAWYw_Rqr1sdecW)^#qj=JD zvs20!@V6D1%zmxWf(OXb5ujpKTBvGP-PMiaO5bbw@mc;;KioO%AD%Ljk9 zbDDt?f4A$*8b5#k+n(?9H?>*pi|Spwy!`yvFF*CxrT(^?`qtLe^b~E^sAK-o=Lhui zQ@?}-y?BqUTK(^VK7QGp_fo6a{d2C}$ZzxW_fdR}SLMAKwfb)l)_4xO)Ijso zo2eC~6&hzdEaFE8JfkhoH)1b|cJZov=%SF(>({S~+YVP?gTdh0HRDBZ1ZR3^(Y&4Y zlnvrlGLHSKUmo+6sbHU3$yC7elostTgaI{dCL4w9Fy#qc`{9cr4c@0K|&0lNdtDacJaiSb#cj`^7 zM&!w=e+V-?MA@_+Hg`BM39h1RIaZmVY<1cp6i>OL&7}gb^hMXIMLXj;sKiK<89Dz6 z-s!EJT;v_b*3jlAfP2iZLFuBffTl50eHR)^$zlS2^Sj?&&wSAQmiYIrt<&w}o-E$( zUtv+2h|!Xo5UZ;5-4&FHB4J5(12nLSN-A(?2)Nx*CT`Eau6<)^wX5D)I~3KR!k?`T zY{m++%#=k6RIf!FYpbbxYe^BxD{k@N9&Woh_|8*oEHt)l@*ih1;9XN@>sFXhkXwwX zWs09)92AIwXjKhU1Y z`cD;s&TMJAIF6(Qv?G)ZP$oPe4f}lY>gZ^$9&?#sb^mNT28@&4w-NZz{B^@9^=gL# zb%7>5Q|s74^P|^Dpvs-H=+KfMCFtA|_TnTA=sTLp7rinig zQ`QTZQ3fc!zy4&avSASy?r`u4P zFP~KHHhi0dJC;4Q1w)$v<|EpMwMa=YK*XvLMg}6xJ=g>^viqf%e|P6^Z_fA}T+*}j zSo3G#-?g7d^o)Za8phmbT1;f2c{~$QF`;Q&-?2vVb2L2={B#`1tuSmM%hZ|^>1)Na z=Vh(_~P5*fYt`tSdo zHdQqrjd>J)KhbmW*DEi09cjE+uF#35uhYYV{(ZUl-+t)CU8`l#@*VZRidFa{v;bz+ zB&T*AqQpz7Gw2=R3V3A7*haG;5cncg$s9klqeVluzrclHZ3SN71?gyH3Mp1eNY)xa zW3hfnCp-oz453YL`0_l?N28_El*=viUo@Rga%4v)TwCugTfpaE%j?rj%-ddPG(gyq zaps3SxtMIwd&xD|p!`Uc^5lqI^2)H<3*A6nAI>L!Wk-@#OK<7loJ%x@-50$k-t59M)K=vBX<-h@r&r;m4-l%0= z6W^}IQogm%GW5<6UdwntE^1~)Y_7+%AT-IxVmH z8uD+We!gax>nMAhIPDN=HW|}xmf~#HMBqwiKaYIY5_#SKON{`diNx4%T!%W;YNc_(AY5eAYR_wgTd z;kFreGa@*Mcd6+0w389MJr=-)t5>h)CJP=vAn-@W@4# zxyMuMDp|X-eaI?5cIPu1|a@2a$Y9`e?s1KRsO*YpF+Wy!ak& zd`_1haqA5R$DncW&yGRm09&vtWrJ6oGf?P&VF{)8d({;#jnYQd;BK2e!abgnSu*t)vKrm#FO?%*drJd?1sF8rsz z*^@f#oG?=j{U-d=ci4+fX;F)# zx0Pe6eZj64XVvn2&nc#Hu$-2r)-hdq6!F&ekk~Eei4Ftv&l) z>Mt$k6)1XMM@O~z!TI@DFBhrh$uUdnZDC;xtL%`rrT_d6m{^~2&ZC3?xtAhI%!vQ| zU6D|S_TFsq3%X6yhb(|-6TEqIZ)?S2M@D+A{!NRU_R-|d70!EsMfU+}Np%OyT8SlW zqY?$iq30Nr{M6#u@}#V7bqo3?GUVb_T@;F=@67X~GBYRlxmu2*XHI~Eo>b$|c% z+x5nf*mHBk&`FxPC9UbYW0y&bSE^baZx^?e&P#4uLObcvtPO}8`_PUvIUG3r<%iYP z$8&HF2p5xzhA-Q$xT50Sp+gfpTfO`1D|PdTJJ_KB?yGDwgg{c)ALQ9kYHu4D{os?g z76na4)RP5`aVBF(TRo3WgPeD#PX)E!x1voKzr3PMM2kYRLR*ySr-$TU4XPj(Vjt&@ z2Hv9|Gd>Jw?lKR~oyDv9>7pWHEG&natfQc^Gi3ku```bBXj9fDv;uUPpT-0&gSl2~ z{MoPX`}8Sq9vt|N`@t!kdq*P9h1Pn1%~uyLaC%(jjAnIAO^x%ZjDTV$M_#~40R?dE z!|8~fb24DEXsTLz6Gm=rKj&Xx`=g7xCZGrFF<@We3H_aNzVYUF10PUhyMiCbY~A1A z8o+sjG3U=maGpnmxzYAgoEmPnTvrvR;st6Ll3AvrtbO5&^}K2%2V{d>)Mi@$j%PYEiXx^Eh$vlbCa}FCo9w9{SE(Z~X-p z3d-b%R`He9prkz8XvtKGwj#zU%T?XmfP+Byy?J;m-_GD5B#qx@NdyA z@`$jz%{KzmLA8zOpZ01zymxfASa{l%0A*a7xxC7OEveKhUwAZQmI8)jEU+)TD{xKOt~`TMUwv%J3F*o->~ zA^Z+OZXC+zsgATWbAjA)I}Z)C%=Gtb@kAQ623Z_~x{1QHi1{f@9H3rnD0tCXy?XXk zULYlR#<}LCDgCP2@!My_JzLB^ z^raWd6+zMbRXbw)m_?1?A#kg=u@UuP9~BM=b!>;6FswD*p?kq1wl5O7cj&|zD9w6z zcnhH9#3mr#dSHflr&G+TJ@n zQ)nYZSx3FH7afCZCl%H#$r=gTmAtWY*kl?TAAAF}D~7sD~44qScxKJ&q2DZK_YfQI$} z==NBM9N8EjAFpiOyoNB=8BD>r0LJ0Vj9NU8HxkZgn#OrhKv`IiXJNZtpev800V%yS zyz5mx#z+XK)hJO07FJ>1?_0M%Ime{Mv*tN@`}Ru#n%^qKTY4qBn0fu70NvJ1lLnN@ z{itCpT1!O6rP|;$6MEED%JC)upjS?dRloR0_g4$pU`5jqi!QVZ-Nm%VE_j>Z$)+As zrF!=@mIjxZ*hY9RTo}9eev5Lp;!p8Y<4!`o6*U^Uz%DpIg-6{05HMV6)A>Z#?^`^k z6;Vts^4jm>F;?=KW*wkvzIg$tC3{!{yVQR0Vatc@eC9V55EEUvNOcIzi;%2RgjgFy z&p{xefrAWTsGpHfzNHV1NxZ`oIky-@ydYu69iygl#F-I9Y&?8<`7 z@@8Z62>0-)#XIgKbb7IGK>U`41TC5|wCZoy6%6L1OhGq_0_trKkIMWuuQaxbEc)uJ z?5ZDraDDuRZ~GZ&ik_1J@L_v?#THB{8*+)wbrx{WSoozeeTI^T&DdmMK{EC;>@a3d zh^uSgIcs??FR%W~hRaW9opF79u^4qj{NY|b*`uit7 z5Hv(Q7bL9lE~TIhX}QS7i|6{TK%;^Vf8DH<#n-ydNPXp%=O6yZ(q_?!?~Zfr9XtpB zzQtlWnp#oWax++R;(zoMG+u)TO*#C`PwcnnAIK-{nRKCX2MrMPQ_sPz^Sjsn(qIPt zOM3AbX$t#99XQ6$F<$L+KPW7&Rhd@Hx|2?>rVuiEz8*m>~9XEsYrbayxeyj`!^ z3FB6AiekI`gPBv+Zh<_{O@pc)JeYt^8z;`WZo^)E@UwTrgDbO-oTtvC44s4-hKvaM z;@6P-F7S<*$md3szg!s;F7+e#$Ggc*t?7ES?ec1YZxD5s&TjN=ERi^50&KP)Z9%0Y z7LrIp4EY*{2f&KWF)laiNoRPO!B3NU4CjGJ+qA0k;4K(8bo%XV%fDv~W8y3)7Z$Dy zkL`h(i3v=4_QLFu%eBE6@L093T~JNc$p?X{TVQOlrZ*fk!RxKZlr_x*uh=g?@iA&g zyd>Yhs)K3IR5KXlKVh=fhjRz7qyyw9=)^caB+AyC1uG%F@qQfOni7SXC+y?g!fjzW zOwc_FU#Bk+_rUNF!rL8;>DND-7CwZzRtoFX!sl{Z%nDwUw9yaM*cGxpD8w; z9Jyew$#FdW=)LSsY48U3qv9Vx=`OiEj0KtR5b|ompkW_OPMxiz3uEHl%TlP=l_Uf% zFop@)6m&*%gy6nw@(IV>wx2Z}&M}sTcYWQ!GmVckmQ4gP=XZ`YNJfg^2>t=0dy^S^ zNv5&MCldD4BqNj(~h)!4@(eT1r^JZOGdoPgj7f zOJFCa1+uJB(GK^qC-!83CnfY-$6eNM`+${Rjfa$+k0cv`zTczZ>4zyqzD$|E!*@EL zRUTlCSn)ihEpp{9L{&GKg84m83TCUIIgN#f$Uwu zqnFVwiFYBb4HsW<`BKNV8Ju;(3S#%s}dCu)PGv^2!m*fFey>|pSO#_q#pF^9jKZdoa-0$ z|MNYryDR*4QGev?O-t1f)h=L!Sc?+Vi!g>b=?@yQU{c1*5rfyMW zELo4o&Opt5o?+2{aBV`n!UElfp|wd2bkj%!Zc%O;}frqw=ba-V|pP>l%L2M2)o$i%#lcFjRx*`80`4TGD%_?R>QTm zE6nzJHTmm5w9~{-9-x2?&e0L;^Xy%H?ZqGEe}`tADivK6qV`>^T%=dV;=*I}wUGu8 zT>Xv2J>bk&HG86Qo>nU96Hu-#9K8uxTyaJ@j{fNSo#N852GHbxVq<^W|5i?wNPuHxTgC={QaO#bFkD(4X#5_AVt2eZ`#m#j&Z;*mLq9RjGyteYtBRrwVkHn%MCv)9g1 zIL#-+hhu=dpF~nc**2 zinmKNj)PRNMgb4Uh1ST_Bi*YL3CPAF%=KJDLCFggI`jmkLsU)-6IW+yx}?oz_U1Lk zxWT;->GM5k@WmW;=4?%a7^uJ_%kiHD=T=JNtt6}1MI+FcPn8$mcdj|l44!y8rq+59 z<3!~Y6YUEsYQww1MOZG!3J76-Y*)(U#Wf!nWyq)DPSR0hHkeh8mM)YB+BRm_&Ye;i zSKNu6%Wl!({kcDNNxp_d z)khZm{P6^urO?38L9Wi3k~J$hB&$3vB9T?p31YQeqe25j-Zw>dh|SdPN07#2MmMnK z&t_YXdcAaL_2Gm<*32B}(eox`p=N0v>B5Gne5?<>FN_#SQcn8Oj8NLLA8bO+(%U=O z;MuUwF`9dIs1WpjouikL!G`InTU~6yAj7uO=D}RqA57yOh!L(tR6G_A_bG(b%?)+f zHtRM3AOJhW)4qNBlyvQCj+GBuXEP@m+W{es+|c_iG(nOY;$rmO&ou}!k26MO?;T@M zMltWxZd2N58=Hx&Y_}TXu|8W7sQDt~yHea2;)Ag$N3ncu`kQPfnLLp_3hGOHn!`*U zNhNZX(^wKKt$n)2^uwK(Is;n)Fu4}UfQOTX4)Tx_we2Q>bN=taPD1pUl~Vv)_#X5jBjaj} z5*}NH=J-D`N) zN2xVn|1z;v>%^|mWL0T;9+A*PeElHMc)|!>M_KjitFMMv7Gi#bhT#AwQC0xT?up-h z^kwVh3uO)d2VIQ^XE)O{ueFo#U!9k=R zcH5zO4LGyp7?+^Q-oSGz_=aON%B2*EyPH>hX_Ap@E*6O7p>j#Y6+=?c6Xlod%xB)t zf!^*I<#uH1hV9z}rv%t%BY`_b4Ft5iUT$l0`-JT7xUn2nnSGOS;y|Z=R0m$77D_x= zdow-bOnJn5j=zE$yQo*N{CUUrsN;$%4w`rR^s#2toy~tD9PC6Nd52wxSeTVcML$LE zjC>!ZCv>}Z_%GCfmsoBnShknnoKthMzP^5rU*v<*+FD_;FTypv8WOT=bI&{qjPHbv z!`-}?NW_CuXu2|4Q5+4GwQiqEfOb7?q<5tdc~};eQGBhwc5;(n{qvIJa4+My2ZyB) zU~*?>dPR1M5CGmWHa1Re;PSgUuf-+0&^f8FxmO076A7udhn1< zD+{O$Nhq*X+JFQxqwT3Z#6o|EGFei*(FLn&W7C;6Hpf~xh8#}0=>4FZJbr!+*zleK z&!RbCW5#V5#Q!{CW2n&w42k9XLUur})CQ`4nXA47#;qRm0-e;7VIXS=$@2I2Kgh?CnIcw$wqkoAAIbXFW$D5X zKj+TwEu=j?0V9eI*Q0WL+bTju13yfk)2)8+a9@v9d++r#ZO_y*O!dqq;cIjb1^J@9 zN6)Dr(&7T1XR{edf2as&Fs{qg$^A?0JnKLVvl^(#ywOmr5@Be#eo?v6Z3dRHMa}0hzNO9q%L(-rbPqCXmcxxQN{OjGU^wAMf%FS$FpZl0BaQ8L~{sqPBBXx zcDttbAv)@R9HsGxAD6wF%u}s(V$Gz8R}6y@(`9Jjbi6J)0$WR4OgZg1cPN}L=+`n_ zRRjgtZ_(}By}EYoio^CDN)@S&P%$1`c=I!;(`TF;K};j zUo$d_U?tBZOin6B9K8;xSXECaw>-fYxD-#p^G^@7VpZjI1K#_--@`kd1FpN*yq8!g zu`ma^D_+C@SiL%n3ySPJ)Ty3Bfg)uTeZuFMq3A$m$W>ZBSrRea!f*gZA>c>anw#@} zIpg6`Bu)}E(|0ip(FFO-NTZPdc*fV>xp?!sUupl)0Y7lGHE}2Ctgg~u?|;s4GE1E` zmYo5`NYmI$Z8C$R5x(iiLZod`kLt4SH<(*dvxu?f%tEbtgp^O70s zj2+am?yJ9QjLiA~Hb{I(C!$e5bGE1YD0}N3AlyBs~0eYoGFI? za{i*XXS{3w0l4)9^Ud_gO%(|=CtVaS;Vkt$z1Dg!XJC3Lyg zpd^_L4Guu|bH!)ZtR8;-G*Cn3xafPtCS;3af%WI3;6$##l>w(78Z-@*YXw@r_n%ys#KFUH(uM0P8^Ejd zLHTX|m?IN8@Q|_MiG%+>%$nw5J$~cCp1aXbu^O(hZbT_%MssUq=kpdidO^|D>vO0} ze=6;o*WmD1#?SCgEII~&Faysf+^i>fdLAV!F#N`i8`G})H?zKsJ~NK{($bN#x+6Iu zm?|H7wa3W0FbPGqa9{bi!T%G155udro&9pF43%VmAfcm{FkTA>sO@9BWW5Y)uF&%` zmDt0`WeuYe8)`z)v_5=vbB$aZh_zxu`}~%48#}AS^Z9@CujTd&|4Z4>r(c%;8;yQ! zmlZPEdybacl(y~iAz(G`nvd!`zS;cyms`Cpo2Otl+OBp1({ z|HijP8`mIXzh1kUnqG(^ric#{x(?neHyR;YmUf_Q-HF&xfx_NV%Ot@9 z^``0tMq~27mn7TuzDn!H29;lMIdPXewh<`EuF)-M9L)C4T`J3yod^gcL)vHTniu1< zd*6NWnfdb0+31|53T7{pl{$yTUTmAh3Km_C!y(+Q?LPzU-0DIxKNCNTQ@SrTmfZP9 zH^9r+ex_@{-bpDK@3a&$MAmR_A{R0|4@RP}N~zH`(+8v%5=v_%zd*2XwI`gjs#oXN zjm8cTwE|B|Z;(k2v$@1zgd{B>TNWDgCj!AJ$4&d$2L|kaz)zJ52?cyJ!V)#~>yyT^ zm{EPfFH~#9c4p54yI7T^K!5Om zf=}fx2HlYEnJQ~HGWUISn9LzI$ur!wD;B3gbf)qX)gHz$_i^&=`Fy@AjV%HXO$jL0PLg4+826-{kBFyF29hh+{4v6}Y{wQ`sZdR zf~%`3Ow{^7LZD7P|5J@$B5k2si;&) zQ6?tujURd8qt>S08^*2sOWE?=58im|Q|sUKG<#$5xIe#U^W|&amtOiqpT2#%f7tcP zK9j%vwfBc9i#|VWav;TK%lLoYx$}>s_J3CUY1vAj56hz?Pr4O0G@O3 zi35R`Ps0vHMvi65IuRF|KYy|pi|X&b`v{wojj2VK1*sGi9KtDJ*@M6_V^(XHX>03Z zNjTxbEnBuMV&}MN>*EsxWPbJfby;xId7rPWJ-C0rwc%E6y);jd9_~=~8xpoYHlkjj zsPAKH`e4qo7Ydwv15W?Ly;Wno^z`(qC6>s%%qF+?KQ)6;icW9E04ny7chii>?0q3a z0{lLj3FO{(?iwP*K6ba>!c)D>YR18<9T$+X-F>Fogw8p0A z`lC@%%W^$t%-D`>Vd9i2bH2_W3X^^IQp~mu#?UK98m{o}gMxyV*F{z)M&pHgH7n~K zOq%6%Np-#|8u*41veR2jTwM=V6edO*46izr(X8uCO`X?TuaVET8A*Hfi+eRqAL^ zl|aDic<|>$w%*}j-@(Z@|8U}|<&*~h2T!~rhFSSEKfU)FzxuAz>9zV`Xv`;0nzRSU zmd0aQ^UatVjQa_vfS z9B6GQTO7}ACFRFL<5 z@7?>}JLleW0!vGsJr$Rh2?9?DOqnj5QF3 z?T&ZQ#!5sG%5O&e{(6L10-#TS;$vzQGg>W?ETgF2kx5@I=ks+ngBuL6$yBws2a(j> zm*)9=KH&lOBLeJmr$GC+xm=UL2m4cL&_&st)3Np^f(gOpLHMTkuNuqSpw}z9x=79A zDNutx?#*=sgOe9}%$#~NVDZ;ieg*M{6%G z&6=a+I%%`n8qVQme+JS^4+sd4YO1kV705ih^#Je#p-`K}5)zBWN~~sJJ6m!?DAXFk z{}8)ITn!RA1k(g9P&Mu&fhBT(MkwNdRG3!%K;7aTPDR>LW)&$(b_)>cNsOSU_5m5E zBD1JkTYWH0t(f4#*(n?r!|KrpCA z2!R9J)5|O*wPM@@QQ{}$h`R#=^7m{7Md1||x8^=vb>?s@C!Hgtn7s%stWs~%T%mNC zqi4YSE5UJrYCZhU&$eLjYK_I}mOOPs{wI3|#^^Gaw-xtiU*Cb%z<#D)*2URDa5y|Q whQa>GnJ$$Twb5%%?<|(E+$=(-WIyin-?lDzJAyBs49n zm=Gjq2@6zmR&wUeLhRl9oPF+j_nmjgcyEo}TUo62hwuNYYSye-<;~MlqKg-xqF&QSN`6*0Ha~MC*!#gW?=`6+{{N~4%%w>(V&8^OvUSyIyXKrj@WNx5)ev{=z zQ!`y7L!Lc+d$@OPx@2x{Y$m|Pb@{Ik>@hOc;i_Huvl9-o!1$!H857gebM)U2Penp? znSNkm5<7NS&f33=VdL*II6eKf)#qjY{fa-8_c^oc=PY-*P_=1G>=Wldg%?&o9$oqP zkJ#f|c3TGCV%xnkmVI2Kn)wv>N*C@6&OXDvOGT=Z%JT2O^l8qwsWVD4OHGa*9#4y@ zvWQOJ6Jw@Pb)F}CEl&6S^^vX4RN(s$^rzw6>xTdQ*-`dUG2Qs=%XsI?l)rsh>iQAB z@4sSV$_hK(Mr$?uIVrHqudVjIsg38e<4mfGM!@48S>?eajMON z1q*Cjd~{Z_uO#b{s>dL1cP@=XTJKc$09@b4JWO^&qBCE;^--Kap|?Jr*QoxW&|tYNUw5Ftf24ApcG%%- z^A`T{%UvfYr&q6E4-S+`>yHn0FS)%4=L=&T2;)jmi@--xhU@L(_`^H-n@gXZiZhr< z(60)=T${LX$r6R%ew-^8f9XtuUWNE6?_IgE7jdaCVx9X6RZT|wE~bxlL@3K_N~|`h zX)4tmhqgwTP?jp5|4Pkv^tPsm*!qOiUjwCq^3G^gcX$bZZS)bbyfE&I1RO zwo3<;w-opd4%He(7&T-pQ7#;AaEO`DYJF(y3Fn+=y$uf2QHhsp_1@lE6|NW)Fg4yV zz4O;!Prq~BP!<|^HJsn9rR~kl6)EFAsT-Epc3XFZgXq*hni^?Td13sh zueHc1A${cY?J=yK*WJ5!uPv+h;Z%%%dg!+wP0bp$&GDtA2!rZa+rHfG-7PK~1QnuG z5=tK)z9yG(#U|lW$!FJljV&$Pq@{}lSz8s+7pC)R>azG_3yNz!O||xXcsr zuv>MWc>E=D{Vhd-G3$Bta`N&{{r1~$9pzznqyi55^o;NYaI9FdA}A(vswU;Fv~5x1 zRCiLtK)qdWm~L5!uJF5B21EVY{H2MhzIIj7>U#BQ$rBS3O^uB~*)Gib{VfGy_2Zo} znc?>1L$rBb{yujwYtGU(yd}jq#JqgPii+5ar$)!eJKt?|xO;bqC*}3)*Ywupm)A?f zbulAkIVw#*BZs6Ncs~y*l&F{;johij+u(c7n5Rn5&+k-v z_V9CKV?~rI-{{Cl8;+~!xBoIN@RsAZE`9m$ZApI*xcomh+| z&8w|dT`Dx-UKy#ZHOOz-b^q2%jxA#A`AvhpxH4eZ3W0OxFKPSwZlmJavkz&V}ZIug=SjXABVef@M@!*UES~3Gm7@^V| zab3YaRhB(<$}eBOv`nt+Yt9=iKDsm)=g-KlF4x41iA)a2-Y8OL z5weZHv6wkz$p(QoADw`bjSdr!!em3k@!gsPeMR55eG6CZyi}iNv;Nn!jy)OUhKtwl zJLwturoX|POEX%(D*EEcFTKoHr$%*z28xgN_4k*#Z$5fg#Nlc>T%=y{!`~{SR6}v3 zQ=WzX{6PX19c{Rqj;ffzg=_Xil0(9-sDQB!e$aAz!aqeG4BsH9tCFDS)ss0r<(F;N zl(UQsxuYb=>G9*o1NcgqYLa32nV=gx<-^(9$Cln*%)I|@fwru$(Nl{|(sQ%h-N6~3ZG zn{v2^(cIbT_erM@n~I`@fN9g8V*~9$p6sXeaNdr}D8J92Ka;cnFsKQqv_~WDsZOB1 z!hSzVqm0pzn#9Wynhui{JHvY!sfx7I;I(iKwj79aFq8^J2;IrEwk`SVguZ0WfsJ&O zg}PxAKE}R^zz1%*xk+1iw&};Dhx|Bq;mlr^kcc<5_d#sS$vIgOt*+Ym&aDb=VBfh{ zKY8s@S4p=UE;OD*%#T&QawSc8^dR4p>mk~;3ubzJNNFD!BSV)4>Ll^K5#o7 zjMOAnyDsj8%e4xga!9g?>;eDcPY%CN9Zad z7b3|%`^mv7y@rf*-f3)}vA#Smvfj?ZJ8*}xa&mXKY~9LhSa(1@rPIpy_uHXzWB9#lA*fGMiGs=xo^WHm%;(UM zVZRNb+_FFD@neab%h|ieymp*$+?nxXZ1%T{Q`uvR{*Q%d%JQIGqKHEBCeP zDCcPG?9}h5h|nqMY{<;?xUk>g!`XsV>#vVFlw*SzEM3Z%o12@xR*Sq1o6qsvt9@{h zzGH)(eyKevobm_bvnCwLB2AtF*SZzK@-!+&?zdtq(ZGxZhg% zfCm96Ec++&Xndv*{L*1G7X~xE)V^Xh!@T*l^Ve#{Rp)3T{9P#V)RCsrH_hnd` zO#1YRh8{+0ZGl7A^LG-TUR^gziPpUG^}5FeL|yZ;t9%jx2dhu+?QbngYEe(OtvGh< z*xHR7H?G*Y(a4#5+qP}lC-+`ov}S*6QJ{1}8dv5-sV^2#h;BS-Dtql6PtWs{so1#N z*x24ojJ5_^+QUIyn3$Z5DjGZ?tQsyCCKqUd2kdbHPwXOJCR{=Y{^q0NfN(9E;$dZ2 zo4A`Hj5x`2^X5&<{;9D}t`#d+Ubr_s2{(Mga~=2jW8vJeQiGj}(FW0K$>$4BiHUJr zbd+-s*O^J*FcIHdBr<&^rJF15%kLf+hPtY?oVm5(?6M0A3VM=GYB~FGYu&)3F|4~( zzqBLi<%NVhp{y!tGAyv5H*E<#~945q516+sTWy&VB|tofd1S9XT+r{7tx zj-1 zF6gbpL#V!p^Qt79UJS2t;nXsG;iXoRmzOs-46ixR8t4!%^*~^6_9Z+ZtChVDQ~euL z+i~QR*pqRluj1>(r#RG$IIms1R*`I`qpvYFFX?0J|PBGw1k#i`IgGi)@pcGS)l}6JMPOl$$ocf1($0`qA$)GBW0UO=7@* zV(;8GCK+l?^k|$@t0h1%Iot9R`Ud-z3^S}jmv#GuI;vL45@y_S3* z-64Lvp-6@~45qBBwY}Y^gZs#Ip(3J{sUMKTrB{C}5HSAe$j~w`&9j+m&+*ubt@h#B zx%K-ElziZzrDq=YI`uc_g#s807F-;}@=(5m)wcNbYOeiYg(3l>gk4NF zOOf14#UPJJnVuTAn4TP-Nh5%Mfy=hItmQt!!NGx8t&(vic`*N;LyAe|=Lb7AGt$^} z5jlJ^ZV7P48!}XYyPjveZiq-WYYiFO%p;_0zrS=a!Wb*v7oOj83$Z}2CO)h%P$cHj zQK#@LqkR-*u{EO!akH~GyMBK0K&>lqR7b)1*j4LBGaKYFt5&V@(hhXcyck$tQP=(! z8M(V^L7<2xj7t`nci{7Fu5h3jQ!A^g``lVx(E?IME^2y!z_*;8CE|)6XgKzjNsHt% z7>u21p~1mVv5|Zan4I^WeEsT`q3#6bou58^BL6o?4kwQ*vz+jo>jps;d&9`qG@E{; z`2Kp%S4O+?lvr6=b*EaCpPt^FU{GDU)0|5qO$kn$@+~6{ZKgty4UPw!v%LgEr31a$ z2%KcECCGI#&$}SDdB0J;T2D`puZTlNfNe*Z-_UOOriH6_Jw>V%q9=%LP*+zM8T=e6 zYWq-X$&@slYRT)RB9U00+^Q-?;DStsy!aDJVNIJ(0uB~nIgID|6s#KVt_?lvv_u#9 zw4){=g4dz>y_b)Ql!Dq}nM4C+Sg#aCym~;yU!*_oLJ%10VMM@(q;8y7mdD9s+PLf> zVd)fmN(VGGHQBdsj}W`FEoq-H6O&_{YMS+Pq#{pX#UGllA-q28yr&Uuy|v+epooKa zlgxH0|6&j$D-j;lOORITc2~!Vx-j!uDlMr6=uDp+ss*g8+8%i2F}M@LeF}ESyV%8m z2+|t|0WBg_k_@9jKIkGBL=siAn=!cDvH#OL29tlOFRy-Sns1YzQHBRwXW~bE$_pOo zge!|rcqaD=xM8!C2hW{5*HIl8nlauZDEUBuSKdxs{MI&!`wttgj!R<6ZAU&i4I=Aq zL)1_R^qh9%L2MGdxL+~Ng!ik+_*$(2r06<&{K&6w z-M(!mQ9S)Co*3MxRMEkHXZR=Y@JSeDnWCmWd%La1I%ehwV7WJX1oc9s9_-w>F;MlY z;W>{j$K`-E?2#=9n0)?2z1F1&J6XNECZPOzp#D;dU`V z#Jjp^44^^T7BW?JCU zsA?zxwtC&a|CF2*Sc{J0N7vNt5Srkb2eO%sJ}~MhZ>TC4A=T)NPVFguVbTZ>AQ0U$ zPmM{DI1mJq3P5^FiNav%DYk>*S0}!Tc1C6aR;!c_^85&QYH?gtv=h%nuPnsnioN|R za0s>BQVY+8=WT@CSx-O%or?}c3rpE()`HZ3woj5=!nYHAf0rC_c?}{@w zlB`F{`u5#BS`(sfh;^#}I<|P--ebUpie({^6-h>#Hg6br!Bp;!m`}xhyg^L%PjTN!cCp4CPmrf|5H=d?jETCl6%R22>B>_Oi)0^wWKVHF`Y;;G zOyP+g-UZ?&4oQu+1-Zo|)X4Q~T7Q}g?55qJ7#KzfJV7|TES-;>23Z@{Zww4kJSebVv<{lLxr12Z z(sBlck)Tt=ilp@3_h^EX~Ojo?9nQW##!e!M%W zasw|<1nzgIY>2bQ)zORW+qTs(64g?se(7m13+)UG4UoYaR$zCm;*dE;4ysDiA&L&v zo7OKC;_Zd(9uQg#Ke>W&gGsci-dg3@Ps}R^Wm&Yp0Azy@$2)*rb|Uu!KH*RAd(XM> z=bxXAWgto1shSvx93uD|V>ow+e6{FC`|@+#t9B`!&b!A|)m0tGOQhjYjXq`UM~)t? zczR~*Zl!03U{iP42*oh(H#m)yKihd-5F9e)x0H#Dm+uS#+7O}@ zkii^X$S56Lv4fdcFBqGS(r5u-PEaes6h$e(BrMU;&`<#hu3_8GUf{zc`t|EqWG()H zSWmD=8I`dSV8{ym`1ApBe1+{(kj^|_&My8z{RvW@;3(B3J#e)uu@`RE+YhU++M}lA zwNsva3(MDKKoL#%2UwXuz!WSxDP$fPEE?jZ0A#t~?l7bIsuN$7@T=VX%wW z{(6Y`FVIxx_$+;{Cc~a$M_6^7PG?=R*-n-Cr{EGoKD~C**_jO=qKC+7YG!sPFfdTu zdso=gr#rBZI4c-i7uU_hOWZdIT9&t!1j&OC zlZV%q9|y7gsJQqv5wS+;gWllBh+ZI$sdBEQPX(x{^!`FYy}B3Aj~qE-$f?0p_*%O( zWtfYJ$)`Ni!C}UQojm!>Fc)d>%&YoxQGifNZ^rmOs~$Dt{P{O5aom;7gNldG5D1%E z$v}h{ViW+6I80&L^vXGd2bgi?%9V1EkN!*M9@_sAz}!*d_Md;AzBX^M+@m9NAMl%< z0EzJk7RhVy;hF!E*@}weZDJ}0fr>5x%o0@tYRXK2jj7sE_1+w&z1_42QSOMOKnn_} zB0{kWi(MWpcIR)$Sh#d)73^r`x^-bT{Vjkpe4$5wbYJ`*>MKS6TAB$c*$qs1JXGp| zXG~0t!G2XKC)|(w6KC!eWT~*E=9X+5H`gOl3z(SH7Ta8`+!TXlif)oJ6<^5kM9%i) z*)!Y-zOza7!9g1ts|I^3DJKsdcUeSB#p4?7N=;s%{8urgq{JSn(m8@VH$Dsu)LbG; z=Sjd)tXjQVyZMmuFQ($CW$5K_#?7-~2jF72@|2Zn^Nv(yf}{61h{N4`dHEk3Zu>7s zm1Jk1_`5ALSJGx_D$W`(`wZwg{2wh%(FtZ=-|JzaNmnOrse<$9(IbNHDdu4n-goZ? z6ZD3A2J}|Abm?h|Wp}u2s8qF!2?81-|8cNd@NcKxScQ-Sx)~jn3lnA0 z8mr6%e!3@nxrK{=!;i-AkVXf?g2KVW>(wSksn;UvCz!QLfz6bFE2%)3f3ily`Y^Er ziAD{EgPq`br2>VcD5vD$5R(>}jHkc_jzxR8gDK~5XuV-z+2$8_i`T4fHvbt`zq3_Q zD!=_7YT{?he#0r5J}#N5;yIS-qp*O89-!@qkgX7{rpwp+z^eWXiXP^l-z-?grJ*)H z+*^fE6@R&Qe?_FStmi(94mqNlK_Mz$x^yYr1Z51MoJ*4L-n|nvcA2?VCZ@VylJ?98 z@XbpGw*Ug_#~*)W6GO5gbLfzxe3N%De11+rfuw4p0rFLDt?ZnJh6Y5zF zaO@;*1zY=sjEtv%dD|u}=Md?@tD;({bmgEPa@Yg)je&e!-?3#|asx(CMG5|&$XO*djSm<0jnwXXMCF77C8j=U`6fVJKB)ER+0twpr_a6lZvr*`IAYdVLX-Cqj zxigo=WXe2KpEb6vO)^q^ePeM{I}o3^C(-99rRo8Dcm|^!SJY##Um1A@u8d6#`R(aI zVf*qICR)kK$zgz2zI!iMjjXIB}h3|JDLs^l?=m1^)7t#y0o% zsLND@%Y##nHy_`pUnzlPGf`t2h_$OG)x7;Nz<@HUg5}69o*=wOAOI?FKmpzH)cbp7 zv$qJuH)}js%Y>2DVtYu%U7ntrRC#{>I@K)!#Kb+3iG)*nG%@lO;MKx9A9oq;%=x{( zzG+2ew0gwjVuEZxoutp5H2VJvDH%Hff^OP4N99fF%`8)z>B z&G*F9({lj%J}nGD_BrqDCEqS2%fh^)Ja^0r2tXbs0ZQLND9SfxyBOKkwY6PZ%yOXE z*VWA}^aG-!`vQKIwwC1Y;sXCOVKPt5tJJNC!l8)%`?YHpLtVcCl4EOPm&bKR%EZZP)sPQVM^rSY4#v&KpfAiO7qwl-rm2jpc88t+M za}7fxFtjS{1t@H{(3$9KcrTfiO(N@{*Te~+j+CDo1kurY_%Sl z0GtQs^&2-JMbSm7Z`qx_cJW4GHSD9lzCM{d+a%3LzMM-HrXT@V)707;3K7F#Tgg%6 zXw@%P&)&%1+cUx%|9Y_GatV6!kf!V|7$WK)54r@a9uHO+2{R`cXmGO6$B-W%hwdc~ zaXKs}V@w?79vEPHtp2LmBi8+Bs7{s`T9syFMxvI2{aVi3qyr)qHEfO}HSlIb!C&$4 z;ll)FP-6+693R$48ikUhpI&7ohZq$>RpKu_LJ^2_-@bhnFF?(K0*DW3Y;24>TQGZ? z;OjFE%suq&n>Rc5?^ghzf8K)1cm(zikw9#aFi2902NeWx>5o8YXK*TX$D)B4s}z+xz{%;2eN*f!!AbtM941j#xLt0pSrh)SP#%@J6FtiAf|-CuD2wjVVB11>m=B{8tOkxRmM`?(r+o9$qhKX|O*AUe!_mFYC{0CjAWo zyYFHInZ@hB{My zQ&CAtY4r(;g;q_M9{JV&F#C*+_frw3_|Z`!8j&I?_m2;DhJvY70!%9bF&07UwWBwF zNp4pvDJe+-$Q~51>ARrdgvaB)y{RoKFL}d1X75hN6FCcn9XV@*Kf#H0)bX$wL^X7Fxc_aser99>4itQnS3iyFh?FBw#W$Ns026vwD z7)LEd1*KF7LHs}20r>7lw1eUAW8Q*f)OfelnYI?oLv#^%#mXEx^1CYw|9Q!GZ{A#j z(t^ZKCr|##>M&u_U6(AYX+P-YdFKug4yPFX3MxG8jctHW$4MH33>9jG;2-A9Ys=jp zh^+m(sa^sO+ZU;(**4YM?Fg(tu9~vpbh2r4EC*87nOC6!WGE!T?6!;ddMgR6ex&Y${!g}3~^!M3U($4?A_JC~PVwhUiDX#S3kr8VzE=>)TV*u6{6F^}ZG}s_it$HJ0J}CrlK6;}K1uU@D_aM=dgIp*|>G_d> zfB^or#3bP57(cs?t(~0_C?M$fHRZMsJ%><{SMM%FDPH!!&7SbZ?!R(i$2`@{tLcEp zPrzkX8|>e$o>CsoSQ`YQfRl~w7#Lr@(%_p*HVPY5wL-T?5uRdYXW-sI> zl=xBvZXXL;Wd#Zf6^tAxTHqdRA-zLMYcDD4!3fF!JIqQY;1?!A1Tn!K!vM>F(1#Oo zbV!LhG7OWoKp8-;KL+&*#Ns-W)5~YJM3Y6e2l2_9dd=iClI_PW0q7)=U)^B?PC1Rg zlpzMNivjDLflvY~z{NnFRUFAHSjndLc3qd}C?AtsM7dl6H7By#0)PJgB~=7~baSmZ z9{?!mPmV)3`P^=arKxEw?OYTxF50Fc#oxeh`o=fI#QOpgU;=s%*lmi0hM!)@^&|yJ zijG*}eeR=TVq*U6l+@?(3xwjyI_jI6Yg8lXuhS~Mob*rYHw^qnh5cHVhfig7r#?9{ z3^~P-}9T4!qpq5LxCE-@#hl+h!4;VjW+Ikm@V=PGoK2vnJ_d*7{_+584?4Ju_)M=43p2LANeEj*J zADE`3mWpH8ypmoL@KzJ9a}XI0)r(RAfk||xdSEP+B;SS#?r=q_l@Y_DN*%lydN|^0 z4E8hUZpFv;9+Tpjv^O{<<@8Y|?UjBj@za|YxhrA|ya=h?X`Tu7-g;6aFWJ!1W{od= z-10A%(w?}G;V?OP52fGUHYNJ~ksJ<>d;XgI+@VK}IewFz--1Irs{N6MT0$0YGNaHB zAB{o9r?BKXKAv@brhJjLEQb>}s8)6vdJB}Bh->%bGg1I^MTO1OA=J3}*$&_fP3lcE zYxPr~IDV=!hfyKKy?^&k6dS$_rP{8)-`n3-LJ}*1$6;bl#IP~}?f?CDV9`1l8J z|0OS*t*=)Vwqw&e8pahfpvm=1bbxFjX%)3HsLh|TRF>bq-4;XP(Kt!6{G`OiOTqsK zzj$!~=AE;dqR%FytuuRc>pxc&)y>wh7IF`;>z(Q;0~_XpA$Cl2qlycY>mdzX_ebA4 zmi_L2e(1}13grsF-bwuG#ab%eFdg`j>Nbb!Tb~_CVuMmm4xF4>lRJL%FE{3x)}3gm zE^PeqP^zw$GeLh`qzY2gB@5^#Y*Z~m0isp%sF4FQ3j4Qj z-?l?sT@Jd@0>*gYAaN!KmSoC*-zB{@33-M!$YPJ*T3G^#LpeB0r=LKFIi~FvG<%Ot zbPA#AAuRYQsiIGMY!QI)3zYeVL7V;pKHiJ(S5k2mavaJRsjQ}Xb@Vs_{SucMwEo&? z#xQ8JA>;b~2&;W$U77i$0MKx?-n=pJ5tW%P+$12=uxVbE00Gy3h(faA#M*wZkLY|_ zkNempG@&rF+&yjU7^Kd-I`U~gHD-|Tjb+sed_?V}Wz$`tS5hWcWZ2swACewOrTnoIuM(CFibPyH1_QeH?1}qKe1nsGkfE43>#j2{nbMP=8Wm5Y^Iy zM3*9Qt}fvw7rgX+p?@EMR6;<~Bo&3RS4g9ey5&}}TP`kMYzVK_>0E%CdgDo;bJbrM zzqCbVu=Ek}ADhfZqGoIko6`>X6R`OK70B^05rSsqQ`7|jT{6GG3EX7UVXS8ewj}U~ zZKDgH98zR*e55-E`(ljkcAxxy@JgN(k?}5`-4KqU3E^1_6{CQlNM3{T zPS4X3`n2dp9jSH8mp?{~s3{=PBSb1ZVlu|Y&)C}YeRviwSnzzz9~IkShE?F}&-jL8 z+EVksx>@h`x$Zu#2=o_(}rPn!EHjoHyrgS3bx5U)DYZmg%IvD^RlW z#-ENLg2_V2lg5_&zY4&O#WNmIsoF>JhLcmCcH9$NMh++QzDw@m-6Z`us)bWzStMC> z_5o2upj<>J2053an53iEin5VeYvfuN>Fc}7Ihe+o{~ z2&B|l=ah}_GrfCXm}Xj=cp14#Vu-_7`*ze<#NT=>`P>EIaDTm8Rq$55TK^2o!R^8u{`9^57m3g+EApBIpnlZtnsSEy?R62ZQZM%d3^t|0F`{9?{2!_Heh;8bD%!M>UR1`mYo$6T+8 zy9E_`vVZ`>j`X=`Li<3A-)jbt8Rdqh^+Aw>CboiA>(}cQbRsPp>_tJAk`@4x%90>a z`4sc^eeZ4pw}OR?Y6r@^#b9#3-PIvK6OJpir##CxXWgu;T*ZLf1U}RXA4R1k{!|xB z!5JN~6Mrwp=em3R9pgw~Cb_h2y=D^AC84oJT)Q-N8)`eEH(;RB=Xx^4fJ1embjy(8D}5Xb_Tiy~VEn4cb~=RQ$Fk zyHoq#qisMb`@UR1G`>(JrtH#$jFl-mHRyX@`1|ZDYcUaY|N4$0|Az0srazN@ zpW&6if8l@FK>XK{|8Lig@s0m!*Yf}5q>g#(1T7=Ku@puHsYuEL9HwkYnI$YNOb-T% z<2z=D$%Eo`a?K38|Kcu0y6uoJ$%3ctYFP>u768f!bDz zNt1Pvjg9RoGJabCaFTiIPhp1*pn*#d>PZO0Jn-KmZ1;AMv(!Rd#=^jo}T)e5b*C-twp|Sfc>Fan+ zJAFICE1V+|dR;y6T46OP?#P2~Mtc9DVClkzka0k^LE6>7WE;zfc*e_d-z>vog(ijc zFRvD&427;%7u*GrC-mdPhnvv9B#+d~vRBZo#Tlu)*|tmg zViR)5*64rxH zk(C2vY}tMUZvD_6WWE{uq;I651Ry-|Pr-4ao5nD%8bz%G4Ts!HUjeqY}+! ze&+!8+DEC;v9S*H8z=a+c6U<~q-wt%Dz%V@P_H=njE>r*7@TG%O*-3(Bpei>7etPD zZy&-XX@k(2a~j$j;xY$!|7~aZDWd6XCpUKq)%uJ2Ea?6gnGQzfJ()hmatex8k`kZ= z-Sh6b&(_ql1#Nqh9Ws}!1QG`VMaekLsMvn)eW;Jg2_FF0Cn9;(l5sv_OTU@yp1;#x>^Op;poXGZ0H z6l2ySpQoTN{Tu>=O)E?-9tm@xy*t7{y17OdSykO1Ra8~vI>Y7 zJme0CsR=4wR$Tq^@h~a9(YnaLb|!zj8xhksmBf6rQC3>$;=KcjP!-4wvAa5Kto3}- z_&Pw*y4!!r>`{xMAE!Du+8B?3^ecrZv8ksg8VZ#>(AGk>1I38=P%iI)ENig4RuLz$ z{rKB_QvrzF91m_+T$3WkGJB||)tQq+evoiQ0^x-L@KECbdO0Ei%}#oP>0_H!IM7x= za{zSxey`6UR5eLL=pgy|=WqA9DQN^9+(tD$?d>yN^58zJS7KQmJKtAaH(W0I?Nc)= zl9@cCwfpOxx`i`E=I=lM_j4+~fAYU5VtoJg|GUF6z902}^Q3>PWa0>$I16;w`;z?c zsaI(1m37}L60?W?PwFbtpw7My6o)0%f{)q5K5+dwRDzBykam9mCI0-ki?*qV8Q>8O z+E?LENM=Nh2=G#us#*aQZ9zN8Lm-4!_NSl?1WPm+R9= zbtMOnLfwdfF1a1lIctx;euxr0D0zg?G7ORNKi7n)FOf9OaMLr=F1sNE+WGKM?rca? z50f;PN(SIV!|)&F@6=3zbMhDbi?FKR+edIN@1^2H`~3=f1_P%jwmWSh{G19y_IpD{ ztc)15$TJv3pI9k$LD0sKoKeaC{XMQ26e#o|e$aL0{+sKGTuPXZe`VWj ziNTiI1Zgky8&znhm}wsHBu*U--#a#K%8E7up$(T<#NKn3#%W)vJ8mSj>UXzYCE zhs#KWjxrqakm!KQ3FI)CEpj0BH9lj^@t4_&+TjrnqW`NMi10;_3F^ei8b3XxX!6l{ z%0BcV^Xgqn4rSv+wM4NLBu9O#&~39YW9O zO1x5LVjZvrCag~p5#tj$iD87$IEhyT$D8$y>eHw$86SZMV=BE{`QUf9_M6)SijjdO zXcw%fY8QHSse`O+gOliIe5fu!&HnhX2xFHCHEMz8AUzU=QxXKAy`yx4K0paZHe9g$ z1LZnLwXC&48TR8Hz&uq5G4inQX;=1B40b}<3#FAqr-h6YIgpQ-6JSh~7z2jKO zaFt+T_asNC$YVcdE+zvhM^{S`pa4M59X1NChK7a&I-#Ur1=b5I&F8ljapsVrcgcg_ zOJmWKB_@M#vRV}U(MOfPHofav=iFy*2>;Zdf^7Wa(PKD^@riW|jy4n`shUW_Ay|e! z2I^2#BvvLAF|x^c03WnD1TgWo@alVi3Dejzt~xD%(8!+e3*T zZ++)}@z(!e(wOh}_P;&x>H8OPr@1`Wd$4zCkOfdxxO!@0q9FsJ3LYYBfd`cUK1$6L zgD#{WJkvIX=IMQ)Sg3gx!X6?(Y0IKa(qeuIM>XCuQ=E7qJHxD3Z`G8V|M6#lV>xtq z(8#7!o>UJd0(ztUfCu_%p2$spCu1>pjWAAubI&`-Q*18cY?to9Op3zxUrk+93pjJB zNE5v^W$ zvqeAKoy*zFVso*+L0WC@KQD7@j8R@~0SAMHMKm!L9hC%D5jH*)h|DH(J9c8z9AKU) zlOF_U1yH?bd<2C8NSOt4sT0#1fW=LnTX90iXPHR5jH_a-V2LtdWZ z8BsR`Wd5a~N741cE;Kn%#=k)&8o}`qCT0bvEMD%v^q*IEy}P|8hm$8;*z@~szMNT~ zXczyzW*?;c=*GXjgB9y*F~C@ivcm^n3HGK1CDq%WLOL_kw1m0^`r8CUU&B@$?`)41>3>n^>Hl{_-g-X3|6)U+qI|FHQIj(61eFa_DW~72i@ph6 z`8UjS{N=*i=Vr*kNZ%PkoFxM>WQqE`kMGgl!)n9sZl819e?`MEQ!C1Xb?Y;>HnBEs zw%ORQjK%GU)t*wco*`*RKUbyU6qrn$jwR6_8adG1x?tXxFqbJqL$Hyw@ZcHtfagOB zND5dY4adF&-t0_yz7z$w=AuANs9mTVUKo5WDqBjEl+YpFZ9N-o91lyPK3}(keJ8PH zIZe7G8j#NW{IS*Jb{)&O>R8V4y>7jBSy5X<%@;Rqc0F47`+&RC z0apA*ty}QN>pg1Op!|r7Lnn?`*&~|6z`x=5*QCito?41Rf_Yo{ zhwAHLp^udwvMu&Ack)@urrT`OQj=XnNdw7sRzF=++lql0@#wuri*J1zh{b>MZl0R5$ys#z|9p?MT$hDH>3BWCJp6U zn%nY+lM^%Mq(CGUhIve2l(_M9LXhsEc*Ilr0R%O-XFis%`NPsTFKIx_*4#+-)cp)$ z)KQ*|8(>1;Im}#n^XIY3Kuwszb)EoXi-;n<)M>H;MEb#RauB?Ug%L!~ue zJs%_=vY2Gm*xITiVA*vE+K4D&oV*42@K><>`yfry2K5z!YHrK*H5$)u>z4*&T8LJ_ z)iK@voULvj-r5g#$jgEb??-hfI9Y=Rtbks-vtaRJUR0G@09APxt=SXbd8hgSoWw

s025lKomy0usi7-yMxeJF8e6{?AzM7a6&;`_VYXk`gOr9~SiZuu?^T;Vzg z2Zw%i{@+LSbS;!y2%&evGRK{V9@J%dxjo2MYsdggRXK&nG_r5Fh?yo8Q9da9?Cjx2 zu!E4_Xdz9~cIIwDV@C_7cJX3p0dIYMeF*Bl+9aqEt5aELX5`Ng!%6Y@s;nG5bcSj+o%LjXO z0k?-*$-agw{Vx2r15c}=gTMLbpTDB4my~Vk-NenokvlRnavx(Z{gC7aSGR(NJmE?9 z#BVKj~T)gTTs#FgG62%h2IeLK!u>>tT0X#D+YPws~V+WBrX9thc>bz*~xbUy_q6f z&Y1dmQx}rJYVRX5?9`~agWehc*NA4gU# z32M}ZJNpV~g%F5swz0FnU8|K3oTx|RA?Gb+H2_>Xi-nx_fk^1dn9My0Lg0)y#F;dn zF#DMGgBcWNzfAY=#Pv4Ki@wrThyEZFGcz6p2p%Mu`;0Ot6EOnnB%g_dxcFX>z1o$)6O#9nXCjm){68{E{ITGVVDwyrVRmC^e{lB@sT z-mObbSQHDDM_k>x`~LCHw0Y8{_vf%PZH33DY@XSHvXemIb>SY$)k4dv1R6@Z>XYz* zFy~TxYHHj_OCmd03q6S*7r=IU>5am#Z{z0v8e)Q}TLmX$E%)h&vjQ9%khlUgJ%)!^ zNFcel_>!?Xs>lc)eH-Y=%9q7!wP>~o4NOB8eXd{}Y`qIxoJFTXr#(D%ykJBtoXkGN z)cx6NBCogOOWGK|pjL{U1D>xXs9 zV3%nBFkVax>qnq|5;mnZHr&vFiHOcvo`trgu%Ee*@%XaZN4Eyj0w62b}?Sh5J zk;`MGQE!>wfdE0PJ+I@$rlU|6)`rhSkb<_^h|LFdmvT2IQ0@1`^9SLR#JoLdQi$i> zFHO6fyp)UN-CT4x$E5KzZCPhlG3lcA=J`m*{5k>C_i1hi-#l02)e&3Nu&fL2Fd(AG z=!)n`7aj9f8NxC^EmT)b9kmzr~|b`PssCw{rNmZ*UbnwXnazN zRd0adbW_s>QjMc=GL{Gv)O=ufl{Gh#mW$##xsVK#bNs92N0* z$9j#BWkQ8`8c9^Qa1|;Mon{Qo<|2$xRgacHl-FxiG9m=Q8X?II2W@`JlS)i@+8qcK z@ij#Dr49!t*i$nvh!UkTpV8E!j>hDz$sNzl&`3)8F(VChlll1kdGkmM2yPrx+@feQ zPA51-1v_*@z+Xke^uYQZ0zRyPF4tn0FiuM60!~%!g(G*y2kz=A>u$Jhl$fd0a{srq z+i83CUvxb8NGp8~@cT}Fn9tOs3&?SkR?}UZr8a*yChHZxvid{tD66TRnuSB7;1Rvi zy^IyrG!T@o0tOD{n|6UT3J)a5z?OJoD~+ix>|!WeS4lq{5%IDAk_yDe7=Y}81XdV5 zNmDyWu!TxBy@N!n{8<56V^hjN>W{Us<`4~$<| zsl;dAT_ewxKHy2692l2%h9oLSmkQlAoTfyHoG*2}fqbSxt+1EOsLLb0MVo^%b0MjF zkDP!wVT3^SRMe(+bBTm@HDqeyAQHTp$POUSFTv7L|2B<*17lVKxMYE#1$l`KjzF?| zn%6=DE2#*Ay1hI|SqUzYs3IZkWPp0f3O;bK9Xyy1e2s9 z%RcKbXQR}TWvB_?XYWPomO!<&?%cc2e%-x3{Mws(x5VTNL|YrM#hC9h^~g7SJK1gN ze!GqpAz|It(0sd`qp>$QTL6z<@HA~sDq1z1RO?Zdx%G5g;aeI%Hq#RB?1ueA6!aOK zqSRg!qm;S|a}Gd9$57tKSNOXGCglElgNEH=3J4msA}#jkp~Kb4M%^?H=A(xwS!s@8 zemsNKa!*emrm58sAw?Cn&>`W~X}V$9#d|yD#lap|kye|n2mB#A_1$sedp+Yc8x~KQ z)DzTJ2+ZE@w?_xQOOKI~5OAeWOiTvd^yqB5@YW{Pn|TA-PS~7?3OXBt?GvMTAmXtWnpGC{Dekaw(h z5~YI|deLN6IgSk-ioK-^;U!JHWuq=>_{+?_YT75p?X&>`Y5@YAI9Uh;IH@%izIZit zVvnZ~qQM1L{)_d8Sv~F5HtT#6eANv+uuJhn1Mt9lzkW^P_nmJ#r1j!N6!WeBaO@Qm~d} z0yKXXv23i!VJZmgDi)JIq*57ey_z2`l~lQC;D|tF9ZYxycFrIs?}ej?qmYRiXVg7I z5>9GNOPhO*jaRqyP0a~J*-Ai!fjYAynvoc0SmMqKH+}s0@phmG>S3m$2KX0Dm)KoU z>orlvQ* zEhBmV*TZ-^W$-eOVCHnCq!HRXsC@Ar$+NPv>8SW}3AQ`c#K}bfKTB3P(6Fin3uyd% zQ%g$-P#g7Bqo<$LuFxpW4AH<~5s(@rb?mBdz^ENk01K6DN1uJ*tKQR^uT zU}h>PE)OG_LI=>L(fRxxD+xq-uZ$SenL!{{K|#6)wbYr8qsf6g8W<4fbk(r14Lxb4 zG)4sdB*6mnsO(DxF{)eB{gavr*pCLXbq?|I)t;b8l>hZ0pK-I6PUh9g0Sp7u!w3Vi zyNt;pRW!wHVNB6TD@=N0wI4VGkJbTtg*3JnT`w@!F&?P}ZeAS004=U@f}L?tT2PY< zT~%W$#sml#F=_qY$$dr_l0n8nhpnG#gDVPw+Px*vPY>aq$`q96THD$AA->*6 z^jF2SovBnCkSs(dB;!K!(QmDVCX@o2b0CbEoUvfhA|4b;h%#v3gRFh^9<@uDX6J%T zni4vwa(O)SF@MgPI~(7@Xj@XFUlYC=Y0~_DRX-Y}eBiy90beKqmW@{9CtQCYqpVaX zu@AK|I#UY)M(1A{kFe~6|DNSguv6*v+o$Wv8_k{l=G{9#45@sza+gvuC3^^?Gkn86 z4cpufqCt3cOW9IQFyE5~5KEvJVz1gTvQ-~cPMIP1l7*ag=3;R5HJ5v9U0&aJp56w) zuXkhVMnl}AB)qjG+9_=?<~JX@G#+OmL73J$u@jy&JAwnl7Af_jNoNvhqo|Pf9G&Pd zLN1l>&tFyt9xxl}E2Uq^GW{U^QL)F^uuEv?bG~=)-c4uceYhCOgiQMMN=}7*Ya1IM z`1kuz95Zk~s@?6Alh8c+!DIWPQR)uTt`(Rc1cl*wN*M-~;bO4&UBCAA?FCI8g6>>x z&`Yl4#r{foEM*LbM1$({Y(5YW-{;C0d4=xgY)VS!Ena^gdyZMG1t<8L2)^Hq%>p8H64&QX>;uVFr|5!Ww9iPIZVx%>>G zhXN^uATsV+E)25(VxYMlrB|{KTfY6_T_;AwAfS}uJvN2WsOgKtKgz5TEE z{>*>vAe&vY_hdndX|2^yXnk*b2LIO%VF-@njW+0q(Bg`DGIsBuqDfRluF-`8{?l{_ z{^j#objYm${2|aJfF31LK5)39l+*R;UhrTQH2Ri`iirBQol!~UnAGCGB(J%duGtFN6ind95!PBMP4# z8x1h`gBnh0ggf#!T^Kk0lP0DDyCxiHXfRDx1jdN4{`wi-&K(69Gl5+@hFJtRU>dC0 zOqm}ad5_7YNFhtWA9e+3&S&Dgqw4C?Wr-y zMEcyj?x_y(iN5b{SoUqs(QKhDE9}MpQ2TQ79knpyX1OZTposg{u((h3^O(-AY1iIB z?V^AvM@L74+o%vTg<@-AM(M{ZGt}~5eY&t=^$wA zVr^cgJk$&2Anal<+u($SkC7rlej*t@>a$zCVS#9%^IAwE;7w@69MJY@l$far6MeVTL9xKWYBP2hh(GMKfdh`wEl!3|$OKxQcm7s>JucBVQ3h=}@vL4yzq zqkr-O*fSUrnWX8+66-Fz+5BJJy?0oZ=eG4tsyikz&0Z1{AwjW3v0;yi1q&i5SO8f*{ZWbg8N6rC}*p=D?1S$C` z>_6~qw2U_xJe+X3h|jeAfbamm#T0-=)y4GW1vKAg7K~cu_ug-DL+`w~Jom`aqb@`) zNQWUBl0iXGVh5T(L@>cM<32^$P!fJ=mr&BWQ0%%aD@8JjeQoD2y4LTL_qBg2-J7Y2 z4}a1ZQuW0u9tv+?mE74LPY023*6Q?={XHJsptN4uv$HN$Y>0K1TV&X8^oe?%5~ZO#bt>5EWXA_4eE*k4GL zdB;$fLNpNxoJI_U~1C^=0fK}@GC`Dw#PQ7XPL%-h*8tN1r+^sDEPO*R( z&hM|F5pcd9Y-uo&*%{D?-1db+}bce7Q!}5G5XjZc^49LWi zi5O(GC5O#my|C1hry$lBs6N7>3bh{8-cQtzcC=nC?dX<=V>6q zy6f>`5cl@ z1AvrIZEr~$QIzT7zXojqrLhZYGbWum^Up0MKcdjZNY5R< zaJtVcuRQ|qpxBr((^*a;!WN|SfH3SZ%As8gHXIlWCLkk~D_2ZsywduVQLm5p&VKlv zE%luGI%+v_)&fG#-T9bHRUe9~C)s(z6BNlZ6M6lJ74rXy>9^KCx(fgW%#wR@FUXG`l zh|Hq|U9El~12Jw_>8(wIbTtJtj2=C%W}n?~t>vh_$6bF}y3|}vO8UXQf6Awaf4!yJ zieOU@A3xqVmrA;!WezL1U2^?2=Je8-eNK4dPM0<|E-sitrfbTs{ZlSaFqS1qLuX%l zb$(f^E6<#FH-+^k<@d-u^l+8+Lk4@)K8RjU-DW3Rj@+HSHGj?TiS0IbJC6)vBAO>I zt(^(9YQU%)vL*;UM`Gw{6xG~(<0^t{yzxdb1#iR-7iD!7(Zxiuf=*z(Ji z2r4lq##eHR$sQy!Z*NgD*;FGMNW~mums6$!sWK#FHR~QH&1$Ag!+x)eLx;MYT-%ro zCv$esuZ~a29{h|wp)KRUL2qgQ)5r%KoWC$J3C8W@)ai9yGhFY3ne?$=)ok^&&`KzTV67^kUi*|GQpezF)ykUW3OorM%k89 zK%$spwj4wk)NU>Zb)EO$|F&dB)U}^>Q-CV$Qhx;8@ZeJ83*6!;|0*dk(cIkoc1qC^k}HjR5F4yK8wl}- z`JTwy;e`U zBaCB9AxIo?3)&ntdVk@*g=y`RN6cD$1t?sN;7&6^F-)4<-jb#QW0U9D6ULU{E2;Iy z%-hH*-d_VYd@xL7k!t?oL@eaA!C0xq4hsJP-167nHs1{t%JN3)TK&7S?olt^yi zr;xp1;vR*U0pvEEq|cz~L93u4Bg6vFnC#c6Tj{ek3wvag*#)*5Z6^&DVsk*xg%y|I z>#sela?K)*xmTfLRWy?j; z6p}j#w?!i=dN~RO({}Ar3s+?Y&oGP2WMr%v^N2vCSBgB`XZ+6T*=hb%UWYN9vE`wq zL)09pSeM=^z4E}lMm=}?V`%7;$m!#ZGH00bWH1Xe#xeBCrK1O8zT?}!|JCK7syw2R zWJQ_lFUUli*xh0o=TjcgrZp22kq<|c>7tAic6aWrACLG-JC0AD!Ag=8h%D2H7wLca z3rSM?F!O%#g9pE^t(a9fg8B!T8sD-M8?s-~RpmbrJbI{+cU>vdH$Y$g0%xYNC7HB6 zA{y#7v>Si&(gAn~QJ0;PrP?gmY!GHo;{wVlO{)0~oPKuTC%~20rcY+6tK2|mWM|_i8!CclP53-IF_`SG zA9n`+*Nimi0^o_XK`NaeDL7Guv_7?Qg0>!;PoR|2-M$;b_J*D z)h@d*OIV^bid4_Wukviy_rr442qE8o1mO=C1ve(X3R*>*`y?7XGI9akHPI!5K{AjQ zpMTz0g6n|J+lj>kHI%anoHoWKt*?B6l!T~Tg8R~LG=vviJ_QJ5P>Z8>alzM02)i_W zxBwAU9LfNUg{fYkHP`_zaTDy#Sl*&ftNUPfkYrx1(#$x|a5cDiIW-2iyI+PN&n z=i73oMw&O98c5`j<}6ktt|Sf;q|xL#!hj>~(^ba!Q^gq+!%(~v45@dM9J*?Oyt3h0 z8fj$ct%Pb>qP24hVlv#jOrX^G@WT($K6WkV6+0d1Fut$o$+QN6Z3n7!M5SV<>PnJw zBte&Zxp|MDLzB9L*BxtenPDvxRKu3R2J=lQWBnQ4eSKECr8Mk)P^y@pNJ#M6+_t#gJ1b;lRX~Z z>;quXk}8Q+YCf;1_N^9v=B<4gLYr zUo(jGKfOi%sJT%gCKBr;kCOsV{;agM+nIM4h%d%FvHHw|GhZX|qT01FD4_K5k*KtR zcPd49%1VRr$5rp#CYBjffBu8H1Wg3UxKW)`N;=sD*;`wmYtm}rmDuT`dV{lVqMs-6 zeS+ICvZmT~>X_t}nUBA^;OP{J|MO3&SQ>;AWKsXcsu963cVhs*(<#= zyjdq$7p>^`v1Rd&^`}?kVL&fL1KlcQ)dC=RG^K@hxgjk0--0>f`fy$G;#`lnAGYC%T+9>}}xry$FMVc?`G?QSb{ zkj``a>9jvwo7@gyUvdqDg4wp7t1rU)D)NusKjiFjzssZ>SG%V@WXh$AcnZ~6 z!covIzFPw`jiYBp+70%p9@ECs#aW|CRKiYR72 za{oNRL_8i;UP>sA-Ek7*c0PmVY%P(``?DW`>j7#?Y|v@O(OCYEUrtGvd+>Bh$|Wll^uAR9I?#efsuo(X83m zG(}?E<8H4yR7*-#JbE?Py->yj4dLd#+eR&`l)bBdYGl1r_L(mpp(Fl*RcmTzn8SVk z<0b##j_mW@KR7A>f9F?wy#=l96NG!f29mSCG&W!kYiwo81hab*1$xja z?)D_LD+$t3bEDV+C{D;-H9qIkm4n9;yG@myCBIBc=aIF`$h4HJVOqDfN&BF>@S3t_ zUY;Tp6iUY1UAvtM+wy=@@>GoM{3zILU+G6NVg1Nq{WSnbi7`-#mvLa!?3(y0!kJTD zC@dB=5huIo&Zujzq|+_q4z;)xI^ct%iAF&T4O{OVM8~f3$-+v39yk+nk(99)7H_s-QEB47`$6+5)0? zsA=<^ja#+3=De!8ZC^N=&3z^r)$Ye!U+4%o5)9+!B=-J_4#FBW*?ezi0-tXyeId)> z;9!e=^Fhufi}icKOgeS0XtPj9Om7I-Z$_{iqTvb&XMsei+;06d(sa^wrXaE?BS3yZ z`79!g-DT2INr6a|80d&VBs0?Hq`0hw(YHM2?i)OF=Dup>Jf(3$+rXEYaKF{QFg5Zb zLUoO@=&%$$dUPRj|J5C|EOY-R;7syfAX|KJO{jAjn|JN{H0LT(A=Wz>jiMoAcC6kM zbdiS=xN0+W%E*+!qKw>%@e?Mvk`?ZN8YY7dK3+N0y_7V!F>}^m$F3$+m!a0;ufb8& z<|fA}Z2y=%A|2Am7LK9g?)wqU8N`=KnQk%&jx3&;5yaC|{5yOO`WZ3n+Y$^qNTMh6 z*Rem$c>9T4R!+M%aarV6F((iGT_FE=aWz*&C-RtQW&pGy29(Y+~DEd1iU z%+8XK-(~dAwl81){*3!q9Rb18W*qp1wc07)=AcrVyHf6>H*%XNai+*3(8{^k-`Og- zT_4a!l7^Irqo|0bQ5a<%UaAnxKI3#7&!-<3 zdj$2|{1ny(X|1f=(V}g3tTFy2a&CtucOc?mU7wqaHw=BvG`;owp_&oSi;hUF$B`lX zAXx+Qr4VV2AbFU?@t;1E@1Dj{t@$3ATgl6atxKXRr2&ibH4k7=3zV1GdUx2YD5e~o z-~cpuCZ_y;pKtjPB1?!J0NiXSz-0(IVBo+sK}>nkX5XrT&d=}C^j&%Q#yN0dFzEPh z2Zm^Y3Pz((aQF9#8-}CVBExBPF>^0n-ehy=cUO>=Hm|?Xj`%a3?0cH6+9+URn zWfz=hqB@M_bcd{MI3+sV;_b1qvE7aeB3ZL$2bX7Xa(xn!0p=4%Z$^Viv2G`{TQHxT0}X{eF2OD^T?jV`SK&lpJEH=JCXH3-wEaL7`^Bb(AGBb zVPL7uU{`caDOI`#LN*67`gq^CyH9~^CP@|@9@rDga_dq`D6JHQf_KgtN&!3DKJXL8Qtd)w*eTdBVU?y#8(W;>at_kvFdvktcb zm{y{mrzzvGty^8u?9?S^5k|K4KG9aX2jF#gxF{FiZj*TZQA3d<)UXjjlwK zTJLakY$!T7!Aj_tM$iZl;SLmkU2?8TQsM{pCpTbIWG6LgnSW8MuG=>fFD3$$$ARmA z>D6|kQD}Y0tlzH~r&-rx!q6IUvbCBIc>T>c8*=}OuT@sa^y*mucDgKS`*`of731)U za04mhb|(WQT|u}dhy9oy%RvW7h-b^LOk#|SaWD;w?B-{fHfd;S@2HswKR9|{`k&?{ z*X2OTTDqN^eB#U*^}(qZ7{eH`>rlgDfLEc=jVvbsyV}hKCl@g(vV@Z{vwu6j%=9^a zoE5o~qJjUbtZ-vg0ADJYX-=9NQGo4RM?!24Wr>yNLFP)}6Sd1>QF+fvBCE=q(L5<( z-mc396F9~#k~d&d>{3p>vz1bVnysVV<*<1VD0rtge9B#JXgL8C#NJQZ9DV(_6Z$L% z4&0Lo4Dxle6N#vu+WQ`>@63R+AD|v9qeF6ij076+Gb%0n`TSP?8uq2rjMF9=D=!yh zC1i*Pz`?9po#bIVhMi~+ooL+n@s3Y=Oq@7zEqiMXeUp(Ecf+21+O69aaT)kTA%9Sn zocN$J?BGC&PIK})OXn?oI!-+ufM2W%f;@^j!$wcxm`%PhZ8c1khyrc~vo3%P9*GrU zm!fm$gY3p$2@A=g+DnP4ykD9XHZOu*_qn-wTEk*O0NL^!>MZ(p1x-fx`S}o%UDGY6x#K3CqFA=|L<46d<0&-+ZP9 z0Xw|$soVCsSIGC&+Q+{5yBKwHR00CaM~;3|Weo3R0}!}#I`mJZn<_gvk3>@&eHW<* z=aCxjSw$R)0K>6}stE#jx#X9H&km1@=A0)v2_p&n-Q~=}XSY6)Zhl&b1aHv+!PjrL z<9!C?O%Di*zdZmpL6q8V%E|-?r^P0XDVfeAJBFWf34uT5jskw;v-`E5Z9iN?KCt&(tNmB} zH)o}#nfDt_mtCc{)Fr7!bXElf1{!#+4LxbA4@VB>*dCA8*D|g^uJ6Bn`}UeOYo3g$ zBqUnpgG8KYyA`8it1)Lj=BF6Y9uO@i+=8nTl?{Ss2j;P}M2bdYF@}Ei1Hbo$*?XX* zfzpMb9dD}rSo!4H9h)Ar^U^N_Ijn!;I1sdIUHX)cYlYZ$uV?Kq91S&M5pgY+T;fCc zSCqAz#w3d{2(UlNRc>QggwAVF<66gN9Q8U;k~32if6}$&ehqoXZGcFUls+`SrpNF02ISPYQePEl#D>*s z2X-w3COX)TPu#{#b$>#n8{OwF369f~{POY{CV5~a^3C#WBIBCylEm!uzyJO_W^k%Z zJyO1Iv%$PgoU4<={ikTuJeU>KdV;cI&w`#bk(Ryf6cu>PVaT!u4IA!Ipemz)kb=6* zP&k=aqZ%^KFK&Hl(M`;~F49pp_$PCa+ToI>ZtS?@%k$Tp^;9$xzm0$rLH^~&+7rtt zr10Kbq1iB(LXT|YP~N>~j~cCj%g0=YSXtRYjV7OS^;@|GC_W4FRC+8_BsGBum2Whh z#e47}w!wTi?b2nGyxHJnr>!RUbY=LUU2^9-MelvmV_r%rO@}Di%`nO~YvlQZgt-Aj zhO~L`q^6NkK&^VM9gqzU47U}{_(e#bu}&@{-p*Lgd~v!jJ!qOwlaSnNk#_G5UG_MuRl#6>H3#&YX`(1{KVC1 zh^gI-^Qculu@`YtcLbE2HiIqnhV;BM!A1k>E;#gR z=#klU4vd@kTQQrRFxTBVJ(#0 zZV!4|a`NQK)P)trpI}xoqNh_!=*ZM;X$2oJ0=bC~-g%1brY%#c0@r1>Is0Dpcu}Qc z74Iye2I&une{W8bSBEp#JT0Alug)tT9PX`4M@ecCLx6VV(6rh==E>v7XFRQDc8|*< z3zEI4E7oLlXw@(?Z!VUGtZbv^Zh-#0liMV8KK;G-D+-k$***)(zj`2nf7*--QEqID z%k?)C&CBC+eU~gr)d5V(n{y}OQNz*|&0aI|N!?6PRpW#N*V7@T8xz6k{rvsp=AstS z7C9zRki@yx?3S1uq^$n?_dj{}Y*5f2twUS*_0aakfs|cr!Ak^HF@r5Z5-o=QC6plq0oKIuY54UR;sx~wvg->JknvC`@S1K(YzCVX?@76 zbMjk}JPBVzx9x12Yeu zNHt*~#(C#7(CmCh%vsuQh7?SA92LH%=_$*%=pf(*sfR7Y>ijty!jfuMif>P`t{ybc zJwa8AXpx4@-h8KiC^b<ia{03|n&iT#Ej!k;VxzC`J4%NYg&7pcn0LYuO+LVY zSGfVmp$rG$EpO5sh}t-6g>dh#<=wrTc-(DS>67}(NojejUwe+ibDnLn<3O%=`>}^! zCzrMty@r*hMpAg!2^Co}MW@zIk9-z~B9ejyrE9KN*I7m;%U|*Nj*jpfef@t2z!-jP z{P^*~?3=a3JzKgr;!i_TK8+@Uhc6bjTk&(;*Bn>2w`$eu$k_5;%0=I_)vU5L9I`nU zRfS_!rIJLNy_FRa_qaQK^}hZiF=~k_mjRjh7b0O3FxrEVbfU4iYsEN`ul@27Zcs~R zSpkh$H|T|vA(HrF?jc@u1A6lo({CQ>aLbMUwhRBYz0B{96^)v#OvCCx@uLTU@tp>y zKMf}0nMM1+XJG5wvlfogbSY+AilQ-;Tw0KbHU{vDb3L{ zG<+Bi!xYNFiN?VI8uguhONm{lA&1F8%OFWmTx?DO+d-H?ngd1wx@MX?=zns>tlK%R zaam|^o~E@p9w2ZsD3oKJ&y42FR)7=|DfvJ?=ul6{LS)X*~~ zr1O4fhUaySHBf4J%g2v9vg|qnpS1@nOJ8kvJ16dT5|pJ5!ff2i7k+>E#+PcHX*|8? zSr6^|QyQh0?->2rDYv(C+RZ9!U1W2R(UErHQ<&;s=h4r(Xq9tC7EMiGV;tX{#S3g) z?!B(f{>G8|P;`mX%UDXMIiNKspfx~N&`VtbN1On8*mc!7)Ou&*u}3l-5@J7({B{*!~oPmm&BL|!8p!rSpkO; z*y|?ve=Rz67_M@10m5O;?9*E_wn&r- zFQ?0*Tr#@zK0swdj3W8E1B?@|>Xy`F<*$5WJxog!v^9T3s;@q(tj7=4daGBDTMb^4 zlTJJQ-!|IQE)HX9%_Er7G$mnQI zgM4oFUwiGUGX1Ik>;LRmZ#rG#ZakQkP~(czrB4I8_~jI~xraN0k;AgY-QP;4%Ey0+ z{$zi1&cEvk`g}JPR9h7X_#iqrdjVU_mX&X)Ed7KA7e}N;41KgwOs8`s210NawEF1L zqi63*Es)1=?;3iGKHs&WPYJ+!j-xoLi#vFE=I-%Jc~Q?t63}Jv@Ek!AU?tu?+4@jKFp(lKuwOEH%Sq zHyZQh`rzR0r%w-Z>)xtW${TYDBziP$qt4z3R*9w7V;5WR__4?SoxgsK4yQkRr(@H!p+$B2z1zAes1WPF*L;c;&O)o}QCGq5+^3&+SUpiyCN<=Q4qfyXAn_c8Bj%4BIa1wz#2VUg>ae*O8+DR>U|M4u6|%nr zEd$q%h9=Xzd-nrAPuN7EUIsrypAQSvSp)};Ce_zmXmjdfgpdw0inKES}cPD#fOCrsDq(j7r!>-4UKCp<|Ht& z#PWQZ(nL;6H`;qDD}<@gp5cqvy>pP)44sB5(pMC5cqW}aI|NeSbl0_{Aes^t;~mWA zJjtBsJ5#P5bmXS5FjfZu#X}#!V}tP4_3sSwrR*gU9-%uyDloQWVqrCZP_mWny^J6# zAzm>t#CpjhTr!mFzF?8Myx+AZXw&Ti((vEHS%r4(wH6)&Z8+hnu<6pJo1Iz765qSG zeK?&Oql{#O%%ACFau^fmLFF4Yc!dzURqgrp`G?y+A%a>J*#7 zkuejaUMG&d&>CD`BWTGLl7WkW^N|s8CMRx8yCcNwR+|?~(qX!lVSTTkDi@A`VSfs~ zW=z|Dd_I_fa#acrue-lsi%cyzv+#;bj0ShWGC*iuzFN#0u)bMkHODvfv1!x2yCVZk z`_jn^VkVyb7_~Os-3)9Ttt)m%p4tzd`(JzYRk=tooUx6bi!y#@IX3Uy*;0%ema;VC z#ulL7-0SB)25o#^zSnlK=>T{#M}5MbG~P~Lp+OYLP0cNp&8N*IQ?~_;G`3V5MGI@+ zl+m!oWRt``Y_t3iUDGOWb6(JBzyVhDiTa*LD|o0b^an_2$pBWw@mBhoho@&6^+$B)SraB~O-)S= zkv4brqt`?0ac^g_{{6RL>=*u+|A}bBOOj<0HR>*n0NQ+-zH z6-vX7*Nrc>r6RMjwT-+@M|e>axo%WHn*Oq6^2W zB1K2S?7rmeWcU52GBPq;UV7cy@AcVtt_gZ0JezKPL@V+VhQ)?I_w;2>McG@23FP!7 zOm^^z-|jZy`P;H$D?Hnrt_O!j+|bAp5K~Q9Gta%lCTxi;cQv3xV}Mbm3~)S7g&mZW zmj1M7H#68SYL*C<_oBV_f4+myvtg_~!s0eUQhFK97h_9c$aHvA9lksA z7lQmGf;FJSc}xK!NL){)rKM#~04NZp1}S+n&Q{W17no~r9BlK_3;%T}FI>Gn7I0QE zav~P1edCX+_DN2^*)Ki&vu($FY=-^({NZ!u-=$mD_mpZ72JJYg0FYR6V@oJKU6|k7 zL7@k8TGs$rPdTKOXUM-xbY8tGt0O(UzcPe|qfUMM{v?P6Wa0Lmu824&)^H$m=sAil zD<}odcxS(*|6#9O?-E;Yre68C6tNf7cyVJvZvbMvb)h3F)M}#$f>mZO5&{rw=E3<1 zkY+!#6wguz$zXUA+$M{hl+&k&vD9PMuUeIJsC#t^G_6C`$z=1ze>z|sa{q>R67L@K z5syI}YFS*jl z+|C)%E_o7&Nv94$S?>I2*3fa)&x@*INQwh${>P)FwwDe#J)*uhD1(O{Nf?&hgUhFO zwUU66e&2ip!q|rtYj38o^LzIuqhh}|^sr7(9@E~fKC%DbKSK2KK4w+HlmR?_n7Z9StS@xFx^dC2oAW1iz&}BPpSODGuPE8+jSn3hm!%#t3 z-=owTz);EKF_HKEeSC~)D_jU1TOCA>fAPZ1lhccl9~@yuvN-4jNch4wscm29WZ$9G z#F{;X#X`Pq;U{G`8lH@Om=QiHWQXMC<-HM0chV@V>YnHWguT4%GkY>1CUaZ*+2{ER z>S3@8@?d+Xul{djaC$-OyXy2*C0_M6$HsORd4pUy&{%vo`I_^Q)vx&vD?jecx|fpw zqjRZtt=qjw5{w-BK$T&hg0Jfm!%Ukr`7_Z%Gj{oRNq@-_&tu8SC&>gyq2gRLwI3gJ z!26Jrs~*$p{KrEBhCBVXbPu4MdJ@Fuv*Z^wdXT%qtn$^5qH>2vx{O_1{c7278!{rN zOJn(m+Fk$5i0p4n>uhX^M2uAd|6{iSCJ+-qA!XIs)M#g(f4$3#lJa^Bx^cIsbw(+8 zYD`#ImoZ$94z$>>;CB~k%h>k=Gd8yZq+eG==tqM-toq|f0}3BP4ssn$^6 zg22d##o$GY7rQ;Wb6)!Ag4YvxWEV9_$Msl`KQuX4;^tM{kHyKc(nGqnXtAcgtb8Lf3Oz#pD|+tKXbfukZzw0fq^+S%0hcb?S=8ayBO?~5(^;u@l&S; zlC2Q?tv{8;`t!%}A${V{bw?>fGermlUl5?oU!_A1HS5>pLHvOvGeZJtO#DK2j9~LH z-|g_Jd_kT+j<LkSv(ah~P9awG@F$tp-BP;M6hpp3J_ufClU5#x8VHpsl5o zQBo$I?Y$J%=<~<&o=YCp$pWOZh0Da0uBl}i4X;OZXtxna{I`&B=vZL1C^MN-3b^qi zy`SjLQ~zxSw&m?Ce)LBB*hUCZz8pzE{G<=8Im)pMdMnQHcYOO)9)-GnPdjwu-O^6{g>%o7I#qU zP&`c(NupE^*dl!BF82l!b#~}uN4jeH?Zmx_g_={>M4JSDY z38Fc@wmO8aJ9eY`Zod)U9}gNBdU0_Ui$^d@GJfL3fol6#2bz-b7lFp~+z7snb$fJU z|NDu#=enR5@3knrf4z9l>Yd2y_o1B;r%ne$+ip~SWw|{on_F^%HEcKTZ{k2OfZ)nG z%GU|vqhACkKlJX$eCR&Csc#KSW_x$m&E0|3h)hydhO)D5(5>lmAmGvKM)TDDtv8TC zX?LPS+80#Sh9psQgBp5hX#Ri7X7{|`ObCSKv0Kx8{PT{ieXq{Uzl06A<9VuPS8x)3 z(snotn+Bu!jt&l2>KwZ?xuYP`k3Jt{8v7g1u%6ucrQ7+%?CrNi8w>=BKKs{l*&tO>ePO|7TA(l?#sQatM$6~_0Y6D~s$Rsg z9~w?b)5pkwZX_KToezM#(wI5%(X@ImAd?rcV#UT+UVBrgkveeb4Y#6Baa#*2f-vS+ zLPY>N7|)UHQoTO}%;*u@vHFD#ILGNaPvN*o#ewR;VfvsdxMR&HH>y9zw6+EuvFcZW zzy6nF4&Kukf%5yf`zT~uii(PCIFm|%BTvNfGE+Pbwb{QA)Bn=gGAb&>TUN_G|i zN9R+^;`=(Bpg?Rg5A%yx|| zfHL`S;iM+$BJVW1+{ML3!JNU2n(ghB&nz>GuU=?P-{YJ$1S`YXr#g)Oi4SV&t$HZ>EDkx59|5M zf(V3(qLwOgF{x#6)^spN!0|~bW5sQxWEW$ttXY0aEbCZK(dy=EW{dC;RMaG0ME@o@*g@1p3U?8dQqWwaZVo1)pQ7qpDjK-*71#ID4+Tn zT;4KAG@MsO7p;Qq&V(cv8M;TyrW9g#0!bzDRWX2#_y z`}1h^rXg&%nTpJ^EWdOawbc?|-@W@DqPGLK6~l*jcsr{)f*d@?;_!)h=}jbQ$aGBh z-4VQj^^)4-tV*G~wE#5ZlGrh9?L{0vP;}A^7X2y#76u!Gb^G4N$F{6>J#sq85+n23 z=d=$`g?HywehYk1b?vfeHfto)K50VUdg%@R&spNTXI=JRriRYn%j<+*uf7LfU)y_S zpwh*mnht$onC4YljZWWQ$qdH~%W3|PV69F9juKH%;}BBxf|F(q4U`^bx1%uRUD3P% zQ5#B3mgocIq_pvE^;t`5whNy};;4D$QTv-R1AK59GBL=&>EMNx>#uol@q!bolZ^4x ztA9_99KFs@XMuq0?0~$ii6IPuuV0wB=XZxy-PU6|4W?>OAz8w7^){MylC#IYc)tW&s)1ZqjMk9jifuyk<0x1L^XYn-cuVh*mJ(%Vs(IYV^bPf~jWz z{UxU&^F?GI((7~$I`t<6wra>+UdzX<`L+-n|NkOdZ%I06)a1_uXjIS8cdBaKnk}vL zp_2Z3+Kf$Q?RDjxdHmZaA=q8qV)>Dl2E1MyK<)MjfJO9#uUNf$GvS7dREOqL>5}5) zm%xM>J$XUvSlRuE2`J%GA+NOmoiyF!w4ijn+i7wo4YtU+Q&g}x0R&1#O& zy`u3h2!?*I<8&lQ($JYzJsotQHJ`a?%vU)wnm6s@zU|z6Na^7vv`!$74FQpsc)-9{ zR}w5ItF#br*myf~U$ot1$-WtS(6tANGZP#c0~kIQ{rwU_%|pH7H}-x4 zqsntH6-GY6%8rCW7zmwY5h{exfS}zU|wTd z>V9WQp_ynZ8ej}c=|s6sa37>^E5!>A8W-4hQrX>-w0?7EJe{Rj%2Ut+iB*w-ga;u% z#jpcIug7*VIA!O3BikP9-C5Qf=Q7}KmCxuE=0;RNrGvY7ed?hV0I6OMqADTCM^#nO zqU|6Ll9N#VeO`Gj03~#qiS`g+SLqD6$>;aUuk)|h82-+>^sFmahVA;U5Bm4Rm8=YW zHDQZ*;1{;1y_{UfKANFZD~SlBNO7W%;d6G;=Oo*STBhnG?46g+>FlGMp7wql=p^jP znvY5=8g{}%oT266v~~TZ9F7##Ux`%z_m1i0cUWvTS?3~8HNzbjeJ&vsu1^Ud z9gu|rER1cb0y)5;Dmhw2=!5dK9lC{Kqzrn4+S#1SBg^T#O9P+&^u?T)Yla4m8Yx$C zLub^}36{*<%#asi_#QSZpstB&PmyOsMf||Z^cf%6jS3BqXF;!dFK!T6oG18 zreeNUm3SL3ij`z6R3Zpgt(R(Rb^61%kj!i}dCZyfPH@w}SaY}jK=AB!0>3JrVQ+do zaW{7YVbN)>Qtt=TYhfu3!oxSLLFX=RShZ>^&`A6r5N|2Wh6QfgHb(A6|!6Q{flepf?0L;JO1Uae7zy>5x26SacS&D$?54xm% z4#(nO-{k6y3`bE{1wfMb50TUhM|$lhO{VyXc`2s=kb*lHRM?PDR3imJ$$WY1%&c>D zvY1QGSpMnPnz})jx4%DbO6onLeQ_o16`mD3&fqlWV^-VC>361QfU5JBltZonfjP&y z=1`Hzr~P9gd#(J?+imW^X33EJHnjGE{!(3`&4nsTZ2Mk3Env{|Lg7Vj%PX-9Qz<%U zFta9Hm(p5mWEqv6kxA`;3RDxl#@H~Fk;T`BY4fqc3DUhkXRZ{5U|P4OUv&}?SZfxp z{muo>zRA7~Hj}pT(qO4J^w3Z4pUq2OA5~pMTp4Bnz)fp`H*N-D6?UowQaP9cJIWdV zEqu6XCnB5&uN>Mr_`jcM-DPhsvoJR|4-5`=i6o7?eM=d>9)EN-@JD+6ydUu$J-f}BKlBuvOyTCB_&XGmJ5H#l&_h!F?xD;wnDlVqrpd;R=8 z#evJcRfI5c^ToQ7g33Pw#rHj4ZbIHy4yVVj(+poUV79mUTkgD!JvzM zaHB=R%mjw}%??**TgxS1pb+1NqlpcfU^^OWJ|x_>mi~utEH_54sjKpkePvbeLhf4C zrMs!wTFySJDPoVqlQ6O5@b>83SQg@CX{o7#>PNuZ&*d_;UG4p;fSI=W_o+qXv>&Rk+w#|{8mY7Y7wN;q7tMpFovOY{3%F&LeCzn{ zl3wJ6Kfda#qnyWYe%JrY_R4>$I}-Ta@H-1oe5w9g5e0H+sIr#TpeH;DEgdk9sQu2hxfal@0F|r~X5U1ATO#~}J*_EKru60)f6o#p%?fdDw-9!Ep47UPRE3udC45tLHB0`zRt&V9<36!P&nZ*1dH1h`#T*qXT!B}nv*fq)p*qPh$%v)_AD)-oS!Id*Y%BR}+YX$Ji_R*>o6)x3%unY7?QT0BdE zpdAK-qmEUt>h~NFNJWzm4LiNbtSdJzKqs)4<|d48jr)obBLNFmN{cQ1Nh$|KeYfz1 z#!l@3W>BHI%Hmmrz8BY{r2y|=4Ga}X@Wyt+%a`iHMPPua&SPF`i8(Yf>{oq^;@p8Qe*#|OCNG32`B-0_2Si1HhZT_Sst(v-vs~uqcq7&ToJ$y5(M2Y z@$n?ffY*j?H7ynTd3#jYs^@Lx-bz}YHj^ecv2W2w?RmGis;GYirb-naMhsy>ibjZ4e^lT-=Jo&>nUcUVDoa_CJ z=nZ^`tv)_RXd}BK9zi4g914fFhJ_h0sY)g(?2KFVfzP2CefsrJBc?!EO@oFezZ~jN zGuV54;6?R}`G`x_Asg~F;m-y_2B6!gP_ra>@T;s%O;^Nj5(z2nB+0F$7V?*MEu7}c zwCuJXmCrmi$pwE*jd22!Btq)gY~ksqck#`&La|s2~&jTitI*WXtWM(dP+R^(apO_H^@tLl_MJrxgkD6~*#s7v7Cx$^t zMXn_80(vY~P@gPfh&-dkX(ey)TqpKtHN|aJwAPXye=Ibh%Avz%qg+o4+8Q~yoIAAB z{F!_~Hg;X+4?p}s8Xk~8@8z?$-=(TwH}d#9Qx0TnH=Fca;J~&H;Ttxi+Y@vegpAIm zV>?kxc=+U3xmBA!gz5>w!7A@e*ZTnkCd49RDD6Zr5gU(oG4rA0)$hjZ z)vfaDOR8>xi4)1HM1RBgNlBexERr+Okt7g-^L11GMa*JvHUI3hO<(pFuFGRuo$3=? zy6ykdFctMz1DT+yAco~@*RDmgB!H%gm@w!DwYc|d)q5CaS3Pe)7)f5&$hmXoAj&+F zL*DMj>(ysl)3Yy-d?V}EL!8VbfBo8Y_^XAD>;y@>|8?}(mqI(xpMhRf{p$bP=rU~Q zqLi0Pa@Y*j&#wKK7h72W@-I}=Dq4uoTCYEAnGw$!D>WOuXrAbIm(+RwQoUBh+&Oqo zrBB|0oNub0p8eK8J^2NThF|>`E=BXyMTI1RN|TEoJ{(G|Ndr>ysNrq@{r0Ra47B>u zG^tKr?n>}*Ig+%3icj^or1WR3vaC%IcT08=xxBY8b+67g|YGk%8K)Za-Cb*UBqyxM#J}3 zu@kC4na{vFd1mo#g4V2|Iz#r(m>kCzwv2G@d4)FWv3f zLA#oJA^+h-9` z%kvmBt%H0g2%0gdHAjxz)0giQk3@6eiWOu18Ylohy=SffsHZ_Yy+D3l-6(AV-{Igm zn!Z3Pfe2x215+Jcz`6eXxEP*QeO|oZ-0%%R2V8*!t@7z54`X2{SkNuxs}84T%RnRP zA|kw&sfhM63))2Y|H&24A!C0eMp%EQ>kl)UAS@(}a7K^&%Jw8QXR9-q$bGCbG5tUI z;Da}s2=COJm?%75UpxRz&EwpZ)wUGUjK3#-`-!;1>%+Xy{pZ#o}G=IFfKJm?=~w3kh-P|AFCm z8jkT5B=rTxJ2?rtFC$h6~{X~I6;v$`mlFwX!%{F|tr>p4n(^D`tz zJ~k#@yN;Gx9T_77@7)bmG97{J`}gm+?}!u%i!1KT;XSprkTy`zo3Yxt!ZuJtVx!6CC`js6K`p$qq!1 z*ak0XyZY<@Yyj~8Vs`NVXTNH)^;~xv?wX0?DofJ|?1cP@s~lS2FsJ!jiUArtzR+aT zxpL;3C&_UH+XfN-V4H3effBW`v5QFye7^fp?J1*9O9k(Tek)#1)R$8-+n3zGHik_X zXe`)BWHo6LA3#dXBAKRm3*>o54H-N*(3q6`c3w%vvu20i7}_j)chPJI_isie$IV;Y z$RaNH)~;u_9PAFJ_=ObBIhgoCUT&M5%U6y&F8KIt&o<+7`D63wV@0W*od+%W$+o5A z5GU_F7Gd8wjXZbUY+$XTlm0&>?#^x+-qIo}cZ9!v&a(S02KIRVuhA_nc+#@J{t=Zr zVTt$Wb13j7*{dD~n{7f26WpVTCuNV)hImdkhm4L0#6hFY1P{|WQr6})t~axOpX8F9 zKm+u-@YCpL3;&4X8eC7l(%)+2z34j?6v^tXb1Zd@sZpawKEsr!XRM{LMXOo z1b+!Cu1#4L{jlyTI0BgJ=22M^qg&mZHtnO%t4wMf+ns%V#HyBIH)c01Po(tV>1T0dFrGf8y`ET3Yb@el8ZPvI8w1I*z{@xGHI7s*m$Xk7+Fj z*5VmM8!o%epzhIw=jJy9zvDl)Ym<@|-gw>iH-;Gp-utAt%i*dQ;Z4Ui&pVcO_G~l> z_TvGbR?P#SC9O#P@gH8y1T%tW(Jf0Cei8OY)u(LS_>}+VEuWlfl+rxQp>eJhE^tlkXz$PjxV#Q8gcDd=sKW>az zrO)+)^T^%Px()19bkgnC)GfNE)&Hu?(+P{^8~6X|U!%`3s=uhok7jt>*`l2n4^W_S z1QlFVn5_(ji}mT{OideIpJ3>OW+#1UYhV%bY4r%Gb+qCikiXRbBpZBdYvhd$UW*v!M0Hek+Jy@P1M}|ee5-=ej3m=DF_q zT~#EjJ^$d-!ZcZnlB>C0p`j;*lit32XJ5bKJzffk0AeWdHmy-~^4YPt52DzyUMuY5 z>*k&@YZm>@&~L1QD?7J26nMP(($*dWGHyNd9v{{!ddoS-BeN+9QRnKy%+J`xn@DZy z&HPL2daxmp3vz=I_uLzYgC~z9EGf!+z|Fay%?3Pu`XzOVPAqwJl4rZSMloO4#iT>5 zH)vJ{A8|(Z@ekyBgHcV)dW2i3TPzK7NbuZ#FL>O0>8{vk?@ljF+%4$i%P)Vmc0PXc zWQz+K{m%Ds3Qp?WDc;Uy;U~wx1_KKX0)$FIrt;gEHe(K6c~)*czq}+Pho(;lV)IrSfwG(bynFYo zyFuef%nRG^XY^G`t?GA|Aa>3kl;;ngsc8ekm*sTob#T@t;JGKgee zguds{B3rj&9NmyxnVpUt<^P?HgDJJgOdkaFzV7N;+Wk1sG$7Ku(0&Ytq$PRDUB4qE z?hIwdRo;z|w*5#9ylHhxUbn-wumbr!0L0YK;d8m1<#fRy3 zrJ!+>+KrOKYPwPZUK2FS4TShk?I++CgCVD+Bvq6|J3Ps!hhWY+Y!7)%avm2V?9aAj zfX8K!)2-Dgn0r5acuXH64|$TdIhh+yz?KSTmTxWW0eN(K!rNR6jll6?=h`(SBC0D< z%1E~1;~7LBE09aMK)>ZMYKKxz-a{oDp0rY;AS67+Fc{Ww#I0t9uRe0*NVfy_8FP{z zR-Ty{wDgx>I{C{k-nZ?UT!=J-%&DbsP3!EN<=zRrsI90DF$G}BgQ-pip|CKBE097u zHANx~;iZ(yZjugRvS<(^BByz#AGh@4!Z6Phw8aOZO?w&^+IOfg3?h$*9yd26$B7Xi zMh{k?C-OOEnQx;`XP6R;yPg#vpE|FwJ+?v@F=WqQjTo>=hVz^goL~lx5)P?})Kmru z7C2^@oHp(;?-DZ~M_+&AjRsOvfuutb(l9)uEByd(6s>&0e0A3)beguHesMpH7-f3CySs!@hjeBz9iw*TbyQJmf?CV)H`;P}>rDbw;_N{ki z8MKGSXd3-6F!)d0*1MVf0&s;@EA5`~i1E5Cs4SnAUxL%j)Q=ZFo4$wcl>Up)5J90+ zWyO=E6mIZ1g4AR{^Fj0mcg8IpShPAYa6Co)RHi4sV@x+Fe>G@Y1Ir0W?&M(PU=UnpQMAG%iA)Timx?9N;efRI5wXAZvW6?DP zV-wLmoj?MTgL-m1Eb z7AZ-m;@CQ>{5vs=-!{2^F;qI4*{Xo%I!XDbIlT#Qu=^DH?32`Jw%u+M*7$@oUvIEf zdti~C){i(>qe`7_-!4xMT-ndrSHWRMt*1{*i_p{SM2|yXI|qIK9Qdp=%Qoz!COXU< zRl4!#pUX0f+3!}x zce&fimi5)wUW+U)rk3uDs4^kNsC79+xzgHefDy@PIXW+}O6C`{`!HY?lQmCKiZ zD?KxOVHX}f(w4@Pd~9KmUDY*0>hxMmhuCvc2&(UVnjOaZ?kS7h6eyP|+lFq|Cb&5D z^q38csKwXt!mC;T(x64tH@fl9&Y&yax$9<~)*2%)t_eSTJf_D)(~)Sd*t_)T$wRLdeK`uFb*1?2Uwm34c7ekj+u-9So!PgL zLs;{qXv}qbOS%2qweA@-k7G1BBcoG48#|nUifKADa;_+Q=UI8ZwQPlj*b01ZY-~Ja z*VUb=a|-9-1Ah9o_qtub@EA#rF>R+mlTmG{Tk0vsW-^#$ILtDkhW9nz1IZ?$5?!Od zHp`Ao2Whk_cF3;^hII*s_M^`F#eEu`XptS*rxAKOf$5%Kc$+LS^Dz8qY22sb{3xJL zBcftpdhr+DmJM|*;M(0Q@%_K_UzlBu?Tsblx*LNDym;f|=R8smx4??75eWf)U-d2z&8_4To zdCMIjt$Wel)7Z4Xu~hq>Jvb~y#)}IO`m56X^Mi>y%pNsSedQ-j_EMPdO`dw+$^GsZmCj=e2DXEWC zzy2LB2gznFdkXg@qztBbG~}OA(Hk}l$d4-q!BwGbJNlb%j?_6;|o&OP^L#QeTR zMHXK}91QNs`>aSzjUk7mM9F6#y{+9f+um%O&5@{8#A79iy~bJSTz@?au^ zs&_^A>Kj%B^7O~_*L6J?R&;r?W6}c*9hiLy=f)2aBU{4tJf+KlvvG0H4xETU%(qMA z<;fi(qFy`a5cCK|Q;nIZBv7{v3Ws#{rXPK%IIlP?2|;*@7-6JCNpina->ISp`=*p_ z76Iv5$T35Nw=Rr1IIlE+LHVX{0UqP0-S{hmYmptDeJNBC@ej`RCTR-sUyZDi+d+G8 ziyGJO%Af`-uEqsW%);3wVqxEbmnG_<2DhdD)o)qjp=8>RIDztIqQE%RL7Xc{e1`~1 zCq*lIRu)(OuA~|P4K0$(o<1Gzoczlt(J(=C>tjI~oSSj5LD<79-p$ldG@RxWfMG>eShV zi63yAUAfIeT)MqcPH{fJ7L)Mj% zuWlu`8X|o(>6M2cq$(TZS(un;xXmXeO+aTv&LDA*pO%%~Fc>H{MPD3dd3bozUd#Ujj@ zvnJX*@@#)6a)RHFo4wuFrL%H^THb761y$rOtmvn{6_XVqNnO_uQARDk{+ydXf8lkk$t)T4 z!u&l)UVM=o>*m0BWpX~6TdpawId8vdm_k`5UafAZ#zV=JPETL@lNmaGLy7ez@CHqx zuh32td`KqaalrA!weFlC+@+OT5+q$?W=v+=lu#^6TvI+O?ST(Lj7EQvxAx~-B)ON} z69z*|)hMeZ`C#$pkr@q#zgZZ2s}{OvZHL?+K6DqFX3B;w8fco4BVJH+MmN3{jsqPWLxOgH zq)0__K{Jc(ou~9W@NXU^R3YP8BU+imP^i&T z2X4sUciBA+AmR~LcljGCpM}fej}a&B5gqIw&wKC{5=n;H9}#V*-~1-%;M5@Hxr#q@ zzcMHTwBw{IhT>aEonr|8NSasrUL~Kp{w&$-z@s(DX99AR&kU#uD$^n*w-5jKX?V*X z$D2Ebx8Kn7gqi1x+;Hz^*I)!+_5zjI-U``BSv4emvV)^InB(MZ0NVGn=gwW*wJ`Q@ zA~Q#Jl@MFMQv+JXAN_up3M@Puk!|c@n8i(n_8^GdDjHZ^i8u2R*rby=n8m1yn+C)L z%2M=FF+j#dmblcwl5q<2)^olnIwo;TY2hjbVq|lo%3&aq@hqV62pzlmjgIpOV+iA? z>9b~a0uRS{!W_DH8WL5FJz@4TUJS=k5#ct5zGp?vPn5E03OF#-l>7JFPLyC#$W6U3K+R7TSpLdol+toOj z4%nG_3^KN zX&~srvzd2T{&M@e?*VSut~t97=wj3C&%#fS2`f$PZ^e!XIQp6e8GcT2c-!p2pgrZ4 zuV6|?rA&-95xbZ$lyEZ^z8hJXC1>UFk_I*2s8gdThaBWQ^`;l@5{GKN@y51=l@(=R zQzaDB^=6uyI1RO!6`#4V^641$0+h>ue7xPYvC+{%LoIZS)b$?EK+MQ#OHRh6T?9qH zvTc)xlX19LE02?@KXazk2`mnes1uXu4^wv0WMBlnx;%T-yoB7n+&FynYA|ZL6wD1dXBgHh$R-zsq zd8k&zH!WJ^TG`7ckz9H>!+RRf!HUhAZ5mbjPCKLJOU_g$w*$W@I{8=IVQ1Dw{XgBk z2~?J6wyn$FsU%e-YBfQV*i|A#1%yOngB_8SQ81!G1yK+?#9jdvu>mV7%0z5Yzy?I4 zhzf$B5&;E6f(j@^u)_`;5PK99rS&}X2eYfj-Fw_ycZ{>o9*0p)Li7LM|9$Vf)?9PV zx!y0v{qFh~Tr3>XjCCWz97{I59=kij)_vdZve0)@|N7y0o;N-BwWz723j|A!`QeJs zkoZY!kh#%e9u@EADh8ZWg&S5TbZqW+6_#0nQild`)6X!f#pF+a8gX&L2T_Edp_<4q$Mu2vM+=i^*^ zuXAY`_r1@fd1e(3Mm=}zj%bzL*?oCL(!392EEf(et-I?muwO#SKa5JDJ(jg^Kke#Y zzpgL()zhr+{XcX?ziJ%$;eR&qblJq&tSsg{fYmxbkTqci2iqSPIt*(2MWP=xHi(~r zW-uRj_c5J3R4aY4wfLVy|)SUNb5&;T_GsV0bCwQ2wL& zf7n+vR15@exBce=>=A7qR)4i&Hk%ddtuwJX{IvX7BkTK>9VnWKSal>o;u+DY)q<&3 z-qC%Ndf{s+B+JoLKgt?cx1Ncn4s_bH&y0KLtyCQk4xZeYkiZn|#})6s_&4)qN0xWJ zAPDyC|LN<7oHe-{I(Ojr{QOWWNhNgQI(Ue=<4cyVno+v^^*_9Zm&UH=vOi`u_BIIC zvRLZKGD40+h%5sHWeE#);v0cO$<$`nOZHMMhGUEj8V>^;xp&qBB1(t#37^2vagOV< z)~mZS=9RFfQ?4Q|xx|hBfL&A1ABXHzi3FLr0gg#YpZd$~nX_$(=EL045jI4xcUrdG zr8LjfAII7!_hJ+7eb;g8S{QF>YRGE6v%H~Ab=Ve97QNJPh)Nn5>snv);G?>vY^bDb zK}Tq~GLgEKc+Aed-wh0;V;l8>Wc!xgo^|h7d4&1`^><1@HJo70s#NkLT}&M(ALm=~mLVQo&MGowE0 zK8y1g5^$ini+XVvkY773po=csKblFIr|z6hCD^K_baH$%9xE7J%2=UQ0j zuklTrU(E$*7K4s6WAN1?+5pdhjIQ-aG71jl_mAb=FX2r@QZSOfD}eh0Wf?`ltz+|0 zz)l1D`>!@(L3T=+*D;Dg3UbpS=8>L$L|%=EA^9Gl46q$N<>9fQMuarvyotq2ZmT}0 z)4=*dW^h{}JEb*kENq=gI9r)p&y1+Cw-V-uRwD$Oud|Ohr)eDoKhRMVY)jwut0=M8 zL@%;hDn(XgdgYPxJ7zVs`$@wA@t0}ngtOxj_Fg}Z3APEivKa@@wrzh#ga2~Hlh-;G zp@8gkh8q_b8(;hM?hYhbI=@DkOo)2!o4yg_>RI5I*rgH$$gzTo@JkmX#wJD-*b zHge0EggutpKK;f;%87GKdPS^vY|m1da2-KVieOl?4Va4tYL*KBDZW6-j$I<3!%91` z;gPgQbJWl{9jKv#n)2l2v@6^$Ie+!?a_(*osF`MFYC5>a!hR-niKrOz90y$v6+?vi z)x$J?BKz~ODMMGJ=F#y06qvDBiNYF+!bsX@$YxOV`7gS)s%KmSv12$-*WkY5v+Mck zl(wzoDuY^$)3MT;-lGG9p~;eca#+lJSc5fG=N!%5Uxr~Q?ZZeOI7rais68uL_qq4n z>&v8EqU7hC5qXU%<#^a z)lo0M;w<7gJHK&NW(oeKhbnGu*zk@{?v`l|=%W$2lp3+j_;b9)-o~e&`OAc(eb&@Y&wF{|*JqJ6v%z57z=3ep1?P79VN4p(3 z-Q)63vTs&^i<|dAI?ji#%>AiZHT3f)c&hoEX4KLA@S&M_n{zR8@RzM;dDx~sOdk8> zqe$yW|J$2rTP*F$8$Eq^x#yd0=6(h-lX0bXGMejr`;L(t+SlJ1lr`ff$;Wn38}Gk- zvGUz@Y)X?_1pf7#7#v&$+%6s0;&H#Pj9zT*MSc4g*Wj{!c&B%8lfA{9?ErzOyY8-L>0 zt(fjQ=5Wou*tdf0w$Cjb+S5dn(sZtB6>Z#c+qt@+U&$*Z)Y$; zP%8-B*5S1e=LC+u$fpl31i)L=-E5Vy`%+!7O5W|xN z)|73-J1z0PdV$TKi3)Z_B_E(TQ>O&|>`kt#=1rsk<+eB8e`jasg-~X?r~BvL$h1R= zw<7S?*a)Nz2YzA3N!Iz1{4VRWs^_>rF?4YMaN!*~c+V$}4asCAMx}8*W5&kx0tLJk zl==OIw!*0W$9g1nUizX~@ z+m&Hc#^jFbe3P1)ht4@ypIH;Iq4n&;AJ|ufXVjUoicW(G!c8}QJi+eCS0Ntmx3|z= zw!$1fjKvTf1+~8G$dSH06|1Vtlh+SjVH-|D!gP@}s6CVAtQ34fJ}zx`P{>w4IFR3U zTER}wO94j9MwP~1a7Fj+MjqOPmiEw#g~v@(czlMSAln8#&AeW>R&tQfpfF|+hbAeG3stPcN~h3|bHR8)E?%=2ix+ofku zc%BM#qu%xUsael2LyVsVJgfQCo+9U~BmK!UGtU#eX72y-jUjF)w7mBB){Pvw#BQk5 zlbVjzH-EQ*OzTL=8wx<~q z;kBujmi{7>OB}9obzn_f@1OsWa&K>}58KfbrJv1%{XaQ5J11v8L%G*+P}}(<*|3KP z-X?|ZdQtiQjJU5Ri~}|jK7%LCB=M&Z=3BkDgI1u0TWh0ZIgg*+kJECaO+0`{Vq5Bx zQ8NlYV?F5YHtAw0hjoZz(TS2NB_Ttc{byy=Kb+$Wk5!hGYh{uC)|0>e$+1&wjSvto`9JLp^+aoVH^o|g>8OhpPsk8bRLKVV{vvaS$oY3&Tn9!TboD zZrt`xj{H2I=(SmUfb&@NNl{F!XT5euo)Y(X`j7fdAiV5pF_HXViWx+ld3u2trEAfo zHT`^^o*7ie36k?Qa4=@;B6CdH`GAY9^lYr>k8KX$N_VjX!QP*t&s#J$fYl#bvFNAI zo77x_?zwUHP8Ew2A>t{!`yb2GElv}o#%RY@Ee)R(?j*7G)bycPxi zV4AwYOUdf)6H=JB?Db8v9=jh$g<4!@`9+X*yBkt5RaKisceZEwYqYFKLq+(hEj<%n z49ey58d{&Y4sydjd#M)svKQf zNwD7#&J^F0H6zdZ{?#d4W+ee0O5zUWIq=HT^mwtN_E41t#r&>|qqOAYP{odgF8Mc= zhXg+$PJevBoho8&AK+j*tIFiKmG^V3PgGwnZU`eC?R#wd{p_UdkNkN-o!4qr75^wy zXeWoZ?sBcO;DZ?)oIYfU-RTPwDsB2?(ic{TuYWBixqStz$FiV&+c(W~-t&rBM;M_) ze&56QboUGIlu6y%+1fhaEZi-`d{p|vW93*R6WuO%W%fzkjTV6?$)aJV;@c`fkyZue z9FglPDPh4XA4f3qKPhnMb_ zVuO|wI5<~#j`Z%y_Z=#-+W$KW)-w?#Gu>ieLRkq%MK5*iUtKb4%;n89;x|Rrm2|Wz z-7tc!mNpqrs8wE{JKMf-8aHk$;{+xXgeC3rA)9y1{$qJfyS@wOYX806rq{QdJod zw#&8d5v-1$)anWWSn8eP58qsIg$HJGyca4dUvQ`wfynR)@UNF~;PcpB&!Xt@`Lm%a zsfTxwGhJuwJ5<1s_?xL2MptS>5<6=2&1sKPEnY$_ z2jB3a^+_B_m<*n%rrX~wu%T|?c@JW61klQcQb0FtGAcuVhHChfhPt%$_^y(}YCF(! zSUQ_{_uxono^GH}t5wCur*kfag?hVhGCk48_e&1?+0llB0i~)zh_X|lMDaB2{d{0K?0zl`pKHW2#O`0p;iPY53b}dkDiLM&FFP}XwR!7 zKlrUjOUS%{*{OGTt!!`GpV>z<(ch(AjCpv46`8`)3chfjY<7cL6GW>ij{TmURgUxL+4-{etP5+b2?cEs6&8V)y8-^|SXRSm8?86>itzqIA6nT0 zL70~QC%qig52r7trIy6idlHFHDr^j~N- zPrdKQt?#&X;fFZNzaVg}qxioK0yqhnQlFwr;k)QLvZ(}p31qtn3MtpWerrX~V@uq* zK9z(I7>;LRcZb@cjPp@X19UfnzG^tM@pcUK+7%PtN zHt>~M{J-Z{bEgsXia^J*z%io6lb)S@$d=iuovBPFoF6@D6;EVt==qP)sOiU0!MR5t zu;|xg^w(*wLmplhDRuwCoa(n4y}_e{eslFRd)G08)5zH|?7!HV^|Xaf0$jp*9Ho0> z<8ugv8<6#uup9>?v`u=HdjIyYz?u>9N2@N4a&Ejs$6B}_%CR!qwxKT!2c7C+im@?} zHCa^@IMI|sf@=z{4sqDg`MO@4-}b6e?hTF?9~?5U-O%)%RdXiMh_#qyY54iF@;?or zvZIH*o6l0Jy_5iGh~rHSRUWwe2+Q20h9tedh|>v)W?Q5{fO*e@_}!??mDQh8F@O8= zcAHI$U{^+9+l6?HCi2?={??naC+$JydEBF$K7lWOYG1LVeSIhOt%3f&r#?CHPVxQv zbBRbZZyf=q6aht?h@N#6fnSE8f9yt$F@#CoIw@YbFxWE6G~q~vf!874cGMU*TynnL zdoMs~@Ksx?jS1-LGUV6M=7i9sh!W$w7K!OKgqVH&p}UVoYj%XnH$2xt>?Qo z-jmQDcjW%H{HXR3Oma3t)(9%z((i+<90((oZ1T#M_g&oXtbt$N;TANQURj%{#P5k!g0T@^@^Jpcg`Y zwgD)q=#A$z3_a`j`YoELl{c}OmJM^2How-q*Pkh@=E{j?w|y5V>570wW8j20@zh7%$zWoN9v80Psrsgyca}*t zIvrnFO)GB?qGeBR=2Bk!Wy$Uxs~spMDjZ)&~WYo8D@DRCSA({qtjk$-3{0!BmsxvYj`gtLZ|g% zVGO>%7|3we6z*b<&VE(uN!}xcrwzIf1fOXqU>u@!+_Eqc8?=XInwMil0(>zHT_dB zI>U#x;UM7PxboP`kHH$EVGfUXreerS}$Q$ZurMycvPT^+8=iLgO%s@uPk}?=`b%(x`oi z0Z>QULRn0Vvc{$~KXEBkS;%A|P|I-CZJX4kA2HMYOCbR=mmfCG$JbZ<{^WX6wgw6^qXN@2M} zerdL0gSdQq#+~m!nYNA2#}?{@j_j6PpHY*Syk8|;t!6w;OZ4Q zu~wBhC5wW4?x)9joSV_`j658>nA*UkW~u5_FrP2-f!kD}=E=j5>wh@Uj4&E@_*Clsc+SJSZ8_p$30II7^(x zJr*4jp4!ab2ZYzf`$24c>fX$!;gbRi8;B$IU74S%>Ld6RS2YFQ;{KmK8-29SEp=hh zU}nQII{u#5WXRoI8ho3eCCUVXp@$6n9ZG9l{3ku3?Bjr|Hl!z_Q(Z?|LixoFRX+^8 zcJAmAsh1fKQzB-EDoUVwifSuuTlm?o1klG$C+?8Fl8dHniCA!Hn%V_Au1N@Zo!@MF zg0_4%cOf9^6Eh8@a9!(Eo2Z`c%JGMg*4>CregwW3tG1UX^%4jNw%6e|$ycJ5u!w`b zs!z`eSl^vovM1LCHHa=y5k=Ro99_k&5&|rmdEm79)1z1%kW?A|u^r`j3ncLT?AIBRlzD7_4U zCB@>Adv3mLr*~Rb(BY0_1(a(vx~x$5H{b*AQAK2va@>nN4R3GRbAVq61r9{enxm|% zgp%n-M$Y@_w8ro^Su_5u-&*Fx>#SH~q0!CTS{uFi@o`Q|eSh0X|IQus4}AS^La@ko}Y7|w*(??hP@VLI@*%B+Z8du`r(48@k zqFx$xM}aVUPI0;(j>ZqGN~e=pe1mcMhOfu&d(UpG#UnP9@a21MluMVyVOsCFgl?9R zO7?x6!Jqp>)^znLIeCQ+l0Ow?S9AuW+B+L@!4 ztm;q@=`IN%NFCj1%ilbLR&ghq6XjJEi8NkHNPg}&H}YFU!I3MX$ixW+vzlIOe5vcc zZys?wN{_dmb4sBW)8ofudCl%EGPyV5Tk0=1`an62(J`Q+MDo4d!p z5O3yucR|w&?ynemZ%1zU?Paeu@6@2FNHgK|Tp8up4VeAlV4%YF0l=80!@|KMCHdlsM-QqRG_6r~yI!rP3PIe(AxVpD%h=QviDCj z^kqFVS}$UU&9k#34xplnhF-Q0QK?7fGw^#e;!{3C^O6ra;d|`g-rR}VGxSg+cm~^oxw@tsx3ng**ATNxQV=jAL_9Yo!$xS^^(G4%)NKHp*iZgb!~zv1QKVb@?ZVV z|HsP7#%umpBH4du>AQ!`O?DWJBD#?9s2Y%D+c|HGZD0UnTq9^;Me|=MEzjmQC2NnM zgf}@p710G0yZI7P&*ck;G(DCV@gt}IBJ?Unq`EdOH}wR79f7d6fn=|Qa47}N=g=(G z!?!AUPG-mj@UMuXA5oRoseR)MEpr&YudBSlirtr-Lt|Ej z=)}dW$O3e@qsDMtnc*vTc?heI4lZq?FdTBuQ!}7|3h1ECB*$07E(zl-xz&r9lFR5F zizQ8e*r}P8ZN&=}F0^gMlqx7D)*rsL8lAnn8hmOcyw`Q|V6iMitdGw7Zc;ONFh0v8 zzpog>XZW&kb*1Awa={<$bp@zIS_=LkpPCn{jiyZN5Zxzxx;kY2Yt zG)whZcq2%^nst{CXlAcgRD^GyjY#DXQ;3*pL8VOHO%zc|DmgjphpS=yxFb(=2(33? z@=wbXO=#kJZH&`5k7#Ab4DV#=-O%&&kPy!GED@7h)Py;W_P-zNRD=-F@O7+$BBJph zhyRbDqZ+T}e^mU4=9a2}R##cgTh=+4E+(@MBH}<^Zwn??4F)L}KxE+lPqd3dh~5dy z-%xlQ%{_WrUTllDxw`oejTNQQvT~>BH?BsZ$HKD~LA5YFvCcGS(^){(ja&fx&qDm+uhMi=PetPWC#`|S-y^pgq0*Fxezl12LQKzVP6|%&; zr=Lit0{f1oKtjh5(zgY&m|Stjq%t*`?$TQL4@81)Z!)ZJE<1S(+_hC$NWwm(kN*TW^}&nH*eV1zBW*%!=Qv$%u>^w z01A<_(KMTrgT!j7phwg-81;-ktCjZyBnX}iDl+Nc^m#V?{alYbTj^GX>?9_bT-w6u z!3c3l23S%@QjKOOX7vy5Mlm2c$%|=MQ=d7+H_dfkHp=r*vs9O8sv%u>Rz8Krh$6G5 zU9x|r^W|-6yrq4JMpM}7d>@a93j|gTk}|o?oTNX~yZb6J|E4%IVd2M3f4c3{xa0wT zY`a2!yDtzdE18F6XoFMKhnOM=$i?$e$!zPEwQ`w%Ny&`xq$cu$hNtj#Y_AL9zCW;2 zOk>tvRaHw}D%a|uawfnr!hN+n8F9B$pwK8ZeUGy%m1bEf*7lTm-Y z*K6+h=Dn^j13o5&BsUE?UdCaV-#p^bsSiY}doKcz*oS=HqTi=zN%CniY{u>R>1%Ji zeNxvNh|*H9R3jeUZqtX&Qx~Stu@60EbCBdxpDYuXC1ud@jUT{oM;v-6^R#bsdf?&F zm|05WiuBpb9IE~qn?G*r`_K?vHl&`b`nAg0-|Oqyjjv?nu!0)G@U<-D!&lg4+s@y< zI<=}(=l}TC9OKuo(!-jB{V-*4EvZZ`<$%kZn_g=Ccg~&ewCg^7By&tF2VSye+sGbU zoZ6}B7eK`W7oN%4!+8ZfSq+$ksJCOE$X?P*yc^YnLZ`u>qqd@pW-U&Y+*6> zL5G|f=k|tz)qSE(UX3~Q_`z+!bJ~VrvLvd)5{iu>3|U`M$;kArg6J$!i=%^^Uh+kO z&+AvEd=CMlCWK6Ubsz{=tuzf*P0J&wTYO-h8eGIKT}c_1@wE zbz&10&CMf8NnL-1d9kOsJz6&vl-s>Ea-is0(<>b7xi{&21| zoPF*Ok^E2JetM@u9HqK$qDR%Unh}@yMNl=(p(_rZf4xufS_ff%+tJrr`yWe6s-q*; z;5=~Y1#C?J5HbQh!(V&+&40Z%Oj36&2AW%>y?Wu%A8}=`8CeFmUNGAg6tJyL?~0>2 zR)#Hjy-%Xufai2V8&*}~L#Qz^e>D&@Y)a7Ak0dC~d=dA&YAF1;2{SW_ywf-q`D8M%k289`HOZw0k32VPs@EG5YnZ_EJ>A zP>lC%j_ls>WfJ$xj@&n!y+3k7>hMmJ*}~NrZr8Eb=0(5r>e7M_aLu^;+$N;5rFaQ@ zE95q9F#B6Xf86vsqa#d=Q`?j0L)}mOQC(k{qpA-dX1vI<_Mr}qrj4RuD;B5vz_a?W z`IoquHC^@Nwqv$$s~sW|u-k;pznR+8#uOP6>U7qnAKO9ANADWcji(`4BKY(_TwH+9 z{x*2j!jag#IQl|Ucsq7)0yj~?;Y7Q|GiM)pa-8+r(Qy2#WH6ABr4G$DXSCbuG55#U zRpK3x1n{!#*Wfto%8i1VM8*|`oW$Bt74+%?BX_d|rQ=bV*#Jl5#iPL#H02TObYHrD zHg|WfcV4hcM``*afXOI94={`(KCxc$Xv~a#p(4`dT43UOhIa(|kX@jqtYHjhadAD} zbPwa)EanY*E>foMSwi4YN~YjhDzDj#p#gI1Q{NMX@>Tqv_b48g=ackKhwFbG6LV)+cOSA`4&!+9kSS6NF zOd0}n*O{#mi9RV)L4mrn2vL%jj<~zvwlUyDyl%(MW19|YUpC4ssGa*Y>e&cjqm+9q zW`X@*`oLlALWX3q?{LB*pf{o;54?Teuy${?{jUu_%n3&vN^EQNwpig2Zb zEX1E+nhnGi+LoNg;?OZ`{0^2FXiozX8dlXGU)^?#DS$T1d`}Y$T$XdlZh#*oaaZq~ zKVPA2 zH1PozM}NJ{VnUUu39^O{%aD?VTvtix=&88XIcw=%L^aveJnC?{Ooe_~gv()_8~yWY z_~}A;Y3@*en_DZpIp3>kTDhZ_#tr|ao~`!@&ZOKAAKKQOS>pr3iF>+jak%>e`|ZO= z?>q{Rr9I?wFZI=?J37jBT@Z?x^oxGud(z9M%&I*<@YQYz;Wf$V_gCUTTvtVNAcoTa zA5)6SqIuO)04ZyWA)ukS(bT|H-`f*&d*^z`F?(Kb+5^X2_6`4KX-?;u$&>@t>bpQ$ z^tE^5F5t`4(supl-*pFPikVRuMrj?zo%f`I8b;;syueTf@gau)$j$WF%Nj}MV~397 zSUba)<)~0Pr%hjB%m2TpSqF7o$9pa;uUKl4_P6#M!cG(uf*W7RcKp|mOde-+&KLCS zbm-FjeGfEmkgsLuzWtA8_y43iV#B%KclyH(Q=B^AIB?_dty`7_qDZp2y>XIiKS@|Y z3d1A?cZhqp>BEegb*Opj`jSDmHD8g*o$LC-3}yLiH7j(L5kyZ(2m?7_ZIC1+j%oZu zBRWv9vIPB*~eeC>Su9809Zr{Hzikp)} z{YXJf^|??~hhWc-k^4rH2TyfV`9|Qa!~aATX6|dcrtzL*_BB$OEd#G1I4uO4_G#6bt_F}WfzZ?Fc^L<3I@sN^5Y&bNWE+Pa>4?%UV%)KbODe~=K z5qEyTa}_@7gHo^z2GCUq9rLin5Uw}P7A6o?phZK*3x~M4-6HVC=VmTVpZ(b0gJa&j zN(FVfXI=uOOML3Ry>9c*jVk_XVAE$DnG9v~O6~EVLfwA>75`uQtA;3KUO1?OH6bQo z`1=q0?oMjr-L5Yle<*#&V&+d6#1~`-%_yKU%!X()e|i^Pv4O0UG{D6vtLdi4O=n-| zWUaD|lU8TT+(P$p3gr{&(!Bx_&-soYxk$e8to(tk+(+7*yjm4|wZ7U@9|hfI)K?76 zI)5aY2YA9Jmm!-QfzRQ820mH80-w?Q%I`F!vJlMd;hjfr{}=I0?6bC4Jw~AjRfa)u zH&pVyiM49G(QDNSG9s77;C;FA;|~C27yfvHW5)+mu#Xh0mb|~Iz}ohg4PXAUlm>W- za3Ip-QQMc&AIpmBGyk4pr_mkFVTntKW3?bo`e#r|?7?wOH_&-i$ijKmV!*{es9K?Q zRKIE|9oNmK{>VzwgA1B|^~LIa=l$ljG7eHRUJ?fN0XVfNU{CJKwtafoOC~nTt!>k9 zhfW~at|1`Hsgy!Y9l;}&g2BE3W%^kL0M!O`Xafh|~U|>ep*A z5JHHf4r)abQ&qQ zN}s(=2!7eQ0slYq>Hno0^gsVtOXht22s+Cg7Iuhy+oTIknGAJrf(b^k$DV(9Cmkr> z4a!DXSHg?}U@Ee~ZtDDahBw{uV-8hEf17H3^l3pGu%C1-8mt9*+FjnwcpzhrRa3}a z78*xu@bN62eWR_}jW*T9v2aUb}CJzr(;K+s@R;d z@`UHWQw>iKjOx)NcyF@tn$nI@r#(C;9oX&J&m;a@n<#5H{$*io#lnU;1FFqiZyDI- zeqvpc2beOn)Ub@>x|+407YJNcsYOx_>Nz@nQZ+rHoj>|m86waA-kqwqEgtyxs|1U+tPBdk0iihz zr1N*7`+8GjIa2>1zbcnJC)B-p@z;~8>u-z>2<#PBY;F6uTdtkn!A=)t=vcWMxS?al zoq1W>@D8;0Dv@ZrOeGmV7oC-5C9)hIYKPreu)WKu?_xtq&Vh4YPJQ|Lt;QE^zq<5! z?(_PEsp}1KrIY6<^R#7iVnGxV;Z{;mx4euUMgO3}C3H0B-x$7P?Xru{L<%e9sAfRo z^x@c9hekRk#1Y$h=$T%;F9} z`-sM~NZU}pPvQguN9=>H*B8fdimXm*@C^UaJjpySQr0YPRd68?(@~n~(A35{K_@*pu>xa zuB&h#FcL)-+qk0W$K5@)4$IBSNjm=i3~{5<_eiE6gAe)Q9A2Y{!qpa9uuj)gc^t#{XtnJg%uzE~SU`X%Yw<^x42Id1FlN z$&y-Q4zY1)hd;vOiXY%xnh^y%EEJ59z&-=w+N3)&!|(u z67vPhq4&l28yZW`(~8CQNVM59tu02fg;LZQ&!W5>Ms@1T?eDT+6H%??*lR7mlxd9= zEQ(Gt?4bU+PJ{S&31!Rh``DBHx*<+59rDsKj~J-+Kph#X1WMK6o)kF8ujr_!`@EexztDavV9C`>v&j4%VM;m42l1 zFzfU#V)%gSTn~*-KCS!OcbrE*j{vSnRJBHx5FmF!hMMGMF`ac9*CHjb&X+fo#S(sv zE|Y~&HXl+*9xoKB{$t`Ayb&prC276+Z3h8z30_4CGnCY2!UKsF-Bah;lX~dO+?Nij z%Ntd(1ud$tY+CXp?GnY@%}?qV9e(+2Q1}`o=L$eb_}0@m#p0BljaVzvR3;b=d1I8T zC6{zs;(Wx1J2Mw@_jB2UTe*SJF!M;g$F}tU&0<(8=~f@W0P94k06a(?U2FU%yQX^? zB2ToP_8fl{fDfhwzso5~jI@(=h$ltVh+vlsrUU_RKDbOLR9IE^rpcOOn%!Yd-w*(& z`pD*ai&4OdnOfP#rYn7mz!2-NmoX&8R@NiTBJ0)jq=j2N`*Vu{6gMMiNN@-G;X1xH zu~xEL`w%KJPeI(f2FOfUFr$lDAZA58pv6>8b)8D`^0!nOnay?dDayw;RU^ej~c_tsetd;BYa5c2#<1o;q z5OUqshR6@7I&jl(g8#k42%<$>Nd>CbNBG@7Hgm5ZlL1R!1o+3$2i!i{4^TxO{`sNX zRZXHSLfELy-G&B^{4=ofA*Qm;ASo|Y>qPhHt3ho;QT8ld_lXRtqE@g4M^*ByrNA3< z)y3jgo5!Cg(^gPN-z0CbN9s)mhC&w`gyNJJK9r-aUb}2C*UKoSX&ot$3KevpyWs+x z?%jZ8y^^+1U*O{s-B$Tt-~BA$+=YBI`y}?wZFa;-{<~3rH5O~Oe6wm8+E>t^lSeOG z>TMiO{Umi&T+3RWkyO7nKazI(%$n!rQ7n)tEGRlkRCukV?6@{`%5XV zhBFqjcRXyn(r1#a#NgH-gZV}uew_JMa3KlDN;Zg;sw}1IUQpU$X{-A$ ztr_{Q*RtW`f8fSDQ;c@X4Q^^;-T&vC{MZC6qVgLG6ZPoqqI2#A8$S4WDPexxct~0BA0RH9E?16 zsF%a`oS$=l`JzXfq4t*O-k@aOIB?x0W`~w(LExj^v3BRj6n$o^tLKY|HHHoL)IEjA z^cd{4kX#U43Dq@vu+xM-A@4|$X?)A_VV@++rbXs-bM>QhXJuD{?)u=?i8TqoaI(T- zNUb9am%9_()L-CpdC@m2UUZbx4yEk1I4Ikvmbai3nA8)_d{~IF-?q>da{7rF;>n~l zCDlSG1er@q{|8TRiZnu7-Pv&sZaheMf$HE{xUs&}jc)S;2rwEFI_oZs)H~&QwK5p+ zkR;79&zl3S^d#}g5FZ6RST#dW*;eqUIg=~QsywI&@@!w$DMbTW9k_T6urpb6qv9+Y zz_BRGFZopo7uHnXANJp5zrOZgyh zM{LF28~0-M4H%pWL91_Ec>YsC`g%oa+2WN2cm~KyLBhF58_xX*dJjjkrIIZx8HI_e z92Q)C*EI}p-)H>S`#g@Y)P%6oHphClwhdTl1(Ok+os{iELTr(sTT$>!m!f_f;qU0F`yN-yhqJp|)?TZzE-vp!-jH$`$6Y|u z;3(_j#Ygwn|2{v`Vj@f2Ai|#b^S5%Ms|zD3tg?Vq=}fjd>9*uamMeoFoVegR#tyho zE4w+TX0>JRbAtwA+lJq!x=d>2Hg|w3CS$+d^Y0dz(aT)~8++8u>H@fqwK5bbO=jCb zk86oXDKDbWKSr&p)``L5=vRD{kehq7OY8y0_}rF;&oO~epL=kQ))t|zk2I<)YHu^Q zA)nA)2we3X^IV2X)ZiUtKK*281ckaL&CCQ^3~`IcB?uWljGPn(xn6=ItM>RaT0gx7 z=$ms;ovA%y4*kKzNQ*IplAe~A02{+J6+JqfYQO&=5HYc!-v$ia|ik#SiqV9Pu^!2b54B+oZs7ebY!DC4-L#JjSP zAy)RG<{o|D79`odf9CS$ZCl#p<@#Jn!|f_=pG{Me|4{$-}1ALddOd_ZsU4n zy~f&}VqQTl(<8euTGyG37RJ!VyxbW$o0`gx=I2NhDYqY;3T0 zWF(f$10_V_51Vm74lo&RRrOGOWNmIt^R zF`*h5(!<~ifsE5nsCRAUmbZH5x0@IvtGU2uuvKcO)-(4HpjtZ$a(#JHWt-}3B;L-d zVdZtxOr;U%iZs^-qIP<~vsjOPXX~rx+m`s20p!DHB^Q09i7-N!GR+`N`uUHwQj}d7 zw|JIHaD+}>S==X?e-K>!gXXfRgyH!=S-_lGdvnzoUj!eZ}Rnugc($(oR_f`%~>~Dx?gYQww4y&!gDhp zm^)LH$^D*Dd$l|XLfaFHP)7GnRC-BvpDoNb3zzm6G249k>&;fXNNq@6OFo>UUOHa# z4ze|?Trb^wpG7v5m(*I^$+O^sXGtX1<(c=-64=Ra4^lEd5$LVyJ`B+{V_M3WkmDl! zD2%+K&n8+HXHyrJsu+-MuX)?vJDIL+^5|zvGc7xan8b^L%?))bBR9bF{j-%uB#>a$ z4)wuLRR$L`EQGvrtMv(wON2J)0IfdFV}q_$xh4s#LEs2y)XM+UB^3h~F4F!C?vi{` zH8xqQG5!D+;xcJKU{NhBGYDNJ*!8mIKE!wAMTMzB5#cp`MslO* z_WfBam2o@!H6Y05`m)z5sHh>B2a9f3_98I!Ak!|J+!$-qKSj<`8Vwh;0O9oF`yokYbPR2 zvG`6>j}>>H6%WyGb>E7U46~lI=klS03Fh3`NLWNSQD34Dd z{Nfy}3mTM2PD;M$mlWVKfB#Go3}w0p22Er1s~16Gn9OJpf{;FSK{Io!7_rwXLI z3xH*S13?IhCmM0@t{S+OR@Rit$3e^7v`W%I*hA>EVr6qdZ6N z*IvRBoF#G)!i8P!nZDRyi@Lsi@Gs3`|H?M$rLj3evrQ(6Q&d8SE~dk*Xwc9B;(`|z z^gYhAO6%XZ9@cir0jcLS*GOJUg_w?!^PI?RPDP%HE4X^!lsn%Civ*ucPdytu-?|Q~ zdwrjjTXSuUdtRhPp|oPT9t~Y}QjuCub?oFk27pF@6LusGG2qV8`xyFSxO=#pq8;Qz zYW&Lm{9iKbKkgzpLA8>jo;H=CW#TMPNVt*kl^TESIZo3mME#{F%F8G};nLVkjqjCi z@%8NMi@ofBe1v#c5j!+h^ME}WF?SjvqL>1+orBTv$?Dq-+%bJRMyiy?rDF(u7@A+nF9*MdIKM4di1r|Gnsej^U4P&-~7HJpA z5Z;tY*UJnmy+{E%1vNr7#Rc}~pmFXJBq@geiH6%KEy^YyRsX&Ok)E(?l-ELmgN{+=`vZW>}b~W%Ethv z#ll4Dui1x)z`5x6YKtg5YPYJ=CQ-n3N3+y45F=zKM0M~%g@eKBJ)u(Tk4{zuTqOx# zE@OFFouYGEz4Sc@6<5X_0rU7u2Hbg`XY!nok9`O^rbH#L+7J_?6!J(bR*sTC8fG4` zYA36@PA0eYR<4wOr%jn(Mymjy&xR^{#vQBb)Rp;)@e9EL)U)YQo!jnN;0`0Hij_ckBP2D%XU(UE43^e3 z`~Rhmb+{KlA|}try7F>yLk~^JP?Jsc17f1=-*t?5yl;90C9^gsd$dc}1hT(H-$u3A zu^e>R>3$mIpw`2>D%jl4pt>Kst|AftT7ansW10bD*l5Xl5wFo(M>YJXi~xN~a8WWtfkEK`B1CtBe?iw(XTa;)d7_PFY+!F0oPP=~Fa%nnMAeaotv+>Su#3uDgDr~6 zTb#oYinZXC-MO=z58X*uBEz<9ozf3Xyl|P#uM$W46yXk`9MmRqJ*Q_*FtocEcV?=4 zj_f;96O`07R_9tUQ9>&bcQ95nHXWb(UjWM>!!TvddJ>;`7ouI_mzY3i6H%R~d#Ci6 zb*V)BE-_@QK#hh&s2efzjxV0`o%p>Jj8px}x6*N=U)Dc(<$NlJ66!OLD7urP4*UtdnuyW0Z_clCsg4-Y^3{XNqkQ~wi2c%0{r8|c%bt@vJLrHg+#L!`afOJW#NW%cq z{jQ7s{GR9e;(h=5j?ZI<=*)dz_Z4fM>pahO`zpvuksYT!j=^BaaQE&gVK7H(F_`^| zM-RiF2xt$Ug#QUS+e#cU9>?qSU+|k}u10zo_rW-u_Z+*OP6}CF~{`EtKsrJ8qCZqMW{rBHtB%Vn=ru)y2t?_TDkNoFHUX%ZC zU*)Afbm-8=a-LVt_wNrP?q3mI`|%9xzV`0^m0(IvZ4(D)eETa3_Rb`!Q}DTZ10L3^ zSJV2&O}a8eNtKIod3CU03O#S(dn@1dC4CgFuW6SmTnWbcoMK$rC}VV+;f8DG#Zh4} z@%igpi!Fvc5lidiaTO(lF5@v~aFs{g>rc6QQZZAf&WvEDPWJpV=r6Y9bKMP=7t45l zf@-RIlhl!T*N@j~K#)u7`@3i?UbbIpsVWs?ND4lXds*UGyChhW7m! zjC02qv7l^@v^-zgE5T2nK0U|CnD^+@i^(rkdMcit)omBMY2?M$lf~A497y_vQIJ|c zPY+*ejN~)#EV0%T-Iz!sS-KyXA1JmO%-q^?7hU*#mX^ohYYRh#?TBPkB%h4akW1R7 zOP54eX8TLzjcyDV!cD6w&YeqUmI+Ju+TCI3@5#|hOOgs|c$~i`^5WO8$LpJm#!Js> z1+1cL{b@!PYMR*dDic#>qjVMO5)ud!1sb;(3TM2H1lWMTO_-eYoaYisNG`1p9R{pRN8BJ&{(rgh>ZqnLJ; z+p6QPh{uLQjz*zmkFHxzZUqTD+gm90;ll?ij~H)nZ$B|9ybv9EXlUrVMbm5}k=1+S z*%@&RzAwgUDC6C`>-55o_XP%Qo_+lIu`^rahUil3?SlSUf@kzI`-#?z+p9IZ_>yy2 zb>iClCkI;61#NYv(+chB$bH7XMI<%H2(z=W+~elvE+3C|3yF!Dwbjm2%W;?`_DuP4 zRkx0Y>*dDBUm%)xNLtryuh8_=*Vng&uqt@~9o(?4TLR?UvJXUwH1h**~1AQE2q)<;zyl)q$jf0-n*| zztO$T+LL`Fc})|=w|<_o!^ZG!48VGf*!EkNOm=1{YZA>u-Ly0`B6hatyrx(Bt;MI^ zVm($gwtrF8D5$7}z{%;#Qs>&<9Nt|KH2U!L5KqK?*Tp6Q(PHuS-@)+1#@a~GV816; ze}Hd%V{@*ihu&%6VpLPAQB&mP8!3i29g`|%W|_G)JFXfzYF}z=r{=tNE9&@~`Nroh z>=}-b)1`Cjluz_q*K~!d>t?)u{TI=^r`bb%x;sZXPR!#R9bGm#J=O$fM|{%-8zaYO z*{7nMCWp7S7o>w{eH|AUS9dffEzVPOXJ?0vh2=Gq$L4HF`C_whSE}rJ2tus<{Ax8D zU3m^uof&aeHEKDUraiejFn=*_vM$B=GL_!-445}UGW@43$jM{JIEvefC&FQOd)0ih zJw;ktTFJ)d9U(ZFXg@B8YtPE7&UBpZV}(6&;0U?M^zaF-Vv9Du9_`EU%rJT#m(kFT zKaE^oD}@IkTMg&y*DYn~ZA-%jf@Pl?C|jhNmcqGCri6Ev*&9Fq`|osI@Rg~-ijuHv z8o!3%Y4VORy0>m?U&mrK)%84x)jJ#0v~~O@trtZ9e7%gd`~7mrWt=|9!)=w+g^u9Y zulL{~Go0pzHs(K_YH@4shzkx24`=7$QF0o@_t4ahj*gVZ!h=6+2#-kXL>F82kl!#$Nl>ac;M_PSXV8FxouClTDcSxOQs`8 z<8fZOLsf3z`7=IT_y)ZeReU2fmqS*^K|tI^Ry?ah79|3LcUjAO+M zvh%6w=`5m~Glk`U8rYZN!0F^wtwb_qz)ETsnY@YQx6EV^bv0>Ayo-L^yxI4q6iyqj zWgqYIbdNk&<@{4p`7|eoZsmhdFUXW#T*~V5Vdu1>34jIB^xEAV?n=g;MOmVcXdb@# z_UY68WYpIsxT=;2FUaXLsdSxht`527t&j$@AY@8sx?gaC*_rG$j_XQSOj>G};hKDL z-l}!6MLbUn9=Vd63lbB`91xUv-Bv6HJyr)bi!CBHR_EqC->;90?`i~JktL|~J~f3w zk87(8IdsUD&ldMH;UIi&9rCI^B{J{5GB=zD+iJ3WI=90-uPRlF!R1bpWB_5%ss|;k zo$bwOYp=~HN)Anxkrv1gyyQ8WL?t`Bf}QmiuksR)KlN7|nwq-aa_cv5#G+>qbzA8i z2@=n}8t1MA`+Z}S%PRxTI7uJP4@y{(SbV0EvNAJH*og$eu8`OE*PQ@r?q8MpgRav# zc7k-SQyFQUY4VKQ@ZGj(A$y1AF7+&z#WB~7$+WIq9bpt5HETRQ0>q!q%vhjHPIaUO z#k!2qKsXDaxgj}MwHgZvCh7EL$%%}#Sfxjg60EA%$Kqo6OnD+Y^Yp}noU6B2v_{9q zqzO_y&ahxpy@hEIdzo;s)7npoZ^c)T%4N{fpvyQ7d#GQQ^cNgC5tJ5n!#MEFnKPaF z`ckWre_FhD7Bzw_yR#$4nxd}a$`@+S57rICJd1DASbl$Zvu1aDj_=XOg9uCX6&eTS zR;_3@#R#i&Rj(y_E=CQT^c9)HKf#{MS$Zy&PLTh~f4yQ42@g+`V)Rf!+1bv{ju%dr z2TXyun+_x#o0PP)EbHNF%_>(Ssb<%+YX0L1v!2|TD{|54LiS^&L2htRmivcy)NnXl zB#aiKTngH`jbR+H234!NO;G~!u*14h?)71Cy$2y3#@2H8iy%M}Tzf+(`(QuBkCbYU zO|zC*(Tx$t-E{OI$H~aL$OH!BSBJfJpSIBd^;i6P>qL?v$&n-(Q7D-vc`z?QKJ2WAn~*Ma@d*{M7pqiNd7P+l59=?H`^U!8dZ0I2XNL z?KVCcPbsu7KJdZ2hfkCV_7I#&mS?Zrw~@9J1MI+1w=&b)(FNO1xd-+zSs)`q***|Mu;3+lVUB*qY; zr+f08tQ)_6wb8srIS$FfZM8V!hB1~|2qKMR?J_;NPsgMKmWo63H*Zu^Gue55=b1Qh zuWDt&Vk1|L$Ve5Zp`l^(#Ds})IHykZmoHyPvyI_gPSSSG(LxUiQ*< z3|NN=e-AWZxwqGU`Y)27=l|v*57;{*I(mjT;(oK+Tvbn1PGaK6h}W-wEYwKh#hhS| z%*Rw4xvYHvl(zz8VqOWPk4=kF1|}uE^Tqf{AQ2s-XI{c2_7M%{hh!4+4pQS zMC$P_b-meZu#9{2m3a4rv6WSBoh>0cNNgj0a~!s1Cu_ZsX*<&@f6qp(0gq6e>lEwi z3Yu7xE&foS8A*`g;?In9W zHl`U)Uz~BaPm7~hjIfi~wC0wDT&##otug7>#*F;cdei&|BDt$mS$S|*eSQ7GRalgm zjx_nzmrXxy1p7;@y=rNT)6>89mgCLQb9>z6K7jGw7`+u6BpWT*Mngq4{_WehrSD=! z->B1?jO_CQ5JoT_Z;tU=apjL{5_0)t5ck=%us0flp2Mz)^ZY|&NZc{Z%*-T9a-UD@ zetKIUd#fQ478mA-dTm5^605fWV2R`kJ^p;uIEvqLKwN#iEY+O8!n}twNPl&~)O zw19PN-O6-sMRP9zv>;+%@82(8xMr8>G#B&ZMLPydZAWNUY3b-@L?F|;Rha9zY>Yc3 z#BqC;FTL2~Ha;LdmINJ;U(`A}BVT-85VDU)3{QQXS>vp5#4?w(ngzL~xPJ5n+dk_?It_ z;-@-s9ve%x)=t}-?me{EA9_Qc=eHVQ$tdV^eeb;w{RzLt_Y1fUQpH?IaPUZev*@-x z2P>eSIeOd= z&~O-smc!PXZC)KMCFK~2IwUkSh0nZuB23Fl5ehZoF~A_E@a?`DubR5=UlwV2O%L5U`9zx-!&my=4w^)bXx!xI?H4|gaSn@#!$0kXukL=C~6VOc2X z={>r)X=rE|#N(8XOE9-E#|?(sS!CLAqj=YW+zHRb z#1wtHqRB{jdPBP1rKd4m*EQqTty@KpJ{^WgeE&SZMJs@gbLY=z!QbG}Sv}~oyR$tw zhh_=>W(l@KY(Bp|@v(q3zB|4>D6S2bni&VlL~y*!-rgR;xV$gG^h{L;UzKOOdQ}P` zMYrq``LgcYfF0hc<>}@?px2)5BX+bV+(x@3ORvV0q#p+mMfUCWo4&rjQ(al%lK#{Q z3nO(|vQhk0^yW8jKG}5Xdvf5&ZwKu1*ULc@P?`uC4?woAiAVLO`O-w2W`TjPw2X{l z{(~ZmUY^kKa5tt}$hL*}>270DE2yN(cXu}NzrUU)TJ$Qx!B+(wT47iz(B-f_G222d zF?)fVJid7meod|4ztW*$%m`sMC=L=$%tZd-iqSBwBH$!o9%V&c zmlPg6cngEiEgPf#l$B||K~wf?2U1KbfS~B*2R;6H7`t<6_fe+-+d82d3E(IMa7t-% zF-6wHVjOza+K}m6A+s=|(MJl|qcV{>!;T(e5~d2KSF_A6WoM^f4m99NR68@+iUUBUh1jAoJc3=hg%D|8^+u-H`tP%YHlN5gdTMr30_lY_p+F+( zXKrdQF3H^yuj+=9yvTXs@%E&=SG(|BWfIgdaYX8g$2v0`ZBcRDnBmK?cx|Tb$@Loj z(&d>sI(@~KSy1_+y)~|#tf~$%d3n%jIA-;&b@jUBvm>W+9nIq*wn!6zp&7SQ{9OP~ zxVkg-$I&k_Zp3dd6w?U|IVX|I#u+S!DtnVcN94Dma8OiGcrCWQqzsU3b>+|r%IM{_ z`rxbV;^KOM6T6otJNS&7>11QDUDFG3&8i;JD0ptCO)Kf4m>TQ3VVa{`r3tH{3Wpc? zF;qsPZGny+u}61WOblXHoX1K8f~EkR%1bKPa$C}{(+z#P&!h=mW?io@-Zq;phxlM+ z4)NjRr%#3@{ahvif6>xrLhYkkGUS>Cm=kcez+|4+c2=r<9Erh=nu;oIcxy~xqsiJc z3Ah~{C}B6I^>$qqeHZTfQQ`=~H>WctP8~fu-`6+xial3BTRVElZBBG~Zdea)(-yb8 zWgMi>IaW3{dFk?HKD*!dP&KDt7uXf9=a~W6TD#TF+?;IE4+_UQZhbn5q>f@st=Yi} z^{eu+4%VAvQPxYqwYbtb0Ve%wRWj{+HCAwhj)H>1Smb@>UkGwTY)eA$+214A`uvbx zBL{5Yx4K^2%Qpg9IXTrHJ^CrsGF;(geOF4#d}nK&VfGeK7-tca1Ti(+@te|UqAqqZ zA%|=2mp!n8WKyuzq4G$pV{p3SQz*lxdoo-W`kE*X_c+g2Gh1wCP zhBhSP*I*=bep)v6%=$ffdUHcYCH*bEsU1}4n6N56^@eK@Ab9b+-v#*@eEHny; zb^djXXf>z_3xJPv`tkmWE7U-Ez!Px+o3|pGj0W8on}DMXDuUWURYk?QNHLs~R5m6b za9%*J!fCD>G6HaQY25m?+O3SW+(P^}&k8=H%&YACwfAwHNbMIaK6u!O36{aSxTh^zoGM&;hR1#|5| z|94vhbSB|%E=x_7jmLHX>5~M!l@5A5VW(Wcd}%-dc6(?`O1^+JC#D1S07@CmIIfzl zg6>?MEC@Wxkg>lUDpASH1qKF{nvr52)>TC8lSm+9)&#^GVT&6U}X zWL)q-e;x#UR9X^5&WxyKsj6$+K1U@vL~B&Lqo@finZwPVX~=wN&(>^>a-qT%GEd8d z!|yXdqa`OZ0eW>S|4ooVHv{CE4oQs4w$9j?KWaJ1YwPwWpHu39zwwY^GT^G{_`s;y zv$`^&KKVM`1C%WOQ{$8wSQJ{$=g*&;!W#6I zA$x^h)KvxWjx13;4FxvDI52oDDdK1QQ~`7U`R>Kt!sli7`|F!muU@scr^xWRui30_ zEiF#MBqEpr*;#I3VZjW_>y4#JnZvhc_>imuEFxlJ z+TmPex3($_I*$Y(Hm61C*`hmV#S9M;7tjGz%YJat=M&WBtNhz>vq>$=VI=|E6*UFkJm_7UIu zU~J0?k$iQ)J_v1wyLaxGKo}{X%FIH{(&kKL+6gi;RakW*ep(H(!En`J=t=qe_eJ#S zS_sTCOYaYyGJ!G#m}#_8P#XVIR~NVHdc(N66HeOFw;L@ikQ)(uAar(wu!J@$;?@vV z0VFq4Qp9lnGVQ?Kqcum*iuRYPfeS14wzehibpqRI~7$%B@>Zt2d_D zk@A6PJ-9dp$U7OZm(a`&)(rs%iU<*;fq>}3a`EELn(bL@KKV34+?8m;f={OCh%+K2d=?B9m0eFU_m=jc-P~4=Q zqo>b_6?Jp<|C|x1xAlt(gaP2or)aug zD5$8+KmL78OvZon*NwwJw62WHZ^r#c89aqz)NC1w@MKf;fe4k zhkY3@XOE3(XlYT0r1j0H+IaF~65drDu{<;vdYyPPiWeID+?tm^qtEvxH?34CR$7*Z1Rl`G{v z3hAH!H@B!@e$!=Um=8P1=84JlgfAa61|zWyBRM<0caMtKc;*A{|9K?L|1XNH=Px+p z1du7=kWLJ#DJdl)*vQ5v{pisn1OXuEi4KJm2#IiN*Z?*_D1kaQl8uecOvn`mw{`B{ zGO=J29P(udOqp6GRt)`VaFigz--C3}RgRxV)$$;~Khic7i~x;PKple8J{`p;v}?ab z+%Vsyge%UU{kNDLFAWtI+6g^+UOKXoytdXYKwJaOk${5ev%_Rc5DJSRh*%DkDn%*K&Rz(#FH61LSpzwjR_ z=Bl&uYIZc?`9<~hp#0f?-~h$x(?9b?uUwHdH8mya%gMj0SgBZvku^2VfB-lsK0Z3C z^Nj;8@PjV>e>bGa{Q0wH1wZT*{eK@BiKG&b zO-Dlmg9#8ELThSjASVC{!=khEXLVKm{(XNy-iR()s9suf0JTh-0I4%HHrBJ&v!}W+ z0@SPGW3ebI4 zSA5T2H3RwWmA^mGOI-&}iNyc@ZLmDsuTJ1~m{0(gz;vM0)^#kxI0TAanj1zYe}314 zT1NDg$NV6pabeah-%fwkz-F+p+A*Pf%#7i*g~J1kf+bUJTl~2&wTS>SAC;dr(gar~ zNfXj{ne`xE7^8x03WZ};G3m(mh~Mo74o-1>FQsVJRqbBM9(>T%o8%Z1-dL|47r?p! zz&$~Pgqrd#$^)yO;^N|{R7I%|riucd;@H_M6AN{W0@uwj>1F;~XSV-z$zts?zgAh+ zhn?HrtTtfgJ;r^V2a_%q3~VYb{oieW{`@g0>s+8f=wxD&*zOllHi?gu zqX;t{T)nEQ_VYE(4q^x$|SDUJd-R3vjV4T#5dwy!i4V z*(_ZWep7DB=i4o!6>Vn9>Xj^0>cQ(6>MX4J)lbI$j3A3cneLOAn22OnbX1_oC2d35 z0LfPc3OHn&F!=h{>~PKS2%Uz82CcATHf$E4*pRFQd9iaPC!YM>;X@|v6qd`~d7M3& ztm>IE_E`nT8+j*ZEwQo677os^7!olhj(RVw+&l`&W3Q=nypw1uBl;9Km1=Sgb}P#V zkWzc<+dcr7&aC@tOI->qq|hM>z*Zg^-t%ufkbAf)wZN0 ztog#AN2kc82R=L}mMffgjU8TM6gXa7sVyulL}2sK!GlQNYy&1_PjN(1iE$C&!~{^_ zsD2w; zv|Uy%_a2ryj-hI9{k+y8FP;Obj^n{Q2`HM&K*P=fFqdiBUrb=j`Z5k~1vons;L}hq zu^L3!bb4)JWCJiH6V7dArVWfad*}(Ux*`DPWh8n6VCe#ujI2_)^U%$Go{<8@;n_EL zHuR(eb=SAN|2ggW_Ao}d$q!CW=^uY~;s-~T`__gEo*&$raoZ^JZ5N*-Wxafj@d%Dg zs`sl=dmh7;geGQra0`Eg8Q0?ws2V=TALL;f^?b56wn;SbfcM6GcorW<&vf8mro(Ht zQlLobDm0d_0;!v{?L$tl1o0SX%U?rAg}sQSvg|9u5uoC{0^l+olx~tf{OzT}-fYlr zqL<6z>_VttbWZpw?SHaO&uWGZ=ZYUZ)$o;Fs6`lt;$6$kmvwKIV@H#MJWbNkuOnK^ zjphB^#~p18D*9A`E83~?n8I$7aQ!oG_;h@%aF}xTDJK<5h9Nh@{z8Tuldp<-B9c`r zI*8(;HT<6rc+=kC<=z3XZ8B8pVm4e|h1eXJNRJKBm9kKlBtRUyf_vrbyWp$`G2IO% z7{mdt0MiJ{e7natc~tv?%CQZ2Z)qhbA&{nvLrzrdPI~D;?zp;_wFAOw5;2NORz1mg z`$JV9q;fXpxUP(mcy^QV8|zDEy?5l*JZP4mx2%}2+E%+G2VAH6?)Uj;Y;+V~d~Klw0QGfG0CioN$pHVsB$TV&a3VZh2PZqy z*aZZ7wxwldmnWAWiUijuiw8|G;asiFGsz9kQPZ7I*B!u+mc0dc!TUo~40>~CHUdw~zkan;*!2|S1yp^2o91E|k$ zJ(P`{0mvGGN~=EeJX6S|1U7bZ2KV`!dx}3gccAB)0iFFSD5wV{=L;DHAGadSbNA|Z zpi-svJl9i@_>Gt>D1Q$R(N86c=Z}rO#Y);LMaDtail)k-$_{weXH@=9?%uaU@29BUO{vr^%%W zMuE}<4#D^4;~<%Abi8cHTyWxNYgYJKktO_D6k~Uy*7l)~d-8 zo-*Uzw_L7M1{;F6Fr|W!XP75pg1dmmQ3Wgx3e5zZqLuH~U|9r96gvlpEC3r#FcKiO zC`cbzPa+7lpvb}bQU?w>6$CZ2MSg`K?H*BG*<1S^L`v?!cI3eVuKRHaRB)uvgRPJY zo(AlAKm7GUHBJKQQVzxqF2?eig2oU6;n$Gf|4S)gddTO+WPQ+TdeO&(-~5WSL!%$r zZe}LwRiu{xAsE34UH)j6iA<#48$UWS`KO)d zYd&0NS+DcAHK2;-> zt1t9LtPE{>%$yB2hV*&md9k9CEq#rv{9zr{ zQm7zR=tnVO-5navo7L^cWlhg&{<;P*P|@OpT-RcgUr8+ce*9A44wTF=e*CwlgGblQ(A&{`o9XDlP_uK z1G?OJiZ1g>ec0#e`p`x=PH!%joxR5UPfMOsh?WXzaT*=G^au{00-%wEPmwRdunuf} zE3d?l-v5*1Q&`CW=kJ8CEw3~{4}m2UPMoHsFa&GbBB1u+l6e;@Bb)xW|GJyqt~&7#2UwoRQm`n6ori4 zN1ogtrBtrk5A!o>qtYx;0nmWYu;JYDMB8nztr12%*e}h1!{-y5`%k%b$NKrnwa-$+ z3_aCL?$3{`Psg(N#qN^nJ_I*kOQPp+AOdG*vh*U|RU>?QVi%gZ*A#tj#JK67E$%fGX6*;2;tS z#L3I6TUg9!v`WNBL^i(h+dR;;|twS9GxOhr@I z7Z8VrIpS0?Hje_0s3srCxMJUa@9@{uQb~?@ zC4VNn-*3b^H5{VRhfnU+Aw;+Wn16dG`9&I&_^B5bd0Zl3;IhjRB zXgzzJ_~2TBW)1^ae6D7hu;pW=(+ zB7Kau#o*~-SDOuyP=O7W)YbN=1;UfKIF>3N`@qyo{FY1|S^NCx5!{RRn;Op|DT z1Nd2n(jeWuCwHSxd?#UdYg~M4xTa>44(xoD$XSM}L`1toJr4RW&u!9?`BeOHT&Gjr zpL29S(jedPGriz%`WP~BMVdTqX-KVhj{?KjtNXCW1+12R{ak7;wjOp{!wws91E%pJ znnnwLQ=2qMKmaaJ212;&>;xKf)B)S#%%NS{>hUelbD15gFFmj^_2ujPAcstl{lPmE6h$hh zqdMt4@GLSrM!}w<@86o)h9|`6qudC4xR?%WXmSlL0-Hw+;WBQD+PrEaUj{0PsW*RJ z#BJzxx$KMQM30(h9mR5JEh2=VntVBJ4bndZo4_7{tqZvFT&c=m79U>JK8Erhjt3-w z9j9-t571RrHb@V0nKHEOqtu&w_!9nz2nUThkGlVJSSOxqZsAS+t`L%!H#2B~+>!Y7 z8ghJ)Q|xP|?Q*a4&yq46ZnumPlI0y!Gm;0aY!EGgaa3cjtzdFy<<<>-=oCYRnL2Z3 z#5y^e`MH;9Iaop{Y2La zi0qhLa{b~Qp1C+9_9pFk#V7XhgBa_J+~nzh9wjhYVx6T&x9Vu&lgrwkxUwB0pDJN# zdLKSXQ=9P3C|Gj&WjK?^yJwD5@ColXf#YElDvu%{2;g6mtu_et^OC7TcEs@lg9nxKChO4A#569!x3TAT$-+yme3^=g{K-|x!pAzE$@2saJi?g@_1F*FLs?? zp6?SjB4FE9fn0SRi;9x>>kCkq8yb zVbA(pBUi6x`do+7Ypy5|_P4}HSVTm|uf$6M9&6UGOxwE0dp0k9(wk&%XKs4B+$bdD z?pYQ2mG#DCAunsCeu0&nX~fp_*VlPVA`y8y_upIb`NX%BmZ7cHh4OiCbW~E8LM{`M zJ$3q6E-|&H^<-s?$)y#K(W&X;o;O4lDP&F9B;7_e3vK8~8FK^MwcwiGWb*tWouCp^ z+RRo7aaex*yg@=w%P9=smmUXiHpuMZ>Z$?O>pw&GN{#oE4w(a_>sWu+(f-bcS3%vf zx2G+Xv@^BcO8m%!ndrZ<@Cu@>8o$u%QuN2#=bw!-NXh_67&F42Ra+w(Inrf+;Qg2Q z$8>_Saovg=&c>0&bPes>l1E_5TaSXj(4(AP76^^hJaWUyJ668?x0_xaC+mDq-o%^f zR=H6eNa(fT!FFQPvOgvaUj4&_8>|w!+)CAV*JpA%gpR)9n#%J}7rkx__ao?M))<>v zLl5XPi{P!$2ixv zt7Ioq9Ih(paH-_Z?iQOW`d9SK<)!fR<)!1@3GK0GUDyhR5x>T9>9#-lc;(}qo5zW3 z8SgrClQh1Vb@6siyoMooOO9+VHT+G?>x*{E#^z09A&S1HJ|bt2b11!ZYk!EcN^VS@ z9STB{K2T(|vRH_`&gkFGze_lGW+KhjLu;x*CNkr;Md_=?S!{?#I>e?{AK^fADYL*_ zxAhZ)ZiZT-yhR7PMl!RDc2hI&K3e_zXvBT|?hWXJG8^Po8K!USNKk&hN3(lt7PZv* zF34myR|J6<5r1^_-Fs7rBCaLb*|fVG_loycnU}$%?@orfeUw#&h+>>LuR@2ELpxU= zpQ_5+yT@d2@y2`HXsXVL>K5TuNGh*u{22l~Pdv%PxB~c9fAV1)R*kz2oNVgxaT+nd z+&hl9QE93(e>!DI*#NXA9T~J`0eK$_BEglcE;bN`q1Z*PW70M>Lxj{D{Ba(He9tg` z4~J_5*CNH4Gl_s_k#&fIB3l*H$-zA8NZ))dgbDw0LGf|rR3*)NN(1M$#der?^N!*ordOw3<2C?@p0cD~72oVg@kh+Ai-z<&9}gYo_Vn(9)gvb-r2=HTs# zI!s2J3^KKDh2yLpqdjoF(_qpi_1tI?85uGz=|}oB=n$r;QEWP=q{!yyttK!KzwF=V zZI6Aec)>^c)zM=Lg*JZjxu=a5)Nchp#EGk=9q?|OYB_s0KCJZ2h+dk3G7(O!f?sBE zYgM(B{kFXlBZTf&fefL@HJ|~*dp)Ri21B*9b8oA5F$|uW?ipCdh!>v8VhAfE!ER3S zr{$9dYrF!C7!PXi1ajj*(OBfNXtc_G@#00mp!k~XZbo5Z_WwytSvYhZgZFW(cD`RK zUw6GMvkl>oTrjI`-6=U31?eVbJah`s=Uz_xLFY>J?@aXdIA^ucqwZ7SF#Kya^PR9i zc~-ZF7N1t7p~1_@zYo%$zfTrDBu5Wv<0E)+fc#PgC<4%Ju%8Nq5RhX~F^{YbAgvE< z@>}*L1HH_45cWw0kr zw-2Nqa?(ltff4tpo=Z0JD(IPbZKhf_n4nX)$kbJ1W=p01c|FXoea8n2uy?Eq(k1uB0!n4abh}tlpO8Qr1aC%8fZBwC2hjycu`T2y>4Mq zk&26p3j-Hso>@I{;|yaHm6NTie=zkC1$8*|&A*h?h4Fhk6R$g`_QrLmn?y(!s1`(o z4xeCRUm=&MUJ3=d#*g)?v*6Wy_@>N^!EmP_rVnmi}d zVr;?cjeYW2(1tR+*rti5g`58`I6T^~&C5SeKDjx|g!9raR;~yV*pg-kJZ-IH4^j8b zC4-fp77}{)%*#Or6fxuXFc^3C>(>>4{#FK|4s`|K=Z18k@#dpO&@A+SFiiq5-DBp! zh2cgwvLVFJzY^UO{a=EVH5!|$F0Kr4%soQiX6fTf*+PZ&2-ya%3^p8IQgfh0cPQ}_xnT-(-M$tXOYvng&!D@cg zsR*`8WD$em@WGEBJL}^}Iw5BeNxvHFd<)F+J>afb{^`SrcsSIR(usVM?O=oo4GBrM z9jToJn@t;ZwPpTC4Ldwck5TE<3XLcI7~!Ad%oQ3LPJ_Mq5FA18g&gExzGiZA134Pg z>7n?DQq)Oiv~uBYRFKK+kpE(3k|!HWPV1B4Lj+Ill5S&9qu?`9Drx~8aLyivK*=A# zD6R|sp;ja!f=$B%JP_p@Q&|*H>4OK-e4;gB>U(~YCtyBgltsp{fw|Si#SV~3fY3^V zEP!k+wBnwX3|?Ed2j-4rL}umlwuFD3VJrdOM#orB^Jb3rDU4@e4RkW&RaZYB%^8Tv zwGJGkr9Td1&U_@XX|$nQ)9t$0cza`UQlcSGy7+ffCyHky zp97KvnBk&Lh4H`hMbL&^1(^^!^*UbQ75u*bMc=~FHmo+oho#Fa5RQhbV>Ddg{4HXs zOyk#vR|{v$zOZH4P(%KM9DjY=21#?N8YVf~E%+ElIZCkNcQ^3u`=JdPY`m54!xfx# zJ)4r+qkkygcy+e^O#beM70)?$euo1P5(>IPgoVu1j-5pz=5g8KeCeTGHL#+y!V z(u9Au6QV!Hnw>4HH9z_>E|XZptSLYiTF*2Zs=`v}JwAi+zY7rT2zC(OOPM@tyEP zuI#Sq{qNC6Fb^z|5B~U+o@rmn9c{3ro%>0yzmuvNh(>iqOMCZ*38z}Gs$ZC&7 zs;d$VD8e${6@C1tlzH(*HD9Oya)fqI(qlUBHUu1!v~K;)G#QojuWMees5QNpW)j*T z6IpGMMn|63cCqW;P2BU96xAy$ZYmy63KNcz&np*R_hTwEW<!Csj#(1mKf4g4#SR`0&YH!`vXg)mgG*ez?oP{j5SM_7~C>T#? zv)<->!z8*~uRD4!l!i`mIYjL{aq)p6Rg#RBB=vd!pt3U~-)NA9p|b9$&6I-b<8n&} zj;pmv?CiD5g|AdJALVtKA9z2B_F$XP5F4%!AC1b4PSyV>l^k6Mj@2r#vZ5BYx)l&r zfNxg=U*YM~rz4@mZCO_IX}m28oJT%zL7cW#AW=k22QoRkH%d z|2FL1AjY#JXsHy`DJUtCR~sCZq!xzNoy|FOAYwt95Z536p05whz?@*ul!g|ro{i;c zKIo0odw%l3!L^9x&ty7GIKcIHcV+7N1rtx`I|&kj5>+xJmcok%_%ARPu5GgRX$l!f zXQJ05ychONkDMFiVN==hBu3G~!<#9qrjX3WVXp%gik2F8j$%UDz0(kUkUe@kf2fd= zZd_yxhT;0-$q{592Tj>|rXP9@!Ah5ah)C2M2|b~CsM}$#dNUW?NTlg`ML$k!`i!>l zD_v0HkO1;DH74F;Z|>~*spcuwZthv&Ipv&i zJgI#lQ!?bfS_sL$G}_j18sqI+|I@|?PuHZHD~k>?waHeLo699}o?SrDlzTz}d2bL$#_fV?0Twc^!#{;zAwY`2b$ zo6WwBl#RNJCh5HAb(88+87(%zWcva}GLGAvhB~K9B=OIO0V^aJq=zF5I?$ohC18lt zSWQbwVZ~zm^rOJd0ul#wD>!zqe)}(R({*4zAoUUD_Rq*bLNZXpX<(mtb{Si8Iqj80 z=DYh(JdN;{RyVNGnrDqqg!M9whO4lYyyZ$mN0MsVCpgsCHi@lPr$_YO7eUN{_46(Z z$c_#DiGRL#C)_@Q4B`Y85I~@BWz`i>ysD;VCVCG8G?OcW^t!nQ_^K8&X=wjSPd1?zcj6V;7x$OB?T4d=Vj;o<68 z^$Y(ZL;99!BguEAelPKD$t41({n@2Z`Q18>E>;vcn(De!oh_f+Jn%*k5kL#VA)@q?Gs;OJft{MkDKu)!Q$u%tM7 zc@y~vp1aT<>P3WC1fbq*;Cag@Q=^ao%ws5D3)?(*L6cKG<9Zaa{2i2%pRWk2afrHW9J$z zGA)vZzBBP3Yx5mAlVU`bWiPVl=88`R))*VBb#1clAl}lPhT;;gft5`i1X0*%WWEO^ zMvR;v4-60QW}i9_{XomW&YIK{m}#Lci^&w;KL9?WU?g;+23l}n_JIQtd3B+61&IUl zA`5>rKvN^?2|j-EHx+y3r{xQQ5P313;!w(UK<|S{G3r!8KLFp%j9{ahoLnGUb=@jg z9O1ttTi0*n!T(osXu@WSxN9i1eEUhK=Rh#+8FkLW)yU(ev+HItVlLB%LPJ#Y3^&Ja zr!lEIaveW)eBSdRUK>h75Bvjcqz)5ws&xgPf`ymRCq$|;r70gTTw`bJd|QbF2i4qn^%>Wq$bMle%V|VaqKpa$ub`dD7_yCeaD;dI$>Zt$y_BYhz0-YDA!x^L^)aR4| z>@`D9mk+2&&^ROym8}x^ZUai0c_m^-atO)WG>6z&OW4y-6Y~#3K4)QJX@!oc0dYpG z!#!Z{6$}iLq5VD~oux&QW#7JiNa6r4p9u&4&vqmRfoV<)xtihr|D_KTUAekWcO>SV z>2u--aw$inOvl<1o493H(SBgWK_ly4p5A5A(TBugd)WIRl#LqmtTUx`_=3!#IH%K-{h9&u7iWgsa{wy+7NpD}2#;>U)lnZ>!eSq;d=Ku2xSKy7_4KC$g3n1}%bSz#JRo6tqv$d8IsGJgIZb!VB6|)v4B#C*+vtTLVtbB4 z=vcfK7sE&vRBxc9RH>@RAeaK^p_Aj{N5oUTH$6;F$CB3J@}Z7V%ze$@^39t!sGE%{ z>6S;^MSksJ`j!qrk~y0@$&z@1Vwv}EvMqdpOMLzHF+@LOb}!^+hE(E9>0HHGU7}Z92-lD#WBF2 zEG;eFK(5I~=wk|vikkKWf28ZGWb1{pG5uvNZMIg-r!y)P#)5sT|IHq z?+aiWzwHP@GRe1CQb=pd;g~ENV>EpeXKr`69()J0HSv{IogJ^wUaO_5vx}UehclFY z7vMz?^dim*wzjsY>2Lr3{Y%gyQ?@z>FU*W0VDd6nd!u2vMkQr4J0Ps51qIih4o_$>8fk9Xu#Xp|&RITv0(y zMZfEV!TaK0$;T^^`+05X?0SK4x*CkY#AKr=P$l>^h9b0=NZJer?^?leAO3AHMLM`l z!y7`@x?E4<18RD+sm(`+9YH%ILvj-)-3tX{U1FG(sSP_`{fjdcEq3d_*f9sd^dj!M zlx|fq%a5OEy@`5?!6%5QC)kSj342`$$o>HRsrWAx>MZb<71*@)HN)_H0M^3cO(qbv z@OAV~=p8h!TMKmo<;=VfbE00b3ci>B0yJO)Z*J8U7=!z#;g;;I;Kv4pA^{FP@lHFL zWey*?jP!4uS~i%)BKZ!m_z?z9Euu}JUD}!bSSVTvWRb|{G+GMOW((?t^9|H*Z;-z~ zx+AH(1*v|!cl+keo2VmatU1Q5Ss(R^1c~o_?@!ogJbxpqlbcf;5Mx{Jh>IB&J(Ndq z+4%xNt#_Q3ZFl;W3y7}rFKRWPoikh5j+3QXXWq~=3uH3=!QAxQn16jMa`|p0#{;F} z!0{03y~$(ZSXgQDKtGDISI>oT}b56!?s`q@pdk{yk^J`Rnp!sM| zwvyQX70ES}nUN2*l=f_Akbx4kE3QB#m6>qc!tk-Xo@VujH}E9y)wi0A$mY&m^(w>x zmD}gZ)SuR~33fi7KQa^(#>k{k;9rJQtP3>Lnmpd%$mf!pA|Xvy0{_2iWL zmqQpLz)uA-dVThO#4*4I`+n*6fkE6T^O757L18&L=F z1uoWQS2|@KQBI(?rcu=>^L$GK*-YXwUHS`|$82Xu00MzQ;U6h(KBaj<4fxv8kfnMj zQvdF!?ayk5JvR$2&t7EVSI*|U2UMKLT9YkBsEcte5eywuqLW|)R)70N?>6?!R|6iG z(E+kI?A);$3YqQ4EBdyOq!P2Fh?Z;A)Ys z@VCYmUb$uLIMl3?o*6sVb+(})Jt9Ioc1*QlgOdtfmkJ8ZL{iwqFzFmXx0+2oQ03kc%|T=XZ2&L;<@v_;hc=?{NHXaQ z)0~YM0TyBO$$iW3ajdwFyZtP9f5Y6h=dVh*5g&j_Cs)7gcq_QPO>&T#yTHyePWmyO z1P8Ryssv|+ZVVNc65?rNzI1|4Q~Mt3Zq+?+yjI&p#`Ik7HkmZcVnrXGmMzf)YRaBm<`g5L3v^9a;G{XC*S9GQ zAKZxQO4UfOmgj1%E^_~J<1FZ-@ruU^*QUdUeBrEV>Crc|zfrym*6@4a=sE`#4Xpd9 zqYoTqgkl;fuGaj;+NqNJrb?5&xppJ}3RvpFpy&X?UEuh+Le%(zY5o-IoNG@pqUyT< z!4CFX>vsii^3M0n+~UQ`@BxXD5o7+zKmUuh_WD-$3?_!RRwrtfdd!My2R=}}|y<8IP z&B^dVwR7Ch`e@iFkA4z;pws*Erw+x94#k4Ic9{^3-N_(T)eBp+uIGZVPgHn-`P8(u zW~G(Y)WS%O0p%Id%_7?br9X4@FbzdDgY3qj^Sp+&moFLAleDAxMn0`5Txso@xkB=CWM=j+QumdE1Vr!vRU+2>3e}uF)S|@5i%5VHoywp73ViTB zAL^Iv++20`oldVI`b&c;paT?oO7EG1m2$hrUR>zPHXPO%HWZrqpdnbV&V22iXZD@v zpIj)CJoj{$I;0-RHDE%+7|R=K1HGTw`TONPZ(g;wZ@5{#ZTW;m7Wi~}AvO+dw&F6p zl)ZG@9bRvZP9X|Z2ati^R`?c?Hq-x?nq{SA|9y(2F29@Fpo?MDl03%|TLf#gCuL#| z-@KB0Q-*~*_*{6HYw8kH=7FVJ>od{QUFh4oiY01<6)sWD_J6UI5?t_R)axP20KskB z^x-H)p5xS%8^ea}H38~KXWQUD^DkaC(WxO}2Co{W1Guc-ZM!J1ueN>+PaHY&Gn@Nk z1j_~v`rx{=+I zu7Q*$A*oSPztwaS3C?#-B>(rU>sJx(Em3Q1QIAV~|G@j_*91uEufkNOifQfI0KYwy z$OFUn%mbb}R!412vrPQ^nD>r?r1API5MFQB3( zjsqmGv~9Vb2gc(_2#dKkNWXtYIaZVQidwqR1N=V{PkqoJ@5b$pEwCNcWE|6!dRLR3Z*9Z-z`wPZPo_XUOj#MP)KYta4@Id;qL=?Jg{i9S)|`fii;;kCUF=w7@j6{_1j;#EsFcZ)P(rl9b4OU!4_9ZiBT>rls~w;xBIWRdTj#%;6P`T*voK>Z0bMo$##5v@am$H* z?`DHTmPUSoLx;-p4I_2}o&*gF`LgEVl}ttb_v*cLcE$~ZG*Yj5CAHE1k%_m+rrWT1 zIEK}dnl0|VwdPokf9bWWMm!Iy1>}pK_J+bO;4$&^Df)Tl^l2htgAdtkQayY`bh(4( z3rh~r1v~7zuE&FtA1AoJUFyreq}a~my1)iVHzBK2k*xIPetHy^8v!0R@9KViMrR6- z!r>s2dXxDkG$mwAwEsDu+$4Y2&-HK7d;g0mD<|1ckaSQ%V|t|M!dJJNko2kWyAOO; zYdcT#s@gAn*6z{|;T>(*SQj*qi3yNzr2df|iykPK@(bvUVcFZPlm>wv)aae+76{`7erUgO)Jc;Hz!08QD|*i2)AETe3|FDI9uyJ9x4Y*&i>QCCy)f5dRfXLr_kx`{OJn^+*5l zeLue0M{Hq0Gf-0I*~Q7zoYKAw*G9&0!t;lDx}zP7gE; z9fwL@wt{TT$vNtp^l#wuG_*C@_wK#^SW~P zS_afNautbJVi7r3yT$JY>PPG(O(j)9krJVzRCW9^xK*h%==4p{8r6RP9pO*vuT)n; z;vxDakb2cFrE4Z<J6>P90CVdp+hVD>n2xrDlnc!A-8@^f&SR z8flU!vRcADMgE=J=>E5bib_fjz^c1fuGlMlp=dE-z@a^wsmEbW?Ho&&W!L8I`;AJE zm7^&H1f`p6%lKrVHZvDaWaV5Hyd)yb_0fvA%I6PWib@jHwGVm!m$}K;Y}mPFO2Mg+ zTH{mdb|siqeF%TRtKYQ2yLL6D5(49i)2um)ed~idIW;+(2j#o*K=+;qD>ArmzS}^% zj>P~w;)PwBtwEs9>sY&d(LnWxX+Fw8NUN$s9oXUw}3vbNi|q#s($uO zQ#wy-de$cfuF0$>J%V*Y1AOAE9(5prG4FTCXa?b$q+@08vOZ3Tk$a51EL3P3Bvkjg zZuz4U>ThMU%3s`v!VNIPJ0KTYgI5=hry~*iSbPr?#mzU27k;r?C>CE_#5%9IZRP<; zBZ!!#Iw;(%8LD?K$6=Q61htg}9`51PDJIJ4J_vC#*QqbjVp9iVO_G;<(6 z1oD=JzN(#R!a0*c=N(y~8|FUQPNnlx91K9kbqj0c`(=E}%mO7Hvt!=;O(ER;ccu%j zj}G>q*teYFt6oTT*5-`me-m7N@a(MYGjIq6D>cSyJ25e(iiKA_eyQIR?Oun_GQkOI z?lqjZfCt8@zejm3VP_|ng4{+~5ztb)Amh4(HQ&;Z1gv*HbfJ7#Ez$c=@LX=|B zW848wfEc(4F+r`I#Ly`D?@65@muQNXq3K4tFXJ35pc4 zQ%MQhCr#;xY8rkV64xZbqAkAWyPnn_K7b*_P52>fSrp)=W(fNZ(gQ=XL|8l(qI`Uc zMBlHX5(;%9oRuYE_4C^8>)y0);;|Pd={8WC>6BuKrL<7a@~ZMr`J|H9P`6p?L8Vay zfnmnmF4TPg|G`Z_l^iyP!}3X>fWH5Wc?}FWWCZe@CucClZg&^+z>HU&&ydV-beIsU zfe+YauGETPfhg?Dn?gSXBVrym`wc<$A-rO#4n#2EBUvo>rK! zZw(3xg0)a4%Klxuc5#g#r0Q{On4M6n!4;$B&G=hy5m=KN!ENT?=r&!5i$p_1#}{sRZ#5H-{-_y4XG zOKTsezj%9n%%*MtzGK$9OnB5hkJ!7C)t=QQ)`v{}A-wULL%J*U#XCD=wS1950MA^r5NAk@xi zYc!)JiG$SHvs+=54xN!6?0ZghFAr9#Gq5!43BRXVz?w0=mSQ26Yc+pd?$5k?bjrV% zX5;pMIbz((OZ2rKd=eWy*wTU2!mLgF?Ltwa#1C%Y*9zU_1_7OV)f zAt6#!M9NRZ)rq)^qc#wdlzbh~h3>l4)n)d@; z+HocjUf*yUHp8_F)eRhfyl|LpU(wiQ;kB6JjLw#8>J2+1sbfi?dIQ#HoxHzsR3#1N zuuC7fCw-ICXo12pG!GAF1a^Ba&a3I^b*Lh=LboBc(e8(b;of5i287?&Pd7+-Bi@-@ z7_fm3>5s2mI6}zzv90Lfr3B^I<2631RVLzn`_!HZVJnjkbVa^qiSE*2A;O5E1Q+(_ za4o+sxK;0OPBNo|t;8z;DZBO0{@U<1DC9gpzfvT7Oy^~Ek;~5imGDcfSepHk0c*gM z&bNZnyC2!mt!m-rK-HuZ!oB?v#3putcfxJQtrySQ0}vfkP%!tvMFCf^cYtXjEAi!H zR(mF_^DOhlbQL`%Sa8+(17ubOD#HvBv+~lC9*}*B4z7P-U?<|H?3uOGA$gr45Zhia^;bMUW0e-{i{g{VSqJVW8^v2e!lc@aJp=rxHZoeZ@dA zl{yF|8o4Sp?rI?xO0D47n;Zkv9=HdmSR8xS-I$+tL+~X8bEDHEa|uEAmAv-#zt;tv zXv&Lq1dW;qYcgXUX~f_`_Gl?MtPYGDZdPZ6-IKo+TtkwqBf$_UeM=jX07kDZ3=_ht ztD+Y9aLyIlw5jjde{p$X^^phY3Km@!zNCLEqWUrEpcA;Vg<{Gqb}IjnJyLc!JT~Gf zs5I)kW}Y)NUYX{-MRaOz#$P!1owg#wpFBC^GV=lrzg)xo4IE52AD;Ynkz*+v4U(bg zd*Q1(&<6uoJ~ePOfm*<0phr!o;5*gyp{osjE{(@+YZxiLT{z0Qe0pgJUHb>T&WHoi zbmcLG+Do@fOQlt*cKEzO$YMc=47NWw04@0IZAlKhDUZs?dp>w|+si+{dj1IP z-rcolZI^A40EQtDuU=^GB_TFOB>GI|SpcQ>Kx;G;9z*}Fp$mz@Ex@5oapDJ%l%)%D z*qyaHbkAV_&t|!YO1>W$Rc*)uX5u;Ek4s-;sGlynJu35!rQx)f>h}2WZbFoCadabI zXctEl*-pb&u?4Kgb$gtJ!9kx^n+y<#JHbV04#6f>jkPY z@s$1rm%R@3aAyFgm$meP%RBV!+B5WUVP#N05G5-aIPXJD(v;q>4_@;8vxgv@Y%U#T zaA5VkXlXF3)8~?1N)^_zC7hc~WXe4A7Wq3?;Yt?g6}oDMkhHDOIcas4V2i_I8Le|g zKi95Z3oUs0^z{swz?0b_51H3flJs=q&6uMad(8Uw(JWCO;QVb{^kf^xdE{xEyN2wi zRkfy>;3A>H{%|a7%eJk0UVpi@lt?{Og`p%6bomxCV;`eH)ev5R=l!Dc?$!3YxXcZt z#fvlb<%Cn@lkQ^N1Jeqft=*?kB^D+iS1%n|G74$_qA-MCcj7` zU4pyu&oomn<$aq)N9lF^Uzn7StgFyj1WyD`Y#F`1M*y!Y{G1)1mEIyGbP(Q}v26|p z@Kqx{);^kJphjSaHuj|s_kx#^{ajT$ZUklDEQntEXM<*38cvu{Pw>| z?f?8w<~4KTsyqIpc}>=RCz{~ZWiq>x8vs-wke{ngW_8{;jY4Gh0E!J~N8?{o!7}Nn zoU9fQK!1mSAxg{_V;lOFz02IWlybm!( zgVfbzd<-DEj<*jf6P0MJSMEy487Qlz63{3g7Y zcMx1IfK1M6{^-7}#?imvHZ~aW0{u965`x zQ`N;`S^o{aiP=j0E1F#=zs$mu3$Vt|xRif~gwA}T@i`;4buSvfyOMR;7V<`lbh4(m zqUV7`aW2DH)&du415>A+=*uj8UBcNVr0dW7xmT6+sqIw$9sEI>HNSE;$(4H4+EJE2 z`*K${83}>Q!D@%JG3OmZxx?3|AiaJRj)GdQ{eHFsYGVQdMXX_G7g8l{x;NLs!0BcI z0S9FM=wCflpFaA?GsBNRCA>tX7xghLptrL37a z8XpT&gIb?MPW0}}fjDT7moe4dU$VoZt5#}fGR`Mw2kLsuTdG{XK_h zMD)!dkdnR>87lSzrmr{g1vzjX@EeR#CiAs0Zff5p$i@G60MiRInu&DaanKs;AL@IN z^<=vgLlG-g$f|9fzkZtbzXUa|Di0piJRx<*w=TaVrZeLFfyP#>r;nm|jG7eU1=;nMpk~(+6#q-<5`99att=V6tQ{2>=Q9DrlC#VH!Wz$|th?5CiLD)wZzg@E;8`(i zj)}rgF5yqk%n!M!o!4UidkEWsrGAwce{4$yz=x%bo|HbuCgGc(4tr+ufNmmzjj!(A zJ^Ndry(Sm#0jh{bVcDnD;Bz%cx0mIh!|;Msr!4JPC=Q2{gjH-W>l-^5If)Bzph>-P z#Ed?*&{aCQvA{vRTl-kV17JoRnrO3vaJ2V;&aIm7P`=odq|Ak9f{uq%{sH;m^Z)|_ z_>e_yYOF__dE$4VZLRScUIW8OIttqo7&x*eK6$l#SJI_U-VhTuTM$H#8)l}tZ4-c2 z!slRdpmiVym5l`jLAY|a^Y~cGsMiDH%v0>p*68?{h9TsE)jTixbbPp&F1*o5%?d^w z+ULoC7|?+T_v8z%6D%m*uEW8#ZetO$PRUAZhUMCpS!Q#!Lt%M8P76^?BOLhZoKcXd z#^&ANSC8v06osiUFy2=nAA1)pUMjh6^j0;W>Qd6142DVM0jMe3?{DsuxvGI!``SBK zh(^-T*WkqKynPHshq`Ln)}`X$A{AAF!>@J^X^u;`fuuO1swGpvv`*8qu>tVB@qE9* z8_ucOoR{kWCBZ1}3MGOt3shrAS*H&+GIOmvg0@sJn-zKTjY9cq5leS|Db6i+2rM57 zr0KP4+bZjgF=y)&_DW&h7-|Qb*m#}Sy&Fd43=odtIyVzu!?rG-3*gzj(7uzu=*64C za-lkQA1E|`n=(&PTnZh!jtvyG$hE>%A{`-SwnW0L8y3;wt5({n02_n8xfO&elI+0( z0Y0Jsd@>mBh9Im&*|6kT=eCi`%KT9|6Zo$dSgi&+@3ljWio-HuWl-|y)P6@SA%=h? z;50seu8(mQ^(!95zcnh>>q&V`utr{T^Mnvadi4KXs?^o6$!x<(-`XLV$fC=Xx+(Kz z$Au3qDFvkY55|0V)Ka@UrtWpCiBx+p6O2LYE)=Lm9Ak;i$;{oq=@i3*S4${tGGvvl zg=5FOE`Z5u&Hq}uCM9&Gc2dC3g@jr~11DEF*V9Vcjgq(ghz=j7L=WAfK8fzeI}8Ru z6Dh(69=e0`B$V2zeWEgX@j%>#SZqbq&G>X|^8s;_#M&a%apflp2=R0r?#$wgxHp zVEeXiO>ZaI-XE_|tGVnw@M^oD0(=|78o$WI81-LwTn6fKZ30tpOoH;Fk;GeN=mDnE zkS#0j+QQ=8i|Pl#!jtD3iq3AbS5Z#oaP9F^xrDijve5yNee7y`H6XrdE4R=5c5EHg zI&!4^xm8a-6Hi!TMWep1lacn`YNrGA6ow7(M~%E7wC^~B1IP4zGXMypi{L_=`O>)= zL=HdMRjE35uwVl(nXH^soHwb!(}BYDMMrLHhgU&py7fV(X}x{H%? zQs^=tj7da;*j%MT*U3V?fUG2aNHf!T|YQ#UyW)NY4 z05AXUoE>a+F#uga`}wmDyr!L~Ex$6_#@-Yw6BQhQp8L z@9TQYBu6w*Tyz}1Cbmiy)u*9(M4V3`G01>Rq|auN)O`-zoFb}VfjtVUp`k=_ktIUZ z$f}JEq6VsER8U{4mh1vcZ)pSV;RNw+X~DW`;aK}zuqwb`f}7d~4#wagxk?u%VX5>x z_Z^vx$-GXRenry3MB5w44dC<$Gl49V(pm!2h^-{wv7-395ZE>*AvS7FBD!~8(%^ZW zCC`heDm$_qb^#ZaE^YiaD4^vSTlxIQ-nCN6Vn59h`DV z!O$@6OG^XEU|^nrUFV=@b-B^Q$6-CzZ|V(8ESVcmh2{zmRfv0T_AJp871@a@WG2~Y z?EtZ11!sMy7QLkOXo5lW2KffEb(_Pa_=4YFF`lVyd;Nunv~Yabu{;9-ou(y?WGiCg|S?tE?)Ab*Oa8@9^p z#q^Aiw^LOFj4hq$BT^$_LykjQw=q7qbgaYk5Bbn+){@TSTm|rDX5f(4CVhG02JT$H zOmZvG$Y0nClt>OdNY7JzkF;JIhVu&Cs>#u4gAl#u@JJ&7%n`Wl==u1R0xb8eX4q*5 z8(OaVD_5=%yHe?watFFI~z^vrpfklxBo2!rGH5hCP`$VWg9%V zz}O&D3`f!vonFB&Qa}}x0N8f9-6jq;=!YdsyY9!(0V7z%UiY6;EvTVSo%~T~RpDBU z$$`#t;02oA4*xM)2FF@5BjFMmG%>Yq}Y9hIX{0`YPwxA-9T zXs_;U+)8k&;i7OeqkQASCj%c5h6RDr5!ovN3jgBsgrE))K5y1`fga>^7?EKT@bg<6 zCZrK`o(#DFXiWfmGOJ+E{6sYwz6$TDPsxdkUu^v)ZC&BIN6*VB;@XvGpFJ9n_OHmJ zIHY685IHNH>xcx9MjyyDJEW(423xwHJ$pu6QD?@lf0Vy+H5qr8#mZvap_z{GyWwO*#uu#OS*HG0Em z{CBCa4STCUWUohy;aPuAsSM}b&v@oTu`9icFE0&FKm>0A>EIJlSs_X6dItkXLVF=z z5G?-JF+3m(s0T z+GogAJj|~^wLpe*k+})<^zu<}LjTQ6OpDsP$VJJy{#$9F7bhvlB=I0K%D{DiLL&zwY7VsQnN1>o7!W`aiPhUu*ISTSZBr$4CA`MF^Dv88 z8Ljje6MfY)HEXqqU%#M`P|njln&O+(QqJdu20f*F&57czj|Q(;XvYOM+*rPtGQ8F~ zPY5&Th**d^+y}e_)Rd!zRsZf$24>=4kFx)%d!pZZcoAjDuvoWb$xn8U3*x!^kTaM1 zNc~_SlU7GCT~iO9ybO?S zkjMb-k7$98Jv96`_wTl?9}?75RWZTLHqU&m=RsHdp^{jrogD{^-mTNuI`-t>jF0y2 z845>8e0`?SwHZ;?Hc*pA3u!m{oTHwG9Xo zXg*|Q3Q8{nAP+EGCfMkIl7;+t6!B`U)#UFcIy*_z3$BM<269>dh?A2fI3Y&|qzZ8z zB4#8qIRG_kmt;JL2V-g~wTWK_sG%^)Scg#*z=|y}-Hg=X;BgQ$bXR{sA}4hcu3r5R zv(9_edsOxsPC-obF=>lxWB&&tW?|mo7Vw&re)YDi7NHtOW;>N^J}-s3Rq6DB{r9|E zxGoK#IGOwaZ~cl*G7UG@*4hRn>iGRW10R5MCGD|L`(Eb7f&9Yy=jp{OJmAxzcIkgG z<}Spr8^Sjs-Whl#=(*@)ZrBS9L^YpgUqn&$joc${ZXhuJgM*T~B^wrXSZ`$Qk)wqS zO~E+b{K_8=s=8=ikYO})(;po%tB%FLnT!}lElP&1l7R=rm;+T?G9KgfX)~x+J5EZH0Y#`pi2{D9qRZh zq<6&n51cD9#v1P*qiu*MKJ^zcKaz|-Cid(k7U5N&+ozY7md@=! zYQeK($5nt$DcY-I+OMu_^Kn!1)p+<+RY5`Ft>NJ>dcO+*qPtGkvbci=+lmk-QZ?_^ zyz67qhs)dOPEoKRhOk#Y^oNVug7Z{?CyJp>(|DQ1cIz4G&Ck(zp6sAZbVl`amllVH z#x+I!Qe$M4kbWQezF&M5yWzq5FIVoH2rF=1|8(1Rn8&RmDoe~VOP$3hbx|T)MtfbQQ zKLW@}vvu3HMH_{MM?+hXJvvs71^Mpg+RddkU9Xu@q$m*{x~r>bP1*euRn0*MvOM{WdNH}-z_Lt)(E~1C{GF47mvo5)y)3;9M{gt*%F%cdf&hs07 zUO{l>Cqu*Hw%aVHU;s%!42;mIIS

xfsWt{fjb9-wLqW5pQYlJ1XiS&El(G$fDr za&B(!`X*tX53JYwj#%sLNg3VR$DiS`Q#Oh`V9uO%F;P!^OApBG=#NvA8ErNSarKM{ zZyfLgAhX;vVyANLL0na6sj@WkF(7OnqIG4^?8*At9+NZ`KZ&zHOr2$o_l&hf%i4Xto=AffWho6 zo3AL;Lt0~?l`H@rPJ_dvdUDY5&!gNKIwt>f1G<=GMNK#D#B`=v$(|3`o;TCe&q1`H zXJYac-UlY7E`2-O@q)g!h^=h?bh&Z**|+J>QB2HriVFLKqYT1SP8tOG9QTQ9+sO0W z!HvzmR+{bLp&2=Or-GEwiKt&QYhtW3d|i09I1IBEWY4_nowhDI6xb_)fIH}efi7aG zaiA*wnOq{i@(irtQ}Dm4(bE@HUdTMuTHYf1uH~3)SX(6OP9C0gd$wC#?2PSwv#KWy zSLk>NNpW!-c$(u<2II1p^IP3)a1n|UTS1drVQ4l${foy|>a)BYmg|>icYWFB7SE}S zuT_xA{4i6?$$2uu?{d29RII1WbrGI=%@9|{wHwau(|z6NIxO;whXuwhjP&cH#DoU? zc>D1Q4|Zd$MwT4G-$SdPUCzdTtKWxjy3D7@EfVoy_ZEKgHHaXSITAZ*zt2(&CrT>kM7NhIXeH!TQy&#$ydF4 zyoi=2$&(>?`GAI`nwf&;+2sQ~TO9G+y>|B6PsArFkv~ewAxXWXNQKA9r`P1v_KRtu!1MPdO|NZ+!y5`;$!4jnvE#}Z($RUMmhtXNie0ElQ}%a!humKB8W$ zLe`}BRfUf8xANFBsF!gfBWogOrZ)PvCsu$D^$#xHT*Xpn#&!8Jd4{14e-flqU6Usj z--Y2xZONd1P}KgAN#_nz)&deWq9XB(_H7jSF|pMXA&30YqGa*+mqT6OZ1watPC0Dp z#XlYZ1Gk=(;->Ii^JaAp_Z)F!Bfr5oSMHJ+BJnewcH;5X{r@bM zmlbuT%LkP04p~>|;=S)u!i!vVN-QUBF1N}JPiWx_r}O|9wv1#zscM+0R+JCG=XcE-75ao=P6`8|pP&y7?vepQYF~cSZtTO1w0(5@HS7 zcdYjxkW%_}SSnJlAe;J-uak#-Gt0W-xq;Tk)HBD)JLh@);fndwnl~qK%H%%F6C+0f zmc4cCdD$BSn+;h1?3iSXtfvO9`u!oUF&ksnY>282##!l5(ymCoYWf`(+!?>e>iqvc z?URNk@1#xcWl^>%hspXsL2j_+PFTZBJxfzw6=PwXXpyqJ_(bv~7S?ct2*+D#&49=0 zv=wqyPwmO-y!{YSDq64pdx-;AT0RN+OUV0*x$>#bv+f`{SMfuymhn}6i-2I#-2}hN zE(3?ZPyPJ-Z%VUFp7`&8N^{nZSGRfG?&-6#(DOXi2$^(<3|hEgr5!mTE6z)LMgH;r zwdtR$)*rQh#BG?_6ImrD>)Rb(K7P-d*Lck(1dnqB9JK z3be_+^0G3FaVXDT+1h0;&+Q~2`Sg*?9P)W`SF&dh11kBJzM zU-^jLaY|hip+ndP;s8^hz7U*ZSftJmXWAJ%dN8z@^_**s7nz9anh1?1_+e_tk8gvN z2@_Bmu03lz*Ro$>zga8Wz+_C{7Jhms++jl@^-6i`CC9#8DaChF-?gn#)N|V2$l|4w z3-Kf7sEmxdu_z9&KZiY^U=mCo_^<*_i4Da2$p3`BT>4C}CL zdFZ{hzxVFt98k_ezMmz9eYCan`KpaP%2;or?rm$AEfQNBB0=3<~_C4__#!90Gqg-ddZMVv|yy#s$(U@&Y7Nv?%A`)E|GY>|R>mn<&1dx|& z{xG2heelw8cW@o`4Gg55eSH)5^Sp|Y@{Gt43-svU%vPltd%ntvho?uGgsm$at)5E9zFc{5!w&`({YgTOEnou{Ajr}WPL+<^IrCgO^`XEUwm-$(`|!vus! z`2e}$*OF=vvzv3G*5c;YYwPGd#viB~8?$ozPtaf*+JI=#+zMo;O(njcZk+dl>fCoY zE5o?VjSuymdXh9_$zjJO;SIAZN=&}LRPCfxlpe1tvqZLdw$xMvL&_gPQB8SM;>?Zl z+#7f9WV!aNHrc!TDMoR$r6tj z3##H4ISEGk#SC)tZDUI)OgwGSRWgzLsNYNOW8DU)&4OLa_nJgf*Je^CS$hybk^!cg zGM{nWSRR%Hz=mvfgMPIxMJ=$JAb4vp3SAEB_nsvuU~%i_kxxG z$f;y!Pd&6+-&PbVVv`ND(>ab=pc~w?II%!HMxno_zf{b4D|PWj6^2HZlIYpErH)8oXS6M zNiAHPdFReWG-4%#G)+x8z)iQEn;KG&-(H*hiHC{jl@+I{B=6;&9o+q&`A){~^epX+ z!ON0P3jFbT5$&n*3NqGf{_#&0b@f5?Hte4o^Ss)pA9y07+>#a9CPUwj6*_%}4#NTZ zul-b`Tj>|`OuffDV7i^qzCqMA%NkkZpaMMUuEBuq643NX(2p^Qyu{_*iIPbGX%uba zH>F!#4jp>Sm~!pv)pq~)f2MqPOD8vP-og0!jgw5VEQR~Hz{Zl?_CZOq(U}|)Wa`%5 zlvMgBeZ8F&K$H7OMH`r-kH zakzHE0}tT+3JUt2oA>NVt_^3|X)*30V}hLrUgfX$pZDI4*3{K;6%jvZFVhv z7$w+wb z5&PO)(l%8BgEGgZ@0rDX44&LNN!czZU3><7GS@rcV${C^G#QY{6#yqDz@6&d)XHt1YeE z80i&{%^b8jl40yH5->loB5xtjkPx*R`f4&^`l7KS+`h}rUQMPEDuVZHBbWKE0xLN*>KRT?c8X7~`;kO~#7fuON z$x(^4|Dr9F^{uyK87oP0VlKKGR_QPC47+u|yS_qeHg2IzK5bgt$LEt!clueOs&qxO zk4;|t29}s{TL(*U%H@yMMQk9i7pYF)j345lduCRaePt7Dz{x1sXVC6H2Gc?_Fi`HA znU~4*j9f}I{w(Fk4?hCu02+COe+B5!WnHJoWUn(BV|mtufo=ZO2hPppq8RA|&sn;B ztdXP4JJtrSy3#iP=oncAD$0g|-@iLwlBtV6h-fiH3bJua2TT9HCm~%({8qAx1!KO` z1g`NiAYdF>G@04i{Q%;IVwAc1!1p~`6Uw+76Rfu#z8`^(D`f&i?Lv?g&HX;}L3`2& zM&fs}W-5HAGYdM{Q_t=Qx4g)aM_pYC3j1GXJ=Bvr_IeIic)~ACShb& z3<+F`K(+ckWIBP)v!}DzbK0M;|5x$*VtQoyhb8MocRFqRN5g+!(8Y|$=byEf?#{*6 zW_%t=N5L{Dw@;6C_UA8x6(;#lJzdEmy(aj{ll_>{d;t!y{r5467pw~F6gAwj7+c}z$y=+Q!U%5)qdprbZwc}f4W zqJ*R^l2XidIqw;ePil}eM$m5g0NBk(U|d##(Q$ddjnT&4BqEaU`>e6iVWxiFF7qsL zi%8woi#*n7P@~H0E~&!R;$H0Rs|_dL4pS2^yyS}lIrhiHbW6TZhA%5(a{Ye$^l}0x zcrOck@*U^5$(Ky{RfYCxbZLN&4kL1?rV;@`!5?)q8XW!)r)AKC+)fnU(_l*T7Hj__R-K0Zy^SkFqsn>(#H*el--Vt-erjV6adFSu_Bq1hW_`+i}PULG# zXj*pjGw$vd@r9af5hHWmVWs{0tkeShLHr@s6mjb%q7T0^5pWok4!lq>WmL?}I4N-L zLx~d!R>mYI&fmqdbE=qBBG&@BI7J%U^ixljJlJi*u=5$j(L9KDhAs9oylo^>uB(Kr zM!HgPB9g6kRxq*c3Ej0-HDbL@p688|^uAW7P!S`}{d$(W1=OS>*T%4R`dIBNLvlMP ziw6{hr;>%;hHe!9=FPW!6Xk;fr%(Kb*2L}cVip4LYwnrRhk(!*h+|?w$)UV$#&;+{ z`O&E<`;g#Ritt>DUVf908c*I$`{c=fhZ1UUhJb|(Et!+dDzn6Fj(FO^<8~FS?aFR@_lr08$k8cTRj+WSjh+J@{ld zG)y-gF0UnLeyE8)tMjgNmKWDBFWFm$znl^#bu#1U!c`Qg>;JyF@|5K6%X)r%dLL)R z2Vy--cPFgm!8Dxsm#%c?DldZ(9eb^Uy;oZPm`NwM9sr{v9cEDNref8XSou=uCX5{~7XNpNK_#$e-ki)T0*k_B%z`yW{b6=z=Z& zcuR0Q2}|yZA)kM5aios3FM4#AhIBy`K}RZdLat?*z4@`OEYdY27vY8z$#mCUiQkm2 zAHxgq4=?qx*jO;vNhv){V+Dk)KX74*4Z(wdpC?yvyG)E=N%)EJsuf%L+voGf=Fcfg z0cTR|MRRSRHZv7jlQ*j(GLHdViJvZic|XseU%OPV=LGU(jNdd3V_&b)6YBELyf-BYRT?>*DOiP%$A_ zM$6#8mG(Vluf$mX^r+r1)yV@pAC_M2F!~tJd62xFL&gTlECr$jLJayIS8y-lc4l3a zYosnq%pah^Dxt{J{|2mY+q!J~E@V}cgF-GS_`&a@3(9hDPxWw%$tF;*^dfqLsycn> zV?VWjdo5jO7(o}6FCfO4BR9!s;pv)kF4W+ohH-6AQVLj~3unwydS7aJORzdJHWseW?B@wsu{1^Rv=1_LDTerJ2&UxWc@1o&r6O1TH$Kxq*j6aCm zm|`aTAfm}?6JPq|wer7@+G8c1Z0+P&-oS<)iFlcU=y&F3Eu#f_9Z&C4H%Y_jOrOV2 z%0;$YPkbCzL^VH=2 z9q>%LoKIOtd+0;LF(bF}cZV}4CF3}?6nF%`sypoB8}@D3 z2Cth%U6DFx>Sl0&7^~c255w7a+Z4{dQ;95=*e(0`OX#c9 zK<{dhURKVO;~}CZDMJId49FIZ4^RWug9iujgss4n8ypUbX0GU;{B)h^1h8m&TC&+QpMPJL6w)?mRQ@-g z`}|0AH2I0LcT!`ITz9R6#n`~FrV#(aqAL%!%-9U8c4CKiGAiy@+qmY4nG+xSv$mhd zbng$!R=FQ~mzhsrG1=;RB1!xCT~NzV$i$0T?w__nvJt_xCjt6K32@{76BPIq)=57i zf6n;q_StRWDIt^G+#Y~4P_U#!86ify-pBFag~FnTcgp7!7BM2tQQWVe@qO8S7DM;U zyUky=QdhmzT|m!8EhF`c2PEcZ5)(Up?u7MJ7KiNY;5^!FbLLYbm!p?LOsdhK$MjSf zT}9dNHA{t}<`2JPw7ub|yAE}QLdd(!*}1H|+0Vyv&ItU&0eA*0q=W(?0w7AwgpQop z!48gQQ^}kKGS)tj^BqHKc$gv*!tSB-5ha#`@Kut&cD0%*p03Jf>Xq91FQSBK?qmp* z-w|F*O^KS7RWSZ~q1UO4nXJw89t~ zA_kgLlAl*y9sk(3+WU@N$)y!szb++ejy9wA<>4`1YN7bMqw*CS*UzIY<4(`(M^;eK z)ERmnXrJ^-BK~qY-=$>Mtj{Z6IlxV?2~v*)c`updqc%42aViRj^jwSCU$D;HM_M6< z{%~sZ$mae0JfR*w)b(+;L5$}~E_UNO**#4mZrFNrfe<`=K;&Q?g^FXJ)%k zMuX0H2C`w>=A@@K*UaibgVsq@J=xxSEry{g%azfzb|rk zI3k^>)Npm3WK8LJ@nSCsV$&c0h(359^*-OV5%I5Zdg4bv+pX^5FFVLtrr+jEfUIOz zdoNx_@%TgPiu<@zBv!kYmG5p?n5#TWj*1_sQ)Z?}Q_zUM4IL8kIHaGVkw4j7=P&n8=lPfEAFgc;+ak|j-4TmZ9vjCYwv3mb|8jEj39pr{fMvmkct1Z0Qvkqa zbl659Jh(&JI{k=l^@|)MQG%2@2mK_%@-omHD4#kCxWSGS!RYF>a3o!4UT`g5;@Eb? z5d4OQpCJ#^Hir@R%mUb9c@ z+cBP3h2+$HqI+``SP9O|D`mrpK~GVvHN;F!O?}72_hwX@QPOt4JctPI{ZrSm$<`I! zy?bb|5;y%Uwb`{|rs%S-mxN?gafM87x9{fgTzxZ(i+J2j!L!oq3!_pfIC znH96|-1ByRa*v#`neDBH_oX+FD4k8QO#Y(qbxvTSbw|tE=V5NM6H{lr;Q{g1a>W3! zJ(*LFyi>MWvMvGfRUZHQXBmBq;CEYnhk|A^hp2IU+S~AXj@h^ zDRiDtcz2?7H^Vxk2T}s6x6ia@iSuj{k*IX#AHE1!4AE2bShDAOFb!?N)M|Q%W19*% z{;7WQ#Fzwuk1$j^156I3xFfK}nD$oTU14)Oqld<(e=<51-8p)Ue(j&~vmG6S0nR12 zRkki$M4Q`b(HzvySun`uA10Terk(8V|34OK}5V<6B?&0BN)a-(R^n}%~0YGXfUx5&LcR8xIz^_ES7 zU0*_Z>cLXD<8zX6*WxzHSB+@WsANkPyL}{9#P~xN0TwDX{pWcc_ADe&5x@mQamx-{AO~~KuuLX zu$Q-V%(;8CA6utL)UknX>ieHr9lecu>9EI}+2i(g3~nU_qKD5?A&2* zYed;DJ&h00d#V<}`_^(mTaokdDuc^UK0GC2JSvUz%lSbg zDUpzP#vJkC6T(t;r)aR2@sGkg1GcrFGrzWqzFKvZUrAScXbaen{}*d-8CKO6g^g}S zMFl}rkVXj+Y3VjV1QevZySqz82`T9Y6%di`Zs`(`?(XisW9j+oe)s3y&q>dDWbL)) znsbb|#=E$w|AaZ@_f0fXIL9h%dH2haii>P2NQg(VGR3b%+B5h&TFI@XPqAju5J{L; z1U@Va^YyZU&DspQqadvH9+LWzv!N?Lm&$)}nvB@#F=mnsUlxws^&YO*`_RQm5l;I; zFDLIublLb&?N8U)lg-oBbe=cO6!JIjKjzJEC3sCTP2d&L5L$TKEbsFj67kfu_}WJt zeA0>S0Lwh+ni3^nePX9I{qk%1CnZ?u{}ddceiIrt<+bX4b7ob4le{j2Zd|z`smiqm zbdl`=54LVNi>aPCuRaBcpHkS%8V)_&dLhC0)ym7*%&UjJP*4zba|K|#xn1Xo8#*Nt z+C1;&q4zxOY20WOL&q^I$hI)PACjOVp2K3(?`7vmXi-Y^Hmku&Y}kmqCXeYuRiNO^ zFIW=YSV{HVSBsP^oKNq_8^`^Hgm4TALWFJfYBHu56L7@ft>ECVimr0WM@vwro)NVe zaL5k6OoU;uf!-wUH?xHk=VSQ+>Bp1mj`xQ=MmCSGoLq>6HaqLwW`#N9t{MIn`M{33 z-o-?b04(a1>gK?+ocF;u`Su*Mzu~?81A5uv{RI4b85E}$n&mH{lf*)361!?6=7rGT zobRc#%Ksz8$h+fhBz)%D6a1%-a#T?cDS9)Rz9oqc#3$1CUtVjJ^f1? zu2cPH`4*gIc>$9%C_}|XO8`nvqe~xkYa;haoYh~t^RIjpwp*o0inbQlyVyEwvd=9) zC@SRUeZU|)52p9}*%t7CX|qqy}f}^4IZ91H(>a5 zJ{kN@L44zsi-#sy-kk8cQ@V$0Jp%%ejHsz&P?-_IqKdm+P+6>aE3x)k9-)Klg%)F* z_bD%hby;}cdguFnuXS(>i@B0O79%@ffwX=gXO4{}&ZD@LVKRZOPr3EG`}$VPa`B1} zV~L|6vAzvk$}z+tN3E=wNRukJfgG&5j0oeQO=%9{70^>9N;vrq<_HR2YRXF29>Oq& z^?;l&$Bcw;HS^m<#8g8P9Tuq*OICc6(>pU}BFs%@x@hXeixh);(Wk8?OIyp%YY?G^k&vfv+?1&g7(BMBT1mDqxLKr?lpQq>;FHA%m zXEJk%Y~&3jzAW8{_^o{>FyrS`phU&1!zumh@!#LM$jK=N<3kds9MB~tr8|d-wo`v@ zYZZa!(?V}MR|`5dhOExcjI7L*KeJ!WoiGE{`O52w>|rC{{!>6vyf!FHHz4yQ>kqyg z|5tfm{ujmuOL!8#wl~eBSwfxDnds|mXakv!*ai~&yR)fWJKc%VEO^a(PdwFp*L zOZx|_H8KCR=DNUnJ~#ebf8%OM&!ws-D65|?Gn^T}Fst4&Xm@D8vO>c#wMqK=&>ovn zz=0av9*_L&QC^Rh6tZc^>^&0TbYUP37I`L9jNI*+YytOtj{@{ZpyG2l8VV8|R@V2@ zPzlsQptrT7&IfZ0W6jws4$u*IKML%X+Io~<>5#o}XWZf0=vU;_eB%3>^=8oTugLXo z?f$z+Z{mccHU^tDw(1r9`}Z*x6qlyzGK50=>-3XxVmX+etCn|vv%4dgXP}Hz`Q+`6 z0{UI7=6jD-yz)VF{{o`GUj2R*epIf!T$F7D>hQ&a|0c*^&`{ceM3U_ISU0 zB$A|8t83~Sjd+aDn`{8lP4|5Ix*`x%Tbn`L&EiRkT_adQc9gU^mh(UV$V&Lbv_yP} zZvlLw@edzYG?{-3ISqF#u%zdT?w@x{aDlMROBC_OfKp;iy`whciBmg^PS0%(u5X|hu1=d;YJ=dn9Z1D3A*NZr>gz}NZ3 z)fUh*Ihc+orA^e2Cm^G!53(<21Z7=)sZ;C^DmnEPN8BaCzesCPAr2Wqhb%?jLLA=f zdnhrxuw2+X)e^>63~qe`^)lYN~J``+d*w0hl}3vmiban0f; z#IlI90{L`@*QVojkbLeitdP#e&(3SAKk0Rp`O_Ce^7`2;)r!FLOaVdhr)+P(9&iXHR#`k+EyojI4~ z_EECr`nGlB$qffWm+vzN?0C+1lH(gfN&&qCb#F90ASQzoQoE7@;?$SIh)R{Ghlc-R zO#K&-4gH$^k52Noc@j58QGAqS0{b-Re#^^J-|9MxZZ6NL9+Do58aqI*jvU%TA1r5^ zI&4Iw?mra_Xr~_b<+NYBmFa3nl{aTT5yiNdTQ-nS%p>pVWcT>sp{o$FCAG2kX(Np!FQYc|JCT zHd|i)`0iT)HSVir8K%NN&a-9=c&r(SE>-uaujtN>J(k{P^;vPe^~G#cBeXZ4*f0vN z@!y5M>FGc;mB>fyL0bJpK0nPX;?JJ#TA!8GTGP_3Xwti*1G;|{R=z7@C)VmcvqE{= z1We~@#`#?3C~5)_b9v<5V)?;z$U!Ua^I~f)GV#T*SH-=x9prcO)W(|>-4A0K?ZP5S zSajG9PEO{klu^Z2I{FPZ5|6ng6Roc#S=W1aT)Md7%fUXi70E+hRzp_Zu9CO_T{j*9Zp#4m>`Us#3g>ZM}nzMGnwfVqAT!k%ns zvM9`?)zmt`B;(`nPsPt456MuIR)(vO7Y9m7#|9r+IsIUEr2eZL6-)x99H=76L2F`U zk7l0UuHF95%D-TB0=hN_TUk=aSz8b~&11cs-{DVHp!Xc?5~Tc)T+hu}V1FGcfEoz+ z4*T=F(hpZJt#KD&H+N0Wg!fym=A{)cj}zIBtZatE${?1cr$>?|daH%&Ylk8unO z`Mn3OEmVob(s?F~8I4Qc4@Pdmp{Qwuclh1U0iE6VDHNfPvi5icxo=5hOtZ1EVG=z4 z0LE$8G#0L(z?@HYgKq$%Zbxg$*rym1cI_7#q6C z&o>DgLM0Vsed;A;VSCW zh?DET?+WRNQve4|bc->bHrN9H^ZzYIi{WXtwz5(vwzv-yB`^^s7oZWm;0HnA6Y#MW zZRX)zWB5;lPF~YMsyAEyZV?Kt0>}KLR$A*_dogs_oHfsuc;(i!?jcQ|X3Gzg3~B~) zQ;6rBw!eF0q9CT>^DS+CXHB-dd}ma~*r72b^pw1%4tH@2)Szx)v3+$nZ`vizk}ssh z%tX6T{Z#+9cu`S13n&N_qvg?`$R+jVW6P-qV@arH^n9u#ClUF5_6ugufg|l13?upN zqWHf=Xn*As2L}!?O=r+023E30jsge?bz}7Lt~~&E#0Abba=!g3Busyw-8C#vO{Q#V zV(AyULC{Xb^*8bmZ7b$yTn+5kx8pUWmm}hm#Zyy`6N5$rsIqzN7LBR5HnpZtogG94 zhf=#nLmc$ynlYE|2n%II7$>OK=kg`%HC{Jz7F8+FHW5HoReTZ9?3-|1KdZ7n24GeM z3P}MvgX5s3gmtDf#`)=FN%6sKSr1Eii(iwS zXY6{RevIyMMSmkLpQ5OPQfot7qmxhvCe(;!K7krie$fwA2GrS8;Gr-AT z<&9W<3vneC=V#;m50Rzk(y8-pg=8yRs4OQjJ9?aPpdq4+_NrLZFU@NfN>w&TN%a~( zr0#*cgM6e#Ad{%MO}=l_Qk=O*U8R+l!(UIq?)_lb`<8hgu>&1vW_I5i^Nw|WyVyi4 zsUkr$;(mX3hSA0>AT$Hb1pJGevgO=WQifZ<#gd~`lm$MvcAD=thE9V|PBoZ((5gv9 zCs0za5!Af5^4&GRr=+000Z{72ix=CokX?yM!kvG}USBU9zuNmhP;GZan8E_i@43J@ zaq7QfLN!XxomYl*e(SUuHS^dS1q;>BnP`6e{7cjnCx6~`#C32L7Enr+P{M@PV)~?p zV5imFv_ACj8pvQ|;eVf+n5S4-7Jr2{WAg0s@Ihvn(=s2S3L@|MI26Q}%Wp?xc z%%dhiyjZio&jNwF>*eNuSpYLJ!*eKGfc^zOCrDmWtREriY#m_FOD=15a2wkQXW@L9qcKaZuj35{n z_{LI;uHS86)W#7vFbKE?((&MAeg^Fg|FGh#pq{$!QC&caXa1-)+lU27MOfZMD(fNn z4#W~S*;hMPW%~f@<@6MTTSvk+xu(3TmeC8Gp!Hj3c^iM&C?b#AMA>I#t?I1P9G&Ny zDUG$r7_&I5*R<|l3(`d35jf~Vye(*fvSx}9D2P2z=V?lMxAO@D|)}O|Np`GnmQ&-=o<14-{6+{sy_0I zF#*ZKS*`&!(e|SlMxtJ}ciZT?7JB2Xxwj|+mY%2svLR*{zHv5pk$+UOt)X1hEl9qZ z!q?7fIf}1DODFt08d4U&Y!VH$wgCLa>Ux@DX;~=LyX$6;?(y~2h>YG^jJ}h4(eWmY zRjH$M-TkwQy?Z>qD(w*x3lS}CEY8fVwDFK(7!~ycAFBIn z_pY+14R*bfR#fg(7Z|%-oo;=U-~4bZoc)^^IY(S~TuQ`>?w&gbORn)nuzzH1DWvU% z<;{M+UDjUvVJ+z7t1PLIQgE-Oa7JB{q21KT$Vyggrjvek+x#_~G2F?{Q5Vb-W4=-r1; zO1v+njTr(E(zy`w^L^^Iz0l%=Q6A+(EqNLg7#QXK+opzcR0EAy_n~BFAn5ZE^R)f; zXBIhl0_Op<^xrei@HT9;0uKy>vUXS~W z&xz*8NvhtqFc?avfmdI7JMF;Ao`%evR!h}PciR?zW(3x9+l}ecZfaEuZz0MZC`7i~ zb}10OLm%mniGFjl$xeC9wQOpg_EU$ufXTw{x{)aPwd~GfdY*G0*fsd5*pOP);bciO zV=J2fc$OdaAaLPT`snb~K4V6rw2ro>%j|uQcTc|5ot69A-1&~z0J3$Pi{p7_9-8=w zsT=td4AOu|t2xew^?6fwGw3u31L2wceXQ|aE@7$HZ|)~wJC?V%cY-TUOg9;T0RfCO zlV~_hS$w@qE3r5@aTNhldm8MglX1}xhNo0b+U>0lrCUo3UOqt1XBuY0xS_In9;Vq=4Ox+_sWFzaMde>aXV|_M(IYs^~D+bp0 zGQ4@)zy3^)Y>XJ4<*nVLD5bR6T`P1!nYON$&pzx+zWhZpXL9||v51Vz% zi%Q;ZriC1KiO?TMuQ6t5N{Zv41o%scIy`ukcg~V`lejJ(RG57-B8L0(I9oavR9Q*5 zmsbg=$-5uZc|Og`$A_&dH?JwV)`4iy>c^+DvkD*6%i<^yy4S8VlD@Q)(n;fuhx0;0 ze6fS7j(amA&~9UBi5H;YPAH3bZ4Na$R)(FHssG9+@(Ul9`EOPP6Lhh?yWtpS(w3G~ zSR--LEN|UpOQZEWKy|)qR!|;)0tyP)rMce7)xFzlaNm#UlX@fDUp`l; zn2tAXasRYwszejt!PSk><-(Gyn-T8~f1%@OCzo*??gle$n|(p#DhE${L;|f{mRCWt z+e=d+h4fixJ2iH0`)hJn>;snH)aQZ*V|~08j#>-5b5`-SC=??J;90Dz3hN|T0%kDq)vZs6n;e7z z+;5?NF=XcBpnlMSQ0^2v@WhNW%tXammNk#zd;|{_;4(VV@SmnoYMckNM z3MsXiuj0t9$c`oxsPZ&!w3+Om-=!cgpU(9Cw`Lj1+gb+JMEsV5tC!k&4qVzFkeA)i zpRKf#Tcbt)0+30{j_Bk}eDhAH9~DbS7y0oN9E-Oiyvnz@vE=>)%d54%%WW`qSG-Z* z8^3;f0&Zyl0zjS;a?6yOszF>TKMvn3qeO!Q*NkFBuf~Wu8~=)&?>m8;)vLSHh8y4` zv2=EIAUr`NJR>(`$|?Y#68Lwl14%5n1uE+(DvqEnNN06(hK8?f?%Vf z2(@`*yf@C)+i~yWyy#DQ zSxPC?HM>!z8baPI{)v)m$gCwg>|Nc*-R~EV`p+}$I06KV6fptwff;)+eQJ;w?;jaxb`s6t@&N9(wdX@Z3#7&k^EgRYisMp;Vd%Sf`W|WCwN3r0&cO{ zNgbi|=h%1K95Zdnviudvr<;o17`$F;ZY7K-&$Of8+c>QncYoP3 z-h6@ZFP7y;2#deNPjj;6@4xcM&Jt99TLZmyNZ(>uf|PNBN>ZYsVLo-v%-d~hGQCcU zg(;zob`iOH?p#nW0I->}xpA<2TbCK3p2e@>*ob?7S)RP;&{GAEiTdn=Qluun;0I+8 z{{|Bp+Ytu+-Y*+J4FKKNx_2v#1FM5Pp$iseqbE~$t0oHi)#|1<5hoQAu-Dz4|4Z@V zr$9{ou|Jb4n|~hTnbFTAi0!kOx^PJ6!pt=(dF9qW=gyJ&E2J5FoMo|i?6O1I$`@65 z4xiO#7H9X8w$kB}dUSq56WrtVu_irWM4NVPbXEUodqqsFmg%ZRGtF}!uI<+-D>>H= zbjFh#MZ=>~Imx(}36}^GaBGB}jUBaLt2NzeD4OLt1PZCVj3yzNEK=>#O|v|U7YTPB zV6V4*a5G%;i@*{=_@Qs+FEG>gB0`kqd|P|Iu+%C22GqJ_H*6PpLY)RK2bU!aPkri0 zlC(i^Kqy!YJGdQX6@YVl20F*hG!fU5#n83ycx!)!lS)b|I`|=1beRm_TtTTNB%CI* zLHp|IwKsP5-#rAWfYHHoO`hYQbQf z^*87R-b@gk!4HA?bAhIXSphjC;43NzT~av=BmyHAv-R97WO@iV`;1=57+!duH&t?c zayD|@Avaf^P`9z-;2GsGLQP+W9_M_+AnZ6ZZGUrZ>-25HW<}3JpLoC08s-OF?n4V> z9G+M?sh;kDWrg^Zn#L(v$F~t*6|e0aD^Z9_uEmFA(3wu9n?W)HcHtc>^|*-QtJV?X z2mHo+5!(aQWx%$IZ0iDCRF^wVFv1m(uYeAq5Afi#1-mAUKlEJHE(0v)0+~SAMR;8- zY|&BrJ2T(zM?Ly1=Jl;5@+CT$+r?kRdc1$cF^m!Cw-Rh%mt;3tKYNTELYwFsul5Dw zW4Ygd_%X433l#brOFPUX+kJ9#S*o6ULB4Q;bid;>WM+%M0!MeS^n{Lt$c>M( zwxPX$q~+J^Mkl6IjbAX`%X2-Gq=!y7maF`5F2-cMGS1ukDv|>PqaR-;@ViEvC$5p= z1np6`8GV&k!mQ|KWfK!r3TW2@%h)MVguJZmCQL!xYN5@tn2XZCxB-5}t}Jx{7@$%E z27@8)pZTAc8|*ZDE3L+cRjN(1GUiW*#qT%F>^3OZZB^(3$^&#|io4!1DN8p8AD+G{ zTI+uJW__j<$lFL^m;D~h|+cQB~( zepY$7KxIN5y7KjR4Tdk~v0mwKZFIyA@yt30ZeO{0!Rq=?q;*hJjB14rtEh9lx=N0C z;>;I)Au`Se|EH(7&An3=LVE-2>pwwE0Y*eq*rdiQ^1__Q%;-L;Gk;@YJae#lgI6Cj zU@CXU>UeWsl@$e8F93XxS3k1-aUcXr@;)70g*)9~tF8o{?uIKF^KMia?}i#yR%Xj= z4+)hCw?ciU)?Ik;#Un>*x3^s&QVPPDJiv66ZO}yyeju=8U;$3qUQ_~uAsoOx>NxGs zaR8#B=FZM}h(={$h7c(*MJIy9HYh4eWPfcGR3(pK7A`7XwG1z-zxBhl+tKC_x2T?* z2d%%$q5W6_XucM0NOMFiAW%g>jon*(6K5u@-*R7Bd1y4JKq|ru_*4{UhW+($EGAtG znf^;Jh}Z6@msdo}9=8M@*{WK9c@M{y!VM2->olQ>A_Zr^&Ap25Z-`uBmTecZAas5SMUv1^0`xs{xc>SCauQGo zOk5P(M?u*TOypU!J6#$ahF{|s(VqvR8R>Yn8Ub^BAyL246^C2o@XDPl+J8Pw+a9pV zUh-ZB5|Rm~1;S5QjJ^3(Dl`s?o;@boik@$;Md>bL+-2aMng*L%{GUHEeVMAQASC{Y ztpA(gAtBm!mkuvD`6uy#)tMDM=e!We|Mkn4x3KpIN{e%SgjhJ3CGpb1ffI5Cgk8jy zln7zW_qbyM2uKebN@s7m0NLTNBmBH%Yn|4?`8j{eo~Y)QcZXi15e}^KPW#ZCD5vj& zJzV#@S6-UdGGRgqD)<()Y(zq zNuOi%waaE3Z_ee@eVWtfpyo&q^ug~FK8{jl@+#;HPag-k|9qZK;TNU9rv*QlH~XH~ zKKtE`{y_V!`pjFTRZhi~DaooJSV=<58BX63^?i`?CAu9wO$J{8YxjnmSwdC(KF3|H z0(@Sp*_#ZcL(MA+jVo=HhUMI@m;!EYY%$of%t*JvYRWn&LNbj_#>HRXYo?~;_SQXv z^NCQ#T?67l8$i=Kh(eKdv2Z7AANSe~Sy_K-TgnIQ0cFQu*GQpY7JMI=S8n;b-Z-!2QWDa`u-b;(S4@8eAU zTdv(&0SmSCse9Qb5;P$7f7cMO{chD|#zi;;9~a><9Y8i0f8-Ll_;K^2^7Z2F@t7ZW z9Ecou4daMKS4Pg4%|Q2;5R>_mMTeTZH==5ZM#EJ(IEdhNUA^i_694^P_Za9GyK4{# z85%zxU)9*5VXx=fZUNE5%i43a%Lkk(kq`&gm_^#ag;rVeUEv2p9L5y+O_#c7l7ldZ z_PjDS!tHT%eCpS8^tgOF03<zub`@ocj6oi#cG2?s&o`E>i+qOwDA4YOZ*TXrZzL!; z;Fw{I;)?Oz;IAC$b;unQQN8WsYv692Lgrr+H!b3KeLiHh9xUIAvC?h&Jfcm0)*!w6 zs@K#6xRQAoGumc-Rg+D)WNcpaz(uL*bswR-9O;Qx*+?txYk8>BN0d7LxbmUL#XOz;y_L|St zsK8Ar1(9G`-!c!Ke7iV}+;sW{*{29)<~)Uxp7OyOe!+AzXpjk9*`lD)w&1b3KS z#62+{62V*}Hn(GC?gC2oWZa!SudLW|L^m+>p`OH2qvEO5Zv6fGrXb!0r{G&)Gk=$C z%P(I5gq_UVKJbMaB7d;qtvZ=yEZL~VK>Y28hleAOzy~1;Zaax&ICt+hLYj0Wn=u~f zlEL0?1%V8p#2)yf7ES%P*ObcB{t%mht7J-;F+tu+MJy^pvvP z%QG!)D7wpCvRKasCom4&3czP9)~fy39ZlW>B$ARzP;-h=xOtL$I#Q)Ugj=xN#$8qv zfG%40)gJEc4zYC56J?xKy(FgP%$8d zY9)r49K1!JfM!uS4GiP8pMLnl*3`XIwo<)dxE1MQyIasMUHp6pw}V7~U$5l{-RV2J z`}8-jTEI=&f{_~$AdUAk8x7!{K6EH`X5E4$JHe!BE{BbK0!Lke4SQx-G%0X|=Q-4l43-x6>bK8EibFFGYEeQxGN3xNEl8 ziTl{6s>0k}vYuJ1f~HfDr~pd*>fUdM$1eSpBxEPtbxbcm6^7i&s5<2Sb|K1Ag_APG zo@35>oM$-FeLGT)5t9)F8tMHUQp)QTw9N0_RXBnx7fl6vd$gE~_iN9RehoMt)RFM+ zHJf49Y4i~D_JfZ!6IP4`Gg+3G zX6XT(lId)R+o>WD9O7J+YH7@TytR@vxf0Yqw8Zkgqmpfpw>=@R{5y<9tQ?WfdmQJXzAlb?l9z`Z5IjM8%G<_%yn+#(sFX9neVN zS>wmz1mZ4-i3(y;)pCq9&5iAA6|Y(;yQM(3viQZ*ERg0QG2(HuyH=&4}Fk=u!8Ss(M#tpPy-~y_j#0%txpB6 z&ssnXnwHXme*NO!R%<`UR#zc8%FV@!19r;sFHu7WA=0JO*q08bkB1R6N{*7oT-2ig zF$0W%1O^;K>l_?SP!C_xa8>)*Z1`U6sVs>!oE#)Vy-D>$QSRFVSdw?lZ&^B!>|Q&S z+GIT_S^UW6Qd%*vqR=f0f-mdl^5k}*O{D9Y?39p|R2hnUa&IF;Sz3~~a%qi*kue1< zYaHV)+dTbu{|cjUF2Dk}R?2Gde4ktGEIRSO%56%oLWUNA)4|*h4YtG|_LC)fyA3`l) zToPg<*mhGzK$E=td$gU4{T;dK^ldONbHX-cH9H=WSCsDwzk9jc_Q2fjtK7FB=?NkJ zET0g9nx^Nxz*ESpQzdk7x@sBQYO|biP;G#dU~+I-*a|Fghz*+LuXi6(K6Efw?ufx& zeRAPIL+n0j7MPsJ4b=^A3}d7*zs);N)-1?hD{UtKN(U5dq5vUiWU@7+FED0sTGZ|n zT)pJrIC}wMZqQqd7VnVN0NXeV!dK;cmdnMnJES9AIoK#{hLMg|T8We8ds=u1xS9w>HyeC5lN=f;5&+HJE$tXcJ}o0+;NP zYItA}^(KJi8Q8atdk-(q!<$4`ek#+k6rpFwiY!S)ISHID2(56Yvn6Hcb%EByTctCl zf%PqcC2^TJoJ7JY7D?)=F&B)u5rN1XH|P;SS4cz9-AmRi?dgX_V@g4*`=B@N}u+Yu=>Gpuui ziZbnC?&?pUhQ*N5NWv3RfEFf_q}4`K4g?%gdfV;)~ou)6puZS>V? zqiDQ(A=z8y&Xs0s4nIVMZT3&~0KLrI)jX@3FPKmPpXwF>fN5rzM1kzPK$N!jJaG}k z*Dj@wA`zj~c||ntFM`&Sx_=n8cS6X|AJ7~PjJxF?g&5Ml$obY}buPC8lP=<-<3LMk zMv~XD)*dL{QcL!BSZ%oaQ-v<%lyT|({Zeta$eaA^ffrGz5Gb}A7;b^Z`^wSjGML9* zd$eIESLoKVZ7{hFMrQRa!WP{+?#XTRgG1wGN8{7`dD_jE3K7aR9|K*Rf1b{Q^8zWM z-7Lk){9oVx_m~VXq~>6CEX7=}hW}xO#xg2)ffg1W)M~X_)nG~caCwlsfxM=T33E=I zV5od$MnYYwwOqnpdVJ!%rgPLK`x8-ua{X(@%&)%}AMh{-_kR!6JWAzb^83yGKp+1~ zRh7fN`5lQwc#5wX(>0YVdsY<48wIOQ1wSy45_aAk1y1BAR$<@4(a818v&QQ!#!Cq7 z1Ha3CE~U7<^Hw8fhl5Y|RRBi-r#NW0fy4YVm^1T`Eko6&cRWIRX6HAcKt=lTZQ#fP zVftSVpS(L07=7J^$($xKQ~Gb^-^WItJOPbn!kPi`SN>AxTZ=|lak%urx9up8jj#tG z7I%QdF7|xkZh7T{z?LBj_YSD$5VTKayG@kAD#0Bep2t@8;Fn;s9Ev4{vn(2{uB#8=zR^|jq zNyoO!|H4jWB7q}-ybnjuF8zxxbcdXdOn`yQ%gn0lhSC9Ccsb_!#?eKc z1|IxDs+v$@@)`ze>iHjL_OClpgOi)QMK#TUt02nNs>k=3Yei)upN2I`Bp;`VTcL3l zh+UH33w%KFJv^44NO_SUKSSBe)6)KXm{l{qGhiKD;O)Xg*#zKub4NZS>%F}2sntT4K?&_jl z##ImAsP``g65$Xu@5K`1HqI9RxK2rqN^0O-2qCQts5RmrSFFXQ;4T`T8g!1iUhI12 z1j&;r`y!Ko7EUlNrjNeS$pLb96J;XjF(1A*zgAQTsSL$#D)M=W&HZ%a(hZ=hk(85` zfV{#$ae@YbhT8)EsglUM?}Pif7?{^{HRsR3S-TWxc*FKGoX=FjUWA;l_*W3&bkDS4 zrBGa&rT@yd`PmKED}kJu$3IMeG_JC29Nllbn4@{YWRQUA!YL$cyfsXgcnr3VHyYw2l8CDHX z#K8ms{2%kY$13E09O?hs+BX*d90sn_|8ZzwQGrMCvIh$yt+BgX23aWpt*4rH`$6PD zGze2roCWgNVNV2!jL=VWVmm6(+ zv3?*>D14foQtBt5nlmuQQQnS&2l8MC#(EkaRt;i@_HL|wzj$&1;b>DUf|XC01qILK z?X)NnHR>sRzh?VeIA*#k*cIn5HzbkxUyVG4NbvM?^pWa-a1MxDNZdZ^7)C$#CP)yd zo>~=J`I&iT0)lD*S773jJr242Yn@U5F#fR}XNJPJDXuj0<&$^R<2#FcT5e}UPO)oO zK!d=`Y|BY)E5?c_x&MBM`vB{{xB)CYoKdN%<`XAR2?k8*Ic7~Ie0;Il?@nP{S_mhu z|8-`_t*ItB^a}X*4wH@T<~=RYSytod_2xKS}3AT+Q)MRGTz8BA_X!aT*BhrPhs0yw4* zJ|x*Y{|Zu^YtLL+v`P#t9%#yW09gzoNMVtJ`48(Hpdd6-=fYseg_C?C>Q?)q$Kz~8 z+XHpMp}sHTmVV1Ym#RT#Jt#K;DJo4tf79TMR01g>uIr8D@@%5%N5}?bN$OzANY9vG z^*;p8=US0cB26}BUmjP3W_%fk1DKA;OdG|&$rVm>tG~aCj7O!GS1+3*| zvcLWyeJjF8QKISXal$v;#K9F4Ne#)TNfDQB{;dWK*8#4vJlyC&r0gw9jBwyEXA0kX z&eN#P70~R=V2_rt@=y=TQj`ZzJt8!Cy?Gm_2UwOT&|4ghi1K&P)N1Da=A#;dQy$W@ z$+t*=LVa+fP2((@cQ2whm!T*aNA+3aFgM`+`$cyq_Ktik2auf&a&YprZShB?zm=Fc zP>&6MmiXG!zHGc*tYbj^SL(i(5j#tTLc%y7P;)s=E>^rO(P1wvmN`-5n8hHQPldfZ zbg<@^4Ng#yNoTX9<=>EOK}zrB2JT`f8+ItaaFgTZWj0B{W*u=U-XCK za5g7GVyhM+N+1}Z$-EK&4$|Qv9bek%!Svoy6U~n~Sn?`N4?QxQjZ|)LgWZaJoCfwO zcry-dgs%a#5R8v2UUctl7We8U1%UlQQGXR>m}AF494iv4YHn*v51c5t^fvoEpZn_z zWOYo#y0sDYX5ty*_)|jIco^%xZN9+b@S)kTQvDvvSrr&eg-z|7rWi~QMny;bhTjgi z1yDbrZ5gd=#U2v@Tls&odGeoMt}_@f1qYv_@pFC{Ie=iJ5lJtnC~5=f zf{E~AE15u6tqTG|+p&gO>>h2B*j`3i|NG>(SfRUrHqHtXAh4Q2>cGVgqFC{L9oqok z5*hkiLF;UQ`q%f87S8b~f_9Sjg&kH)oQZ@-U|=C$&i=;04>tnl*g^R9zPo%%|8}O+Jb)1bFza1`>pwmX5?anOcS1Ymjlk6Z-kl(G z$eMW?H?eLh@a05p7T)Vek2H9Ho;kRcwN|I7so_(WBa<1y` z4UshLJbgGIw?6>05ooc}JrURv|1$xRl<~JB`7SJ?h`@z52wVb2JjcPA8H(04}0%#7OJD-KB~JohP2QUl%Vwhd3wL>lPV%Q5+Cwn z2DGPZ9>LRiMHngWS9h|Ws4=&Vt^mH%f)aoI_tY;ut=Fn;q_p0f8+rV<#m3@0M}}z* zUc+n^|57ub0yZ0Hr;n}(I4a9+b>(3{)}0&0BpPX4`2nF2?MBR;_D{GyC7Zx<0qLL` z&#G9Dbbmox%Y6?{-9>)(1<2}{1yKbf`<|^kT%#_r(t@dJq;K68nPdB? zg|w4BAa5cTfQh693rN5agc~L=HwUvCcD|?;jlF^!k4TnPRxc1nupyy=no6Wk{vEqX zqj`$-Nv;`(iB4klW8EsOyyAk-g6g%Ha@@J`620N-+Wx3SdPBm%2>DjUl(Nw3?z8RwJ2&2Y=oJ)KK9Bu6BcW{xw6Of+9Rwlg<_T5 zstqzh(3)pY!-lW>A<7Ru$4S3w*_0AL z{MW_+LaIvehb92u%OA)xi|lU!^78YRXJ0U-v{v+lL+p^j5?l;d-W(2E$GR*nu2B1f z)YaUyi5kF5N!43GOInUxu6T0qiDiKouu)KgO>vFfC!Nk_{%K4O;+UKt3Ihz_(0xF` z|Gu;EZeHF%J<{^h{hZ6^r?D}e4551;)JcYL1Mu1y!|h|_^OSZ==k}Ab*Sov&~O7?{hvOvgkihD)RY}g|)X-%mQ&O1gR&EvtBPh zT~D!B!i4h;{^`6%T?eRN@{|}f-2%9P@3|erE~;Qa1p#U|HT?@?|NQ4TnsN_rw0zN* zWJ_43`fj&gY7 zL0I?Tkm{w@1x@ucIDNOE4B89pgR)eH{_CTRXXCQuR<-b~Q})C)U&`?sW6OM&o=Ach ze%85Fp|S|mtNodkU)+H=6AZ0@WBlYD3YMZu{FO(>6#)27V_b?}@6lskh$j|G*ue+q z+#+TU))&w^42lG$k0^I|dW0b-in}4b2X{SluJN<70i5e_&9oVshhvXLv9l;harAUS zkOAuQ9!f|p`tP&&27Vp`nDR?UMB!-GhH?XNuId9dkmJ4CFV0W@o%PuJUu?NY;V(A+LMBE*}94Kv>?%nF{*e?#cM}u|D96E zZEa=31oq+!0A&ce@N0H*I#vtLM=oeh7A>*zC`5U1oO&{b=JLEflK_qf2z zBB_W7DB*rXrb3%~h;Zj01M#J31F-3!16Ca*2dG0*BlpX|UIJAs6Bro+Z*KaBt4OJ4 zrA{Cujy-%m7G9)oK#9)?a&}(&*P3C(U$h1TIba&_l?T<8p7&h50Gb5Q|FS@(V2Atb zf4(b%m2e)z{d=co*ahhUFMz5A-TMlIUC>(geV`*e?X*)Nl?as_Yx081 z_{97Z#T&?PPn%Y=d~DQ6$1+w^-NxyZETo-hpz}BR@b3ZFgbi^3mg46&p1M@X_6_Il zol^QF)m;>ez(Y;ZdT|E)*r%O;@beO3!j81c>enwVuK~#ZC~F3H5InDd|4Qu�)Q= zH@Kc0l~=wJDDb+r$b&$tfZ~GY;xqHZ_nT&nu(O&lT1ZJQ>&oZ&f^{Af?XeaK^hD$k zgk+RnAzRu!szwHN)jvI{uw+3@RzecKX;Bvsee}C1OOTBh9ZdgMP{4)TT!Lp0^#4;K zQ$8_{bzS+Wm}lQ2k2e|S+{%5;nk8eqX`^yRL+~M=e$qHE}yBN`RLIF?4rnuf+s}l{(5p_QZ(Dsy4~JL`5dZ%iy#c$Pw3_t!Y67;x!t42A zHC;nf%Czv6`sM8&i#sX%_1q>Pv;Q1+Qv^(faKI`Z4E|MZ|66zcm&-}Jm$57wCfr5_ zIKt?uc1`GZvJ=ze(PVER+A=xm&ZChQJm*)w7p`GpGzZBAQ)DCwDv5l`4!&bZ#nt^x z>O&Z(*JUy5JQ>svp7IMfp0KgXJSXs17XBO?`wHgK4>AY*HoHCz5h>FU?fxCI=8^d3 z0qsD`ZV`Z`A>L`|jfo&WvRVAFCPsn2?bFXumr{R$W;wMf{th&6u+dj=6|QzKegr8)9$_Iwyv2OnzDW5hN^->Il}v6`)4Wjmvv zNYl>bS{&HNs_`NM=L8Yil~Zi9q-Egl!CdLY*6F`ch1)Xqn|6};2?Fl?$hbaG7HRD)bhX9tM1b=& zSGy4lMys|5P?M8C@W~xsFbn+dyv31aym4p=M#%Ho#`5Dpuabkl<3%1FN&r`Z@UigE z!dd+Me|~|C#E#iZ6DKk5&l74WAmx7?IJ5tikWiE_OzQXn$*zYqZk)FeVE+jTbaOx3 zPB>YTuX@Y{;=fB2F}=_7d!JG6vWAjTwsgZ*J_=p1*5g$e9|yrwKHdDu;MQ3dZCQCX zuZGqZaR2_p8H{NNUjhYMIC$7N)b${d2Zl+sMlhcDb%ImTfj53GFzx406pR4LAi{%; zbrkVP0j`9qX_`R%OJkarQM4zMXK^b&pIEv4n>Ks)bMx;~q3>VtKPJqmkm#{F2akv> zSxN@UvRm>V&8)$q{p*F_#<)s5P9L!<?ey=UXCs}e9JuCz270yOgyBVpCiORV4h z`aDb4plcbIdq?RbUWFRMC{YwoG7 zZ{NrvS*~i=dIcuf9S1EpH8eIB$q6!xn3$xGK{5Ipxt~XBX6i63vMu2ERDf-j)NyEr z@c;F58zqiI{qxlaop!bf{<{?9%HR@gwF2y_y1QGrlvF|92Kp2YWPo18;i(%Qqgoq; zHNSrKm$CRNcpQejPFCOYC6M>(R{66^ZDI|WYk>@E^dsg9hP&?rW@K3Fb^aV<2LAxl zYxjq;kVu@M+sUpl9up^M;t#|1X?ay!Tq-ImWC8{RT0gc~c!S5F@)Cw=4|e^!1ew_& z>ewfu_#ybrzcM1Z0>0&kTdVTXV*l6I+EUGzFyudV@kADjP?kJ$OX2Gk&{N#JdZ`WT zK61hT>(j0D%+25OzZ&kpzXh!$ea`>!$u~xho&Wvwvh43!|G)pz|MovM?L*C|Cw%kv zf~~ph5utCs1iUdQ@K{gpI=vR}$vHT6L%EI$4Mh&Gvh%!el0?8r-5PLcw+V*IE6@Oig6uxskE)u9Gc_KLNXrX#ghHRKe(L z#6ABO%c}6+sfka%I-c)GU^Bq#c6cxySOOw#BvF8#KI1SlIX|1=007pi=lFV~ zQGt}Qaw`msXf)2McwuRo1DP*MepoNy)FMtz-9CVEFq0rVfLu@9wBApe_%McK4vq1s zZo~z4iq?MhESOTZ&|=p0aK>Uy^l{uQ~==5Q83c;a%>} znun1CUHh&)dDipdXB%DuzpLEc!QE0k=}CmzDN-dmI_i{x?0B=Hm|?Rr|M%}N-j=>B zfZLEfdN|nW_5y~#IBwLS!}x~e^72?OQYUX@=bo9Jje;~YbXV7WH6fwPFj1#&){4y@ z&wyHL$m6?5I%rVKL86M>%JQ?L<#hF`F-Xq6B?{jbRW$C#!=m4TjF<#p?REo^Ig`_l zf!kI{0!+0^d@p_z*=D2FvS5p|95yYoTuhFb+H`OL-SXma5hKiTAV4MtaV6*Hf3IQz zlOC?!>QFs0(sH8417-zHhbxh(EyMFG*raVRPdcC;GLfl1s-JB| zAhB~W2{v8McsnQVuA0L;*wI3I3K?PQ2@;YAW=Y@DQf_3-4$M`pvfP+>dgA83?KTIK zAte+QqnZteVQ-Rx@fxUN@K>g$r5T@{MeJ$9>@6e$5`HuAWHiD=iaLlYjlr0LXRM;q zCUAZz5fW0U{#roVe#8~T6*yg#KuQNVzH)4rNiSIa*7dmZ**1$(h+<1xg70!Q z=yTc;8!PO#%_74QM@LR5B&!&1V9C)^8ccD;i%@stg6~JFtE)@Q>+l&uq2Ey7FL(!Y zv12cwU9o_)J5V$pw41x3{g_PQGc+(jW}}`=lbvfE@2$cXB+j$Sio8Bp#GG#%r!~Pk zgIunjuxUTL*+|n**)+~+KNbfNO*+Cz;CBtK$FK?7uDN5x3|vw$<;yvBzL9#1CLqk6Y2W#2M1ey2dQ&v~(kF~63vIM$C?$$)?b0B$XfLZll1OO} zTWDx+R5F^%XqTcA4OB`p{_nH<`Td{Q>wY~w&mG^-_xfDdc^>C+9OrqNw9{WQvHNna ziQ1k~_?9kSO-6!nYrF+5smCYv9=7UpSMGQ(ebVjQCY<#LGkmA^Y0r+^$IZ;l^HjqX z`+?^4hzl3?WM-P4jas#a&|=0&Y~1`p_H#QMQ-HgOPuYI*%ru{RifgzUVd>==bgb-G zv!6DFR*N-Ud)0BMdsn5Am0e{NZDP_-RR*|not%$iqm~jX&d&4eBX7>q!9g|st-JgC z-IMEYS9`~h#6Z-7Jm9v?!bvg7UpE^QQyb!<8RGjhs*6nw|8mk zEqOU~f|;3&U+t(jzqwb6!+p&YANQtI_n3KQ#T;-Ev$M;&9HnemSoJ^K(z2`1yScc` zesXf=k55msK3`ha{J`r{A_&*4u?6du5njuxJ|%wVlpOG``Q#9&qUVPn{uHoQq2}KC zodV(M6Vas=3Y3yknb!Xjv1q^k@(-<397a}s1X6SyZDX@@tLvsstsfTG&we1tN-o&? z_|b*YwKo`qJ%Q_hWK=I>l$}6rs*kir%k*!#1L|W`@G`cF;&$hxB~MRnkV(Z%|8URu z{I&m(&AVHrFzpab!?N6C>7`1L+7zI*@)#xU_l#(`hHI)mY{!@u9t zyY?g7Oj%hO4{84a3v#vC0^)cq`%`l-%rO76|FV6vj=lL+q4-Dcz>_4&Z6d=fa&4LH zp!|m0&F`Lyd;GJs&_T6ztLdLxDqp?YNwM8@orjAzZV2c*xA&^6UliK4ZFkyuQL9D9 z#?f}l=Fv~S->kd0NA1^H#m+arFYo+oshjit%;3w{fKEm2etdqmi;2rEy9|%J5#23m z`1+rLe7#m3JDR?_vQnZ4u)ByMHMw!tn`mK}jj&R@PbKI_Uk%-h@7_7CSh1q)+qauf zp6p%!>#NS9rvs*)bE$WobX5NRd-s6@Lp$p)i!1%*UuRMA+GO0gWtC-fMtW9_W%f<{ z%&UXB&!<6h`_C8L@-6Zb>`$LRpGIp$z>54E6`!6k?>l1J`2}(h-%a0UXBR!wU6~@6 zL34reTzNwly=u3!b=|9exb~WK+~3!?0l%U4;Q{rs}y zth-Csl7H*&0}omFr|bz0y~P(iedf%~+qa9A96}ErIy7|ohvu_p&3cy^GG>gnZ>5{v zkOqqvEjo4jbOhrkLi^b z9SGVVVVd8j+jrZF?{D7B?lt+OdCY{}4|8$~tABsbO>_vu9c~*nZoA>NuP^H96{IYD z7+w#%DW}%@lKY&1_I)RinLj>1-#a}${kq%Y9;G$ER)2cj_d`}#@Rlu&D0yPIG12_6 z!EUa7u{yuNUL|hF=(wgYfq%^P*57yVAik>65k|f)Ik7FcRX%F|{R0Pre%t=8`Q3*h zQN%LYCiN8+bp{RUVPJ4zPO9JAj~}%*DeoAOZrt$b^VN5=vVxuN?s>%JMcn3WHeo`* z6)mqX&j(5C#_73f(OUhyrjQUCjG8=o?~KdKLV8c`r_#Q;w}Qf+@bP0u+c7)-0aM3q zMkMmV9+hRIlZJ=3Qklx;*iXd0e{hIg$W{``ebgD3-QU({A?oi)a^Ku4K5oe#xss7R zL$2x|yDl-Ye{5{5!lB`7cM_!w-o5)btwD>O7w$~4`!a~Tra226&YvH|SSTl!{bO-) zJ%_}pNl8icRVAF8+%uxeqUPQ0ww=|~T%Vj&WBbknR($;QDeAOXX8 z!9R26%sDh-{T@!k=PzHllgXLu-vZSQyI5LUzPWf|=dY19anJwdlVy&nk)V(xppsEsyHpMRENC6b(JCJ3FRd z%KRrXDk|O~Wu*Ki**DxM1VA}W)0)B&L+>D#n5pBjW4E?Zwdj3I-LtlOzmad#InaoF zIQgN4lKRMKVo#{HZNuKZdoRdKFkZ1@An#X->=N&MBS%M0%+u%3m+@T)C}~ub`pe!m z29!llzqo|RJae2*QwUf&-T*r0(qTH`m?1eOoKQ$lZMa2P%7oV@Udf+_=$O+w_pFo)N5G z#7zF--nBE5ChSg0F>KhdVQ7DcS*hdo+W+t6c4^lxjS80ir^q*$q;6?y`ljq{YM|P% z_I>;I-MDGf`(aB|f3Mo}jvdgrNs~FRudOX91l}!rcE(rUVY_y|2M=~?-@g5UfIqfY z^jjA_&;fLV7st(=+ik@9pN`jk>g67v+Li#JAc2?^@F+Wbr%JWT<^>9=TyZt!$_j06 z4h!cumK1K-uz?k5+`oT+z*}6uTLI^eF4z{VZfJ9IhQ9g4iQ{=XvIDc8caUs%a7k^7 z$16+A*4;L(tFAm9sTGiY*4Z+KG5Z0LS`!={qvy_@8#yCsoxQcPvHtp>$J=!1aP)Mb zQMDS)5&>Y`xeFH_b6L2sci(B}tY#&9#1HqXo<_JIpX8`|@(dou34-5gZ${{=U zVj;!Gofxyd0}ok6_sCoM7~sFVeuJi3{HT0C!pH7G3mw>Dxhs0%E8s zxX<cJO%8KzXRI;#((ahI_TAnA>B=u72ImVw#>~qW*2{x z!&~oNm!$?aeLr>X+?k6^o%YdFOMX2{mo1yEL!(BGE-ZO9;i$#oq3eFc`Q-$7kFi!} zznO5m+wH@{;5@2&Gei)ILo@!!6Lx=7Wi5rw3k`}#=RGMXEOaF`zq-0wbM@Dkj#)F=3*N-nR_Oh@x00p_(@ustkYlJOrth1K3*HX zA@%OvZRB=qt_!}hqPV_C->+-duC-?RMvJ4$T^H|uL|$Y08ohk^QYx483-W9(KB1)2 zC$F8De(|yUgpfUUX&ZQA9!+J*>ua|U3|c7lZ&g*5LT7^&jYoMdx2<0O_br|~cP@?% zD!f0mL zy4sp+9=~lkQB4#69G^645^FOgZ&X`j>&*RnnuO~Q+!;in-9b@NQAPR3urnD`3& zkm%^>GT;PA-v8)PO+w&%U`j_-)ddC@T6w8?sXp@7jT`mII@ zHF@@-cINDycD&t&BypQ;8Rw9a92+^`;7;k!s7YTIwkRWBaWnWaL^M5roMvw6S##Ko|8l5^dfLEMGy3iRi zTmKjcZL3{nzrya4EyM zqeR~4z5Dmq{`{=Mj@WsyN4HeDP8uFAYE5~8T#n8*Vuy_4)^PAFU&+PQ^)%NesZ?uh zwz6%vgfneUj=#L3xQ!gps)|n^OGRo@@Q;fon7<^ z-S+nDnI#y)m6!cyUGv|)yB+tra^`o#rxHrroN>CF4x;07he)2|(&fwiG_k!yUG~Kx zsdf!ElOi5*7YkPoXHhzGUrc=s4UKb)U+e*K&6zvbh@H%3Ss{Ko&doWWm22Z3L~$*T zpcoj#aIK~?-i*RYu&`Fs(W6ImeQI-ZUDI~GqKlvI58Au81Bfri{q0Tm^1Q{1Cw_f- zx!$EU<=yCpp98`{`x=uv-h1SdB})QT2Q}q3Niw=R}gXQTo#Zqk0Ak0) zK^kLw!T&PkL6N1AY8TwGZ`kUSRh2MSu&OOcYs!76g`z-Zeq7NagtA0V%*RJjDg#|w zwQSjPMM>^f@?(6kAx}-EF^@NMWcXSavN5b)&g{A64wxv-_VkJ1&3IH-hRB1rZ$FN! zqVuw*b1mwP8#jnAg7Ok3C-!^dT;~HV;MH&Oiwiw^_VnWgE`4*oUO$Iqb2hB-daSad zSEqqdRo>A30Br`MD| z&dAsTCU!4OZ^275f|iW8Kh{3$$cTBFJ2d2lQt8}IJKM@=qP6nL8JCSvZ3pP;cGK40 zDm8P0oi-Wk-P!U+-4^dIe|cqPGk)o;6tDZ_DZx~z7rQ#`-oGzWiyAE_-c~b6-7x6% zX&vdGCu^4!CV2HqJLqlsH+YtGUQ0Rc*IeZ$+u}BP-9EuCg7pM_>%=T^jC+0s@`?LK8g zp7$PmgOb&v-FYF`l9I^hy-83}E{`IwKiL}nB+dd`8nGfw8ro4LjQcw@%O#Rt>?4>JLzI}Z)OySPn{+3*|WP87t zvXOs&&f~|t;7(KxQnf#d^sQRgUqfR9K|^Q$y^adn*B9)gbl6GU1QTlmSYbRPI1hyX z$e0*oW*j_tAoOD=$~jV@T=|Y@a)d$913W6-8@B9h%H@HNa&i=<>gr%(S=&yXwo&>G9z6I!(1GIP)6O>qvw`oZ z66IyDS+~ySjN^FKfiBlM3>|r|&@7Kv9SS^u{`@+l%?q3k z?CtNcv%ka0isRlPI*gaij-A-4eV-|#j!ilt)hstk&*SE0D9bQn2t>mTj;iemqkpq$ zj2X!w4LSG3c_G{$J$eMS8%!k~-zbW-38v6e%&lvr9k|W>Ejj7X(4`yU@^%bbIH})^ zOX0OP{l|_gC-Oo)1O*2x_3YUbE#1#LYTWHc`!XL&Rw3UE^{5=sqSN4ix}sYU9?z`$ zG7W6(Lv8?VhJ?H{^0%`)+lg=UEXCW9SKvfqAXGd&Idd4*tPqC%`t@70e*N-aUuRA< zsdXJc-KkH$*K0V3BLpQ~*X(~Oo_Firf1NP45%Y1%ybuYNNg=Tx#w=bp}cIZFr z-}OH~SN{GjZ=WhE_eEDKSX<8T@ZrNuJD}{<8R2J+-l#6JVwUx-M?Rj{h5l&|5Y!# zd)}g@9XfOXB$oj+I4ZDAAsm98yLLfZJGf*=H(6Pd8`8I%UL1LdDs}m+nkStvCtdIzk{`Bb-5Z@X> zJOL&3O;_qxuF5rAw5ZSP*RS^-IFNnL)wYFZyMp|yo__{&ykqR*ZP?ypbCzzdv;>X> zo;cAL+_>n~l|gyB#ZtNv*Ub+NwcgZ(^1NH#pjps2MGp=~dDT=APCEGT80CmwWtHXg z5+azbhka&(VX*BuW|F{j)*=llRXc9es)%JI8kRS z7kT*EZaWuV)zY&hR~u4Q$}ykBx}Gd*8oN*%9QyqEb4kc;H7#6*E=}(yr;Z4%Y&?4U z^n%RhX1agjn#4cM}-qJ*s3+l7S$=Mb)z)l{uyBWnvE!~KkBmc5@K(1l-edHt_` zobIEXAcbnA6khiz@R0|vaR0^`AN}w31c$|q(kY*!tmWuKr-Hi;#og!Zy; z>cj6lyCAO@&tgJ_EcnzfXTJI0l5WwWMOrhj4CD-7e^Pp8j9>FP;JYc)r?*A9fCQFm z`emYdcR~-OyhMDtQ0OKsj{iP|@nVe!uUaaM`83QFUKV$NMJ^-o_>-Tflh_VV8cN`L#(X zXrkA33b!WBnneNM*klc$M<-^qDZWQ}#_NL{RD+$|0Jw)KweN8A{rU=TP1*6zoT1Op z&u`P2moA^yt$X*|EJ8xP*N7PJ*iHi%K5o8#{rWS`S^e_Y=8UqkYDHO|L2`n)n&ak{ z1$UhH$1Y`EMF1p}`}YqM;R;WmJsZW8nKQvF4Qy(zT9})UMVVk16Z3|8*ABO^u=xD) z@-DL7a=^E!v}|4S;4aYKW&j7l5UPLJp<$~nl3MIZs1bgMREVGv3+#Y1o(M&r==SFx zB17h$zMbT?gGGpUkBIkz)6LDB^Io0VB)KPNPCr>x*HAmKna1W;-6qEMyLQqcs>mPjpO z&Zw>uE{-ny{@u2N8sv`7fB{y9lPfMM_smX*|6vKcvwMJNeEaP&G4Is_UgH2eQ&O<{ zankzLJpa)yjsFlPh2>^I9+1uuv@vk;^H9{1@!pvVcGJf_eevS#l2-<#ho!4l&4+NK z9<0s!xofmi@!dy{LWtCFK7VfRp>`;n5>}Rl_brSIJN+#iP}SnVQqwsz8nbY&3s5U0 z#8QeyBqjy}Mtk7lFhsgG?rp2POe{ zH-ApMt5!VR9kNLUAQSqMLTyw+p_J*wOeh{d*u*pIDi*Zp(ayE_#leS^qsqPPwDQVB zLzM|pen6id6GCTm?u1cqYpvG@M!kAC%Weh@qiq}8oKk71fdR2PZlo7Vz{ZUm-QC?E z&d4+$SE0{e8wR3EhoRSYNFEM|I_L6eBb0u9hrQGCPtR-g^XE@pGsD9tfNDaqQPlwd znzU%ajG#Vbb}CjjFrX^{@N09;GHq>u0)T{c^x-4Uefbr($(bR4O7vwhX z)TvW1`-IR1<1)e99I$y<80}8Zn7Vwl?>YO1yFx?9ayQ9(HN^P?7O(8 zd@dN&81e7f<>i``$`o0F;?x8Bi+BP{RQx0{Ou1f;f5LTf55UNrx_HqUGI++dH6fhE zhtyfTAwS4kLUDiTN(M+y?ddviqBV|6s|9FCn2rl@HGR3 zi-4Dqgu;=fzzh$$2Cud^Qi~&Jlj7wGM3gVd0{+vWL425~eiRxp4-@8)I)hK1><497 zk~9>Eh6t8eRVgXcCfZ;5t8N6WRNJ;~QyIu8CJ}+5{ra_3V7e|W68^Arezx;xNS3^2 z*T4_(_?<5#pU9KBFIzU3Q(~7m>oAp(72NBAfv!d=UNtsJ7S-zmBEzGiQmGT4opWtV zvP^&Z@(}d$S)@E-dm42jEA@fp?`-JRxpLaew#D7Szt`53Z-kmD`~BS+u4&WNtHW5Y z>u$d`;d~sRqjMuSS9w%Gfy(BD!-+b4Al8zs&c8qZ{)2!hC!w}&-m;G(TN0Qn zD=TL&Uc7z#_7+GXrsuQvF0hMY+dz&8VOCP}baShM=@2iVKVR~e?XgLHC+zJv5$+Dj zLjyIXX>-F?NbL+3*hn&1hQR=2pSint2RP6?bzqIJxhGiNks>V1->Ny49zXnjwgKBb_&4hK2q;u1AppI}J4 zW0SU1Ttl7&QZS)29SG`M+tWUOZPgELxP`gYnNayAuZrG$y1s=sY8yGW38$`6W}Dx| zi$Ri}oYXT?nMp^D^$V?@|XI@nx~g6XW|GaeH}5fPr&K_8y^oJibb{v0b2JYbXZOUJjV5M@ zHfGiiZM}3BL3~gKWz} z76MWH2-&8vv@~&6uc5fHM$EJEP*14uBBUYNgFK2DAXtVid>Q7Qbr)(wx&N%r;QN(2 zGaWmpRDWwm0YHX5w)eK>`0*Or+Qmwq76AptV=9s%TF)@ZtjkCb|A+_;Oe_V!7b*RL zVNzuQy)Ui(9t#Cy3Mywy-}0V>6jJgeQHU7vA&gk}V>Tr$K;H(n|H`T_0aQ{z%N}5N zw!Y2jxyG0M+Z*i&4c$!aVCmC{+ZWyPcS6lVab_YSa2V?)f3=@XhSGO)5h0t}2?kki z3zv7p{sam-5ry{c-(SyR@7mf`S*{^##aoSv8hP}n38JIQkR_do{|&niAKrQ9%$b4$ z(|o;6fiZ?1;2dVmoOyX^VM7qD6UUiaWv1thfHB3+AYI{iA%F#uQ8ta^>}<&2W4>3V zpxDy>O_0BT`0CQv^7YWE?CO4w7%^gMiq{Bo47=5Myl}>x;TNgJcOB)hao;~qog`LJNr9R%Z)nb(r9_+*YPKYd~l)Q4S)h++l z2ZA({HNb$%T2=}$b>R2gypbvATv|ir%fLEu8RV3YRkeK;&0*EEjWwSG^a3v}`~A&n z$;(TlSsiXA4_X(~sJxW4Sy03*!7ay*^+vIZG7ag5xbzUoMtiJBBi1O5N{jUk>0#FX z`Gv)IQMB^X49aU{c{$pWKPk&vlx-=vm@rCHah&c+9`g*Kj}UH5C@Id3Z;Q)i@Ap@$ z-$5mDy0xsr6^P>@eYJ8n{O^!oj8Fc7a9qwoqWa2U!QGcHkHS?mBiTcI4+X`=;}NLj zH1(f#P2L=}{~fJyg7uaMBNA9b_YqmmVrBS_v@(#7(6LEq)lGNEnS|YnBvZSBSrm)mBB!ow?JE z;j>P|J^d`r4<`PTbFPDeb)AHUUEy zxY^EJ^X%!<0q$=`Ng50a61ScsWk#8~jYCJDHPiJ*s|e!|Ajrb~16|vQU59cSMJF&~ z%$9HLFEqJ9YTu9AU~=HuHiCH3)~%I7w+9CPvm`_;I2`FndK@ zr~e`TBZL)Uy;^A2uB8}kL1B4ib*V^{ln?Kz%1a7ulg-l2dsbG%PqAeMiiTLWlzj9Y4HV{q2i0by|OB#&*@x^1rb7MK*yL zs&gC!#=t{1)tx9hQgd@dBaOGsojqH)1MNx2JAy*+FShr=p@Mu|zyt zE51CpPd?sMBbU=Lkz!4VG6g9&3BjF*t!j?n1vw&^Z2@EY$lXQ)?TU{NH*lJ>PfQ>3 z=2Ms8;4UL>zIbtvYIDbq9io595CwD;teZfwG>zOh5@hs;B`8U38blcJ*CKOfjlnoImT-eQtt+(E|XbvruJaWuq)DgE4045@~?5 zwLexG`G-9ryvSYwdcV87H`vEV0RY+jIx$*QF1A$~PD}Wew_gx-PIQ!oTW{-aJ>HHG_ zlyD2PX3avj7R}U8N&V#8TPoY+U5upel~BqTw2n3nvC9A~jza~Xa(=;Xzig)^l6Ii= zS$d`3y^q=bnG~!#D1a}t9HUN)qt*IxU*8I?O|);#`@nL-`(SJMQFqpNFw_KojzPzB zG8)@(;K~v^%KBR@luv%cu>b*IUb$qj14G9W+p^U0$ z+uglOVB3wSPe>O|V`P`DweUC`{kxpPM~@$WKz}~aqPp#_3wQQa*VM!#e3BC#(O~Qn z?3z>>gx~nj5?fyVdwG}PYr@|~ck3$x>xmQFFI*T*gqN(1pE2Hfh&MbHJf1r)B~n%v z8{}hd{I2<9oUKHs(8mH}n>cGkdXU;(`~eENo33eE9=QjyW-xDf^J`Ve}_ST2tQ0VFhOz^4-l_&Hc5#nE8fmC^Y15k9X9vR zTq9&3Fsw=Q=63xLo)kYN*fwFLQoxVzBnMF;AY|Dme1t}r_ z5h1mE*sIiJ`|W~_$Bh#|1WIa zvGU5^NpKT&r-q!Yti}AWhlAtc>B-IH8sK@M)8Tn`^qoFf0Y-qgvFBj#{pP6m00U<} z;B$UT7>DFEGIhlSB`Qn!m>is1_Z!~79_`j77W20}yl(W4oFOXR4&z%(i9bU$hwRwJY!LNBGf z72kmutk)ijc!8OhGY+I9LRaj(HZ07K{J)Ku}LF6UsYlWnTc1n7j`iJ}jmrswU;fa%krP>*Y>!0H3~Z-@Z8KABXjqk5kn4 z?njC8fsMp-TH!u}I9OX5#o*AcRoq%pz!PfKj{6Yys8>DEf7*00PC4_>TF?wN~U0ZwPZP}dI{ z{|mw16=?ioGDmdfEsjPb5$X%3)4o*ueMw2crcIlaQ_)f;tXzV%3(PP?2xO^t%iiDZ zK(Kg9S%R)ZVi!9CrklvOxrUnmwE*x`To7S5;_RrEih8=bJBbBx+oI6YuER8?#v4zw zI`2s>$5ssOH*=b2pP@tdaUM@CEgXld{uy#8HcD0VgXMpl0RCJE`%_uzUQuEXSpN9z ztR|KR4NO*?nb|Hbrr;x?YzQ^GjI33yTTDPvCfX=bkipXmQ-Bv-4De(RxV$lNnUn`X zFWoAGh+QVEXz|O-dIXTkiCsIkX=8-0CHCtUssndCyQMOgVfwN=&2)v`d6*MJsNaHWxZgt-BRTT>U~gGq&-ib;&o_#YCf z`$W`04{M0I1l1qDQxVml9NV6DhUG;qsb%+UbJDowVB@*9)38;2VAJ05FW{V=|S%YZtaVm=dATt-?D2EhRD6_<3kN7 zW3jYD{ZRTg$EQ2$r-g-5Le^;@q_kARUuN#oRKfvhcYI0+&m7-qzL(kaZZ+|*3)v6S zMGf{ib?#g=+?rOvO-zFjzo{=?On=^8F@b^zu>=#CfC~UIFSP|{yDHU3-8H|o2=-d6 zvFK;g%z(#)MF6TEA$r!!?&3PWX(3$2=E@gjo$IiYL~#+Jf0X7sBzYKg?LOYORb39u zFi+KjtP@QJkoFu3Qo(NYU&I{o?dniD(2}rl*{j9?b-jrqxs{UcSuTj=D8f zgl8RN1DCvnc2qy&euMJj>zNb0Q8Qvm0^kU&Rl#t?G$NSFLSD0bGJq;Pg71C^X&+PF z4!-EBuP<-Y&m$H%@Un=x%aV3k^sdmQi`Z1Bq_L_roc_o4hj{Qx<2?mH!i8e~C(6x5fVxVCt~n zH5J=5@%Nfn%>k%zk?XJ{ohWvJX?{s9D@r)|w#m93o*P;ZFe&0f4NoijI0s^Zwy1 zOXmWWF7?IHbq|Es;l>LLNE#3~suQY~TOF>$y>cDgLi)i=w2Q7FX**>XD1gbWehmuw z={RBUUpBclEmJ_hAed}$xOlIH8KS71XwufG+6Na{Zrw~w9wWV~Gub|Q!RHq}YeRS; z$vq${ML$d!O@J_4w(Lw*9lQB1wk^0`8}ZL#(oXtrE5o)fpa|Sz>X0Rt#cfz(Tcpc5xB1+GLOcbQTTNb-X_~=b*YOD2G zHB0-rU6E_j!>8pfg``^a{2X3h3nBMu8B*6@_Aj9j&UNfOeed?HH=$bxCqI}hbPic8H^IJ{568e321H^9(ud=!MXL1R@%u#!ad#ge8Ww?{ zaN1fLWw08+W2Hf9r@HE0bgP>g+-XPSPwwS^py`8h6Qj3Lb83)inkCCqXyF!*XYk!1vDjW#pe#&<8TtyvH2 zWC=g9bmhvl7cV;L>FKfHX)rNVMza%od^1ju?X?PLP#7UzNJ)t{L{SK8v3ZFS%rhtK z%~bXd6Im$5?azsl6f+P$N`#aeB;5iw!J^mK_QS1JEJ{W+a$GXCiY09Xzb611b$&CZ zj4}-FM2b;jb&A$H5`?=5E@eI(vT%(Mh~E*>S=HRqtGpx<2#?BE?0bM$N1eIEbhLrm(p3JevBSMaci=hP&j7IFK`i4WTfh58huAnLSbj$ zU$qYd9=}ZFPk9plcsKmKxzWmbpLyp{z+lgPC6!S27|a`>7*R^w{&cMAKt)yl9XU%t zoQQ~2(u!8-$gr8*+^R-@1MqJP+NS%v%+@S|V~?OZEk@^58cbgXJ_W!Xz^0MVXl6fp z`!M;#6H2Snl%#co$mH+Qm<|Ni*gkypXbzDZ_gEwHBsLi;*Jf+z3#NF4jJHbh@}x@9 z+;mg7F%4W#w0loFE@XskD1O6tXhf0X@FMc}aWVxE*QDxwo$T4W=*o)6w2w+y;L@>6 z-gP5Epz~4QsCimqs{w$WzIgG;ihJgkdu&7rVv(b_5u6h2;*G$8RP$mWH8ZSQN1mrcmSGFU@L@!K+K=J8diz#FU{$5woaQu)ALNk=m**$*#4`d6GC;Si!5MnZhi@|hw9?t zkHj6W)l(f5C2WHqP*zW`|FwkVh|NHqIx(F-^Q3E6n%kMG|3})$8Xv?U3Hfr9Ll{5f zvMz;QBn7f^pD9)~hf=D}XeIZj`g+gtl0hE4>=5j#k}!}@KP)aBe|f07)CMx88NYaano! z9LjuEi^KX-Me{lf3kx?P>p{ji0wzUqhYm}~x`-xS?>g`kf5jt78JbzwsPQhZ`l3n| z743L?CnD!D_54dqyJIYmrX26%kUZmOhpgG+Tw{mtAL(fzmgnS?1J2FAuPR+$RI|dt zA|flu=a5>yri1=8Tr@u_+h_d7&P1uxyb_@x5Y3;WOmba$){ zjj8#fp)3GkCaK!S(`@h8Zb&>fg!3n6Pa*G#_O3WwN$ro^?*vX1;V0+frm2$kaWCu} zx-_zC4Kf`hMLJ9(4-M7PcB1k970I5ZRN$~8Em;;j!#z89-b_rXy~9tzsJtcQ+W1U# zPRP2VHf+_Kckjl6wb-AcTi_uQCk5Gl0-QczF5}rV6_6n!ms|(!*gK@TBMbs!yJp^- zofHKF=srX!xeKe#FpR*4ZRamZSojOrZq3G^;1H&e{|t0{eTZ*ub7h6A!q@ziETDum zaPtcsVgFZreK|EXW%P$0|IrJ?+$;a(CNt0P3&}|`u7w_z5t^NAL zT(SxvZPT%%w1lzbd5*(Ff|C2b_S?J}gNixm0aMa!G)Yy9z2)N9S^oRNfKMcHDqvb2 zdCU;{E zM*1cnVhWJ96S5p$>ZZU2XAlhAqYJzt@$fEdF2yyP*P|7S$_?Z8Tv2M)OnL*^z*bZi zAc0IiKcVRLm6h8dNaieBbZ9|YjOlt54vIQoXidq^grao9_2qRHy+oCzBxLh9pv31x zVet_7XElsH+Fkaem#Vx>=pR^76?uxJ^;>A-la6p?)dN9$zY5quT?d29>;@knpOlI# zkP|u4WHMR50OaHtC zPUG*4@7XP&)Kq-L))#A#vSX5SY6Wg?Hi+|~f-J)_OF#tghL`Fs`xNz9T$iYHFO1chxmG$<;ce>;=q#j^+ zij}%I&PP_~*6rI(upL2`Z3bzTy-;Wr;^o-UpLWqR=g-$7^6kC-!#s3aW6)`o&_AE> zAe|x77y;-a?)q=tTFWl4N;B zg?Kl}6o<&1SS})FeVbJ^=|fb>HkRWSN*jUM9UdO$$;YsLGskCly~nNW=fN%^Exu>Z zUw13Lnqc`io>*19r@ni5YR(v*b|ZWVQ2;`=otPG(Ht@(lJ-=`-w(fojqm9A1F}MRH z7?LJsss(lu6-YUL=w@DCJIom^j@IbMoz#$7AGj!=UR~XvEH)49ORnmc2kU;o*tcmr z$Ddve%NGxOMUNAX5D`HE$wj6)OyOMcXPN&{^OTQsp?90~9bpw=B&bxVnX0KMs!q`MFxx_6gYtKj zI5TDK5oI~Hhta@95r04ow(5p7z@SN{J$$$W=1q@01HD=M?HAUg8z`>;R%F~!@U6@V zu~C1LoqZG97O@eU*CuI5FOagV0#)iUw+l38R4bL;t~=8ELOyA0b_|YTrJV;Y0@#+*+Xgi5K_Unx$_( zT^@k85gq+6(L^G{cp(W}wHk%o{hM(n!bW2wD=7r5!KQm(S=82h2X#9qRt&~L(yv5B|ofv6$f_aJ{*)uZbUdvuxK zJR$ikmKHF7AbA-3KuMugVFLOYC`0}cKi)*+8f{EwA{Bw{+*huA4=2nzDnhl>Ah-GO z;lu0PV;{CMCRm0O%X$M&?CLJl)DeKsRhM-B9`f!ET(2_48a3*425pEtL5RGx^z?CC z0|V{&tfS1RP!QumJ7eom_M5g3c_FHHz1yoRF$xphnJTXpAULT9toj{9_}wUby_1uZ z(YWlDVRb4Na*`uu)X~(Wb?4hKhzJeVl6rm;X)}&r?onN7tv&17rR?z0iokD^CQX~# zynOX)H(YXW#$yl;>`<|HbJTiq;O(I%cY}_4L1$Or{gs-RXRkA8kUhjf)NqeVD_F~o zIM0sCG!VXzdEFa>$9cVt3t)j&yw8J@YjMOo;W=4cc!mm1d8Uo;>WkqQ~e-93t0Ou6S z!uH0}XC)19xAzsSM%LX;%!^BG&1>Nu#^Sy)=3wp7MV*%B5LI)n>}@6M@4_O0BSPWi zw8+|4*j09OLX2N+*|lreAQin->m-L1!w&Sg%#`6N)a)lI=**w-mBPFn+89+=+C3T0 za4iL?qjte+`pd?~TSxiHtQ6^NVgS)*zwE8vMk`yInVZ`guA-U4i4h$Wa07%= zTJ~mc)?}2qx}s0U&ux+tF$38(Y@r&>oCMvxa*~ZU;b<}eDiq$;rCX#`@>jE-n_HRg;`og3{*&y zKo2y4J5;3YjDN3dyc(bH=U1O?=V=y0Yl!lz3C-?-JdW<;mb-imnTEw(1<}+uUK6T0p zuhQ==^OzrU%qDzPJxO{KjEpum%yw!?(y*ubh+`fJMCnb2uwD1_b3DzBli}Yt0YIZE z`4Wu)nSYoIbq!`t>C6#gq|KlMUN< z>=-8zf##{?xr~crUk$L=vGh=vuQm1Qb3zLm0j$Byv7+w`34 zuBy`j)3nsoF~xbu_S#_2jv;B^A+!zJ_pRu=1SY(S0XTKeAg3C3o;Ew+GT9jS-3CgD2tr1*0gp>W@FAzT_RteGaNlF^23WhWMh0UmWP?4=Q#yi!^zZpQrU5SX%}-Q5n5yLVVs0G-q;yJJ*iq$ zE&u-gdm-(BNP`7mzdk^o5bzGoJ-52D9Imqk5tt0aO7C@Q>#ZPGW?~r3Y17IplV?(> zN@C#(YnjCeqwt;PN7^x6wb|7SOIVJe^=9GKjEoFL@f_lEXwtaxY|xYRYmA^(fh}JK zdxgl8d1_8-M+OB*Wda-$9s(Xo7l!?Hig#l1B_n@tN*bap$Z`(9fy!8hW>(Z3pqy(( ziiSZa!V0pEzmU_mZYJCn002e$0NB5tLurWq(4jJYmlNTKB!S*{D?i@>iaiCrgcz-& zz$t3nvgHQ?2dWO<#V>YQhsmsH`UvqOJa*kO71{d?_;I}&03A;ks_8iszYE$XZqr0gvvukp?%6&@er_0 zb*Pa0Ycx@KELs73Ga4@B>9c1@ad&~bwn>v3MlbXevvfh-y9b9mRT|teBaC#-TP{t? zupHV`&%9HwJ(`$UchSp&dWUn?)xe<2GI;WdX}bZCHN{z0?MhRe7A%lSUX)xDD=y*A zf^EASn(OY%nGDEa@~=DEaP< z)H_JUR)IB4S5p%-Hr6dN|5P30^GL5PiqP|EW2_?9RFj!!u) zv%%`y_)k=#9>4YAK}#Ph_hrn6=DUpHILjsVz{7VeusA_QlEKP_*F(r;|2kW0Myyog zaRvGoK&1fe{>@u19(3@H3K}XwL+A!9P)M4;FM3-*v{AsTgJETQ5_^qy$s4Sdf>bzk z%t>dJ6!bhT1VK9dV%@h=kv9+~M3h7ELCqdZi3vWb`#3_2gha(s2z887+4FvKxCCC% ze-3<{3^rg_i$=pY!erZLqL&|TuhLIMAt)v>rUi89FZ#DMR`b!Y;5%qfe2A@$!6;IB zWy-Li?sax{4Z#xDP(`Ig(wNGIVqe*$jH4fG1P@0a#eMMm)bk74@jhs>YC#mKSo+3N z)5rhZE~b3I{iL(WB>f`+T~AN$H^Us@IdTdt%Su0vjYI z7vh~X=28RI&+HnyB2udtqinLKzR|oVnO7r0H&t*g6M_vSHPh7T47Z5UzpO z1_(zv?pMMrS*WK7G!V?1^mh|Y=Gyx{exh^lYp>1w12=_5o;-`}@ZO~%LaPy%Hpn*5IUDq{EldUkz&oVfQdO(pa-#{b%tg6NLZ8W+=MlF2+**W37{C}To89jd#D z{b2lr2?anIdC`In(6VKC2-`BxtWQ2kn7WF!jeC2G8fXkh2Uyh^`@!X9F;(UHS&epO zWt}^^&ax4cwZvUE^^ATL-7%9pq&d|U2U2bKCOEw7f3e4oh3TbZR@Q#P;33OLPAAxg za>Id)*cX=ykQ60Y(DL7nIKp@S?W3V$xsZLvo^*sM=HEoc#H3LJ%9KEu$W*vcG$t|S zQQi$wv#$;VXIry5V3o#U{DAy^lxAmSLnd7v z1i3t9%7xTuiHU9rNd?B~&a-FxAeX_%6cOm4seJjbsHmthn4AUB5lah5fy|-O*uQU| zKn4(~%hOX4R}_-HYSu|kB|X42>5CX=sD3Q;T~=p`no`>@iAHl3@E$aNlU zs;S8y`eiGvHukYQxHNONU!X_?(sIn3LXJ|*tS!qwSW@$omEtcmFrc+q@epOGjfaBN zq;Zz!GX-gt*imnqVN?A=>AhnaYul5H(9&|(zodk0O`}@HvJ?dg!O&IoYw3(yg6atIO*QOhsW7u^PHS~!Abb@`DC5Ea)4i}wrw}Tm-@8{_%VCY zqI;;xt!640R~>MySeUUW$z5`|IyCkTzlg_Ap7<=mJ!fj+xi5@XVol{c|RJ zKwOLg5RiN8=4Ab19v)SRNUyxS6siCJ?vq<7u~h{%wEZ$-=N7;cVf1qBysi0CvGRMJ zF_99V6ZT#Vg_1ERzc}JF0!ZwX_G@Y@Tp|*(2dYhsKJDfZ)D_Cb3OhpZJ^(fyBS%~ViYrNJga_az|#}8 z{pef57uxN~2-mR{&vw(lKtP34wC!-cZJRbS;R1;r>&na=Yu`*|yP`yhnTVJe#H9vA z1e%(Jz2POLlG}KPj~EW;h7|-C^yxXN4G~r$gWt24#n{Kn5|qOXUmY-M*r$5Rf6XG| z181nE%|7PCBe%{5ath0y6LKr;65AAX-;*$RAgEhyEU{zWqD6sNA0#8z1naRZdtRk@ ztK*~)gkcp?AB2#%=#qJ_kt4g1@?}ORa^FBTlg8yklIV|vpiQWw@Lx$8FcwC_KPX5n zC9DoZ(9_rw5{ZZ-Pi7a~TZn&JTJ6~(IoH-M2d%hbnUsqpcyX|>ekQR_=A zuc)XanaGSb+Uw!$#R^Qoqg;>ypr{C9?_(@lFU1Ynk2og0OGcba&?YeXQpB^(yVG+4 z!qvqvP3(-N?)2XAU$YXi+YoXbt}6_%wCSZwi?Boucft-wt+q!TfS z-@Vh&+Y8FglIhDlvvh${r7`dYN3RmVOhHEQQ3RMR9o!;rzMr9Il`;e23|4(MwX;*^ z6x4geJSLicr1icvLqmAI2%+JAw#`Dy0ri{kXq;l$2^5GAy<#9^0X|}tr_jdnC58&t zw}9^{+Y~x2R(1Hl*^_X;ULs_K&9snoF|;56vSKV8ACx~MP-_ov~3S%AR6clv2fIw+j?OT zT4Efc;p^L$5w{fU*T<0|!w5xV=RDrM)7hwc3@V!>39KW3TMei~8A_Cwk@6~Ax``FU z(apdVYOSr(EfDEEEq_)Nz~BhIS*PhckWp+DX;bk;LN$vP&Iy+Oyvrx+Mvwn*1k&HQ z*zNG`?K*sw(*Klm5$yy$Q+^Zzp;s1S3R@)MWr?%#RnM zD-roB{GkG49+W1XDY2=JL zECX9dzqp*f4(Eo9VTwuncim*eCM7baAq6)T4z8QHhKjCM4t?p?4WKucB3XQIk!33F zGd|_CEc`%ZEh1zw-dZDqDH+HnPAeT|)xh(f#+gO(BM^6L%|tOirXBWLe|g6K1|SN8 zfM@b078&_Z*?=5w874`zLd9JVBL0b8)toYP%_`QB zck$P3To!rh6Q~^h#3@F!gn$Px3W1uoZNW6 zvG1^tsX_;(`t(b2+0333cYAqy#44D<`E*8w$pW?N&$Lkd93sb$;}V2_MLDvES{_M$ zgELwsQjzdF#V`hJ%6r@sc(*s!qcCbRh{lR#_loeDFS$+6xI1$-kye^XTdkL+!q7a0 z6rchAihmJkiRFu883rWqlH)OvAPn++Yz9iuVQWc2%CZw~iI6UdOnS*q4Li0ZUR5jgOU?u2;lnjhSvR&_*kN21{?kxOm-O#?W>^q+7hL4 z;oAp6ukB!n`iM;hm|6lSRfJ#`j`0Hs7clZCh#s=DwT|_H9$k+8CU(zk3~3ku6%mXt z!`p&F$H(a*wRy`Dhq ziz5boKcR2vBkb?D&|pxtWwW1OP1$d-a;=81A1JjbofAwOcksBeH9y7JRfB??Q=9Y- zr|-o-%M2m0IfKVQ3RTG98p>Cx_ta@XpZ`~T0Uh|)d#xk~s)r>?E z8uKExMZ%58$RxNi?RJwJbaGM;+$bL8s0wA=4woYgN4B#WI7|tu`xPGC$owihZXpa}TxVGqs>QX#Oj+9uk zY~{Efid7lwXy!c1I3G2N4y=K=PB3_a5=+$Jpj26jpx8bbqoA#)wjX6;vc$gHgs#8> zq6HN~2Y`SKRKSVD;);u)c)7`O4lTyI$%SnI{&6p&!efq2oJNQOaR58fs<-LC*c*IB zJ*|SckK7a6c}2fz)S?@yBBhuh zvQkWlTm;_^8GZoxNb{A42)vp=kE2!p#fQbKo8})YyT3woiV~WICK+lkioh#q;S{Kf zMOMzf7oR=TB-8EA?@5RNlWj!DIzmQ*d~d)aHK=w`J?raOY|#2%8-&EimPQ7`0o@s^3dFK?vFupJIFx z2fpEHH{z*Fy2i(g?$Z_+Gg_1~;>@ZLgNE%L;(01k!oXKZRR>umJq~!NdKJ?ZP2t;U zqfvQS4_yA%j=r^wlyI=P)Ioed?clE8dMZF$Jp_-5baa!bF`0gD;e_^kErzfO8ctw`LU7 zpO`dy!o-PLoT@2WL+tB*Z_#25$UszT(v77h&UDRwHXGDF$2dITD5a5xEl^Af`elYm z#)VMxwH{Hjyk+Oz(X|Y@Y(L5lu^{0gO36Riv)K{%^&7vDD?I5lCu!V>KYg(~$9$HH z#f=MDa5>KiU8l~msYIcPG&sd14!2@xqRY$xv!1fRrm}V^Is^pJsDSL<_Rn;K1yJyG zNtDE!6-qD;YRs@jJ+g8Wzvi7+mX$;uM2#uNy3lN5tP7a;;pni59M(l=YSF-eW=Hn^ z^PSLOi;frTUzzX+Da)BP$kZ6VxpVKHUh*RfwQYqT+h=fr;#q=}P{A6*zUMX19hX5l zbU?}nc0`M~8XH{7b38V;Qx~xds*LU+PA1%lJwN~)#Hfk^l$CzuRjEB(sC0$!9NzQ70+CRQj`7Vj!Rldx(BoH3t3>Q#DXHM1tNXtQbtVX)+z8`vNjT!vS38kjO zyQOOfgr^mN2y>t~7v|=E&PmavaqAK`VED}&H<;_1OBP_bumcC9Ck-^C^ ztR%|<$Uzu^YbbvFr-!IOeRRb$idS@g?)5s8#yu#iay~yTc6PaWgMx%6xLI+lsFgyU zdek10Bj#I>JJkPp)y(qC6C>0JO z25FHK1}wnIQ(Mqd7dg99jFt~Y<~sO`aWv{-nB*WTacgp+^F7zn(&t3aP>18=JEZ@4 zyLz!XntjgUq>XnQir*gNwemg?mB`QTxhT~Yf&%HC)N3m{ZMl2qKfA4I>o#qY(W}z~ z6>Xj*C782$iQXec*g9JqZ_Crfenw0UZ|*?VW@mxt>YE{Fj{ZL}Gkst!`fina&JNWqS&-;oCAE{4@$Eo5iIdHw|% zl8yPMc)7#*&zLa-iSd_%gzOajMV5JiCpn*jbAaY+WD7Fb-5S10eCrYQ6S_|4>IHc#H` zD*hevJv;!3sn}8CL*ar~7Xue!w!v443kR{oABnnvPx6B29<4FHKe$~11hLsvk!;Ll zgg?@sB_T3zGdu8|c(OnsWgs^q1Q1|-wYm^-o;)d>> zba27ua?BL4Ii$q*uNC;ZfqO}kQ$}BC-dmIM0+jZ<$ZaruF#7RH% z64lo(-S-Vz;=o$m2kTvD?vf=)X|Bc<{>su>LW&UW8?~kYT&c)-D@uf9v7?3vp-Y2* z7u&ZqVCOSv9ywo+@1Nlq@;)O&R1N60TL=vc=B`nmh3q@=(@q@rpC_ds8@r)3r|mN1 z|Mi^)OHs7@}`rO!PYym4rfrD4Cu{2W3niC|k zpMkj-Ln~xT1qegx zd}S$hC=_&Bn{M}V|4;F2p$$q5C~-Mp*^4(?-HSdu{IneWLWUR782e;2X9E)(^YdSi z20a)M7E*4ja*>Y$E~eUJnoLpmifvru7ExBVmY()4Hl!GHh?y02!i!jEF9-!jY&z=u zH!5g%Z)(nuJ>1NBq;W+IO=kGSv7B?@0>=&$8eB_q_?IM9mKAh?ZxZT&k3&N%PgNBuRnOuq%6{|oIaq`x%@K8$c-z5sS_yxhe;Q#bf358 zr)v1kgl%sz^E){iyAVn@nbBJ8O~9!NfwX6n|JsBUL8S>Dvkef_~9NcMW(^ z&TQjaxWdl7!!cXsq&UL(4p-N@bD?sjp-JCw1(mXBaLFFXq&S-UR)YS|8^U>1#2FcU zSOfur=**8mC_({3XPspn#llQ($+RAe`_SQ{pY)JKXL-LtC+#u+c}`fS z?h^hBl@**DXPBrHJUJNA3os;#E!5(pP`PNgBWKs}H^5F7^8#o$g^XJPxI|Rmq#GP> z5yoq>W0=aVoWYx+H7w5+!a%HEU;a&msr=?HQk%8g1g7mIZ^}8MG$TPSa7`jeKt-mQ z<1r(4ORT#(E~W@qnUE|Zmy zw>hum43GLXY9XHFhOl~{VPk9h;+4fFV#UJvsz?sD?r+#>Ou5h@>{VYrnvR3X#a+!t zZL%16;zzu?Rc-k3^Ls=<7{74xgaYT2R|FrSyvca`-c?7e$ul%H{?g%&Zqw~uJ1$p# zY&0>np~l}w)c;!a!ae^_AN4vq)_>nR+&r@)@k3vWkiHR~k1mX8*J^ySR^PrE^`g|w zl+?`bs$0)DH9yyTNv!Uyp*u1{t}DH+G|T;xdF*`JyQ>{i9iA+APFRz-`eRmR=4tkn zdyD!mLC8itApQ!T&h33SEzJ~dSrS!z0K_eR2upUi>ZEwF9+61k=Q_>wmU|bRHK?nQ zKQ3BEeJ4ycG<1VK??p2(MeD-5tgJJ%HY>|A_s0M8kCB|*`&+wbhhNtju|E~2z|z9P zibow79IPF)J`4AHumjrKzd)DTRaJEqiWd`m`21G$;mh1$3BZrWk-4E)Ay3s-y-ytJ zZe(cKiI&iUtIsS`l@ul=AI>M_d`{3!g$HS&q7n!S%Bd_(Po23m+9xlz`oyr+N{VaM zjdv`sy4Jp;4#(T6tiMU4v^0F@$vCVYtkM4__rY1 z*AAbqywhe3(RliF;LPfZ|0xs$I(+|3hxMNy4DcMb?jk!$ja>&HKN+Uc>cd%uw_adi zpgX9I@;zYJuEw?uiLuxVOG{I`>>YXv67fCN@L>DGGf`1d00qCe-&!ja7kaD4DarMY zaGgH0UKO4Q>bkmf*j9s`tD+d7>8=<5@Zof5V2TDm`T`E!u&}^}3}LLWvs;`sUP&=R|8{jw%^i$z zJw(ptKHq=5ls=sXK?-i5(8xJkTAEYs2WcY(i2Ln#h3AF9K#d67=hGqKQsLxe9g&NS zjg9r(IS$W%$fwJrX`3y6F@jHb{cC>PnoqwlJ|!i^T@^Uoy74cL9CYS>X6Md^dQ(S? za3Psofd4!9s=cDZw`4%U^QEx|?Ov}ja&PbOzLV|0k;apU6(69v+nrxFHZrmz-DqfP zPGclbrRU##_#c@y-{3u#QRq}=5yf;E4!?*aG}t)723H{(;^+3({%gA;G3)WCZekF; zW%Fh$loQXQ*IiQWj_bA8`obOI=g+6W=7G!qBAcf2^orx!EFJI8m$m7)UZF_bc<#=( zm;F1d(SiZIW5?RQdGlrwX?Ml4W&2bsbLUhiE!aCujU9}264G&KsZxSrCkCK7DU>M5M+O@pw$6A&n z)s0O|Z15Xt$Z!efbr#HIWMs^j@6685&S4}B>Ogx%*7&Zfs@kjXa^G0h7yylpkz_n3 zAs;+&K;jYF;REgMvwmkbB_}*KAf$hNg~F=wk1rCnJM3(ZZuOVF45Xu4>~6ny?fZf| z9a5q3y6Uk-a34itxN!0jN;r>M^%ai~9zPy}+Rg@^o(Gpq4Pl32Y4OMBCIU3Ht)?v4 z)Py4M5Qux?b#bQZ@&5TX~|;!Rb3RbLYa(IQ&W?V zq^^sgTTTGH%ZO}V)aN}bR;*wZo}@j>@apFw4HXK{|NU4M{s94ot5!uow-xVot{9Cv zQ9=v^WijWf<+}EYnZkB0zE-!X6_*?y9&Y_%9~;x(QO`drYL>FHvNeYS*1m2Hy`40= z$x}t2uI9zl{>Ku`lQRGisvf+qB)E^8IK0?CJv$QG#wKd6 zlJ~C~>grPnNpIf2SLf`GdiCquu*sjDU$_^%dGOF7H8yc&{>`S+2^+csu1vz`J1|nhV=HWTkk>YSWp719*SMdz$ z0a47c#@Ph-_y-RTQj-;a{`}_MJ3sJz0P&b5!2xv&?O~W*Ph(hecy+}}A3r}EL>#iE zbjTiCI3gTO=6)+roy8qKV?w){o6=s#-##HuU@*}sjloVWEd$cXVv^0PLlGDy_r!Jw zq?UYq&C7u8+Z*g|)#uc?o8;BYoqsH?f#jRv75SrCivDPb;qX&9a3?D__xaP4O4oYQ zFq&o-v;GPh<21Vy)@=qaWf9+?P~?pLu>nBmsqC=Hwl6Ll>gec1mcCr4+_I$~k9WXo zE5$N>uIvfy!W&LH!96qO@#C`+hOAbM-&KPhT>hkGV>>}#Kbf{e1eV7CI+p&syWJmh zm#@@1eNPy{gxfc7-&&*I-QA8IBLCR=+ds-r3acj*zrXLApA}2gzTIfek1l`j{+8-$ ze)Kl|o{DOIw0iRGYHEMgQ|G5&?Roh8`SZ;7*bMF8s&P4RrcKWiZD4kK;JADB+)YK| zt#2#ZTWQwdBTtjGv&v4NI;Fk%>Dgbh8G-^BvFZBU3K*=r#CO^#WPhwd~7)*CJ6=7{_8JANld(a~1XY`{Y0tW#sj86y*nwAD_LcxW2djw})(X2qp? z_(zWn(U>If)vdCMiows_e%-ntssj>NGN_GmVvyd{)vGUliY_%bNzgHty<6?N!=XjyGt)30RHv9TojEg?pfMF{xT?rc_a2jv zYhK#>QOxEPVS_%8y?md$LeLAaNoF!3tZbOl<%n;=Lt7thC6>a+FVLFGyn;q1kVZ&h zK|w%r|9<_ZvAYj&eUcfO0B4J}3B%sgi1LKc)%S#iU|P^cWNZCE=Q*N|wZ?jw7vn)H z#t1JIRB)epSLn3D;^L5%Ugd}0?s9eA9~&E6@RYw#82Wh^LIaBh3%YPCJuxBR?c$Yq zfhMXZh#d+-_|kh&k47*9(}Q|U8*v$eIgk*R3_!qDuhuX!dTM{baNgv`4;xA%)> zZJjGJJ8*`Rsimc*USxicmY7CRMM$s*VLS`BbY=0Zm|Zz`%oz2aJtq;j;#Pix9(^_p zW6H}G-72}3q?34h?{I$4dvHR6Zgs_Z^K~C}dP3s^Ck;tJt5RpL!Mw~eu0OeUf}Wls z)Nk}T6v)$(mL4pOxKoVcZPT9i!vb08i)b!6yx!7M-XCYM2+oFFbr*L5aBHi)c1*S+ zY_ZRO z+bq^8nk&%eZ0F3vJ+vAd{`#vSTLs{8(9P{6$VRhk*EfO2Nz7J;qZK>o;n9sYw17tZ z9Ucod!8U{-J*#wc)@>+;&KLv|cXN&`Jn?ASp8 z+*v4t2~tn&cf5{m_c=n%m&m2^OjaA~1sosGd_HTV{MDwW7f?$&e*Jh!qi0WJwi|ID^jU!6XfI%c2h0-w)8VKIRu#oM=U-y9-X8+l^? zXBfAdUR5&SOL=)b4JZ@{4jDVT%|(!r?yY!ip&YoUELjKok=}K*+e|0D&Md0_@Ns3ORrAgo(Tv=91>W(%rsC`MJ6O>d2GDC?#QpOm8CRKMqi!eG z%31J9|5D|qd}ZUyj>D-`pdtZE880SenD!11IcW>MDrfIs3>!2Rq_TWeUdi*Nn7&3= z?_nYXa9c|LbR%#&N%0MpU;6B1Hs&s(x9D;}!_xVpMhjrI~$ zg4>!y(W7w@I8J7+c*oc7#QS*eTyOX@9UvX6sw#A#wdPfupa*yzAXJ~#EtH$02Faxk zNd1s-{rX56rR-ie)pi4yji98;(1Bke)Qy)^1qUdNfwOF6)jOe`i_|bM~e;pmlisMdYuj}izjPWB5 z2Vq+k*9RqdAoc#kfr=NAW;&~DvB!%Zq*I5o*W0+xV36mqiu{}5moCKy&xT$R+b6Qo zdt$Hl^qn0B+ugmKb(xa~UpiMiN;QV3jC0jzuQ2;+*KSpOeb<187RTUo00pbS(}3IA zrI)onU0OXVFUhHE>uz7PNMbZ%I$ADVXhUyZ$~}rZDJ=wD^ZFhQD}Avbcxx{T7l?xc zZf^5}?aGBiJRAfiNr>?1~4@yaIa{C-6!g{f` zGp7Mq=nHG~?_UyrF?FU}dln@*UOovBa*)kYV9J2mM7~In6_u^oyF4wYKW&nIA6V+& zykwJVfS4Ke!Biq-1nmAVK@Z8OK`R&cZk034nTrlmwQ>tj!2n z{m0pul@a@w1M^pvEIFXnV~~A>lg-yFX0gT0>ZY#Ci}r&gx_{@+IK~^}EbI*o_I!%1 zc3SWpl^>5$e`!>~R@?|5V;+apEyp=BHDmXlFJ{e?St?CJ;I7NxpWe%nYQfV(awf;N zYWxc>R3pGliAd#y3&3Y{0z}q9)h}gbclj0?J0^5h4|;k!+}u%sW|H?Zfr0BjaRhI5 zPM1m_b`ih1Nr!unJaXiS06dtT0?)mB_p%L&ZZ_3zRoXW8cesEvOhkqdo2L<8lWA{< zK6}aO@ZiS*>%D9UV0)92lT)DJ+Bhsyz812{=Wz{<^}uY(lzpg;OrSy3d-u){&(*Cg z+8^`fZ5v*@6?8yhQIWRRBKvdfj_in3^W=qIj%wJ>rbi4Yi{QMDSr;w-hBe!iKCax> zi#CEso6{U9}a_({zwP+5z<^<_~ziOgw2+;=DKEcBH*XA^W#t` z5ETPHFWT-i2$JVM4WUK6$&@ds-eyP`5&{cZxs+j2y~I{mF6F%IpuoTh;@bn^23hGt zBwj=pXE2A}5}Q}i!kfgQdlEbJ^md44&Z$$KiJRs+hj<0qu)7-FyBkiQeu$R64{orP zm3ht{;5pUq!-tzw0VSh}JmBHs$8R|n-s?7?XsFG+c`~0SCGoSXYr=TswoxP&UlJFG z&RENLFMH)8MK(EAqf3`ePsjSi0A6WWRN+pJkO)hA35QFALW=$z$0gO#OwCKh%{#Wm zFA7D&6!12?Zx!9qU#>QFi5vZW-5)_+M%o}CL@i!4F8jtG*|0$ldC{d3^r*|P&p0>y8h1jJzJVCS=DV z*o1V=Aw!%7Beka_~@bk2FkUuXtO2=2DTeorP zPG3V1k_&|n=m=y@4AB0>3!=s+U*&~&eY)S>y+!NR0c1b}PBvq#=rA0x{cQb+qtpyk zcUZ9nUxSf7ae9Gz_Ko4Mad`9;hgxVkI${0C zA47nRm&Dc+&Q4z^_r%aHytKTd749_P%AtCH~ z$${YGhxg#y1b0fKCX9%xuC6{_P3`fo@7ip*gVv{h9xorQH`ZWG J=%~3H{|^+NW&8jD literal 0 HcmV?d00001 diff --git a/Online Food Delivery Preferences/Model/OnlineDeliveryFinal.ipynb b/Online Food Delivery Preferences/Model/OnlineDeliveryFinal.ipynb new file mode 100644 index 000000000..7efc243b8 --- /dev/null +++ b/Online Food Delivery Preferences/Model/OnlineDeliveryFinal.ipynb @@ -0,0 +1,2422 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "

Get Dataset From Kaggle

" + ], + "metadata": { + "id": "eqECVWbsVHaC" + } + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "g6B0_YipCKQO" + }, + "outputs": [], + "source": [ + "import os # paths to file\n", + "os.environ['KAGGLE_USERNAME'] = \"pratibhabalgi\"\n", + "os.environ['KAGGLE_KEY'] = \"5653a67e9f7e4d92b1a3c6f2d689ba6f\"" + ] + }, + { + "cell_type": "code", + "source": [ + "!kaggle datasets download benroshan/online-food-delivery-preferencesbangalore-region --force # to get dataset from kaggle" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "nYroHaApFkM9", + "outputId": "2ef04bfc-825f-4614-9e89-1732f8f4af48" + }, + "execution_count": 2, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Dataset URL: https://www.kaggle.com/datasets/benroshan/online-food-delivery-preferencesbangalore-region\n", + "License(s): CC0-1.0\n", + "Downloading online-food-delivery-preferencesbangalore-region.zip to /content\n", + " 0% 0.00/24.0k [00:00Importing Important Libraries📚" + ], + "metadata": { + "id": "HM9hep1qfW99" + } + }, + { + "cell_type": "code", + "source": [ + "import pandas as pd # data processing\n", + "import numpy as np # linear algebra\n", + "import matplotlib.pyplot as plt # used for creating visualizations like graphs and charts\n", + "import seaborn as sns # visualization library" + ], + "metadata": { + "id": "Wefmtuswfnbj" + }, + "execution_count": 4, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "from scipy import stats # For Z-score calculation" + ], + "metadata": { + "id": "IVUdVvq_gaIV" + }, + "execution_count": 5, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "import tensorflow as tf # TensorFlow for deep learning\n", + "\n", + "# Scikit-learn for splitting data and encoding labels\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.preprocessing import StandardScaler, LabelEncoder\n", + "from sklearn.metrics import classification_report, accuracy_score # For evaluation metrics\n", + "from sklearn.linear_model import LogisticRegression # Logistic Regression model\n", + "\n", + "\n", + "# TensorFlow Keras model and layers\n", + "from tensorflow.keras.models import Sequential # Sequential model\n", + "from tensorflow.keras.layers import Embedding, SimpleRNN, LSTM, GRU, Dense, Dropout, SpatialDropout1D, Bidirectional # Various layers\n", + "\n", + "# Regularization\n", + "from tensorflow.keras import regularizers # For L2 regularization\n", + "\n", + "# Tokenizer and sequence padding for text processing\n", + "from tensorflow.keras.preprocessing.text import Tokenizer # To tokenize text\n", + "from tensorflow.keras.preprocessing.sequence import pad_sequences # To pad sequences for uniform input length\n" + ], + "metadata": { + "id": "BLXE2q4sCLAG" + }, + "execution_count": 6, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "

Data Preprocessing: 🧹 Cleaning & Preparing the Data

" + ], + "metadata": { + "id": "GhFJERebV50G" + } + }, + { + "cell_type": "code", + "source": [ + "data = pd.read_csv('onlinedeliverydata.csv') #read the csv file" + ], + "metadata": { + "id": "x4yKfyTzH9Rq" + }, + "execution_count": 7, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Check for missing values\n", + "print(\"Missing Values:\\n\", data.isnull().sum())" + ], + "metadata": { + "id": "JxMA_AbSIA3M", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "2821fb30-b540-41ea-b979-a6589bcb9858" + }, + "execution_count": 8, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Missing Values:\n", + " Age 0\n", + "Gender 0\n", + "Marital Status 0\n", + "Occupation 0\n", + "Monthly Income 0\n", + "Educational Qualifications 0\n", + "Family size 0\n", + "latitude 0\n", + "longitude 0\n", + "Pin code 0\n", + "Medium (P1) 0\n", + "Medium (P2) 0\n", + "Meal(P1) 0\n", + "Meal(P2) 0\n", + "Perference(P1) 0\n", + "Perference(P2) 0\n", + "Ease and convenient 0\n", + "Time saving 0\n", + "More restaurant choices 0\n", + "Easy Payment option 0\n", + "More Offers and Discount 0\n", + "Good Food quality 0\n", + "Good Tracking system 0\n", + "Self Cooking 0\n", + "Health Concern 0\n", + "Late Delivery 0\n", + "Poor Hygiene 0\n", + "Bad past experience 0\n", + "Unavailability 0\n", + "Unaffordable 0\n", + "Long delivery time 0\n", + "Delay of delivery person getting assigned 0\n", + "Delay of delivery person picking up food 0\n", + "Wrong order delivered 0\n", + "Missing item 0\n", + "Order placed by mistake 0\n", + "Influence of time 0\n", + "Order Time 0\n", + "Maximum wait time 0\n", + "Residence in busy location 0\n", + "Google Maps Accuracy 0\n", + "Good Road Condition 0\n", + "Low quantity low time 0\n", + "Delivery person ability 0\n", + "Influence of rating 0\n", + "Less Delivery time 0\n", + "High Quality of package 0\n", + "Number of calls 0\n", + "Politeness 0\n", + "Freshness 0\n", + "Temperature 0\n", + "Good Taste 0\n", + "Good Quantity 0\n", + "Output 0\n", + "Reviews 1\n", + "dtype: int64\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + " #Fill missing value\n", + "data['Reviews'] = data['Reviews'].fillna('Nil')" + ], + "metadata": { + "id": "hQrqhfmBIJBp" + }, + "execution_count": 9, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Handle Outliers\n", + "z_scores = np.abs(stats.zscore(data[['Age', 'Family size']]))\n", + "data = data[(z_scores < 3).all(axis=1)]\n", + "print(f\"Shape after removing outliers: {data.shape}\")" + ], + "metadata": { + "id": "X0-9LmTvIRnL", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "26d98a06-ff5b-4c7c-e433-1d321cc981c6" + }, + "execution_count": 10, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Shape after removing outliers: (388, 55)\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Encode Categorical Data\n", + "encoder = LabelEncoder()\n", + "categorical_cols = ['Gender', 'Marital Status', 'Occupation', 'Output']\n", + "for col in categorical_cols:\n", + " data[col] = encoder.fit_transform(data[col])" + ], + "metadata": { + "id": "IskEF1VwItFs" + }, + "execution_count": 11, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "print(data.head()) # display first 5 rows" + ], + "metadata": { + "id": "qCKaWsC6I9SG", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "3ec4b5d3-5972-420b-8a90-ef96b7fb662b" + }, + "execution_count": 12, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " Age Gender Marital Status Occupation Monthly Income \\\n", + "0 20 0 2 3 No Income \n", + "1 24 0 2 3 Below Rs.10000 \n", + "2 22 1 2 3 Below Rs.10000 \n", + "3 22 0 2 3 No Income \n", + "4 22 1 2 3 Below Rs.10000 \n", + "\n", + " Educational Qualifications Family size latitude longitude Pin code ... \\\n", + "0 Post Graduate 4 12.9766 77.5993 560001 ... \n", + "1 Graduate 3 12.9770 77.5773 560009 ... \n", + "2 Post Graduate 3 12.9551 77.6593 560017 ... \n", + "3 Graduate 6 12.9473 77.5616 560019 ... \n", + "4 Post Graduate 4 12.9850 77.5533 560010 ... \n", + "\n", + " Less Delivery time High Quality of package Number of calls \\\n", + "0 Moderately Important Moderately Important Moderately Important \n", + "1 Very Important Very Important Very Important \n", + "2 Important Very Important Moderately Important \n", + "3 Very Important Important Moderately Important \n", + "4 Important Important Moderately Important \n", + "\n", + " Politeness Freshness Temperature \\\n", + "0 Moderately Important Moderately Important Moderately Important \n", + "1 Very Important Very Important Very Important \n", + "2 Very Important Very Important Important \n", + "3 Very Important Very Important Very Important \n", + "4 Important Important Important \n", + "\n", + " Good Taste Good Quantity Output \\\n", + "0 Moderately Important Moderately Important 1 \n", + "1 Very Important Very Important 1 \n", + "2 Very Important Moderately Important 1 \n", + "3 Very Important Important 1 \n", + "4 Very Important Very Important 1 \n", + "\n", + " Reviews \n", + "0 Nil\\n \n", + "1 Nil \n", + "2 Many a times payment gateways are an issue, so... \n", + "3 nil \n", + "4 NIL \n", + "\n", + "[5 rows x 55 columns]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# To work with Monthly Income column\n", + "# Define a mapping for income ranges to numerical values\n", + "income_mapping = {\n", + " 'No Income': 0,\n", + " 'Below Rs.10000': 5000,\n", + " '10001 to 25000': 17500,\n", + " '25001 to 50000': 37500,\n", + " 'More than 50000': 50000\n", + "}\n", + "\n", + "# Ensure the 'Monthly Income' column is of type string\n", + "data['Monthly Income'] = data['Monthly Income'].astype(str)\n", + "\n", + "# Apply the mapping to the 'Monthly Income' column\n", + "data['Monthly Income'] = data['Monthly Income'].replace(income_mapping)\n", + "\n", + "# Check for any unmapped values (in case of typos or unexpected values)\n", + "print(data['Monthly Income'].isna().sum()) # To see if any NaNs are left" + ], + "metadata": { + "id": "Gu3Ct7RGJUj2", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "cecb9d6b-1e52-4869-c5f9-15e014d58e31" + }, + "execution_count": 13, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "0\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + ":15: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n", + " data['Monthly Income'] = data['Monthly Income'].replace(income_mapping)\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "

Exploratory Data Analysis (EDA): 📊 Visualizing and Analyzing the Data

" + ], + "metadata": { + "id": "i2niVppBWl1j" + } + }, + { + "cell_type": "code", + "source": [ + "# Basic statistics of the dataset\n", + "print(data.describe())" + ], + "metadata": { + "id": "5DvqKLWeJoH7", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "fe5eece7-8eb1-476e-dafd-74ec953b05b9" + }, + "execution_count": 14, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " Age Gender Marital Status Occupation Monthly Income \\\n", + "count 388.000000 388.000000 388.000000 388.000000 388.000000 \n", + "mean 24.628866 0.572165 1.412371 1.902062 17010.309278 \n", + "std 2.975593 0.495404 0.895035 1.329722 19959.225799 \n", + "min 18.000000 0.000000 0.000000 0.000000 0.000000 \n", + "25% 23.000000 0.000000 0.000000 0.000000 0.000000 \n", + "50% 24.000000 1.000000 2.000000 3.000000 5000.000000 \n", + "75% 26.000000 1.000000 2.000000 3.000000 37500.000000 \n", + "max 33.000000 1.000000 2.000000 3.000000 50000.000000 \n", + "\n", + " Family size latitude longitude Pin code Output \n", + "count 388.000000 388.000000 388.000000 388.000000 388.000000 \n", + "mean 3.280928 12.972058 77.600160 560040.113402 0.775773 \n", + "std 1.351025 0.044489 0.051354 31.399609 0.417611 \n", + "min 1.000000 12.865200 77.484200 560001.000000 0.000000 \n", + "25% 2.000000 12.936900 77.565275 560010.750000 1.000000 \n", + "50% 3.000000 12.977000 77.592100 560033.500000 1.000000 \n", + "75% 4.000000 12.997025 77.630900 560068.000000 1.000000 \n", + "max 6.000000 13.102000 77.758200 560109.000000 1.000000 \n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "**⭕ Based On Demography Of Customers**" + ], + "metadata": { + "id": "DWr9x2GoXGhj" + } + }, + { + "cell_type": "code", + "source": [ + "# Distribution of Age\n", + "data['Age_group'] = pd.cut(data['Age'],bins = [15,20,25,30,35], labels = ['15-20y','20-25y','25-30y','30-35y'])\n", + "\n", + "# Plot bar plot for age group distribution\n", + "plt.figure(figsize=(10, 5))\n", + "sns.countplot(hue='Age_group', x='Age_group', data=data, palette='coolwarm', legend=False)\n", + "\n", + "plt.title('Age Group Distribution', fontsize=16)\n", + "plt.xlabel('Age Group', fontsize=14)\n", + "plt.ylabel('Count', fontsize=14)\n", + "plt.show()" + ], + "metadata": { + "id": "LB_XrpxJLGCj", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 494 + }, + "outputId": "e7b95fae-8595-4dc9-b734-a0c1b32331ca" + }, + "execution_count": 15, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAHdCAYAAADxdoNnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJoElEQVR4nO3deXRN9/7/8deRSRISEjKRqKG9xByUFDGlKKWmXlqtUK1Ww626qvWtVumg1avt7a3Lz7eacEu51veqVluthoQSMzUrGkMR1JAYI8Pn90dXznVkELHjhDwfa+1V57M/+7Pf++TsnryyJ5sxxggAAAAAcEvKObsAAAAAALgbEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgCgmBo3biybzSYPDw+dPn3a2eUUy+bNmzVy5Eg1adJE/v7+cnNzU+XKldWkSRM9/fTTWrx4sbKyspxdptO0b99eNpvNYfL29lZwcLBat26tkSNHavny5TLGFDjG4MGDZbPZFB8ff/sKL0TuNiUmJjq0l7Y6JemNN96QzWbTG2+84exSAKBICFcAUAwbNmzQtm3bJElXr17V559/7uSKbs6lS5f05JNPqlmzZvrkk0909OhRtWjRQn/+85/Vtm1bXblyRbNmzVKvXr107733Ki0tzdklO1Xjxo0VExOjmJgYPfLII2rUqJEOHDigTz75RJ06dVKTJk20ZcuWEq2hoFB0p0pMTJTNZlP79u2dXQoAWMbV2QUAwJ1o1qxZkqRq1arp6NGjmjVrll544QUnV1U0mZmZ6tq1q1atWqXg4GBNmzZNvXr1ks1mc+h38OBB/eMf/9C0adN0+fJl+fr6Oqli5+vVq1e+R09WrVqlMWPGaP369WrTpo2SkpLUvHlzhz6TJ0/WK6+8ouDg4NtUbeHmzJmjS5cuKSwszNml3NCIESM0YMAAValSxdmlAECRcOQKAG7SpUuX9MUXX0iS/vWvf6lChQravn27NmzY4OTKimbSpElatWqV/Pz8tGbNGvXu3TtPsJKke+65R1OnTtXmzZtVoUIFJ1Ra+rVt21arVq1SmzZtdOnSJT3++OPKzs526BMcHKy6deuWmnAaFhamunXrysvLy9ml3FCVKlVUt25dwhWAOwbhCgBu0sKFC5Wenq4GDRqoQ4cO6t+/v6T/Hs0qyOnTp/WXv/xFYWFh8vDwUI0aNTRq1CidO3fuhte7JCQkqE+fPgoODpa7u7sCAgLUu3dvJScn31Tt6enp+vvf/y5JmjBhgu65554bLhMeHp4nXF1b744dO9S/f38FBwfLxcXF4QjPmTNn9D//8z+qX7++vLy8VLFiRTVr1kxTpkzR5cuX86wrPj5eNptNgwcPzreWgwcPymaz5an72vasrCxNmTJF9evXl6enp6pUqaI///nP2rNnzw23tTjc3d01Y8YMSdK+ffv05ZdfOswv6Gebk5OjmTNnqnXr1qpUqZLc3NwUEBCgxo0ba+TIkTp48KCk/54+l5SUJEnq0KGDwzVgueNe+x5kZ2frgw8+UNOmTVWhQgWH8FyU0wt//vln9enTR1WrVpWnp6caNWqkv//973mCY2Hblyu/n2n79u3VoUMHSVJSUpLD9lz7s73RNVfff/+9Hn74YQUEBMjd3V0hISHq37+/Nm7cmG//a7d969at6tOnj6pUqSIPDw+Fh4dr6tSphV4/BwA3QrgCgJuUG6Keeuoph//Onz8/38AgScePH1fLli31j3/8QxcvXtTDDz+siIgIzZkzR61atSr0mqYxY8YoOjpaixcvVlhYmHr16qVatWpp8eLFatu2reLi4opc+4oVK3T+/HnZbDY98cQTRV6uIGvWrFHz5s21fv16RUVFqXv37qpYsaIk6ddff1VERIQmT56sU6dOqVu3burYsaP27dunl19+WW3atNHZs2dvuYbr9e/fX+PHj1dISIh69eolX19fLVy4UC1atLjpMFpU9evXV9OmTSVJy5YtK9IyTz/9tJ599llt3rxZLVq00KOPPqqIiAhdvnxZn3zyibZu3SpJCgoKUkxMjAIDAyVJXbp0sV//FRMTozp16jiMa4xRnz59NG7cOPn7+6tnz55q1KhRkbdl/fr1atWqlbZs2aJOnTopKipKe/fu1ahRozRgwABLwkfXrl3VpUsXSVJgYKDD9vTr169IY7z22mvq2rWrvv32W913333q16+fAgMD9e9//1utWrXSZ599VuCy33//vVq2bKk9e/bowQcfVGRkpH755ReNGTNGL7744i1vH4AyzAAAimzv3r1GknFzczMnT560t9etW9dIMnPmzMl3ud69extJpn379iYtLc3efvbsWdOmTRsjyUgycXFxDsvNnDnTSDJ16tQxP//8s8O8pKQkU7FiRePu7m5++eWXItX/2muvGUmmdu3aRdzi/MXExNhrfuWVV0x2dnaePi1btjSSTM+ePc2FCxfs7SdPnjQRERFGknn88ccdlomLizOSTExMTL7rTUlJMZJMjRo18m2XZKpUqeLwXmVlZZmRI0fal7ty5UqRt7Ndu3ZGkpkwYcIN+z799NNGkmnTpo1De+57de3P9tChQ0aSqV69ujl+/HiesXbt2mUOHTqUby0rVqzId/3XvgfVq1c3e/fuLXSbrh/n2p/p888/bzIzM+3zduzYYapWrWokmRkzZtxw+65V0M90xYoVRpJp165dvssZY8yECRPyff+/++47I8mUL1/e/PDDDw7zPv30U/s+umPHjny3Pb/tSEhIMDabzbi4uJgjR44UWBMAFIYjVwBwE3L/Gt6zZ09VrVrV3p579Cq/UwMPHTqkL7/8UuXKldP06dPl4+Njn1epUiVNnz4932uecnJy7KdDzZ8/P8/Rh6ioKL322mu6evWq/t//+39Fqv/333+XJIfar3X06FENHjw4z3T9qW657rvvPr311lsqV87x6+Snn37SunXr5OXlpZkzZ8rb29s+r2rVqpo5c6Z9u3777bci1V5U48ePd3ivXFxc9P7776tatWo6dOiQ/u///s/S9eXKvS6oKLflP3HihCQpIiJCQUFBeebXq1fvlm448c477+i+++4r1rLBwcGaOnWqXF3/e8+r+vXr6/XXX5ckTZ06tdh1WeVvf/ubJOn555/Xgw8+6DBv6NChevjhh5WZmWk/BfZ6ffr00bPPPuvQ1rFjR3Xp0kXZ2dlasWJFyRQO4K5HuAKAIsrKytLs2bMl/TdM5Ro0aJBcXV21cuVKHThwwGHeqlWrZIxRRESE6tatm2fcBg0a5Hva1pYtW3Ts2DHVrl1bzZo1y7em3NtYr1mzpjiblMfZs2c1e/bsPFPuKWrX69Wrl1xcXPK0517P07VrV/vpbNdq1qyZGjdurJycHPu1RFaJiYnJ0+bh4WG/Nq6kbmWek5MjSfkG5evVrVtXFStW1Lfffqu3335bKSkpltbSt2/fYi/75z//WeXLl8/Tnvu+7tu3T8eOHSv2+LcqKytLq1evlqQCr80bOnSoJBUYknr06JFve7169ST98UcGACgOwhUAFNE333yj1NRUVatWzX69SK7AwEB169ZNxpg813rkHpkp7OYR+c379ddfJUkHDhzI8yDb3On++++XJJ06dapI25B7dKWg/g0aNJAxxj7l/pJ6M3VL//3ltGbNmgUuW7t2bYe+VqhUqZIqVaqU77zcWqw+UpYr96ign5/fDftWrFhRcXFx8vT01Pjx41WrVi2FhISoT58+mjlzpi5cuFDsOgICAm7pToAF/cwqVqwof39/SSX3HhbF6dOndeXKFUkF13qjz1ZBRwVzjyrnjg8AN4vnXAFAEeWe8nflyhW1a9cuz/zcX+Ti4+M1adKkPEd0CjuiUdBpgdIfNzS4Psxdr6i3qo6IiJD0R3A7e/asKleuXKTlCuLp6XlLy9+s3PfkVpgSuhvc5s2bJUkNGzYsUv++ffsqOjpaX331lVatWqXVq1dr0aJFWrRokV5//XUtW7asyGNd63b8TG7mPbTiZ2a1609jBQCrEK4AoAiOHz+ub7/9VtIffznPPS0pP8eOHdPSpUvVvXt3SX88aFiS/dba+clvXmhoqCTJ39+/wNtc36yOHTuqQoUKunDhgubOnasRI0ZYMu71crc59+hbfnLn5faV/rituSSdP38+32UOHTpU6HrPnTunc+fO5Xv0Kvc9rl69eqFjFMfOnTvtp0527ty5yMv5+vrqySef1JNPPilJOnLkiEaOHKnFixdrxIgRlp8yWRQFnaJ4/vx5+/Vk176Ht/ozu1n+/v7y8PBQRkaGfv3113xPqc3vswUAtwN/ugGAIoiPj1d2drZatmzpcNrc9dPYsWMlOd7Yom3btrLZbNq0aZN++eWXPGPv2rVLP//8c572Fi1aqEqVKtq1a5d27txpyXb4+Pho5MiRkv54htCRI0csGfd6udeCLV261H7zhmtt2bJFW7duVbly5RQVFWVvz/1luKBnUn3zzTc3XPe//vWvPG1Xr17VggULHGqzytWrV/Xcc89J+uNaqp49exZ7rNDQUE2cOFGS8lznlhtisrKyij1+USxcuFAZGRl52nPf1zp16jiEltx/7969O88yxhh99913+a6nuNvj6uqqNm3aSFKBf3TIPTU391laAHC7EK4AoAhyf1nL72YJ1xo0aJAkacmSJfbrmu655x716NFDOTk5Gj58uMNf+NPS0jR8+PB8T7Nyc3PThAkTZIxR79699dNPP+Xpk52dreXLl2vt2rVF3pY33nhDDzzwgE6fPq3IyEgtXrw43/WfPHky3zBYFG3atFHLli11+fJlPfvss7p06ZJ93u+//26/U9uAAQPsR+gk6f7775ePj4927dqVJyQtXLhQH3/88Q3X/eabb2rHjh321zk5OXr55Zf122+/KTQ09JZu9nC91atXq23btvrpp59UoUIFzZ07t0innG3ZskULFizI97loX3/9tSSpRo0aDu25R4usCtoFOXbsmMaMGePwwODdu3dr0qRJkpTnOVDR0dGS/ghfu3btsrdnZmbq5Zdf1oYNG/JdT+727Nu3T5mZmTdV41//+ldJ0vTp05WQkOAwLz4+Xl999ZXc3Nz0wgsv3NS4AHCrOC0QAG4gKSlJ+/fvl4eHhwYMGFBo3/r16ysiIkKbN2/WnDlzHH4J3LZtm5YvX66aNWuqXbt2MsYoKSnJ/qDXr776yv7X/FwjRozQ4cOH9f7776tt27aqX7++6tSpI09PT6Wmpmrr1q06d+6cpk+frlatWhVpe9zd3fX999/rmWee0fz589WrVy9VrVpVzZo1k7+/vzIzM5WSkqLNmzcrOztbNWvWLNYRgHnz5qljx45avHixatasqaioKGVmZmrFihVKT09XRESEPvnkE4dlPD09NXHiRL344osaNGiQpk+frmrVqmn37t3atWuXxo8frzfffLPAdYaFhalZs2aKiIhQ+/bt5e/vrw0bNujAgQPy9vbWvHnz8r0T3o18+eWX9tMKMzMzdebMGW3dulWpqamSpMaNGys+Pl5NmjQp0niHDh3SgAED5OnpqYiICIWGhiorK0vbt2/X3r175e7urilTpjgs07dvX8XFxWns2LH68ccfFRAQIJvNpqeeekoPPPDATW9TQZ577jl9+umn+uabb9SyZUudPXtWK1as0NWrV9W7d28NHz7coX/r1q31yCOPaPHixWrevLnatGkjT09Pbd68Wenp6XrhhRfyvSV6WFiYmjdvro0bN6phw4Zq3ry5ypcvrypVqujdd98ttMaHHnpI48eP11tvvaUHH3xQrVu3VlhYmPbs2aPNmzfLxcVFM2bMUP369S17XwCgSG7zc7UA4I7z5JNPGkmmX79+Rer/0UcfGUmmXr16Du0nT540sbGxpnr16sbd3d2Ehoaa2NhYc/r0adOxY0cjyXz//ff5jrl69WozcOBAU6NGDePh4WEqVqxo7rvvPtOrVy/z6aefmjNnzhRr2zZs2GBiY2NNw4YNTaVKlYyLi4vx9fU1DRo0MDExMWbRokXm6tWreZa70YNjc50+fdqMGzfO1KtXz5QvX954eXmZpk2bmnfffddcunSpwOVmz55tIiIiTPny5Y2Pj4/p2LGjWbZs2Q0fIlyjRg2TmZlp3n77bVO3bl3j4eFh/Pz8TN++fc3OnTtv+v259qGzuZOnp6cJCgoykZGRZsSIESYhIcHk5OQUOEZ+79Xx48fNu+++a7p162Zq1qxpvLy8jI+PjwkPDzexsbFmz549+Y71v//7vyYiIsJ4eXnlefB0Qe9NQdtU0EOE4+LizObNm02PHj2Mv7+/8fDwMPXr1zcffPCBw4OFr3XlyhUzfvx4U6tWLePm5mYCAgLMY489Zvbv31/og6EPHTpkHn/8cRMcHGxcXV3z1F/QQ4Rzfffdd6Zbt27G39/fuLq6mqCgIPPoo4+adevW3dS2F3V9AHAjNmNK6LZJAIAiOXfunGrVqqW0tDSdOHGiyHf+w38dPHhQNWvWVI0aNQq9cQgAACWJa64A4DZZv359nrZTp04pJiZGZ8+e1cMPP0ywAgDgDsY1VwBwm7Rs2VLVq1dXvXr15O/vr6NHj2rLli26cOGCwsLC8lx/BAAA7iyEKwC4TcaPH6+EhAT9/PPPOnv2rNzd3VW7dm09/PDDGj16tPz9/Z1dIgAAuAVccwUAAAAAFuCaKwAAAACwAOEKAAAAACzANVcFyMnJ0bFjx1SxYkXZbDZnlwMAAADASYwxOn/+vEJCQlSuXMHHpwhXBTh27JhCQ0OdXQYAAACAUuLIkSOqXr16gfMJVwWoWLGipD/eQB8fHydXAwAAAMBZ0tPTFRoaas8IBSFcFSD3VEAfHx/CFQAAAIAbXi7EDS0AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACzg6uwCAJQda3eddXYJKCNahVd2dgkAgDKII1cAAAAAYAHCFQAAAABYoNSFq8mTJ6tFixaqWLGiAgIC1KtXL+3du9ehT/v27WWz2Rym5557zqHP4cOH1b17d3l5eSkgIEAvvfSSsrKybuemAAAAAChDSt01V0lJSYqNjVWLFi2UlZWl//mf/1Hnzp21a9cueXt72/s988wzmjRpkv21l5eX/d/Z2dnq3r27goKCtGbNGh0/flyDBg2Sm5ub3nnnndu6PQAAAADKhlIXrpYuXerwOj4+XgEBAdq0aZOioqLs7V5eXgoKCsp3jB9++EG7du3Sjz/+qMDAQDVp0kRvvvmmXn75Zb3xxhtyd3cv0W0AAAAAUPaUutMCr5eWliZJ8vPzc2ifO3euqlSpogYNGmjcuHG6dOmSfV5ycrIaNmyowMBAe1uXLl2Unp6unTt35ruejIwMpaenO0wAAAAAUFSl7sjVtXJycjRq1Ci1bt1aDRo0sLc//vjjqlGjhkJCQrRt2za9/PLL2rt3r/7zn/9IklJTUx2ClST769TU1HzXNXnyZE2cOLGEtgQAAADA3a5Uh6vY2Fjt2LFDP/30k0P7sGHD7P9u2LChgoOD1alTJx04cEC1a9cu1rrGjRun0aNH21+np6crNDS0eIUDAAAAKHNK7WmBI0aM0JIlS7RixQpVr1690L4tW7aUJO3fv1+SFBQUpBMnTjj0yX1d0HVaHh4e8vHxcZgAAAAAoKhKXbgyxmjEiBFatGiRli9frpo1a95wma1bt0qSgoODJUmRkZHavn27Tp48ae+zbNky+fj4KDw8vETqBgAAAFC2lbrTAmNjYzVv3jwtXrxYFStWtF8j5evrK09PTx04cEDz5s1Tt27d5O/vr23btunFF19UVFSUGjVqJEnq3LmzwsPD9eSTT2rKlClKTU3V+PHjFRsbKw8PD2duHgAAAIC7lM0YY5xdxLVsNlu+7XFxcRo8eLCOHDmiJ554Qjt27NDFixcVGhqq3r17a/z48Q6n8h06dEjDhw9XYmKivL29FRMTo3fffVeurkXLk+np6fL19VVaWhqnCAIWWbvrrLNLQBnRKryys0sAANxFipoNSl24Ki0IV4D1CFe4XQhXAAArFTUblLprrgAAAADgTkS4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALFDqwtXkyZPVokULVaxYUQEBAerVq5f27t3r0OfKlSuKjY2Vv7+/KlSooL59++rEiRMOfQ4fPqzu3bvLy8tLAQEBeumll5SVlXU7NwUAAABAGVLqwlVSUpJiY2O1du1aLVu2TJmZmercubMuXrxo7/Piiy/q66+/1sKFC5WUlKRjx46pT58+9vnZ2dnq3r27rl69qjVr1mj27NmKj4/X66+/7oxNAgAAAFAG2IwxxtlFFObUqVMKCAhQUlKSoqKilJaWpqpVq2revHnq16+fJGnPnj2qV6+ekpOT1apVK3333Xd6+OGHdezYMQUGBkqSZsyYoZdfflmnTp2Su7v7Ddebnp4uX19fpaWlycfHp0S3ESgr1u466+wSUEa0Cq/s7BIAAHeRomaDUnfk6nppaWmSJD8/P0nSpk2blJmZqejoaHufunXrKiwsTMnJyZKk5ORkNWzY0B6sJKlLly5KT0/Xzp07811PRkaG0tPTHSYAAAAAKKpSHa5ycnI0atQotW7dWg0aNJAkpaamyt3dXZUqVXLoGxgYqNTUVHufa4NV7vzcefmZPHmyfH197VNoaKjFWwMAAADgblaqw1VsbKx27Nih+fPnl/i6xo0bp7S0NPt05MiREl8nAAAAgLuHq7MLKMiIESO0ZMkSrVy5UtWrV7e3BwUF6erVqzp37pzD0asTJ04oKCjI3mf9+vUO4+XeTTC3z/U8PDzk4eFh8VYAAAAAKCtK3ZErY4xGjBihRYsWafny5apZs6bD/GbNmsnNzU0JCQn2tr179+rw4cOKjIyUJEVGRmr79u06efKkvc+yZcvk4+Oj8PDw27MhAAAAAMqUUnfkKjY2VvPmzdPixYtVsWJF+zVSvr6+8vT0lK+vr4YOHarRo0fLz89PPj4+GjlypCIjI9WqVStJUufOnRUeHq4nn3xSU6ZMUWpqqsaPH6/Y2FiOTgEAAAAoEaUuXE2fPl2S1L59e4f2uLg4DR48WJL04Ycfqly5curbt68yMjLUpUsX/fOf/7T3dXFx0ZIlSzR8+HBFRkbK29tbMTExmjRp0u3aDAAAAABlTKl/zpWz8JwrwHo85wq3C8+5AgBY6a55zhUAAAAA3AkIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAVKXbhauXKlevTooZCQENlsNn355ZcO8wcPHiybzeYwde3a1aHPmTNnNHDgQPn4+KhSpUoaOnSoLly4cBu3AgAAAEBZU+rC1cWLF9W4cWNNmzatwD5du3bV8ePH7dMXX3zhMH/gwIHauXOnli1bpiVLlmjlypUaNmxYSZcOAAAAoAxzLe6CK1eu1D333KOwsLAC+xw5ckQpKSmKiooq8rgPPfSQHnrooUL7eHh4KCgoKN95u3fv1tKlS7VhwwY1b95ckvSPf/xD3bp109/+9jeFhIQUuRYAAAAAKKpiH7nq0KGD4uPjC+0zZ84cdejQobirKFBiYqICAgL0pz/9ScOHD9fp06ft85KTk1WpUiV7sJKk6OholStXTuvWrStwzIyMDKWnpztMAAAAAFBUxQ5Xxpgb9snJyZHNZivuKvLVtWtXzZkzRwkJCXrvvfeUlJSkhx56SNnZ2ZKk1NRUBQQEOCzj6uoqPz8/paamFjju5MmT5evra59CQ0MtrRsAAADA3a3YpwUWxb59++Tr62vpmAMGDLD/u2HDhmrUqJFq166txMREderUqdjjjhs3TqNHj7a/Tk9PJ2ABAAAAKLKbCldPPfWUw+svv/xSBw8ezNMvOztbR44c0cqVK294/dStqlWrlqpUqaL9+/erU6dOCgoK0smTJx36ZGVl6cyZMwVepyX9cR2Xh4dHidYKAAAA4O51U+Hq2musbDabtm7dqq1bt+bb12azqUWLFvrwww9vpb4b+u2333T69GkFBwdLkiIjI3Xu3Dlt2rRJzZo1kyQtX75cOTk5atmyZYnWAgAAAKDsuqlwlZKSIumP661q1aqlUaNG6YUXXsjTz8XFRZUrV5a3t/dNF3ThwgXt37/fYZ1bt26Vn5+f/Pz8NHHiRPXt21dBQUE6cOCAxo4dqzp16qhLly6SpHr16qlr16565plnNGPGDGVmZmrEiBEaMGAAdwoEAAAAUGJuKlzVqFHD/u+4uDg1bdrUoc0KGzdudLjDYO51UDExMZo+fbq2bdum2bNn69y5cwoJCVHnzp315ptvOpzSN3fuXI0YMUKdOnVSuXLl1LdvX3388ceW1gkAAAAA17KZotz2rwxKT0+Xr6+v0tLS5OPj4+xygLvC2l1nnV0CyohW4ZWdXQIA4C5S1Gxwy3cLXL9+vTZs2KBz587Zb4d+LZvNptdee+1WVwMAAAAApVqxw9WZM2fUq1cvrV69utBnXhGuAAAAAJQFxQ5Xo0eP1k8//aT27dsrJiZG1atXl6triT42CwAAAABKrWKnoSVLluj+++9XQkKCbDablTUBAAAAwB2nXHEXvHz5sqKioghWAAAAAKBbCFdNmjTRwYMHLSwFAAAAAO5cxQ5XEyZM0FdffaW1a9daWQ8AAAAA3JGKfc1Vamqqunfvrnbt2mngwIGKiIgo8J7vgwYNKnaBAAAAAHAnKPZDhMuVKyebzeZwG/brr78yxshms+X7/KvSjocIA9bjIcK4XXiIMADASiX+EOG4uLjiLgoAAAAAd51ih6uYmBgr6wAAAACAO1qxb2gBAAAAAPivYh+5Onz4cJH7hoWFFXc1AAAAAHBHKHa4uueee4r0AGGbzaasrKzirgYAAAAA7gjFDleDBg3KN1ylpaXp559/VkpKitq1a6d77rnnVuoDAAAAgDtCscNVfHx8gfOMMZo6daqmTJmiWbNmFXcVAAAAAHDHKJEbWthsNo0ZM0b169fXSy+9VBKrAAAAAIBSpUTvFti8eXMtX768JFcBAAAAAKVCiYarAwcOcDMLAAAAAGVCsa+5KkhOTo6OHj2q+Ph4LV68WJ06dbJ6FQAAAABQ6hQ7XJUrV67QW7EbY1S5cmVNnTq1uKsAAAAAgDtGscNVVFRUvuGqXLlyqly5slq0aKEhQ4YoICDglgoEAAAAgDtBscNVYmKihWUAAAAAwJ2tRG9oAQAAAABlhSU3tFi9erW2bt2q9PR0+fj4qEmTJmrdurUVQwMAAADAHeGWwtWaNWs0ZMgQ7d+/X9IfN7HIvQ7r3nvvVVxcnCIjI2+9SgAAAAAo5Yodrnbu3KnOnTvr0qVLevDBB9WhQwcFBwcrNTVVK1as0A8//KAuXbpo7dq1Cg8Pt7JmAAAAACh1ih2uJk2apKtXr+rbb79V165dHea9/PLLWrp0qXr27KlJkyZp/vz5t1woAAAAAJRmxb6hRWJiovr165cnWOXq2rWr+vXrpxUrVhS7OAAAAAC4UxQ7XKWlpalmzZqF9qlZs6bS0tKKuwoAAAAAuGMUO1yFhIRo7dq1hfZZt26dQkJCirsKAAAAALhjFDtc9ezZU4mJiXrttdd05coVh3lXrlzRhAkTtGLFCj3yyCO3XCQAAAAAlHY2Y4wpzoKnT59Wy5YtlZKSIn9/f91///0KDAzUiRMntGHDBp06dUq1atXS+vXr5efnZ3XdJS49PV2+vr5KS0uTj4+Ps8sB7gprd511dgkoI1qFV3Z2CQCAu0hRs0Gx7xbo7++vtWvXauzYsZo/f76+/fZb+7zy5ctryJAheu+99+7IYAUAAAAAN6vYR66ulZmZqT179ig9PV0+Pj6qW7eu3NzcrKjPaThyBViPI1e4XThyBQCwUokduXr77bd18eJFTZw40R6g3Nzc1LBhQ3ufq1ev6tVXX1XFihX1yiuvFKN8AAAAALiz3NQNLX788Ue9/vrr8vf3L/TIlLu7u/z9/fXqq6/ynCsAAAAAZcJNhas5c+aocuXKGjFixA37xsbGys/PT3FxccUuDgAAAADuFDcVrtasWaPo6Gh5eHjcsK+Hh4eio6O1evXqYhcHAAAAAHeKmwpXx44dU61atYrcv2bNmjp+/PhNFwUAAAAAd5qbClflypVTZmZmkftnZmaqXLliP6cYAAAAAO4YN5V8QkJCtGPHjiL337Fjh6pVq3bTRQEAAADAneamwlXbtm21fPlyHTx48IZ9Dx48qOXLlysqKqq4tQEAAADAHeOmwlVsbKwyMzPVr18//f777wX2O336tB599FFlZWVp+PDht1wkAAAAAJR2N/UQ4YiICI0aNUofffSRwsPD9dxzz6lDhw6qXr26JOno0aNKSEjQzJkzderUKY0ePVoRERElUjgAAAAAlCY2Y4y5mQWMMXr11Vf1/vvvKycnJ9/5Li4uGjt2rN566y3ZbDbLir2d0tPT5evrq7S0NPn4+Di7HOCusHbXWWeXgDKiVXhlZ5cAALiLFDUb3NSRK0my2Wx65513NHToUMXFxWnNmjVKTU2VJAUFBal169YaPHiwateuXfzqAQAAAOAOc9PhKlft2rX11ltvWVkLAAAAANyxeAgVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFig1IWrlStXqkePHgoJCZHNZtOXX37pMN8Yo9dff13BwcHy9PRUdHS09u3b59DnzJkzGjhwoHx8fFSpUiUNHTpUFy5cuI1bAQAAAKCsKXXh6uLFi2rcuLGmTZuW7/wpU6bo448/1owZM7Ru3Tp5e3urS5cuunLlir3PwIEDtXPnTi1btkxLlizRypUrNWzYsNu1CQAAAADKIJsxxji7iILYbDYtWrRIvXr1kvTHUauQkBD99a9/1ZgxYyRJaWlpCgwMVHx8vAYMGKDdu3crPDxcGzZsUPPmzSVJS5cuVbdu3fTbb78pJCSkSOtOT0+Xr6+v0tLS5OPjUyLbB5Q1a3eddXYJKCNahVd2dgkAgLtIUbNBqTtyVZiUlBSlpqYqOjra3ubr66uWLVsqOTlZkpScnKxKlSrZg5UkRUdHq1y5clq3bl2BY2dkZCg9Pd1hAgAAAICiuqPCVWpqqiQpMDDQoT0wMNA+LzU1VQEBAQ7zXV1d5efnZ++Tn8mTJ8vX19c+hYaGWlw9AAAAgLvZHRWuStK4ceOUlpZmn44cOeLskgAAAADcQe6ocBUUFCRJOnHihEP7iRMn7POCgoJ08uRJh/lZWVk6c+aMvU9+PDw85OPj4zABAAAAQFHdUeGqZs2aCgoKUkJCgr0tPT1d69atU2RkpCQpMjJS586d06ZNm+x9li9frpycHLVs2fK21wwAAACgbHB1dgHXu3Dhgvbv329/nZKSoq1bt8rPz09hYWEaNWqU3nrrLd17772qWbOmXnvtNYWEhNjvKFivXj117dpVzzzzjGbMmKHMzEyNGDFCAwYMKPKdAgEAAADgZpW6cLVx40Z16NDB/nr06NGSpJiYGMXHx2vs2LG6ePGihg0bpnPnzqlNmzZaunSpypcvb19m7ty5GjFihDp16qRy5cqpb9+++vjjj2/7tgAAAAAoO0r1c66ciedcAdbjOVe4XXjOFQDASnflc64AAAAAoLQiXAEAAACABUrdNVcAANzNTm1e4ewSUEZUjehw404ALMWRKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALHDHhas33nhDNpvNYapbt659/pUrVxQbGyt/f39VqFBBffv21YkTJ5xYMQAAAICy4I4LV5JUv359HT9+3D799NNP9nkvvviivv76ay1cuFBJSUk6duyY+vTp48RqAQAAAJQFrs4uoDhcXV0VFBSUpz0tLU2zZs3SvHnz1LFjR0lSXFyc6tWrp7Vr16pVq1a3u1QAAAAAZcQdeeRq3759CgkJUa1atTRw4EAdPnxYkrRp0yZlZmYqOjra3rdu3boKCwtTcnJyoWNmZGQoPT3dYQIAAACAorrjwlXLli0VHx+vpUuXavr06UpJSVHbtm11/vx5paamyt3dXZUqVXJYJjAwUKmpqYWOO3nyZPn6+tqn0NDQEtwKAAAAAHebO+60wIceesj+70aNGqlly5aqUaOG/v3vf8vT07PY444bN06jR4+2v05PTydgAQAAACiyO+7I1fUqVaqk++67T/v371dQUJCuXr2qc+fOOfQ5ceJEvtdoXcvDw0M+Pj4OEwAAAAAU1R0fri5cuKADBw4oODhYzZo1k5ubmxISEuzz9+7dq8OHDysyMtKJVQIAAAC4291xpwWOGTNGPXr0UI0aNXTs2DFNmDBBLi4ueuyxx+Tr66uhQ4dq9OjR8vPzk4+Pj0aOHKnIyEjuFAgAAACgRN1x4eq3337TY489ptOnT6tq1apq06aN1q5dq6pVq0qSPvzwQ5UrV059+/ZVRkaGunTpon/+859OrhoAAADA3c5mjDHOLqI0Sk9Pl6+vr9LS0rj+CrDI2l1nnV0CyohW4ZWdXUKBTm1e4ewSUEZUjejg7BKAu0ZRs8Edf80VAAAAAJQGhCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAq7OLgAAAABlx68fjnN2CSgjar04+bavkyNXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWcHV2AWXF3+addHYJKCPGPB7g7BIAAADKJI5cAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABY4K4OV9OmTdM999yj8uXLq2XLllq/fr2zSwIAAABwl7prw9WCBQs0evRoTZgwQZs3b1bjxo3VpUsXnTx50tmlAQAAALgL3bXh6oMPPtAzzzyjIUOGKDw8XDNmzJCXl5c+++wzZ5cGAAAA4C7k6uwCSsLVq1e1adMmjRs3zt5Wrlw5RUdHKzk5Od9lMjIylJGRYX+dlpYmSUpPT7ekpiuXzlsyDnAj6enlnV1CgS5esGZ/Am4kPd3F2SUU6PyFi84uAWWEh0W/w1jt/JWMG3cCLGDV7/HXjmWMKbTfXRmufv/9d2VnZyswMNChPTAwUHv27Ml3mcmTJ2vixIl52kNDQ0ukRqCkvPaMsysAAAAoBf7nQ8uHPH/+vHx9fQucf1eGq+IYN26cRo8ebX+dk5OjM2fOyN/fXzabzYmVlV3p6ekKDQ3VkSNH5OPj4+xygNuOfQBgPwAk9oPSwBij8+fPKyQkpNB+d2W4qlKlilxcXHTixAmH9hMnTigoKCjfZTw8POTh4eHQVqlSpZIqETfBx8eH/5GgTGMfANgPAIn9wNkKO2KV6668oYW7u7uaNWumhIQEe1tOTo4SEhIUGRnpxMoAAAAA3K3uyiNXkjR69GjFxMSoefPmuv/++/XRRx/p4sWLGjJkiLNLAwAAAHAXumvDVf/+/XXq1Cm9/vrrSk1NVZMmTbR06dI8N7lA6eXh4aEJEybkOV0TKCvYBwD2A0BiP7iT2MyN7icIAAAAALihu/KaKwAAAAC43QhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFzhlq1cuVI9evRQSEiIbDabvvzyS4f5gwcPls1mc5i6du1a6Jg///yzHnvsMYWGhsrT01P16tXT3//+9zz9EhMTFRERIQ8PD9WpU0fx8fEWbhlQNJMnT1aLFi1UsWJFBQQEqFevXtq7d69DnytXrig2Nlb+/v6qUKGC+vbtm+dB59dLTEzUI488ouDgYHl7e6tJkyaaO3euQ5/4+Pg8+1f58uUt30bgRoqyH7Rv3z7P5/W5554rdNy9e/eqQ4cOCgwMVPny5VWrVi2NHz9emZmZDv0WLlyounXrqnz58mrYsKG+/fZby7cRuJHp06erUaNG9of9RkZG6rvvvrPPL853QVH2Ab4LSg/CFW7ZxYsX1bhxY02bNq3APl27dtXx48ft0xdffFHomJs2bVJAQIA+//xz7dy5U6+++qrGjRunTz75xN4nJSVF3bt3V4cOHbR161aNGjVKTz/9tL7//nvLtg0oiqSkJMXGxmrt2rVatmyZMjMz1blzZ128eNHe58UXX9TXX3+thQsXKikpSceOHVOfPn0KHXfNmjVq1KiR/u///k/btm3TkCFDNGjQIC1ZssShn4+Pj8P+dejQoRLZTqAwRdkPJOmZZ55x+LxOmTKl0HHd3Nw0aNAg/fDDD9q7d68++ugj/e///q8mTJhg77NmzRo99thjGjp0qLZs2aJevXqpV69e2rFjR4lsK1CQ6tWr691339WmTZu0ceNGdezYUY888oh27twpqXjfBUXZByS+C0oNA1hIklm0aJFDW0xMjHnkkUdueeznn3/edOjQwf567Nixpn79+g59+vfvb7p06WKMMWb27NnGz8/PXLlyxaHPI488Yp544olbrgcoyMmTJ40kk5SUZIwx5ty5c8bNzc0sXLjQ3mf37t1GkklOTr6psbt162aGDBlifx0XF2d8fX0L7D9x4sQ8+4kxxjRu3NiMHz/+ptYN3Izr9wNjjGnXrp154YUXbnnsF1980bRp08b++s9//rPp3r27Q5+WLVuaZ5991hjDfgDnqly5svn0008t/S64fh/gu6D04MgVbovExEQFBAToT3/6k4YPH67Tp0/f9BhpaWny8/Ozv05OTlZ0dLRDny5duig5OVmS9Oijjyo7O1tfffWVff7Jkyf1zTff6KmnnirmlgA3lpaWJkn2z+umTZuUmZnp8HmtW7euwsLC7J/Xmxn72v1Aki5cuKAaNWooNDTU4S+kkvTUU09p9+7d2rBhg71ty5Yt9iNhQEm5fj/INXfuXFWpUkUNGjTQuHHjdOnSpZsad//+/Vq6dKnatWtnb7vR9wH7AZwhOztb8+fP18WLFxUZGWnZd0F++4DEd0FpQbhCievatavmzJmjhIQEvffee0pKStJDDz2k7OzsIo+xZs0aLViwQMOGDbO3paamKjAw0KFfYGCg0tPTdfnyZXl6eurxxx9XXFycff7nn3+usLAwtW/f/pa3C8hPTk6ORo0apdatW6tBgwaS/visuru7q1KlSg59AwMDlZqaWuSx//3vf2vDhg0OX4R/+tOf9Nlnn2nx4sX6/PPPlZOTowceeEC//fabpD9OUenSpYvDfhAXF6d27dqpVq1at7ClQMHy2w8k6fHHH9fnn3+uFStWaNy4cfrXv/6lJ554okhjPvDAAypfvrzuvfdetW3bVpMmTbLPK+j7IHf/Yj/A7bR9+3ZVqFBBHh4eeu6557Ro0SKFh4ff8ndBYfsA3wWliLMPneHuonxOC7zegQMHjCTz448/GmOM6dq1q/H29jbe3t4mPDw8T//t27ebKlWqmDfffNOh/d577zXvvPOOQ9s333xjJJlLly4ZY4zZvHmzcXFxMb/99psxxpiGDRuaSZMmFXfzgBt67rnnTI0aNcyRI0fsbXPnzjXu7u55+rZo0cKMHTvWGGNMeHi4fT/o2rVrnr7Lly83Xl5eZvbs2YWu/+rVq6Z27doOp3n85z//MZUqVTKXL182GRkZxt/f38yZM6e4mwjcUH77QX4SEhKMJLN//35jTOH7weHDh83OnTvNvHnzTLVq1cx7771nn+fm5mbmzZvn0H/atGkmICDA/pr9ALdLRkaG2bdvn9m4caN55ZVXTJUqVczOnTtv+bugsH3genwXOI+rc6MdyqJatWqpSpUq2r9/vzp16qRPP/1Uly9flvTHRZvX2rVrlzp16qRhw4Zp/PjxDvOCgoLy3GHnxIkT8vHxkaenpySpadOmaty4sebMmaPOnTtr586d+uabb0pw61CWjRgxQkuWLNHKlStVvXp1e3tQUJCuXr2qc+fOOfzF8sSJEwoKCpIkffvtt/Y7P+V+fnMlJSWpR48e+vDDDzVo0KBCa3Bzc1PTpk21f/9+e1uPHj3k4eGhRYsWyd3dXZmZmerXr9+tbi6Qr4L2g/y0bNlS0h+nOdWuXbvQ/SA0NFSSFB4eruzsbA0bNkx//etf5eLiUuD3Qe7+JbEf4PZxd3dXnTp1JEnNmjXThg0b9Pe//139+/e/pe+CwvaB6/Fd4DyEK9x2v/32m06fPq3g4GBJUrVq1fLtt3PnTnXs2FExMTF6++2388yPjIzMc6vdZcuWKTIy0qHt6aef1kcffaSjR48qOjra/j8nwCrGGI0cOVKLFi1SYmKiatas6TC/WbNmcnNzU0JCgvr27Svpj1vrHj582P55rVGjRr5jJyYm6uGHH9Z7773ncFpsQbKzs7V9+3Z169bN3ubq6qqYmBjFxcXJ3d1dAwYMyPOlDdyqG+0H+dm6dask2b8PCtoPrpeTk6PMzEzl5OTIxcVFkZGRSkhI0KhRo+x9rv8+YD+As+Tk5CgjI+OWvgvyG/PafeB6fBc4kbMPneHOd/78ebNlyxazZcsWI8l88MEHZsuWLebQoUPm/PnzZsyYMSY5OdmkpKSYH3/80URERJh77703z138rrV9+3ZTtWpV88QTT5jjx4/bp5MnT9r7/Prrr8bLy8u89NJLZvfu3WbatGnGxcXFLF261GGsc+fOGS8vL+Pu7m7mz59fYu8Dyq7hw4cbX19fk5iY6PB5zT091Zg/TpMKCwszy5cvNxs3bjSRkZEmMjKy0HFzTwUcN26cw7inT5+295k4caL5/vvvzYEDB8ymTZvMgAEDTPny5c3OnTsdxvrll1+Mi4uLcXFxMWvXrrX2DQDMjfeD/fv3m0mTJpmNGzealJQUs3jxYlOrVi0TFRVV6Liff/65WbBggdm1a5c5cOCAWbBggQkJCTEDBw6091m9erVxdXU1f/vb38zu3bvNhAkTjJubm9m+fbvDWOwHKGmvvPKKSUpKMikpKWbbtm3mlVdeMTabzfzwww/GmOJ9FxRlH+C7oPQgXOGWrVixwkjKM8XExJhLly6Zzp07m6pVqxo3NzdTo0YN88wzz5jU1NRCx5wwYUK+Y9aoUSPPups0aWLc3d1NrVq1TFxcXL7jPfnkk/nelh2wQn6fVUkOn8fLly+b559/3lSuXNl4eXmZ3r17m+PHjxc6bkxMTL7jtmvXzt5n1KhRJiwszLi7u5vAwEDTrVs3s3nz5nzHa9u2bb634gWscKP94PDhwyYqKsr4+fkZDw8PU6dOHfPSSy+ZtLS0QsedP3++iYiIMBUqVLBfm/vOO++Yy5cvO/T797//be677z7j7u5u6tevb7755pt8x2M/QEl66qmnTI0aNYy7u7upWrWq6dSpkz1YGVO874Ki7AN8F5QeNmOMuT3HyADn6dSpk+rXr6+PP/7Y2aUATmGM0b333qvnn39eo0ePdnY5gFOwH6CsYx8oeVxzhbva2bNnlZiYqMTERP3zn/90djmAU5w6dUrz589XamoqzzNBmcV+gLKOfeD2IFzhrta0aVOdPXtW7733nv70pz85uxzAKQICAlSlShXNnDlTlStXdnY5gFOwH6CsYx+4PTgtEAAAAAAsUM7ZBQAAAADA3YBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQBK3FNPPSWbzSZ/f39lZGQ4u5xCbd26Vc8995zCw8Pl4+Mjd3d3BQUF6cEHH9TUqVN16tQpZ5cIACileM4VAKBEnT9/XsHBwbp06ZKMMZo/f7769+/v7LLyyMnJ0dixYzV16lS5uLgoKipKjRo1kre3t06ePKnk5GTt3LlT3t7e2rt3r6pVq+bskgEApYyrswsAANzdFixYoIsXL2r06NH66KOPNGvWrFIZrl599VVNnTpVERERWrBggerUqZOnz+bNm/Xyyy/r8uXLTqgQAFDacVogAKBEzZo1S66urho7dqw6dOighIQEHTp0qMD+SUlJioqKkre3t/z9/dW/f38dOXJE7du3l81my9PfGKPPPvtMrVu3lo+Pj7y8vNS8eXN99tlnRa7xl19+0fvvv6+qVatq6dKl+QYrSYqIiNCyZct0zz332NsOHjwom82mwYMHa/fu3erdu7f8/f1ls9l08OBBSVJWVpY++OADNW7cWJ6envL19VWHDh309ddf51nHG2+8IZvNpsTExDzz4uPjZbPZFB8fn+/6d+7cqe7du6tSpUqqUKGCOnfurE2bNhX5fQAA3BrCFQCgxOzatUtr165V586dFRgYqEGDBiknJ0dxcXH59v/hhx8UHR2t9evXq1+/fho2bJgOHTqkNm3a6Ny5c3n6G2M0cOBADR06VKdOndLjjz+up59+WhcvXtTQoUM1ZsyYItU5e/ZsZWdn69lnn1XVqlVv2N/VNe+JH/v371erVq106tQpDR48WDExMXJ3d5cxRv369dNf//pXXblyRbGxsXr88cf1888/q2fPnvrwww+LVOON/Prrr2rdurUuX76s4cOHq2fPnlqxYoWioqK0bt06S9YBALgBAwBACRk9erSRZL744gtjjDHnz5833t7eJiwszGRnZzv0zcrKMjVq1DA2m82sWrXKYd6gQYOMJHP919bMmTONJDNkyBBz9epVe3tGRobp0aOHkWQ2btx4wzo7dOhgJJmEhISb3saUlBR7ba+//nqe+bNnzzaSTLt27UxGRoa9/dChQ6ZKlSrG1dXVHDhwwN4+YcIEI8msWLEiz1hxcXFGkomLi8t3/a+88opD/6VLlxpJpmHDhje9XQCAm8eRKwBAicjMzNS//vUv+fj4qFevXpKkChUqqHfv3jp8+LB+/PFHh/4//fSTDh06pB49eqhNmzYO89566y25uLjkWccnn3wib29vTZs2TW5ubvZ2d3d3vf3225KkL7744oa1pqamSpJCQkLyzEtMTNQbb7zhMOV3yl5QUJBeffXVPO2zZ8+WJE2ZMkXu7u729rCwML344ovKysrS3Llzb1jjjVSqVCnP+rt06aJOnTpp+/btnB4IALcBN7QAAJSIxYsX69SpUxo6dKjKly9vbx80aJA+//xzzZo1S507d7a3//zzz5KUJ1hJUmhoqMLCwpSSkmJvu3TpkrZv366QkBC99957eZbJzMyUJO3Zs+eWtiMxMVETJ07M096+fXuH140bN3YIT7m2bNkiLy8v3X///XnmdejQQdIft3+/VU2bNlWFChXytLdt21YJCQnasmWLmjVrdsvrAQAUjHAFACgRs2bNkvRHmLpWp06dVK1aNS1evFhnzpyRn5+fJCk9PV2SFBAQkO94gYGBDuHq7NmzMsbo6NGj+YafXBcvXrxhrYGBgdq9e7eOHTumunXrOszLPVolSfPnz9djjz1W4Bj5SU9PV2hoaL7zgoOD7X1uVUHrz21PS0u75XUAAArHaYEAAMsdOXJEP/zwgySpXbt2stls9snFxUVHjx5VRkaGPv/8c/syPj4+kqSTJ0/mO+aJEyccXuf2b9asmYwxBU4rVqy4Yb0PPPCAJBWpb0Hyu5Nhbp0FbVPu6Yi52yJJ5cr98dWclZWVp39hAen69+f6dl9f3wKXBQBYg3AFALBcfHy8cnJy1KZNGw0dOjTPFBMTI+m/R7ekP06rk6TVq1fnGe+3337T4cOHHdoqVqyoevXqaffu3fneSfBmxMTEqFy5cpo5c6Z+//33Wxrrek2bNtWlS5e0fv36PPNyr91q0qSJva1y5cqSpKNHj+bpv2XLlgLXs2XLFl24cCFP+6pVq+x1AABKFuEKAGApY4zi4uJks9k0e/Zsffrpp3mm+Ph4RUZGatu2bdq4caOkP661CgsL09dff63k5GSHMV977TVlZ2fnWddf/vIXXbp0Sc8880y+p/+lpKTYnzVVmPvuu09jx47VyZMn9dBDD2n//v359itOiMsNkuPGjbNfByb9cXTvgw8+kKurqwYOHGhvb9GihSRpzpw5ysnJsbcnJycXeuOLc+fO2W/ikev7779XQkKCGjRowPVWAHAbcM0VAMBSy5cvV0pKitq1a6datWoV2G/IkCFKTk7WrFmz1Lx5c7m4uGjGjBnq2bOnOnbsqP79+ys4OFhJSUk6evSoGjdurG3btjmM8eyzz2rt2rWaPXu2Vq9erejoaIWEhOjEiRPas2eP1q1bp3nz5jk89Lcgb7/9tq5evaoPPvhAdevWVVRUlBo3biwvLy+dPHlS27Zt0/r161WhQgWHI0038uSTT+o///mPFi9erEaNGunhhx/WxYsXtWDBAp05c0ZTp051eJ9atWql1q1ba/ny5YqMjFRUVJQOHTqkxYsXq0ePHlq0aFG+62nbtq2mT5+udevWqVWrVjp48KAWLlwoT09Pffrpp0WuFwBwC5x2E3gAwF3psccey/MspvykpaUZT09P4+vray5dumRvX758uWnTpo3x9PQ0fn5+5tFHHzWHDx82DRo0ML6+vvmOtWDBAhMdHW0qV65s3NzcTLVq1Uz79u3N1KlTzalTp26q/s2bN5thw4aZunXrmgoVKhg3NzcTGBhoOnbsaN5//31z4sQJh/65z5mKiYkpcMzMzEzzt7/9zTRs2NB4eHiYihUrmnbt2pnFixfn2//33383gwYNMn5+fsbT09O0atXKfP/994U+5yomJsbs2LHDdOvWzfj4+Bhvb28THR1dpOd8AQCsYTPGGOfGOwAACnf+/HkFBgaqYcOGWrdunbPLKVUOHjyomjVrKiYmRvHx8c4uBwDKNK65AgCUGhcvXtT58+cd2rKzs/XSSy/p8uXL9ocRAwBQGnHNFQCg1Ni3b5/atGmjLl26qFatWjp//rxWrVqlXbt2qX79+vrLX/7i7BIBACgQ4QoAUGpUq1ZNjz76qJKSkrR06VJlZWUpLCxMY8aM0auvvipvb29nlwgAQIG45goAAAAALMA1VwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABf4/u82elyNoIqoAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Set the figure size\n", + "plt.figure(figsize=(15,10))\n", + "\n", + "# Plot 1: Gender distribution\n", + "plt.subplot(3,2,1)\n", + "sns.countplot(data=data,x='Gender')\n", + "plt.title('Gender')\n", + "\n", + "# Plot 2: Marital Status distribution\n", + "plt.subplot(3,2,2)\n", + "sns.countplot(data=data,x='Marital Status')\n", + "plt.title('Marital Status')\n", + "\n", + "# Plot 3: Occupation distribution\n", + "plt.subplot(3,2,3)\n", + "sns.countplot(data=data,x='Occupation')\n", + "plt.title('Occupation')\n", + "\n", + "# Plot 4: Monthly Income distribution\n", + "plt.subplot(3,2,4)\n", + "sns.countplot(data=data,x='Monthly Income')\n", + "plt.title('Monthly Income')\n", + "\n", + "# Plot 5: Family size distribution\n", + "plt.subplot(3,2,5)\n", + "sns.countplot(data=data,x='Family size')\n", + "plt.title('Family size')\n", + "\n", + "# Plot 6: Educational Qualifications distribution\n", + "plt.subplot(3,2,6)\n", + "sns.countplot(data=data,x='Educational Qualifications')\n", + "plt.title('Educational Qualifications')\n", + "\n", + "plt.tight_layout()\n", + "plt.show()" + ], + "metadata": { + "id": "VLYV_4aeOt28", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 880 + }, + "outputId": "d6bc9936-e550-4002-b74e-2f29e57d8a13" + }, + "execution_count": 16, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAPdCAYAAABlRyFLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxV1f7/8fcB5eDAIMqoOOesaFhEOcsV0CiNLI0ckqtlYFcpK27lfCO10jSHRtGbZFlpSWWaA2ahJV2zrLzqxayrgGmAYDLu3x/35/l2guOABw7q6/l47MeDvdc6a382PaDF23XWMRmGYQgAAAAAAAAAAFTg5OgCAAAAAAAAAACorQjRAQAAAAAAAACwgRAdAAAAAAAAAAAbCNEBAAAAAAAAALCBEB0AAAAAAAAAABsI0QEAAAAAAAAAsIEQHQAAAAAAAAAAGwjRAQAAAAAAAACwgRAdAAAAAAAAAAAbCNEBADWiZcuWGjt2rKPLAAAAAGqcyWTSjBkz7Dpmv3791K9fP7uOCQCoHCE6AFyFMjMzFR8fr3bt2ql+/fqqX7++OnXqpLi4OO3bt8/R5QEAAAA1Kjk5WSaTSSaTSTt37qzQbhiGAgMDZTKZdOutt1Z7PV988YVmzJih3Nzcar9XcXGxXnjhBfXo0UPu7u7y9PRU586dNWHCBP344492rWnp0qVKTk6+/KIBoJap4+gCAAD2lZqaqrvvvlt16tRRTEyMgoKC5OTkpB9//FHvvfeeli1bpszMTLVo0cLRpQIAAAA1ytXVVSkpKerVq5fV9bS0NP3yyy8ym83Vct/ff/9dder8XwTzxRdfaObMmRo7dqw8PT2r5Z7nREdH6+OPP9bIkSM1fvx4lZSU6Mcff1RqaqpuvvlmdejQwW41LV26VE2aNOEdqACuOoToAHAVOXz4sEaMGKEWLVpoy5Yt8vf3t2qfO3euli5dKienK/uNSKWlpSovL5eLi4ujSwEAAMAVZPDgwVq7dq0WLVpkFWqnpKQoODhYv/76q93uVV5eruLiYrm6usrV1dVu416Kr776SqmpqfrHP/6hv//971ZtL774Yo2shAeAq8GVnaIAAKzMmzdPhYWFWrFiRYUAXZLq1Kmjhx56SIGBgZZrP/74o+688055eXnJ1dVVPXv21AcffGD1unNvf/3888+VkJAgb29vNWjQQMOGDdOJEyes+hqGoTlz5qhZs2aqX7+++vfvr/3791dab25uriZPnqzAwECZzWa1bdtWc+fOVXl5uaXPkSNHZDKZ9Oyzz2rhwoVq06aNzGazvv/++8v5VgEAAOAaNHLkSJ08eVKbN2+2XCsuLtY777yje+65p9LXPPvss7r55pvVuHFj1atXT8HBwXrnnXcq9DOZTIqPj9fq1avVuXNnmc1mbdy40dJ2bk/0GTNmaOrUqZKkVq1aWbaZOXLkiCRpxYoVGjBggHx8fGQ2m9WpUyctW7asSs97+PBhSdItt9xSoc3Z2VmNGze2W00tW7bU/v37lZaWZnn9uT3bZ8yYIZPJVKGGc39nnLuPJO3Zs0fh4eFq0qSJ6tWrp1atWmncuHFVen4AsBdWogPAVSQ1NVVt27ZVSEjIRfXfv3+/brnlFjVt2lSPP/64GjRooLfffltDhw7Vu+++q2HDhln1nzRpkho1aqTp06fryJEjWrhwoeLj4/XWW29Z+kybNk1z5szR4MGDNXjwYH399dcaNGiQiouLrcY6c+aM+vbtq//+97+6//771bx5c33xxRdKTEzU8ePHtXDhQqv+K1as0NmzZzVhwgSZzWZ5eXlV7ZsEAACAa1bLli0VGhqqN998U5GRkZKkjz/+WHl5eRoxYoQWLVpU4TUvvPCCbrvtNsXExKi4uFhr1qzR8OHDlZqaqiFDhlj13bp1q95++23Fx8erSZMmatmyZYXx7rjjDv373//Wm2++qQULFqhJkyaSJG9vb0nSsmXL1LlzZ912222qU6eONmzYoAcffFDl5eWKi4u7pOc9t4Xj6tWrdcstt1itvrd3TQsXLtSkSZPUsGFDPfHEE5IkX1/fS6o3JydHgwYNkre3tx5//HF5enrqyJEjeu+99y5pHACwOwMAcFXIy8szJBlDhw6t0Pbbb78ZJ06csBxnzpwxDMMwBg4caHTt2tU4e/aspW95eblx8803G9ddd53l2ooVKwxJRlhYmFFeXm65PmXKFMPZ2dnIzc01DMMwcnJyDBcXF2PIkCFW/f7+978bkowxY8ZYrs2ePdto0KCB8e9//9uq1scff9xwdnY2jh49ahiGYWRmZhqSDHd3dyMnJ+cyvkMAAAC4Vp2bz3711VfGiy++aLi5uVnmxMOHDzf69+9vGIZhtGjRwhgyZIjVa8/1O6e4uNjo0qWLMWDAAKvrkgwnJydj//79Fe4vyZg+fbrlfP78+YYkIzMzs0LfP9/PMAwjPDzcaN26tdW1vn37Gn379rX5zIbxv7l93759DUmGr6+vMXLkSGPJkiXGTz/9VKGvPWrq3LlzpTVNnz7dqCyCOvff5dw9161bZ/nvBAC1Cdu5AMBVIj8/X5LUsGHDCm39+vWTt7e35ViyZIlOnTqlrVu36q677tLp06f166+/6tdff9XJkycVHh6ugwcP6r///a/VOBMmTLB6G2bv3r1VVlamn376SZL06aefqri4WJMmTbLqN3ny5Ao1rV27Vr1791ajRo0s9/71118VFhamsrIy7dixw6p/dHS0ZSUMAAAAUFV33XWXfv/9d6Wmpur06dNKTU21uZWLJNWrV8/y9W+//aa8vDz17t1bX3/9dYW+ffv2VadOnS6rvj/eLy8vT7/++qv69u2r//znP8rLy7uksUwmkz755BPNmTNHjRo10ptvvqm4uDi1aNFCd99990XviW7Pms7n3AeapqamqqSkxG7jAsDlYjsXALhKuLm5SZIKCgoqtL300ks6ffq0srOzde+990qSDh06JMMw9NRTT+mpp56qdMycnBw1bdrUct68eXOr9kaNGkn63x8Tkixh+nXXXWfVz9vb29L3nIMHD2rfvn02g/GcnByr81atWlXaDwAAALgU3t7eCgsLU0pKis6cOaOysjLdeeedNvunpqZqzpw52rt3r4qKiizXK9vj2x5z1s8//1zTp09Xenq6zpw5Y9WWl5cnDw+PSxrPbDbriSee0BNPPKHjx48rLS1NL7zwgt5++23VrVtXb7zxRo3XZEvfvn0VHR2tmTNnasGCBerXr5+GDh2qe+65R2az2S73AICqIEQHgKuEh4eH/P399d1331VoO7dH+h8/sOfch3c+8sgjCg8Pr3TMtm3bWp07OztX2s8wjEuut7y8XH/5y1/06KOPVtrerl07q/M/rn4BAAAALsc999yj8ePHKysrS5GRkZYV0H/22Wef6bbbblOfPn20dOlS+fv7q27dulqxYoVSUlIq9L/cOevhw4c1cOBAdejQQc8//7wCAwPl4uKijz76SAsWLLDM4avK399fI0aMUHR0tDp37qy3335bycnJNvdKt1dNlf2DgySVlZVV6PfOO+9o165d2rBhgz755BONGzdOzz33nHbt2lXpu24BoCYQogPAVWTIkCF69dVX9eWXX+rGG288b9/WrVtLkurWrauwsDC73P/cBxcdPHjQMr4knThxwrJa/Zw2bdqooKDAbvcGAAAALtawYcN0//33a9euXXrrrbds9nv33Xfl6uqqTz75xGol9IoVKy7r/rZC5Q0bNqioqEgffPCB1btAt23bdln3+7O6deuqW7duOnjwoH799Vf5+fnZpSZbY5x7V2pubq7VP1iceyfrn91000266aab9I9//EMpKSmKiYnRmjVr9Ne//vViHxEA7Io90QHgKvLoo4+qfv36GjdunLKzsyu0/3HFuI+Pj/r166eXXnpJx48fr9D3xIkTl3z/sLAw1a1bV4sXL7a618KFCyv0veuuu5Senq5PPvmkQltubq5KS0sv+f4AAADAxWjYsKGWLVumGTNmKCoqymY/Z2dnmUwmqxXTR44c0fr16y/r/g0aNJCkCnuSn3vn5x/n0nl5eVUO7Q8ePKijR49WuJ6bm6v09HQ1atTIsr2iPWpq0KBBpfust2nTRpKsPveosLBQK1eutOr322+/VXiXa/fu3SXJaisdAKhprEQHgKvIddddp5SUFI0cOVLt27dXTEyMgoKCZBiGMjMzlZKSIicnJzVr1kyStGTJEvXq1Utdu3bV+PHj1bp1a2VnZys9PV2//PKLvvnmm0u6v7e3tx555BElJSXp1ltv1eDBg/Wvf/1LH3/8sZo0aWLVd+rUqfrggw906623auzYsQoODlZhYaG+/fZbvfPOOzpy5EiF1wAAAAD2MmbMmAv2GTJkiJ5//nlFRETonnvuUU5OjpYsWaK2bdtq3759Vb53cHCwJOmJJ57QiBEjVLduXUVFRWnQoEFycXFRVFSU7r//fhUUFOiVV16Rj49PpQtfLuSbb77RPffco8jISPXu3VteXl7673//q5UrV+rYsWNauHChJSS3R03BwcFatmyZ5syZo7Zt28rHx0cDBgzQoEGD1Lx5c8XGxmrq1KlydnbW66+/Lm9vb6uQf+XKlVq6dKmGDRumNm3a6PTp03rllVfk7u6uwYMHV/XbDQCXjRAdAK4yt99+u7799ls999xz2rRpk15//XWZTCa1aNFCQ4YM0QMPPKCgoCBJUqdOnbRnzx7NnDlTycnJOnnypHx8fNSjRw9NmzatSvefM2eOXF1dtXz5cm3btk0hISHatGmThgwZYtWvfv36SktL09NPP621a9dq1apVcnd3V7t27TRz5ky7fTgRAAAAUFUDBgzQa6+9pmeeeUaTJ09Wq1atNHfuXB05cuSyQvQbbrhBs2fP1vLly7Vx40aVl5crMzNT7du31zvvvKMnn3xSjzzyiPz8/DRx4kR5e3tr3Lhxl3yfPn36aPbs2fr444/1/PPP68SJE3Jzc1OPHj00d+5cRUdH27WmadOm6aefftK8efN0+vRp9e3bVwMGDFDdunW1bt06Pfjgg3rqqafk5+enyZMnq1GjRrrvvvssr+/bt6++/PJLrVmzRtnZ2fLw8NCNN96o1atX2+VDWwGgqkxGVT4NDgAAAAAAAACAawB7ogMAAAAAAAAAYAMhOgAAAAAAAAAANhCiAwAAAAAAAABgAyE6AAAAAAAAAAA2EKIDAAAAAAAAAGBDHUcXUBuUl5fr2LFjcnNzk8lkcnQ5AAAAuIoZhqHTp08rICBATk6safkj5uUAAACoSRc7NydEl3Ts2DEFBgY6ugwAAABcQ37++Wc1a9bM0WXUKszLAQAA4AgXmpsToktyc3OT9L9vlru7u4OrAQAAwNUsPz9fgYGBljko/g/zcgAAANSki52bE6JLlreKuru7M1kHAABAjWC7koqYlwMAAMARLjQ3ZxNGAAAAAAAAAABsIEQHAAAAAAAAAMAGQnQAAAAAAAAAAGwgRAcAAAAAAAAAwAZCdAAAAAAAAAAAbCBEBwAAAAAAAADABkJ0AAAAAAAAAABsIEQHAAAAAAAAAMAGQnQAAAAAAAAAAGyo4+gCAAC4XMFTVzm6BABXkIz5ox1dAgAAQI3gbyVcTRw5j2clOgAAAAAAAAAANhCiAwAAAAAAAABgAyE6AAAAAAAAAAA2EKIDAAAAAAAAAGADIToAAAAAAAAAADYQogMAAAAAAAAAYAMhOgAAAAAAAAAANhCiAwAAAAAAAABgAyE6AAAAAAAAAAA2EKIDAAAAAAAAAGADIToAAAAAAAAAADYQogMAAADXuKSkJN1www1yc3OTj4+Phg4dqgMHDlj16devn0wmk9XxwAMPWPU5evSohgwZovr168vHx0dTp05VaWlpTT4KAAAAYHd1HF0AAAAAAMdKS0tTXFycbrjhBpWWlurvf/+7Bg0apO+//14NGjSw9Bs/frxmzZplOa9fv77l67KyMg0ZMkR+fn764osvdPz4cY0ePVp169bV008/XaPPAwAAANgTIToAAABwjdu4caPVeXJysnx8fJSRkaE+ffpYrtevX19+fn6VjrFp0yZ9//33+vTTT+Xr66vu3btr9uzZeuyxxzRjxgy5uLhU6zMAAAAA1YXtXAAAAABYycvLkyR5eXlZXV+9erWaNGmiLl26KDExUWfOnLG0paenq2vXrvL19bVcCw8PV35+vvbv31/pfYqKipSfn291AAAAALUNK9EBAAAAWJSXl2vy5Mm65ZZb1KVLF8v1e+65Ry1atFBAQID27dunxx57TAcOHNB7770nScrKyrIK0CVZzrOysiq9V1JSkmbOnFlNTwIAAADYByE6AAAAAIu4uDh999132rlzp9X1CRMmWL7u2rWr/P39NXDgQB0+fFht2rSp0r0SExOVkJBgOc/Pz1dgYGDVCgcAAACqCdu5AAAAAJAkxcfHKzU1Vdu2bVOzZs3O2zckJESSdOjQIUmSn5+fsrOzrfqcO7e1j7rZbJa7u7vVAQAAANQ2hOgAAADANc4wDMXHx2vdunXaunWrWrVqdcHX7N27V5Lk7+8vSQoNDdW3336rnJwcS5/NmzfL3d1dnTp1qpa6AQAAgJrg0BA9KSlJN9xwg9zc3OTj46OhQ4fqwIEDVn3Onj2ruLg4NW7cWA0bNlR0dHSFFS5Hjx7VkCFDVL9+ffn4+Gjq1KkqLS2tyUcBAAAArlhxcXF64403lJKSIjc3N2VlZSkrK0u///67JOnw4cOaPXu2MjIydOTIEX3wwQcaPXq0+vTpo27dukmSBg0apE6dOmnUqFH65ptv9Mknn+jJJ59UXFyczGazIx8PAAAAuCwODdHT0tIUFxenXbt2afPmzSopKdGgQYNUWFho6TNlyhRt2LBBa9euVVpamo4dO6Y77rjD0l5WVqYhQ4aouLhYX3zxhVauXKnk5GRNmzbNEY8EAAAAXHGWLVumvLw89evXT/7+/pbjrbfekiS5uLjo008/1aBBg9ShQwc9/PDDio6O1oYNGyxjODs7KzU1Vc7OzgoNDdW9996r0aNHa9asWY56LAAAAMAuTIZhGI4u4pwTJ07Ix8dHaWlp6tOnj/Ly8uTt7a2UlBTdeeedkqQff/xRHTt2VHp6um666SZ9/PHHuvXWW3Xs2DH5+vpKkpYvX67HHntMJ06ckIuLywXvm5+fLw8PD+Xl5bEPIwBcgYKnrnJ0CQCuIBnzRzv0/sw9beN7AwCAffG3Eq4m1TGPv9j5Z63aEz0vL0+S5OXlJUnKyMhQSUmJwsLCLH06dOig5s2bKz09XZKUnp6url27WgJ0SQoPD1d+fr72799f6X2KioqUn59vdQAAAAAAAAAA8Ge1JkQvLy/X5MmTdcstt6hLly6SpKysLLm4uMjT09Oqr6+vr7Kysix9/hign2s/11aZpKQkeXh4WI7AwEA7Pw0AAAAAAAAA4GpQa0L0uLg4fffdd1qzZk213ysxMVF5eXmW4+eff672ewIAAAAAAAAArjx1HF2AJMXHxys1NVU7duxQs2bNLNf9/PxUXFys3Nxcq9Xo2dnZ8vPzs/T58ssvrcbLzs62tFXGbDbLbDbb+SkAAAAAAAAAAFcbh65ENwxD8fHxWrdunbZu3apWrVpZtQcHB6tu3brasmWL5dqBAwd09OhRhYaGSpJCQ0P17bffKicnx9Jn8+bNcnd3V6dOnWrmQQAAAAAAAAAAVyWHrkSPi4tTSkqK3n//fbm5uVn2MPfw8FC9evXk4eGh2NhYJSQkyMvLS+7u7po0aZJCQ0N10003SZIGDRqkTp06adSoUZo3b56ysrL05JNPKi4ujtXmAAAAAAAAAIDL4tAQfdmyZZKkfv36WV1fsWKFxo4dK0lasGCBnJycFB0draKiIoWHh2vp0qWWvs7OzkpNTdXEiRMVGhqqBg0aaMyYMZo1a1ZNPQYAAAAAAAAA4Crl0BDdMIwL9nF1ddWSJUu0ZMkSm31atGihjz76yJ6lAQAAAAAAAADg2D3RAQAAAAAAAACozQjRAQAAAAAAAACwgRAdAAAAAAAAAAAbCNEBAAAAAAAAALCBEB0AAAAAAAAAABsI0QEAAAAAAAAAsIEQHQAAAAAAAAAAGwjRAQAAAAAAAACwgRAdAAAAAAAAAAAbCNEBAAAAAAAAALCBEB0AAAAAAAAAABsI0QEAAAAAAAAAsIEQHQAAAAAAAAAAGwjRAQAAAAAAAACwgRAdAAAAAAAAAAAbCNEBAAAAAAAAALCBEB0AAAAAAAAAABsI0QEAAAAAAAAAsIEQHQAAAAAAAAAAGwjRAQAAAAAAAACwgRAdAAAAAAAAAAAbCNEBAAAAAAAAALCBEB0AAAAAAAAAABsI0QEAAAAAAAAAsIEQHQAAAAAAAAAAGwjRAQAAgGtcUlKSbrjhBrm5ucnHx0dDhw7VgQMHrPqcPXtWcXFxaty4sRo2bKjo6GhlZ2db9Tl69KiGDBmi+vXry8fHR1OnTlVpaWlNPgoAAABgd4ToAAAAwDUuLS1NcXFx2rVrlzZv3qySkhINGjRIhYWFlj5TpkzRhg0btHbtWqWlpenYsWO64447LO1lZWUaMmSIiouL9cUXX2jlypVKTk7WtGnTHPFIAAAAgN3UcXQBAAAAABxr48aNVufJycny8fFRRkaG+vTpo7y8PL322mtKSUnRgAEDJEkrVqxQx44dtWvXLt10003atGmTvv/+e3366afy9fVV9+7dNXv2bD322GOaMWOGXFxcHPFoAAAAwGVjJToAAAAAK3l5eZIkLy8vSVJGRoZKSkoUFhZm6dOhQwc1b95c6enpkqT09HR17dpVvr6+lj7h4eHKz8/X/v37K71PUVGR8vPzrQ4AAACgtmElei0SPHWVo0sAcAXJmD/a0SUAAK5C5eXlmjx5sm655RZ16dJFkpSVlSUXFxd5enpa9fX19VVWVpalzx8D9HPt59oqk5SUpJkzZ9r5CQAAAAD7YiU6AAAAAIu4uDh99913WrNmTbXfKzExUXl5eZbj559/rvZ7AgAAAJeKlegAAAAAJEnx8fFKTU3Vjh071KxZM8t1Pz8/FRcXKzc312o1enZ2tvz8/Cx9vvzyS6vxsrOzLW2VMZvNMpvNdn4KAAAAwL5YiQ4AAABc4wzDUHx8vNatW6etW7eqVatWVu3BwcGqW7eutmzZYrl24MABHT16VKGhoZKk0NBQffvtt8rJybH02bx5s9zd3dWpU6eaeRAAAACgGrASHQAAALjGxcXFKSUlRe+//77c3Nwse5h7eHioXr168vDwUGxsrBISEuTl5SV3d3dNmjRJoaGhuummmyRJgwYNUqdOnTRq1CjNmzdPWVlZevLJJxUXF8dqcwAAAFzRCNEBAACAa9yyZcskSf369bO6vmLFCo0dO1aStGDBAjk5OSk6OlpFRUUKDw/X0qVLLX2dnZ2VmpqqiRMnKjQ0VA0aNNCYMWM0a9asmnoMAAAAoFoQogMAAADXOMMwLtjH1dVVS5Ys0ZIlS2z2adGihT766CN7lgYAAAA4HHuiAwAAAAAAAABgAyE6AAAAAAAAAAA2EKIDAAAAAAAAAGADIToAAAAAAAAAADYQogMAAAAAAAAAYAMhOgAAAAAAAAAANjg0RN+xY4eioqIUEBAgk8mk9evXW7WPHTtWJpPJ6oiIiLDqc+rUKcXExMjd3V2enp6KjY1VQUFBDT4FAAAAAAAAAOBq5dAQvbCwUEFBQVqyZInNPhERETp+/LjlePPNN63aY2JitH//fm3evFmpqanasWOHJkyYUN2lAwAAAAAAAACuAXUcefPIyEhFRkaet4/ZbJafn1+lbT/88IM2btyor776Sj179pQkLV68WIMHD9azzz6rgIAAu9cMAAAAAAAAALh21Po90bdv3y4fHx+1b99eEydO1MmTJy1t6enp8vT0tATokhQWFiYnJyft3r3b5phFRUXKz8+3OgAAAAAAAAAA+LNaHaJHRERo1apV2rJli+bOnau0tDRFRkaqrKxMkpSVlSUfHx+r19SpU0deXl7KysqyOW5SUpI8PDwsR2BgYLU+BwAAAAAAAADgyuTQ7VwuZMSIEZavu3btqm7duqlNmzbavn27Bg4cWOVxExMTlZCQYDnPz88nSAcAAAAAAAAAVFCrV6L/WevWrdWkSRMdOnRIkuTn56ecnByrPqWlpTp16pTNfdSl/+2z7u7ubnUAAAAAAAAAAPBnV1SI/ssvv+jkyZPy9/eXJIWGhio3N1cZGRmWPlu3blV5eblCQkIcVSYAAAAAAAAA4Crh0O1cCgoKLKvKJSkzM1N79+6Vl5eXvLy8NHPmTEVHR8vPz0+HDx/Wo48+qrZt2yo8PFyS1LFjR0VERGj8+PFavny5SkpKFB8frxEjRiggIMBRjwUAAAAAAAAAuEo4dCX6nj171KNHD/Xo0UOSlJCQoB49emjatGlydnbWvn37dNttt6ldu3aKjY1VcHCwPvvsM5nNZssYq1evVocOHTRw4EANHjxYvXr10ssvv+yoRwIAAAAAAAAAXEUcuhK9X79+MgzDZvsnn3xywTG8vLyUkpJiz7IAAAAAAAAAAJB0he2JDgAAAAAAAABATSJEBwAAAAAAAADABkJ0AAAAAAAAAABsIEQHAAAAAAAAAMAGQnQAAAAAAAAAAGwgRAcAAAAAAAAAwAZCdAAAAAAAAAAAbCBEBwAAAAAAAADABkJ0AAAAAAAAAABsIEQHAAAAAAAAAMAGQnQAAAAAAAAAAGwgRAcAAAAAAAAAwIYqhegDBgxQbm5uhev5+fkaMGDA5dYEAAAA4CIwLwcAAACqX5VC9O3bt6u4uLjC9bNnz+qzzz677KIAAAAAXBjzcgAAAKD61bmUzvv27bN8/f333ysrK8tyXlZWpo0bN6pp06b2qw4AAABABczLAQAAgJpzSSF69+7dZTKZZDKZKn17aL169bR48WK7FQcAAACgIublAAAAQM25pBA9MzNThmGodevW+vLLL+Xt7W1pc3FxkY+Pj5ydne1eJAAAAID/w7wcAAAAqDmXtCd6ixYt1LJlS5WXl6tnz55q0aKF5fD392eiDgAAANSA6piX79ixQ1FRUQoICJDJZNL69eut2seOHWtZ/X7uiIiIsOpz6tQpxcTEyN3dXZ6enoqNjVVBQcHlPCoAAADgcJe0Ev2PDh48qG3btiknJ0fl5eVWbdOmTbvswgAAAABcmL3m5YWFhQoKCtK4ceN0xx13VNonIiJCK1assJybzWar9piYGB0/flybN29WSUmJ7rvvPk2YMEEpKSmX8EQAAABA7VKlEP2VV17RxIkT1aRJE/n5+clkMlnaTCYTIToAAABQA+w5L4+MjFRkZOR5+5jNZvn5+VXa9sMPP2jjxo366quv1LNnT0nS4sWLNXjwYD377LMKCAio8JqioiIVFRVZzvPz8y+6XgAAAKCmVClEnzNnjv7xj3/oscces3c9AAAAAC5STc/Lt2/fLh8fHzVq1EgDBgzQnDlz1LhxY0lSenq6PD09LQG6JIWFhcnJyUm7d+/WsGHDKoyXlJSkmTNn1kjtAAAAQFVd0p7o5/z2228aPny4vWsBAAAAcAlqcl4eERGhVatWacuWLZo7d67S0tIUGRmpsrIySVJWVpZ8fHysXlOnTh15eXkpKyur0jETExOVl5dnOX7++edqfw4AAADgUlUpRB8+fLg2bdpk71oAAAAAXIKanJePGDFCt912m7p27aqhQ4cqNTVVX331lbZv317lMc1ms9zd3a0OAAAAoLap0nYubdu21VNPPaVdu3apa9euqlu3rlX7Qw89ZJfiAAAAANjmyHl569at1aRJEx06dEgDBw6Un5+fcnJyrPqUlpbq1KlTNvdRBwAAAK4EVQrRX375ZTVs2FBpaWlKS0uzajOZTIToAAAAQA1w5Lz8l19+0cmTJ+Xv7y9JCg0NVW5urjIyMhQcHCxJ2rp1q8rLyxUSElJtdQAAAADVrUohemZmpr3rAAAAAHCJ7DkvLygo0KFDh6zG3rt3r7y8vOTl5aWZM2cqOjpafn5+Onz4sB599FG1bdtW4eHhkqSOHTsqIiJC48eP1/Lly1VSUqL4+HiNGDFCAQEBdqsTAAAAqGlV2hMdAAAAwNVlz5496tGjh3r06CFJSkhIUI8ePTRt2jQ5Oztr3759uu2229SuXTvFxsYqODhYn332mcxms2WM1atXq0OHDho4cKAGDx6sXr166eWXX3bUIwEAAAB2UaWV6OPGjTtv++uvv16lYgAAAABcPHvOy/v16yfDMGy2f/LJJxccw8vLSykpKRd9TwAAAOBKUKUQ/bfffrM6Lykp0Xfffafc3FwNGDDALoUBAAAAOD/m5QAAAED1q1KIvm7dugrXysvLNXHiRLVp0+ayiwIAAABwYczLAQAAgOpntz3RnZyclJCQoAULFthrSAAAAACXiHk5AAAAYF92/WDRw4cPq7S01J5DAgAAALhEzMsBAAAA+6nSdi4JCQlW54Zh6Pjx4/rwww81ZswYuxQGAAAA4PyYlwMAAADVr0oh+r/+9S+rcycnJ3l7e+u5557TuHHj7FIYAAAAgPNjXg4AAABUvyqF6Nu2bbN3HQAAAAAuEfNyAAAAoPpVKUQ/58SJEzpw4IAkqX379vL29rZLUQAAAAAuHvNyAAAAoPpU6YNFCwsLNW7cOPn7+6tPnz7q06ePAgICFBsbqzNnzti7RgAAAACVYF4OAAAAVL8qhegJCQlKS0vThg0blJubq9zcXL3//vtKS0vTww8/bO8aAQAAAFSCeTkAAABQ/aq0ncu7776rd955R/369bNcGzx4sOrVq6e77rpLy5Yts1d9AAAAAGxgXg4AAABUvyqtRD9z5ox8fX0rXPfx8eFtowAAAEANYV4OAAAAVL8qheihoaGaPn26zp49a7n2+++/a+bMmQoNDbVbcQAAAABsY14OAAAAVL8qbeeycOFCRUREqFmzZgoKCpIkffPNNzKbzdq0aZNdCwQAAABQOeblAAAAQPWr0kr0rl276uDBg0pKSlL37t3VvXt3PfPMMzp06JA6d+580ePs2LFDUVFRCggIkMlk0vr1663aDcPQtGnT5O/vr3r16iksLEwHDx606nPq1CnFxMTI3d1dnp6eio2NVUFBQVUeCwAAALii2GteDgAAAMC2Kq1ET0pKkq+vr8aPH291/fXXX9eJEyf02GOPXdQ4hYWFCgoK0rhx43THHXdUaJ83b54WLVqklStXqlWrVnrqqacUHh6u77//Xq6urpKkmJgYHT9+XJs3b1ZJSYnuu+8+TZgwQSkpKVV5NAAAAOCKYa95OQAAAADbqrQS/aWXXlKHDh0qXO/cubOWL19+0eNERkZqzpw5GjZsWIU2wzC0cOFCPfnkk7r99tvVrVs3rVq1SseOHbOsWP/hhx+0ceNGvfrqqwoJCVGvXr20ePFirVmzRseOHavKowEAAABXDHvNywEAAADYVqUQPSsrS/7+/hWue3t76/jx45ddlCRlZmYqKytLYWFhlmseHh4KCQlRenq6JCk9PV2enp7q2bOnpU9YWJicnJy0e/dum2MXFRUpPz/f6gAAAACuNDUxLwcAAACudVUK0QMDA/X5559XuP75558rICDgsouS/vcHgST5+vpaXff19bW0ZWVlycfHx6q9Tp068vLysvSpTFJSkjw8PCxHYGCgXWoGAAAAalJNzMsBAACAa12V9kQfP368Jk+erJKSEg0YMECStGXLFj366KN6+OGH7VpgdUhMTFRCQoLlPD8/nyAdAAAAV5wrfV4OAAAAXAmqFKJPnTpVJ0+e1IMPPqji4mJJkqurqx577DElJibapTA/Pz9JUnZ2ttVbVLOzs9W9e3dLn5ycHKvXlZaW6tSpU5bXV8ZsNstsNtulTgAAAMBRamJeDgAAAFzrqrSdi8lk0ty5c3XixAnt2rVL33zzjU6dOqVp06bZrbBWrVrJz89PW7ZssVzLz8/X7t27FRoaKkkKDQ1Vbm6uMjIyLH22bt2q8vJyhYSE2K0WAAAAoDaqiXk5AAAAcK2r0kr0cxo2bKgbbrihyq8vKCjQoUOHLOeZmZnau3evvLy81Lx5c02ePFlz5szRddddp1atWumpp55SQECAhg4dKknq2LGjIiIiNH78eC1fvlwlJSWKj4/XiBEj2AMSAAAA14zLnZcDAAAAsO2yQvTLtWfPHvXv399yfm6f8jFjxig5OVmPPvqoCgsLNWHCBOXm5qpXr17auHGjXF1dLa9ZvXq14uPjNXDgQDk5OSk6OlqLFi2q8WcBAAAAAAAAAFx9HBqi9+vXT4Zh2Gw3mUyaNWuWZs2aZbOPl5eXUlJSqqM8AAAAAAAAAMA1rkp7ogMAAAAAAAAAcC0gRAcAAAAAAAAAwAZCdAAAAAAAAAAAbCBEBwAAAAAAAADABod+sCgAAAAA1JTgqascXQJgFxnzRzu6BAAArimsRAcAAAAAAAAAwAZCdAAAAAAAAAAAbCBEBwAAAAAAAADABkJ0AAAAANqxY4eioqIUEBAgk8mk9evXW7UbhqFp06bJ399f9erVU1hYmA4ePGjV59SpU4qJiZG7u7s8PT0VGxurgoKCGnwKAAAAwP4I0QEAAACosLBQQUFBWrJkSaXt8+bN06JFi7R8+XLt3r1bDRo0UHh4uM6ePWvpExMTo/3792vz5s1KTU3Vjh07NGHChJp6BAAAAKBa1HF0AQAAAAAcLzIyUpGRkZW2GYahhQsX6sknn9Ttt98uSVq1apV8fX21fv16jRgxQj/88IM2btyor776Sj179pQkLV68WIMHD9azzz6rgICACuMWFRWpqKjIcp6fn18NTwYAAABcHlaiAwAAADivzMxMZWVlKSwszHLNw8NDISEhSk9PlySlp6fL09PTEqBLUlhYmJycnLR79+5Kx01KSpKHh4flCAwMrN4HAQAAAKqAEB0AAADAeWVlZUmSfH19ra77+vpa2rKysuTj42PVXqdOHXl5eVn6/FliYqLy8vIsx88//1wN1QMAAACXh+1cAAAAADiE2WyW2Wx2dBkAAADAebESHQAAAMB5+fn5SZKys7OtrmdnZ1va/Pz8lJOTY9VeWlqqU6dOWfoAAAAAVyJCdAAAAADn1apVK/n5+WnLli2Wa/n5+dq9e7dCQ0MlSaGhocrNzVVGRoalz9atW1VeXq6QkJAarxkAAACwF7ZzAQAAAKCCggIdOnTIcp6Zmam9e/fKy8tLzZs31+TJkzVnzhxdd911atWqlZ566ikFBARo6NChkqSOHTsqIiJC48eP1/Lly1VSUqL4+HiNGDFCAQEBDnoqAAAA4PIRogMAAADQnj171L9/f8t5QkKCJGnMmDFKTk7Wo48+qsLCQk2YMEG5ubnq1auXNm7cKFdXV8trVq9erfj4eA0cOFBOTk6Kjo7WokWLavxZAAAAAHsiRAcAAACgfv36yTAMm+0mk0mzZs3SrFmzbPbx8vJSSkpKdZQHAAAAOAx7ogMAAAAAAAAAYAMhOgAAAAAAAAAANhCiAwAAAAAAAABgAyE6AAAAAAAAAAA2EKIDAAAAAAAAAGADIToAAAAAAAAAADYQogMAAAAAAAAAYAMhOgAAAAAAAAAANhCiAwAAAAAAAABgAyE6AAAAAAAAAAA2EKIDAAAAAAAAAGADIToAAAAAAAAAADYQogMAAAAAAAAAYAMhOgAAAAAAAAAANhCiAwAAAAAAAABgAyE6AAAAAAAAAAA2EKIDAAAAAAAAAGADIToAAAAAAAAAADYQogMAAAAAAAAAYAMhOgAAAAAAAAAANhCiAwAAAAAAAABgAyE6AAAAAAAAAAA2EKIDAAAAAAAAAGBDrQ7RZ8yYIZPJZHV06NDB0n727FnFxcWpcePGatiwoaKjo5Wdne3AigEAAAAAAAAAV5NaHaJLUufOnXX8+HHLsXPnTkvblClTtGHDBq1du1ZpaWk6duyY7rjjDgdWCwAAAAAAAAC4mtRxdAEXUqdOHfn5+VW4npeXp9dee00pKSkaMGCAJGnFihXq2LGjdu3apZtuuqmmSwUAAAAAAAAAXGVq/Ur0gwcPKiAgQK1bt1ZMTIyOHj0qScrIyFBJSYnCwsIsfTt06KDmzZsrPT39vGMWFRUpPz/f6gAAAAAAAAAA4M9qdYgeEhKi5ORkbdy4UcuWLVNmZqZ69+6t06dPKysrSy4uLvL09LR6ja+vr7Kyss47blJSkjw8PCxHYGBgNT4FAAAAAAAAAOBKVau3c4mMjLR83a1bN4WEhKhFixZ6++23Va9evSqPm5iYqISEBMt5fn4+QToAAAAAAAAAoIJavRL9zzw9PdWuXTsdOnRIfn5+Ki4uVm5urlWf7OzsSvdQ/yOz2Sx3d3erAwAAAAAAAACAP7uiQvSCggIdPnxY/v7+Cg4OVt26dbVlyxZL+4EDB3T06FGFhoY6sEoAAAAAAAAAwNWiVm/n8sgjjygqKkotWrTQsWPHNH36dDk7O2vkyJHy8PBQbGysEhIS5OXlJXd3d02aNEmhoaG66aabHF06AAAAAAAAAOAqUKtD9F9++UUjR47UyZMn5e3trV69emnXrl3y9vaWJC1YsEBOTk6Kjo5WUVGRwsPDtXTpUgdXDQAAAAAAAAC4WtTq7VzWrFmjY8eOqaioSL/88ovWrFmjNm3aWNpdXV21ZMkSnTp1SoWFhXrvvfcuuB86AAAAgEs3Y8YMmUwmq6NDhw6W9rNnzyouLk6NGzdWw4YNFR0drezsbAdWDAAAANhHrQ7RAQAAANQenTt31vHjxy3Hzp07LW1TpkzRhg0btHbtWqWlpenYsWO64447HFgtAAAAYB+1ejsXAAAAALVHnTp1Kn3nZ15enl577TWlpKRowIABkqQVK1aoY8eO2rVrl83PLCoqKlJRUZHlPD8/v3oKBwAAAC4DK9EBAAAAXJSDBw8qICBArVu3VkxMjI4ePSpJysjIUElJicLCwix9O3TooObNmys9Pd3meElJSfLw8LAcgYGB1f4MAAAAwKUiRAcAAABwQSEhIUpOTtbGjRu1bNkyZWZmqnfv3jp9+rSysrLk4uIiT09Pq9f4+voqKyvL5piJiYnKy8uzHD///HM1PwUAAABw6djOBQAAAMAFRUZGWr7u1q2bQkJC1KJFC7399tuqV69elcY0m80ym832KhEAAACoFqxEBwAAAHDJPD091a5dOx06dEh+fn4qLi5Wbm6uVZ/s7OxK91AHAAAAriSE6AAAAAAuWUFBgQ4fPix/f38FBwerbt262rJli6X9wIEDOnr0qEJDQx1YJQAAAHD52M4FAAAAwAU98sgjioqKUosWLXTs2DFNnz5dzs7OGjlypDw8PBQbG6uEhAR5eXnJ3d1dkyZNUmhoqG666SZHlw4AAABcFkJ0AAAAABf0yy+/aOTIkTp58qS8vb3Vq1cv7dq1S97e3pKkBQsWyMnJSdHR0SoqKlJ4eLiWLl3q4KoBAACAy0eIDgAAAOCC1qxZc952V1dXLVmyREuWLKmhigAAAICawZ7oAAAAAAAAAADYQIgOAAAAAAAAAIANhOgAAAAAAAAAANhAiA4AAAAAAAAAgA2E6AAAAAAAAAAA2ECIDgAAAAAAAACADYToAAAAAAAAAADYQIgOAAAAAAAAAIANhOgAAAAAAAAAANhAiA4AAAAAAAAAgA2E6AAAAAAAAAAA2ECIDgAAAAAAAACADYToAAAAAAAAAADYQIgOAAAAAAAAAIANhOgAAAAAAAAAANhAiA4AAAAAAAAAgA2E6AAAAAAAAAAA2ECIDgAAAAAAAACADYToAAAAAAAAAADYQIgOAAAAAAAAAIANhOgAAAAAAAAAANhAiA4AAAAAAAAAgA2E6AAAAAAAAAAA2ECIDgAAAAAAAACADYToAAAAAAAAAADYUMfRBQAAAAAAgKtX8NRVji4BsJuM+aMdXQIAB2AlOgAAAAAAAAAANhCiAwAAAAAAAABgAyE6AAAAAAAAAAA2EKIDAAAAAAAAAGADIToAAAAAAAAAADYQogMAAAAAAAAAYAMhOgAAAAAAAAAANlw1IfqSJUvUsmVLubq6KiQkRF9++aWjSwIAAACuSczNAQAAcDW5KkL0t956SwkJCZo+fbq+/vprBQUFKTw8XDk5OY4uDQAAALimMDcHAADA1aaOowuwh+eff17jx4/XfffdJ0lavny5PvzwQ73++ut6/PHHK/QvKipSUVGR5TwvL0+SlJ+fXzMF21BW9LtD7w/gyuLo31m1Cb8/AVwKR//+PHd/wzAcWkd1uZS5eU3Py/n/Ba4Wjv49dqn42cPVhJ8/wHGq4+fvYufmJuMKn70XFxerfv36eueddzR06FDL9TFjxig3N1fvv/9+hdfMmDFDM2fOrMEqAQAAAGs///yzmjVr5ugy7OpS5+bMywEAAFAbXGhufsWvRP/1119VVlYmX19fq+u+vr768ccfK31NYmKiEhISLOfl5eU6deqUGjduLJPJVK31ApcqPz9fgYGB+vnnn+Xu7u7ocgDgisHvT9RWhmHo9OnTCggIcHQpdnepc3Pm5VcXfu8CjsPPH+A4/Pxd2S52bn7Fh+hVYTabZTabra55eno6phjgIrm7u/PLGACqgN+fqI08PDwcXUKtwLz86sTvXcBx+PkDHIefvyvXxczNr/gPFm3SpImcnZ2VnZ1tdT07O1t+fn4OqgoAAAC49jA3BwAAwNXoig/RXVxcFBwcrC1btliulZeXa8uWLQoNDXVgZQAAAMC1hbk5AAAArkZXxXYuCQkJGjNmjHr27Kkbb7xRCxcuVGFhoe677z5HlwZcNrPZrOnTp1d4qzMA4Pz4/Qk4BnPzaxe/dwHH4ecPcBx+/q4NJsMwDEcXYQ8vvvii5s+fr6ysLHXv3l2LFi1SSEiIo8sCAAAArjnMzQEAAHA1uWpCdAAAAAAAAAAA7O2K3xMdAAAAAAAAAIDqQogOAAAAAAAAAIANhOgAAAAAAAAAANhAiA4AAAAAAAAAgA2E6EAttmTJErVs2VKurq4KCQnRl19+6eiSAKDW27Fjh6KiohQQECCTyaT169c7uiQAuCYwdwVqHvMewHGSkpJ0ww03yM3NTT4+Pho6dKgOHDjg6LJQTQjRgVrqrbfeUkJCgqZPn66vv/5aQUFBCg8PV05OjqNLA4BarbCwUEFBQVqyZImjSwGAawZzV8AxmPcAjpOWlqa4uDjt2rVLmzdvVklJiQYNGqTCwkJHl4ZqYDIMw3B0EQAqCgkJ0Q033KAXX3xRklReXq7AwEBNmjRJjz/+uIOrA4Arg8lk0rp16zR06FBHlwIAVzXmroDjMe8BHOvEiRPy8fFRWlqa+vTp4+hyYGesRAdqoeLiYmVkZCgsLMxyzcnJSWFhYUpPT3dgZQAAAIA15q4AAEh5eXmSJC8vLwdXgupAiA7UQr/++qvKysrk6+trdd3X11dZWVkOqgoAAACoiLkrAOBaV15ersmTJ+uWW25Rly5dHF0OqkEdRxcAAAAAAAAAAFequLg4fffdd9q5c6ejS0E1IUQHaqEmTZrI2dlZ2dnZVtezs7Pl5+fnoKoAAACAipi7AgCuZfHx8UpNTdWOHTvUrFkzR5eDasJ2LkAt5OLiouDgYG3ZssVyrby8XFu2bFFoaKgDKwMAAACsMXcFAFyLDMNQfHy81q1bp61bt6pVq1aOLgnViJXoQC2VkJCgMWPGqGfPnrrxxhu1cOFCFRYW6r777nN0aQBQqxUUFOjQoUOW88zMTO3du1deXl5q3ry5AysDgKsXc1fAMZj3AI4TFxenlJQUvf/++3Jzc7N8DoiHh4fq1avn4OpgbybDMAxHFwGgci+++KLmz5+vrKwsde/eXYsWLVJISIijywKAWm379u3q379/hetjxoxRcnJyzRcEANcI5q5AzWPeAziOyWSq9PqKFSs0duzYmi0G1Y4QHQAAAAAAAAAAG9gTHQAAAAAAAAAAGwjRAQAAAAAAAACwgRAdAAAAAAAAAAAbCNEBAAAAAAAAALCBEB0AAAAAAAAAABsI0QEAAAAAAAAAsIEQHQAAAAAAAAAAGwjRAQDVql+/fpo8ebKjywAAAABqjeTkZHl6etaacQAA50eIDgDXgKysLP3tb39T27Zt5erqKl9fX91yyy1atmyZzpw54+jyAAAAgFph7NixMplMeuCBByq0xcXFyWQyaezYsZd9n7vvvlv//ve/LeczZsxQ9+7dL3vcyqSlpWnAgAHy8vJS/fr1dd1112nMmDEqLi6WVPUgfvv27TKZTMrNzbVvwQBQCxGiA8BV7j//+Y969OihTZs26emnn9a//vUvpaen69FHH1Vqaqo+/fRTR5d4XmVlZSovL3d0GQAAALhGBAYGas2aNfr9998t186ePauUlBQ1b978sscvKSlRvXr15OPjc9ljXcj333+viIgI9ezZUzt27NC3336rxYsXy8XFRWVlZdV+fwC4WhCiA8BV7sEHH1SdOnW0Z88e3XXXXerYsaNat26t22+/XR9++KGioqIkSbm5ufrrX/8qb29vubu7a8CAAfrmm28s45xbHfPPf/5TLVu2lIeHh0aMGKHTp09b+hQWFmr06NFq2LCh/P399dxzz1Wop6ioSI888oiaNm2qBg0aKCQkRNu3b7e0n1sJ88EHH6hTp04ym806evRo9X2DAAAAgD+4/vrrFRgYqPfee89y7b333lPz5s3Vo0cPq74bN25Ur1695OnpqcaNG+vWW2/V4cOHLe1HjhyRyWTSW2+9pb59+8rV1VWrV6+2Wv2dnJysmTNn6ptvvpHJZJLJZFJycrIk6fnnn1fXrl3VoEEDBQYG6sEHH1RBQcFFP8umTZvk5+enefPmqUuXLmrTpo0iIiL0yiuvqF69etq+fbvuu+8+5eXlWe49Y8YMSdI///lP9ezZU25ubvLz89M999yjnJwcy3P1799fktSoUSOrFfotW7bUwoULrero3r27ZVzDMDRjxgw1b95cZrNZAQEBeuihhy76mQDAEQjRAeAqdvLkSW3atElxcXFq0KBBpX1MJpMkafjw4crJydHHH3+sjIwMXX/99Ro4cKBOnTpl6Xv48GGtX79eqampSk1NVVpamp555hlL+9SpU5WWlqb3339fmzZt0vbt2/X1119b3S8+Pl7p6elas2aN9u3bp+HDhysiIkIHDx609Dlz5ozmzp2rV199Vfv376+RVToAAADAOePGjdOKFSss56+//rruu+++Cv0KCwuVkJCgPXv2aMuWLXJyctKwYcMqvJPy8ccf19/+9jf98MMPCg8Pt2q7++679fDDD6tz5846fvy4jh8/rrvvvluS5OTkpEWLFmn//v1auXKltm7dqkcfffSin8PPz0/Hjx/Xjh07Km2/+eabtXDhQrm7u1vu/cgjj0j634r52bNn65tvvtH69et15MgRS1AeGBiod999V5J04MABHT9+XC+88MJF1fTuu+9qwYIFeumll3Tw4EGtX79eXbt2vehnAgBHqOPoAgAA1efQoUMyDEPt27e3ut6kSROdPXtW0v/2doyKitKXX36pnJwcmc1mSdKzzz6r9evX65133tGECRMkSeXl5UpOTpabm5skadSoUdqyZYv+8Y9/qKCgQK+99preeOMNDRw4UJK0cuVKNWvWzHLfo0ePasWKFTp69KgCAgIkSY888og2btyoFStW6Omnn5b0vwn70qVLFRQUVI3fHQAAAKBy9957rxITE/XTTz9Jkj7//HOtWbPG6h2UkhQdHW11/vrrr8vb21vff/+9unTpYrk+efJk3XHHHZXeq169emrYsKHq1KkjPz8/q7bJkydbvm7ZsqXmzJmjBx54QEuXLr2o5xg+fLg++eQT9e3bV35+frrppps0cOBAjR49Wu7u7nJxcZGHh4dMJlOFe48bN87ydevWrbVo0SLdcMMNKigoUMOGDeXl5SVJ8vHxuaQ91Y8ePSo/Pz+FhYWpbt26at68uW688caLfj0AOAIr0QHgGvTll19q79696ty5s4qKivTNN9+ooKBAjRs3VsOGDS1HZmam1dtRW7ZsaQnQJcnf39/yls7Dhw+ruLhYISEhlnYvLy+rAP/bb79VWVmZ2rVrZ3WftLQ0q/u4uLioW7du1fktAAAAAGzy9vbWkCFDlJycrBUrVmjIkCFq0qRJhX4HDx7UyJEj1bp1a7m7u6tly5aSVGE7wp49e1apjk8//VQDBw5U06ZN5ebmplGjRunkyZM6c+bMRb3e2dlZK1as0C+//KJ58+apadOmevrppy2r3s8nIyNDUVFRat68udzc3NS3b99Kn+1SDR8+XL///rtat26t8ePHa926dSotLb2sMQGgurESHQCuYm3btpXJZNKBAwesrrdu3VrS/1a9SFJBQYH8/f0rrKyRZLWqpG7dulZtJpPpkj70s6CgQM7OzsrIyJCzs7NVW8OGDS1f16tXz7LNDAAAAOAI48aNU3x8vCRpyZIllfaJiopSixYt9MorryggIEDl5eXq0qWLiouLrfrZ2lrxfI4cOaJbb71VEydO1D/+8Q95eXlp586dio2NVXFxserXr3/RYzVt2lSjRo3SqFGjNHv2bLVr107Lly/XzJkzK+1fWFio8PBwhYeHa/Xq1fL29tbRo0cVHh5e4dn+zMnJSYZhWF0rKSmxfB0YGKgDBw7o008/1ebNm/Xggw9q/vz5SktLq/D3BgDUFoToAHAVa9y4sf7yl7/oxRdf1KRJk2xO3q+//nplZWWpTp06ltUzl6pNmzaqW7eudu/erebNm0uSfvvtN/373/+2rFrp0aOHysrKlJOTo969e1fpPgAAAEBNiIiIUHFxsUwmU4V9zKX/ff7QgQMH9Morr1jmtjt37qzSvVxcXFRWVmZ1LSMjQ+Xl5Xruuefk5PS/jQTefvvtKo3/R40aNZK/v78KCwtt3vvHH3/UyZMn9cwzzygwMFCStGfPngo1S6rwWm9vb6tV7vn5+crMzLTqU69ePUVFRSkqKkpxcXHq0KGDvv32W11//fWX/XwAUB0I0QHgKrd06VLdcsst6tmzp2bMmKFu3brJyclJX331lX788UcFBwcrLCxMoaGhGjp0qObNm6d27drp2LFj+vDDDzVs2LCLevtpw4YNFRsbq6lTp6px48by8fHRE088YZnwS1K7du0UExOj0aNH67nnnlOPHj104sQJbdmyRd26ddOQIUOq81sBAAAAXDRnZ2f98MMPlq//rFGjRmrcuLFefvll+fv76+jRo3r88cerdK+WLVsqMzNTe/fuVbNmzeTm5qa2bduqpKREixcvVlRUlD7//HMtX778ksZ96aWXtHfvXg0bNkxt2rTR2bNntWrVKu3fv1+LFy+23LugoEBbtmxRUFCQ6tevr+bNm8vFxUWLFy/WAw88oO+++06zZ8+2GrtFixYymUxKTU3V4MGDLXu7DxgwQMnJyYqKipKnp6emTZtm9f1LTk5WWVmZQkJCVL9+fb3xxhuqV6+eWrRoUaXvHQDUBPZEB4CrXJs2bfSvf/1LYWFhSkxMVFBQkHr27KnFixfrkUce0ezZs2UymfTRRx+pT58+uu+++9SuXTuNGDFCP/30k3x9fS/6XvPnz1fv3r0VFRWlsLAw9erVS8HBwVZ9VqxYodGjR+vhhx9W+/btNXToUH311VeW1esAAABAbeHu7i53d/dK25ycnLRmzRplZGSoS5cumjJliubPn1+l+0RHRysiIkL9+/eXt7e33nzzTQUFBen555/X3Llz1aVLF61evVpJSUmXNO6NN96ogoICPfDAA+rcubP69u2rXbt2af369ZZ3i95888164IEHdPfdd8vb21vz5s2Tt7e3kpOTtXbtWnXq1EnPPPOMnn32WauxmzZtqpkzZ+rxxx+Xr6+vZeubxMRE9e3bV7feequGDBmioUOHqk2bNpbXeXp66pVXXtEtt9yibt266dNPP9WGDRvUuHHjKn3vAKAmmIw/b1QFAAAAAAAAAAAksRIdAAAAAAAAAACbCNEBAAAAAAAAALCBEB0AAAAAAAAAABsI0QEAAAAAAAAAsIEQHQAAAAAAAAAAGwjRAQAAAAAAAACwgRAdAAAAAAAAAAAbCNEBAAAAAAAAALCBEB0AAAAAAAAAABsI0QEAAAAAAAAAsIEQHQAAAAAAAAAAGwjRAQAAAAAAAACwgRAdAAAAAAAAAAAbCNEBAAAAAAAAALCBEB0AAAAAAAAAABsI0QEAAAAAAAAAsIEQHQAAAAAAAAAAGwjRAQC10owZM2QymRxdBgAAAGA3JpNJ8fHxF+yXnJwsk8mkI0eOVH9RAIALIkQHgFpm//79uvfee9W0aVOZzWYFBAQoJiZG+/fvd3RpdnfmzBnNmDFD27dvd3QpAAAAuIKdC51NJpN27txZod0wDAUGBspkMunWW2+t1lq++OILzZgxQ7m5udV6n0sxduxYNWzY0NFlAMAVixAdAGqR9957T9dff722bNmi++67T0uXLlVsbKy2bdum66+/XuvWrXN0iXZ15swZzZw5s9IQ/cknn9Tvv/9e80UBAADgiuXq6qqUlJQK19PS0vTLL7/IbDZXew1ffPGFZs6cWatCdADA5anj6AIAAP9z+PBhjRo1Sq1bt9aOHTvk7e1tafvb3/6m3r17a9SoUdq3b59at27twEprRp06dVSnDv+bAgAAwMUbPHiw1q5dq0WLFlnNJVNSUhQcHKxff/3VgdUBAK5UrEQHgFpi/vz5OnPmjF5++WWrAF2SmjRpopdeekmFhYWaN2+e5fp///tfxcbGKiAgQGazWa1atdLEiRNVXFxs6ZObm6spU6aoZcuWMpvNatasmUaPHm35A8LWfovbt2+XyWSyWiXer18/denSRRkZGbr55ptVr149tWrVSsuXL7d6bXFxsaZNm6bg4GB5eHioQYMG6t27t7Zt22bpc+TIEctzzpw50/L22xkzZkiqfE/00tJSzZ49W23atJHZbFbLli3197//XUVFRVb9WrZsqVtvvVU7d+7UjTfeKFdXV7Vu3VqrVq26iP8SAAAAuFKNHDlSJ0+e1ObNmy3XiouL9c477+iee+6p9DWFhYV6+OGHFRgYKLPZrPbt2+vZZ5+VYRhW/c7tZ75+/Xp16dJFZrNZnTt31saNGy19ZsyYoalTp0qSWrVqZZnj/nmufb4xKjNmzBg1adJEJSUlFdoGDRqk9u3bn/f1lbmUOfOF/qaQpJycHMXGxsrX11eurq4KCgrSypUrrcY5cuSITCaTnn32WS1ZskStW7dW/fr1NWjQIP38888yDEOzZ89Ws2bNVK9ePd1+++06depUhXo+/vhj9e7dWw0aNJCbm5uGDBlyVW5/CaD2IEQHgFpiw4YNatmypXr37l1pe58+fdSyZUt9+OGHkqRjx47pxhtv1Jo1a3T33Xdr0aJFGjVqlNLS0nTmzBlJUkFBgXr37q3Fixdr0KBBeuGFF/TAAw/oxx9/1C+//FKlOn/77TcNHjxYwcHBmjdvnpo1a6aJEyfq9ddft/TJz8/Xq6++qn79+mnu3LmaMWOGTpw4ofDwcO3du1eS5O3trWXLlkmShg0bpn/+85/65z//qTvuuMPmvf/6179q2rRpuv7667VgwQL17dtXSUlJGjFiRIW+hw4d0p133qm//OUveu6559SoUSONHTuWyTUAAMBVrGXLlgoNDdWbb75pufbxxx8rLy+v0jmjYRi67bbbtGDBAkVEROj5559X+/btNXXqVCUkJFTov3PnTj344IMaMWKE5s2bp7Nnzyo6OlonT56UJN1xxx0aOXKkJGnBggWWOe4fF8lcaIzKjBo1SidPntQnn3xidT0rK0tbt27Vvffee2nfqP/vYubMF/M3xe+//65+/frpn//8p2JiYjR//nx5eHho7NixeuGFFyrcd/Xq1Vq6dKkmTZqkhx9+WGlpabrrrrv05JNPauPGjXrsscc0YcIEbdiwQY888ojVa//5z39qyJAhatiwoebOnaunnnpK33//vXr16sUHsQKoPgYAwOFyc3MNScbtt99+3n633XabIcnIz883Ro8ebTg5ORlfffVVhX7l5eWGYRjGtGnTDEnGe++9Z7PPihUrDElGZmamVfu2bdsMSca2bdss1/r27WtIMp577jnLtaKiIqN79+6Gj4+PUVxcbBiGYZSWlhpFRUVW4/3222+Gr6+vMW7cOMu1EydOGJKM6dOnV6hv+vTpxh//N7V3715DkvHXv/7Vqt8jjzxiSDK2bt1qudaiRQtDkrFjxw7LtZycHMNsNhsPP/xwhXsBAADgynZuTvvVV18ZL774ouHm5macOXPGMAzDGD58uNG/f3/DMP43TxwyZIjldevXrzckGXPmzLEa78477zRMJpNx6NAhyzVJhouLi9W1b775xpBkLF682HJt/vz5lc6vL2WMP8/Ry8rKjGbNmhl333231XjPP/+8YTKZjP/85z/n/f6MGTPGaNCggdW1i50zX8zfFAsXLjQkGW+88Yalrbi42AgNDTUaNmxo5OfnG4ZhGJmZmYYkw9vb28jNzbX0TUxMNCQZQUFBRklJieX6yJEjDRcXF+Ps2bOGYRjG6dOnDU9PT2P8+PFWdWRlZRkeHh4VrgOAvbASHQBqgdOnT0uS3NzcztvvXHt+fr7Wr1+vqKgo9ezZs0K/c9ugvPvuuwoKCtKwYcNs9rlUderU0f333285d3Fx0f3336+cnBxlZGRIkpydneXi4iJJKi8v16lTp1RaWqqePXvq66+/rtJ9P/roI0mqsCLo4YcfliTLCv1zOnXqZLWq39vbW+3bt9d//vOfKt0fAAAAV4a77rpLv//+u1JTU3X69Gmlpqba3Mrlo48+krOzsx566CGr6w8//LAMw9DHH39sdT0sLExt2rSxnHfr1k3u7u6XNMesyhhOTk6KiYnRBx98YPnbQfrfiu6bb75ZrVq1uuj7/9HFzJkv5m+Kjz76SH5+fpZV+JJUt25dPfTQQyooKFBaWprV64YPHy4PDw/LeUhIiCTp3nvvtdrLPiQkRMXFxfrvf/8rSdq8ebNyc3M1cuRI/frrr5bD2dlZISEhVttHAoA9EaIDQC1wLhz/44S4MufaS0tLlZ+fry5dupy3/+HDhy/Y51IFBASoQYMGVtfatWsnSVZvn1y5cqW6desmV1dXNW7cWN7e3vrwww+Vl5dXpfv+9NNPcnJyUtu2ba2u+/n5ydPTUz/99JPV9ebNm1cYo1GjRvrtt9+qdH8AAABcGby9vRUWFqaUlBS99957Kisr05133llp359++kkBAQEVFrN07NjR0v5H9phjVnWM0aNH6/fff9e6deskSQcOHFBGRoZGjRp10feuSi0X8zfFTz/9pOuuu05OTtYx08V+H88F6oGBgZVeP1fPwYMHJUkDBgyQt7e31bFp0ybl5OSct04AqKo6F+4CAKhuHh4e8vf31759+87bb9++fWratKlcXV3tdm9bK9LLysqqPOYbb7yhsWPHaujQoZo6dap8fHzk7OyspKQkHT58uMrjShe/gt7Z2bnS68afPiAKAAAAV5977rlH48ePV1ZWliIjI+Xp6WmXce0xx6zqGJ06dVJwcLDeeOMNjR49Wm+88YZcXFx01113XfS97VXL5bJ13wvVU15eLul/+6L7+flV6PfHVewAYE/8dgGAWuLWW2/VK6+8op07d6pXr14V2j/77DMdOXJE999/v7y9veXu7q7vvvvuvGO2adPmgn0aNWokScrNzbW6/ufVIuccO3ZMhYWFVqvR//3vf0v63wc5SdI777yj1q1b67333rMKvadPn2411qVsKdOiRQuVl5fr4MGDlhUtkpSdna3c3Fy1aNHioscCAADA1W3YsGG6//77tWvXLr311ls2+7Vo0UKffvqpTp8+bbUa/ccff7S0X6qqbpt4MUaPHq2EhAQdP35cKSkpGjJkiGU+X10u5m+KFi1aaN++fSovL7dajX4530dbtUiSj4+PwsLC7DImAFwMtnMBgFpi6tSpqlevnu6//36dPHnSqu3UqVN64IEHVL9+fU2dOlVOTk4aOnSoNmzYoD179lQY69xKjejoaH3zzTeWt3xW1ufcRHTHjh2WtrKyMr388suV1llaWqqXXnrJcl5cXKyXXnpJ3t7eCg4OlvR/K0j+uIJl9+7dSk9Ptxqrfv36kioG+JUZPHiwJGnhwoVW159//nlJ0pAhQy44BgAAAK4NDRs21LJlyzRjxgxFRUXZ7Dd48GCVlZXpxRdftLq+YMECmUwmRUZGXvK9zy02uZg57qUaOXKkTCaT/va3v+k///mP7r33Xrvf488u5m+KwYMHKysry+ofLEpLS7V48WI1bNhQffv2tUst4eHhcnd319NPP62SkpIK7SdOnLDLfQDgz1iJDgC1xHXXXaeVK1cqJiZGXbt2VWxsrFq1aqUjR47otdde06+//qo333zTEno//fTT2rRpk/r27asJEyaoY8eOOn78uNauXaudO3fK09NTU6dO1TvvvKPhw4dr3LhxCg4O1qlTp/TBBx9o+fLlCgoKUufOnXXTTTcpMTFRp06dkpeXl9asWaPS0tJK6wwICNDcuXN15MgRtWvXTm+99Zb27t2rl19+WXXr1pX0v1X17733noYNG6YhQ4YoMzNTy5cvV6dOnVRQUGAZq169eurUqZPeeusttWvXTl5eXurSpUuley4GBQVpzJgxevnll5Wbm6u+ffvqyy+/1MqVKzV06FD179+/Gv6rAAAA4Eo1ZsyYC/aJiopS//799cQTT+jIkSMKCgrSpk2b9P7772vy5MlWHwB6sc4tLHniiSc0YsQI1a1bV1FRURU+V6gqvL29FRERobVr18rT07NGFpJczN8UEyZM0EsvvaSxY8cqIyNDLVu21DvvvKPPP/9cCxcurLDnfFW5u7tr2bJlGjVqlK6//nqNGDFC3t7eOnr0qD788EPdcsstFf5BBADsgRAdAGqR4cOHq0OHDkpKSrIE540bN1b//v3197//3Spcbtq0qXbv3q2nnnpKq1evVn5+vpo2barIyEjLCu+GDRvqs88+0/Tp07Vu3TqtXLlSPj4+GjhwoJo1a2YZa/Xq1br//vv1zDPPyNPTU7Gxserfv7/+8pe/VKixUaNGWrlypSZNmqRXXnlFvr6+evHFFzV+/HhLn7FjxyorK0svvfSSPvnkE3Xq1ElvvPGG1q5dq+3bt1uN9+qrr2rSpEmaMmWKiouLNX36dJsfXPTqq6+qdevWSk5O1rp16+Tn56fExMQK28QAAAAAF8PJyUkffPCBpk2bprfeeksrVqxQy5YtNX/+fD388MNVGvOGG27Q7NmztXz5cm3cuFHl5eXKzMy0S4gu/W9Ll9TUVN11110ym812GfN8LuZvinr16mn79u16/PHHtXLlSuXn56t9+/ZasWKFxo4da9d67rnnHgUEBOiZZ57R/PnzVVRUpKZNm6p3796677777HovADjHZPAJawCAi9SvXz/9+uuvF9wTEQAAAED1eP/99zV06FDt2LFDvXv3dnQ5AHBNYE90AAAAAACAK8Qrr7yi1q1bq1evXo4uBQCuGWznAgAAAAAAUMutWbNG+/bt04cffqgXXnhBJpPJ0SUBwDWDEB0AAAAAAKCWGzlypBo2bKjY2Fg9+OCDji4HAK4p7IkOAAAAAAAAAIAN7IkOAAAAAAAAAIANhOgAAAAAAAAAANjAnuiSysvLdezYMbm5ufHBHAAAAKhWhmHo9OnTCggIkJMTa1r+iHk5AAAAatLFzs0J0SUdO3ZMgYGBji4DAAAA15Cff/5ZzZo1c3QZtQrzcgAAADjChebmhOiS3NzcJP3vm+Xu7u7gagAAAHA1y8/PV2BgoGUOiv/DvBwAAAA16WLn5oTokuWtou7u7kzWAQAAUCPYrqQi5uUAAABwhAvNzdmEEQAAAAAAAAAAGwjRAQAAAAAAAACwgRAdAAAAAAAAAAAbCNEBAAAAAAAAALCBEB0AAAAAAAAAABsI0QEAAAAAAAAAsIEQHQAAAAAAAAAAGwjRAQAAAAAAAACwoY6jCwAAAKitgqeucnQJqKUy5o92dAn4E35erxz8/AAAgCsNK9EBAAAAAAAAALCBEB0AAAAAAAAAABsI0QEAAAAAAAAAsIEQHQAAAAAAAAAAGxwaoiclJemGG26Qm5ubfHx8NHToUB04cMCqz9mzZxUXF6fGjRurYcOGio6OVnZ2tlWfo0ePasiQIapfv758fHw0depUlZaW1uSjAAAAAAAAAACuQg4N0dPS0hQXF6ddu3Zp8+bNKikp0aBBg1RYWGjpM2XKFG3YsEFr165VWlqajh07pjvuuMPSXlZWpiFDhqi4uFhffPGFVq5cqeTkZE2bNs0RjwQAAAAAAAAAuIrUceTNN27caHWenJwsHx8fZWRkqE+fPsrLy9Nrr72mlJQUDRgwQJK0YsUKdezYUbt27dJNN92kTZs26fvvv9enn34qX19fde/eXbNnz9Zjjz2mGTNmyMXFpcJ9i4qKVFRUZDnPz8+v3gcFAAAAAAAAAFyRatWe6Hl5eZIkLy8vSVJGRoZKSkoUFhZm6dOhQwc1b95c6enpkqT09HR17dpVvr6+lj7h4eHKz8/X/v37K71PUlKSPDw8LEdgYGB1PRIAAAAAAAAA4ApWa0L08vJyTZ48Wbfccou6dOkiScrKypKLi4s8PT2t+vr6+iorK8vS548B+rn2c22VSUxMVF5enuX4+eef7fw0AAAAAAAAAICrgUO3c/mjuLg4fffdd9q5c2e138tsNstsNlf7fQAAAAAAAAAAV7ZasRI9Pj5eqamp2rZtm5o1a2a57ufnp+LiYuXm5lr1z87Olp+fn6VPdnZ2hfZzbQAAAAAAAAAAVJVDQ3TDMBQfH69169Zp69atatWqlVV7cHCw6tatqy1btliuHThwQEePHlVoaKgkKTQ0VN9++61ycnIsfTZv3ix3d3d16tSpZh4EAAAAuMLt2LFDUVFRCggIkMlk0vr1663aTSZTpcf8+fMtfVq2bFmh/ZlnnqnhJwEAAADsy6HbucTFxSklJUXvv/++3NzcLHuYe3h4qF69evLw8FBsbKwSEhLk5eUld3d3TZo0SaGhobrpppskSYMGDVKnTp00atQozZs3T1lZWXryyScVFxfHli0AAADARSosLFRQUJDGjRunO+64o0L78ePHrc4//vhjxcbGKjo62ur6rFmzNH78eMu5m5tb9RQMAAAA1BCHhujLli2TJPXr18/q+ooVKzR27FhJ0oIFC+Tk5KTo6GgVFRUpPDxcS5cutfR1dnZWamqqJk6cqNDQUDVo0EBjxozRrFmzauoxAAAAgCteZGSkIiMjbbb/eavE999/X/3791fr1q2trru5ubGtIgAAAK4qDg3RDcO4YB9XV1ctWbJES5YssdmnRYsW+uijj+xZGgAAAAAbsrOz9eGHH2rlypUV2p555hnNnj1bzZs31z333KMpU6aoTp3K/+woKipSUVGR5Tw/P7/aagYAAACqyqEhOgAAAIArz8qVK+Xm5lZh25eHHnpI119/vby8vPTFF18oMTFRx48f1/PPP1/pOElJSZo5c2ZNlAwAAABUGSE6AAAAgEvy+uuvKyYmRq6urlbXExISLF9369ZNLi4uuv/++5WUlFTp5xUlJiZavSY/P1+BgYHVVzgAAABQBYToAAAAAC7aZ599pgMHDuitt966YN+QkBCVlpbqyJEjat++fYV2s9lcabgOAAAA1CZOji4AAAAAwJXjtddeU3BwsIKCgi7Yd+/evXJycpKPj08NVAYAAABUD1aiAwAAAFBBQYEOHTpkOc/MzNTevXvl5eWl5s2bS/rfditr167Vc889V+H16enp2r17t/r37y83Nzelp6drypQpuvfee9WoUaMaew4AAADA3gjRAQAAAGjPnj3q37+/5fzcXuVjxoxRcnKyJGnNmjUyDEMjR46s8Hqz2aw1a9ZoxowZKioqUqtWrTRlyhSrPc8BAACAKxEhOgAAAAD169dPhmGct8+ECRM0YcKEStuuv/567dq1qzpKAwAAAByKPdEBAAAAAAAAALCBEB0AAAAAAAAAABsI0QEAAAAAAAAAsIEQHQAAAAAAAAAAGwjRAQAAAAAAAACwgRAdAAAAAAAAAAAbCNEBAAAAAAAAALCBEB0AAAAAAAAAABsI0QEAAAAAAAAAsIEQHQAAAAAAAAAAGwjRAQAAAAAAAACwgRAdAAAAAAAAAAAbCNEBAAAAAAAAALCBEB0AAAAAAAAAABsI0QEAAAAAAAAAsIEQHQAAAAAAAAAAGwjRAQAAAAAAAACwgRAdAAAAAAAAAAAbCNEBAAAAAAAAALCBEB0AAAAAAAAAABsI0QEAAAAAAAAAsIEQHQAAAIB27NihqKgoBQQEyGQyaf369VbtY8eOlclksjoiIiKs+pw6dUoxMTFyd3eXp6enYmNjVVBQUINPAQAAANgfIToAAAAAFRYWKigoSEuWLLHZJyIiQsePH7ccb775plV7TEyM9u/fr82bNys1NVU7duzQhAkTqrt0AAAAoFrVcXQBAAAAABwvMjJSkZGR5+1jNpvl5+dXadsPP/ygjRs36quvvlLPnj0lSYsXL9bgwYP17LPPKiAgoMJrioqKVFRUZDnPz8+/jCcAAAAAqgcr0QEAAABclO3bt8vHx0ft27fXxIkTdfLkSUtbenq6PD09LQG6JIWFhcnJyUm7d++udLykpCR5eHhYjsDAwGp/BgAAAOBSEaIDAAAAuKCIiAitWrVKW7Zs0dy5c5WWlqbIyEiVlZVJkrKysuTj42P1mjp16sjLy0tZWVmVjpmYmKi8vDzL8fPPP1f7cwAAAACXiu1cAAAAAFzQiBEjLF937dpV3bp1U5s2bbR9+3YNHDiwSmOazWaZzWZ7lQgAAABUC1aiAwAAALhkrVu3VpMmTXTo0CFJkp+fn3Jycqz6lJaW6tSpUzb3UQcAAACuBIToAAAAAC7ZL7/8opMnT8rf31+SFBoaqtzcXGVkZFj6bN26VeXl5QoJCXFUmQAAAMBlYzsXAAAAACooKLCsKpekzMxM7d27V15eXvLy8tLMmTMVHR0tPz8/HT58WI8++qjatm2r8PBwSVLHjh0VERGh8ePHa/ny5SopKVF8fLxGjBihgIAARz0WAAAAcNlYiQ4AAABAe/bsUY8ePdSjRw9JUkJCgnr06KFp06bJ2dlZ+/bt02233aZ27dopNjZWwcHB+uyzz6z2NF+9erU6dOiggQMHavDgwerVq5defvllRz0SAAAAYBesRAcAAACgfv36yTAMm+2ffPLJBcfw8vJSSkqKPcsCAAAAHI6V6AAAAAAAAAAA2ECIDgAAAAAAAACADYToAAAAAAAAAADYQIgOAAAAAAAAAIANhOgAAAAAAAAAANhAiA4AAAAAAAAAgA2E6AAAAAAAAAAA2ODQEH3Hjh2KiopSQECATCaT1q9fb9U+duxYmUwmqyMiIsKqz6lTpxQTEyN3d3d5enoqNjZWBQUFNfgUAAAAAAAAAICrlUND9MLCQgUFBWnJkiU2+0REROj48eOW480337Rqj4mJ0f79+7V582alpqZqx44dmjBhQnWXDgAAAAAAAAC4BtRx5M0jIyMVGRl53j5ms1l+fn6Vtv3www/auHGjvvrqK/Xs2VOStHjxYg0ePFjPPvusAgICKn1dUVGRioqKLOf5+flVfAIAAAAAAAAAwNWs1u+Jvn37dvn4+Kh9+/aaOHGiTp48aWlLT0+Xp6enJUCXpLCwMDk5OWn37t02x0xKSpKHh4flCAwMrNZnAAAAAAAAAABcmWp1iB4REaFVq1Zpy5Ytmjt3rtLS0hQZGamysjJJUlZWlnx8fKxeU6dOHXl5eSkrK8vmuImJicrLy7McP//8c7U+BwAAAAAAAADgyuTQ7VwuZMSIEZavu3btqm7duqlNmzbavn27Bg4cWOVxzWazzGazPUoEAAAAAAAAAFzFavVK9D9r3bq1mjRpokOHDkmS/Pz8lJOTY9WntLRUp06dsrmPOgAAAAAAAAAAF+uKCtF/+eUXnTx5Uv7+/pKk0NBQ5ebmKiMjw9Jn69atKi8vV0hIiKPKBAAAAAAAAABcJRy6nUtBQYFlVbkkZWZmau/evfLy8pKXl5dmzpyp6Oho+fn56fDhw3r00UfVtm1bhYeHS5I6duyoiIgIjR8/XsuXL1dJSYni4+M1YsQIBQQEOOqxAAAAAAAAAABXCYeuRN+zZ4969OihHj16SJISEhLUo0cPTZs2Tc7Oztq3b59uu+02tWvXTrGxsQoODtZnn31mtZ/56tWr1aFDBw0cOFCDBw9Wr1699PLLLzvqkQAAAAAAAAAAVxGHrkTv16+fDMOw2f7JJ59ccAwvLy+lpKTYsywAAAAAAAAAACRdYXuiAwAAAAAAAABQkwjRAQAAAAAAAACwgRAdAAAAgHbs2KGoqCgFBATIZDJp/fr1lraSkhI99thj6tq1qxo0aKCAgACNHj1ax44dsxqjZcuWMplMVsczzzxTw08CAAAA2BchOgAAAAAVFhYqKChIS5YsqdB25swZff3113rqqaf09ddf67333tOBAwd02223Veg7a9YsHT9+3HJMmjSpJsoHAAAAqo1DP1gUAAAAQO0QGRmpyMjISts8PDy0efNmq2svvviibrzxRh09elTNmze3XHdzc5Ofn1+11goAAADUJFaiAwAAALhkeXl5MplM8vT0tLr+zDPPqHHjxurRo4fmz5+v0tJSm2MUFRUpPz/f6gAAAABqG1aiAwAAALgkZ8+e1WOPPaaRI0fK3d3dcv2hhx7S9ddfLy8vL33xxRdKTEzU8ePH9fzzz1c6TlJSkmbOnFlTZQMAAABVQogOAAAA4KKVlJTorrvukmEYWrZsmVVbQkKC5etu3brJxcVF999/v5KSkmQ2myuMlZiYaPWa/Px8BQYGVl/xAAAAQBUQogMAAAC4KOcC9J9++klbt261WoVemZCQEJWWlurIkSNq3759hXaz2VxpuA4AAADUJoToAAAAAC7oXIB+8OBBbdu2TY0bN77ga/bu3SsnJyf5+PjUQIUAAABA9SBEBwAAAKCCggIdOnTIcp6Zmam9e/fKy8tL/v7+uvPOO/X1118rNTVVZWVlysrKkiR5eXnJxcVF6enp2r17t/r37y83Nzelp6drypQpuvfee9WoUSNHPRYAAABw2QjRAQAAAGjPnj3q37+/5fzcXuVjxozRjBkz9MEHH0iSunfvbvW6bdu2qV+/fjKbzVqzZo1mzJihoqIitWrVSlOmTLHa8xwAAAC4EhGiAwAAAFC/fv1kGIbN9vO1SdL111+vXbt22bssAAAAwOGcHF0AAAAAAAAAAAC1FSE6AAAAAAAAAAA2EKIDAAAAAAAAAGADIToAAAAAAAAAADYQogMAAAAAAAAAYAMhOgAAAAAAAAAANhCiAwAAAAAAAABgAyE6AAAAAAAAAAA2EKIDAAAAAAAAAGADIToAAAAAAAAAADZUKUQfMGCAcnNzK1zPz8/XgAEDLrcmAAAAABeBeTkAAABQ/aoUom/fvl3FxcUVrp89e1afffbZZRcFAAAA4MKYlwMAAADVr86ldN63b5/l6++//15ZWVmW87KyMm3cuFFNmza1X3UAAAAAKmBeDgAAANScSwrRu3fvLpPJJJPJVOnbQ+vVq6fFixfbrTgAAAAAFTEvBwAAAGrOJYXomZmZMgxDrVu31pdffilvb29Lm4uLi3x8fOTs7Gz3IgEAAAD8H+blAAAAQM25pBC9RYsWkqTy8vJqKQYAAADAhTEvBwAAAGrOJYXof3Tw4EFt27ZNOTk5FSbv06ZNu+zCrjTBU1c5ugTUUhnzRzu6BAAAcBVjXg4AAABUryqF6K+88oomTpyoJk2ayM/PTyaTydJmMpmYrAMAAAA1gHk5AAAAUP2qFKLPmTNH//jHP/TYY4/Zux4AAAAAF4l5OQAAAFD9nKryot9++03Dhw+3dy0AAAAALgHzcgAAAKD6VSlEHz58uDZt2mTvWgAAAABcAublAAAAQPWr0nYubdu21VNPPaVdu3apa9euqlu3rlX7Qw89ZJfiAAAAANhmz3n5jh07NH/+fGVkZOj48eNat26dhg4damk3DEPTp0/XK6+8otzcXN1yyy1atmyZrrvuOkufU6dOadKkSdqwYYOcnJwUHR2tF154QQ0bNrzsZwUAAAAcpUoh+ssvv6yGDRsqLS1NaWlpVm0mk4kQHQAAAKgB9pyXFxYWKigoSOPGjdMdd9xRoX3evHlatGiRVq5cqVatWumpp55SeHi4vv/+e7m6ukqSYmJidPz4cW3evFklJSW67777NGHCBKWkpFzegwIAAAAOVKUQPTMz0951AAAAALhE9pyXR0ZGKjIystI2wzC0cOFCPfnkk7r99tslSatWrZKvr6/Wr1+vESNG6IcfftDGjRv11VdfqWfPnpKkxYsXa/DgwXr22WcVEBBQYdyioiIVFRVZzvPz8+32PAAAAIC9VGlPdAAAAADXjszMTGVlZSksLMxyzcPDQyEhIUpPT5ckpaeny9PT0xKgS1JYWJicnJy0e/fuSsdNSkqSh4eH5QgMDKzeBwEAAACqoEor0ceNG3fe9tdff71KxQAAAAC4eDU1L8/KypIk+fr6Wl339fW1tGVlZcnHx8eqvU6dOvLy8rL0+bPExEQlJCRYzvPz8wnSAQAAUOtUKUT/7bffrM5LSkr03XffKTc3VwMGDLBLYQAAAADO70qfl5vNZpnNZkeXAQAAAJxXlUL0devWVbhWXl6uiRMnqk2bNpddFAAAAIALq6l5uZ+fnyQpOztb/v7+luvZ2dnq3r27pU9OTo7V60pLS3Xq1CnL6wEAAIArkd32RHdyclJCQoIWLFhgryEBAAAAXKLqmJe3atVKfn5+2rJli+Vafn6+du/erdDQUElSaGiocnNzlZGRYemzdetWlZeXKyQkxG61AAAAADWtSivRbTl8+LBKS0vtOSQAAACAS1SVeXlBQYEOHTpkOc/MzNTevXvl5eWl5s2ba/LkyZozZ46uu+46tWrVSk899ZQCAgI0dOhQSVLHjh0VERGh8ePHa/ny5SopKVF8fLxGjBihgIAAez4eAAAAUKOqFKL/8cN/JMkwDB0/flwffvihxowZY5fCAAAAAJyfPefle/bsUf/+/SuMPWbMGCUnJ+vRRx9VYWGhJkyYoNzcXPXq1UsbN26Uq6ur5TWrV69WfHy8Bg4cKCcnJ0VHR2vRokWX8YQAAACA41UpRP/Xv/5lde7k5CRvb28999xzGjdunF0KAwAAAHB+9pyX9+vXT4Zh2Gw3mUyaNWuWZs2aZbOPl5eXUlJSLum+AAAAQG1XpRB927Zt9q4DAAAAwCViXg4AAABUv8v6YNETJ05o586d2rlzp06cOHHJr9+xY4eioqIUEBAgk8mk9evXW7UbhqFp06bJ399f9erVU1hYmA4ePGjV59SpU4qJiZG7u7s8PT0VGxurgoKCy3ksAAAA4IpyufNyAAAAALZVKUQvLCzUuHHj5O/vrz59+qhPnz4KCAhQbGyszpw5c0njBAUFacmSJZW2z5s3T4sWLdLy5cu1e/duNWjQQOHh4Tp79qylT0xMjPbv36/NmzcrNTVVO3bs0IQJE6ryWAAAAMAVxV7zcgAAAAC2VSlET0hIUFpamjZs2KDc3Fzl5ubq/fffV1pamh5++OGLHicyMlJz5szRsGHDKrQZhqGFCxfqySef1O23365u3bpp1apVOnbsmGXF+g8//KCNGzfq1VdfVUhIiHr16qXFixdrzZo1OnbsmM37FhUVKT8/3+oAAAAArjT2mpcDAAAAsK1KIfq7776r1157TZGRkXJ3d5e7u7sGDx6sV155Re+8845dCsvMzFRWVpbCwsIs1zw8PBQSEqL09HRJUnp6ujw9PdWzZ09Ln7CwMDk5OWn37t02x05KSpKHh4flCAwMtEvNAAAAQE2qiXk5AAAAcK2rUoh+5swZ+fr6Vrju4+Njt7eNZmVlSVKF+/j6+lrasrKy5OPj8//Yu/O4qqr9/+Pvg8oBRECQMRFxKOchByTnIXHINGnQLHG42oAjpUY3x7wX01LLa1pdQy3Nm5WWlpYjZqIlRVYaqWlaApYGKCqg7N8f/TxfT3AUEDiAr+fjsR8P9lprr/PZZ28463xYZx2r+sqVK8vT09PSJj/R0dFKT0+3bCdPniyWmAEAAIDSVBrjcgAAAOBWV6QkemhoqKZPn261NvnFixc1c+ZMhYaGFltwJcVsNltm6lzdAAAAgPKmvI/LAQAAgPKgclEOWrhwoXr16qWaNWuqefPmkqRvv/1WZrNZn332WbEE5ufnJ0lKTU2Vv7+/pTw1NVUtWrSwtDl9+rTVcZcvX9bZs2ctxwMAAAAVVWmMywEAAIBbXZGS6E2bNtXhw4e1atUq/fjjj5KkwYMHa8iQIXJ2di6WwIKDg+Xn56dt27ZZkuYZGRnat2+fnnjiCUl/zbxJS0tTQkKCWrVqJUnavn27cnNzFRISUixxAAAAAGVVaYzLAQAAgFtdkZLoMTEx8vX11ahRo6zK33zzTf3++++aMmVKgfo5f/68jhw5Ytk/duyYEhMT5enpqVq1amnChAmaPXu26tevr+DgYE2dOlUBAQEaMGCAJKlhw4bq1auXRo0apaVLlyonJ0djxozRoEGDFBAQUJRTAwAAAMqN4hqXAwAAALCtSGuiv/baa2rQoEGe8saNG2vp0qUF7mf//v1q2bKlWrZsKUmKiopSy5YtNW3aNEnS5MmTNXbsWI0ePVpt2rTR+fPntXnzZjk5OVn6WLVqlRo0aKDu3burT58+6tChg15//fWinBYAAABQrhTXuBwAAACAbUWaiZ6SkmK1TvlV3t7eSk5OLnA/Xbp0kWEYNutNJpNmzZqlWbNm2Wzj6emp1atXF/gxAQAAgIqiuMblAAAAAGwr0kz0wMBAffHFF3nKv/jiC5ZRAQAAAEoJ43IAAACg5BVpJvqoUaM0YcIE5eTkqFu3bpKkbdu2afLkyXrqqaeKNUAAAAAA+WNcDgAAAJS8IiXRJ02apDNnzujJJ59Udna2JMnJyUlTpkxRdHR0sQYIAAAAIH+MywEAAICSV6Qkuslk0gsvvKCpU6fq0KFDcnZ2Vv369WU2m4s7PgAAAAA2MC4HAAAASl6RkuhXubq6qk2bNsUVCwAAAIAiYFwOAAAAlJwifbEoAAAAAAAAAAC3ApLoAAAAAAAAAADYQBIdAAAAAAAAAAAbSKIDAAAAuKHatWvLZDLl2SIjIyVJXbp0yVP3+OOP2zlqAAAA4Obd1BeLAgAAALg1fPXVV7py5Ypl//vvv9fdd9+tBx54wFI2atQozZo1y7Lv4uJSqjECAAAAJYEkOgAAAIAb8vb2ttqfM2eO6tatq86dO1vKXFxc5OfnV9qhAQAAACWK5VwAAAAAFEp2drbefvttjRgxQiaTyVK+atUq1ahRQ02aNFF0dLQuXLhw3X6ysrKUkZFhtQEAAABlDTPRAQAAABTK+vXrlZaWpmHDhlnKHn74YQUFBSkgIEAHDhzQlClTlJSUpA8++MBmPzExMZo5c2YpRAwAAAAUHUl0AAAAAIWybNky9e7dWwEBAZay0aNHW35u2rSp/P391b17dx09elR169bNt5/o6GhFRUVZ9jMyMhQYGFhygQMAAABFQBIdAAAAQIH98ssv2rp163VnmEtSSEiIJOnIkSM2k+hms1lms7nYYwQAAACKE2uiAwAAACiw2NhY+fj4qG/fvtdtl5iYKEny9/cvhagAAACAksNMdAAAAAAFkpubq9jYWEVERKhy5f97K3H06FGtXr1affr0kZeXlw4cOKCJEyeqU6dOatasmR0jBgAAAG4eSXQAAAAABbJ161adOHFCI0aMsCp3dHTU1q1btXDhQmVmZiowMFDh4eF67rnn7BQpAAAAUHxIogMAAAAokJ49e8owjDzlgYGBiouLs0NEAAAAQMkjiQ4AAAAAAIBbXqtJK+0dAgooYd5Qe4eAWwxfLAoAAAAAAAAAgA0k0QEAAAAAAAAAsIEkOgAAAAAAAAAANpBEBwAAAAAAAADABpLoAAAAAAAAAADYQBIdAAAAAAAAAAAbSKIDAAAAAAAAAGADSXQAAAAAAAAAAGyobO8AAAAAAAAAAKAsajVppb1DQCEkzBtaIv0yEx0AAAAAAAAAABtIogMAAAAAAAAAYANJdAAAAAAAAAAAbCCJDgAAAAAAAACADSTRAQAAAAAAAACwgSQ6AAAAAAAAAAA2kEQHAAAAAAAAAMAGkugAAAAAAAAAANhAEh0AAAAAAAAAABtIogMAAAAAAAAAYANJdAAAAAAAAAAAbCCJDgAAAOCGZsyYIZPJZLU1aNDAUn/p0iVFRkbKy8tLrq6uCg8PV2pqqh0jBgAAAIoHSXQAAAAABdK4cWMlJydbtt27d1vqJk6cqA0bNmjt2rWKi4vTqVOnNHDgQDtGCwAAABSPyvYOAAAAAED5ULlyZfn5+eUpT09P17Jly7R69Wp169ZNkhQbG6uGDRtq7969ateuXb79ZWVlKSsry7KfkZFRMoEDAAAAN4GZ6AAAAAAK5PDhwwoICFCdOnU0ZMgQnThxQpKUkJCgnJwc9ejRw9K2QYMGqlWrluLj4232FxMTI3d3d8sWGBhY4ucAAAAAFBZJdAAAAAA3FBISouXLl2vz5s1asmSJjh07po4dO+rcuXNKSUmRo6OjPDw8rI7x9fVVSkqKzT6jo6OVnp5u2U6ePFnCZwEAAAAUHsu5AADsqtWklfYOAWVUwryh9g4BwDV69+5t+blZs2YKCQlRUFCQ3n33XTk7OxepT7PZLLPZXFwhAgAAACWiTM9EnzFjhkwmk9XWoEEDS/2lS5cUGRkpLy8vubq6Kjw8XKmpqXaMGAAAALg1eHh46Pbbb9eRI0fk5+en7OxspaWlWbVJTU3Ndw11AAAAoDwp00l0SWrcuLGSk5Mt2+7duy11EydO1IYNG7R27VrFxcXp1KlTGjhwoB2jBQAAAG4N58+f19GjR+Xv769WrVqpSpUq2rZtm6U+KSlJJ06cUGhoqB2jBAAAAG5emV/OpXLlyvnOXklPT9eyZcu0evVqdevWTZIUGxurhg0bau/evWrXrp3NPrOyspSVlWXZz8jIKP7AAQAAgArk6aefVr9+/RQUFKRTp05p+vTpqlSpkgYPHix3d3eNHDlSUVFR8vT0lJubm8aOHavQ0NDrjssBAACA8qDMz0Q/fPiwAgICVKdOHQ0ZMkQnTpyQJCUkJCgnJ0c9evSwtG3QoIFq1aql+Pj46/YZExMjd3d3yxYYGFii5wAAAACUd7/++qsGDx6sO+64Qw8++KC8vLy0d+9eeXt7S5IWLFige+65R+Hh4erUqZP8/Pz0wQcf2DlqAAAA4OaV6ZnoISEhWr58ue644w4lJydr5syZ6tixo77//nulpKTI0dFRHh4eVsf4+voqJSXluv1GR0crKirKsp+RkUEiHQAAALiONWvWXLfeyclJixcv1uLFi0spIgAoGr7Yvnzhy+YBlAVlOoneu3dvy8/NmjVTSEiIgoKC9O6778rZ2bnI/ZrNZpnN5uIIEQAAAAAAAABQgZX55Vyu5eHhodtvv11HjhyRn5+fsrOzlZaWZtUmNTU13zXUAQAAAAAAAAAorHKVRD9//ryOHj0qf39/tWrVSlWqVNG2bdss9UlJSTpx4oRCQ0PtGCUAAAAAAAAAoKIo08u5PP300+rXr5+CgoJ06tQpTZ8+XZUqVdLgwYPl7u6ukSNHKioqSp6ennJzc9PYsWMVGhqqdu3a2Tt0AAAAAAAAAEAFUKaT6L/++qsGDx6sM2fOyNvbWx06dNDevXvl7e0tSVqwYIEcHBwUHh6urKwshYWF6dVXX7Vz1AAAAAAAAACAiqJMJ9HXrFlz3XonJyctXrxYixcvLqWIAAAAAAAAAAC3knK1JjoAAAAAAAAAAKWJJDoAAAAAAAAAADaQRAcAAAAAAAAAwAaS6AAAAAAAAAAA2EASHQAAAAAAAAAAG0iiAwAAAAAAAABgA0l0AAAAAAAAAABsIIkOAAAAAAAAAIANJNEBAAAAAAAAALCBJDoAAAAAAAAAADaQRAcAAAAAAAAAwAaS6AAAAAAAAAAA2EASHQAAAAAAAAAAG0iiAwAAAAAAAABgA0l0AAAAADcUExOjNm3aqFq1avLx8dGAAQOUlJRk1aZLly4ymUxW2+OPP26niAEAAIDiQRIdAAAAwA3FxcUpMjJSe/fu1ZYtW5STk6OePXsqMzPTqt2oUaOUnJxs2ebOnWuniAEAAIDiUdneAQAAAAAo+zZv3my1v3z5cvn4+CghIUGdOnWylLu4uMjPz6+0wwMAAABKDDPRAQAAABRaenq6JMnT09OqfNWqVapRo4aaNGmi6OhoXbhwwWYfWVlZysjIsNoAAACAsoaZ6AAAAAAKJTc3VxMmTFD79u3VpEkTS/nDDz+soKAgBQQE6MCBA5oyZYqSkpL0wQcf5NtPTEyMZs6cWVph4xbUatJKe4eAAkqYN9TeIQAAYBNJdAAAAACFEhkZqe+//167d++2Kh89erTl56ZNm8rf31/du3fX0aNHVbdu3Tz9REdHKyoqyrKfkZGhwMDAkgscAAAAKAKS6AAAAAAKbMyYMdq4caN27dqlmjVrXrdtSEiIJOnIkSP5JtHNZrPMZnOJxAkAAAAUF5LoAAAAAG7IMAyNHTtW69at086dOxUcHHzDYxITEyVJ/v7+JRwdAAAAUHJIogMAAAC4ocjISK1evVoffvihqlWrppSUFEmSu7u7nJ2ddfToUa1evVp9+vSRl5eXDhw4oIkTJ6pTp05q1qyZnaMHAAAAio4kOgAAAIAbWrJkiSSpS5cuVuWxsbEaNmyYHB0dtXXrVi1cuFCZmZkKDAxUeHi4nnvuOTtECwAAABQfkugAAAAAbsgwjOvWBwYGKi4urpSiAQAAAEqPg70DAAAAAAAAAACgrCKJDgAAAAAAAACADSTRAQAAAAAAAACwgSQ6AAAAAAAAAAA2kEQHAAAAAAAAAMAGkugAAAAAAAAAANhAEh0AAAAAAAAAABtIogMAAAAAAAAAYANJdAAAAAAAAAAAbCCJDgAAAAAAAACADSTRAQAAAAAAAACwgSQ6AAAAAAAAAAA2kEQHAAAAAAAAAMAGkugAAAAAAAAAANhQ2d4BACh5rSattHcIKKMS5g21dwgAAAAAAABlGjPRAQAAAAAAAACwgSQ6AAAAAAAAAAA2kEQHAAAAAAAAAMAGkugAAAAAAAAAANhAEh0AAAAAAAAAABtIogMAAAAAAAAAYEOFSaIvXrxYtWvXlpOTk0JCQvTll1/aOyQAAADglsTYHAAAABVJhUii/+9//1NUVJSmT5+ur7/+Ws2bN1dYWJhOnz5t79AAAACAWwpjcwAAAFQ0le0dQHGYP3++Ro0apeHDh0uSli5dqo8//lhvvvmmnnnmmTzts7KylJWVZdlPT0+XJGVkZBQ5hitZF4t8LCq2m7mvigv3J2zh/kRZxv2Jsuxm7s+rxxqGUVzhlCmFGZsX57ic39fyozT/vnNflB/cF7CFewP54b6ALYW9Nwo6NjcZ5Xz0np2dLRcXF7333nsaMGCApTwiIkJpaWn68MMP8xwzY8YMzZw5sxSjBAAAAKydPHlSNWvWtHcYxaqwY3PG5QAAACgLbjQ2L/cz0f/44w9duXJFvr6+VuW+vr768ccf8z0mOjpaUVFRlv3c3FydPXtWXl5eMplMJRrvrSAjI0OBgYE6efKk3Nzc7B0OYIX7E2UZ9yfKMu7P4mMYhs6dO6eAgAB7h1LsCjs2Z1xuG79zsIV7A/nhvkB+uC9gC/fG/yno2LzcJ9GLwmw2y2w2W5V5eHjYJ5gKzM3N7Zb/RUTZxf2Jsoz7E2UZ92fxcHd3t3cIZQLj8hvjdw62cG8gP9wXyA/3BWzh3vhLQcbm5f6LRWvUqKFKlSopNTXVqjw1NVV+fn52igoAAAC49TA2BwAAQEVU7pPojo6OatWqlbZt22Ypy83N1bZt2xQaGmrHyAAAAIBbC2NzAAAAVEQVYjmXqKgoRUREqHXr1mrbtq0WLlyozMxMDR8+3N6h3ZLMZrOmT5+e56O5QFnA/YmyjPsTZRn3JwqKsXnx4HcOtnBvID/cF8gP9wVs4d4oPJNhGIa9gygO//nPfzRv3jylpKSoRYsWeuWVVxQSEmLvsAAAAIBbDmNzAAAAVCQVJokOAAAAAAAAAEBxK/drogMAAAAAAAAAUFJIogMAAAAAAAAAYANJdAAAAAAAAAAAbCCJDgAAAAAAAACADSTRUawWL16s2rVry8nJSSEhIfryyy/tHRIgSdq1a5f69eungIAAmUwmrV+/3t4hAZKkmJgYtWnTRtWqVZOPj48GDBigpKQke4cFSJKWLFmiZs2ayc3NTW5ubgoNDdWmTZvsHRZwS2BcXXHNmDFDJpPJamvQoIGl/tKlS4qMjJSXl5dcXV0VHh6u1NRUqz5OnDihvn37ysXFRT4+Ppo0aZIuX75s1Wbnzp268847ZTabVa9ePS1fvrw0Tg+FcKP3KH+/T65u8+bNs7SpXbt2nvo5c+ZY9XPgwAF17NhRTk5OCgwM1Ny5c/PEsnbtWjVo0EBOTk5q2rSpPvnkkxI5Z9zY9cZfx48ft3lfrF271tJHfvVr1qyxepyC/I3gtajsKEuvHbfqfUESHcXmf//7n6KiojR9+nR9/fXXat68ucLCwnT69Gl7hwYoMzNTzZs31+LFi+0dCmAlLi5OkZGR2rt3r7Zs2aKcnBz17NlTmZmZ9g4NUM2aNTVnzhwlJCRo//796tatm/r3768ffvjB3qEBFRrj6oqvcePGSk5Otmy7d++21E2cOFEbNmzQ2rVrFRcXp1OnTmngwIGW+itXrqhv377Kzs7Wnj17tGLFCi1fvlzTpk2ztDl27Jj69u2rrl27KjExURMmTNA//vEPffrpp6V6nri+G71HufYeSU5O1ptvvimTyaTw8HCrdrNmzbJqN3bsWEtdRkaGevbsqaCgICUkJGjevHmaMWOGXn/9dUubPXv2aPDgwRo5cqS++eYbDRgwQAMGDND3339fMieO67re+CswMDDPfTFz5ky5urqqd+/eVv3ExsZatRswYIClriB/I3gtKnvKwmvHLX1fGEAxadu2rREZGWnZv3LlihEQEGDExMTYMSogL0nGunXr7B0GkK/Tp08bkoy4uDh7hwLkq3r16sZ///tfe4cBVGiMqyu26dOnG82bN8+3Li0tzahSpYqxdu1aS9mhQ4cMSUZ8fLxhGIbxySefGA4ODkZKSoqlzZIlSww3NzcjKyvLMAzDmDx5stG4cWOrvh966CEjLCysmM8GxaUg71H69+9vdOvWzaosKCjIWLBggc1jXn31VaN69eqWe8MwDGPKlCnGHXfcYdl/8MEHjb59+1odFxISYjz22GMFPwGUqOuNv1q0aGGMGDHCquxG91NB/kbwWlS2lJXXjlv5vmAmOopFdna2EhIS1KNHD0uZg4ODevToofj4eDtGBgDlS3p6uiTJ09PTzpEA1q5cuaI1a9YoMzNToaGh9g4HqLAYV98aDh8+rICAANWpU0dDhgzRiRMnJEkJCQnKycmxuv4NGjRQrVq1LNc/Pj5eTZs2la+vr6VNWFiYMjIyLJ8Uio+Pt+rjahvuofIrNTVVH3/8sUaOHJmnbs6cOfLy8lLLli01b948q+UZ4uPj1alTJzk6OlrKwsLClJSUpD///NPShvulbLrR+CshIUGJiYn53heRkZGqUaOG2rZtqzfffFOGYVjqbnTNeS0qm+z92nGr3xeV7R0AKoY//vhDV65csfpllCRfX1/9+OOPdooKAMqX3NxcTZgwQe3bt1eTJk3sHQ4gSfruu+8UGhqqS5cuydXVVevWrVOjRo3sHRZQYTGurvhCQkK0fPly3XHHHZalGDp27Kjvv/9eKSkpcnR0lIeHh9Uxvr6+SklJkSSlpKTke39crbtem4yMDF28eFHOzs4ldHYoKStWrFC1atWslmeQpHHjxunOO++Up6en9uzZo+joaCUnJ2v+/PmS/roXgoODrY659n6pXr26zfvl6v2E0lfQ8deyZcvUsGFD3XXXXVbls2bNUrdu3eTi4qLPPvtMTz75pM6fP69x48ZJuvHfiD///JPXojKmLLx23Or3BUl0AADKiMjISH3//fdWa9sB9nbHHXcoMTFR6enpeu+99xQREaG4uDgS6QBQRNeuW9ysWTOFhIQoKChI7777Lslt2PTmm29qyJAhcnJysiqPioqy/NysWTM5OjrqscceU0xMjMxmc2mHiWJSkPHXxYsXtXr1ak2dOjXP8deWtWzZUpmZmZo3b54liY7yh9cO+2M5FxSLGjVqqFKlSnm++Tc1NVV+fn52igoAyo8xY8Zo48aN2rFjh2rWrGnvcAALR0dH1atXT61atVJMTIyaN2+ul19+2d5hARUW4+pbj4eHh26//XYdOXJEfn5+ys7OVlpamlWba6+/n59fvvfH1brrtXFzcyPZUg59/vnnSkpK0j/+8Y8btg0JCdHly5d1/PhxSTd3v/A3x34KMv567733dOHCBQ0dOvSG/YWEhOjXX39VVlaWpBv/jeC1qOyzx2vHrX5fkERHsXB0dFSrVq20bds2S1lubq62bdvGuqkAcB2GYWjMmDFat26dtm/fnufjtkBZk5uba3kDBqD4Ma6+9Zw/f15Hjx6Vv7+/WrVqpSpVqlhd/6SkJJ04ccJy/UNDQ/Xdd9/p9OnTljZbtmyRm5ubZZZqaGioVR9X23APlU/Lli1Tq1at1Lx58xu2TUxMlIODg3x8fCT9dS/s2rVLOTk5ljZbtmzRHXfcoerVq1vacL+UbfmNv5YtW6Z7771X3t7eNzw+MTFR1atXt3w64UbXnNeiss8erx23/H1h7282RcWxZs0aw2w2G8uXLzcOHjxojB492vDw8LD65l/AXs6dO2d88803xjfffGNIMubPn2988803xi+//GLv0HCLe+KJJwx3d3dj586dRnJysmW7cOGCvUMDjGeeecaIi4szjh07Zhw4cMB45plnDJPJZHz22Wf2Dg2o0BhXV2xPPfWUsXPnTuPYsWPGF198YfTo0cOoUaOGcfr0acMwDOPxxx83atWqZWzfvt3Yv3+/ERoaaoSGhlqOv3z5stGkSROjZ8+eRmJiorF582bD29vbiI6OtrT5+eefDRcXF2PSpEnGoUOHjMWLFxuVKlUyNm/eXOrnC9sK8h4lPT3dcHFxMZYsWZLn+D179hgLFiwwEhMTjaNHjxpvv/224e3tbQwdOtTSJi0tzfD19TUeffRR4/vvvzfWrFljuLi4GK+99pqlzRdffGFUrlzZePHFF41Dhw4Z06dPN6pUqWJ89913JfsEIF8FGX8dPnzYMJlMxqZNm/Ic/9FHHxlvvPGG8d133xmHDx82Xn31VcPFxcWYNm2apU1B/kbwWlS2lJXXjlv5viCJjmK1aNEio1atWoajo6PRtm1bY+/evfYOCTAMwzB27NhhSMqzRURE2Ds03OLyuy8lGbGxsfYODTBGjBhhBAUFGY6Ojoa3t7fRvXt3EuhAKWFcXXE99NBDhr+/v+Ho6GjcdtttxkMPPWQcOXLEUn/x4kXjySefNKpXr264uLgY9913n5GcnGzVx/Hjx43evXsbzs7ORo0aNYynnnrKyMnJsWqzY8cOo0WLFoajo6NRp04dxhZlUEHeo7z22muGs7OzkZaWluf4hIQEIyQkxHB3dzecnJyMhg0bGv/+97+NS5cuWbX79ttvjQ4dOhhms9m47bbbjDlz5uTp69133zVuv/12w9HR0WjcuLHx8ccfF/v5omAKMv6Kjo42AgMDjStXruQ5ftOmTUaLFi0MV1dXo2rVqkbz5s2NpUuX5mlbkL8RvBaVHWXpteNWvS9MhmEYpT37HQAAAAAAAACA8oA10QEAAAAAAAAAsIEkOgAAAAAAAAAANpBEBwAAAAAAAADABpLoAAAAAAAAAADYQBIdAAAAAAAAAAAbSKIDAAAAAAAAAGADSXQAAAAAAAAAAGwgiQ4AAAAAAAAAgA0k0QEAZUbt2rW1cOFCe4cBAAAAlAqTyaT169fbrN+5c6dMJpPS0tJKLSYAQF4k0QGgHDl58qRGjBihgIAAOTo6KigoSOPHj9eZM2fsHVqhLF++XB4eHnnKv/rqK40ePbr0AwIAAMAtY9iwYTKZTHr88cfz1EVGRspkMmnYsGHF+pgzZsxQixYtirXPgho2bJgGDBhgl8cGgIqCJDoAlBM///yzWrdurcOHD+udd97RkSNHtHTpUm3btk2hoaE6e/asvUO8ad7e3nJxcbF3GAAAAKjgAgMDtWbNGl28eNFSdunSJa1evVq1atWyY2QAgLKIJDoAlBORkZFydHTUZ599ps6dO6tWrVrq3bu3tm7dqt9++03//Oc/JUlZWVmaMmWKAgMDZTabVa9ePS1btszSzw8//KB77rlHbm5uqlatmjp27KijR49Kkrp06aIJEyZYPe6AAQOsZuLUrl1bzz//vAYPHqyqVavqtttu0+LFi62OmT9/vpo2baqqVasqMDBQTz75pM6fPy/pr4+kDh8+XOnp6TKZTDKZTJoxY4al72uXczlx4oT69+8vV1dXubm56cEHH1Rqaqql/uqMnrfeeku1a9eWu7u7Bg0apHPnzt3s0w0AAIAK7M4771RgYKA++OADS9kHH3ygWrVqqWXLllZts7KyNG7cOPn4+MjJyUkdOnTQV199Zam/uuTKtm3b1Lp1a7m4uOiuu+5SUlKSpL8+hTlz5kx9++23lvHv8uXLLcf/8ccfuu++++Ti4qL69evro48+yjfmzMxMubm56b333rMqX79+vapWrVrgMXCXLl00btw4TZ48WZ6envLz87OMx69KS0vTY489Jl9fXzk5OalJkybauHGjpf79999X48aNZTabVbt2bb300ktWx9euXVuzZ8/W0KFD5erqqqCgIH300Uf6/fffLeP7Zs2aaf/+/VbH7d69Wx07dpSzs7MCAwM1btw4ZWZmFui8AKAkkUQHgHLg7Nmz+vTTT/Xkk0/K2dnZqs7Pz09DhgzR//73PxmGoaFDh+qdd97RK6+8okOHDum1116Tq6urJOm3335Tp06dZDabtX37diUkJGjEiBG6fPlyoeKZN2+emjdvrm+++UbPPPOMxo8fry1btljqHRwc9Morr+iHH37QihUrtH37dk2ePFmSdNddd2nhwoVyc3NTcnKykpOT9fTTT+d5jNzcXPXv319nz55VXFyctmzZop9//lkPPfSQVbujR49q/fr12rhxozZu3Ki4uDjNmTOnUOcDAACAW8+IESMUGxtr2X/zzTc1fPjwPO0mT56s999/XytWrNDXX3+tevXqKSwsLM8nQf/5z3/qpZde0v79+1W5cmWNGDFCkvTQQw/pqaeeUuPGjS3j32vHtDNnztSDDz6oAwcOqE+fPhoyZEi+nzKtWrWqBg0aZBWzJMXGxur+++9XtWrVCnzuK1asUNWqVbVv3z7NnTtXs2bNsoznc3Nz1bt3b33xxRd6++23dfDgQc2ZM0eVKlWSJCUkJOjBBx/UoEGD9N1332nGjBmaOnWq1T8GJGnBggVq3769vvnmG/Xt21ePPvqohg4dqkceeURff/216tatq6FDh8owDEl/jet79eql8PBwHThwQP/73/+0e/dujRkzpsDnBQAlxgAAlHl79+41JBnr1q3Lt37+/PmGJGPfvn2GJGPLli35touOjjaCg4ON7OzsfOs7d+5sjB8/3qqsf//+RkREhGU/KCjI6NWrl1Wbhx56yOjdu7fN+NeuXWt4eXlZ9mNjYw13d/c87YKCgowFCxYYhmEYn332mVGpUiXjxIkTlvoffvjBkGR8+eWXhmEYxvTp0w0XFxcjIyPD0mbSpElGSEiIzVgAAABwa4uIiDD69+9vnD592jCbzcbx48eN48ePG05OTsbvv/9uNf49f/68UaVKFWPVqlWW47Ozs42AgABj7ty5hmEYxo4dOwxJxtatWy1tPv74Y0OScfHiRcMw/hq3Nm/ePE8skoznnnvOsn/+/HlDkrFp0yarvv/880/DMAxj3759RqVKlYxTp04ZhmEYqampRuXKlY2dO3fe8Hyv6ty5s9GhQwerNm3atDGmTJliGIZhfPrpp4aDg4ORlJSUb38PP/ywcffdd1uVTZo0yWjUqJFlPygoyHjkkUcs+8nJyYYkY+rUqZay+Ph4Q5KRnJxsGIZhjBw50hg9erRVv59//rnh4OBgeR4BwF6YiQ4A5Yjx/2dp2HL8+HFVqlRJnTt3zrc+MTFRHTt2VJUqVW4qjtDQ0Dz7hw4dsuxv3bpV3bt312233aZq1arp0Ucf1ZkzZ3ThwoUCP8ahQ4cUGBiowMBAS1mjRo3k4eFh9Vi1a9e2mnXj7++v06dPF+W0AAAAcAvx9vZW3759tXz5csXGxqpv376qUaOGVZujR48qJydH7du3t5RVqVJFbdu2tRqTSlKzZs0sP/v7+0tSgcal1x5XtWpVubm52Tyubdu2aty4sVasWCFJevvttxUUFKROnTrd8HFsPebVeK8+ZmJiomrWrKnbb78932MPHTpk9XxIUvv27XX48GFduXIl38fw9fWVJDVt2jRP2dXH/fbbb7V8+XK5urpatrCwMOXm5urYsWOFOj8AKG4k0QGgHKhXr55MJlOegfpVhw4dUvXq1fMs9fJ3N6p3cHDIk6jPyckpVKzHjx/XPffco2bNmun9999XQkKCZc307OzsQvVVEH//h4DJZFJubm6xPw4AAAAqnhEjRmj58uVasWKFZfmVorp2XGoymSSpQOPSwo5n//GPf1iWTomNjdXw4cMtj1eUWP/+mDd6z1CUx7ga3/Weo/Pnz+uxxx5TYmKiZfv22291+PBh1a1bt1hiAoCiIokOAOWAl5eX7r77br366qu6ePGiVV1KSopWrVqlhx56SE2bNlVubq7i4uLy7adZs2b6/PPPbSbGvb29lZycbNm/cuWKvv/++zzt9u7dm2e/YcOGkv5aIzE3N1cvvfSS2rVrp9tvv12nTp2yau/o6Gg1SyU/DRs21MmTJ3Xy5ElL2cGDB5WWlqZGjRpd91gAAACgIHr16qXs7Gzl5OQoLCwsT33dunXl6OioL774wlKWk5Ojr776qlBj0oKMfwvqkUce0S+//KJXXnlFBw8eVERERLH0e1WzZs3066+/6qeffsq3vmHDhlbPhyR98cUXuv322y3rphfFnXfeqYMHD6pevXp5NkdHxyL3CwDFgSQ6AJQT//nPf5SVlaWwsDDt2rVLJ0+e1ObNm3X33Xfrtttu07/+9S/Vrl1bERERGjFihNavX69jx45p586devfddyVJY8aMUUZGhgYNGqT9+/fr8OHDeuutt5SUlCRJ6tatmz7++GN9/PHH+vHHH/XEE08oLS0tTyxffPGF5s6dq59++kmLFy/W2rVrNX78eEl/zZrPycnRokWL9PPPP+utt97S0qVLrY6vXbu2zp8/r23btumPP/7Id5mXHj16qGnTphoyZIi+/vprffnllxo6dKg6d+6s1q1bF/OzCwAAgFtRpUqVdOjQIR08eDDfBHDVqlX1xBNPaNKkSdq8ebMOHjyoUaNG6cKFCxo5cmSBH6d27do6duyYEhMT9ccffygrK6vIMVevXl0DBw7UpEmT1LNnT9WsWbPIfeWnc+fO6tSpk8LDw7VlyxYdO3ZMmzZt0ubNmyVJTz31lLZt26bnn39eP/30k1asWKH//Oc/evrpp2/qcadMmaI9e/ZozJgxSkxM1OHDh/Xhhx/yxaIAygSS6ABQTtSvX1/79+9XnTp19OCDD6pu3boaPXq0unbtqvj4eHl6ekqSlixZovvvv19PPvmkGjRooFGjRikzM1PSXzPat2/frvPnz6tz585q1aqV3njjDcvHKkeMGKGIiAhLsrpOnTrq2rVrnlieeuop7d+/Xy1bttTs2bM1f/58y8yd5s2ba/78+XrhhRfUpEkTrVq1SjExMVbH33XXXXr88cf10EMPydvbW3Pnzs3zGCaTSR9++KGqV6+uTp06qUePHqpTp47+97//FevzCgAAgFubm5ub3NzcbNbPmTNH4eHhevTRR3XnnXfqyJEj+vTTT1W9evUCP0Z4eLh69eqlrl27ytvbW++8885NxTxy5EhlZ2ff9BI0trz//vtq06aNBg8erEaNGmny5MmWmfR33nmn3n33Xa1Zs0ZNmjTRtGnTNGvWLA0bNuymHrNZs2aKi4vTTz/9pI4dO6ply5aaNm2aAgICiuGMAODmmIwbfUsdAADXqF27tiZMmKAJEybYOxQAAADglvTWW29p4sSJOnXqFEudAEApqGzvAAAAAAAAAHBjFy5cUHJysubMmaPHHnuMBDoAlBKWcwEAAAAAACgH5s6dqwYNGsjPz0/R0dH2DgcAbhks5wIAAAAAAAAAgA3MRAcAAAAAAAAAwAaS6AAAAAAAAAAA2EASHQAAAAAAAAAAG0iiAwAAAAAAAABgA0l0AAAAAAAAAABsIIkOAAAAAAAAAIANJNEBAAAAAAAAALCBJDoAAAAAAAAAADaQRAcAAAAAAAAAwAaS6AAAAAAAAAAA2EASHQAAAAAAAAAAG0iiAwAAAAAAAABgA0l0AAAAAAAAAABsIIkOAAAAAAAAAIANJNEBAPkymUyaMWOGZX/58uUymUw6fvx4qcVQu3ZtDRs2rNQeDwAAAMXr+PHjMplMWr58ub1DsWnnzp0ymUzauXOnvUORVL7GwPm9R+jSpYu6dOli1S41NVX333+/vLy8ZDKZtHDhQrs+7+XpOQZQNpBEB4Ay5OogNL/tmWeesXd4AAAAuMVcb3xqMpm0d+9ee4dYYK+++mqZTuYXRWZmpp5//nk1a9ZMLi4ucnd3V8eOHfXWW2/JMAx7h2cxceJEffrpp4qOjtZbb72lXr16lfhj7tmzRzNmzFBaWlqJPxaAiq+yvQMAAOQ1a9YsBQcHW5U1adKkVGO4ePGiKle278tEUlKSHBz4fy8AAIC95Tc+laR69erZIZqiefXVV1WjRo08M5A7deqkixcvytHR0T6BFVFqaqq6d++uQ4cOadCgQRozZowuXbqk999/X0OHDtXmzZv11ltvlfp4+rPPPstTtn37dvXv319PP/20pez2228v0ed9z549mjlzpoYNGyYPDw+rOt5nACgskugAUAb17t1brVu3tmsMTk5Odn18STKbzfYOAQAAACob49OS4uDgUCbGvoUVERGhQ4cOad26dbr33nst5ePGjdOkSZP04osvqkWLFpo0aVKpxpVfUvz06dN5Etn2fN55nwGgsPi3GwCUI7/88ouefPJJ3XHHHXJ2dpaXl5ceeOCBPOuUX/3Y7e7duzVu3Dh5e3vLw8NDjz32mLKzs5WWlqahQ4eqevXqql69uiZPnpzn455/XxP97yIiIlSjRg3l5OTkqevZs6fuuOOO657L4cOHFR4eLj8/Pzk5OalmzZoaNGiQ0tPTLW3+vlbh9T5KfO1z8OOPP+r++++Xp6ennJyc1Lp1a3300UfXjQcAAAA3Jy0tTcOGDZO7u7s8PDwUERGR71Ia+a2ZLUnDhg1T7dq1rcpyc3P18ssvq2nTpnJycpK3t7d69eql/fv3W9rExsaqW7du8vHxkdlsVqNGjbRkyRKrfmrXrq0ffvhBcXFxlvHj1Rhsrc29du1atWrVSs7OzqpRo4YeeeQR/fbbb3lidnV11W+//aYBAwbI1dVV3t7eevrpp3XlyhWrti+++KLuuusueXl5ydnZWa1atdJ77713/SfVhr179+rTTz/VsGHDrBLoV8XExKh+/fqaM2eOLl68eN3zzG/d+gMHDmjYsGGqU6eOnJyc5OfnpxEjRujMmTM3jO3a63v1fYlhGFq8eLHlub9ePPv27VOfPn1UvXp1Va1aVc2aNdPLL79cqNhmzJhh+edBcHBwnvcM+a2J/vPPP+uBBx6Qp6enXFxc1K5dO3388cdWba7G/O677+pf//qXatasKScnJ3Xv3l1HjhyxaluQ9zsAyg9mogNAGZSenq4//vjDqqxGjRr66quvtGfPHg0aNEg1a9bU8ePHtWTJEnXp0kUHDx6Ui4uL1TFjx46Vn5+fZs6cqb179+r111+Xh4eH9uzZo1q1aunf//63PvnkE82bN09NmjTR0KFDCxzjo48+qpUrV+rTTz/VPffcYylPSUnR9u3bNX36dJvHZmdnKywsTFlZWZYYf/vtN23cuFFpaWlyd3fP97i33norT9lzzz2n06dPy9XVVZL0ww8/qH379rrtttv0zDPPqGrVqnr33Xc1YMAAvf/++7rvvvsKfI4AAAD4S37jU5PJJC8vL0mSYRjq37+/du/erccff1wNGzbUunXrFBERcVOPO3LkSC1fvly9e/fWP/7xD12+fFmff/659u7da5kZv2TJEjVu3Fj33nuvKleurA0bNujJJ59Ubm6uIiMjJUkLFy7U2LFj5erqqn/+85+SJF9fX5uPu3z5cg0fPlxt2rRRTEyMUlNT9fLLL+uLL77QN998YzWr+sqVKwoLC1NISIhefPFFbd26VS+99JLq1q2rJ554wtLu5Zdf1r333qshQ4YoOztba9as0QMPPKCNGzeqb9++hXpeNmzYIEk2x++VK1fWww8/rJkzZ2rPnj3q3r17ofrfsmWLfv75Zw0fPlx+fn764Ycf9Prrr+uHH37Q3r17LYnwG+nUqZPeeustPfroo7r77rtv+H5jy5Ytuueee+Tv76/x48fLz89Phw4d0saNGzV+/PgCxzZw4ED99NNPeuedd7RgwQLVqFFDkuTt7Z3v46ampuquu+7ShQsXNG7cOHl5eWnFihW699579d577+V5DzFnzhw5ODjo6aefVnp6uubOnashQ4Zo3759kor+fgdAGWYAAMqM2NhYQ1K+m2EYxoULF/IcEx8fb0gyVq5cmaefsLAwIzc311IeGhpqmEwm4/HHH7eUXb582ahZs6bRuXNnq34lGdOnT8/T57FjxwzDMIwrV64YNWvWNB566CGr4+bPn2+YTCbj559/tnme33zzjSHJWLt27XWfj6CgICMiIsJm/dy5c/Oce/fu3Y2mTZsaly5dspTl5uYad911l1G/fv3rPh4AAACsXW98ajabLe3Wr19vSDLmzp1rKbt8+bLRsWNHQ5IRGxtrKe/cuXOesadhGEZERIQRFBRk2d++fbshyRg3blyetteOcfMbI4eFhRl16tSxKmvcuHG+j7tjxw5DkrFjxw7DMAwjOzvb8PHxMZo0aWJcvHjR0m7jxo2GJGPatGlWMUsyZs2aZdVny5YtjVatWlmV/T3O7Oxso0mTJka3bt2sym80BjYMwxgwYIAhyfjzzz9ttvnggw8MScYrr7yS73ledezYsTzXKL/n9J133jEkGbt27bKU/f09gmHkf30lGZGRkVZlf4/n8uXLRnBwsBEUFJTnvG50vfOLbd68eXliu+rvz/GECRMMScbnn39uKTt37pwRHBxs1K5d27hy5YpVzA0bNjSysrIsbV9++WVDkvHdd98ZhlHw9zsAyg+WcwGAMmjx4sXasmWL1SZJzs7OljY5OTk6c+aM6tWrJw8PD3399dd5+hk5cqTVLJGQkBAZhqGRI0dayipVqqTWrVvr559/LlSMDg4OGjJkiD766COdO3fOUr5q1Srddddd+X7x1FVXZ158+umnunDhQqEe96odO3YoOjpaY8eO1aOPPipJOnv2rLZv364HH3xQ586d0x9//KE//vhDZ86cUVhYmA4fPpznI7gAAAC4sfzGp5s2bbLUf/LJJ6pcubLVzOtKlSpp7NixRX7M999/XyaTKd9POF47xr12jHx1xnznzp31888/F2npjP379+v06dN68sknrdbs7tu3rxo0aJBniQ9Jevzxx632O3bsmGd8fW2cf/75p9LT09WxY8d8x/E3cnX8Xa1aNZttrtZdO1YvqGtjvXTpkv744w+1a9dOkooUb0F88803OnbsmCZMmJBn/XRb17u4Yvvkk0/Utm1bdejQwVLm6uqq0aNH6/jx4zp48KBV++HDh1ut/d6xY0dJslzz4ni/A6BsIYkOAGVQ27Zt1aNHD6tNki5evKhp06YpMDBQZrNZNWrUkLe3t9LS0vJ9g1CrVi2r/auDucDAwDzlf/75Z6HjHDp0qC5evKh169ZJ+utb7hMSEixJbVuCg4MVFRWl//73v6pRo4bCwsK0ePHiAr/J+fXXX/XQQw+pffv2mj9/vqX8yJEjMgxDU6dOlbe3t9V29c3X6dOnC32eAAAAt7r8xqddu3a11P/yyy/y9/e3LLF31Y2+J+d6jh49qoCAAHl6el633RdffKEePXqoatWq8vDwkLe3t5599llJKlIS/ZdffpGUf+wNGjSw1F91da32a1WvXj3P+Hrjxo1q166dnJyc5OnpKW9vby1ZsqRIMRYkQX61zsfHp9D9nz17VuPHj5evr6+cnZ3l7e1tmSRTUmt6Hz16VJLUpEmTUo/tl19+yfd6N2zY0FJ/rb+/z6pevbokWa75zb7fAVD2sCY6AJQjY8eOVWxsrCZMmKDQ0FC5u7vLZDJp0KBBys3NzdO+UqVK+faTX7nxty8WLYhGjRqpVatWevvttzV06FC9/fbbcnR01IMPPnjDY1966SUNGzZMH374oT777DONGzdOMTEx2rt3r2rWrGnzuOzsbN1///0ym8169913Vbny/72UXX0Onn76aYWFheV7fL169Qp5lgAAAChOV79o8u/+/kWcBXH06FF1795dDRo00Pz58xUYGChHR0d98sknWrBgQb5j5OJma8x9rc8//1z33nuvOnXqpFdffVX+/v6qUqWKYmNjtXr16kI/ZqNGjbR+/XodOHBAnTp1yrfNgQMHJEl16tSRJJvrmOf3vD/44IPas2ePJk2apBYtWsjV1VW5ubnq1atXqTyn11MWYrN1za+9r4v6fgdA2UQSHQDKkffee08RERF66aWXLGWXLl1SWlqa3WIaOnSooqKilJycrNWrV6tv376WmRg30rRpUzVt2lTPPfec9uzZo/bt22vp0qWaPXu2zWPGjRunxMRE7dq1K8+XQV19g1ClShXL7H0AAACUvKCgIG3btk3nz5+3mo2elJSUp2316tXzXUrw77N969atq08//VRnz561ORt9w4YNysrK0kcffWQ1O3jHjh152hb0yzCDgoIssXfr1s2qLikpyVJfGO+//76cnJz06aefymw2W8pjY2ML3Zck9evXT//+97+1cuXKfJPoV65c0erVq+Xr62upvzpG//t7h78/73/++ae2bdummTNnatq0aZbyw4cPFynWgqpbt64k6fvvv7c5li9MbAW93tJf1zy/e/XHH3+01BdFUd7vACibWM4FAMqRSpUq5Zm1s2jRoiLN2ikugwcPlslk0vjx4/Xzzz/rkUceueExGRkZunz5slVZ06ZN5eDgoKysLJvHxcbG6rXXXtPixYvVtm3bPPU+Pj7q0qWLXnvtNSUnJ+ep//333wtwRgAAACisPn366PLly1qyZIml7MqVK1q0aFGetnXr1tWPP/5oNTb79ttv9cUXX1i1Cw8Pl2EYmjlzZp4+ro6Jr84IvnaMnJ6enm9yumrVqgWafNK6dWv5+Pho6dKlVmPTTZs26dChQ+rbt+8N+/i7SpUqyWQyWY3bjx8/rvXr1xe6L0lq166devbsqdjYWG3cuDFP/T//+U/99NNPmjx5suWTm0FBQapUqZJ27dpl1fbVV1/NE6uU95OqCxcuLFKsBXXnnXcqODhYCxcuzHOdrne9bcVWtWpVSXn/aZCfPn366Msvv1R8fLylLDMzU6+//rpq166tRo0aFeJMiv5+B0DZxUx0AChH7rnnHr311ltyd3dXo0aNFB8fr61bt8rLy8tuMXl7e6tXr15au3atPDw8CvSmYvv27RozZoweeOAB3X777bp8+bLeeustVapUSeHh4fke88cff+jJJ59Uo0aNZDab9fbbb1vV33fffapataoWL16sDh06qGnTpho1apTq1Kmj1NRUxcfH69dff9W3335bLOcNAABwK9m0aZNlVu617rrrLtWpU0f9+vVT+/bt9cwzz+j48eNq1KiRPvjgg3zXgB4xYoTmz5+vsLAwjRw5UqdPn9bSpUvVuHFjZWRkWNp17dpVjz76qF555RUdPnzYslzH559/rq5du2rMmDHq2bOnHB0d1a9fPz322GM6f/683njjDfn4+OSZVNGqVSstWbJEs2fPVr169eTj45Nnprn016caX3jhBQ0fPlydO3fW4MGDlZqaqpdfflm1a9fWxIkTC/389e3bV/Pnz1evXr308MMP6/Tp01q8eLHq1atnWXalsFauXKlu3bqpf//+evjhh9WxY0dlZWXpgw8+0M6dO/XII49Yxeru7q4HHnhAixYtkslkUt26dbVx48Y83xnk5uamTp06ae7cucrJydFtt92mzz77TMeOHStSnAXl4OCgJUuWqF+/fmrRooWGDx8uf39//fjjj/rhhx/06aefFiq2Vq1aSfrrHwqDBg1SlSpV1K9fP0ty/VrPPPOM3nnnHfXu3Vvjxo2Tp6enVqxYoWPHjun999+Xg0Ph5qAW5f0OgLKNJDoAlCMvv/yyKlWqpFWrVunSpUtq3769tm7danP979IydOhQbdy4UQ8++KDVx1Ntad68ucLCwrRhwwb99ttvcnFxUfPmzbVp0ya1a9cu32POnz+vS5cu6eDBg/l+cemxY8dUtWpVNWrUSPv379fMmTO1fPlynTlzRj4+PmrZsqXVRz4BAABQcLbGUbGxsapTp44cHBz00UcfacKECXr77bdlMpl077336qWXXlLLli2tjmnYsKFWrlypadOmKSoqSo0aNdJbb72l1atXa+fOnXn6b9asmZYtW6ZJkybJ3d1drVu31l133SXpry//fO+99/Tcc8/p6aeflp+fn5544gl5e3trxIgRec7hl19+0dy5c3Xu3Dl17tw53yS6JA0bNkwuLi6aM2eOpkyZoqpVq+q+++7TCy+8IA8Pj0I/f926ddOyZcs0Z84cTZgwQcHBwXrhhRd0/PjxIifRfX19tW/fPs2fP1/vvvuu3nvvPV26dEmSNHXqVM2aNSvPMYsWLVJOTo6WLl0qs9msBx98UPPmzcvzZZ6rV6/W2LFjtXjxYhmGoZ49e2rTpk0KCAgoUqwFFRYWph07dmjmzJl66aWXlJubq7p162rUqFGFjq1NmzZ6/vnntXTpUm3evFm5ubmW9wx/5+vrqz179mjKlClatGiRLl26pGbNmmnDhg1F+uRBUd7vACjbTEZRvkkOAIBrfPjhhxowYIB27dqljh072jscAAAA4Jb022+/6a677tLly5cVHx9vtU48AKDoSKIDAG7aPffco0OHDunIkSOF+gIfAAAAAMXr0KFD6tChg/z8/LR7927LF4oCAIqO5VwAAEW2Zs0aHThwQB9//LFefvllEugAAACAnTVs2FBnzpyxdxgAUKEwEx0AUGQmk0murq566KGHtHTpUlWuzP9mAQAAAABAxUK2AwBQZPwfFgAAAAAAVHQO9g4AAAAAAAAAAICyipnoknJzc3Xq1ClVq1aN9XwBAABQogzD0Llz5xQQECAHB+a0XItxOQAAAEpTQcfmJNElnTp1SoGBgfYOAwAAALeQkydPqmbNmvYOo0xhXA4AAAB7uNHYnCS6pGrVqkn668lyc3OzczQAAACoyDIyMhQYGGgZg+L/MC4HAABAaSro2NyuSfRdu3Zp3rx5SkhIUHJystatW6cBAwZIknJycvTcc8/pk08+0c8//yx3d3f16NFDc+bMUUBAgKWPs2fPauzYsdqwYYMcHBwUHh6ul19+Wa6urgWO4+pHRd3c3BisAwAAoFSwXElejMsBAABgDzcam9t1EcbMzEw1b95cixcvzlN34cIFff3115o6daq+/vprffDBB0pKStK9995r1W7IkCH64YcftGXLFm3cuFG7du3S6NGjS+sUAAAAAAAAAAAVmMkwDMPeQUh/ZfuvnYmen6+++kpt27bVL7/8olq1aunQoUNq1KiRvvrqK7Vu3VqStHnzZvXp00e//vqr1Yz168nIyJC7u7vS09OZ8QIAAIASxdjTNp4bAAAAlKaCjj/tOhO9sNLT02UymeTh4SFJio+Pl4eHhyWBLkk9evSQg4OD9u3bZ7OfrKwsZWRkWG0AAAAAAAAAAPxduUmiX7p0SVOmTNHgwYMt/xVISUmRj4+PVbvKlSvL09NTKSkpNvuKiYmRu7u7ZQsMDCzR2AEAAAAAAAAA5VO5SKLn5OTowQcflGEYWrJkyU33Fx0drfT0dMt28uTJYogSAAAAAAAAAFDRVLZ3ADdyNYH+yy+/aPv27VZr0/j5+en06dNW7S9fvqyzZ8/Kz8/PZp9ms1lms7nEYgYAAAAAAAAAVAxleib61QT64cOHtXXrVnl5eVnVh4aGKi0tTQkJCZay7du3Kzc3VyEhIaUdLgAAAAAAAACggrHrTPTz58/ryJEjlv1jx44pMTFRnp6e8vf31/3336+vv/5aGzdu1JUrVyzrnHt6esrR0VENGzZUr169NGrUKC1dulQ5OTkaM2aMBg0apICAAHudFgAAAAAAAACggrDrTPT9+/erZcuWatmypSQpKipKLVu21LRp0/Tbb7/po48+0q+//qoWLVrI39/fsu3Zs8fSx6pVq9SgQQN1795dffr0UYcOHfT666/b65QAAACAcmnXrl3q16+fAgICZDKZtH79eqt6k8mU7zZv3jxLm9q1a+epnzNnTimfCQAAAFC87DoTvUuXLjIMw2b99equ8vT01OrVq4szLABlWKtJK+0dQoWXMG+ovUMAANhBZmammjdvrhEjRmjgwIF56pOTk632N23apJEjRyo8PNyqfNasWRo1apRlv1q1aiUTMFAAjB3LD8agAICyrMx/sSgAAACAkte7d2/17t3bZr2fn5/V/ocffqiuXbuqTp06VuXVqlXL09aWrKwsZWVlWfYzMjIKETEAAABQOsr0F4sCAAAAKHtSU1P18ccfa+TIkXnq5syZIy8vL7Vs2VLz5s3T5cuXbfYTExMjd3d3yxYYGFiSYQMAAABFwkx0AAAAAIWyYsUKVatWLc+yL+PGjdOdd94pT09P7dmzR9HR0UpOTtb8+fPz7Sc6OlpRUVGW/YyMDBLpAAAAKHNIogMAAAAolDfffFNDhgyRk5OTVfm1CfFmzZrJ0dFRjz32mGJiYmQ2m/P0Yzab8y0vCta+Lj9Y+xoAAJQ3LOcCAAAAoMA+//xzJSUl6R//+McN24aEhOjy5cs6fvx4yQcGAAAAlBCS6AAAAAAKbNmyZWrVqpWaN29+w7aJiYlycHCQj49PKUQGAAAAlAyWcwEAAACg8+fP68iRI5b9Y8eOKTExUZ6enqpVq5akv9YsX7t2rV566aU8x8fHx2vfvn3q2rWrqlWrpvj4eE2cOFGPPPKIqlevXmrnAQAAABQ3kugAAAAAtH//fnXt2tWyf3V984iICC1fvlyStGbNGhmGocGDB+c53mw2a82aNZoxY4aysrIUHBysiRMnWq2TDgAAAJRHJNEBAAAAqEuXLjIM47ptRo8erdGjR+dbd+edd2rv3r0lERoAAABgV6yJDgAAAAAAAACADSTRAQAAAAAAAACwgSQ6AAAAAAAAAAA2kEQHAAAAAAAAAMAGkugAAAAAAAAAANhAEh0AAAAAAAAAABtIogMAAAAAAAAAYANJdAAAAAAAAAAAbCCJDgAAAAAAAACADSTRAQAAAAAAAACwgSQ6AAAAAAAAAAA2kEQHAAAAAAAAAMAGkugAAAAAAAAAANhAEh0AAAAAAAAAABtIogMAAAAAAAAAYANJdAAAAAAAAAAAbCCJDgAAAAAAAACADSTRAQAAAAAAAACwgSQ6AAAAAAAAAAA2kEQHAAAAAAAAAMAGkugAAAAAAAAAANhg1yT6rl271K9fPwUEBMhkMmn9+vVW9YZhaNq0afL395ezs7N69Oihw4cPW7U5e/ashgwZIjc3N3l4eGjkyJE6f/58KZ4FAAAAAAAAAKCiqmzPB8/MzFTz5s01YsQIDRw4ME/93Llz9corr2jFihUKDg7W1KlTFRYWpoMHD8rJyUmSNGTIECUnJ2vLli3KycnR8OHDNXr0aK1evbq0TwflRKtJK+0dQoWXMG+ovUMAAACFtGvXLs2bN08JCQlKTk7WunXrNGDAAEv9sGHDtGLFCqtjwsLCtHnzZsv+2bNnNXbsWG3YsEEODg4KDw/Xyy+/LFdX19I6DQAAAKDY2TWJ3rt3b/Xu3TvfOsMwtHDhQj333HPq37+/JGnlypXy9fXV+vXrNWjQIB06dEibN2/WV199pdatW0uSFi1apD59+ujFF19UQEBAvn1nZWUpKyvLsp+RkVHMZwYAAACULzea4CJJvXr1UmxsrGXfbDZb1TPBBQAAABVRmV0T/dixY0pJSVGPHj0sZe7u7goJCVF8fLwkKT4+Xh4eHpYEuiT16NFDDg4O2rdvn82+Y2Ji5O7ubtkCAwNL7kQAAACAcqB3796aPXu27rvvPpttzGaz/Pz8LFv16tUtdVcnuPz3v/9VSEiIOnTooEWLFmnNmjU6depUaZwCAAAAUCLKbBI9JSVFkuTr62tV7uvra6lLSUmRj4+PVX3lypXl6elpaZOf6OhopaenW7aTJ08Wc/QAAABAxbNz5075+Pjojjvu0BNPPKEzZ85Y6ooywSUrK0sZGRlWGwAAAFDW2HU5F3sxm815PnoKAAAAwLZevXpp4MCBCg4O1tGjR/Xss8+qd+/eio+PV6VKlYo0wSUmJkYzZ84sjfABAACAIiuzSXQ/Pz9JUmpqqvz9/S3lqampatGihaXN6dOnrY67fPmyzp49azkeAAAAwM0bNGiQ5eemTZuqWbNmqlu3rnbu3Knu3bsXqc/o6GhFRUVZ9jMyMlhqEQAAAGVOmV3OJTg4WH5+ftq2bZulLCMjQ/v27VNoaKgkKTQ0VGlpaUpISLC02b59u3JzcxUSElLqMQMAAAC3ijp16qhGjRo6cuSIpKJNcDGbzXJzc7PaAAAAgLLGrjPRz58/bxl0S399mWhiYqI8PT1Vq1YtTZgwQbNnz1b9+vUVHBysqVOnKiAgQAMGDJAkNWzYUL169dKoUaO0dOlS5eTkaMyYMRo0aJACAgLsdFYAAABAxffrr7/qzJkzlk+NXjvBpVWrVpKY4AIAAICKwa5J9P3796tr166W/asf5YyIiNDy5cs1efJkZWZmavTo0UpLS1OHDh20efNmOTk5WY5ZtWqVxowZo+7du8vBwUHh4eF65ZVXSv1cAAAAgPLsehNcPD09NXPmTIWHh8vPz09Hjx7V5MmTVa9ePYWFhUliggsAAAAqLrsm0bt06SLDMGzWm0wmzZo1S7NmzbLZxtPTU6tXry6J8AAAAIBbxvUmuCxZskQHDhzQihUrlJaWpoCAAPXs2VPPP/+8zGaz5RgmuAAAAKAiKrNfLAoAAACg9Nxogsunn356wz6Y4AIAAICKqMx+sSgAAAAAAAAAAPZGEh0AAAAAAAAAABtIogMAAAAAAAAAYANJdAAAAAAAAAAAbCCJDgAAAAAAAACADSTRAQAAAAAAAACwgSQ6AAAAAAAAAAA2kEQHAAAAAAAAAMAGkugAAAAAAAAAANhAEh0AAAAAAAAAABtIogMAAAAAAAAAYANJdAAAAAAAAAAAbCCJDgAAAAAAAACADSTRAQAAAAAAAACwgSQ6AAAAAAAAAAA2kEQHAAAAAAAAAMAGkugAAAAAAAAAANhAEh0AAAAAAAAAABtIogMAAAAAAAAAYANJdAAAAAAAAAAAbCCJDgAAAAAAAACADSTRAQAAAAAAAACwgSQ6AAAAAAAAAAA2kEQHAAAAoF27dqlfv34KCAiQyWTS+vXrLXU5OTmaMmWKmjZtqqpVqyogIEBDhw7VqVOnrPqoXbu2TCaT1TZnzpxSPhMAAACgeJFEBwAAAKDMzEw1b95cixcvzlN34cIFff3115o6daq+/vprffDBB0pKStK9996bp+2sWbOUnJxs2caOHVsa4QMAAAAlprK9AwAAAABgf71791bv3r3zrXN3d9eWLVusyv7zn/+obdu2OnHihGrVqmUpr1atmvz8/Ar0mFlZWcrKyrLsZ2RkFCFyAAAAoGQxEx0AAABAoaWnp8tkMsnDw8OqfM6cOfLy8lLLli01b948Xb582WYfMTExcnd3t2yBgYElHDUAAABQeMxEBwAAAFAoly5d0pQpUzR48GC5ublZyseNG6c777xTnp6e2rNnj6Kjo5WcnKz58+fn2090dLSioqIs+xkZGSTSAQAAUOaU6ZnoV65c0dSpUxUcHCxnZ2fVrVtXzz//vAzDsLQxDEPTpk2Tv7+/nJ2d1aNHDx0+fNiOUQMAAAAVV05Ojh588EEZhqElS5ZY1UVFRalLly5q1qyZHn/8cb300ktatGiR1ZIt1zKbzXJzc7PaAAAAgLKmTCfRX3jhBS1ZskT/+c9/dOjQIb3wwguaO3euFi1aZGkzd+5cvfLKK1q6dKn27dunqlWrKiwsTJcuXbJj5AAAAEDFczWB/ssvv2jLli03THqHhITo8uXLOn78eOkECAAAAJSAMr2cy549e9S/f3/17dtXklS7dm298847+vLLLyX9NQt94cKFeu6559S/f39J0sqVK+Xr66v169dr0KBB+fbLFxgBAAAAhXM1gX748GHt2LFDXl5eNzwmMTFRDg4O8vHxKYUIAQAAgJJRpmei33XXXdq2bZt++uknSdK3336r3bt3q3fv3pKkY8eOKSUlRT169LAc4+7urpCQEMXHx9vsly8wAgAAAKydP39eiYmJSkxMlPTXWDsxMVEnTpxQTk6O7r//fu3fv1+rVq3SlStXlJKSopSUFGVnZ0uS4uPjtXDhQn377bf6+eeftWrVKk2cOFGPPPKIqlevbsczAwAAAG5OmZ6J/swzzygjI0MNGjRQpUqVdOXKFf3rX//SkCFDJEkpKSmSJF9fX6vjfH19LXX54QuMAAAAAGv79+9X165dLftXx8sRERGaMWOGPvroI0lSixYtrI7bsWOHunTpIrPZrDVr1mjGjBnKyspScHCwJk6caDXuBgAAAMqjMp1Ef/fdd7Vq1SqtXr1ajRs3VmJioiZMmKCAgABFREQUuV+z2Syz2VyMkQIAAADlW5cuXWQYhs3669VJ0p133qm9e/cWd1gAAACA3ZXpJPqkSZP0zDPPWNY2b9q0qX755RfFxMQoIiJCfn5+kqTU1FT5+/tbjktNTc0zQwYAAAAAAAAAgMIq02uiX7hwQQ4O1iFWqlRJubm5kqTg4GD5+flp27ZtlvqMjAzt27dPoaGhpRorAAAAAAAAAKDiKdMz0fv166d//etfqlWrlho3bqxvvvlG8+fP14gRIyRJJpNJEyZM0OzZs1W/fn0FBwdr6tSpCggI0IABA+wbPAAAAAAAAACg3CvTSfRFixZp6tSpevLJJ3X69GkFBAToscce07Rp0yxtJk+erMzMTI0ePVppaWnq0KGDNm/eLCcnJztGDgAAAAAAAACoCMp0Er1atWpauHChFi5caLONyWTSrFmzNGvWrNILDAAAAAAAAABwSyjTa6IDAAAAAAAAAGBPJNEBAAAAAAAAALCBJDoAAAAAAAAAADaQRAcAAAAAAAAAwAaS6AAAAAAAAAAA2EASHQAAAAAAAAAAG0iiAwAAAAAAAABgA0l0AAAAAAAAAABsIIkOAAAAAAAAAIANJNEBAAAAAAAAALCBJDoAAAAAAAAAADaQRAcAAAAAAAAAwAaS6AAAAAAAAAAA2FCkJHq3bt2UlpaWpzwjI0PdunW72ZgAAAAAFADjcgAAAKDkFSmJvnPnTmVnZ+cpv3Tpkj7//PObDgoAAADAjTEuBwAAAEpe5cI0PnDggOXngwcPKiUlxbJ/5coVbd68WbfddlvxRQcAAAAgD8blAAAAQOkpVBK9RYsWMplMMplM+X481NnZWYsWLSq24AAAAADkxbgcAAAAKD2FWs7l2LFjOnr0qAzD0Jdffqljx45Ztt9++00ZGRkaMWJEScUKAAAAQCUzLt+1a5f69eungIAAmUwmrV+/3qreMAxNmzZN/v7+cnZ2Vo8ePXT48GGrNmfPntWQIUPk5uYmDw8PjRw5UufPn7/Z0wUAAADsqlAz0YOCgiRJubm5JRIMAAAAgBsriXF5ZmammjdvrhEjRmjgwIF56ufOnatXXnlFK1asUHBwsKZOnaqwsDAdPHhQTk5OkqQhQ4YoOTlZW7ZsUU5OjoYPH67Ro0dr9erVxRYnAAAAUNoKlUS/1uHDh7Vjxw6dPn06z+B92rRpNx0YAAAAgBsrrnF579691bt373zrDMPQwoUL9dxzz6l///6SpJUrV8rX11fr16/XoEGDdOjQIW3evFlfffWVWrduLUlatGiR+vTpoxdffFEBAQF5+s3KylJWVpZlPyMjo8DxAgAAAKWlSEn0N954Q0888YRq1KghPz8/mUwmS53JZCKJDgAAAJSC0hqXHzt2TCkpKerRo4elzN3dXSEhIYqPj9egQYMUHx8vDw8PSwJdknr06CEHBwft27dP9913X55+Y2JiNHPmzGKJEQAAACgpRUqiz549W//61780ZcqU4o4HAAAAQAGV1rg8JSVFkuTr62tV7uvra6lLSUmRj4+PVX3lypXl6elpafN30dHRioqKsuxnZGQoMDCwOEMHAAAAblqRkuh//vmnHnjggeKOBQAAAEAhlPdxudlsltlstncYAAAAwHU5FOWgBx54QJ999llxxwIAAACgEEprXO7n5ydJSk1NtSpPTU211Pn5+en06dNW9ZcvX9bZs2ctbQAAAIDyqEgz0evVq6epU6dq7969atq0qapUqWJVP27cuGIJDgAAAIBtpTUuDw4Olp+fn7Zt26YWLVpI+mvplX379umJJ56QJIWGhiotLU0JCQlq1aqVJGn79u3Kzc1VSEhIscQBAAAA2EORkuivv/66XF1dFRcXp7i4OKs6k8lEEh0AAAAoBcU5Lj9//ryOHDli2T927JgSExPl6empWrVqacKECZo9e7bq16+v4OBgTZ06VQEBARowYIAkqWHDhurVq5dGjRqlpUuXKicnR2PGjNGgQYMUEBBQLOcLAAAA2EORkujHjh0r7jgAAAAAFFJxjsv379+vrl27WvavfuFnRESEli9frsmTJyszM1OjR49WWlqaOnTooM2bN8vJyclyzKpVqzRmzBh1795dDg4OCg8P1yuvvFJsMQIAAAD2UKQkOgAARdFq0kp7h1DhJcwbau8QAJRTXbp0kWEYNutNJpNmzZqlWbNm2Wzj6emp1atXl0R4AAAAgN0UKYk+YsSI69a/+eabRQoGAAAAQMExLgcAAABKnkNRDvrzzz+tttOnT2v79u364IMPlJaWVqwB/vbbb3rkkUfk5eUlZ2dnNW3aVPv377fUG4ahadOmyd/fX87OzurRo4cOHz5crDEAAAAAZVFpjssBAACAW1WRZqKvW7cuT1lubq6eeOIJ1a1b96aDuurPP/9U+/bt1bVrV23atEne3t46fPiwqlevbmkzd+5cvfLKK1qxYoXlC47CwsJ08OBBq/UZAQAAgIqmtMblAAAAwK2sSDPR8+3IwUFRUVFasGBBcXWpF154QYGBgYqNjVXbtm0VHBysnj17Wt4QGIahhQsX6rnnnlP//v3VrFkzrVy5UqdOndL69euLLQ4AAACgvCiJcTkAAABwKyu2JLokHT16VJcvXy62/j766CO1bt1aDzzwgHx8fNSyZUu98cYblvpjx44pJSVFPXr0sJS5u7srJCRE8fHxNvvNyspSRkaG1QYAAABUFMU9LgcAAABuZUVaziUqKspq3zAMJScn6+OPP1ZERESxBCZJP//8s5YsWaKoqCg9++yz+uqrrzRu3Dg5OjoqIiJCKSkpkiRfX1+r43x9fS11+YmJidHMmTOLLU4AAADAHkprXA4AAADcyoqURP/mm2+s9h0cHOTt7a2XXnpJI0aMKJbApL/Wc2zdurX+/e9/S5Jatmyp77//XkuXLr2pNwXR0dFWbzgyMjIUGBh40/ECAAAApam0xuUAAADAraxISfQdO3YUdxz58vf3V6NGjazKGjZsqPfff1+S5OfnJ0lKTU2Vv7+/pU1qaqpatGhhs1+z2Syz2Vz8AQMAAAClqLTG5QAAAMCt7KbWRP/999+1e/du7d69W7///ntxxWTRvn17JSUlWZX99NNPCgoKkiQFBwfLz89P27Zts9RnZGRo3759Cg0NLfZ4AAAAgLKopMflAAAAwK2sSEn0zMxMjRgxQv7+/urUqZM6deqkgIAAjRw5UhcuXCi24CZOnKi9e/fq3//+t44cOaLVq1fr9ddfV2RkpCTJZDJpwoQJmj17tj766CN99913Gjp0qAICAjRgwIBiiwMAAAAoi0prXA4AAADcyoqURI+KilJcXJw2bNigtLQ0paWl6cMPP1RcXJyeeuqpYguuTZs2Wrdund555x01adJEzz//vBYuXKghQ4ZY2kyePFljx47V6NGj1aZNG50/f16bN2+Wk5NTscUBAAAAlEWlNS4HAAAAbmVFWhP9/fff13vvvacuXbpYyvr06SNnZ2c9+OCDWrJkSXHFp3vuuUf33HOPzXqTyaRZs2Zp1qxZxfaYAAAAQHlQmuNyAAAA4FZVpJnoFy5ckK+vb55yHx8fPjYKAAAAlBLG5QAAAEDJK1ISPTQ0VNOnT9elS5csZRcvXtTMmTP5Qk8AAACglDAuBwAAAEpekZZzWbhwoXr16qWaNWuqefPmkqRvv/1WZrNZn332WbEGCAAAACB/jMsBAACAklekJHrTpk11+PBhrVq1Sj/++KMkafDgwRoyZIicnZ2LNUAAAAAA+WNcDgAAAJS8IiXRY2Ji5Ovrq1GjRlmVv/nmm/r99981ZcqUYgkOAAAAgG2MywEAAICSV6Qk+muvvabVq1fnKW/cuLEGDRrEYB0AgAqo1aSV9g6hwkuYN9TeIaCcYVwOAAAAlLwifbFoSkqK/P3985R7e3srOTn5poMCAAAAcGOMywEAAICSV6QkemBgoL744os85V988YUCAgJuOigAAAAAN8a4HAAAACh5RVrOZdSoUZowYYJycnLUrVs3SdK2bds0efJkPfXUU8UaIAAAAID8MS4HAAAASl6RkuiTJk3SmTNn9OSTTyo7O1uS5OTkpClTpig6OrpYAwQAAACQP8blAAAAQMkr0nIuJpNJL7zwgn7//Xft3btX3377rc6ePatp06YVd3wAAAAAbCjNcXnt2rVlMpnybJGRkZKkLl265Kl7/PHHiz0OAAAAoLQVaSb6Va6urmrTpk1xxQIAAACgCEpjXP7VV1/pypUrlv3vv/9ed999tx544AFL2ahRozRr1izLvouLS4nGBAAAAJSGm0qiAwAAALg1eHt7W+3PmTNHdevWVefOnS1lLi4u8vPzK+3QAAAAgBJVpOVcAAAAANy6srOz9fbbb2vEiBEymUyW8lWrVqlGjRpq0qSJoqOjdeHChev2k5WVpYyMDKsNAAAAKGuYiQ4AAACgUNavX6+0tDQNGzbMUvbwww8rKChIAQEBOnDggKZMmaKkpCR98MEHNvuJiYnRzJkzSyFiAAAAoOhIogMAAAAolGXLlql3794KCAiwlI0ePdryc9OmTeXv76/u3bvr6NGjqlu3br79REdHKyoqyrKfkZGhwMDAkgscAAAAKAKS6AAAAAAK7JdfftHWrVuvO8NckkJCQiRJR44csZlEN5vNMpvNxR4jAAAAUJxYEx0AAABAgcXGxsrHx0d9+/a9brvExERJkr+/fylEBQAAAJQcZqIDAAAAKJDc3FzFxsYqIiJClSv/31uJo0ePavXq1erTp4+8vLx04MABTZw4UZ06dVKzZs3sGDEAAABw80iiAwAAACiQrVu36sSJExoxYoRVuaOjo7Zu3aqFCxcqMzNTgYGBCg8P13PPPWenSAEAAIDiQxIdAAAAQIH07NlThmHkKQ8MDFRcXJwdIgIAAABKHmuiAwAAAAAAAABgA0l0AAAAAAAAAABsIIkOAAAAAAAAAIANJNEBAAAAAAAAALCBJDoAAAAAAAAAADaQRAcAAAAAAAAAwAaS6AAAAAAAAAAA2EASHQAAAAAAAAAAG0iiAwAAAAAAAABgQ7lKos+ZM0cmk0kTJkywlF26dEmRkZHy8vKSq6urwsPDlZqaar8gAQAAAAAAAAAVRrlJon/11Vd67bXX1KxZM6vyiRMnasOGDVq7dq3i4uJ06tQpDRw40E5RAgAAAAAAAAAqknKRRD9//ryGDBmiN954Q9WrV7eUp6ena9myZZo/f766deumVq1aKTY2Vnv27NHevXtt9peVlaWMjAyrDQAAAAAAAACAvysXSfTIyEj17dtXPXr0sCpPSEhQTk6OVXmDBg1Uq1YtxcfH2+wvJiZG7u7uli0wMLDEYgcAAAAAAAAAlF9lPom+Zs0aff3114qJiclTl5KSIkdHR3l4eFiV+/r6KiUlxWaf0dHRSk9Pt2wnT54s7rABAAAAAAAAABVAZXsHcD0nT57U+PHjtWXLFjk5ORVbv2azWWazudj6AwAAAAAAAABUTGV6JnpCQoJOnz6tO++8U5UrV1blypUVFxenV155RZUrV5avr6+ys7OVlpZmdVxqaqr8/PzsEzQAAAAAAAAAoMIo0zPRu3fvru+++86qbPjw4WrQoIGmTJmiwMBAValSRdu2bVN4eLgkKSkpSSdOnFBoaKg9QgYAAAAAAAAAVCBlOolerVo1NWnSxKqsatWq8vLyspSPHDlSUVFR8vT0lJubm8aOHavQ0FC1a9fOHiEDAAAAAAAAACqQMp1EL4gFCxbIwcFB4eHhysrKUlhYmF599VV7hwUAAAAAAAAAqADKXRJ9586dVvtOTk5avHixFi9ebJ+AAAAAAAAAAAAVVpn+YlEAAAAAAAAAAOyJJDoAAAAAAAAAADaQRAcAAAAAAAAAwAaS6AAAAABuaMaMGTKZTFZbgwYNLPWXLl1SZGSkvLy85OrqqvDwcKWmptoxYgAAAKB4kEQHAAAAUCCNGzdWcnKyZdu9e7elbuLEidqwYYPWrl2ruLg4nTp1SgMHDrRjtAAAAEDxqGzvAAAAAACUD5UrV5afn1+e8vT0dC1btkyrV69Wt27dJEmxsbFq2LCh9u7dq3bt2uXbX1ZWlrKysiz7GRkZJRM4AAAAcBOYiQ4AAACgQA4fPqyAgADVqVNHQ4YM0YkTJyRJCQkJysnJUY8ePSxtGzRooFq1aik+Pt5mfzExMXJ3d7dsgYGBJX4OAAAAQGGRRAcAAABwQyEhIVq+fLk2b96sJUuW6NixY+rYsaPOnTunlJQUOTo6ysPDw+oYX19fpaSk2OwzOjpa6enplu3kyZMlfBYAAABA4bGcCwAAAIAb6t27t+XnZs2aKSQkREFBQXr33Xfl7OxcpD7NZrPMZnNxhQgAAACUCGaiAwAAACg0Dw8P3X777Tpy5Ij8/PyUnZ2ttLQ0qzapqan5rqEOAAAAlCck0QEAAAAU2vnz53X06FH5+/urVatWqlKlirZt22apT0pK0okTJxQaGmrHKAEAAICbx3IuAAAAAG7o6aefVr9+/RQUFKRTp05p+vTpqlSpkgYPHix3d3eNHDlSUVFR8vT0lJubm8aOHavQ0FC1a9fO3qEDAAAAN4UkOgAAAIAb+vXXXzV48GCdOXNG3t7e6tChg/bu3Stvb29J0oIFC+Tg4KDw8HBlZWUpLCxMr776qp2jBgAAAG4eSXQAAAAAN7RmzZrr1js5OWnx4sVavHhxKUUEAAAAlA6S6AAAALeAVpNW2juECi9h3lB7hwAAAACgBPDFogAAAAAAAAAA2EASHQAAAAAAAAAAG0iiAwAAAAAAAABgA0l0AAAAAAAAAABsIIkOAAAAAAAAAIANJNEBAAAAAAAAALCBJDoAAAAAAAAAADaQRAcAAAAAAAAAwAaS6AAAAAAAAAAA2FDZ3gGUR60mrbR3CBVewryh9g4BAAAAAAAAAJiJDgAAAAAAAACALSTRAQAAAAAAAACwgSQ6AAAAAAAAAAA2kEQHAAAAAAAAAMCGMp1Ej4mJUZs2bVStWjX5+PhowIABSkpKsmpz6dIlRUZGysvLS66urgoPD1dqaqqdIgYAAAAAAAAAVCRlOokeFxenyMhI7d27V1u2bFFOTo569uypzMxMS5uJEydqw4YNWrt2reLi4nTq1CkNHDjQjlEDAAAAAAAAACqKyvYO4Ho2b95stb98+XL5+PgoISFBnTp1Unp6upYtW6bVq1erW7dukqTY2Fg1bNhQe/fuVbt27fLtNysrS1lZWZb9jIyMkjsJAAAAAAAAAEC5VaZnov9denq6JMnT01OSlJCQoJycHPXo0cPSpkGDBqpVq5bi4+Nt9hMTEyN3d3fLFhgYWLKBAwAAAAAAAADKpXKTRM/NzdWECRPUvn17NWnSRJKUkpIiR0dHeXh4WLX19fVVSkqKzb6io6OVnp5u2U6ePFmSoQMAAAAAAAAAyqkyvZzLtSIjI/X9999r9+7dN92X2WyW2WwuhqgAAAAAAAAAABVZuZiJPmbMGG3cuFE7duxQzZo1LeV+fn7Kzs5WWlqaVfvU1FT5+fmVcpQAAAAAAAAAgIqmTCfRDcPQmDFjtG7dOm3fvl3BwcFW9a1atVKVKlW0bds2S1lSUpJOnDih0NDQ0g4XAAAAqLBiYmLUpk0bVatWTT4+PhowYICSkpKs2nTp0kUmk8lqe/zxx+0UMQAAAFA8yvRyLpGRkVq9erU+/PBDVatWzbLOubu7u5ydneXu7q6RI0cqKipKnp6ecnNz09ixYxUaGqp27drZOXoAAACg4oiLi1NkZKTatGmjy5cv69lnn1XPnj118OBBVa1a1dJu1KhRmjVrlmXfxcXFHuECAAAAxaZMJ9GXLFki6a8ZLdeKjY3VsGHDJEkLFiyQg4ODwsPDlZWVpbCwML366qulHCkAAABQsW3evNlqf/ny5fLx8VFCQoI6depkKXdxcSnw0opZWVnKysqy7GdkZBRPsAAAAEAxKvPLueS3XU2gS5KTk5MWL16ss2fPKjMzUx988AHroQMAAAAlLD09XZLk6elpVb5q1SrVqFFDTZo0UXR0tC5cuGCzj5iYGLm7u1u2wMDAEo0ZAAAAKIoyPRMdAAAAQNmTm5urCRMmqH379mrSpIml/OGHH1ZQUJACAgJ04MABTZkyRUlJSfrggw/y7Sc6OlpRUVGW/YyMDBLpAAAAKHNIogMAAAAolMjISH3//ffavXu3Vfno0aMtPzdt2lT+/v7q3r27jh49qrp16+bpx2w2y2w2l3i8AAAAwM0giQ4AAACgwMaMGaONGzdq165dqlmz5nXbhoSESJKOHDmSbxIdAOyh1aSV9g4BhZAwb6i9QwAAkugAAAAAbswwDI0dO1br1q3Tzp07FRwcfMNjEhMTJUn+/v4lHB0AAABQckiiAwAAALihyMhIrV69Wh9++KGqVaumlJQUSZK7u7ucnZ119OhRrV69Wn369JGXl5cOHDigiRMnqlOnTmrWrJmdowcAAACKjiQ6AAAAgBtasmSJJKlLly5W5bGxsRo2bJgcHR21detWLVy4UJmZmQoMDFR4eLiee+45O0QLAAAAFB+S6AAAAABuyDCM69YHBgYqLi6ulKIBAAAASo+DvQMAAAAAAAAAAKCsIokOAAAAAAAAAIANJNEBAAAAAAAAALCBJDoAAAAAAAAAADaQRAcAAAAAAAAAwAaS6AAAAAAAAAAA2EASHQAAAAAAAAAAG0iiAwAAAAAAAABgA0l0AAAAAAAAAABsIIkOAAAAAAAAAIANle0dAAAAAAAAAACURa0mrbR3CCiEhHlDS6RfZqIDAAAAAAAAAGADSXQAAAAAAAAAAGwgiQ4AAAAAAAAAgA0k0QEAAAAAAAAAsIEkOgAAAAAAAAAANpBEBwAAAAAAAADABpLoAAAAAAAAAADYQBIdAAAAAAAAAAAbSKIDAAAAAAAAAGADSXQAAAAAAAAAAGwgiQ4AAAAAAAAAgA0VJom+ePFi1a5dW05OTgoJCdGXX35p75AAAACAWxJjcwAAAFQkle0dQHH43//+p6ioKC1dulQhISFauHChwsLClJSUJB8fH3uHBwAAANwyGJsDAMqrVpNW2jsEFFDCvKH2DgG3mAoxE33+/PkaNWqUhg8frkaNGmnp0qVycXHRm2++ae/QAAAAgFsKY3MAAABUNOV+Jnp2drYSEhIUHR1tKXNwcFCPHj0UHx+f7zFZWVnKysqy7Kenp0uSMjIyCvSYV7Iu3kTEKIiCXoui4PqVPK5f+cb1K9+4fuUb1698K+j1u9rOMIySDMcuCjs2v9lx+bW4x8uPkvxb93fcF+UH9wVs4d5AfrgvYEth742Cjs1NRjkfvZ86dUq33Xab9uzZo9DQUEv55MmTFRcXp3379uU5ZsaMGZo5c2ZphgkAAABYOXnypGrWrGnvMIpVYcfmjMsBAABQFtxobF7uZ6IXRXR0tKKioiz7ubm5Onv2rLy8vGQymewYWcnIyMhQYGCgTp48KTc3N3uHg0Li+pVvXL/yjetXvnH9yreKfP0Mw9C5c+cUEBBg71Ds7lYblxdGRf4dwM3h3kB+uC+QH+4L2MK98X8KOjYv90n0GjVqqFKlSkpNTbUqT01NlZ+fX77HmM1mmc1mqzIPD4+SCrHMcHNzu+V/Mcozrl/5xvUr37h+5RvXr3yrqNfP3d3d3iGUiMKOzW/VcXlhVNTfAdw87g3kh/sC+eG+gC3cG38pyNi83H+xqKOjo1q1aqVt27ZZynJzc7Vt2zarj5ACAAAAKFmMzQEAAFARlfuZ6JIUFRWliIgItW7dWm3bttXChQuVmZmp4cOH2zs0AAAA4JbC2BwAAAAVTYVIoj/00EP6/fffNW3aNKWkpKhFixbavHmzfH197R1amWA2mzV9+vQ8H5VF+cD1K9+4fuUb16984/qVb1y/8ouxefHgdwC2cG8gP9wXyA/3BWzh3ig8k2EYhr2DAAAAAAAAAACgLCr3a6IDAAAAAAAAAFBSSKIDAAAAAAAAAGADSXQAAAAAAAAAAGwgiQ4AAAAAFczOnTtlMpmUlpZm71BQjIYNG6YBAwbYOwzYyfLly+Xh4WHvMFCGlPd7YsaMGWrRooW9w6jwSus+qeivUSTRK7Bdu3apX79+CggIkMlk0vr16+0dEgooJiZGbdq0UbVq1eTj46MBAwYoKSnJ3mGhgJYsWaJmzZrJzc1Nbm5uCg0N1aZNm+wdFopozpw5MplMmjBhgr1DQQHMmDFDJpPJamvQoIG9w0Ih/Pbbb3rkkUfk5eUlZ2dnNW3aVPv377d3WCinhg0bZvlb4OjoqHr16mnWrFm6fPnyTfddmCS1YRh64403FBoaKjc3N7m6uqpx48YaP368jhw5ctOxlCbeV1hLSUnR+PHjVa9ePTk5OcnX11ft27fXkiVLdOHCBXuHVyDlPQlX0RT3363jx49bjYuqVaumxo0bKzIyUocPHy7m6G9NXbp0yfe9QkX93SLxbR+///67nnjiCdWqVUtms1l+fn4KCwvTF198Ye/QbhmV7R0ASk5mZqaaN2+uESNGaODAgfYOB4UQFxenyMhItWnTRpcvX9azzz6rnj176uDBg6pataq9w8MN1KxZU3PmzFH9+vVlGIZWrFih/v3765tvvlHjxo3tHR4K4auvvtJrr72mZs2a2TsUFELjxo21detWy37lygx3yos///xT7du3V9euXbVp0yZ5e3vr8OHDql69ur1DQznWq1cvxcbGKisrS5988okiIyNVpUoVRUdHl8rjG4ahhx9+WOvXr9ezzz6rBQsWKCAgQKdOndK6des0e/ZsLV++PN9js7Oz5ejoWCpxovB+/vlntW/fXh4eHvr3v/+tpk2bymw267vvvtPrr7+u2267Tffee2+e43JyclSlShU7RIzywtbfLX9//yL3uXXrVjVu3FgXLlzQd999p5dfflnNmzfXhg0b1L1792KMHkBJCA8PV3Z2tlasWKE6deooNTVV27Zt05kzZ+wd2q3DwC1BkrFu3Tp7h4EiOn36tCHJiIuLs3coKKLq1asb//3vf+0dBgrh3LlzRv369Y0tW7YYnTt3NsaPH2/vkFAA06dPN5o3b27vMFBEU6ZMMTp06GDvMFCBREREGP3797cqu/vuu4127doZhmEYZ8+eNR599FHDw8PDcHZ2Nnr16mX89NNPlrbHjx837rnnHsPDw8NwcXExGjVqZHz88cfGsWPHDElWW0RERL4xvPPOO4Yk48MPP8y3Pjc3N0+8s2fPNvz9/Y3atWsbhmEYK1euNFq1amW4uroavr6+xuDBg43U1FSrfj7++GOjfv36hpOTk9GlSxcjNjbWkGT8+eefhmHk//dxwYIFRlBQkGX/yy+/NHr06GF4eXkZbm5uRqdOnYyEhARLfVBQkNU5X3vs+vXrjZYtWxpms9kIDg42ZsyYYeTk5OR7zhVFWFiYUbNmTeP8+fP51l+9tpKMV1991ejXr5/h4uJiTJ8+3bh8+bIxYsQIo3bt2oaTk5Nx++23GwsXLrQ6/vLly8bEiRMNd3d3w9PT05g0aZIxdOhQq3s6KCjIWLBggdVxzZs3N6ZPn27Zf+mll4wmTZoYLi4uRs2aNY0nnnjCOHfunGEYhrFjx4489/LVYy9dumQ89dRTRkBAgOHi4mK0bdvW2LFjx009Z7ix6/3dio2NNdzd3Y3NmzcbDRo0MKpWrWqEhYUZp06dstnf1b9X33zzjVX5lStXjC5duhhBQUHG5cuXS+BMbh223itcvV6G8X/Xdd68eYafn5/h6elpPPnkk0Z2dralfUF+52JjY43AwEDD2dnZGDBggPHiiy9aHuPax7nW+PHjjc6dO1v2r1y5YrzwwgtG3bp1DUdHRyMwMNCYPXu2pX7y5MlG/fr1DWdnZyM4ONh47rnnLHFefW25douNjTUMwzD+/PNPY+TIkUaNGjWMatWqGV27djUSExOtYomJiTF8fHwMV1dXY8SIEcaUKVMYuxfAn3/+aUgydu7ced02o0ePNnx8fAyz2Ww0btzY2LBhg2EYRoH+dly5csWYOXOmcdtttxmOjo5G8+bNjU2bNlk9xoEDB4yuXbsaTk5OhqenpzFq1CjL64lh5H//VSQs5wKUA+np6ZIkT09PO0eCwrpy5YrWrFmjzMxMhYaG2jscFEJkZKT69u2rHj162DsUFNLhw4cVEBCgOnXqaMiQITpx4oS9Q0IBffTRR2rdurUeeOAB+fj4qGXLlnrjjTfsHRYqGGdnZ2VnZ0v6a9mE/fv366OPPlJ8fLwMw1CfPn2Uk5Mj6a/XgqysLO3atUvfffedXnjhBbm6uiowMFDvv/++JCkpKUnJycl6+eWX8328d955R3fccUe+M5Klv5ZHuda2bduUlJSkLVu2aOPGjZL+mrn8/PPP69tvv9X69et1/PhxDRs2zHLMyZMnNXDgQPXr10+JiYn6xz/+oWeeeabQz825c+cUERGh3bt3a+/evapfv7769Omjc+fOSfrrE1qSFBsbq+TkZMv+559/rqFDh2r8+PE6ePCgXnvtNS1fvlz/+te/Ch1DeXHmzBl99tlnioyMtPlJ0Wuv7YwZM3Tffffpu+++04gRI5Sbm6uaNWtq7dq1OnjwoKZNm6Znn31W7777ruWYl156ScuXL9ebb76p3bt36+zZs1r3/9q797Casv8P4O9Ot9O9JDmhQhddMJJLmjFT8ZTbJLfG9CXfwQxJbrn0yyXznTCI0bj7IjIpTM0YjUJqJEoXp0L3KTFqUoy+6aI66/eHp/3YTulkEObzep7zPO29197rsy9nt/Y6a68VFdXhWAUCAYKDg3Hz5k0cOXIEFy9exIoVKwAAI0aMwHfffQdNTU2UlZWhrKwMvr6+AABvb29cvXoV4eHhyMrKwtSpU+Hi4kJdgHSCZ+9btbW12Lp1K0JDQ3Hp0iWUlpZy56wjBAIBFi1ahNu3byM9Pf1Vh0xaER8fj6KiIsTHx+PIkSMICQnhvYnU3ncuJSUFs2fPhre3N8RiMRwcHPDNN990OA4/Pz9s2rQJa9aswa1btxAWFgZ9fX1uuYaGBkJCQnDr1i3s2LEDBw4cwPbt2wEA7u7uWLZsGaysrLh7hru7OwBg6tSpqKiowNmzZ5Geng4bGxs4OTnhwYMHAIATJ04gICAAGzZsQFpaGkQiEXbv3v2yh/MfRV1dHerq6vjpp5/Q0NAgtVwikWDMmDFISkrCsWPHcOvWLWzatAny8vJcmvbuHTt27EBQUBC2bt2KrKwsODs749NPP+Wuv8ePH8PZ2Rk6OjpITU3FyZMnceHCBXh7e7/+A/C26OxafPJmgFqiv7Oam5vZuHHjmL29fWeHQjogKyuLqampMXl5eaalpcWio6M7OyTSAcePH2fW1tasrq6OMdZ26xLy9vn111/ZiRMnWGZmJouJiWF2dnbM0NCQVVdXd3ZoRAbKyspMWVmZ+fn5sYyMDLZv3z4mFApZSEhIZ4dG3lHPtoiSSCTs/PnzTFlZmfn6+rL8/HwGgCUlJXHpKysrmYqKCjtx4gRjjLH+/fuzgICAVrfd0oK3paV3W/r168c+/fRT3rxFixYxNTU1pqamxnr06MGLV19fnzU0NLxwm6mpqQwA1/rLz8+PWVpa8tKsXLmywy3Rn9fc3Mw0NDS4lmyMtf5c4eTkxDZs2MCbFxoaykQi0Qv3412WnJzMALDIyEjefF1dXe7crlixgjH29JgtXry43W0uWLCATZ48mZsWiURs8+bN3HRjYyPr2bNnh1uiP+/kyZNMV1eXm362tWyL27dvM3l5efbHH3/w5js5OTE/P79294W8vBfdt1paARcWFnLpd+3axfT19dvcXlst0RljLCcnhwFgERERr3o3/lFkbYn+fKv/qVOnMnd3d8aYbN+56dOns7Fjx/KWu7u7d6glenV1NVNWVmYHDhyQef+2bNnCBg8ezE239v8kMTGRaWpqsvr6et78vn37sn379jHGGLOzs2NeXl685cOGDaOW6DI6deoU09HRYUKhkI0YMYL5+fmxzMxMxhhjsbGxTCAQsLy8vFbXleXeYWBgwAIDA3nrDRkyhDtn+/fvZzo6Ory3r6Kjo5lAIGDl5eWMsfe/JTp1EkrIW27BggW4ceMGLl++3NmhkA4wNzeHWCzGo0ePcOrUKXh6euK3336DpaVlZ4dG2nHnzh0sWrQI58+fh1Ao7OxwSAeNGTOG+3vAgAEYNmwYjIyMcOLECcyePbsTIyOykEgksLW1xYYNGwAAgwYNwo0bN7B37154enp2cnTkXXXmzBmoq6ujsbEREokEn3/+OQICAhAXFwcFBQUMGzaMS6urqwtzc3Pk5OQAAHx8fDB//nycO3cOo0aNwuTJk1/JOBn+/v7w9vZGZGQkd7236N+/v1Q/6Onp6QgICEBmZiYePnwIiUQCACgtLYWlpSVycnJ4+wHgpd6A+/PPP7F69WokJCSgoqICzc3NqK2tbfeNnszMTCQlJfFanjc3N6O+vh61tbVQVVXtcCzvqmvXrkEikcDDw4PXWtDW1lYq7a5du3Do0CGUlpairq4OT5484Qbre/ToEcrKynjnVUFBAba2tmCMdSimCxcuYOPGjcjNzUV1dTWampraPTfZ2dlobm6GmZkZb35DQwN0dXU7lD/puLbuWydPnoSqqir69u3LpRWJRKioqHipfFqupeffiCGvh5WVFa9lsEgkQnZ2NgDZvnM5OTlwc3PjLbezs0NMTIzMMeTk5KChoeGF/eBHREQgODgYRUVFqKmpQVNTEzQ1NV+43czMTNTU1EjdH+rq6lBUVMTlPW/ePKn44+PjZY7/n2zy5MkYN24cEhMTkZycjLNnz2Lz5s3473//i4qKCvTs2VPq+nnWi+4d1dXVuHfvHuzt7Xnr2NvbIzMzE8DT8zdw4EDe21f29vaQSCTIy8vjvc3wvqJKdELeYt7e3jhz5gwuXbqEnj17dnY4pAOUlJRgYmICABg8eDBSU1OxY8cO7Nu3r5MjI+1JT09HRUUFbGxsuHnNzc24dOkSdu7ciYaGBl7hl7zdtLW1YWZmhsLCws4OhchAJBJJ/dhoYWHBdZtByMtwcHDAnj17oKSkBAMDgw4NNjxnzhw4OzsjOjoa586dw8aNGxEUFISFCxfKvA1TU1Pk5eXx5unp6UFPTw/dunWTSv981yAtr087Ozvjhx9+gJ6eHkpLS+Hs7Mx17yALgUAgVfna0m1NC09PT1RVVWHHjh0wMjKCsrIy7Ozs2s2npqYG69evx6RJk6SWva8/SJuYmEBOTk7q3Pbp0wfA0+43nvX8eQ0PD4evry+CgoJgZ2cHDQ0NbNmyBSkpKR2Ko73zWlJSgvHjx2P+/PkIDAxEly5dcPnyZcyePRtPnjxpsxK9pqYG8vLySE9Plyr3qKurdyhG0nEvum89PyitnJxch39YadHyg2Hv3r1fPlgCTU1NrgvWZ/3111/Q0tLipls7dy0/ir6q71x794Tn703Pu3r1Kjw8PLB+/Xo4OztDS0sL4eHhCAoKeuF6NTU1EIlESEhIkFqmra0tc/zkxYRCIUaPHo3Ro0djzZo1mDNnDtatWydTl06v8t7xT0V9ohPyFmKMwdvbG1FRUbh48SIVat4DEomk1b7LyNvHyckJ2dnZEIvF3MfW1hYeHh4Qi8VUgf6OqampQVFREUQiUWeHQmRgb28vVSGVn58PIyOjToqIvA/U1NRgYmICQ0NDXkWUhYUFmpqaeJWWVVVVyMvL4/2Y06tXL8ybNw+RkZFYtmwZ109/S2vx5ubmF+Y/ffp05OXl4eeff36p+HNzc1FVVYVNmzbho48+Qr9+/aRanVpYWODatWu8ecnJybxpPT09lJeX8x6YxWIxL01SUhJ8fHwwduxYWFlZQVlZGZWVlbw0ioqKUvtsY2ODvLw8mJiYSH0EgvfzkVNXVxejR4/Gzp078fjx4w6vn5SUhBEjRsDLywuDBg2CiYkJ11oTALS0tCASiXjXZ1NTk1Tf1Xp6eigrK+Omq6urUVxczE2np6dDIpEgKCgIw4cPh5mZGe7du8fbhpKSktQ5HTRoEJqbm1FRUSF1Trt3797h/SUd09Z961WSSCQIDg5G7969MWjQoNeSxz+Fubk5MjIypOZnZGS8sGXws2T5zllYWEj90Nbavf7ZewLAv9ebmppCRUUFcXFxrcZx5coVGBkZwd/fH7a2tjA1NcXt27d5aVq7Z9jY2KC8vBwKCgpS8Xft2lXm+EnHWFpa4vHjxxgwYADu3r2L/Pz8l9qOpqYmDAwMkJSUxJuflJTElYksLCyQmZnJ+5+XlJQEgUAAc3Pzl9+Jd8j7WaIhAJ5WHLRUAAFAcXExxGIxDbD2DliwYAGOHTuGsLAwaGhooLy8HOXl5airq+vs0IgM/Pz8cOnSJZSUlCA7Oxt+fn5ISEiAh4dHZ4dGZKChoQFra2veR01NDbq6urC2tu7s8Eg7fH198dtvv6GkpARXrlyBm5sb5OXlMX369M4OjchgyZIlSE5OxoYNG1BYWIiwsDDs378fCxYs6OzQyHvI1NQUrq6umDt3Li5fvozMzEz861//Qo8ePeDq6goAWLx4MWJjY1FcXIyMjAzEx8fDwsICAGBkZAQ5OTmcOXMG9+/fR01NTav5fPbZZ5gyZQo+++wzfP3110hJSUFJSQl+++03REREtPvjrKGhIZSUlPD999/j999/x+nTp/Gf//yHl2bevHkoKCjA8uXLkZeXh7CwMN5gdQDwySef4P79+9i8eTOKioqwa9cunD17VuqYhIaGIicnBykpKfDw8JBqtWhsbIy4uDiUl5fj4cOHAIC1a9fi6NGjWL9+PW7evImcnByEh4dj9erVLz4J77jdu3ejqakJtra2iIiIQE5ODvLy8nDs2DHk5ua+8NyampoiLS0NsbGxyM/Px5o1a7iBWlssWrQImzZtwk8//YTc3Fx4eXnhr7/+4qVxdHREaGgoEhMTkZ2dDU9PT16+JiYmaGxs5K6f0NBQ7N27l7cNY2Nj1NTUIC4uDpWVlaitrYWZmRk8PDwwc+ZMREZGori4GNeuXcPGjRsRHR399w8eeW2ioqLQr18/qflVVVUoLy/n7iOjRo3CtWvXcPDgQWok8jfNnz8f+fn58PHxQVZWFvLy8rBt2zYcP34cy5Ytk2kbsnznfHx8EBMTg61bt6KgoAA7d+6U6srF0dERaWlpOHr0KAoKCrBu3TrcuHGDWy4UCrFy5UqsWLECR48eRVFREZKTk3Hw4EEAT+9NpaWlCA8PR1FREYKDg6UGNDY2NubqlyorK9HQ0IBRo0bBzs4OEydOxLlz57iyuL+/P9LS0gA8vacdOnQIhw8fRn5+PtatW4ebN2++9HH/J6mqqoKjoyOOHTuGrKwsFBcX4+TJk9i8eTNcXV3x8ccfY+TIkZg8eTLOnz+P4uJinD17tkNd/SxfvhzffvstIiIikJeXh1WrVkEsFmPRokUAAA8PDwiFQnh6euLGjRuIj4/HwoULMWPGjH9EVy4AaGDR91nLYEfPfzw9PTs7NNKO1s4bAHb48OHODo3I4IsvvmBGRkZMSUmJ6enpMScnJ3bu3LnODov8DTSw6LvD3d2diUQipqSkxHr06MHc3d15A+iQt98vv/zCrK2tmbKyMuvXrx/bv39/Z4dE3mHtDXD14MEDNmPGDKalpcVUVFSYs7Mzy8/P55Z7e3uzvn37MmVlZaanp8dmzJjBKisrueVff/016969O5OTk3thGbu5uZnt3buXDRs2jKmpqTElJSXWp08fNnfuXHbr1q124w0LC2PGxsZMWVmZ2dnZsdOnT0sNFPjLL78wExMTpqyszD766CN26NAhqYFP9+zZw3r16sXU1NTYzJkzWWBgIG9g0YyMDGZra8uEQiEzNTVlJ0+elBq48vTp08zExIQpKCjw1o2JiWEjRoxgKioqTFNTkw0dOvQf8f29d+8e8/b2Zr1792aKiopMXV2dDR06lG3ZsoU9fvyYMdb6YKz19fVs1qxZTEtLi2lra7P58+ezVatW8QbYa2xsZIsWLWKamppMW1ubLV26lM2cOZN3jTx69Ii5u7szTU1N1qtXLxYSEiI1sOi2bduYSCTirvGjR49KXRvz5s1jurq6DAC37pMnT9jatWuZsbExU1RUZCKRiLm5ubGsrKxXfBTJs15032ptENioqCj2bNVOywCCLVoGFm35qKqqMgsLC+bl5cUKCgpexy78I127do2NHj2a6enpMS0tLTZs2DDe9769AT8Zk+07d/DgQdazZ0+moqLCJkyYwLZu3Sp1Taxdu5bp6+szLS0ttmTJEubt7c3Lp7m5mX3zzTfMyMiIKSoqMkNDQ97g0MuXL2e6urpMXV2dubu7s+3bt/PyqK+vZ5MnT2ba2tq8eorq6mq2cOFCZmBgwBQVFVmvXr2Yh4cHKy0t5dYNDAxkXbt2Zerq6szT05OtWLGCBhaVQX19PVu1ahWzsbFhWlpaTFVVlZmbm7PVq1ez2tpaxhhjVVVV7N///jfT1dVlQqGQWVtbszNnzjDGZLt3NDc3s4CAANajRw+mqKjIBg4cyM6ePctbJysrizk4ODChUMi6dOnC5s6dyw1yztj7P7CoHGPUAQ4hhBBCCCGEEEIIIYQQ0hrqzoUQQgghhBBCCCGEEEIIaQNVohNCCCGEEEIIIYQQQgghbaBKdEIIIYQQQgghhBBCCCGkDVSJTgghhBBCCCGEEEIIIYS0gSrRCSGEEEIIIYQQQgghhJA2UCU6IYQQQgghhBBCCCGEENIGqkQnhBBCCCGEEEIIIYQQQtpAleiEEEIIIYQQQgghhBBCSBuoEp0QQsgLGRsb47vvvuOm5eTk8NNPP72WvEJCQqCtrf1atk0IIYQQQt49r7Ps2RGzZs3CxIkT33i+z5fFO9vz5fWAgAB88MEHvDQBAQHQ19fnzt2bOnZvy7VCCHk/USU6IYS8Q2bNmgU5OTmpT2Fh4WvLMzU1FV9++eVr2/6z3N3dkZ+f/0byIoQQQgghb05b5VgXF5fODo2npKQEcnJyEIvFvPk7duxASEhIp8TUngcPHmDx4sUwMjKCkpISDAwM8MUXX6C0tPS15+3r64u4uDhuOicnB+vXr8e+fftQVlaGMWPGvPJj11rFPQAuP0IIeR0UOjsAQgghHePi4oLDhw/z5unp6b22/F7ntp+noqICFRWVN5YfIYQQQgh5c1orxyorK3dSNB2jpaXV2SG06sGDBxg+fDiUlJSwd+9eWFlZoaSkBKtXr8aQIUNw9epV9OnT57Xlr66uDnV1dW66qKgIAODq6go5OTkAb+4cd+/e/Y3kQwj5Z6KW6IQQ8o5RVlZG9+7deR95eXls27YN/fv3h5qaGnr16gUvLy/U1NRw67W8ennmzBmYm5tDVVUVU6ZMQW1tLY4cOQJjY2Po6OjAx8cHzc3N3HoveoXU0dER3t7evHn379+HkpISr0XKszIzM+Hg4AANDQ1oampi8ODBSEtL48X4bN6ttVhqcefOHUybNg3a2tro0qULXF1dUVJS0sEjSgghhBBC3oTWyrE6Ojrc8oKCAowcORJCoRCWlpY4f/48b/2EhATIycnhr7/+4uaJxWLIycnxyoBJSUn45JNPoKqqCh0dHTg7O+Phw4cAgJiYGHz44YfQ1taGrq4uxo8fz1X8AkDv3r0BAIMGDYKcnBw++eQTANLduTQ0NMDHxwfdunWDUCjEhx9+iNTUVKlY4+LiYGtrC1VVVYwYMQJ5eXlcmqKiIri6ukJfXx/q6uoYMmQILly40KFj6u/vj3v37uHChQsYM2YMDA0NMXLkSMTGxkJRURELFizg0rZWrv/ggw8QEBDATbf3TPG8Z1uFBwQEYMKECQAAgUDAldufP3YSiQSbN2+GiYkJlJWVYWhoiMDAQG75ypUrYWZmBlVVVfTp0wdr1qxBY2MjgKfPC+vXr0dmZib3bNDSyv357lyys7Ph6OgIFRUV6Orq4ssvv+TtS0tcW7duhUgkgq6uLhYsWMDlBQC7d++GqakphEIh9PX1MWXKlLZPBiHkvUaV6IQQ8p4QCAQIDg7GzZs3ceTIEVy8eBErVqzgpamtrUVwcDDCw8MRExODhIQEuLm54ddff8Wvv/6K0NBQ7Nu3D6dOnZIpzzlz5iAsLAwNDQ3cvGPHjqFHjx5wdHRsdR0PDw/07NkTqampSE9Px6pVq6CoqNhq2tTUVJSVlaGsrAx3797F8OHD8dFHHwEAGhsb4ezsDA0NDSQmJiIpKQnq6upwcXHBkydPZIqfEEIIIYS8HSQSCSZNmgQlJSWkpKRg7969WLlyZYe3IxaL4eTkBEtLS1y9ehWXL1/GhAkTuEYijx8/xtKlS5GWloa4uDgIBAK4ublBIpEAAK5duwYAuHDhAsrKyhAZGdlqPitWrMCPP/6II0eOICMjAyYmJnB2dsaDBw946fz9/REUFIS0tDQoKCjgiy++4JbV1NRg7NixiIuLw/Xr1+Hi4oIJEybI3A2LRCJBeHg4PDw8pFphq6iowMvLC7GxsVIxvYgszxRt8fX15d40aCnDt8bPzw+bNm3CmjVrcOvWLYSFhUFfX59brqGhgZCQENy6dQs7duzAgQMHsH37dgBPu39ctmwZrKysuDzc3d2l8nj8+DGcnZ2ho6OD1NRUnDx5EhcuXJBqABQfH4+ioiLEx8fjyJEjCAkJ4Srl09LS4OPjg6+//hp5eXmIiYnByJEjZToWhJD3ECOEEPLO8PT0ZPLy8kxNTY37TJkypdW0J0+eZLq6utz04cOHGQBWWFjIzfvqq6+Yqqoq+9///sfNc3Z2Zl999RU3bWRkxLZv385NA2BRUVGMMcbq6uqYjo4Oi4iI4JYPGDCABQQEtLkPGhoaLCQkpNVlhw8fZlpaWq0u8/HxYUZGRqyiooIxxlhoaCgzNzdnEomES9PQ0MBUVFRYbGxsm/kTQgghhJA3r7VyrJqaGgsMDGSMMRYbG8sUFBTYH3/8wa1z9uxZXtkzPj6eAWAPHz7k0ly/fp0BYMXFxYwxxqZPn87s7e1ljuv+/fsMAMvOzmaMMVZcXMwAsOvXr0vF7+rqyhhjrKamhikqKrIffviBW/7kyRNmYGDANm/ezIv1woULXJro6GgGgNXV1bUZj5WVFfv++++56efL4s8qLy9nANpcHhkZyQCwlJSUNrc1cOBAtm7dujbjae2Z4tny+rp169jAgQO56aioKPZ8VdOzx666upopKyuzAwcOtJnn87Zs2cIGDx7cZp4tnr1W9u/fz3R0dFhNTQ23PDo6mgkEAlZeXs7FZWRkxJqamrg0U6dOZe7u7owxxn788UemqanJqqurZY6VEPL+oj7RCSHkHePg4IA9e/Zw02pqagCetpbZuHEjcnNzUV1djaamJtTX16O2thaqqqoAAFVVVfTt25dbV19fH8bGxrx+DPX19VFRUSFTLEKhEDNmzMChQ4cwbdo0ZGRk4MaNGzh9+nSb6yxduhRz5sxBaGgoRo0ahalTp/Jias3+/ftx8OBBXLlyheujPTMzE4WFhdDQ0OClra+v572SSwghhBBC3g7Pl2MBoEuXLgCeDkjZq1cvGBgYcMvs7Ow6nIdYLMbUqVPbXF5QUIC1a9ciJSUFlZWVXAv00tJSWFtby5RHUVERGhsbYW9vz81TVFTE0KFDkZOTw0s7YMAA7m+RSAQAqKiogKGhIWpqahAQEIDo6GiUlZWhqakJdXV1HR4QlDH2wuVKSkoyb0uWZ4q/IycnBw0NDXBycmozTUREBIKDg1FUVISamho0NTVBU1Ozw/kMHDiQe1YCAHt7e0gkEuTl5XEt362srCAvL8+lEYlEyM7OBgCMHj0aRkZG6NOnD1xcXODi4gI3N7dXchwIIe8e6s6FEELeMWpqajAxMeE+IpEIJSUlGD9+PAYMGIAff/wR6enp2LVrFwDwujZ5vtsUOTm5Vue1PEzIYs6cOTh//jzu3r2Lw4cPw9HREUZGRm2mDwgIwM2bNzFu3DhcvHgRlpaWiIqKajN9fHw8Fi5ciKNHj/IeQmpqajB48GCIxWLeJz8/H59//rnM8RNCCCGEkDfj+XKsiYkJV4kuC4HgaRXGs5XGz/ZfDaDdQeonTJiABw8e4MCBA0hJSUFKSgoAvLbuAJ8ta7f0Ed5S1vb19UVUVBQ2bNiAxMREiMVi9O/fX+ZY9PT0oK2tLVVx3yInJwcKCgpcP+8CgUCqwv3Z4yfrM8Xf0d75uXr1Kjw8PDB27FicOXMGFWBDUQAABoZJREFU169fh7+//xs5PwD/WUhDQwMZGRk4fvw4RCIR1q5di4EDB/L65CeE/HNQJTohhLwH0tPTIZFIEBQUhOHDh8PMzAz37t17I3n3798ftra2OHDgAMLCwnj9PLbFzMwMS5Yswblz5zBp0iSu78TnFRYWYsqUKfi///s/TJo0ibfMxsYGBQUF6Natm9TDmJaW1ivZN0IIIYQQ8mZYWFjgzp07vH60k5OTeWla3kh8No1YLOalGTBgQJsD3FdVVSEvLw+rV6+Gk5MTLCwsuAFHW7S02m7pQ701ffv2hZKSEpKSkrh5jY2NSE1NhaWl5Qv2ki8pKQmzZs2Cm5sb+vfvj+7du/MGSG2PQCDAtGnTEBYWhvLyct6yuro67N69G25ublzZWE9Pj3fsqqurUVxczE2/iWcKU1NTqKiotHmOrly5AiMjI/j7+8PW1hampqa4ffs2L42SktILzw/w9HrKzMzE48ePuXlJSUkQCAQwNzeXOV4FBQWMGjUKmzdvRlZWFkpKSnDx4kWZ1yeEvD+oEp0QQt4DJiYmaGxsxPfff4/ff/8doaGh2Lt37xvLf86cOdi0aRMYY3Bzc2szXV1dHby9vZGQkIDbt28jKSkJqampsLCwaDXthAkTMGjQIHz55ZcoLy/nPsDTAUq7du0KV1dXJCYmori4GAkJCfDx8cHdu3df274SQgghhJCX09DQwCvTlZeXo7KyEgAwatQomJmZwdPTE5mZmUhMTIS/vz9vfRMTE/Tq1QsBAQEoKChAdHQ0goKCeGn8/PyQmpoKLy8vZGVlITc3F3v27EFlZSV0dHSgq6uL/fv3o7CwEBcvXsTSpUt563fr1g0qKiqIiYnBn3/+iUePHknth5qaGubPn4/ly5cjJiYGt27dwty5c1FbW4vZs2fLfDxMTU0RGRkJsViMzMxMfP755x16IxQAAgMD0b17d4wePRpnz57FnTt3cOnSJTg7O0MgEGDHjh1cWkdHR4SGhiIxMRHZ2dnw9PTkdWXyJp4phEIhVq5ciRUrVuDo0aMoKipCcnIyDh48CODpMSktLUV4eDiKiooQHBws9daqsbExiouLIRaLUVlZiYaGBql8PDw8IBQK4enpiRs3bnBvt86YMYM3iOmLnDlzBsHBwRCLxbh9+zaOHj0KiUTSoUp4Qsj7gyrRCSHkPTBw4EBs27YN3377LaytrfHDDz9g48aNbyz/6dOnQ0FBAdOnT4dQKGwznby8PKqqqjBz5kyYmZlh2rRpGDNmDNavXy+V9s8//0Rubi7i4uJgYGAAkUjEfYCn/btfunQJhoaGmDRpEiwsLDB79mzU19d3uM9EQgghhBDy+sXExPDKdCKRCB9++CGAp62qo6KiUFdXh6FDh2LOnDkIDAzkra+oqIjjx48jNzcXAwYMwLfffotvvvmGl8bMzAznzp1DZmYmhg4dCjs7O/z8889QUFCAQCBAeHg40tPTYW1tjSVLlmDLli289RUUFBAcHIx9+/bBwMAArq6ure7Lpk2bMHnyZMyYMQM2NjYoLCxEbGwsdHR0ZD4e27Ztg46ODkaMGIEJEybA2dkZNjY2Mq8PAF27dkVycjIcHBzw1VdfoXfv3vj444/R3NwMsVjMlZ2Bpz8wfPzxxxg/fjzGjRuHiRMn8sYmelPPFGvWrMGyZcuwdu1aWFhYwN3dnRuT6dNPP8WSJUvg7e2NDz74AFeuXMGaNWt460+ePBkuLi5wcHCAnp4ejh8/LpWHqqoqYmNj8eDBAwwZMgRTpkyBk5MTdu7cKXOc2traiIyMhKOjIywsLLB3714cP34cVlZWf+8AEELeSXKsvREoCCGEkHaUlJSgb9++SE1N7XDBnxBCCCGEEPLqHDx4EF5eXoiIiMDEiRM7OxxCCHkvUCU6IYSQl9bY2Iiqqir4+vqiuLiY1y8kIYQQQgghpHNERUUhNzcXixcvbncwT0IIIe2jSnRCCCEvLSEhAQ4ODjAzM8OpU6fQv3//zg6JEEIIIYQQQggh5JWiSnRCCCGEEEIIIYQQQgghpA00sCghhBBCCCGEEEIIIYQQ0gaqRCeEEEIIIYQQQgghhBBC2kCV6IQQQgghhBBCCCGEEEJIG6gSnRBCCCGEEEIIIYQQQghpA1WiE0IIIYQQQgghhBBCCCFtoEp0QgghhBBCCCGEEEIIIaQNVIlOCCGEEEIIIYQQQgghhLSBKtEJIYQQQgghhBBCCCGEkDb8P/DDAzRH4zsRAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Visualize correlations\n", + "plt.figure(figsize=(10, 10))\n", + "\n", + "# Select only numerical features for correlation calculation\n", + "numerical_features = data.select_dtypes(include=np.number)\n", + "sns.heatmap(numerical_features.corr(), annot=True, cmap='coolwarm')\n", + "plt.title('Feature Correlation Matrix')\n", + "plt.show()" + ], + "metadata": { + "id": "jHu7wU9mO1f8", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 949 + }, + "outputId": "1f426da7-f110-47bf-ac14-2f1b588ff7ee" + }, + "execution_count": 17, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3EAAAOkCAYAAAAIh73QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddXgTSQMG8Depu7t7gUJLkeIORQ873F0PuOJwuLu7uzvFXQ8vTmmBYqXuLsn3R2lKaIpcJZTv/T3PPk8zmdmd2U0nmR1ZgVgsFoOIiIiIiIiKBaG8M0BEREREREQ/jo04IiIiIiKiYoSNOCIiIiIiomKEjTgiIiIiIqJihI04IiIiIiKiYoSNOCIiIiIiomKEjTgiIiIiIqJihI04IiIiIiKiYoSNOCIiIiIiomKEjTgiIvq/snnzZggEAgQFBRXYPoOCgiAQCLB58+YC22dxV6tWLdSqVUve2SAi+i2xEUdE9BOyGwCytjFjxhTKMW/cuIHJkycjJiamUPZfEF69eoV+/frB3t4eqqqq0NbWRtWqVbFkyRIkJyfLO3sFZufOnVi8eLG8syGle/fuEAgE0NbWlnmuAwICJJ/R+fPn//T+g4ODMXnyZPj5+RVAbomIqCAoyjsDRETF0dSpU2FnZycV5ubmVijHunHjBqZMmYLu3btDV1e3UI6RH76+vmjTpg1UVFTQtWtXuLm5IS0tDdeuXcPIkSPx9OlTrF27Vt7ZLBA7d+7EkydPMGzYMKlwGxsbJCcnQ0lJSS75UlRURFJSEo4dO4a2bdtKvbdjxw6oqqoiJSXlP+07ODgYU6ZMga2tLTw8PH443ZkzZ/7T8YiI6PvYiCMi+g8aNWqE8uXLyzsb+ZKYmAgNDY187ePNmzdo3749bGxscOHCBZiZmUneGzRoEAIDA+Hr65vfrEIsFiMlJQVqamq53ktJSYGysjKEQvkNLhEIBFBVVZXb8VVUVFC1alXs2rUrVyNu586daNKkCQ4cOFAkeUlKSoK6ujqUlZWL5HhERP+POJySiKgQnDx5EtWrV4eGhga0tLTQpEkTPH36VCrOo0eP0L17d8kQRFNTU/Ts2RORkZGSOJMnT8bIkSMBAHZ2dpJhcUFBQd+chyUQCDB58mSp/QgEAjx79gwdO3aEnp4eqlWrJnl/+/btKFeuHNTU1KCvr4/27dvj/fv33y3n3LlzkZCQgA0bNkg14LI5Ojpi6NChktcZGRmYNm0aHBwcoKKiAltbW4wbNw6pqalS6WxtbdG0aVOcPn0a5cuXh5qaGtasWYNLly5BIBBg9+7d+Oeff2BhYQF1dXXExcUBAG7duoWGDRtCR0cH6urqqFmzJq5fv/7dchw5cgRNmjSBubk5VFRU4ODggGnTpiEzM1MSp1atWvD19cXbt28l18HW1hZA3nPiLly4IPkc6Orqonnz5nj+/LlUnOxrExgYKOlt1dHRQY8ePZCUlPTdvGfr2LEjTp48KTXs9s6dOwgICEDHjh1zxY+KisKIESNQunRpaGpqQltbG40aNcLDhw8lcS5duoQKFSoAAHr06CEpd3Y5a9WqBTc3N9y7dw81atSAuro6xo0bJ3nvyzlx3bp1g6qqaq7ye3t7Q09PD8HBwT9cViKi/3fsiSMi+g9iY2MREREhFWZoaAgA2LZtG7p16wZvb2/MmTMHSUlJWLVqFapVq4YHDx5IfvifPXsWr1+/Ro8ePWBqaioZdvj06VP8+++/EAgEaNWqFV6+fIldu3Zh0aJFkmMYGRkhPDz8p/Pdpk0bODk5YebMmRCLxQCAGTNmYMKECWjbti169+6N8PBwLFu2DDVq1MCDBw++OYTz2LFjsLe3R5UqVX7o+L1798aWLVvw559/Yvjw4bh16xZmzZqF58+f49ChQ1Jx/f390aFDB/Tr1w99+vSBi4uL5L1p06ZBWVkZI0aMQGpqKpSVlXHhwgU0atQI5cqVw6RJkyAUCrFp0ybUqVMHV69eRcWKFfPM1+bNm6GpqQkfHx9oamriwoULmDhxIuLi4jBv3jwAwPjx4xEbG4sPHz5g0aJFAABNTc0893nu3Dk0atQI9vb2mDx5MpKTk7Fs2TJUrVoV9+/fl3wOsrVt2xZ2dnaYNWsW7t+/j/Xr18PY2Bhz5sz5oXPbqlUr9O/fHwcPHkTPnj0BZPXCubq6wtPTM1f8169f4/Dhw2jTpg3s7OwQGhqKNWvWoGbNmnj27BnMzc1RokQJTJ06FRMnTkTfvn1RvXp1AJC63pGRkWjUqBHat2+Pzp07w8TERGb+lixZggsXLqBbt264efMmFBQUsGbNGpw5cwbbtm2Dubn5D5WTiIgAiImI6Idt2rRJDEDmJhaLxfHx8WJdXV1xnz59pNKFhISIdXR0pMKTkpJy7X/Xrl1iAOIrV65IwubNmycGIH7z5o1U3Ddv3ogBiDdt2pRrPwDEkyZNkryeNGmSGIC4Q4cOUvGCgoLECgoK4hkzZkiFP378WKyoqJgr/EuxsbFiAOLmzZvnGedLfn5+YgDi3r17S4WPGDFCDEB84cIFSZiNjY0YgPjUqVNScS9evCgGILa3t5c6fyKRSOzk5CT29vYWi0QiSXhSUpLYzs5OXL9+fUlY9jX88nzKuhb9+vUTq6uri1NSUiRhTZo0EdvY2OSKK+taeHh4iI2NjcWRkZGSsIcPH4qFQqG4a9eukrDsa9OzZ0+pfbZs2VJsYGCQ61hf69atm1hDQ0MsFovFf/75p7hu3bpisVgszszMFJuamoqnTJkiyd+8efMk6VJSUsSZmZm5yqGioiKeOnWqJOzOnTt5fs5q1qwpBiBevXq1zPdq1qwpFXb69GkxAPH06dPFr1+/FmtqaopbtGjx3TISEZE0DqckIvoPVqxYgbNnz0ptQFbvWkxMDDp06ICIiAjJpqCgAC8vL1y8eFGyjy/nd6WkpCAiIgKVKlUCANy/f79Q8t2/f3+p1wcPHoRIJELbtm2l8mtqagonJyep/H4tewijlpbWDx37xIkTAAAfHx+p8OHDhwNArrlzdnZ28Pb2lrmvbt26SZ0/Pz8/ybDByMhISTkSExNRt25dXLlyBSKRKM+8fbmv+Ph4REREoHr16khKSsKLFy9+qHxf+vTpE/z8/NC9e3fo6+tLwsuUKYP69etLzsWXvr421atXR2RkpOQ8/4iOHTvi0qVLCAkJwYULFxASEiJzKCWQNY8uex5hZmYmIiMjoampCRcXl5/6/KmoqKBHjx4/FLdBgwbo168fpk6dilatWkFVVRVr1qz54WMREVEWDqckIvoPKlasKHNhk4CAAABAnTp1ZKbT1taW/B0VFYUpU6Zg9+7dCAsLk4oXGxtbgLnN8fWKmgEBARCLxXBycpIZ/1urLWaXJT4+/oeO/fbtWwiFQjg6OkqFm5qaQldXF2/fvv1mXr/1XvZ579atW55pYmNjoaenJ/O9p0+f4p9//sGFCxdyNZr+y7XILsuXQ0CzlShRAqdPn861sIy1tbVUvOy8RkdHS31uvqVx48bQ0tLCnj174OfnhwoVKsDR0VHmM/FEIhGWLFmClStX4s2bN1Lz/wwMDH7oeABgYWHxU4uYzJ8/H0eOHIGfnx927twJY2PjH05LRERZ2IgjIipA2b0927Ztg6mpaa73FRVzqt22bdvixo0bGDlyJDw8PKCpqQmRSISGDRt+s9com0AgkBn+5Y/xr329uqNIJIJAIMDJkyehoKCQK/635nxpa2vD3NwcT548+W5ev5RXvr+X12+9l32+5s2bl+cy+HmVJSYmBjVr1oS2tjamTp0KBwcHqKqq4v79+xg9evQPXYuCIOv8A5DMXfwRKioqaNWqFbZs2YLXr19LLW7ztZkzZ2LChAno2bMnpk2bBn19fQiFQgwbNuynyvyt6yTLgwcPJDctHj9+jA4dOvxUeiIiYiOOiKhAOTg4AACMjY1Rr169PONFR0fj/PnzmDJlCiZOnCgJz+5R+lJejZ7snpqvHwL+dY/W9/IrFothZ2cHZ2fnH06XrWnTpli7di1u3ryJypUrfzOujY0NRCIRAgICUKJECUl4aGgoYmJiYGNj89PHz5Z93rW1tb953mW5dOkSIiMjcfDgQdSoUUMS/ubNm1xxf7QBml0Wf3//XO+9ePEChoaG+X68Q146duyIjRs3QigUon379nnG279/P2rXro0NGzZIhcfExEgW0AF+vMw/IjExET169EDJkiVRpUoVzJ07Fy1btpSsgElERD+Gc+KIiAqQt7c3tLW1MXPmTKSnp+d6P3tFyexel697WRYvXpwrTfaP/a8ba9ra2jA0NMSVK1ekwleuXPnD+W3VqhUUFBQwZcqUXHkRi8VSjzuQZdSoUdDQ0EDv3r0RGhqa6/1Xr15hyZIlALKG+gG5y7hw4UIAQJMmTX44318rV64cHBwcMH/+fCQkJOR6/1srecq6FmlpaTLPo4aGxg8NrzQzM4OHhwe2bNkidd2ePHmCM2fOSM5FYahduzamTZuG5cuXy+wNzqagoJDrmu/btw8fP36UCsvr8/dfjB49Gu/evcOWLVuwcOFC2Nraolu3brkeMUFERN/GnjgiogKkra2NVatWoUuXLvD09ET79u1hZGSEd+/ewdfXF1WrVsXy5cuhra2NGjVqYO7cuUhPT4eFhQXOnDkjs/enXLlyALKWuG/fvj2UlJTQrFkzSeNp9uzZ6N27N8qXL48rV67g5cuXP5xfBwcHTJ8+HWPHjkVQUBBatGgBLS0tvHnzBocOHULfvn0xYsSIb6bfuXMn2rVrhxIlSqBr165wc3NDWloabty4gX379qF79+4AAHd3d3Tr1g1r166VDGG8ffs2tmzZghYtWqB27do/d7K/IBQKsX79ejRq1AilSpVCjx49YGFhgY8fP+LixYvQ1tbGsWPHZKatUqUK9PT00K1bNwwZMgQCgQDbtm2TOYyxXLly2LNnD3x8fFChQgVoamqiWbNmMvc7b948NGrUCJUrV0avXr0kjxjQ0dH55jDH/BIKhfjnn3++G69p06aYOnUqevTogSpVquDx48fYsWMH7O3tpeI5ODhAV1cXq1evhpaWFjQ0NODl5fXNOYuyXLhwAStXrsSkSZMkjzzYtGkTatWqhQkTJmDu3Lk/tT8iov9rclsXk4ioGMpenv7OnTvfjHfx4kWxt7e3WEdHR6yqqip2cHAQd+/eXXz37l1JnA8fPohbtmwp1tXVFevo6IjbtGkjDg4OzvV4ALFYLJ42bZrYwsJCLBQKpZbHT0pKEvfq1Uuso6Mj1tLSErdt21YcFhaW5yMGwsPDZeb3wIED4mrVqok1NDTEGhoaYldXV/GgQYPE/v7+P3ReXr58Ke7Tp4/Y1tZWrKysLNbS0hJXrVpVvGzZMqkl+tPT08VTpkwR29nZiZWUlMRWVlbisWPHSsURi7MeMdCkSROZ5xWAeN++fTLz8eDBA3GrVq3EBgYGYhUVFbGNjY24bdu24vPnz0viyHrEwPXr18WVKlUSq6mpic3NzcWjRo2SLId/8eJFSbyEhARxx44dxbq6umIAkscN5PW4h3PnzomrVq0qVlNTE2tra4ubNWsmfvbsmVScvK6NrHzK8uUjBvKS1yMGhg8fLjYzMxOrqamJq1atKr5586bMRwMcOXJEXLJkSbGioqJUOWvWrCkuVaqUzGN+uZ+4uDixjY2N2NPTU5yeni4V7++//xYLhULxzZs3v1kGIiLKIRCLf2LGNBEREREREckV58QREREREREVI2zEERERERERFSNsxBERERERERUjbMQREREREREBuHLlCpo1awZzc3MIBAIcPnz4u2kuXboET09PqKiowNHREZs3by70fLIRR0REREREBCAxMRHu7u5YsWLFD8V/8+YNmjRpgtq1a8PPzw/Dhg1D7969cfr06ULNJ1enJCIiIiKi31ZqaipSU1OlwlRUVKCiovLNdAKBAIcOHUKLFi3yjDN69Gj4+vriyZMnkrD27dsjJiYGp06dyle+v4UP+yYJXyUXeWdBLsyfXZd3FuTCZ/wreWdBLnSN9eWdBbnYUXabvLMgF+E1O8k7C3LxMd1c3lmQCxWFdHlnQS50FGLlnQW5OOVvK+8syMXgxgJ5Z0GmX/l35J3xHTBlyhSpsEmTJmHy5Mn53vfNmzdRr149qTBvb28MGzYs3/v+FjbiiIiIiIjotzV27Fj4+PhIhX2vF+5HhYSEwMTERCrMxMQEcXFxSE5OhpqaWoEc52tsxBERERER0W/rR4ZOFjdsxBERERERUb4IlH7NYZ6FzdTUFKGhoVJhoaGh0NbWLrReOICrUxIREREREf0nlStXxvnz56XCzp49i8qVKxfqcdmIIyIiIiIiApCQkAA/Pz/4+fkByHqEgJ+fH969ewcga35d165dJfH79++P169fY9SoUXjx4gVWrlyJvXv34u+//y7UfHI4JRERERER5YtQ8fcYTnn37l3Url1b8jp7QZRu3bph8+bN+PTpk6RBBwB2dnbw9fXF33//jSVLlsDS0hLr16+Ht7d3oeaTjTgiIiIiIiIAtWrVwrceo71582aZaR48eFCIucqNwymJiIiIiIiKEfbEERERERFRvgiU2DdUlHi2iYiIiIiIihE24oiIiIiIiIoRDqckIiIiIqJ8+V1Wpywu2BNHRERERERUjLARR0REREREVIxwOCUREREREeWLQInDKYsSe+KIiIiIiIiKETbiiIiIiIiIihEOpyQiIiIionzh6pRFiz1xRERERERExQgbcURERERERMUIh1MSEREREVG+cHXKosWeOCIiIiIiomKEjTgiIiIiIqJihMMpiYiIiIgoX7g6ZdFiTxwREREREVExwkYcERERERFRMcLhlERERERElC8CBQ6nLErsiSMiIiIiIipG2IgjIiIiIiIqRjickoiIiIiI8kXI4ZRFij1xRERERERExQgbcURERERERMUIh1MSEREREVG+CIQcTlmU2Ij7Bdy8eRPVqlVDw4YN4evrK+/sFBn9auVhP7wXdDzdoGpujLutByL06Hl5Z+uHnT5+AMcO7kRsdBSs7RzRo9/fcHQpmWf8f69dwN7t6xAeGgJTc0t07D4AZStUkYrz8X0Qdm5aiWdP/CDKzISFtS18xs6AobEpEuLjsG/Hejx6cBsR4aHQ1tFDhUrV0bZzH6hraBZ2cb+pR1sLNKlrDE0NRTx5EY9F69/gY0jqN9MY6imhb2drVPTQgaqKAj6GpGDOytd4+TpREsfaQhV9O1nDvaQWFIQCvP2QjEkLAhAWmVbYRfohHZroo14VHWioCfHidQrW7AnDp/D0POO3a6yP9o0NpMI+hKThr+lvJa91tRTQraUh3F3VoaYixMewNOw/HY1//RIKrRw/Y8/9AGy5/QKRiSlwNtbF6HqecDMzkBn36OM3mHTytlSYsoIQt4a3kQp7HRmHJZce4v77cGSIRbA30Mb8FlVhpq1RaOX4WUeP+2LfgUOIio6GvZ0dBvXvC1cXZ5lxg96+w9btOxAQ+AqhYWHo36cXWrVoLhWnS4/eCA0Ly5W2WZPG+Gtg/0Ipw9fOn9iLk4e2ITYmEta2TujUZyTsnd3yjH/n+jkc3LkKEWGfYGJmhTZd/4J7+WqS98ViMQ7vWoPLZw8hKTEBTq7u6NJ/DEzNraX28/DuNRzdsw7v3wZCSUkZLqU8MWTcAqk4184fw+mjOxAS/A5q6hqoUKUeuvQbXbAn4AtnfPfj+MEdkvq8Wz8fODqXyjP+v9fOY9/2tYgIy6rP23cfhLLlq8iMu2HFHJw/dRhdeg9Fo+btAQDPHt/H9HGDZMaftmADHJzz/i4pTMePHcWBA/sRHR0NOzt79B8wEC4uLjLjvn0bhO3btiEwMABhYWHo07cfWrRomee+9+7dgy2bN6F58xbo269oPuM/SiwW49apZXh6cx9SU+JgZuuJ2m0mQdfINs80d8+twatHZxEd9hqKSqowtS2Lqs2GQ8/YXhLn4PIu+PjqjlQ6t8rtULvtlMIqCv0fYSPuF7Bhwwb89ddf2LBhA4KDg2Fubi7vLBUJBQ11xD3yx/vNB1B+/wp5Z+en3LhyDtvWL0PvQSPh6FISJ47sxayJPli4Zhd0dPVyxfd//hhL505Gh2794FmxKq5dOoP5M8Zi9uJNsLLNqvBDPn3ApFEDULt+U/zZqTfU1NXx4d0bKCmrAACiIyMQHRWBzj0Hw8LaFhFhoVi/Yh6iIiPgM25GkZb/S+2bm6FVI1PMXvEan8JS0LOdFeaOd0V3n0dITxfLTKOpoYBl00rhwdM4jJnpj5i4DFiaqSIhMUMSx9xEBUunlsTJC+HYvPcDkpIzYWuphrR0UVEV7Zta1tNDk5q6WLotFKGR6ejY1AATB1lgyPS3SM+QXW4AeBeciknLPkpeZ4qk4w7tagINNQXMWhOMuIRMVC+vhRE9TTFy7nu8+fDthnFhO/38HRZc9MP4BuXgZmaAnXdfYuDeyzjcuzH0NVRlptFUVsKh3o0krwUC6Tu176MT0HPHebQoY48B1dygoayEVxGxUFFQKNSy/IxLV65izboNGDJ4IFxdnHHw8FGMmzAJG9augp6ubq74qampMDU1RfVqVbFm3QaZ+1y2eAFEmTmf5aC3bzHmn4moUa1qYRVDyq1rZ7B74yJ0HTAW9s5uOHt0FxZM+QuzVhyAtq5+rvgBLx5i9YLx+LPLILiXr45/r5zCstkjMHnBdljaOAIAThzagrPHd6P30MkwMrHAwZ2rsHDKX5ixbK+kHrt74zw2r5yB1p0HokTpCsgUZeLj21dSxzp9ZDtOHdmBtt2GwsHZDampyYgICy60c3Hz6jlsX78UPQeNgqNzKZw8ugezJ/6NBat3Q0fGuXj5/BGWz5uEdt36w7NCNVy/fBoLZ4zGzMWbYWXjIBX3zs1LCPR/Cj19Q6lwZ9fSWLn1uFTYvu1r8eThXdg7lSj4Qv6AK5cvY926dRg8+C+4uLrg8OHDmDBhPNauXQ/dvD7nZqaoVr061q1d8819v3zpj1MnT8DOzq6Qcp8/9y+sx8Mr21C/42xoG1ji35NLcGR1b3Qa4wtFJRWZaT6+uoMy1TrC2Ko0RKJM3PRdlJVm9HEoqahL4pWq1AZejYZIXispqxV6eej/A+fEyVlCQgL27NmDAQMGoEmTJti8ebPU+0ePHoWTkxNUVVVRu3ZtbNmyBQKBADExMZI4165dQ/Xq1aGmpgYrKysMGTIEiYmJ+NWFn76Cl5MWI/TIOXln5af5Ht6DOt7NUKt+E1ha26H3oJFQVlHBpbPHZcY/eXQv3Mt5oVnrTrCwskW7Ln1h5+CM08f3S+Ls2boWHuUro1PPQbBzcIapmSXKe1WXNAqtbO3hM24mynlVg6mZJdzcy6F91764f/s6MjMzZB63KPzZ2BTbDn7E9bvReP0uGbOWv4KhnjKqVcjdmM3Wobk5wiJTMXfVa7x4lYiQ8FTcfRSL4NCcRkqv9la49SAWa3a8R2BQEoJDU3HjXgxi4uRX1i81ra2LfaejcPtxIt4Gp2HJ1lDo6yjAy/3bvUeZIiAmPlOyxSdKN0pd7NXgezkGAW9TERqZgf2no5GULIKDlewfEkVp+11/tCpjj+al7eFgqIPx3uWhqqSIw4/f5J1IABhqqkk2g68ae8uvPkI1ezMMq+UOVxM9WOlpopaTRZ6NQnk4cOgIGjVsAO/69WBjbY2hgwdCRVUFp8/IrrtcnJ3Qt1cP1K5ZA0pKSjLj6OroQF9fT7LdunMH5mamKFM6756wgnTmyA7UaNAC1ev+AQsre3QdMBbKKqq4ev6ozPhnj+1Gac/KaNSyK8yt7NCq0wDY2Lvi/Im9ALJ6Ms4e24VmbXvB06sWrGyd0GfoVERHheP+rUsAgMzMDOzcsABtuw1B7YZ/wtTCBhZW9qhYrb7kOIkJcTi4YxX6DJ2CyjUbwtjMEla2TihbsWahnYsTh3ehtvcfqFWvKSyt7dBr4CioqKjgch71+amje+Hu6YVmrTrDwsoWbTv3g52DC858UZ8DQFRkGLasWYhBwydDQVH6nrmikhJ09Qwkm6aWDu7duoqa9ZrkutFRVA4dOoiGDRuifoMGsLa2weDBf0FVRQVnzpyWGd/Z2QW9evVBzZq18vycA0BycjLmzZ2Lv4YMhaamfEeNyCIWi+F3eSsqNOgP+9J1YWjugvod5yAxLgyvH+f9+6R5v/UoUbEVDMycYGThivodZyE+OhhhH55KxVNUVoOGtpFkU1b99c5BQREoCH/Z7Xf0e5aqGNm7dy9cXV3h4uKCzp07Y+PGjRCLs+7Mv3nzBn/++SdatGiBhw8fol+/fhg/frxU+levXqFhw4Zo3bo1Hj16hD179uDatWsYPHiwPIrzfyEjPR1vAv1R2qOCJEwoFKK0R3m8fPFEZpqAF09R2qO8VJi7pxdevsiq7EUiER7cvQEzcyvMnPA3+nZqgvE+fXDn5pVv5iUpMQFq6hpQUJBPp7qZsQoM9JRx71GcJCwxORPPAxNQylkrz3RVyuvB/3UiJv3tiIPrPLF2jhua1DWSvC8QAJU8dfHhUzLmjnPBwXWeWDmjFKp+o2FYlEwMFKGvo4iHL5IkYUkpIgQEpcDF9tuNDzMjJWyYYYdVk20xrJsJDPWkr53/62RUK6cFTXUhBAKgWjlNKCkK8CQguVDK8qPSMzPxPCQaXrYmkjChQAAvGxM8Co7IM11yWgYarT6GhquOYtjBq3gVESt5TyQW49qrT7DW18LAvZdRZ/lhdNl2FhcDPhRqWX5Geno6AgIDUdbDQxImFApR1sMdz1+8KLBjnL94Cd716xXJD/iM9HQEvXqBUmW8JGFCoRAl3Ssi0P+RzDSv/B+hZJmKUmFuZSvjlf9jAEB46EfERkei1Bdx1DU04eDshsDPcd6+eoHoyDAIhEJM+rsjhvXwxsKpQ/DhbaAkzVO/WxCJxYiOCsO4wX/Cp1djrJw7BpHhIQVW/i9l1+du7tL1uZtHBQT451WfP4HbF/U/AJQp64WAL+p/kUiElQunokmrTrC0sf96F7ncv3UV8fGxqFmv6X8sSf6kp6cjMDAAHh5lJWFCoRAeHmXx4sXzfO171coVqFCxIsqW9cxvNgtFXOQHJMWHw8o5ZzisipoWTGzKICTI74f3k5ocDwBQVdeRCve/dwzr/qmEHXOa4cbxBUhPk29dTr8PNuLkbMOGDejcuTMAoGHDhoiNjcXly5cBAGvWrIGLiwvmzZsHFxcXtG/fHt27d5dKP2vWLHTq1AnDhg2Dk5MTqlSpgqVLl2Lr1q1ISUnJ87ipqamIi4uT2tLFv8YwtV9dXFwMRKLMXMNsdHT1ERMdJTNNTHSkzPixMZFZ+4yNRkpyMo7u3w73cl4YN20RKlaugYUzx+HZ4wey8xEbg4O7N6Nuwz8KoFT/jb5u1t3X6FjpeWDRsemS92QxN1ZB8/om+BiSglEzXuDomVD81cMW3jWzhhzpaitBXU0BHZqb4/bDWIyc/gJXb0dh6nAnuJfIu3FYVHS1sxpesfGZUuEx8ZmS92QJCErBsu2hmLriI9bsCYOJgRJm/G0JVZWcH+7zNoZAQQHYNtcBexc7on97Y8xe9wkhEXnPtSsK0UlpyBSLoa8u3Ug10FBFZKLsusZGXwuTGlXA4pbVML1JJYjFQPft5xEan9X4jUpMQVJ6Bjbdeo4qdqZY1aYmajtZYvih67j7Lvd8MXmIi4uDSCTKNWxST1cXUdExBXKMG//eQkJCIhrUq1sg+/ue+PisOuzrYZM6OvqIi46UmSY2JlJm/NjP8bPrMm1d6fmR2l/ECQ/NGkZ8ZPdaNGvTC8PGL4a6hhbm/NMPCfGxkjhisQjH929Ch17DMWjUHCQmxGH+5EHISC/4/4H47PpcT1Z9LvtcxMTIrs9jYnLiHzuwDQpCBTRs1vaH8nHx7DGUKesFA0PjnyxBwcj+nOvq6UqF6+rqIjoq+j/v9/LlSwgMDET37j3ymcPCkxQfDgBQ15T+7KprGiIxPu8bVF8Si0S4engmzOw8YWCWM1fW2bMpGnSei5YDt6B8vb54cfcozmwfVXCZp/9rnBMnR/7+/rh9+zYOHToEAFBUVES7du2wYcMG1KpVC/7+/qhQQfpuX8WK0ndCHz58iEePHmHHjh2SMLFYDJFIhDdv3qBECdlj62fNmoUpU6Qn1nYQ6KOTgqHM+FS4RKKsBnS5StXRpEXWxHdbe2e8fP4Y504eRsnSZaXiJyUlYs6UkbCwtsOfHXsVWT7rVTOAT9+cOQ1jZ/n/p/0IhID/q0Ss35XV4xIYlAQ7a3U0q2+M05cjIPx8e+nG3Wjs9826A//qbRJKuWihWQNjPHwen7+C/KQa5bXQv0POj6sZq/7b/Jz7z3J67t4Gp+FlUArWTrVFVU8tnL+Z1ZvZsakBNNQUMHHpB8QnZqJiGU2M7GmKcYs/4F3wr7Ggy49ytzCEu4Wh1OvWG05iv98rDKpeGtnTAWs5WqBzhazFE1xM9PDwYwT2+71CeWv5/KAtaqfOnEWF8uVgYCB7gZjfhejzBW/6Z0+Ur5LVYO01ZBJ8ejXGnRvnUNu7NcQiETIzMtCp90i4la0EAOg3fAaG9fDG8yd3UbpsZbnl/0e9DnyBU0f3YubizT/UsxoZEYZHD25h6KjpRZC7ohMeHo61a1Zj+oyZUFZWlnd2JPzvHcPFvZMkr5v1WZ3vfV46MBWRnwLw55CdUuFuVdpJ/jY0d4G6thEOr+yO2Ih30DG0/no3RD+FjTg52rBhAzIyMqQWMhGLxVBRUcHy5ct/aB8JCQno168fhgwZkus9a+u8K4ixY8fCx8dHKuyCfrkfzPn/N21tXQiFCoiNke51i42Jgq5e7knwAKCrZyAzvs7nu9ba2rpQUFCApZWtVBxzK1v4P5Me3pSclIhZE32gpqaO4eNnQlGx6P6Nr9+NxrOAnFUSlZWyWlt6OkqIism5S66no4TAoKRc6bNFRqfj7QfpISVvPySjulfW+YuNy0BGhghBX8V59zEZpV2Kvifu9uMEvAzK6W1SUsz6YaajpYDouJzeOF0thZ9afCQpWYTgsHSYGWX1WpoaKqFJTV0Mmf4W70OyGmxBH6NQ0kENjWvoYvVu+fVO6akrQ0EgQFSSdK9bZGJKrnlueVFSEMLFRBfvoxMk+1QUCmBvoC0Vz95AGw8+hhdMxvNJW1sbQqEQ0V/MQwaA6JgY6H/Va/FfhIaF4YHfQ0wcNybf+/pRWlpZdVjc13VSbBS09WQ3JHV0DWTG1/kcP7sui4uJhO4Xi3jExUbByi6rZyI73NwqZ3ihkpIyjE0sEPV5uKSOJE7OzSJtHT1oaelK4hQkrez6PFpWfS77XOjqyq7PdT+fA/+nfoiLjcZfPXNWahSJMrF94zKcPLoHSzcckkp7+dxxaGnpwNOrekEU6T/J/pzHfNW7HBMTAz39/zaMPTAgADExMRjyV870DpFIhCdPnuDYsaM4fOQYFOSwgJFdqdowGVFG8jozI6uuTUqIhIZOzo2jpIQIGJl/f5GZSwemIujZJbQavB2auqbfjGtqnXXcmIi3v2UjTqjARwwUJQ6nlJOMjAxs3boVCxYsgJ+fn2R7+PAhzM3NsWvXLri4uODu3btS6e7ckV6q1tPTE8+ePYOjo2Ou7Vt3vlRUVKCtrS21KQn4cfgRikpKsHN0wZOHOddGJBLhycN7cHaVvSiBk2spPPG7JxX26MEdOLuWkuzT3qkEgj++k4oT8vE9DI1zvhSSkhIxc8LfUFRUwsgJc6CsXLSLXSSniBAcmirZgj4kIzI6DZ6lc36Eq6spoISjJp6+zLu37Kl/PKzMpX/4W5qrIjQ8qwGUkSnGi1eJsDKXXsXL0kwVoRFFv0JjSqoYIRHpku19SBqiYjNQxiVnBTI1VSGcbFXhH5T3MOavqSoLYGqohOjYrMValJWzvgCz58VmE4nFkNNaBxJKCgooYaqHW29DJWEisRi334aijPmP9eBnikQIDI+FoaaqZJ8lTfXxNkr6s/I2Ov6XebyAkpISnBwd4ef3UBImEong5/cIJVxd873/02fPQVdHB14VK3w/cgFRVFKCrYMrnj3KefyDSCTC80d34OhSRmYaB5cyePZI+vvnqd8tOLiUBgAYmVhAR89AKk5yUgJevXwCx89xbB1coaikjJCPQZI4GRkZiAj7BAMjMwCAk6s7ACDkY85jNxLiYxEfHyOJU5Cy6/Onj6Tr86cP78LJJa/63E2q/geAx3634fS5/q9WuxFmL9uGWUu3SDY9fUM0bdkJY6YslkonFotx+ZwvqtduWKQ35L6mpKQER0cn+D30k4Rlfc794Or631bLdPfwwIqVq7Fs+UrJ5uTkhFq1amPZ8pVyacABgLKqJnSNbCSbvqkj1LWM8P7lTUmctJQEhL59BFNbjzz3IxaLcenAVLx+fA4tB26GjoHld48d/jFrHq2G9v/HKAMqXPzVLifHjx9HdHQ0evXqBTc3N6mtdevW2LBhA/r164cXL15g9OjRePnyJfbu3StZvTJ7iMbo0aNx48YNDB48GH5+fggICMCRI0eKxcImChrq0HZ3hbZ71g8hdTtLaLu7QtWq4L+oC1qTFu1w4fQxXD5/Ah/fB2HDyvlITUlBzXpNAAArFkzDrs2rJPEb/dEWD+//i+MHd+Hj+7fYt2MDXge+gHfTPyVxmrXqiJtXz+P8qaMICf6AU8f2497t62jQOOtublYDbhhSU1PQb+gYJCcnIiY6EjHRkRBlSs/NKkr7T4SgSysLVCmnCzsrNYwdbI+I6DRcu5Mzj2LBBFe08M5ZEGOfbwhKOmmiU0tzmJuooG5VAzSta4wjp3MaCHuOfkLtKvpoUtcI5iYqaOFtgirl9HD4izjydPxiDNo01EeF0hqwNlfG0C4miIrNxK2HOSvDTvnLAo1q5Exy79bSEKUc1WCkrwgXO1WM7msOkUiMq/eyeqY+hqQhOCwN/TuYwMlGBaaGSvijji7cXdRx66H8nxPXubwLDj18jaNP3uB1ZBxmnrmL5PQMNC+d1Wvyj++/WHo5p+d4zfWnuPkmBB9iEvA8JArjj9/Cp7gktCyT0xPTraIrTr94j4MPX+FddDx23w/AlcBgtC3rWOTly0vrls1x4vQZnDl3Hu/evcfSFauQkpIC7/pZQwLnLliEDZu3SOKnp6fj1avXePXqNdIzMhARGYVXr17jY7D0MFyRSIQzZ8+jft06Rf6DtkHzTrh89jCuXTiO4PdvsHX1LKSmJKNa3WYAgHWLJ2LftpwRIfWbtceTBzdw6vB2fPoQhMO71iDo1TPUbZw150sgEKB+sw44tm8DHty+jPdBgVi3eBL09I3g6VULAKCmrona3q1xePdaPHnwLz59DMLW1bMAABWq1gMAmFrYoGzFmti5YT4CXjzEh7eBWL9kMswsbOFaWnpxqILSuEUHXDx9FFfO++Lj+yBsXDkXKSkpkkVGVi6cgt1bVkriN/yjLR7d/xe+h3bi4/sg7N+5Hq8DX6DB5/pcS1sHVjYOUpuCoiJ09fRhbmkjdeynj+4iPDQYtRrIb25ztpYtW+H0qZM4d+4s3r17hxUrliElNQX16zcAACyYPw+bN22UxM/6nL/Cq1evkJGRgcjICLx69QrBnz/n6urqsLW1ldpUVVWhra0NW1tbeRRRJoFAAI+aXXH37Gq8fnIBEcH+OLNjNDS0jWFfup4k3qGV3fHw6nbJ68sHpsL/7jF4d54PJRUNJMaFIzEuHBlpWTfyYiPe4faZlQh7/wRxUR/w+skFnN05GuYO5WFoLvvZe0Q/g8Mp5WTDhg2oV68edHR0cr3XunVrzJ07F/Hx8di/fz+GDx+OJUuWoHLlyhg/fjwGDBgAFZWsHpgyZcrg8uXLGD9+PKpXrw6xWAwHBwe0a9cu135/NTrl3FD5/DbJ65LzxwEA3m89iEe9xsorWz+kSo16iIuNwb7t6xETHQUbeyeMmbpAMpwyIjwUAmFO14lLidL4a+Rk7Nm2Fru3roGpuSVGjJ8leUYcAFSsUhO9B47EkX3bsHntIphbWMNn3Ay4lsq6M/0m0B+B/s8AAMP6SF/fpRv2w9hEPo3f3Uc+QU1FiOH97KCprojHL+Ixeqa/1DPizE1UofPFgh/+rxIxYX4A+nS0QtfWFvgUlooVW97i3LWchQGu3YnGonVB6NjCHH/1sMX74KwHfT/xl39jBgAOnYuGqooAAzoYQ0NNiOevUjBt5UepZ8SZGipBWzPnx7mBriJ8ephCS12I2IRMPH+dgjELPiAuIasRnikCpq8KRpfmhhjXzxyqKkJ8Ck/H0m2hUvPp5MW7hDWik1Ox6toTRCamwMVYFyva1JQMpwyJS4Lwiy7D+JQ0TD19B5GJKdBWVUYJEz1s7lQXDoY59V4dZ0uMb1AOG/99jrnnH8BGXwvzWlRFWUujXMeXl1o1qiM2NhZbt+9EdHQ07O3tMWPqZOjpZQ0zCwsPl5r7FBkVhQFDhkle7z94CPsPHkKZ0m6YP3umJPy+30OEhYfDu0HOD8Wi4lWtAeJjo3F412rERkfC2s4ZPpOWSYZFRoaHQPDF6AwnV3f085mBgztW4sD2FTAxt8JfY+ZLnhEHAI1bdkNaSgo2r5yJpMR4OJfwgM/EpZJnxAFA2+5DIVRQwLrFE5GWlgp751IYNW0VNDRzevP7DJuCXRsWYvG0YRAIhXAp5QmfiUsLraeqcvV6iIuNxv4d6xETHZlVn09ZJFnsJDI8FMIvzoVziTIYNGIK9m1fiz1bV8PU3Ao+4+fkekbcj7h05hicS5SGxVdD6eWhRs2aiI2LxfZt2ySf86lTp0s+5+HhYVLfa1FRkRjyV84Dyw8eOICDBw6gdOnSmD1nXpHnPz886/RGeloyLu6diNTkOJjZlcMf/dZJPSMuNuIdUhJzbk4+vr4LAHBwRVepfdXrMBMlKraCUEEJ71/ewMPLW5CelgxNXTM4lmmACg0GFE2h5ODLzwcVPoH463E79EubMWMGVq9ejffv3xf4vn2V/j/vDJk/uy7vLMiFz/hX34/0G9I1lj1v8Xe3o+y270f6DYXX7CTvLMjFx3Tz70f6DakoyHcVV3nRUYj9fqTf0Cl/W3lnQS4GN/41G0u3Knt9P5KceN28Je8sFDj2xP3iVq5ciQoVKsDAwADXr1/HvHnzisVQSSIiIiIiKhxsxP3iAgICMH36dERFRcHa2hrDhw/H2LG/9lBDIiIiIvr/wtUpixYbcb+4RYsWYdGiRfLOBhERERER/SK4OiUREREREVExwp44IiIiIiLKFwGHUxYp9sQREREREREVI2zEERERERERFSMcTklERERERPkiELJvqCjxbBMRERERERUjbMQREREREREVIxxOSURERERE+SIQcnXKosSeOCIiIiIiomKEjTgiIiIiIqJihMMpiYiIiIgoX4R82HeRYk8cERERERFRMcJGHBERERERUTHC4ZRERERERJQvXJ2yaLEnjoiIiIiIqBhhI46IiIiIiKgY4XBKIiIiIiLKF4GQfUNFiWebiIiIiIioGGEjjoiIiIiIqBjhcEoiIiIiIsoXrk5ZtNgTR0REREREVIywEUdERERERFSMcDglERERERHli1CBwymLEnviiIiIiIiIihE24oiIiIiIiIoRDqckIiIiIqJ84eqURYs9cURERERERMUIG3FERERERETFCIdTEhERERFRvgiE7BsqSmzEkYT5s+vyzoJcBJesKu8syMXcJ7fknQW5SM1UkncW5OKDSm95Z0EuAmPN5J0FuVBWFMk7C3KRkKYi7yzIhVj1/3MukpdDrLyzICe68s4A/QLYZCYiIiIiIipG2BNHRERERET5wtUpixZ74oiIiIiIiIoRNuKIiIiIiIiKEQ6nJCIiIiKifOFwyqLFnjgiIiIiIqJihI04IiIiIiKiYoTDKYmIiIiIKF84nLJosSeOiIiIiIioGGEjjoiIiIiI6LMVK1bA1tYWqqqq8PLywu3bt78Zf/HixXBxcYGamhqsrKzw999/IyUlpVDzyOGURERERESULwLh79E3tGfPHvj4+GD16tXw8vLC4sWL4e3tDX9/fxgbG+eKv3PnTowZMwYbN25ElSpV8PLlS3Tv3h0CgQALFy4stHz+HmebiIiIiIgonxYuXIg+ffqgR48eKFmyJFavXg11dXVs3LhRZvwbN26gatWq6NixI2xtbdGgQQN06NDhu713+cVGHBERERER/bZSU1MRFxcntaWmpuaKl5aWhnv37qFevXqSMKFQiHr16uHmzZsy912lShXcu3dP0mh7/fo1Tpw4gcaNGxdOYbLzVah7JyIiIiKi355QQfDLbrNmzYKOjo7UNmvWrFxliIiIQGZmJkxMTKTCTUxMEBISIrPcHTt2xNSpU1GtWjUoKSnBwcEBtWrVwrhx4wrlPGdjI46IiIiIiH5bY8eORWxsrNQ2duzYAtn3pUuXMHPmTKxcuRL379/HwYMH4evri2nTphXI/vPChU2IiIiIiOi3paKiAhUVle/GMzQ0hIKCAkJDQ6XCQ0NDYWpqKjPNhAkT0KVLF/Tu3RsAULp0aSQmJqJv374YP348hIW04At74oiIiIiIKF8EQsEvu/0oZWVllCtXDufPn5eEiUQinD9/HpUrV5aZJikpKVdDTUFBAQAgFov/w5n8MeyJIyIiIiIiAuDj44Nu3bqhfPnyqFixIhYvXozExET06NEDANC1a1dYWFhI5tQ1a9YMCxcuRNmyZeHl5YXAwEBMmDABzZo1kzTmCgMbcURERERERADatWuH8PBwTJw4ESEhIfDw8MCpU6cki528e/dOquftn3/+gUAgwD///IOPHz/CyMgIzZo1w4wZMwo1nwJxYfbzUbHyICBC3lmQi+CSVeWdBbkwfnJL3lmQi9RMJXlnQS6MVSLlnQW5CIw1k3cW5EJZUSTvLMiFSPzjw6Z+J/qqifLOglyI8f95vSu46Mo7CzK96fmHvLOQJ7uNR+WdhQLHOXFERERERETFCBtxRERERERExQjnxBERERERUb78zCqQlH/siSMiIiIiIipG2IgjIiIiIiIqRjickoiIiIiI8oXDKYsWe+KIiIiIiIiKETbiiIiIiIiIihEOpyQiIiIionwRCNk3VJR4tomIiIiIiIoRNuKIiIiIiIiKEQ6nJCIiIiKifOHqlEWLPXG/sFq1amHYsGHyzgYREREREf1C2BP3HSEhIZg1axZ8fX3x4cMH6OjowNHREZ07d0a3bt2grq4u7yzK3enjB3Ds4E7ERkfB2s4RPfr9DUeXknnG//faBezdvg7hoSEwNbdEx+4DULZCFak4H98HYeemlXj2xA+izExYWNvCZ+wMGBqbIiE+Dvt2rMejB7cRER4KbR09VKhUHW0794G6hmZhFzff9KuVh/3wXtDxdIOquTHuth6I0KPn5Z2tH3bWdx98D+1AbHQkrO2c0LXvcDg4l8oz/q1r57F/xxpEhH2CibkV2ncbBI/yVSXvH9i5Dv9ePYuoiFAoKCrBztEVbTr3h6OLGwAgPDQYh/dsxLNHdxETEwU9fUNUrdUQzdv0gKKSUqGVUywW48iu1bhy7hCSEuPh6OqOLv3GwcTc+pvpLpzYg1OHtyI2JhJWts7o2HsU7J3dJO+np6Viz6aFuH3tDDIy0lDKozI69xsLHV2DXPtKiIvBZJ/2iI4Mw7Ltl6GuoSV1nAsn9iAi/BP0DU3R9M9eqFK7acGdgDz4HjuCgwf2ITo6CnZ2Dug3YBCcXVxlxn37Ngg7tm3Bq8AAhIWFonffAWjeopVUnBO+x3DS9xhCQ0MBANY2NmjfoTPKV6hY6GX5FrFYjFP7V+Dmhf1ISYyHrUtZtOk5AUZmNt9Md+3MLlw4tgnxsREwt3ZBq+7jYONYWvJ+XEwEju6Yj5ePbyI1JQlGZrao36Iv3L3qAwCiwj/izMHVCHh6G/ExEdDWM0K5ak1Rv2U/KCoW3uc9m1gshu+elbh+/gCSE+Nh7+qB9n3+gfF3yn351G6cO7oZcTERsLBxRtueY2HrVDpXPLFYjJUzB+KZ33X0HbkY7hXrSL1/8+IRXDi+FWGf3kJVTQOelRugXe/xBVpGWcRiMU7sXYEbn8tt5+qBdr0nfLfcV07twvlj2eV2wZ89x8L2i+u9ZHIPBD67K5Wmar02aN93ouS1/+N/4btnOYLfBUBZRQ1eNf9A0w5DoKBQ+D/Rzvjuh++h7ZLv724/UJ/v27FWUp936DYIHuVzvr8P7FyHm1fPfVGfu6DtF/V5tgd3ruPQng14F/QKSkrKKOFWFj7j5xZaOb9W1N9jADCsdwtEhH2S2m/brgPxx5/dCr6A9H+BPXHf8Pr1a5QtWxZnzpzBzJkz8eDBA9y8eROjRo3C8ePHce7cOXln8ZsyMzMhEokK9Rg3rpzDtvXL8GeHnpi1ZCNs7Bwxa6IPYmOiZcb3f/4YS+dORu36TTF76SaUr1Qd82eMxfug15I4IZ8+YNKoATC3tMHEWcsxZ/kWtGrfHUrKKgCA6MgIREdFoHPPwZi3YhsGDBsPv3u3sHrJrEIta0FR0FBH3CN/PBkyRd5Z+Wn/Xj2LHRuWoGX7Xpi+aAusbR0xZ9JQxMZEyYz/8vkjrJg/ATXrN8P0xVtRzqsGFs0chfdvX0nimFlYo1u/EZi1bCcmzlkLQ2MzzJk0BHGxWZ+h4A9vIRKL0HPQGMxZvgudeg3D+ZMHsXfbykIt68lDW3DOdxe69BuH8XO2QEVFDQunDkJ6WmqeaW5fO409mxbij3Z9MWnBTljZOmHR1EGI++L87N64AA/vXsWAkXMwavo6xESFY+WcETL3t2nFVFjaOOUKv3hqHw5sX44/2vfDtCX70Lx9f2xfOxt+dy7nv+DfcPXyJaxftwYdOnbG4mWrYGdvj4kTxiImj//31NRUmJqZoVuPXtDT05cZx9DQEN169MLipSuwaMkKlHH3wIxpk/D2bVAhluT7LhzbiCundqBNr4kYNm0nVFTUsHp2v29e/wc3T+Lwtrnwbj0Aw2fug7mNC9bM7of42EhJnB0rxyL8UxB6jViOkXMOokyFetiyZDg+vHkOAAj9+AZisRhtek/EqHmH0aLLaNw4txe+uxcXdpEBAGePbMKlkzvRvu8EjJy1A8oqalg+vf83y33v+ikc3DIPjdv0x5g5e2Bp44LlM/pLlTvbRd/tgED2kKvzx7bi2K5laNCiJ/5ZeAhDJq5DCfcqMuMWtHNHNuLyyZ1o12cChs/cARUVNayc8e3rfe/GKRzaOg+N/uyPUXP2wsLGGStn9MtV7ip1W2PG2ouSrXlnH8l7H4L8sXrWQJTwqIrRc/ehx9/z8PjeJRzdsbiwiipx83N93qp978/1uRNmTxr2zfp8+fyJqFW/GWYs3oLyXjWw8Kv63NTCGt37DcfsZTswac4aGBmbYfakoZL6HABu37iAVYumoEbdppi1ZBsmzVmLKjUbFHp5s8njeyxb6459sXzLCcnWoGnbQi1rURMIhb/s9jv6PUtVQAYOHAhFRUXcvXsXbdu2RYkSJWBvb4/mzZvD19cXzZo1AwDExMSgd+/eMDIygra2NurUqYOHDx9K9jN58mR4eHhg27ZtsLW1hY6ODtq3b4/4+HhJnMTERHTt2hWampowMzPDggULcuUnNTUVI0aMgIWFBTQ0NODl5YVLly5J3t+8eTN0dXVx9OhRlCxZEioqKnj37l3hnSAAvof3oI53M9Sq3wSW1nboPWgklFVUcOnscZnxTx7dC/dyXmjWuhMsrGzRrktf2Dk44/Tx/ZI4e7auhUf5yujUcxDsHJxhamaJ8l7VoaOrBwCwsrWHz7iZKOdVDaZmlnBzL4f2Xfvi/u3ryMzMKNTyFoTw01fwctJihB75tW8CyHLyyC7UbtAcNes1g4W1PXoMHAMVFVVcPndMZvzTx/agjGclNG3VBRZWdmjTuT9s7V1w1nefJE6Vmt5w86gIY1MLWFrbo1OvoUhOSsS7oEAAgHu5yug3dCJKl60EY1MLlPOqgcYtO+HOzUuFVk6xWIxzx3eiaZveKOtVC1a2zug1dCpiosJx/1bexz1zdAdq1G+JanWbw9zKHl36j4eyiiqunT8CAEhKjMfV84fRrocPSpSpCFuHkuj512QEvniIV/6PpPZ18dQ+JCfGw7t5l1zHuXnJFzUbtELFat4wMrWEV3Vv1GzQCicPbinQ8/C1w4cOwLthI9Rr0BDW1jYYOHgoVFRUcPbMaZnxnZ1d0LNXX9SoWRtKefSaVvSqjPIVvGBuYQkLS0t07dYTqqpq8H/xvDCL8k1isRiXT25Dg5Z9Ubp8HZjbuKDjwJmIiw7D47t595pf8t2KynX+hFetljC1dECbXhOhrKyKW5cOSeIEvfRDNe+OsHEsDUMTKzRo1Q9qGlr48OYpAKCERzV06D8drmWqwtDECm7la6N20+54dKfwe+vFYjEu+m5Hw9Z94F6hNixsnNFt8AzERofj4Z0LeaY7f3wrqtRtjcq1W8DMygHt+06AsrIabl44LBXv/ZsXOH9sCzoPmJprH0kJcTi2ezm6/jUdFao3gZGpFSxsnFGmQu2CLmYuYrEYl05sh3ervihToQ4sbFzQZfBMxEaH49E3yn3x+FZUrtsalWq3hJmlA9r1mZhV7ouHpOIpq6hBW9dQsqmp54wYuX/jFMxtnNHozwEwMrWGU8kKaN7JB1dP70ZKcmKhlRn4sj5vCktrO/QcOPpzfS77+/uUpD7v/Lk+7wdbexec8c35/q6aqz4fJlWfZ2ZmYOu6RejYfTDqNWoFMwtrWFrboVK1eoVa1i/J43ssm5qaOnT1DCSbqqpaoZaVfm9sxOUhMjISZ86cwaBBg6ChoSEzjuDz3cQ2bdogLCwMJ0+exL179+Dp6Ym6desiKirnrs6rV69w+PBhHD9+HMePH8fly5cxe/ZsyfsjR47E5cuXceTIEZw5cwaXLl3C/fv3pY43ePBg3Lx5E7t378ajR4/Qpk0bNGzYEAEBAZI4SUlJmDNnDtavX4+nT5/C2Ni4IE+LlIz0dLwJ9EdpjwqSMKFQiNIe5fHyxROZaQJePEVpj/JSYe6eXnj5IusHjEgkwoO7N2BmboWZE/5G305NMN6nD+7cvPLNvCQlJkBNXaNIhp/8v8q63i9QyiNnmJtQKEQp9woIfPFYZprAF4/h5l5BKqyMZ6U842ekp+Pi6cNQ19CEjV3uHqhsyUmJ0NTS/g+l+DERoR8RGx2Bku5ekjB1DS3YO7nlamxly0hPx9tXz1HiizRCoRAly3hJ0rx99RyZGRlS+zWztIO+kanUfoPfv8axvevQa+hUmXcQM9LTJD3T2ZSUVfAm8AkyMtL/W6G/Iz09HYGBL+Hu4SkJEwqF8PDwhP+LZwVyjMzMTFy5fBEpKSlwLZH3kOzCFhn2AfExEXB2qywJU1PXgo1DGQQFPJSZJiMjHR/ePIOzWyVJmFAohJNbJbz9Io2tswf8bp5CYkIsRCIR7t84gYz0NDiUzHv4aEpSAtQ1Cu/zni0y7CPiYiLgUjqnDGoaWrB1LI03/nmUOz0d718/h2sZ6XK7lvHC65c5adJSk7F5yRi07T0eOnqGufbz/NFNiMUixEaFYeqw5hjfrx7WLxyB6IiQAiyhbJFhH7LK/UUZ1NQ/l/tl3tf7/etnUudKKBTCpXQlBH2V5u5VX4zpVR0zh7fE0Z2LkZaa/MV+0qColPt/OT09Fe9fF8z/lcz8f/7+dvvq+9vNvQIC8qzPn+S7Pg965Y/oyHAIhEKMG9oVg7o1wZzJw6R6tQqTvL/Hjh3Yiv6d6mP80C44fnBbsbjxTL8u/uLNQ2BgIMRiMVxcXKTCDQ0NkZKSAgAYNGgQmjVrhtu3byMsLAwqKlkV8fz583H48GHs378fffv2BZDVONm8eTO0tLLmtHTp0gXnz5/HjBkzkJCQgA0bNmD79u2oW7cuAGDLli2wtLSUHPfdu3fYtGkT3r17B3NzcwDAiBEjcOrUKWzatAkzZ84EkPVDa+XKlXB3d/9m+VJTU5GaKj1MJC0tFcpf/TD8lri4GIhEmdDRlR4mpaOrj48fZPcAxkRHyowfG5M1/CQuNhopyck4un872nbpg449BuDhvVtYOHMcJsxchpKly+bOR2wMDu7ejLoN//jhvNPPi//G9f708a3MNDExkdD+Kr62rj5ioqWHGz24cw3L5/2DtNQU6OoZYvTUZdDS1pW5z5Dg9zhzfC869hjy3wvzHdmfR22dr/NugLiYCJlp4uOzzk/uNPr49DFIsl9FRSWpuW0AoKNjIDlmenoa1iwcizZdh8LAyAzhoR9zHatU2cq4eu4wynrVgo19Cbx99RxXzx1GZkYGEuJioKtv9J/K/S1xcVmNDj09PalwXV09fHj/Pl/7DnrzBiOHD0FaWhrU1NQwfsIkWFt/ey5SYYqPzbrGmjrS8xQ1dQwQn8f1T4yLhkiUCa2v0mjpGCAs+I3kdfehC7Bl6Qj806cqhAqKUFZWRQ+fxTAylT3XMjzkHa6e3ok/OskecluQsj/b2l/Nz9TSNUBcTO6hkQCQEJ93uUM+5pR7/+Z5sHdxh3sePWuRoR8gFolw+uB6/NljNNTUNXFs93Ism9YX4+YfKNT5r9llk1WGvP7fs6+3rHMV+sX1Ll+tMfQNzaGjb4SPb1/i6I5FCA0OQp8RiwEAJdyr4pLvdty9dgKeVbwRFxOBUwdWAwBio8MLqoi55FWfa+vqIfhzffW1mBhZ3996uerz+3euYfm8CZL6fMzUpZL6PCwkGABwYNd6dO41BEbG5vA9vBPTxw3EgtV7oamlUzAFzIM8v8caNG0LWwcXaGpqI+DFY+zZuhIx0ZHo3GtYgZTtl5DHUGkqHGzE/aTbt29DJBKhU6dOSE1NxcOHD5GQkAADA+mKPDk5Ga9e5dxZsrW1lTTgAMDMzAxhYWEAsnrp0tLS4OWVc3deX19fqgH5+PFjZGZmwtnZWeo4qampUsdWVlZGmTJlvluOWbNmYcoU6TlZfQePRP8ho76btjBlz+ErV6k6mrRoDwCwtXfGy+ePce7k4VyNuKSkRMyZMhIW1nb4s2OvIs8vFYwSpcthxuJtSIiLwcUzR7B8zjhMnr8x1xdtVGQY5k4ehopV66K2d4sCO/6/l09g6+oZktdDxy8tsH3/rAPblsHM0g6VazXJM06zNn0QGx2JmaO7QywWQ1tXH1VqN8WpQ1uK5dh/C0tLLFm+GkmJibh+7SoWLZiHWXMXFFlD7t6149i7Pqc+7DOq8OZbnti7HMmJ8Rgwfj00tHTx+M4FbFkyAn9N2gJza+n6PSYqFGtn94N7pQaoXPfPAs/L7au+2LUmZ2jjwLErCvwYAPDozkW8fHIbY+buzTOOSCxCZmYG2vQcI5kH12PoHIztUwcvn95GSY+qeab9WXeuHsfutTnl7l9I5QayFjHJZm7tDG09Iyyf2hvhIe9hZGqFEu5V0KKLD/asm4Zty8dBUUkZ3q374tXz+8XyfxkASpYuh5mLtyI+LhYXzxzBsjnjMWX+Bujo6kMkzvqOb9GmOypWyVrUpt/Qf/BXjz9w6/oF1G3YUp5Zz5fvfY81btFREtfazgmKiorYuHI22nUdCCUlZXllm4oxNuLy4OjoCIFAAH9/f6lwe3t7AICaWtY45oSEBJiZmUnNTcumq6sr+fvr+SACgeCnFh1JSEiAgoIC7t27BwUFBan3NDVzxterqalJhnl+y9ixY+Hj4yMV9vx9fB6xZdPW1oVQqJBrMnBsTBR081jEQFfPQGb87JX5tLV1oaCgAEsrW6k45la28H8mPYwtOSkRsyb6QE1NHcPHz4SiIj/OhUnrG9f768ZWNl1dA6lFPQAgLiYKunrSNz1UVdVgam4FmFvB0bU0hvdrjctnj+KPNt0lcaIjwzFz/EA4lyiNXoPGFkyhPnOvWBOTvlhBMiM9a0hiXGyUVK9WXEwkrOxccqUHAC2trPMTF5u7vNmfbx1dA2RkpCMpMV6qNy42NlIS58XjO/jwLhB9bmQN3xFDDAAY2rUOmvzZEy06DICyiip6/jUZXQeM/3w+DXH57EGoqmlAS1u6p6ygaGvrQCgUIjpaeqJ+TEw09PTzd0wlJSWYm1sAABydnBEQ4I+jRw5h8F/D8rXfH1WqXG2McMy5+ZWRngYASIiNhI5ezvVPiI2Eua3s66+hrQehUCHXohbxsZHQ1s0aPhgR+g7XzuzEqLmHYWblCACwsHHFa//7uHZmF9r2niRJFxsVhpXTesLW2QNte08ukHJ+rUz5WlIrKWZkZJU7Lka63PExkbDMo9yaWt8v98sntxER+h4ju0s3xNbN94FjCU8Mm7JRcjxTS3vJ+1o6+tDU1kV0hPSKfvlVunxt2Drlvt7xX13v+NhIWNjKXnk1+3p/3UMZHxOZq3fuS9nnOyLkHYxMrQAAdZp2Q+0mXREXHQ41TW1EhQXj2M4lMDS2zHM/+ZVXfR4XEy1zpVwgqz7PXf9H51mfm5pbwcnVDT79/sSls8fQvE036H4eSmthbSuJr6SkDGNTc0SGF/7QWXl/j33JwcUNmZmZCA/9BHNL+Y08oOKreN7mKQIGBgaoX78+li9fjsTEvCcXe3p6IiQkBIqKinB0dJTaDA1zj/uXxcHBAUpKSrh165YkLDo6Gi9fvpS8Llu2LDIzMxEWFpbrOKampj9dPhUVFWhra0ttPzOUEgAUlbKWD37yMGf5ZJFIhCcP78HZ1U1mGifXUnjid08q7NGDO3B2LSXZp71TCQR/lB6OGfLxPQyNc8qZlJSImRP+hqKiEkZOmPPTeaefl3W9XfH04R1JmEgkwtNHd+DomnspcQBwdC2Np4+kl9d+4nc7z/jZxGIx0tNz5nZFRYZhxvgBsHVwRd8hEyAs4DvUamoaMDGzlmzmVvbQ0TPE80e3JXGSkxLwOuAJHFxk93QrKinBxqGEVBqRSITnj29L0tg4lICCoiKefREn5GMQosJDJHEGjpqHyQt3Y9LCXZi0cBe6D5wAABg9Yz3qNGonfUxFJegbmkCooIDbV0/DvXz1Aj832ZSUlODo6IxHDx9Ile+h3wO4uBbs/DWxSIz0zz+si4KqmgaMTK0lm6mlA7R0DfHyyb+SOClJCXj76hFsnWQPVVdUVIKlXUm8fJJTj4tEIgQ8vQWbz2nSUrOG4gu/eiCuUCiEWCyWvI6JCsWKaT1gaVcSHfpPL7RrqqqmAWMza8lmZukAbV1D+H9RhuSkBAQFPoadSx7lVlKClX0J+D+WLrf/41uwd85KU79FL4ybvx9j5+2VbADQuvtIdB6Y1SNm7+IBAAgNDpLsJzE+FglxMdA3Mi/IYsu83tq6hlJlkJTbOe/rbWWf+3q/fPIvbPNIAwAfg7JuDGt/NS9QIBBAR98YysqquHf9BPQMTGFlXyI/xfym7O/vr+vzJ4/uwCnP+twNTx/dkQr70fo8u6Fs5+gKJSVlfPpiykVGRgbCQz/B0Mjsvxbnh8nze+xrb1+/hEAolCza9jsQCAW/7PY7YtfFN6xcuRJVq1ZF+fLlMXnyZJQpUwZCoRB37tzBixcvUK5cOdSrVw+VK1dGixYtMHfuXDg7OyM4OBi+vr5o2bIlypcv/93jaGpqolevXhg5ciQMDAxgbGyM8ePHS31xOzs7o1OnTujatSsWLFiAsmXLIjw8HOfPn0eZMmXQpEneQ68KU5MW7bBq0QzYO7nC0bkkThzZi9SUFNSsl5WfFQumQd/AEB26DwAANPqjLaaOGYTjB3ehbIUquHHlHF4HvkDfwaMl+2zWqiOWzJ2IEqU8UKqMJ/zu/Yt7t69j4qxlALIbcMOQlpqKQSMmIjk5EcmfV/HS1taF8Kueyl+NgoY6NBxz5r+o21lC290VaVGxSHlfsHecC1qj5h2wZvFU2DmWgINzSZw6ujvretfNej7Z6kWToadvhHbdBgEAvJu1w4xx/XHi0A54VKiKm1fO4nXgc/T83JOWkpKMI3s3oVzF6tDVN0R8XAzO+u5HdGQ4vKplzQ+NigzDjHEDYGhsho49hyAuLkaSn6/vhBYUgUCAek074vi+9TAxs4ahiTkO7VwFXX0jeHrVksSbN7EfPCvVRt3GWUN/G/zRCRuWToKtQ0nYOZXCueM7kZqSjKp1s+ZrqmtooXrdFtizaQE0NbWhqq6BnevmwsGljKQRZ2xmJZWXhPis8ppb2Ut670I+vsWbgCewdy6NxIQ4nDm2HR/fvUKvoblX/StILVq2xqKFc+Ho5AxnZxccOXIIKakpqFffGwCwcP4cGBhkPTIAyJqj+/5d1jyTjIx0REZG4PWrQKiqqUl63rZs2oBy5SvAyNgYyUnJuHzpAh4/fogp0+T3yBCBQICajbrg7OG1MDK1gb6xBU7uWw5tPWOULl9XEm/l9F4oXaEuqntnDZOq1aQrdq4aDyv7UrBxdMPlk9uRlpoMr5otAAAm5nYwNLXG3vVT8UenEdDQ0sHjOxfw8vFN9B6ZNaQvuwGnZ2iOPzqPQEJcTs9nds9WYZa7dpPOOHVgLYxNrWFgbIHje1ZAR88I7hVynue2ZEpvuFesi1qNOgAA6jbtiq0r/oG1Q0nYOpbGBd/tSE1NRqXaWeXW0TOUuZiJvqEZDE2yeptMzG1RpkJt7N80Bx37TYKqmgaO7FwCEws7OJeqkCttQZe7VuPOOH1wDYzNPpd793Lo6BmhzBflXja1N8pUrIOaDbOud+2mXbF9xXhY25eCjWNpXDqxLavctbLKHR7yHveu+aKkZ3VoaOoi+N1LHNwyF44lysHCJqdn89zRTSjpURUCgRAPb53D2cMb0OPv+RAKC/e7LKs+n/ZFfb7nc32e9f29atEU6OkboX23gQCAhs3aYfq4AfA9tANlv6jPew0aAyC7Pt8Mz4rVoatvgIS42Fz1ubq6Buo2bIn9u9ZB38gEhkam8D20HQDgVa2OjFwWVrmL9nss4MVjvPJ/ghJlykFNTQMBLx5jx4bFqFqzITQ0C3/RIvo9sRH3DQ4ODnjw4AFmzpyJsWPH4sOHD1BRUUHJkiUxYsQIDBw4EAKBACdOnMD48ePRo0cPhIeHw9TUFDVq1ICJickPH2vevHlISEhAs2bNoKWlheHDhyM2NlYqzqZNmzB9+nQMHz4cHz9+hKGhISpVqoSmTQv/Ab95qVKjHuJiY7Bv+3rEREfBxt4JY6YukAynjAgPlboD4lKiNP4aORl7tq3F7q1rYGpuiRHjZ8HKNmcITcUqNdF74Egc2bcNm9cugrmFNXzGzYBrqay7m28C/RHon7Vq17A+0j0TSzfsh7FJ4d/Nyw+dcm6ofH6b5HXJ+eMAAO+3HsSjXgU7TLCgVapeH3GxMTiwcy1ioyNhY++MUZMXQ+dzYyoiPBQCwRc3H0qUwcDh07Bvx2rs3bYKpuZW+HvcXFjZOADI6oH49OEtllw4gfi4GGhq68DesQT+mb0GltZZn4knfrcR+ukDQj99wJAezaTys/3oLRSWRi27IS0lGVtWTUdSYjycSnjg7wnLpVaFDA/5gIQvGpUVq3kjPi4ah3evQlx01tDLvyculxqe1L7ncAgEAqyYOxIZ6Wlw+/yw758hEmXi9NHtCP34FgqKinBxK49xszfB0Lhgeyy+Vr1mLcTGxWDHti2Ijo6Gvb0DpkydKVnsJDw8TOr/PSoqEkP/GiB5fejAPhw6sA9upctg1pysx6jExsZg0YK5iIqKgoaGBmzt7DBl2iyU9SxXqGX5njrNeiItNRl7109GclI87Fw80W/MaqnrHxH6HonxOY2sspUbISEuGqf2L//88GdX9BuzGlqfG18KikroO2oVju9ehPXzBiEtNRmGJlboMGAGSpatAQB4+fgmIkLeISLkHaYMqiuVp0W7ZK/6W5DqN++BtJRk7FwzFclJ8XBwLYtB41d9Ve4PUuUuV7Uh4uOicXzPSsTHRMDC1gWDxq/65rBCWboOnoEDm+dh5axBEAqEcCxZHoPHr4JCETzkvF7zrOu9a80UJCfFw961LAaOk3G9v/h/L1elIRLiouC7d8Xncrti4LjVksa2oqIS/B//i4snshrzegamcPeqD+9WfaWO/ezBNZw5uA4Z6WmwsHVBn1FLUaps9UIvc+Xq9REfG4P9O9d9rs+dMHryIkl9HhkeIjU9w7lEGQwaPhX7dqzB3m2rYWpuBZ+v6vPgD0G4+lV9PmH2akl9DgAdevwFoYICVi2cjLS0VDg6l8L4GSuKrDEjj+8xRSUl3Lx6Fgd3r0d6ejqMTMzQ8I/2aPTFPDminyUQfzmGg/6vPQiQvQrX7y64ZMFNmC9OjJ8UXgPoV5aaWfg/CH9FxiqyVxf83QXG/to3dQqLsuKPz7n+nYjEv+ewqe/RVy3cZ8r9qsT4/7zeFVx05Z0FmYL/7iDvLOTJfNEueWehwHFOHBERERERUTHCRhwREREREVExwjlxRERERESUL7/rKpC/KvbEERERERERFSNsxBERERERERUjHE5JRERERET5IhCyb6go8WwTEREREREVI2zEERERERERFSMcTklERERERPnC1SmLFnviiIiIiIiIihE24oiIiIiIiIoRDqckIiIiIqJ84XDKosWeOCIiIiIiomKEjTgiIiIiIqJihMMpiYiIiIgof/iw7yLFs01ERERERFSMsBFHRERERERUjHA4JRERERER5YtAwNUpixJ74oiIiIiIiIoRNuKIiIiIiIiKEQ6nJCIiIiKifBFwdcoixbNNRERERERUjLARR0REREREVIxwOCUREREREeWLQMjVKYsSe+KIiIiIiIiKETbiiIiIiIiIihEOpyQiIiIiovzh6pRFimebiIiIiIioGGEjjoiIiIiIqBjhcEoiIiIiIsoXrk5ZtNgTR0REREREVIywEUdERERERFSMcDglSfiMfyXvLMjF3Ce35J0FuQhz85J3FuSi9pr28s6CXHT26yLvLMhF4+ZK8s6CXHhaRco7C3IRm6ou7yzIRXC8tryzIBfVlG/IOwtyUl3eGZBJIGDfUFHi2SYiIiIiIipG2IgjIiIiIiIqRjickoiIiIiI8oerUxYp9sQREREREREVI2zEERERERERFSMcTklERERERPkiELJvqCjxbBMRERERERUjbMQREREREREVIxxOSURERERE+SLg6pRFij1xRERERERExQgbcURERERERMUIh1MSEREREVH+CNg3VJR4tomIiIiIiIoRNuKIiIiIiIiKEQ6nJCIiIiKifOHqlEWLPXFERERERETFCBtxRERERERExQiHUxIRERERUf4I2TdUlHi2iYiIiIiIihE24oiIiIiIiIoRDqckIiIiIqJ8EQi4OmVRYk8cERERERFRMcJGHBERERERUTHCRhwREREREeWPUPjrbj9pxYoVsLW1haqqKry8vHD79u1vxo+JicGgQYNgZmYGFRUVODs748SJE//1TP4QzokjIiIiIiICsGfPHvj4+GD16tXw8vLC4sWL4e3tDX9/fxgbG+eKn5aWhvr168PY2Bj79++HhYUF3r59C11d3ULNJxtxRERERET020pNTUVqaqpUmIqKClRUVHLFXbhwIfr06YMePXoAAFavXg1fX19s3LgRY8aMyRV/48aNiIqKwo0bN6CkpAQAsLW1LfhCfIXDKYmIiIiIKF8EQsEvu82aNQs6OjpS26xZs3KVIS0tDffu3UO9evUkYUKhEPXq1cPNmzdllvvo0aOoXLkyBg0aBBMTE7i5uWHmzJnIzMwstHMNsCeOiIiIiIh+Y2PHjoWPj49UmKxeuIiICGRmZsLExEQq3MTEBC9evJC579evX+PChQvo1KkTTpw4gcDAQAwcOBDp6emYNGlSwRXiK2zEERERERHRbyuvoZMFQSQSwdjYGGvXroWCggLKlSuHjx8/Yt68eWzEERERERHRL0xQ/GdpGRoaQkFBAaGhoVLhoaGhMDU1lZnGzMwMSkpKUFBQkISVKFECISEhSEtLg7KycqHktfifbSIiIiIionxSVlZGuXLlcP78eUmYSCTC+fPnUblyZZlpqlatisDAQIhEIknYy5cvYWZmVmgNOICNOCIiIiIiIgCAj48P1q1bhy1btuD58+cYMGAAEhMTJatVdu3aFWPHjpXEHzBgAKKiojB06FC8fPkSvr6+mDlzJgYNGlSo+fytGnGbN28ukGcyFNR+iIiIiIj+LwgFv+72E9q1a4f58+dj4sSJ8PDwgJ+fH06dOiVZ7OTdu3f49OmTJL6VlRVOnz6NO3fuoEyZMhgyZAiGDh0q83EEBalI5sR1794dW7ZsQb9+/bB69Wqp9wYNGoSVK1eiW7du2Lx5c76O065dOzRu3FjyevLkyTh8+DD8/PzytV9ZLl++jClTpsDPzw8pKSmwsLBAlSpVsG7dOigrK2Pz5s0YNmwYYmJifmq/ly5dQu3atREdHV2sG5I92lqgSV1jaGoo4smLeCxa/wYfQ1K/mcZQTwl9O1ujoocOVFUU8DEkBXNWvsbL14mSONYWqujbyRruJbWgIBTg7YdkTFoQgLDItMIuUi5nfffB99AOxEZHwtrOCV37DoeDc6k849+6dh77d6xBRNgnmJhboX23QfAoX1Xy/oGd6/Dv1bOIigiFgqIS7Bxd0aZzfzi6uAEAwkODcXjPRjx7dBcxMVHQ0zdE1VoN0bxNDyh+fi7Jr0y/WnnYD+8FHU83qJob427rgQg9ev77CX9Re+4HYMut54hMTIGzsS5G1ysHN3MDmXGPPn6NSSduS4UpKwhxa0RbqbDXEbFYcvkh7r8LR4ZYBHsDHcxvWRVm2hqFVo7/on1jfdSvrA11NSFevEnB2r3h+BSenmf8do300a6RvlTYh9A0DJnxDgBgpK+INZNtZaadt/ETbvolynyvKInFYlw/vhSPru9DanIczO090aDDZOgZ2+aZ5t9TaxDgdwaRoa+hpKQKc/uyqNlyBPRN7CVxHl7bg+d3jiP0/VOkpSTir/l3oKquXQQlku2M7wEcO7gDsdFRsLZzRPd+PnB0Lpln/H+vXcC+7WsRHhYCU3NLdOg+EGXLV5G8v2rRdFy5cEIqTRlPL4ydsijXvtLT0zBheB+8fROAWUs2w9beueAK9h1isRjH9qzCtXMHkZwUDwcXD3ToOw4mZjbfTHfp5G6cOboFcTGRsLRxRrteo2HnVFry/o410/D80S3ERodDRVUd9s7uaNVlKEwt7AAAH4L8cerQJrx68QAJ8TEwMDJH9QZ/om6TToVa3mxisRhnDizHrYv7kJwYD1vnsmjVcyKMTG2/me76mZ247LsR8bERMLN2QYtu42HtUEbyfkToOxzfOQ9B/veRkZ4GF/dqaNFtPLR0DCVxPrx5hhO7F+D96ycQCoUoXaEBmnUeBRXVoq/v9p+6gB1HTyMqJhaONlbw6dkBpZzsZcY9cu4KTl6+idfvPwIAXOxt0L9DS6n4ldv0lpl2UOc/0bl5w4IvABW4wYMHY/DgwTLfu3TpUq6wypUr499//y3kXEkrsoVNrKyssHv3bixatAhqamoAgJSUFOzcuRPW1tb53n96ejrU1NQk+y5Mz549Q8OGDfHXX39h6dKlUFNTQ0BAAA4cOFDoz4QoDto3N0OrRqaYveI1PoWloGc7K8wd74ruPo+Qni6WmUZTQwHLppXCg6dxGDPTHzFxGbA0U0VCYoYkjrmJCpZOLYmTF8Kxee8HJCVnwtZSDWnpIpn7LEz/Xj2LHRuWoMfA0XB0LoVTR3djzqShmLdqL3R09XPFf/n8EVbMn4C2XQegbIVquHH5NBbNHIXpi7bCysYBAGBmYY1u/UbA2NQCaWmpOHlkF+ZMGoIFaw5AW0cPwR/eQiQWoeegMTAxs8L7t6+wYflMpKYko2PPoUV9Cn6agoY64h754/3mAyi/f4W8s5Mvp5+/w4ILDzC+QXm4mRtg511/DNx7CYf7NIG+hqrMNJrKSjjUJ+cmk0AgfWfwfXQ8eu44jxZl7DGgWmloKCviVUQcVL6YKP0raFlPF01q6GDpjjCERaajQxN9TBhgjqEz3yE9Q/b/NwC8C07F5BXBkteZopy4kdEZ6Dn+jVT8+lW10aKOHh48Syr4QvwHt8+uw/1L29Co62zoGFji+vEl2LesF3pOPAFFJdkrnr0PvI2yNTvB1KY0RKJMXD2yEPuW9UKPCb5QVlEHAKSnJcOuZHXYlayOK0cWFGWRcrl59Ry2rV+KXoNGwtG5FE4e3YPZE//GgtW78qjXHmPZvElo360/PCtUxfXLZ7BgxhjMWrxJUq8BgLtnJfQfNl7yOq+bTjs3rYCeviHevgko+MJ9x5nDm3HxxE50GzwNhsYWOLp7JZZNG4hJiw9CSVn29b17/TT2b1mAjn3Hw9apNC747sCy6QMxeekRaOtknS9r+xKoWL0x9AxNkZQQh+N7V2PJtAGYscIXQgUFvH31HFo6eugxZAb0DE3x2v8htq+eBqFQAbUbtS/0cl86vgHXTm9Hu34zoW9sidP7lmL97L4YMfdYnuX2u3kSx3bMQeuek2DtUAZXT23D+tl9MWq+LzR1DJCWkoR1s/vA3NoF/cZtAgCc3r8Um+YPwuApuyAUChEbHYa1s3rCvVIjtOj2D1KTE3Bk22zsWT0eXYctLvRyf+nc9dtYumUvRvXtjFKO9tjjew5/z1iM3UumQ18n9w2V+0/9Ub9aRZR2doCyshK2Hz6JYdMXYcfCqTA20AMAHF8r/b980+8xZq7agtqVyhVJmej/Q5ENp/T09ISVlRUOHjwoCTt48CCsra1RtmxZqbinTp1CtWrVoKurCwMDAzRt2hSvXr2SvB8UFASBQIA9e/agZs2aUFVVxY4dO6SGQW7evBlTpkzBw4cPIRAIIBAIJD19CxcuROnSpaGhoQErKysMHDgQCQkJP1yWM2fOwNTUFHPnzoWbmxscHBzQsGFDrFu3Dmpqarh06RJ69OiB2NhYybEnT54MANi2bRvKly8PLS0tmJqaomPHjggLC5OUq3bt2gAAPT09CAQCdO/eHUDWk98XL14slQ8PDw/JfsViMSZPngxra2uoqKjA3NwcQ4YM+eEyFaQ/G5ti28GPuH43Gq/fJWPW8lcw1FNGtQp6eabp0NwcYZGpmLvqNV68SkRIeCruPopFcGhO712v9la49SAWa3a8R2BQEoJDU3HjXgxi4jLy3G9hOXlkF2o3aI6a9ZrBwtoePQaOgYqKKi6fOyYz/ulje1DGsxKatuoCCys7tOncH7b2Ljjru08Sp0pNb7h5VISxqQUsre3RqddQJCcl4l1QIADAvVxl9Bs6EaXLVoKxqQXKedVA45adcOfmpaIocr6Fn76Cl5MWI/TIOXlnJd+233mBVu4OaF7GHg6GOhjvXQGqSoo4/Ph13okEgKGmmmQz+Kqxt/zKY1RzMMOw2h5wNdGDlZ4WajlZ5NkolJemNXWx/0w07jxOxNvgNCzdFgZ9HQVULPPtu+eZIiAmPlOyxSfm3HwRiaXfi4nPhFcZTVx/kICUtLwbhkVFLBbj3oWtqNRwAJzc68HY0hWNu81FQmwYAh7m/XluM3gD3Cq3gqG5E4wtXdGo62zERQUj9N1TSZzydbrDy7svzOzci6Io3+R7eDfqeP+BWvWawtLaDr0GjoKyigounT0uM/7Jo3vh7umFZq06wcLKFm0794WdgwtOHz8gFU9JSQm6egaSTVMz9w9jv7s38ejBbXTqKfvOd2ESi8U477sDjVr3gUfF2rC0dUaPv6YhJjocfrcv5pnu3LFtqFqvFarUaQFzKwd07PsPlFRUcePCYUmc6vX/hFPJcjA0toC1fQn80X4QoiNCEBmedUOjat0WaNdzNJxLlYeRiSW8ajRBldp/wO9W4Y9SEIvFuHpqK+q26Ae38nVhbu2C9gNmIy4mDE/v5X38Kyc3w6t2G1So2Qomlo5o1XMSlFRUcfty1u+7Ny8fIDr8I9r1mwkza2eYWTujXf9Z+PDmCQKfZfVUPH9wCQoKSmjZfQKMze1g5VAarXtOwuM7ZxAR8rbQy/6lXcfP4o+61dG0djXYWZljVN/OUFFWxvEL12TGnzK0D1p714aznTVsLcwwtn93iMRi3H3yXBLHQE9Hart6xw+epVxgYWJUVMWSC4FA+Mtuv6MiLVXPnj2xadMmyeuNGzdKJgl+KTExET4+Prh79y7Onz8PoVCIli1bSq36AgBjxozB0KFD8fz5c3h7e0u9165dOwwfPhylSpXCp0+f8OnTJ7Rr1w5A1pPXly5diqdPn2LLli24cOECRo0a9cPlMDU1xadPn3DlyhWZ71epUgWLFy+Gtra25NgjRowAkNVjOG3aNDx8+BCHDx9GUFCQpKFmZWWFAweyvvz8/f3x6dMnLFmy5IfydODAASxatAhr1qxBQEAADh8+jNKlS38/YQEzM1aBgZ4y7j2Kk4QlJmfieWACSjlr5ZmuSnk9+L9OxKS/HXFwnSfWznFDk7o5lZ1AAFTy1MWHT8mYO84FB9d5YuWMUqj6jYZhYclIT8ebwBco5VFREiYUClHKvQICXzyWmSbwxWO4uVeQCivjWSnP+Bnp6bh4+jDUNTRhY+eUZ16SkxKhqSW/oVf/j9IzM/E8JBpeNjkPAhUKBPCyNcGjj5F5pktOy0CjVUfRcOURDDtwFa/CYyXvicRiXHsdDGs9LQzccwl1lh1Cl61ncPHlh0Ity88yMVCEno4iHvrn9I4lpYgQ8DYVLrbfbmyaGSlh/TRbrJxog2FdTWCol/dAEHsrFdhbquD8v3F5xilKsZEfkBgXDhvXnGGCKmpaMLN1R/DrBz+8n9TkeACAqoZOgecxv7LqNX+4uZeXhAmFQrh5VECA/xOZaQJePIGbx1f1WlkvBLyQjv/syQP069wYPv3bY8PKeYiPi5V6PyY6CuuWz8ZAn4lQUSn6mxYRYR8RFxOBEmW8JGFqGlqwcyqN1y8fykyTkZ6Od6+fS6URCoUoUdoLr/0fyUyTmpKMGxePwNDYAnoGspcqB4DkpASoaxb+ZyQq/APiYyLgVCpnxT01dS1YO5TB2wA/mWkyMtLw8c0zOLlVkoQJhUI4uVWWpMnMSINAIICiUs6qfEpKKhAIhAjyv5+1n/Q0KCgqQSjM+Rma3fP35nOcopCengH/129RoUzOkGGhUIgKZUrgyctv3JT7QkpaGjIyMqGtKftGVlRMLK7ff4xmdaoXSJ6JshXpc+I6d+6MsWPH4u3brLss169fx+7du3ONLW3durXU640bN8LIyAjPnj2Dm5ubJHzYsGFo1aqVzGOpqalBU1MTioqKuZ7rMGzYMMnftra2mD59Ovr374+VK1f+UDnatGmD06dPo2bNmjA1NUWlSpVQt25ddO3aFdra2lBWVoaOjg4EAkGuY/fs2VPyt729PZYuXYoKFSogISEBmpqa0NfPGoJhbGz8U3Pi3r17B1NTU9SrVw9KSkqwtrZGxYoV84yfmpqK1FTpOWqizDQIFfK3FKq+btYwmehY6fkx0bHpkvdkMTdWQfP6Jtjn+wk7DgXD1UEDf/WwRUaGGKcvR0BXWwnqagro0NwcG/d8wJod71HRQwdThzvBZ8pzPHwen698/4z4uBiIRJm5hhfp6Orj00fZdxBjYiKh/VV8bV19xERL/+h/cOcals/7B2mpKdDVM8Toqcugpa0rc58hwe9x5vhedOwhnx7X/1fRSWnIFItz9ZAZqKsiKFJ2o8NGXxuTGleEs5Eu4lPTse32C3Tffg77ezWCibY6ohJTkJSWgU23nmNQ9TIYWssd1998wvBD17C2Qx2UtzYuiqJ9l6521ldGbLz0sPGY+Azoaec97PNlUAqW7QhFcFg69LQV0baRHmYMtcDQWe+Qkpq7p61eJW28D0mD/5uUgi3Af5QYGw4A0NCWnvOooW2AxLiIH9qHWCTChf0zYeHgCSPzopvr9aPisus1vdz1WvCHvOs1HV29r+LrISYmp15zL+eFClVqwtjEHKGfPmDPtjWYM9kHU+ethVBBAWKxGKsXT0fdRi3g4FQC4aGfvj5MoYuLzrqG2rrS11dLRx9xMbJvzCTER0MkyoS2zldpdA0Q8jFIKuzSqT04tH0xUlOSYWJui6ETV+c5pPTVCz/cvXEGg8cu/Y+l+XHxMVnl/nKeGgBo6hhI3vtaYnzW50Tz6zTaBggLzmr0WDu6Q1lFDb67F6BR22GAWIwTexZCJMpEXEzW/5JjKS8c2zEXl45vQLWGXZCWmowTuxd9zld4QRbzm2LiE5ApEuUaNqmvo423H0N+aB8rt++Hkb4uKpSWPXf0xOUbUFdVQS0vz3znl+hLRdqIMzIyQpMmTbB582aIxWI0adIEhoaGueIFBARg4sSJuHXrFiIiIiQ9cO/evZNqxJUvXz5X2h9x7tw5zJo1Cy9evEBcXBwyMjKQkpKCpKQkqKurfze9goICNm3ahOnTp+PChQu4desWZs6ciTlz5uD27dswMzPLM+29e/cwefJkPHz4ENHR0VJlK1ky78nj39OmTRssXrwY9vb2aNiwIRo3boxmzZpBUVH2JZ41axamTJkiFWZTshfsSvX5qePWq2YAn752ktdjZ/n/fOaR9XxI/1eJWL8rq+chMCgJdtbqaFbfGKcvRyD7Zt2Nu9HY75tVsb56m4RSLlpo1sC4SBtxhalE6XKYsXgbEuJicPHMESyfMw6T52/M1WCMigzD3MnDULFqXdT2biGfzNIPc7cwhLuFodTr1utPYL9fIAbVKIPs6WG1HC3QuYILAMDFRA8PP0Zgv1+g3BpxNcprol+7nGPPWBP8jdh5e/A8p+fubXAaXr5NwZrJNqhaVhPn/5X+31VWEqB6OU3sOx393zJdAJ7dPoozuyZJXrcesCbf+zy7ZwoiggPQcfjOfO+rOKlSo77kb2tbB1jbOWJYnzZ49uQB3NzL4/SxfUhJTkKLP7sWWZ5uXfHFzrXTJa8HjV1WqMfzqt4YJdwrIS46AmePbsW6haMwcvrmXHPOPr4LxKq5f6Npm34o6VElj739d/evH8OBDZMlr3uOXJ135HzQ1NZH5yGLcHDTVFw/vR0CgRAelRvDwrakZFibqaUT2vebiaM75uDknsUQCIWo5t0ZmjoGEAiLz9C3rYdO4Oz121g5ZSRUlGU3zI9duA7v6pXyfP+38pOrQFL+FGkjDsjqicpe7WXFCtmLGzRr1gw2NjZYt24dzM3NIRKJ4ObmhrQ06RUINTR+fgWjoKAgNG3aFAMGDMCMGTOgr6+Pa9euoVevXkhLS/uhRlw2CwsLdOnSBV26dMG0adPg7OyM1atX52ocZUtMTIS3tze8vb2xY8cOGBkZ4d27d/D29s5Vtq8JhUKIxdJ3rNPTc3q7rKys4O/vj3PnzuHs2bMYOHAg5s2bh8uXL0NJxh2/sWPHwsfHRyqsWQ/Zw0a+5frdaDwLyJlPqKyUVfnq6SghKiYnf3o6SggMynuBgsjodLz9kCwV9vZDMqp7ZTVeYuMykJEhQtBXcd59TEZpl7yHaRYGLW1dCIUKiI2JkgqPjYmSOfkfAHR1DRD3Vfy4mCjo6knfxVVVVYOpuRVgbgVH19IY3q81Lp89ij/adJfEiY4Mx8zxA+FcojR6DRoLKlp66spQEAgQlSjdSxSZlAIDjR9bWElJQQgXEz28j0mQ7FNRKIC9ofQQKnsDbTz48GM9PYXh9uNEvAx6L3mtpJj1Ba2jpYDouJzeOF0tRbz58O3VZ7+UlCzCp7B0mBrl7vmv7KEJZWUhLt2R31BKxzJ1YGabM0ctMyOrfk6Mi4SmTk6jNjEuEsaWrt/d37k9U/H68SW099kOLb28h9HJk3Z2vRadu17T1cu7XouNif4qfjR0dWWv0goAJqYW0NLWRUjwB7i5l8fTR/fw0v8JurSqJRVv/N+9ULVWAwz8e8J/K9A3uFeoJbWCZMbn6xsXEwkdvZxh/PGxUbC0ld1rqqmlB6FQAXGx0j118TGR0NaVvjmtpqEFNQ0tmJjZwM6pDHy6V4ff7QuoUK2RJE7w+1dYPKUvqtVrhcZ//tzN1B9V0rOO1AqS2eWOj42A9hflToiNhLmN7M+1hlbW5yQhVrpeSoiLlOrRcylTFWMXnUZifDSEQgWoaWhjysDq8DDOKXPZqk1RtmpTxMdGQFlFDQIIcOXEFugbWxZIeX+ErpYmFIRCRMVK1zdRsXEw0P32kNYdR09j2+GTWDpxOBxtrGTG8Xv+Eu+CQzD9734FlmeibEV+u6Nhw4ZIS0tDenp6rnlsABAZGQl/f3/8888/qFu3LkqUKIHo6P92R1ZZWTnXapH37t2DSCTCggULUKlSJTg7OyM4+L/dXf6Snp4ezMzMkJiYmOexX7x4gcjISMyePRvVq1eHq6urZFGTL/MMIFdaIyMjqWdSxMXF4c0b6dXc1NTU0KxZMyxduhSXLl3CzZs38fix7DlXKioq0NbWltr+y1DK5BQRgkNTJVvQh2RERqfBs3TO0AR1NQWUcNTE05d595Y99Y+Hlbn08DRLc1WEhmf9MMzIFOPFq0RYmUv/SLY0U0VoxI//eCwIikpZy/8/fXhHEiYSifD00R04usqeh+joWhpPH92VCnvidzvP+NnEYrFUYz0qMgwzxg+ArYMr+g6ZIDWfgIqGkoICSpjq4dbbUEmYSCzG7aBQlLHI+8frlzJFIgSGx8Dwc6NPSUEBJU318TZK+ofE26h4mGn/+I2lgpaSKkZIRLpkex+ShujYDJRxzsmTmqoATjYq8A/68aGPqsoCmBgqITo296JEdStp4+6TRMQlFP2qs9mUVTWhZ2wj2QzMHKGhbYR3/jclcVKTE/Ap6CHM7cvmuR+xWIxze6YiwO8s2g3bAl1D2T/0fgVZ9ZoLnjy6JwkTiUR4+vAunFzcZKZxcnXD04fS9dpjv9twcpUdHwAiI8KQEB8LXf2s/5Vuff/GnKVbMHvpZsxeuhmjJ80HAAwZNRXtuhTOD19VNQ0Ym1lLNjNLB2jrGuLF45zHgCQnJeBNwGPYO8tecEZRSQnW9iWk0ohEIrx4fBv2LmVkpgEAMcQQi7Mep5At+H0gFk3ug0q1mqFFx78KoISyqappwNDURrKZWDhCS9cQgU9zlkVPSUrAu1ePYOPkIXMfiorKsLArKZVGJBIh8Mm/MtNoaOlBTUMbgU//RWJcFEp61skVR0vHECqqGvD79yQUlVXg7FbwvZB5UVJShIu9De4+zlmURCQS4e7jF3Bzlv2IAQDYfuQkNu0/jkXjh6GEg22e8Y6dvwZXexs42f66//tUfBV5T5yCggKeP38u+ftrenp6MDAwwNq1a2FmZoZ3797954fl2dra4s2bN/Dz84OlpSW0tLTg6OiI9PR0LFu2DM2aNcP169dzPbvue9asWQM/Pz+0bNkSDg4OSElJwdatW/H06VMsW7ZMcuyEhAScP38e7u7uUFdXh7W1NZSVlbFs2TL0798fT548wbRp06T2bWNjA4FAgOPHj6Nx48aSuX116tTB5s2b0axZM+jq6mLixIlS52/z5s3IzMyEl5cX1NXVsX37dqipqcHG5tvPuCkM+0+EoEsrC3z8lIJPYano2d4SEdFpuHYnpzG+YIIrrt6OxuHTWT+E9/mGYPm0kujU0hwXb0SihKMmmtY1xsK1OQ3VPUc/YeLfjnj0PA4PnsShoocuqpTTw7DJz4q8jI2ad8CaxVNh51gCDs4lcerobqSmpKBm3aYAgNWLJkNP3wjtug0CAHg3a4cZ4/rjxKEd8KhQFTevnMXrwOfo+bknLSUlGUf2bkK5itWhq2+I+LgYnPXdj+jIcHhVqwvgcwNu3AAYGpuhY88hiIuLkeTn6x69X5GChjo0HHMeJ6JuZwltd1ekRcUi5X3Rz4PJj84VXDHR91+UNNWHm5k+dt59ieT0DDQvnfWl/8/xf2GspYYhNbN+AK65/gRlzA1gpaeF+JQ0bLn9Ap/iktDSPedHQjevEhh95AY8LY1R3sYYN15/wpXAYKzrmPtHjzwdvxyDP7318Ck8DaGRGejQRB9RsZm4/SjnWW6TB5nj1qNEnLyatYBFt+YGuPM0EeFRGdDXUUT7RvoQiYFr96Vv7JgaKqGkgypmrPm1Pg8CgQDl6nTFzZOroGdsAx0DS1w7tgSaOsZwcq8nibdnSTc4udeHZ63OAIBzu6fg+d3jaNlvJZRUNJDweW6dipoWlJSzblolxIYjMS4CMeFZz8yLCH4JJRUNaOubQU1Dt0jL2aRFe6xaNB32jq5wdC6Jk0f2ZNVr9bLqtZULp0LPwAgdug0AADT6oy2mjh2I44d2omz5Krh59RxeB75An8GjAQApyUk4sGsjKlapBV09A4SGfMTOTStgYmYJd8+sBUEMjaV7JlVVs24QmJhZwMCwaIYRCwQC1G3SCScPrIOxmfXnRwysgK6eETwq1pbEWzS5Lzy86kiW/q/XrAs2L58AG4eSsHV0wwXfHUhLTUaV2s0BAOGhH3Dv+mmUcK8MLW09REeG4vThTVBWVoGbZ9YiFx/fBWLx5D4o6VEF9Zp2Qezn+XlCoRBaOrJ7QAuy3NUbdsX5w2tgaGoDfSNLnN6/FNq6xihVrq4k3pqZPeBWvh6qNsh6dl2NRt2xZ81YWNq5wcqhNK6e2oq01GRUqNlSkubO5YMwNneAhrYe3gb44ei2WajesCuMzXOmX1w/swM2TmWhoqqOl49vwHfXfDRu9zfUNIp2sa4OTetj2oqNcHWwQSlHO+z2PYeU1FQ0rZ31HNcpyzbASF8XAztlrdew7fBJrNtzBFOG9oGZkSEio7PqOTVVFair5dyMTkxKxoV/7+Kvrm1zH/Q3VZyGwv4OirwRBwDa2nn/gwqFQuzevRtDhgyBm5sbXFxcsHTpUtSqVeunj9O6dWscPHgQtWvXRkxMDDZt2oTu3btj4cKFmDNnDsaOHYsaNWpg1qxZ6Nr1x8fjV6xYEdeuXUP//v0RHBwMTU1NlCpVCocPH0bNmjUBZK1Q2b9/f7Rr1w6RkZGYNGkSJk+ejM2bN2PcuHFYunQpPD09MX/+fPzxxx+SfVtYWGDKlCkYM2YMevToga5du2Lz5s0YO3Ys3rx5g6ZNm0JHRwfTpk2T6onT1dXF7Nmz4ePjg8zMTJQuXRrHjh2DgUHR/7jffeQT1FSEGN7PDprqinj8Ih6jZ/pLPSPO3EQVOto5Hz//V4mYMD8AfTpaoWtrC3wKS8WKLW9x7lrOUJVrd6KxaF0QOrYwx189bPE+OOtB30/8f/zxEAWlUvX6iIuNwYGdaxEbHQkbe2eMmrwYOp8bUxHhoVJL2jqXKIOBw6dh347V2LttFUzNrfD3uLmSZykJhUJ8+vAWSy6cQHxcDDS1dWDvWAL/zF4DS+usH/pP/G4j9NMHhH76gCE9mknlZ/vRW0VU8v9Op5wbKp/fJnldcv44AMD7rQfxqFfxGhbqXcIa0UkpWHXtMSITU+BirIsVbWtJHhsQEpcoNTUgPiUNU0/dQWRiCrRVlVHCRA+bO9eDwxfDJ+s4W2K8d3ls/PcZ5p6/Dxt9LcxrWRVlLX+tJakPnYuBirIQ/dsbQ0NNiOevUzBtVbDUM+JMDZWgrZlzk8lAVxE+3UyhpaGAuIRMPH+VjDEL3+fqbatbSQuRMRnwe/FrPBvuSxXr90F6ajJO75yI1KQ4WDiUw5+D10s9Iy4m/D2SE3JuVvld3QUA2L24i9S+GnWZBbfKWYtyPby6GzdOLJe8t2thp1xxikrl6vUQFxuD/TvWISY6Cjb2ThgzZaFkOGXueq00Bo+Ygr3b12LP1jUwNbfE8PGzv6jXFPAuKBBXLpxAYmIC9PQNUaZsRbTp1BdKSvlbRKugNWjRHampydixZhqSEuPh6FoWf/2zUmreWnjoeyTE5Vzf8lW9ER8XjWO7VyEuJgKWti74a/xKyQIpSkrKCHh+H+d9dyApMQ7aOgZwLOGJkTO2SJ4jd//mWcTHRePWFV/cuuIr2be+kRlmrjpZ6OWu1bQX0lKTsX/DJKQkxcPW2RO9R6+VKndk6HskxueU26NyIyTGR+H0/mWIj42AuY0reo9eIzWcMvxTEE7sWYTkhFjoGVmgTvN+qNGom9Sx3716jDMHliM1JQnG5vZo3XMyylX/A0WtXtWKiI5LwPo9RxAZEwcnWyssGj8M+p+HU4ZGREL4xXM9D565hPSMDIxbsEpqP73aNEPvts0lr89evw2xGGhQNe9F5ojyQyD+eqIV/d+q3fbXbwgUhrnTXOSdBbkIc/P6fqTfUO01hf8A3V9RZ78u34/0G2rc3FHeWZALT6u8H3fxO4tNld/wY3mKT/21GsVFpZryDXlnQS70y/yajytI2jBR3lnIk3qvqfLOQoGTS08cERERERH9RgRcnbIocfAqERERERFRMcJGHBERERERUTHC4ZRERERERJQ/XJ2ySPFsExERERERFSNsxBERERERERUjHE5JRERERET5w9UpixR74oiIiIiIiIoRNuKIiIiIiIiKEQ6nJCIiIiKifBFwdcoixbNNRERERERUjLARR0REREREVIxwOCUREREREeWPgH1DRYlnm4iIiIiIqBhhI46IiIiIiKgY4XBKIiIiIiLKHyEf9l2U2BNHRERERERUjLARR0REREREVIxwOCUREREREeWLgKtTFimebSIiIiIiomKEjTgiIiIiIqJihMMpiYiIiIgof7g6ZZFiTxwREREREVExwkYcERERERFRMcLhlERERERElD9cnbJI8WwTEREREREVI2zEERERERERFSMcTklERERERPkj4OqURYk9cURERERERMUIG3FERERERETFCIdTEhERERFR/gjZN1SUeLaJiIiIiIiKEfbEkYSusb68syAXqZlK8s6CXNRe017eWZCLi/12yzsLchHWsI68syAXNoZW8s6CXKgrJMs7C3LxMMJA3lmQCw1VkbyzIBciVf6Mpf9f/PQTEREREVH+8GHfRYpnm4iIiIiIqBhhI46IiIiIiKgY4XBKIiIiIiLKHyEf9l2U2BNHRERERERUjLARR0REREREVIxwOCUREREREeUPV6csUjzbRERERERExQgbcURERERERMUIh1MSEREREVH+CLg6ZVFiTxwR0f/Yu+voqI42gMO/uHuIkIRshCRQIEhwd21xKMWtSGmhWAsUh0JpoRSKFNriWtxdChSnuEtw4u7J7vdHYMOSDRYj/d7nnD0ne3dmdube2c3OnffOFUIIIYQoQGQQJ4QQQgghhBAFiIRTCiGEEEIIIbJHV+aG8pLsbSGEEEIIIYQoQGQQJ4QQQgghhBAFiIRTCiGEEEIIIbJHVqfMUzITJ4QQQgghhBAFiAzihBBCCCGEEKIAkXBKIYQQQgghRPboyNxQXpK9LYQQQgghhBAFiAzihBBCCCGEEKIAkXBKIYQQQgghRPbIzb7zlOxtIYQQQgghhChAZBAnhBBCCCGEEAWIhFMKIYQQQgghskdu9p2nZCZOCCGEEEIIIQoQGcQJIYQQQgghRAEi4ZRCCCGEEEKI7JGbfecp2dtCCCGEEEIIUYDIIE4IIYQQQgghChAJpxRCCCGEEEJkj6xOmadkJk4IIYQQQgghChAZxH2AFAoFM2fOzO9qCCGEEEIIIT5ABTKc8uHDh4wdO5Zdu3YRGhqKs7MzLVq0YMyYMdjZ2eV39d7a4sWLGTRoEJGRkRrbT58+jZmZWf5UKod0aGpLvSpWmJnocv1uIr+tCeZpSEqW6ds3seXTJprH7tGzZL6cdF/93NpCj64t7fH3M8XESJfHwcms2x3BifOxudaOl6lUKjavms/f+zYSHxeDt58/nfuMxLFwkdfmO7BjDbs2LSUqMgw3hQ+f9RqOp08J9espyUmsWTSDU0f3kJqazEelK9OpzwisrDP35djoSMYN/pSIsGBmLz+MqZmFxvsc2LGG0JCn2No70axNT6rUbpZzOyALa87dYsnJa4TFJeLjYM039cpRorD2z+GWS3cZu+OUxjZDPV1ODm2nse1uaBS/HL7AuQchpKqUeNpZ8VPLqjhbFrzPhW21ADyH9MSqbAmMCztwpnV/grbsz+9q5bieHRV83MAJCzN9Ll2L5qe5t3j0NCHL9H/9XhFnR+NM2zdsf8yM+bdzs6pvRaVSsX3tXP7Zv56EuBg8/UrTvtd3ODi7vzbf4V2r2b91MdGRobi4+9C2xwgU3iXVr88c14PbV89o5Klary0dPh8NwIlDm1k+d7TWsqcsPIiFVd7+j9u+dROb1q8lIiIchYcXn/f7Eh9fP61pH9wPZOWyxdy5fZPg4CB6ft6fT1q01khz5dJFNq5fw+3bt4gID2PEd+OpVKVaXjTlnahUKo5sncWFo3+RlBCNi1dZGnYYh62jIss8D26d5uSePwh6cJnYqBBa9Z2DT+l6GmniokM5uOEnAq8dJTE+BreiAdRvP/q15eYllUrFgY2zOXP4LxLjYyhStAyfdBmLnZMiyzyBN05zdMefPLl/hZjIEDp8OZvi5eplmX7L4nGcPrSGxh2+pUrDrrnQine3fuc+Vm7eSXhkFN6KInzdsxPFi3pqTbtl7yF2Hv6Hew8eAeDrqaBPxzYa6SfNXsjOQ8c08lUsXYIZo4fmXiM+BLoyN5SXCtwg7u7du1SuXBkfHx9WrVqFh4cHV65cYdiwYezcuZMTJ05ga2ub39XMlkKFCuV3FbKlZT0bmta0ZtayIILCUvismR1jvnDhq0n3SUlVZZnvwZMkxs5+rH6eptRMO7CLI2Ymekz57QnRsWlUD7BgaA8nhk17yL1HSbnWnhd2blzCvu2r6PnVBOwdC7Np5TxmTPiCSbPWYWBopDXPqaO7WbNoBp37jsTTpyR7t67g5wlfMPnXjVhap/fT1X9O5+LZo/Qb9gMmZuasWPADc38YyogpizKVt2jOBFzdixIRFqyx/eCuv1i//Fe69v8OD++PuHvrCkvmTsTU3ILS5Wvm/M54bve1B0w/8C+jGgRQorAdK8/coP/aQ2zq3RRbs8w/0AHMDQ3Y2LuJ+rnOKzH0DyNi6LFiPy1KedKvWknMDPW5ExqNkZ5errUjN+mZmRJ98QYPF68nYN2c/K5OrujY2o02zVyYPPM6T4MS6dVRwYwJJenU/zTJKdo/870Hn9P4f+/pbsbMSf4cPBqSR7V+vX2bF3F450o6fzEJOwcXtq35lTmT+/LdjE1Zft7P/rOLjUt/pH3v0SiKluTg9uXMmdyXMTO3aAy+qtRtTbP2X6ifGxhmfFbKVmlI8dJVNcpdNuc7UlKS83wAd+TwQf5cOJ9+Awbh4+fH1k0bGDf6G+YuWIy1tU2m9ElJiTg6O1Oleg3+XDBPa5mJiQkoPLyo26AxUyeNze0mvLeTexZy9uAymnadirW9K39v+YU1s3vSe+wO9A20H/+UpHgcXX0pVaU1G38bkOl1lUrF+nlfoKunT+t+czE0Nuf0/sWs/qU7vcZux9DINLeb9UZHdvzOib3LadV7CjaFXNm/YRZLpvfmy8nbsuz3yUkJOBXxpWyNVqya/dVry796di8P71zAwtohN6r/XvYdO8nsxasZ1qcrxYt6snbbHgZP/IlVs6diY2WZKf25K9epX60iJXw7YmRgwPJNO/h6wo8sn/k9hewyPheVypRk5Bc91c8NDAzypD3i/0eBGzJ/8cUXGBoasmfPHmrWrEmRIkVo3Lgx+/bt4/Hjx4waNQqApKQkvvnmG9zc3DAyMsLb25s//vhDXc6VK1do1qwZlpaWWFhYUL16de7cuQNArVq1GDRokMb7tmjRgm7duqmfKxQKJk6cSIcOHTAzM8PFxYU5czR/oM2YMYOSJUtiZmaGm5sb/fv3JzY2fdbo0KFDdO/enaioKHR0dNDR0WHcuHHqsl8Op3zw4AHNmzfH3NwcS0tL2rVrR1BQkPr1cePGUbp0aZYtW4ZCocDKyopPP/2UmJiY7O7u99KstjV/7Q7n1KU47j9J5pelQdha6VHR//WzKGlKiIxJUz9i4pQar/t6mrD9cCS37icRFJbKut0RxCco8XLT/o8lJ6lUKvZtW0mztr0oU7EWbgofeg6cQGR4COdOHsoy354tK6hRvyXV6jansJsnnfuOwtDImKP7NwMQHxfDkf2baN99MMVKVUDhVZweX47j9vUL3LlxUaOsg7v+IiEuhobNO2d6n+OHtlOzQSsqVGtIISdXKlZvSM0Grdi5YUmO7odXLT99nVb+XjQv5YmXvRWjGpbH2ECfTZfuZp1JB+zNTdQPu1cGe7/+fYlqXs4Mql0aP0cb3GwsqFXUJctB4YcuZPff3Bw7k6DN+/K7Krmm7ScuLF17n6Mnw7gTGMekn69jZ2tE9Ur2WeaJjE4hPDLjUaW8HY+eJPDv5ag8rLl2KpWKgzuW07BVb0qVr42Luw9dBkwmKiKEC6cPZJnvwLalVKnbmsq1W+Ds6sWnvUdjaGjC8YObNNIZGhljaW2vfpiYmme8Zqj5mo6uLjcvn6JKnZa51dwsbd64jgaNmlCvQSOKFFHQb8AgjIyM2Ldnl9b0RX386N6zDzVq1snyB2u58hXp1LUHlT/A2bcXVCoVp/cvpUrjfviUroeDqx/Nuk8jNjKYm+ez/hx7lahJjeZf41umvtbXI4IDeXLvPA0/G4ezohR2Tp407DCO1JRErp3enlvNeWsqlYrje5ZS85O+FCtbFyc3X1r3nkpMRDDXzmXdbp9SNajXehDFy2lv9wvREUFsXz6ZNn2noaf34cwhrNm6m4/r1aRpnep4uLkwrE9XjIwM2bb/b63pxw3qS6tGdfHxcMfdtTDf9uuBUqXizKWrGukM9PWxs7FWPyzNC14kifiwFahBXHh4OLt376Z///6YmJhovObk5ETHjh1Zs2YNKpWKLl26sGrVKmbNmsW1a9f47bffMDdP/0f5+PFjatSogZGREQcOHODs2bP06NGD1NTUd6rPjz/+iL+/P//++y/ffvstAwcOZO/everXdXV1mTVrFleuXGHJkiUcOHCA4cOHA1ClShVmzpyJpaUlT58+5enTpwwdmnmaXalU0rx5c8LDwzl8+DB79+7l7t27tG/fXiPdnTt32LRpE9u2bWPbtm0cPnyYqVOnvlN7coKjnT62VvpcuB6v3hafqORWYCK+itf/CHcuZMAfkz2YN07BoK6O2NtofsnfuJtAtXIWmJvqoqMD1cqZY6Cvw+VbWYds5ZTQoMdERYRS3L+iepupmQWeRUtkGmy9kJqSwv071yj2Uh5dXV2Kl6qoznP/zjXSUlM1ynV29cC2kJNGuU8e3mXr2oX0HDgBHS3hCqkpyZnOkhoYGnHv9mVSU7MOY82OlLQ0rj2LoKK7o3qbro4OFRWOXHwclmW+hORUGs/bQqO5mxm0/gh3QjJ+tCtVKo7efUIRGwv6rzlEndkb6bx0DwdvPsqVNojsK+xojL2tEafPR6i3xcWncfVmNCX8Mp/F1kZfX4cGtR3Zvu9ZblXznYQFPyY6MhS/UpXU20xMLVB4lyTw5gWteVJTU3h49xq+JTPy6Orq4luyIvdeyXPmyA6+6VmDyUNasnnlLyQnZf0ddurwVgyNTChd6fU/kHNaSkoKd27fxL90WfU2XV1d/EuX5cb1q6/JWfBFhT4iLjoERbEq6m3GJhYU9vDn8d1/37vc1NRkAI2ZPB1dXfT0DXl4++z7VziHRIQ8IjYqFK/ildXbjE0tcPUqxcM72vv921Iqlaxb8A3VGvfA0aVodquaY1JSUrlxJ5DypYqrt+nq6hJQ6iMu37zzVmUkJieRmpaWaZD275XrNO3+JZ9++S0//raEqJi8ufQjP6l0dD7Yx7uaM2cOCoUCY2NjKlasyKlTp96cCVi9ejU6Ojq0aNHind/zXX04p0Lewq1bt1CpVBQrVkzr68WKFSMiIoLTp0+zdu1a9u7dS7166XHZnp4Zscpz5szBysqK1atXq88W+vj4vHN9qlatyrfffqvOf+zYMX7++Wfq10//Z/vybJ5CoWDSpEn07duXuXPnYmhoiJWVFTo6Ojg5OWX5Hvv37+fSpUvcu3cPNzc3AJYuXcpHH33E6dOnKV++PJD+Bbl48WIsLNKvkercuTP79+9n8uTJWstNSkoiKUkzBDEtLRk9PcN33g8vs7ZM71JRMWka2yNj0tSvaXMrMJHZy4N4HJSMjZU+7RvbMvlrVwZOvk9iUno41o9/PmNoDyeWTfMiNU1FUrKSqQuf8iw0dwYpL4uKTB+UWFpphupaWtsRHRmqNU9MTCRKZZqWPLY8fRyoLldf30Dj2jYAKys79XumpCTz24wRtO0yELtCzoQEPeZVH5WpzJF9myhTsRbunsW4f+caR/ZtIi01ldjoSKxtcz5ENyI+mTSVKtMMmZ2pMYFh0VrzuNtaMrZJBXwKWROTlMKyU9fptnwf63o2xtHSlPC4ROKTU1l08hpfVC/FwFr+HLv3lCEbj7KgQx0Cinw4ITgina1N+ndGRKTm5zAiMln92pvUqGSPuZk+O/Z/GIO4F5/pV8MXLazsiI7UfoIiNjoCpTINi1euZbW0tiPoyT3184BqTbC1d8bKthBP7t9i84qfCX4SSO+hP2st9/iBjQRUa4yhYd7OREdHR6FUKrG20QybtLa24dHDh3lal7wWG50e0mtmqXkszSzsiIvW/n3/NuycPLG0LczhjdNp1HECBkYmnN6/mJiIZ8RF538YcWxUetvMX+n3Zpb2xEZlr35HdvyOrq4elepnjiTJT5ExMaQpldhaW2lst7Wy5MHjp29Vxrxlf2FvY03ASwPBSmVKUrNSAIUd7Hn8LJjfVq5nyKTp/Pb9aPT0CtT8yf+lNWvWMHjwYObPn0/FihWZOXMmDRs25MaNGzg4ZP07JDAwkKFDh1K9evU8qWeBGsS9oFJlfV0VpO9EPT09atbUfi3Q+fPnqV69erbjkytXrpzp+cthkPv27WPKlClcv36d6OhoUlNTSUxMJD4+HlPTt4t9v3btGm5ubuoBHEDx4sWxtrbm2rVr6kGcQqFQD+AAnJ2dCQ4OzlTeC1OmTGH8+PEa23zLD6BYhdfHs7+qRoAFfTtkdOjJ8568U/4Xzl3NmLm7/ySZm4GJLJigoGpZC/YfTx8QfNbMDjMTPcbMekRMXBoVSpkzrIcTI2c+4sGT5Pd636ycOLyDpfMzBsADR83K0fLfxfpls3F29aByraZZpvm4bW+iIsL4/ptuqFQqLK1tqVK7Gbs2LtE6c5df/F3s8Xex13je+vcdrDt/my9qlOLFZZC1vF3oVN4XAF9HGy48DmXd+dsyiPsA1K/pwLAvMk56DZ9wKdtlNq3vxMmz4YSF5+zn+G2dPrKdVQsmqJ/3G5F71y5Wq9dG/bdLER8sbeyZPaE3Ic8eUsjJTSPt3ZsXePb4Ll2+/D7X6iPgyskt7FqZcX1e2y9+y5X30dMzoFWf2exYNoqZQyqgo6uHwq8ynh/VAF7/uyY3XPhnK1uWjFM/7/S19usYs+tx4BVO7FlGv/HrM10DXdAt27CNfcdO8uv4bzEyzDhpVa9axoy8l7sbXu5utPtiOP9eua4x2BMfphkzZtC7d2+6d+8OwPz589m+fTt//vmnevLmVWlpaXTs2JHx48dz5MiRTIsW5oYCNYjz9vZGR0eHa9eu0bJl5usDrl27ho2NTaZQy1e96XVdXd1MA8WUlHeb7QkMDKRZs2b069ePyZMnY2try9GjR+nZsyfJyclvPYh7W68OSHV0dFAqlVmkhhEjRjB48GCNbZ2+efezq6cuxXIzMDGjHvrpX9BWFnpERGfMxllb6L3T4iPxCUqeBKfgXCi9XU72BjStac1Xk+7z8Fn6D73Ax+EU9zKhSQ1r5q/OesD6Pvwr1GTsSytIpj4//tFR4RqzWtGRYbh5+Gotw8LCGl1dPaKjwjW2R0eGq1eetLK2IzU1hfi4GI3ZuKioMHWa65dO8+jBbXr/kz5gVz3/Zz+wSx2atulBiw79MDQypseX4+jSbxTRkeFY29hzeO8GjE3MsLDMvABBTrAxNURPR4fwuESN7WHxidiZvf4z9oKBni6+jjY8jIxVl6mvq4OnveZZUU87S/599P5nwEXOOXoqjKs3M1ZXNDRIP0lgY21AWETGIMzG2pDbd98cPuRYyIgAfxtGTbmS85V9SyUDaqEomrGCZGpKejtiosKwssn4vMdEheGq0P55N7e0QVdXj5hXZuqiI8OwtM762sAXK1eGPHuQaRB3fP8GXBV+FPHM+x99lpZW6OrqEhkRobE9MjICmwK+eNirvP3r0MPDX/38RdhjXHQY5lYZJ47iYsJwcNW+MufbcnIvQY/vNpOYEIMyNQVTC1uWTG2Ls3uJN2fOYX5l6uDqVUr9/EW7Y6PCNBYeiYsOxamI9giot3H/xhniYsKYPqSOeptSmcau1dM4vmcpQ6bn32q91hYW6OnqEh6peS1ueFR0ptm5V63cvJPlG7czc+xwvBVur03r4uSAtaUFj54F/bcHcTofzknjV2mLQDMyMsLISPNSlOTkZM6ePcuIESPU23R1dalXrx7Hjx/PsvwJEybg4OBAz549OXLkSM5WPgsf7t7Wws7Ojvr16zN37lwSEjSvIXj27BkrVqygffv2lCxZEqVSyeHDh7WWU6pUKY4cOZLlwKxQoUI8fZoxjZ6Wlsbly5czpTtx4kSm5y9CPc+ePYtSqWT69OlUqlQJHx8fnjzRnKUyNDQkLU0z7PBVxYoV4+HDhzx8KXzl6tWrREZGUrz4+38RGBkZYWlpqfF4n1DKxCQVz0JT1I+Hz5IJj0qllG/GINXEWJeiCmNuBCa+piRNxoY6ONkbEBGVfp2ioWH64PDVwbVSpSI3TuyZmJjh6FxE/Sjs5omVjT3XLmbERCfEx3L31mW8fEtpLUPfwAB3r2IaeZRKJdcunVLncfcqhp6+PldfSvPscSDhIc/UafoP/5FxM1YzdsYqxs5YRbf+6cuPfzP5d+o01rw2Ul/fAFt7R3T19Dh1ZDf+AdXRzaWZOAM9PYo52XDyfsYiO0qVilOBQZRyebtV9NKUSm6HRGL/fNBnoKdHcSdb7odrhmPeD4/B2TL/V24TkJCQxuOnierHvQfxhIYnEeCfcbLA1ESP4j6WXL6uPaz2ZU3rORERlczx01lfR5nbjE3MKORURP1wcvXC0tqeG5dOqtMkxMcSePsSCh9/rWXo6xvg5lmMG5cz8iiVSm5ePolHFnkAHgXeANAYLAIkJcZz7vhuKufDgiaQfmLQy9uHixcyrgFTKpVcPP8vvn7/rR+hRsbm2Di4qx/2zt6YWRYi8HrGD7akhFie3LuAi2eZHHlPYxMLTC1sCQ8K5Nn9yxT1r5sj5b4LIxMz7Bzd1Q+Hwt6YW9lz92rGb5vEhFge3bmIm1fWffhNSlf9hC8mbqL/hA3qh4W1A9Ua96DL0N9zoinvzcBAH18vhcaiJEqlkrMXr1LCxyvLfCs27WDxui1MHz2EYt4eb3yf4LBwomJisbOxzolqi/cwZcoUrKysNB5TpkzJlC40NJS0tDQcHR01tjs6OvLsmfaQ/6NHj/LHH3+wcOHCXKl7VgrUTBzAr7/+SpUqVWjYsCGTJk3SuMWAi4uLetara9eu9OjRg1mzZuHv78/9+/cJDg6mXbt2DBgwgNmzZ/Ppp58yYsQIrKysOHHiBBUqVMDX15c6deowePBgtm/fjpeXFzNmzNA6LXrs2DGmTZtGixYt2Lt3L3/99Rfbt6evMOXt7U1KSgqzZ8/m448/5tixY8yfP18jv0KhIDY2lv379+Pv74+pqWmmGbp69epRsmRJOnbsyMyZM0lNTaV///7UrFmTgICAXNvP2bHtYCRtG9nyNCQl/RYDTe0Ij0rj5IU4dZrxX7pw4kIsO/9OP/vVtaU9Zy7FERyegq2VPp82tUOpVHHkbPqZ/MfPknkSnEzfDo4s2RhCTJySCqXM8Pc1ZfL89wvhfBc6OjrUa/YZ2/76HUfnItg7FmbjynlY2xaibMVa6nQ/julD2Uq1qdvkUwAafNKRP2aNReFVHI+iH7Fv20qSEhOoWvcTIH1xlOp1W7Bm0XTMzS0xNjVj5cJpePmWUg/iHJw1z/DFxkQCUNjNUz179+zxfe7duoynT0niYqPZs3U5jx/coefACeSmTuX9GLP9BMWdbCnhbMvKMzdJSEmlecn0a1C/23YCBwsTvqqZ/gPgt2OXKVXYDjcbC2ISk1ly6jpPo+Np6Z9xzWrXisX4ZvM/lHV1IMDdgX/uPuXv209Y+FkdrXX40OmZmWLmnXEvQVMPVyz9/UgOjyLx4dtdc/Gh+2vLY7q2L8LDJwnptxjopCAsPIkjJzJmT2dOKsXfx0PZsD3j86qjA03qObHrQBBpWQcO5DkdHR1qN+nErg0LKORcBDsHF7avnoOVTSH8y2f0w1kTeuFfoS41G3UAoE6zLiyb8x1FPIuj8C7JwR3LSUpKoFKtFgCEPHvImaM7+KhsdczMrXj84CYblvyId7FyuLhrXpd99p9dKNPSKF896zDq3Na8ZRt+mfED3kV9KOrjx9bN60lMSqRe/YYA/PzTVOzs7OnSvReQHrHy8EH6vT1TUlMJCwvl7p3bmJiY4FzYBYCEhASePsm4rjco6Bl379zGwsKCQg6OfAh0dHQoX7cL/+ych62DO1b2rhzZ8gvm1g4a931b9XNXfErXp1ztTgAkJ8YREfJA/Xpk6COCHl7D2MwKK9vCAFw/uxMTc1usbAsT/PgG+9Z+T9HS9fAonv+rdero6FC5QRcObZ2PrZM7NvbptxiwsHGgWNmMdi/6oTvFytWjUr2OACQlxhEepNnup/evYWJuhbVdYUzNbTA114wI0dPTx9zKnkLObx4A5bb2Hzdk8uyF+Hl5qG8xkJiURNM66dc1TZy1AHtbG/p1agvA8o3b+X31RsYO6oNzIXvCIiIBMDE2xtTEmPiERP5cu4lalQOws7bi8bMQ5i5bg6uTAxVL5/2Mq0inLQLt1Vm49xETE0Pnzp1ZuHAh9vZZR13khgI3iCtatChnzpxh7NixtGvXjvDwcJycnGjRogVjx45V3yNu3rx5jBw5kv79+xMWFkaRIkUYOXIkkD6jd+DAAYYNG0bNmjXR09OjdOnSVK2afm+eHj16cOHCBbp06YK+vj5ff/01tWvXzlSXIUOGcObMGcaPH4+lpSUzZsygYcP0f27+/v7MmDGDH374gREjRlCjRg2mTJlCly5d1PmrVKlC3759ad++PWFhYYwdO1Z9m4EXdHR02Lx5M19++SU1atRAV1eXRo0aMXv27NzYvTli474IjI106NfBATMTXa7dSWTi3Mca94hzsjfA0jzjvl921voM7u6EhakuUbFpXLubyLfTHxEdmz5TmaaESfOe0Lm5PSP7FMbYSJenISnMWhakcT1dbmrcsivJiQksmTeJ+LgYihYrzdejf9VYFTLk2SNioyPVzytUa0hMdASbVs8jOiI99PLrMb9q3Mj70x5D0NHRYc60YaSmJFPi+c2+34VSmcbuLcsJenwfPX19fEsEMHLqIuwdCme73a/TsFgRIuITmXf0EmFxifg6WDOnXS31bQOeRceh+9JMaUxiMhN2nSYsLhFLY0OKOdqwuFM9vF4Kn6zj48qohgH8eeIq0/afw93Wgh9bVqWMa8G8f6JVuRJU3r9M/bz4T+nfQw+XbuBiz3c7zh+qFesfYmysx/ABPpib6XPpahRDxl7SuEeci5MJ1paaYd8BpW1wcjBm+94PY0GTl9Vr3p2kpARW/TaBhPgYvPzK0H/kPI3Pe2jQI2KjM8INy1VpRGx0BNvXziUmMhQXhS9fjJyH5fPPu76+ATcuneDgjuUkJyVgY+dE6Yr1aNjq80zvf/zARvwr1sXU7O1W+MwN1WvWJjo6ipXLFhMREYGHpxdjJ0zF2ib9/2xoSDC6L33Aw8PD+PrLPurnm9avZdP6tZQo6c/kH2YAcPvWDb77dog6zZ8L06/DqlOvAQMHf5MXzXorFRv0JjkpgV0rxpAYH42rdznaf/m7xsqSESEPiY/NOP5P719m1c8Z/+MPrEs/y1+iUkuadUtfLTo2KoT966Y+D9UsRIlKzanapH8eterNqjfpRUpSAlsWjSUxPpoiPmXpMmSBRr8PD35AfExGu5/cu8KfP2TctHvnqh8AKFO1Ba16Z57p+NDUq1qRyKgYfl+9kfDIKIp6FGH6d0PU4ZRBoWEa1/Jt3H2AlNRUvvtJ89rZHu2a07N9S/R0dblz/xE7Dx0jNj4eextrKviXoHeHVhj+1+8V9wGHU2oLndTG3t4ePT09jVt5AQQFBWldiPDOnTsEBgby8ccfq7e9uJxJX1+fGzdu4OWV9axuduio3rRKiNBKoVAwaNCgTPeTK8haDriV31XIF0P65+5A50NV9sS0/K5CvjjYZ3V+VyFfTGm0IL+rkC/GTqr05kT/QW7m+b/aYX44/sA1v6uQL8yMP6Cp7DxUx+LkmxP9B9mXqPzmRPkg4dCq/K5ClkxqdXjrtBUrVqRChQrqCROlUkmRIkUYMGBApoVNEhMTuX37tsa27777jpiYGH755Rd8fHwwNMzeyu9ZKXAzcUIIIYQQQgiRGwYPHkzXrl0JCAigQoUKzJw5k7i4OPVqlV26dMHFxYUpU6ZgbGxMiRKaYbLW1tYAmbbnNBnECSGEEEIIIbLlfW6q/SFq3749ISEhjBkzhmfPnlG6dGl27dqlXuzkwYMHubZo3LuQQdx7CgwMzO8qCCGEEEIIIXLYgAEDGDBggNbXDh069Nq8ixcvzvkKaZH/w0ghhBBCCCGEEG9NZuKEEEIIIYQQ2fMBr075XyR7WwghhBBCCCEKEBnECSGEEEIIIUQBIuGUQgghhBBCiOz5j6xOWVDITJwQQgghhBBCFCAyiBNCCCGEEEKIAkTCKYUQQgghhBDZ8wHcAPv/iextIYQQQgghhChAZBAnhBBCCCGEEAWIhFMKIYQQQgghskUlq1PmKZmJE0IIIYQQQogCRAZxQgghhBBCCFGASDilEEIIIYQQInt0ZG4oL8neFkIIIYQQQogCRAZxQgghhBBCCFGASDilEEIIIYQQIltUEk6Zp2RvCyGEEEIIIUQBIoM4IYQQQgghhChAJJxSCCGEEEIIkT1ys+88JTNxQgghhBBCCFGAyCBOCCGEEEIIIQoQCacUQgghhBBCZIusTpm3ZG8LIYQQQgghRAEigzghhBBCCCGEKEAknFIIIYQQQgiRPbI6ZZ6SmTghhBBCCCGEKEBkECeEEEIIIYQQBYiEUwohhBBCCCGyR1anzFMyiBNqK8osy+8q5ItHRr3yuwr5otP5zvldhXwR3KhOflchX4zY9Xl+VyFfOP98OL+rkC8exDrkdxXyRZUiD/O7CvnCSJWQ31XIFxsDK+d3FfJF7xL5XQPxIZAhsxBCCCGEEEIUIDITJ4QQQgghhMgWlaxOmadkJk4IIYQQQgghChAZxAkhhBBCCCFEASLhlEIIIYQQQojskdUp85TsbSGEEEIIIYQoQGQQJ4QQQgghhBAFiIRTCiGEEEIIIbJFhaxOmZdkJk4IIYQQQgghChAZxAkhhBBCCCFEASLhlEIIIYQQQohsUcnqlHlK9rYQQgghhBBCFCAyiBNCCCGEEEKIAkTCKYUQQgghhBDZI+GUeUr2thBCCCGEEEIUIDKIE0IIIYQQQogCRMIphRBCCCGEENmi0pGbfeclmYkTQgghhBBCiAJEBnFCCCGEEEIIUYBIOKUQQgghhBAiW+Rm33lL9rYQQgghhBBCFCAyiBNCCCGEEEKIAkTCKYUQQgghhBDZI6tT5imZiRNCCCGEEEKIAkQGcUIIIYQQQghRgEg4pRBCCCGEECJbZHXKvCV7WwghhBBCCCEKEBnECSGEEEIIIUQBIuGUQgghhBBCiGxRIatT5iWZiRNCCCGEEEKIAkQGcUIIIYQQQghRgEg4pRBCCCGEECJbZHXKvFVg97aOjg6bNm3K8vVDhw6ho6NDZGRkntVJCCGEEEIIIXLbO83EdevWjSVLltCnTx/mz5+v8doXX3zB3Llz6dq1K4sXL86xCo4bN45NmzZx/vz5HCvzbXXr1o3IyMjXDhZFZmvO3WLJqeuExSXi42DNN/XKUsLZTmvaLZfuMXbnKY1thnq6nBzSVmPb3bBofjl0gXMPQ0hVKfG0s+SnFlVxtjTLtXa8q+1bN7Nh/V9ERITj4eFFn35f4OPrpzXt/fuBrFi2hDu3bxEcHESvz/vRvEUrjTQ7tm9l5/atBAUFAVDE3Z1PO3QioHyFXG/Lu/q0iS31K1tiaqLL9XuJLFgbwtOQlCzTt29sS/vGthrbHgUl89XkBwAUstXnt3EKrXl//PMpx8/H5Vjdc1rPjgo+buCEhZk+l65F89PcWzx6mpBl+r9+r4izo3Gm7Ru2P2bG/Nu5WdVcZVstAM8hPbEqWwLjwg6cad2foC3787tab23nto1sXr+ayIhwFB5e9Ow7kKK+xbJM/8+Rg6xa/ichQc9wLuxCp+59KVe+kvr1hIR4li9ewKnjR4mNicLB0Zkmn7SmYZPmGuXcuHaZlUt/59aNa+jq6qLw9Gb0xJ8wMjLKtba+TKVSsWPtHP7Zv56EuBg8/ErTvtdoHJzdX5vv712r2L91MdGRobi4+9KmxwgU3iU10ty7eZ6tq2Zz//YldHV1cVH40n/Ubxgapvf/3RsWcOXc3zwKvIG+vgHTFv+Ta+18k+1bN7Nx/Vr19/nn/QZk+X3+4H4gK5YtVn+f9/y8H81btNZI89ealRz/5yiPHz3E0NAIv2LF6dqjN66ubnnRnLe2Zdt21q3fQHhEBJ4eHvTv2wc/Xx+taQPv32fp8hXcvn2HoOBg+vTuRasWzTOlCw0N449Fizl99ixJSUkUdnZmyNcD8SlaNLeb89ZUKhXHts/i0rG/SEqIprBnWep/Og4bB0WWeU7u/o2b5/cQHnQXfQNjXDzLUKPFUGwdPdVpLhxdw7Uz2wh+eIXkxDgG/HgaY1PLPGiR+H/wzuGUbm5urF69mp9//hkTExMAEhMTWblyJUWKFMnxCoqCZfe1B0w/eJ5RDcpRwtmOlWdu0n/tYTb1aoKtWeYfqgDmhgZs7NVY/VxHR3N1o4cRsfRYsZ8WpTzpV60EZoYG3AmNwkhPL1fb8i6OHD7E7wt/44sBX+HjV4wtmzYwZvQI5i/4E2trm0zpk5KScHJ2plr1Gvy+YL6WEsHe3p6u3XtSuLALKhXs37+HyRPHMnP2PNzdFbncorfXsp41TWtYMWtFMMFhKXRoasvofoUZ+P0DUlJVWeZ78CSJcXOeqJ+nKTPShkWk0mPUPY309ata0qKODf9ejc/5RuSQjq3daNPMhckzr/M0KJFeHRXMmFCSTv1Pk5yifV/0HnwO3ZdiIjzdzZg5yZ+DR0PyqNa5Q8/MlOiLN3i4eD0B6+bkd3XeybG/D7B44Rz6DBhMUd/ibNv0FxNHD2X2guVYafk8X796mZ+nTaRjt94ElK/MkcP7mTZpFD/+spAiivQfdIsXzuHyxX8ZOHQUDo5OnD93moVzZ2Jra0/5SlWB9AHcpDHDadm2Iz37DkRPT4/Ae7fR1c27Fd/2bf6TwztX0umLSdg5uLB9za/MndyHUTM2Y2CofSB59p9dbFz6I+17j8a9aCkObV/G3Ml9GD1zKxZW6Sfw7t08z9zJ/ajfsidte4xAV0+Px4E30Hkp/Co1NYXSlRqg8PHnxIGNedJebY4cPsgfC+fTf8DA59/n6xk7+lvmLViUxfd5Ik7OzlStXpM/FszTWublyxdp2qw5RX18SUtLY9mSPxg76hvm/PYHxsYmud2kt3Lo7yMsWPg7Xw74Aj9fHzZu2sKo0WP4Y8F8rK2tM6VPSkrC2cmJGtWq8dvC37WWGRMTy+BhwylVqiSTxo/D2sqSx0+eYG5unsuteTen9i7k30PLaNx5Klb2rhzd+gvrfu1J99E70DfQ3u8f3jpFmRodcXIviVKZxpEtM/hrdk+6j96OoZEpAKnJCXgUr45H8eoc2Tw9L5uUP3Rkdcq89M7hlGXLlsXNzY0NGzaot23YsIEiRYpQpkwZjbRJSUl89dVXODg4YGxsTLVq1Th9+rT69Rchj/v37ycgIABTU1OqVKnCjRs3AFi8eDHjx4/nwoUL6OjooKOjozHLFxoaSsuWLTE1NaVo0aJs2bJFa53j4uKwtLRk3bp1Gts3bdqEmZkZMTExb9X2WrVq8dVXXzF8+HBsbW1xcnJi3LhxGmkiIyPp06cPjo6OGBsbU6JECbZt26Z+ff369Xz00UcYGRmhUCiYPl3zQ61QKJg0aRJdunTB3Nwcd3d3tmzZQkhICM2bN8fc3JxSpUpx5swZjXxHjx6levXqmJiY4ObmxldffUVcXN7PViw/c4NWpTxpXtITL3srRjUMwNhAn02X7mWdSQfszU3UD7tXBnu/HrlINU9nBtXyx8/RBjcbc2oVdclyUJgfNm1cT8NGjanXoBFFirjTf8BAjIyM2Ltnt9b0Pj6+9Oj5OTVq1sbAwEBrmgoVKxNQviKFXVxxcXWlS9ceGBubcOP6tdxsyjtrVtOadXsiOH0pjvtPkpm1LBhbKz0qlHr9LGmaEiJj0tSPmDil+jWlSvO1yJg0KpYy59i/sSQmZz0wzG9tP3Fh6dr7HD0Zxp3AOCb9fB07WyOqV7LPMk9kdArhkRmPKuXtePQkgX8vR+VhzXNeyO6/uTl2JkGb9+V3Vd7Z1o1rqdeoGXXqN8GtiII+A4ZgZGzM/j07tKbfvmUdZcpVoEXrDrgWUdChc088vHzYuS1jIHLj+hVq1W1IiVJlcHB0pkHjT1B4eHHrZsbnedHCOTT5pDWt2nWkiLsHLq5FqFq9DgYGhrneZkifjTi0YzkNW31OqfJ1cHH3pfOA74mKCOHi6QNZ5ju4bSmV67amUu2WOLt60b73GAwNTTh+MKP9G5b8SM3Gn9GgRS+c3bxxLOxB2SqNNNrWtN0X1GnWhcJF8neGZvPG9TRo1OSl7/NBGBkZsW/PLq3pi/r40b1nn9d+n4+fOJW69RtSxF2Bh6cXAwcPJyQkmNu3buVmU97Jho2baNSoIQ3r18O9SBG+GtAfI2Mjdu/ZqzW9r48PvXv2oFbNGlm2e+26ddgXsmfo14Pw8/XBycmJcmXLUtjZOTeb8k5UKhXnDi6lUqN+ePvXo5CLH026TiM2KpjbF7L+/moz4A9KVG6FfeGiOLj60bjzVGIinhD04Io6Tbk63ajY4HOcFf550RTxf+a9ronr0aMHixYtUj//888/6d69e6Z0w4cPZ/369SxZsoRz587h7e1Nw4YNCQ8P10g3atQopk+fzpkzZ9DX16dHjx4AtG/fniFDhvDRRx/x9OlTnj59Svv27dX5xo8fT7t27bh48SJNmjShY8eOmcoGMDMz49NPP9WoM8CiRYto06YNFhYWb932JUuWYGZmxsmTJ5k2bRoTJkxg7970LzilUknjxo05duwYy5cv5+rVq0ydOhW95zNGZ8+epV27dnz66adcunSJcePGMXr06Ezhpz///DNVq1bl33//pWnTpnTu3JkuXbrQqVMnzp07h5eXF126dEGlSv8xe+fOHRo1akTr1q25ePEia9as4ejRowwYMOCt25UTUtLSuPYsgooKR/U2XR0dKro7cvFJaJb5EpJTaTx/K43mbWHQhiPcCc348apUqTh65ylFbC3ov/YwdX7dROdlezl461GutuVdpKSkcPv2TfxLl1Vv09XVpXTpsty4fjVH3iMtLY2/Dx8kMTERv2LFc6TMnOBop4+NlT4XbmTMjsUnKrl1PwlfxesH2c6FDPh9ooK5Y9wZ1MURe5usAwM83YzwdDVi/4noHKt7TivsaIy9rRGnz0eot8XFp3H1ZjQl/N4ufEZfX4cGtR3Zvu9ZblVTvEFKSgp3bt+kVOly6m26urqUKl2Om9evaM1z8/oVjfQApcuW58ZL6X39PuL0yWOEhYagUqm4dOEcT548xL9seQCiIiO4deMqVlbWjBzSnx4dWzD6m6+4duViLrRSu7DgR0RHhuJbKiMM1MTUAoV3Se7dvKA1T2pqCg/vXsW3ZEYeXV1dfEtWIvB5npioMAJvXcTCypYZ33ViZO+a/DK2G3eun8vdBr2HF9/npV/5PvcvXZbrOfR9DqhPsr7L74/clJKSwq3btylbOmOwoaurS5nSpbl6/cZ7l3vi5Cl8vL2Z9P1U2n3Wif5fDmTHLu0nN/NLVNgj4qJDcPetot5mZGKBs8KfJ/f+fetykhLSJwSMzaxyvI5CaPNeg7hOnTpx9OhR7t+/z/379zl27BidOnXSSBMXF8e8efP48ccfady4McWLF2fhwoWYmJjwxx9/aKSdPHkyNWvWpHjx4nz77bf8888/JCYmYmJigrm5Ofr6+jg5OeHk5KQO4YT0a9Y6dOiAt7c333//PbGxsZw6pXl91Qu9evVi9+7dPH36FIDg4GB27NihHjC+rVKlSjF27FiKFi1Kly5dCAgIYP/+9Os89u3bx6lTp9iwYQP169fH09OTZs2a0bhxeqjgjBkzqFu3LqNHj8bHx4du3boxYMAAfvzxR433aNKkCX369KFo0aKMGTOG6OhoypcvT9u2bfHx8eGbb77h2rVr6mulpkyZQseOHRk0aBBFixalSpUqzJo1i6VLl5KYmKi1HUlJSURHR2s8klJS32lfvCoiPpk0lQpbU80f73ZmxoTFaa+Hu60FYxuXZ2bLakxqWgmVCrot309QTPqgIDwukfiUVBadvEYVDyfmta1J7aKuDNl4jDMPgrNV35wSHR2FUqnExkYzzMba2oaI8Igscr2dwHv3aNvqY1o1b8LcX39h1OixFCny+mtT8pK1ZfrAKyomTWN7ZEwqNpZZh7veDExk9oogJs57woK1ITjY6TN5oAvGRtpDMepVsuThs2Ru3NPejz4EtjbpMwoRkZrXAkZEJqtfe5MalewxN9Nnx34ZxOWXmOgolMq0TGFzVtY2REZkPkkIEBkRninM0vqV9L36DcStiILPu7ahffO6TBoznN79BvFRifQfzUHP0kOL16xcTL1GzfhuwjQ8vXwYN3IwTx7nzUmr6MgwAHUI5AsWVnZER2o/ERcXHYFSmYal9St5rO3U5YUGpdd/x1/zqFK3Nf1GzsfVoxi/TuhF8NP7Od2MbHnxfW6t5fs8Mpvf5y8olUp+/20uxYp/hLvCI0fKzK7o6Oj0dr/Sj22srYmIeP92P332jG07dlLYpTDfTxxPsyaNmffbAvbu+3Cuj42LTg9dN7XU7MOmFnbERWd9AvplKqWSg+u/x8WzLIUKa7+G8P+BCt0P9vFf9F63GChUqBBNmzZl8eLFqFQqmjZtir29ZrjQnTt3SElJoWrVquptBgYGVKhQgWvXNMPBSpUqpf7b+fkUe3Bw8BuvsXs5n5mZGZaWlgQHa/9hX6FCBT766COWLFnCt99+y/Lly3F3d6dGjRpv12gt7/mivi/e8/z587i6uuLjo/0DfO3aNZo317zot2rVqsycOZO0tDT1jN3L7+HomD6rVbJkyUzbgoODcXJy4sKFC1y8eJEVK1ao06hUKpRKJffu3aNYscwX40+ZMoXx48drbBv5cQ1GNa/5+h2Qw/xd7PF3sdd43vqPnaw7f4cvqpfkxWVStbxd6FTeFwBfRxsuPA5l3fk7BBRxyNP65jUXV1d++XU+8XFxHDt6hJ+n/8iUadPzbSBXI8CcPu0z9vnk3568JnXW/r2WMXN3/0kyN+8n8ts4d6qWMWf/Cc3wZkMDHaqXM+ev3TnzAyqn1K/pwLAvMj7rwydcynaZTes7cfJsOGHhydkuS3xYdmzZwM3rV/l2zPcUcnDi6uULLJw3Extbe/zLBKB8/mXXoPHH1KnfBABPLx8uXjjLgb076NTt8xyv0+kj21i9YIL6ed8RuXPt4ouokar12lKpdksA3DyKcfPySU4c3Mgnnw3Klff9UM2fO4sH9wOZ+tPM/K5KrlOpVBT19qZH1y4AeHt5EXj/Ptt37qR+vbr5Uqerp7awd9VY9fNW/X/Ldpn71own9MktOgxeme2yhHhb732fuB49eqjD9ebMyd4X/8ux1C8WtVAqlVkl15rvRd7X5evVqxdz5szh22+/ZdGiRXTv3j3TIhrZec+XZwmzQ9v+eN0+io2NpU+fPnz11VeZyspqIDxixAgGDx6ssS1t5dRs1dvG1BA9HR3C4zVnS8LiEjNd55YVAz1dfB2teRgRqy5TX1cHTzvNcDRPO0v+ffxhLPxgaWmFrq5uprOVkZER2Nhmvgj+XRgYGFC4sAsA3kV9uHXrBls2b2TAl4OyVe77OnUpjpuBDzPqp5/eF60s9IiIzpiNs7bQ596jpLcuNz5BydPgFJwKZZ6xqlzaHENDXQ6d/rBCKY+eCuPqzYxrUw0N0s/02VgbEBaRMQizsTbk9t3YN5bnWMiIAH8bRk3RHrIn8oaFpRW6unpERmp+nqMiI7C2sdWax9rGlqjIzJ//F+mTkpJYuXQhw0dNolyFygAoPLwIvHubLRvW4F8mABvb9FkAVzeFRjmubu6EhgTlRNMyKRlQG0XRjJOGqSnp/TYmKgwrm0Lq7TFRYbgotK/MaGZpg66unnrWTZ0nMkw9O2dpk36iztnVUyONo4snEaFPs9+QHPTi+zxSy/e5dTa/zwHmz53NmVMn+X7aDOztC705Qx6xtLRMb/cr/TgiMjJTlMm7sLWxwb2I5gqcbm5uHP0n/1Ye9S5VR+MatbTU9H4fHx2GuVXGScr4mDAcXLX3+5ftWzOBu5cP0f7r5VjYOOV8hYXIwnvPLzZq1Ijk5GRSUlJo2LBhpte9vLwwNDTk2LFj6m0pKSmcPn2a4sXf/poeQ0ND0tLS3pzwLXTq1In79+8za9Ysrl69SteuXXOk3BdKlSrFo0ePuHnzptbXixUrprE/AI4dO4aPj496Fu59lC1blqtXr+Lt7Z3pYWioPYzLyMgIS0tLjYeRQfbu/W6gp0cxJxtO3s/4waFUqTh1P4hShbNe2OFlaUolt0OisDc3VpdZ3MmW++GaszP3I2I+mNsLGBgY4O3tw8ULGbHzSqWSC+f/xdcvZ69fUylVpKTk3yxNYpKKZ6Ep6sfDZ8lERKVSysdUncbEWIei7kbcCHz70EdjQx0c7Q2IiMoc0lu3kiVnLscRHfvmEzt5KSEhjcdPE9WPew/iCQ1PIsA/4wePqYkexX0suXz9zQPQpvWciIhK5vjpsDemFbnHwMAAL28fLp0/q96mVCq5eP4cPn4fac3j4/cRFy+c1dh28d8z+D5Pn5aWSmpqKjqvrDKpq6uLSpXerx0cnbC1s+fJ44caaZ4+fkghB0dyg7GJGYWciqgfTq5eWFrbc+PSSXWahPhYAm9fwsNH+8IM+voGuHkW5+bljDxKpZKbl0+geJ7HrpALVjYOBD0J1Mgb8vQ+NvaFc75h2fDi+/zChYzr9dKP/7/4ZeP7XKVSMX/ubE4cP8qkKT/i5PThLOwB6e0u6u3Nv+czrsFUKpWcP3+B4n6+711u8eLFePj4sca2x48f41Ao/6JoDI3NsXFwVz/snL0xsyzE/RvH1WmSEmJ5GniBwh5lsixHpVKxb80Ebl/YS7uBS7C2/7BuF5EfVDo6H+zjv+i9B3F6enpcu3aNq1evah2AmJmZ0a9fP4YNG8auXbu4evUqvXv3Jj4+np49e771+ygUCu7du8f58+cJDQ0lKentz+6/ysbGhlatWjFs2DAaNGiAq6vre5elTc2aNalRowatW7dm79693Lt3j507d7JrV/qKVkOGDGH//v1MnDiRmzdvsmTJEn799VeGDh2arff95ptv+OeffxgwYADnz5/n1q1bbN68Oc8XNgHoFODLxgt32XL5HnfDovl+zxkSUlJpXjI97v+77SeYdTjjn8Rvx65w/N4zHkXGcu1ZOKO2neRpdDwtS2Wcse1awY/d1x+y4cIdHkTEsPrcLf6+/YR2ZbzzvH1ZadGyNbt37WD/vj08fHCfuXNmkZiUSL366Sc4Zvz0A0sWZVwLmpKSwt07t7l75zapqSmEhYVy985tnjzJ+Ge3ZNEfXL50kaCgZwTeu8eSRX9w6dIFatXKnxCUrGw7HEmbhjaUL2FKEWdDvurkSHhUGqcuZqyOOu6LwjSunnGxd9fmdhT3NqaQrT6+HsZ808sZpQqOntMcrDvZG1Dcy5h9xz+sWbis/LXlMV3bF6FqBTs83c34brAfYeFJHDmRcV3FzEmlaNVU84erjg40qefErgNBpH1YY9X3pmdmiqW/H5b+6WeyTT1csfT3w9jtw/rxqs3HLduxb/d2Du7bxaMHgSyYM4OkxATq1E+/vnnW9MksX7xAnb7pJ204f/YUWzas4dHD+6xZsYg7t2/QuFl66KCpqRkflSzN0j/nc/nivwQ9e8qBvTs5fGA3FSpXB9IjLJq3+pQdW9Zz/Oghnj55xKplf/D40QPqNmiaJ+3W0dGhVpNO7N7wG5fOHOTJg5ss+3UkVjaFKFW+jjrd7Am9OLwrI2ysdrMu/LN/PScPbebZo7us/X0iSUkJVKrVQl1u3U+6cXjnSv49sYeQZw/Ytno2QY/vUblOxv0xw0Of8ijwOhGhT1Eq03gUeJ1HgddJSszb24o0b9maPS99n8+b8wuJSYnUrd8IgJ9/msqSRRlL6mt+n6cSruX7fP7cWRw+uI+hw0diYmJKRHg4EeHh2fpNk9NatWzBzt272btvPw8ePGT2nLkkJibSoH49AKZNn8Gfi5eo06ekpHDnzl3u3LlLSmoqYWFh3Llzl8dPMsLsW7VozvXrN1i1Zi2PnzzhwKFD7Ni1m0+a5U2ffhs6OjqUrd2FE7vmcfvifkIe32Dn0uGYWzng7V9PnW7tL105d2i5+vm+NeO5dnoLTbtPx9DIjLioEOKiQkhJzjiBGRcVQvDDa0SGpN8DNfTJTYIfXiMhLjLP2if+u7I19WJp+foV16ZOnYpSqaRz587ExMQQEBDA7t2732lqvnXr1mzYsIHatWsTGRnJokWL6Nat23vXuWfPnqxcufKdFzR5W+vXr2fo0KF06NCBuLg4vL29mTo1PUyxbNmyrF27ljFjxjBx4kScnZ2ZMGFCttoD6TOAhw8fZtSoUVSvXh2VSoWXl5fGSp55pWGxIkQkJDHv6GXC4hLxdbBmTtua6nDKZ9Hx6L50RiQmMZkJu08TFpeIpbEhxRxtWNyxLl72GT/46/i4MqpBOf48cY1p+//F3daCH1tUpYzrhxOKUr1mLaKiI1mxbAkRERF4enoxfsL36r4eEhKscRY+PDyMgV/2Uz/fuP4vNq7/ixIlSzHlh/TbTkRFRfLz9GmEh4djZmaGwsOD8ROnUKas5ip4+W3jvkiMDHXp+6kDZia6XLubyMR5TzTuEedkb4ClecbJHjtrfQZ3dcLCTI/o2DSu3Ung2xkPM8221a1kQVhkKuevf7j3hnvZivUPMTbWY/gAH8zN9Ll0NYohYy9p3CPOxckEa0vNsOyA0jY4ORizfe9/Z0ETq3IlqLx/mfp58Z9GAvBw6QYu9hyRX9V6K1Vr1CEqKpLVy/8kMiIcD09vvpvwozo8MjQkWOP+Zn7FSzBo2GhWLfuDFUsW4uziyvDvJqvvEQfw9fAxrFiygF9+mkRsTDT2Dk506NJL42bfzVq0JTk5mUULfyU2JgaFhxdjJk3Hydklz9per3kPkpMSWPXbeBLiY/D0K0P/kfM17hEXGvSQuOhI9fNyVRoRGx3O9rVziIkMxUXhR/+R87G0zojAqN20MykpSWxYMo342Ghc3H34YvQCCjllzF5sX/Mrpw5n3Croh+FtAfhq7J8U/ah8LrZaU/WatYmKjmLlssXq7/NxE6a88n2ecfzDw8MY9GVf9fOXv8+//2EGADu3bwVg5DdDNN5r4NfDqFs/czRTfqhVozpRUVEsXb7iebs9mTxh/EvtDtH4/x0WHk7/rwaqn6/bsJF1GzZSqmQJfpw6BUi/DcGY70ayaPFSVqxajZOjI30/702d2rXysmlvVKF+b1KSE9izcgxJCdG4eJWj9Re/a9wjLjL0IQlxGeGmF46sAmDNzM4aZTXqNIUSldNPTpw/uprjO35Vv7b6546Z0gjxvnRUL644/j+xbNkyvv76a548eZJlqOH/q/g/xuR3FfLFo1q98rsK+eLbX/4/F88Ivvf4zYn+g0bsyvmFMQoC92uH87sK+eJJnPbr9/7r3M1z5/rBD52RKiG/q5Av9gb+f64E2bvem9Pkh2fX3/6WDHnNyS/r0NiCKnsXQRUg8fHxPH36lKlTp9KnTx8ZwAkhhBBCCCEKpP/mjRO0mDZtGn5+fjg5OTFixIcdyiOEEEIIIYQQWfm/GcSNGzeOlJQU9u/fj7m5eX5XRwghhBBCiP8MFTof7OO/6P9mECeEEEIIIYQQ/wUyiBNCCCGEEEKIAuT/ZmETIYQQQgghRO5Q6cjcUF6SvS2EEEIIIYQQz82ZMweFQoGxsTEVK1bk1KlTWaZduHAh1atXx8bGBhsbG+rVq/fa9DlFBnFCCCGEEEIIAaxZs4bBgwczduxYzp07h7+/Pw0bNiQ4OFhr+kOHDtGhQwcOHjzI8ePHcXNzo0GDBjx+nLv3pZVBnBBCCCGEECJbVDo6H+wjKSmJ6OhojUdSUpLWdsyYMYPevXvTvXt3ihcvzvz58zE1NeXPP//Umn7FihX079+f0qVL4+fnx++//45SqWT//v25ubtlECeEEEIIIYT475oyZQpWVlYajylTpmRKl5yczNmzZ6lXr556m66uLvXq1eP48eNv9V7x8fGkpKRga2ubY/XXRhY2EUIIIYQQQvxnjRgxgsGDB2tsMzIyypQuNDSUtLQ0HB0dNbY7Ojpy/fr1t3qvb775hsKFC2sMBHODDOKEEEIIIYQQ2fIh31TbyMhI66Atp02dOpXVq1dz6NAhjI2Nc/W9ZBAnhBBCCCGE+L9nb2+Pnp4eQUFBGtuDgoJwcnJ6bd6ffvqJqVOnsm/fPkqVKpWb1QTkmjghhBBCCCGEwNDQkHLlymksSvJikZLKlStnmW/atGlMnDiRXbt2ERAQkBdVlZk4IYQQQgghRPb8V272PXjwYLp27UpAQAAVKlRg5syZxMXF0b17dwC6dOmCi4uLemGUH374gTFjxrBy5UoUCgXPnj0DwNzcHHNz81yrpwzihBBCCCGEEAJo3749ISEhjBkzhmfPnlG6dGl27dqlXuzkwYMH6OpmDFjnzZtHcnIybdq00Shn7NixjBs3LtfqKYM4IYQQQgghhHhuwIABDBgwQOtrhw4d0ngeGBiY+xXSQgZxQgghhBBCiGz5kFen/C/6bwSvCiGEEEIIIcT/CRnECSGEEEIIIUQBIuGUQgghhBBCiGz5r6xOWVDI3hZCCCGEEEKIAkQGcUIIIYQQQghRgEg4pRBCCCGEECJbZHXKvCUzcUIIIYQQQghRgMggTgghhBBCCCEKEAmnFEIIIYQQQmSLrE6Zt2RvCyGEEEIIIUQBIoM4IYQQQgghhChAJJxSCCGEEEIIkS2yOmXekpk4IYQQQgghhChAZBAnhBBCCCGEEAWIjkqlUuV3JcSH4f7tG/ldhXxxJdozv6uQL55EGOR3FfKFu31SflchXzibReR3FfLF/WI187sK+cLwzMX8rkK+cDSNyu8q5IvoFLP8rkK+SErTy+8q5Iu6JY3zuwpa3bl7N7+rkCUvz//ebz2ZiRNCCCGEEEKIAkQGcUIIIYQQQghRgMjqlEIIIYQQQohsUalkdcq8JDNxQgghhBBCCFGAyCBOCCGEEEIIIQoQCacUQgghhBBCZItK5obylOxtIYQQQgghhChAZBAnhBBCCCGEEAWIhFMKIYQQQgghskWFrE6Zl2QmTgghhBBCCCEKEBnECSGEEEIIIUQBIuGUQgghhBBCiGyRcMq8JTNxQgghhBBCCFGAyCBOCCGEEEIIIQoQCacUQgghhBBCZIuEU+YtmYkTQgghhBBCiAJEBnFCCCGEEEIIUYBIOKUQQgghhBAiWyScMm/JTJwQQgghhBBCFCAyiBNCCCGEEEKIAkTCKYUQQgghhBDZolJJOGVekpk4IYQQQgghhChAZBAnhBBCCCGEEAWIhFMKIYQQQgghskVWp8xbMhMnhBBCCCGEEAWIDOKEEEIIIYQQogCRcEohhBBCCCFEtkg4Zd6SmTghhBBCCCGEKEBkECeEEEIIIYQQBYiEUwohhBBCCCGyRcIp85bMxAkhhBBCCCFEASKDOCGEEEIIIYQoQGQQ9w4UCgUzZ85UP9fR0WHTpk258l6LFy/G2to6V8oWQgghhBAiJ6lUOh/s47+owF4T161bN5YsWZJp+61bt/D29s6V9zx9+jRmZma5Uvar2rdvT5MmTfLkvXLalm3b+Wv9RsIjIvD08OCLvp/j5+ujNW3g/QcsXb6CW7fvEBQcTN/ePWnVorlGms7dexEUHJwp78dNm/Bl/7650oa3oVKp2LVuDscPrCMxLgaFbxna9hhNIWf31+Y7umcVB7YuIiYqlMJFfGnVbSTu3iXVr0dHhrJlxU/cvHScpMR4CjkrqN/ic/wr1gcgPOQxezbM59aVU8REhmJpU4hy1ZpRv2Uf9PUNcrXN2qhUKo5tm8XFY3+RlBBNYc+yNOgwDhsHRZZ5Tuz6jVvn9xAWdBcDA2MKe5ahZsuh2Dp6qtNcOLqGa6e3EfTwCsmJcXz502mMTS3zoEXaqVQqtq+dyz/715MQF4OnX2na9/oOhzcc78O7VrN/62KiI0NxcfehbY8RKF463jPH9eD21TMaearWa0uHz0cDcOLQZpbPHa217CkLD2JhZZfNlr3ezm0b2bx+NZER4Sg8vOjZdyBFfYtlmf6fIwdZtfxPQoKe4VzYhU7d+1KufCX16wkJ8SxfvIBTx48SGxOFg6MzTT5pTcMmmp/7G9cus3Lp79y6cQ1dXV0Unt6MnvgTRkZGudbWnGBbLQDPIT2xKlsC48IOnGndn6At+/O7Wm8tv/r5y2JjIpk6rA2R4cFMW3QUU7O8/9zv2raBLRtWERkRjruHFz36DKKob/Es0x8/epDVy38nJOgZToVd6dStL2XLV1a/3rZZda35OnXvR/PWn+V4/bOiUqnYvGo+f+/bSHxcDN5+/nTuMxLHwkVem+/AjjXs2rSUqMgw3BQ+fNZrOJ4+JdSvpyQnsWbRDE4d3UNqajIfla5Mpz4jsLLO+H66evEkm1bO49H92xgZm1CldjNadfwCPb3MP0WDnj5g/ODP0NXV5dcVf+fcDnhOpVKxbc1cju3bQEJ8DJ6+penw+ag39/Odq9m7ZQnRkaG4uvvQrue3KIqWzJROpVIxZ/IXXD1/jM+H/0zpCnUypYmNieT7IW2JDA/mpyVH8qWfi4KtQM/ENWrUiKdPn2o8PDw8cu39ChUqhKmpaa6V/zITExMcHBzy5L1y0qG/j/Dbwj/o9NmnzJ31M54eCkaOHktEZKTW9ElJSTg5OdGjWxdsbWy0ppk9czqrly1RP6ZOmgBAjWpVc6sZb+XA1j/5e9cK2vYcw6CJKzEyMmH+1D6kJCdlmeff4zvZtGwaDVv3Y8j3f1HY3ZffpvYhJipMnWbF3BGEPA2k59BfGfbDBkqVr8eSX4bw6N41AIIe30OlUtG21xiG/7iJFp2/4Z99a9m+emZuN1mrU3sXcu7QMup3GEfHYWsxNDLhr9k9SU3Jej88vH2KMjU70mnYWtp+tQhlWip/ze5JclK8Ok1KcgIexatTqWH+DdRftm/zIg7vXMmnvUcz9PsVGBqZMGdy39ce77P/7GLj0h9p3KYv3/ywBhd3X+ZM7qtxvAGq1G3N9wsOqB8tOn2tfq1slYYar32/4ADF/KvgXTwg1wdwx/4+wOKFc2j3WVd+nLUQdw8vJo4eSlRkhNb0169e5udpE6nboAk/zVpIhcrVmTZpFA8C76rTLF44h/NnTzFw6Ch+mb+Ups3b8Pu8Xzh94pg6zY1rl5k0Zjj+Zcoz9ef5/DDzNxp/3BJd3Q//bKqemSnRF29w+avx+V2V95Jf/fxlK+eNpbC79hN/eeHY3/tZ8vuvtO3QjR9++R13D28mjxmSZb+/ce0SM6eNp079pkyb9QcVKlVn2uSRGv1+wbJNGo/+A79FR0eHSlVr5VGr0u3cuIR921fRuc9IRv2wBCMjE2ZM+OK1x/fU0d2sWTSDT9p/ztjpK3FTFOXnCV8QHRmuTrP6z+lcOHOEfsN+YPikhUSGhzD3h6Hq1x/eu8kvE7+iRJkqjJ2xkr5DpnLh1GHWLZud6f1SU1NYMGMkPsXL5GzjX7J30yIO7VhFh8+/Y9j3yzEyMmH2xH6v3Q9nju1i/ZKfaNq2DyOmrcZF4cvsSf0y9XOAA9uWo6Pz+u+r5XPH4ZKP/VwUfAV6EGdkZISTk5PGQ09PjxkzZlCyZEnMzMxwc3Ojf//+xMbGqvO9CFXctm0bvr6+mJqa0qZNG+Lj41myZAkKhQIbGxu++uor0tLS1PleDad8WZ06dRgwYIDGtpCQEAwNDdm/X/tZ2AsXLlC7dm0sLCywtLSkXLlynDlzRqOOL7+3jo5OpscLDx8+pF27dlhbW2Nra0vz5s0JDAx8xz2afes3bqZxowY0rF8P9yJFGDigP0bGRuzes09rel+fonzeszu1a9bAwED7LJK1lRW2tjbqx8nTpyns7ESpkiW0ps8LKpWKwzuX0aDl55QMqENhd18+6/890RHBXDqT9Vn3Q9uXUrlOGyrWaomTqxdte47B0NCYk4c2qtME3jxPtYaf4e5dEntHNxq06oOJmQWP7l0BoFjpanToOwm/UlWxd3SjREBtajfrxsXTeX+2X6VScfbAUio16kdR/3o4uPrRpOs0YqOCuXVB+zEHaDvgD0pUboV94aI4uPrRuMtUosOfEPTgijpNQJ1uVGz4Oc4e/nnRlNdSqVQc3LGchq16U6p8bVzcfegyYDJRESFcOH0gy3wHti2lSt3WVK7dAmdXLz7tPRpDQxOOH9ykkc7QyBhLa3v1w8TUPOM1Q83XdHR1uXn5FFXqtMyt5qpt3biWeo2aUad+E9yKKOgzYAhGxsbs37NDa/rtW9ZRplwFWrTugGsRBR0698TDy4ed2zL6943rV6hVtyElSpXBwdGZBo0/QeHhxa2b19RpFi2cQ5NPWtOqXUeKuHvg4lqEqtXrYGBgmOttzq6Q3X9zc+xMgjZn3f8/VPnZz184smcN8fEx1P24a043761t27SGug0/pnb9prgV8eDzL4ZiaGTMgb3btabfvmUdpctVoHnrz3B1U/Bp5154evmwa9sGdRobGzuNx+mTR/moZBkcnQrnVbNQqVTs27aSZm17UaZiLdwUPvQcOIHI8BDOnTyUZb49W1ZQo35LqtVtTmE3Tzr3HYWhkTFH928GID4uhiP7N9G++2CKlaqAwqs4Pb4cx+3rF7hz4yIAp47txlVRlE/af46jcxF8S5SjTdeBHNy5loSEOI3327hyLk4uCgKq1s+1/XBg+woate6Nf4XauCp86PrlpPR+fuo1/XzrMqrWa0XlOi1wdvOiw+ffYWhkzD8HNmmke3jvOvu3LqVT/6xP5Py9ey0JcTHU+6RLTjXrg6BE54N9/BcV6EFcVnR1dZk1axZXrlxhyZIlHDhwgOHDh2ukiY+PZ9asWaxevZpdu3Zx6NAhWrZsyY4dO9ixYwfLli3jt99+Y926dW/1nr169WLlypUkJWWcxVm+fDkuLi7UqZN5Gh2gY8eOuLq6cvr0ac6ePcu3336b5UDm9OnT6tnGR48eUalSJapXTw/PSElJoWHDhlhYWHDkyBGOHTuGubk5jRo1Ijk5+a3qnxNSUlK4dfs2ZUqXVm/T1dWlTGl/rl2/nmPvsf/gIRrWr/fGs1y5KSz4ETGRofiUyAiXMTG1wN2rFIG3LmjNk5qawqN7V/EpkRFapqurS9ESlbj/Uh6FT2nOH99FXGwUSqWSc//sIDUlGa/iFbKsT2J8bL6EYkSFPSIuOgR3vyrqbUYmFjgr/Hly99+3LicpIQYAYzOrHK9jTggLfkx0ZCh+pTKOnYmpBQrvkgTezPp4P7x7Dd+Smsfbt2RF7r2S58yRHXzTswaTh7Rk88pfSE5KyLIupw5vxdDIhNKVcucHzgspKSncuX2TUqXLqbfp6upSqnQ5bl6/ojXPzetXNNIDlC5bnhsvpff1+4jTJ48RFhqCSqXi0oVzPHnyEP+y5QGIiozg1o2rWFlZM3JIf3p0bMHob77i2pWLudBK8bL87udPH91h57rf6DJgMjo6+fPzJCUlhbta+33Aa/r9ZUqVDtDY5l+2AjevX9aaPjIinHOnj1OnQbOcq/hbCA16TFREKMX9K6q3mZpZ4Fm0hHqw9arUlBTu37lGsZfy6OrqUrxURXWe+3eukZaaqlGus6sHtoWc1GlSU1IynYQxNDQmJTmJ+3cyTuBcu3iKM//so9Pn32a/wVnI6OcZ9TUxs0BRtCR3b2a9Hx7cvYZvKc1+7leyEvde2nfJSQks+mUE7XuNxMrGXmtZTx/eYcdfv9H1y0n51s/Ff0OBvSYOYNu2bZibZ5zJa9y4MX/99ReDBg1Sb1MoFEyaNIm+ffsyd+5c9faUlBTmzZuHl5cXAG3atGHZsmUEBQVhbm5O8eLFqV27NgcPHqR9+/ZvrEurVq0YMGAAmzdvpl27dkD6bFq3bt2yHGw8ePCAYcOG4efnB0DRokWzLL9QoULqvwcOHMjTp085ffo0AGvWrEGpVPL777+r32vRokVYW1tz6NAhGjRokKm8pKQkjQFn+rZkjIze/0x3dHQ0SqUSm1cWZLGxtubhw8fvXe7L/jlxktjYOBrUq5sj5b2vmKhQAMxfCWczt7IjJjJUa5646AiUyrRMIXAWVnYEP7mnft5t4HSWzBrKd72roqunj6GhMd0Hz6SQk/ZrFkKePeDI7pV80nGo1tdzU1xUCABmlpptMrO0Iy5a+354lUqp5MC673HxKkuhwh9maEn082Oq7dhFR2YOpQGIfXG8rTXzWFrbEfTS8Q6o1gRbe2esbAvx5P4tNq/4meAngfQe+rPWco8f2EhAtcYYGhpnp0lvFBMdhVKZhrW1ZpizlbUNjx8+0JonMiIcq1fSW1vbEBmREXbVq99A5s/+ic+7tkFPTw8dHV36fTWUj0qkz7gGPXsCwJqVi+nasx8KT28O79/DuJGD+XnuYgq7uOZkM8VL8rOfp6Qks/iXb2jRaTC29s6EBj3Kyaa9tRf93sraVmO7lbUNjx/d15onvd9rpre2tiXypXDDlx3evxNjE1MqVqmRM5V+S1HPj6GllWZdLa3t1Mf+VTExkSiVaVry2PL0caC6XH19A0zNLDTSWFnZqd/zozKV2bttJSeP7KJ8lfpERYaxZe2C9PwR6e8dGx3Jn7PH0WvQRK2ztDnlxftZvtpnrbLeD7ExEc/3wyufDWs7gh5n9PN1i3/E09cf/wq1tZaTkpLMnzO/pWWXr7EtlH/9XPw3FOhBXO3atZk3b576+YtFR/bt28eUKVO4fv060dHRpKamkpiYSHx8vPqaNlNTU/UADsDR0RGFQqExKHR0dCRYy4Ia2hgbG9O5c2f+/PNP2rVrx7lz57h8+TJbtmzJMs/gwYPp1asXy5Yto169erRt21ajTtosWLCAP/74g3/++Uc9sLtw4QK3b9/GwkLzCzQxMZE7d+5oLWfKlCmMH6851T/wyy/4+qsv36a5+WbXnr2UDyiHnV3uXgv0qrNHt7H294z91Xv43Nekzp4da38lIS6GfqN+x8zCmkunD7Dkl6F8OXYJhYtoDnIiw4NYMLUP/pUaULlum1yr0wtXT21hz6qx6uet+/2W7TL3rhlP6JNbfDZkZbbLyimnj2xn1YIJ6uf9RszJtfeqVi/juLkU8cHSxp7ZE3oT8uwhhZzcNNLevXmBZ4/v0uXL73OtPrltx5YN3Lx+lW/HfE8hByeuXr7AwnkzsbG1x79MAEqlCoAGjT+mTv30xZ08vXy4eOEsB/buoFO3z/Oz+v8pH1I/37LyFxxdPKlQI29np/LDgX07qF6rPoaGubtIz4nDO1g6f7L6+cBRs3L1/V6nROnKtO0yiGXzv+f3maPRNzDg47a9uXX1X/XJ5yVzJ1KxeiN8Pyr3htLezam/t7NqwUT1834jfs3R8l+4ePoQNy6dZsSPa7JMs3nFLzi5eFDx/6Cfi9xXoAdxZmZmmVaiDAwMpFmzZvTr14/Jkydja2vL0aNH6dmzJ8nJyepB3Kthizo6Olq3KZXKt65Pr169KF26NI8ePWLRokXUqVMHd/esVzoaN24cn332Gdu3b2fnzp2MHTuW1atX07Kl9mtdDh48yJdffsmqVasoVaqUentsbCzlypVjxYoVmfK8PIP3shEjRjB48GCNbc8eaj/L+LYsLS3R1dXNtIhJRGQktjbW2SobICg4mH/PX2DMyNwLs8jKR+VqM9Q7Y5+npqSHqcZGhWFlk7GPY6PCKKzw1VqGmaUNurp6mS6CjokKw9I6PewiNOgBR/esZPi0TTi7pfdtF3c/7t44x9E9q2jXK2MAFRUezNyJPVD4lKZdr3E50s438S5VB2dFxjVqaanp+yEuOgxzq4yFeOKiw3Bw9XtjefvWTODupUN8Ong5FjZOOV7f91UyoJbGimMvjnfMK8c7JioM1yyOt/mL4/3KDEZ0ZMbx1ubFin4hzx5kGsQd378BV4UfRTyzXiUvp1hYWqGrq0fkK4s5REVGYG1jqzWPtY1tpsUfIl9Kn5SUxMqlCxk+ahLlKqSHIis8vAi8e5stG9bgXyYAG9v0EzSubgqNclzd3AkNCcqJponnPqR+fvPyKZ48uMVXJ/YC6dctAXzbsyYNW/Wiabsv3qOF7+5Fv496ZRYtvd9rP3mY3u8100dGhmNtnflzcu3yBZ48esDXw3N/4Rv/CjUZ+9IKkqkpKQBER4VjbZtxfKMjw3Dz0H58LSys0dXVIzpKs33RkeHqlSetrO1ITU0hPi5GYzYuKipMY3XKhs070eCTjkRGhGJmZkFo8BPWL59NIcf02fVrl05z/vTf7N68DAAVKlRKJb1bl6dLv1FUr9fivfZDqfKv9PPn/7eiIzX7efTr+rmFzfP98Mr/75f6+Y3LpwgNesjQrtU00iz8aQjefmX5esIf3Lx8mscPbvFvu7LqNgIM716LRq170ax9//dq44dC9R+99uxDVaAHcdqcPXsWpVLJ9OnT0dVNjzVeu3Ztnrx3yZIlCQgIYOHChaxcuZJff33z2R4fHx98fHz4+uuv6dChA4sWLdI6iLt9+zZt2rRh5MiRtGrVSuO1smXLsmbNGhwcHLC0fLvrooyMjDIt1R2RjVBKSB8YF/X25vz5C1StnB43rlQqOX/+Ip80a5qtsgF2792HtZUVFSuUz3ZZ78rYxAxjk4zbS6hUKiys7bl5+QQuivTBSmJ8LPfvXKRK/XZay9DXN8DVozg3L5+kZPn0cFClUsmtKyep1qADAMlJiQCZVuHT1dVV/6iB9Bm4uRN74OpRnA59J6n7em4zNDbH0DhjtlqlUmFmWYgHN47j6Ja+7HxSQixPAy9QukaHLMtRqVTsXzuRW+f38unXy7C2d8sybX7Qdrwtre25cekkrs+Pd0J8LIG3L1GtQdbH282zGDcun8T/+fLSSqWSm5dPUqNR1vvmUeANAI0fFwBJifGcO76bTz4bmK22vS0DAwO8vH24dP4sFSunX3+rVCq5eP4cjZtpP9Hk4/cRFy+cpVmLtuptF/89g6/fRwCkpaWSmpqKjtb+nX7CzMHRCVs7e548fqiR5unjh5QJqIjIOR9SP+81ZAYpyYnq1+/fucKKeWMYNGGx+kd+XjAwMMDT24dLF85SoXJ6uKNSqeTShbM0atZKax4fvxJcOn+Wps0z9tHFf8/g45d58a39e7fh6e2LwjN3boX0MhMTM0xeOb5WNvZcu3iKIs8HbQnxsdy9dZlajdpqLUPfwAB3r2Jcu3iKshXTQwSVSiXXLp2iTuP0S03cvYqhp6/P1YunCKic/r/t2eNAwkOe4eVbSqM8HR0dbJ4PIE8d2Y2tvRPunul9beTUxRonzs+fOsTOjUsYMWURNnbvv1r36/q5m8dL/fzWJWo0yHo/FPEsxo1LJ9W3C1Aqldy4dJKajT8FoEGLHlStq/ndOGlwG9p0HUrJgJoA9B46XbOf377CsrljGTxxEYWcJFRcvJv/3CDO29ublJQUZs+ezccff8yxY8eYP39+nr1/r169GDBgAGZmZlnOqAEkJCQwbNgw2rRpg4eHB48ePeL06dO0bt1aa9qPP/6YMmXK8Pnnn/Ps2TP1a05OTnTs2JEff/yR5s2bM2HCBFxdXbl//z4bNmxg+PDhuLrm3RdD65bN+XHGTIoW9cbPx4cNm7eQmJhIw/rpX+zTpv+MnZ0tPbulrzyWkpLCgwfpP9ZSUlMJDQvnzp27GJsY41I4Y9UupVLJnr37qV+3Dnp6ennWnqzo6OhQs3Fn9m5aQCEnd2wdXNj5169Y2jhQMiDjer25k3pSsnxdqjdMvw9QraZdWDlvFG6eH+HuXYLDO5eTnJRAxZotAHAs7IG9UxHW/j6BTzoOxczCikunD3Dz0nF6DUsPdYoMD2LOxO7Y2Bfmk05DiY3OmPl43Znv3KCjo0O5Ol04vnMeNg7uWNm5cnTrL5hbOVDUv5463ZpfulLUvz5la3UCYN/q8Vw7s42WfeZiYGRG7PNr64xMLDB4fq1XbFQIcdGhRIakX38V+uQmBkZmWNo6Y2JmneftrN2kE7s2LKCQcxHsHFzYvnoOVjaF8C+fsXDRrAm98K9Ql5rPf7zWadaFZXO+o4hncRTeJTm4YzlJSQlUqtUCgJBnDzlzdAcfla2OmbkVjx/cZMOSH/EuVi7T0tNn/9mFMi2N8tWzf0LkbX3csh2zZ0zBq6gfRX382LZ5HUmJCdSp3zi9vdMnY2tXSB3i2PSTNoz59iu2bFhD2fKVOPb3Ae7cvkHfL9Ov1zQ1NeOjkqVZ+ud8DA2NKOTgxJVL5zl8YDdde6XPtOjo6NC81aesWbEIhYcXCk9vDu3fzeNHDxg6coL2in5A9MxMMfPOuH7V1MMVS38/ksOjSHz4NB9r9mb52c9fnXWOjYkEwMnFI88XbWrWoj1zfv4er6J+ePsUY/vmv0hKTKB2vfTw3tnTJ2FrZ0/Hbum3P2n6SRvGfvslWzespmz5yhz7ez93bl+nz4BhGuXGx8dx4ughuvTMm1nFV+no6FCv2Wds++t3HJ2LYO9YmI0r52FtW4iyFWup0/04pg9lK9WmbpPng5NPOvLHrLEovIrjUfQj9m1bSVJiAlXrfgKkL45SvW4L1iyajrm5JcamZqxcOA0v31Iag7hdG5dQomwVdHR0OXfiADs2LqLv0B/Qff4/vbBbxn1CAQLvXEVHRwdX95wd8Oro6FCnaUd2rl+Ig7M7dg4ubH3Rz1+6n9sv43rjX7EOtRo/7+cfd2bpr6Nx90r//31we3o/r1y7BQBWNvZaFzOxKeSM/fMTEZn6eXQkAE6ued/PRcH3nxvE+fv7M2PGDH744QdGjBhBjRo1mDJlCl265M0yrh06dGDQoEF06NABY+OsFx7Q09MjLCyMLl26EBQUhL29Pa1atcp0nRpAUFAQ169f5/r16xQurLkcsUqlwtTUlL///ptvvvmGVq1aERMTg4uLC3Xr1n3rmbmcUqtGdaKioli6fCURERF4enoyecI4bJ7fAy44JERjoZew8HD6fTVI/Xzdho2s27CRUiVL8NPUjOt+zp2/QHBICA0bZAwM8ludj3uQnJTA2t/HkRAfg4dvWfp8Ox+Dl65zCA16SFxMxiCrTOXGxEZHsGvdr89viutHn2/nY/F88KWnb8Dnw+exbfXP/P7jFyQnJWDv6EaHfpMpXib9rPDNS8cJffaA0GcPGP+F5gIvP6/SvhpabqpQvzcpSQnsXjmGpPhoXLzK0WbA7+gbZOyHyJCHJMRm7IfzR1YBsHpmZ42yGneeQonK6We7LxxZzT87MmazV83omClNXqrXvDtJSQms+m0CCfExePmVof/Iea8c70cag+pyVRoRGx3B9rVziYkMxUXhyxcj56kvqNfXN+DGpRMc3JE+mLexc6J0xXo0bJX5uq/jBzbiX7Funv6jr1qjDlFRkaxe/ieREeF4eHrz3YQf1eGRoSHBGqur+RUvwaBho1m17A9WLFmIs4srw7+bTBFFxo+zr4ePYcWSBfzy0yRiY6Kxd3CiQ5deGjf7btaiLcnJySxa+CuxMTEoPLwYM2k6Ts4uedb292VVrgSV9y9TPy/+00gAHi7dwMWeI/KrWm8tv/v5h6BqjbpER0WyZvkf6Te59/Rm1ISfXur3QRqzyb7FSjJw2FhWLVvIyqULcC7syvBR32v0e0i//5wKFVVr5t//scYtu5KcmMCSeZOIj4uhaLHSfD36V43jG/LskXpwAVChWkNioiPYtHoe0RHpoZdfj/lVI1Ty0x5D0NHRYc60YaSmJFPi+c2+X3bp3DG2rfuD1NQU3BRF+fLbnylZLn/u91q/RXo/X/nbBOLj0vv5gO/mau6HIM39EFA1vZ9vWz03/WbfCl8GjJqbaYGU/2cqlYRT5iUd1csxWiLbAgMD8fLy4vTp05QtWza/q/NO7t++kd9VyBdXoj3fnOg/6EmE9ttZ/Ne522d9M9f/Mmcz7Tcq/q+7X6xmflchXxie+f+8JYOjaVR+VyFfRKeYvTnRf1BSWv5H5uSHuiVzd3Xi93XupvZVbD8EZX3+e4Pt/9xMXH5JSUkhLCyM7777jkqVKhW4AZwQQgghhBCiYJBBXA45duwYtWvXxsfH561vEC6EEEIIIcR/gaxOmbdkEJdDatWqhUSmCiGEEEIIIXJb3qxLLoQQQgghhBAiR8hMnBBCCCGEECJbZHXKvCUzcUIIIYQQQghRgMggTgghhBBCCCEKEAmnFEIIIYQQQmSLrE6Zt2QmTgghhBBCCCEKEBnECSGEEEIIIUQBIuGUQgghhBBCiGyR1SnzlszECSGEEEIIIUQBIoM4IYQQQgghhChAJJxSCCGEEEIIkS3K/K7A/xmZiRNCCCGEEEKIAkQGcUIIIYQQQghRgEg4pRBCCCGEECJbZHXKvCUzcUIIIYQQQghRgMggTgghhBBCCCEKEBnECSGEEEIIIbJFhc4H+3hXc+bMQaFQYGxsTMWKFTl16tRr0//111/4+flhbGxMyZIl2bFjx/vuxrcmgzghhBBCCCGEANasWcPgwYMZO3Ys586dw9/fn4YNGxIcHKw1/T///EOHDh3o2bMn//77Ly1atKBFixZcvnw5V+spgzghhBBCCCGEAGbMmEHv3r3p3r07xYsXZ/78+ZiamvLnn39qTf/LL7/QqFEjhg0bRrFixZg4cSJly5bl119/zdV6yiBOCCGEEEIIkS0qlc4H+0hKSiI6OlrjkZSUlKkNycnJnD17lnr16qm36erqUq9ePY4fP6613cePH9dID9CwYcMs0+cUGcQJIYQQQggh/rOmTJmClZWVxmPKlCmZ0oWGhpKWloajo6PGdkdHR549e6a17GfPnr1T+pwi94kTQgghhBBC/GeNGDGCwYMHa2wzMjLKp9rkDBnECSGEEEIIIbLlfVaBzCtGRkZvNWizt7dHT0+PoKAgje1BQUE4OTlpzePk5PRO6XOKhFMKIYQQQggh/u8ZGhpSrlw59u/fr96mVCrZv38/lStX1pqncuXKGukB9u7dm2X6nCIzcUIIIYQQQggBDB48mK5duxIQEECFChWYOXMmcXFxdO/eHYAuXbrg4uKivqZu4MCB1KxZk+nTp9O0aVNWr17NmTNnWLBgQa7WUwZxQgghhBBCiGxRqvK7Bjmjffv2hISEMGbMGJ49e0bp0qXZtWuXevGSBw8eoKubEcxYpUoVVq5cyXfffcfIkSMpWrQomzZtokSJErlaTx2VSvUf2eUiu+7fvpHfVcgXV6I987sK+eJJhEF+VyFfuNtnXlL4/4GzWUR+VyFf3C9WM7+rkC8Mz1zM7yrkC0fTqPyuQr6ITjHL7yrki6Q0vfyuQr6oW9I4v6ug1d9X4vK7Clmq8dF/7zMi18QJIYQQQgghRAEi4ZRCCCGEEEKIbPmQV6f8L5JBnFB7nFI4v6uQLwz1lfldhXxR1i0sv6uQL0z1EvK7CvniQaxDflchX/y/hhUmB5TK7yrki6uHr+d3FfJFfOL/549nY0O5Ikj8/5JwSiGEEEIIIYQoQGQmTgghhBBCCJEtKtX/54xwfpGZOCGEEEIIIYQoQGQQJ4QQQgghhBAFiIRTCiGEEEIIIbJF7jydt2QmTgghhBBCCCEKEBnECSGEEEIIIUQBIuGUQgghhBBCiGxRys2+85TMxAkhhBBCCCFEASKDOCGEEEIIIYQoQCScUgghhBBCCJEtcrPvvCUzcUIIIYQQQghRgMggTgghhBBCCCEKEAmnFEIIIYQQQmSL3Ow7b8lMnBBCCCGEEEIUIDKIE0IIIYQQQogCRMIphRBCCCGEENmikpt95ymZiRNCCCGEEEKIAkQGcUIIIYQQQghRgEg4pRBCCCGEECJblLI6ZZ6SmTghhBBCCCGEKEBkECeEEEIIIYQQBYiEUwohhBBCCCGyRaWS1SnzkszECSGEEEIIIUQBIoM4IYQQQgghhChAJJxSCCGEEEIIkS0qWZ0yT8lMnBBCCCGEEEIUIDKIE0IIIYQQQogCRMIphRBCCCGEENmiRFanzEsyEyeEEEIIIYQQBYgM4oQQQgghhBCiAJFwSiGEEEIIIUS2yOqUeUtm4rSoVasWgwYNyvcystKtWzdatGiRK2ULIYQQQgghPmwyE5dNhw4donbt2kRERGBtba3evmHDBgwMDNTPFQoFgwYNyrWBXV7Zv2MtOzcuIyoyjCKKonTsPQxPnxJZpj99bB8bVs4jNPgpjs5utO3yJf4B1dSvq1QqNq36jcN7NxIfF0tRP3869/0Wp8JFNMq5cOYoW9Ys5OH92xgYGOL7UVm+GjldI83R/VvZvWUFz548wMTUjPJV6tG5zzc5uwNeolKp2L5mLsf2rychLgZPv9J82vs7HJzdX5vv8K7V7NuymOjIUFzcfWjXYwSKoiW1lj/3+/5cPX+Mz4fNxL9CHY3Xjx/czIFtSwl+eh9jEzPKVm5A+16jcrSN2uzZvp6tG1YQFRFOEQ9vuvUZjLdP8SzTnzh6gL+WLyAk+BlOhV3p0K0/ZQKqqF+f9/Mk/j6wQyNPqbIVGTH+50xlpaQkM3pIb+7fu8WUXxaj8PTJuYa9o+1bN7Fp/VoiIsJReHjxeb8v8fH105r2wf1AVi5bzJ3bNwkODqLn5/35pEVrjTRXLl1k4/o13L59i4jwMEZ8N55KVappLS8vqVQqdqydwz/P+7mHX2na9xr9xn7+965V7N/6op/70qbHCBTemv383s3zbF01m/u3L6Grq4uLwpf+o37D0NAYgN0bFnDl3N88CryBvr4B0xb/k2vtfJVKpWL72rnqdnv6laZ9r7f7fGe024e2r7R75rge3L56RiNP1Xpt6fD56ExlxcZEMnVYGyLDg5m26CimZpY507hcYFstAM8hPbEqWwLjwg6cad2foC3787ta702lUnFw02zOHv6LxPhoihQtS7POY7FzUmSZJ/DGaY7t/IOn968QExnCp1/+SrGy9bJMv3XJWM4cWkOjDiOo3KBrLrQiZ6hUKo5um8WFo3+RlBCNi2dZGnw2DlsHRZZ5ju/6jZvn9xD+7C76Bsa4eJWhZouh2Dl55l3F34FKpeLQ5tmc+zv9eLt5l6Vp57HYOSqyzHP/xmn+2f0HTwKvEBsVQvsvfsVPy/EOeXKHfet+4v7N0yjT0ihU2It2/WdhZVc4F1sk/h/ITFwusbW1xcLCIr+rkaNOHt3D6j9/pvmnvRk3YzluCh+mj/+S6MhwrelvXb/A/OmjqFGvOeNnrKBsxVrMnjqUR/dvq9Ps2LiEvdtW06XvCEZPW4yhsTEzxn9JSnKSOs2Zf/azcOYYqtX9mAk/r2Tk1D+oVKORxnvt3ryc9Svm0qRVNybPWsuw8XMpUaZS7uyI5/ZuXsShnSv59PPRDJuyAkMjE36d1Fej7q86e2wXG5b8SJO2ffn2hzW4uvvy6+S+xESFZUp7cPty0NG+0tP+rUvZumo2DVr04LsZG/lqzEKK+VfRmjYnHT+yj2W/z6J1hx58P3MR7h7eTB3zNVFZ9IGb1y4x+8ex1GrwMVN+WUxApRpMn/wtD+/f0UjnX7YS85ZuVT++HDZea3krF83BxtY+x9v1ro4cPsifC+fT/rMuzJg9Hw9PL8aN/obIyAit6ZOSEnF0dqZz917Y2NhqTZOYmIDCw4s+/b/Kzaq/s32b/+TwzpW07z2aId+vwMjIhLmT+7y+n/+zi41Lf6Rxm74M/2EtLu4+zJ3cR6Of37t5nrmT++HnX5mh369k6JRV1GjYAR2djH9LqakplK7UgGoN2uVqG7XZt3kRh3eu5NPeoxn6ffrne87kN3y+X2r3Nz+swcXdlzlaPt9V6rbm+wUH1I8Wnb7WWt7KeWMp7J5/JyrehZ6ZKdEXb3D5K+2f3YLm6I7fObl3GR93GUfv0WsxMDRh2YxepKRkffxTkhJwcvOjaacxbyz/2tm9PLpzAQtrh5ysdq44uWchZw8uo+Fn4+g8fC0GRiasndWT1Nfsi4e3TlG2Zkc6DV9L+4GLSEtLZe3sniQnxedhzd/esZ2/c3LfMpp2HkevUWsxNDJh+Yxer21jcnICjq5+NHnN8Q4PfsCiqZ9h7+xJ12FL6Tt+MzU+7o++gVFuNCPfqVQ6H+zjv0gGcW+wbNkyAgICsLCwwMnJic8++4zg4GAAAgMDqV27NgA2Njbo6OjQrVs3QDOcslatWty/f5+vv/4aHR0ddJ7/MB83bhylS5fWeL+ZM2eiUCjUz9PS0hg8eDDW1tbY2dkxfPhwVK8EHSuVSqZMmYKHhwcmJib4+/uzbt26HN8XezavoEaDFlSv+wkubp506TcCQyNjjuzfojX93q2rKVm2Mo1bdqGwmwetOvbD3dOP/TvWAulnvvZuXcXH7XpStmIt3BRF6T1wAhHhIZw7eeh5+1NZ+cd02nX9itqN2uDk4o6LmycVqtVXv09cbDQbVsyj98DxVK7ZCAdnV9wURSlToWaO74MXVCoVB7cvp1Hr3viXr42Luw9dB0wmKiKEC6cPZJlv/7alVKnbmsq1W+Ds5sWnn4/G0NCE4wc2aaR7eO86+7cuoVO/CZnKiI+NZuvqX+ny5STKV29KISc3XNx9KFW+dk43M5Ptm1ZTp+En1KrXDNciHvTsPxxDIyMO7d2mNf3OLWvxL1uRj1t1xMVNQbtOn+Ph5cvubes10hkYGGBtY6d+mJtnnnE4f+Y4F/89RcceA3Klbe9i88Z1NGjUhHoNGlGkiIJ+AwZhZGTEvj27tKYv6uNH9559qFGzjsYM/cvKla9Ip649qPwBzL69oFKpOLRjOQ1bfU6p8nVwcfel84DviYoI4eJr+vnBbUupXLc1lWq3xNnVi/a9x6T384Mb1Wk2LPmRmo0/o0GLXji7eeNY2IOyVRphYGCoTtO03RfUadaFwkWK5mo7X6VSqTi4YzkNW/Wm1PPPd5e3+HwfePnz7erFp72ff74PbtJIZ2hkjKW1vfphYmqeqawje9YQHx9D3Y8/3Bmal4Xs/pubY2cStHlfflcl21QqFSf2LqXGx33xK1sXJzdfWvX+gZiIYK6fy7p9RUvVoG7rQRQrVz/LNADREUHsWDGJ1n1+RE/vww6IUqlUnDmwlMqN+1HUvx4Orn406zaN2Khgbp7Pel+0+/IPSlZuRaHCRXFw9aNpl6lEhz8h6MGVPKz921GpVJzct5QazfriV6Yujm6+tOj5AzGRbzjeJWtQp9UgipXN+ngf2DCToiVrUr/tMJzdi2PrUATf0nUws7TLjaaI/zMyiHuDlJQUJk6cyIULF9i0aROBgYHqgZqbmxvr16f/GL1x4wZPnz7ll19+yVTGhg0bcHV1ZcKECTx9+pSnT5++9ftPnz6dxYsX8+eff3L06FHCw8PZuHGjRpopU6awdOlS5s+fz5UrV/j666/p1KkThw8ffv+GvyI1JYXAO9f5qFRF9TZdXV2K+1fg9o2LWvPcuXGR4qUqaGwrUaYyd25cAiAk6DFREWF89FIaUzNzvHxKcPt5mvt3rhMRFoyOri5jv/6MQd0bMmPCVxqzeVfOn0SpUhERHszIAW0Y3LMJc6d9S1jIsxxr/6vCgh8THRmKb8mM2T4TMwsU3iW5d+OC1jypKSk8vHsNv1IZeXR1dfErVZG7NzPyJCclsPiXb2nXaxRWNplnna5dPI5KpSQqPJgJg5ozqk89fp8xlIjQ3Gvvi/rfu32DEv4BGvUvUbo8t25c1prn1vXLlChdXmNbqTIVuXVdM/3Vy//Sp1MTBvf9lD/m/khMdJTG65ER4Sz8dSr9B4/ByMg4h1r0flJSUrhz+yb+pcuqt+nq6uJfuiw3rl/Nx5rlvLDgR+n9/KU+a2L6vJ/fzKKfp6bw8O5Vjc+Grq4uviUrEfg8T0xUGIG3LmJhZcuM7zoxsndNfhnbjTvXz+Vug97Si8+3n5Z2B7623de0tLtipn115sgOvulZg8lDWrJ55S8kJyVovP700R12rvuNLgMma8xMirwREfKI2KgQPD/KiG4wNrXAxasUD2+fz1bZSqWSDQuGU6VRTxxc8vbkxPuICn1EXHQICr+MfWFkYkFhD3+e3Pv3rctJSogBwNjUKsfrmF2Roc+Pd3HN4+3qWYqHd86/d7kqpZJbFw9h66Rg+Yye/DioCr9PavfagaEQ7+LDPgX0AejRo4f6b09PT2bNmkX58uWJjY3F3NwcW9v00CgHBweNa+JeZmtri56enno2713MnDmTESNG0KpVKwDmz5/P7t271a8nJSXx/fffs2/fPipXrqyu59GjR/ntt9+oWVP7bFRSUhJJSZphAsnJyRgaap/ij4mJRKlMw9JaMxTMysqWZ48CteaJigzTmj4qIkz9OoClteYZKcuX0oQEPQZg8+oFfNr9a+wdCrNr83J++K4PU+ZuwNzCipCgx6hUSratW8RnvYZiamrOhhXz+GncF0ycuRr9LGY+siM6MlRr3S2s7YiOzBwaCRAbE4FSmYaF1St5rOx49vie+vm6xT/i6euPfxYza2FBj1Apleze8Dttun+Diak5W1f/yuyJnzPyp/W50l6A6Oj0PmD1SjiglbUtTx7d15onMjIMK2ubV9LbEPnSPvIvV5HyVWri4FiYoKePWLPsN34YN5gJPy5AV08PlUrF/JmTqNu4BV5FixES9PYnQXJDdHQUSqUSaxvNdllb2/Do4cN8qlXueNGXtfXZF5+BV8VFRzz/rsj82Qh6kt7PQ4MeAbDjr3m07DwEF4Ufpw5v4dcJvRgxfeMbrzvLbS/apr3dWXy+n7fb4tXvs5faDRBQrQm29s5Y2Rbiyf1bbF7xM8FPAuk9NP0a0JSUZBb/8g0tOg3G1t5Zva9E3omNCgHA/JXZEnNLoivgjgAArfxJREFUe2KjtPf7t3V0x0J09fSoVL9ztsrJK7HR6fvi1ZkjUws74qLfbl+olEr2//U9Ll5lKeTy4YUHvzjer7bRzNL+rduoTVxMGMlJ8RzbsZDaLQdSr81Qbl8+wpq5X9J12BIUvhXeXEgBo5TVKfOUDOLe4OzZs4wbN44LFy4QERGBUqkE4MGDBxQvnvViDjkhKiqKp0+fUrFixuyXvr4+AQEB6pDK27dvEx8fT/36mtP5ycnJlClTJsuyp0yZwvjxmtcu9Oj/LT0HjMzBFmSf8vk3QrM2PQioUheAnl+NZXDPJpz+Zx+1G7ZGpVSSlppKx17D1NfB9RkymUHdG3Lt8hlKlqmc7XqcOrKdVb9lhDb2HzEn22Vqc/H0QW5ePsW309ZmmUapUpKWlkrbHt+qr4PrPvAHRvSuw80rpyheumqu1C23VKmR0XeLKLwo4uHNoN5tuXr5X0r4B7B7618kJsTTok2XfKzl/4fTR7axekFGP++bS/38xfdX1XptqVS7JQBuHsW4efkkJw5u5JPPBuXK+2bl9JHtrHqp3f1yqd0A1eq1Uf/tUsQHSxt7Zk/oTcizhxRycmPLyl9wdPGkQo1muVYHoeni8a1sXTJW/bzjoPm58j5PAi9zcu8y+oxbr76s4kNz5dQWdq/M2Bdt+v+W7TL3rB5PyJNbdBy6Mttl5YSLJ7aybWlGGz8bmDvHW/X896JvmTpUbtANAKcixXh4+1/OHlr9nxzEibwlg7jXiIuLo2HDhjRs2JAVK1ZQqFAhHjx4QMOGDUlOTs52+bq6upmub0tJSXmnMmJjYwHYvn07Li4uGq8ZGWV94eyIESMYPHiwxrZz97Juk4WFNbq6epkWMYmKCsfSRntst5W1ndb0Vs/TWz0/Yx0dGYb1S4tVREeF4+aRfrbuxfbCbhkrWhkYGOLg6EL483BJK3UaD3UaSysbLCys1Wmyq1RALY0V5lJTk9V1t7IppN4eExmGq8JXaxnmFjbo6uplWuQgJioMS+v0Nty8fIrQoIcM66Y5EFv402C8i5Vl0Pg/1e/n5JqxTyysbDG3tCYiNPdmqSwt0/tAVMQrxzQyHOssFuuwtrYj6pXFPqIiI7C2zvp6AEcnFywsrXn25BEl/AO4cvEsN29cpnOrWhrpRn3dk6q1GtD/68yr+uUmS0srdHV1iYzQbFdkZAQ2ttr3Q0FRMqA2iqKl1M9TU9L7eUzUK/08KgwXhfaVOM0sbZ5/V7zSzyPD1LNzls/DhJ1dNVeqc3TxzNU+nJWSAbU0Voh9Xbuz/Hw/b3fMK+2Ojsz4fGvz4nsl5NkDCjm5cfPyKZ48uMVXJ/YCGQPeb3vWpGGrXjRt98V7tFC8jm/p2rh4ZvT7tOff77HRYRoLj8RGh+LkVuy93+f+zbPExYTx89CMlYaVyjR2r/6BE3uW8PVPWV9vmVe8S9WhsMJf/fzF/7q46DDMrTL2RXxMGA6u2r8DXrZ39QTuXD7EZ4OXY2nzbpFIucXXvzauY1/6nnupjS8f77joUByzcbxNLWzQ1dOnkLO3xnZ7Zy8e3j773uUK8YIM4l7j+vXrhIWFMXXqVNzc3AA4c0ZzaWhDw/SL8NPS0l5blqGhYaY0hQoV4tmzZ6hUKvVZufPnz6tft7KywtnZmZMnT1KjRg0AUlNTOXv2LGXLpl+PU7x4cYyMjHjw4EGWoZPaGBkZZRrkGRrGZJle38AAhZcfVy+eomylWkB6bP+1i6ep20T7ynFevqW4evE0DT75TL3tyvmTePmm/2gp5OiClY0dVy+epohn+g+jhPhY7ty8TO1G6cuvK7z80Dcw5NnjQHyKl1bvg9Dgp9gVcgagqF/6P5xnj+9ja+8IQGxMFDExkeo02WVsYoaxiZn6uUqlwtLanhuXT+Lm4aeue+DtS1RvqH1/6BsY4OZZjBuXTqpvF6BUKrlx6SQ1G3UAoH6LnlSp20oj3+QhrWndbRgly6UfX0/f0gAEPQnExi79n2JcTBSx0ZHYFsq9JYv1DQzw8Pbl8sWzlK9cU13/KxfO0KBpa615ivqV4MqFMzRp3l697dL5UxT1y/q2FGGhwcTGRGFtm/6Dv+vnX9Ou8+fq1yPCQpky9mu+Gj4Bb9+PcqJp78TAwAAvbx8uXvhXfQsApVLJxfP/0uTjFnlen5yUZT+/dBJXhWY/r9agvdYy9PUNcPMszs3LJ/GvkD57rlQquXn5BNWf93O7Qi5Y2TgQ9CRQI2/I0/sUK533C7u8W7uz+HzrP/98X9b8fN+8fJIaz9utzaPAGwDqwWKvITNISU5Uv37/zhVWzBvDoAmLKeTomr2GCq2MTMwxMslYXEalUmFuVYi7V4/jXCT9R3xiQiyP71ykfO2sj+Wb+Ff5BM/impEhy6b3wr9Kc8pUa/ne5eYkI2NzjIw194WZZSHu3ziuHtAkJcTy5N4FSlfPel+oVCr2rZnIzfN76TB4Gdb2brle97eV5fG+dhynIhltfHT3IgG13v946+kbUlhRgrBn9zS2hwcF/mdvLyA3+85bMoh7jSJFimBoaMjs2bPp27cvly9fZuLEiRpp3N3d0dHRYdu2bTRp0gQTExPMzTOvNKZQKPj777/59NNPMTIywt7enlq1ahESEsK0adNo06YNu3btYufOnVhaZqzMN3DgQKZOnUrRokXx8/NjxowZREZGql+3sLBg6NChfP311yiVSqpVq0ZUVBTHjh3D0tKSrl1zbmWzBs078vsv41B4F8ez6Efs2bqSpMQEqtX9GICFM8dgbedA287pqwfW//hTfhj1Obs2Lcc/oBonj+wm8M5VuvVPD9nU0dGh/scd2PrXHzgWdsPewYWNK+dhY1uIshVrAfyPvbuObiJrwwD+JHVPlbo7Voq7FXdY3N2dRT/cF3db3Fnc3Vl8cUpxp1TT1C35/gikhLZY24S2z++cntNM7sy8N5mZzJ37zh3o6Ruiaq1m2LttJcwsrGFuZY0jezYCAEqWlz+PxdrOCcVKVcaW1bPRsc8Y6OkZYOfGJbCxc4Z34RLICQKBAFXrtcPRXSthZe0Icys7HNy+BCamlihaMu0q64KJ3VC0VHVUqSP/IahevwM2LPkfHN184exeGKcPbUJiYjzKVG0MADAxtchwMBMzCxtYfDqBK2DrjCIlq2Ln2plo03M8dPUMsG/LAhSwc4FnwZLp5s1O9Rq3wrJ5U+Dq7g13T18c2bcdiQkJqBwgT/1aOncSTM0t0bpjbwBAnYYtMGlUHxzcswXFSpTD5Qsn8fzpI3TvJ39+X0J8HHZtXYNS5apAZGqOj8HvsGXtEhSwsUdRf3kasYWV8tVbXV19+edgYwdzC/UMz92oyR9YMHcm3D084eHpjQP7diEhMQEBNWoBAObNngFzcwt06NwNgLyH/c1r+X2DySkpCA8Pw/NnT6GnpwcbW3kPenx8PD68f6dYx8ePwXj+7CmMjIxgaVVAxTWUEwgEqFK3HY7tXgErm0/b+bbFMDG1RJEvtvNFk7qhSKlqqFxbfsGmav0O2LRkDBxdC8LJvTDOHt4o386rNFYst3rDTji8YynsnL1g7+yNq2f34eO7F+gyZK5iuRFhHxAXE4XIsA+QSlPx9uUjAICltSN0Pm0HOVXvqnXb4ejulbD8VO9D29Lv3wsnyffvzxdhqtXvgI1L/gdHV/n+febwJqV6hwa/wY2Lh1HQvyIMDE3w7vVj7F4/C+4+xWH36VECltbKJ7sx0WIAgLWdy2/9nDgNA30YuKc931PfxR7GRb2RFBGFhDfqvY/1ZwkEApSp0QHnDyyHeQFnmFrY4fSehTAytVJ6Dti6vzrBxz8ApQPaAQASE2IREfJa8X5k6Ft8eB0IPQMTiMxtoW9oCn1D5XtpNTQ0YWhiAQub3/P5aQKBACWqdcC/h5fB1NIJIgt7XDiwAIYmVvD0S/ssts3vCA+/GiheRf5ZnNg2EQ+vH0TTXkuhrWOguO9MR88IWtrqHZzqawKBAKUDOuDCQfn3LbKww5k9C2EkUv6+N8zqBG//AJSqLq9j0tffd9hbBH/6vj830srV7oqdy4fA0bMEXLxL4+n9Cwi6cwadhm9QbSUpT2Ij7hssLS2xbt06jB49GgsXLoS/vz9mz56Nhg0bKsrY2dlh4sSJGDlyJDp37owOHTpg3bp16ZY1adIk9OzZE25ubkhMTIRMJoOPjw+WLl2KadOmYfLkyWjWrBmGDRuGlStXKuYbOnQoPnz4gI4dO0IoFKJLly5o0qQJoqLSRu+bPHkyLC0tMX36dDx//hwikQj+/v4YPTp7728rXaEmoqMisXfrckRFhsPRxRNDxi9SpEWGhwYrjaTm4V0UPYdMxe7NS7Fr0xIUsHVA/5GzYe+UllpQt0lHJCUkYN3SaYiLjYanjx+GjFsIrS8GWGnRaSCEGhpYNX8ckpIS4epZEMMnL4PBF8PQdx80EVtXz8X8yYMgEArhVdAfQ8YthKZmzm3iNRp1RlJCPLasmIT4uGi4eRdD3zHLlGIP+/gWsdFpaXfFy9dGtCQSB7cvRbQ4DHbOXug7Zlm6QSC+p0O/qdi1bhaWTu8LoUAId98S6DdmGTQ0c2ZQk8/KVgyAJEqMnZtXQRwZASdXD4ycOFeRThkW+lFpG/D0KYx+wyZix6aV2L5hBaxt7TF0zAw4OLkBAIRCDbx++RTnTx9GbGwMTM0sUKRYKTRv20NpqPnfTcXKVSGRRGHLxnWIjIyEi6sbxk+a8cXnEAKhMO2el4iIcAzu31Pxeu+uHdi7awcKFS6KqTPljZanT4Lwv5FDFWXWrFoGAKgWUBMDh+TcQ+u/J6BRFyQlxmPriomIj4uGq3cx9Bm9/Kvt/A1iJWLF6+LlaiNGEoFDO5Z82s690Wf0cqW0wqr12iM5ORG71/+FuBgJ7Jw80XfsSqVGzKHti3HtXNojTGYObw4AGDB+DTxy+IJFQKPOSEyMx9Yv9u8+o9Pv3zGSL/bvcrURI4nEoR1f7N+j0/ZvTU0tBN27gjOHNyEpMR6m5tbwKx2AWk17pFt/bmNSvBDKntqoeO07W/7782bDbtztOkpdYf2yCnW7ITkpHgfWjZM/7NuzONoNWQWtL57vFRnyGnExad//+5f3sW5m2oXTY9tmAAD8yjdGk24zVBd8NitdszuSk+JxbIv8s7B3K44W/f9WetZZZOgbxH/xWdw6vxUAsHWe8gAudTtMR+Gyytkmv4PydT593+s/fd8exdFu8CqlOkaEpv++189K+76Pb5d/x0XLNUbjrvL/ffxroH77Cbh4eCWObp0Kc2sXtOizEI4exVVUM8rLBLKvb8qifOvfwMzTKfOyuOTft7GQk8x0Y9Qdglroa8R/v1Ae9Drm93+ocE4QIH/+xCWVKPL9QnlQ9LlH6g5BLeISfs+BUnKarnb+3L/bVPg9v+/d16TqDiFTTUvlvce15L0aERERERER5WFsxBEREREREeUivCeOiIiIiIiyhA/7Vi32xBEREREREeUibMQRERERERHlIkynJCIiIiKiLOF496rFnjgiIiIiIqJchI04IiIiIiKiXITplERERERElCVMp1Qt9sQRERERERHlImzEERERERER5SJMpyQiIiIioiyRygTqDiFfYU8cERERERFRLsJGHBERERERUS7CdEoiIiIiIsoSjk6pWuyJIyIiIiIiykXYiCMiIiIiIspFmE5JRERERERZwnRK1WJPHBERERERUS7CRhwREREREVEuwnRKIiIiIiLKEinTKVWKPXFERERERES5CBtxREREREREuQjTKYmIiIiIKEtkMoG6Q8hX2BNHRERERESUi7ARR0RERERElIswnZKIiIiIiLKED/tWLfbEERERERER5SJsxBEREREREeUiTKckIiIiIqIs4cO+VYs9cURERERERLkIG3FERERERES5CNMpSUFHI1ndIahFTJKOukNQi6hEfXWHoBZ3wszVHYJalHN8o+4Q1CJRmj/374fnHqk7BLUwquyt7hDUovSjQ+oOQS0iUs3UHYKa/J71zo+jU0ZERKB///44cOAAhEIhmjVrhgULFsDQ0DDT8uPHj8fx48fx+vVrWFpaonHjxpg8eTJMTEx+at3siSMiIiIiIvpJbdu2xYMHD3DixAkcPHgQ58+fR48ePTIt//79e7x//x6zZ8/G/fv3sW7dOhw9ehRdu3b96XWzJ46IiIiIiOgnBAYG4ujRo7h+/TpKlCgBAFi0aBHq1q2L2bNnw9bWNt08hQoVwq5duxSv3dzcMHXqVLRr1w4pKSnQ1Pzxphl74oiIiIiIKEtkst/3LzExERKJROkvMTExS/W9fPkyRCKRogEHAAEBARAKhbh69eoPLycqKgrGxsY/1YAD2IgjIiIiIqI8bPr06TAxMVH6mz59epaWGRwcDCsrK6VpmpqaMDMzQ3Bw8A8tIywsDJMnT/5mCmZm2IgjIiIiIqI8a9SoUYiKilL6GzVqVIZlR44cCYFA8M2/R4+yPniURCJBvXr14OvriwkTJvz0/LwnjoiIiIiIsuR3fti3jo4OdHR+bLTioUOHolOnTt8s4+rqCmtra4SEhChNT0lJQUREBKytrb85f3R0NGrXrg0jIyPs2bMHWlpaPxTbl9iIIyIiIiIiAmBpaQlLS8vvlitbtizEYjFu3ryJ4sWLAwBOnz4NqVSK0qVLZzqfRCJBrVq1oKOjg/3790NXV/eX4mQ6JRERERER0U/w8fFB7dq10b17d1y7dg2XLl1Cv3790KpVK8XIlO/evYO3tzeuXbsGQN6Aq1mzJmJjY7F69WpIJBIEBwcjODgYqampP7V+9sQREREREVGW5MeHfW/evBn9+vVD9erVFQ/7XrhwoeL95ORkBAUFIS4uDgDw33//KUaudHd3V1rWixcv4Ozs/MPrZiOOiIiIiIjoJ5mZmWHLli2Zvu/s7AzZF63bKlWqKL3OCqZTEhERERER5SLsiSMiIiIioiyRStUdQf7CnjgiIiIiIqJchI04IiIiIiKiXITplERERERElCX5cXRKdWJPHBERERERUS7CRhwREREREVEuwnRKIiIiIiLKEqZTqhZ74oiIiIiIiHIRNuKIiIiIiIhyEaZTEhERERFRlkiZTqlS7IkjIiIiIiLKRdiIIyIiIiIiykWYTklERERERFki+62HpxSoO4Bsx544IiIiIiKiXISNOCIiIiIiolyE6ZRERERERJQlv3U2ZR7EnjgiIiIiIqJchI04IiIiIiKiXITplERERERElCVSqbojyF/YE0dERERERJSLsBFHRERERESUi+SLRlyVKlUwaNCgPLPOTp06oXHjxjmybCIiIiKinyWT/b5/eRHvicshu3fvhpaWluK1s7MzBg0apPLGpCocP7QTB3dvRlRkBBxd3NGx5xC4exbMtPyVi6fwz6aVCAsJhrWtPVp16otiJcplWHb1kpk4dXQv2ncbiDqNWgEAHt77D1NG982w/OQ5q+Hm6Zv1Sv0AmUyGwzuW4N9TuxAfGw0Xbz+07DYWVjZO35zv/NGtOHVgHSTiMNg5eeGPLqPg7F5Y8f6CCZ3x9OENpXnKBzRHqx7jFK+D7l3Boe2L8f71E2jr6KF05Yao33oANDRyfpeWyWQ4sH0ZLp7cjfi4aLh5+aF1j9Eo8J16nz2yDcf3r4dEHA57J0+07DoCLh5p9d68YjIC715FVGQodHT14epZFE3bD4S1nQsA4O3LIBzdsxbPHt1CTLQY5pa2qFjzD1Sv1zZH65sZmUyGCwcW4s7Ff5AYL4Gdmz9qtZ4AswLOmc7z+sl1XD2+Gh9f30dMVCia9loCT78ApTKxkjCc2T0bLwMvIiEuGg4eJVCj5dhvLleVDh3Yhz27diAyMgIuLm7o0bsfPL28Myz7+tVLbN64Ds+ePkFIyEd07dEbjRo3Uyrzz/YtuPzvRbx7+wba2jrw9vFFxy7dYW/voIrq/LCjB3dj/+6tEEdGwMnFDV16DoKHV+bHmssXz2Dbpr8R+lF+nGvXqRf8S5ZVvN+8fsUM52vXuTcaNWuT7fH/KplMhjN7F+HmuX+QECeBo4c/6rcfD3Nr50zneRl0HZeOrMaHVw8QLQ5Fq/6L4eMfkGn5A+vH48bZ7ajdehTK1uyYA7XIOWYVSsB1aFeY+BeCrq0VbjTrg4/7T6k7rF+2/8BB7Ny1C5GRkXB1cUGf3r3g5eWVYdmXr15h48ZNePL0KUJCQtCzR3c0yeACc1hYGFavXYsbN24iMTERtjY2GDJ4MDw9PXK4NplT9XkLAAzo2gRhIcFKZVt16I2GzTtkT6Uo38kXPXHqYGZmBiMjI3WHkeMuXziJTX8vRNPWXTF1/jo4unhgxrjBiBJHZFj+ceBdLJ41HlVqNsC0BetRvEwlzJ06Am9ePUtX9vrls3ga9ACmZhZK0z29C2PphoNKf1VrNoRlAVu4evjkSD0zcnLfGpw7sgUtu4/F0GmboaOjh6VTeyI5KTHTeW7+exR7NsxCnT96YfjMHbBz8sTSqT0RHRWuVK5c9WaYuvKM4q9RuyGK996+DMLy6X3g41ceI/76B50Hz8K9m2exf/P8nKqqkuN71+HM4S1o02MMRkzbCG0dPSya3Oeb9b5x6Rh2rp+D+s17YvRfW2Hv7IlFU/pAEpW2nTi6+qBj34kYP383BvxvKQAZFkzuDWlqKgDg1bNAGJmYovOAqRg3bxfqNOuGvZsX4cyRbTld5QxdPb4KN89sRK02E9BhxA5oaeth+6KuSEnO/HNIToxDAXsv1Gg1PsP3ZTIZdi3rC3HYGzTrvRSdx+yBibkdti3ojKTEuJyqyg+7cO4MVq9ajlZt2mPeouVwdnXF+LEjIRZHZlg+MTEB1jY26NC5G0xNzTIsc//+XdSr3wiz5i7CpKkzkZqagvFjRiAhIT4nq/JTLp0/hfV/L0bz1p0wc8HfcHJxx9RxQxGVSb2DAu9h/l8TUa1GPfy1cDVKlamIv6aOxuuXzxVlVm7cq/TXZ+BICAQClClfRUW1+jEXD/+Nqyc2okGHCeg+Vr6db5zbDcnf3M7jYe3gjXrtxmVa5rPAmyfw9tkdGImssjNsldEw0IfkbhDuD5io7lCy7Ny581i1ahXatWmDxYsWwtXVBWPGjoVYLM6wfGJiIqxtrNGlcyeYmppmWCY6OhpDhv0JTQ1NTJk0ESuXL0P37t1gaGSYgzX5NnWct3z2R9vuSucuNRs0z9a6Uf6S7xpxkZGR6NChA0xNTaGvr486dergyZMnivfXrVsHkUiEY8eOwcfHB4aGhqhduzY+fPigKJOSkoIBAwZAJBLB3NwcI0aMQMeOHZVSHL9Mp6xSpQpevXqFwYMHQyAQQCAQAAAmTJgAPz8/pfjmz58PZ2dnxevU1FQMGTJEsa7hw4dD9lW/sFQqxfTp0+Hi4gI9PT0ULVoUO3fuzJ4P7DsO792KqrUaokpAfdg7uqBrn+HQ0dHBuRMHMyx/dP8OFPUvjQZN28HOwRkt2vWEi5sXjh9UjjciPATrV8xF36EToKGp3LukqaUFkam54s/QyAQ3r15A5YB6is82p8lkMpw9vAm1mvZAkZLVYOfkhfb9piEqMhR3r5/OdL4zBzegbPVmKFO1CWzs3dCy+zhoa+vh8pk9SuW0dfRgLLJQ/Onpp/3g/ffvUdg6eaLOH71hae0ID9+SaNR2CC4c24aE+NgcqzMgr/epQ5tRp1l3+JWqCntnT3TuPxniyFDcvnYm0/lOHtiI8gFNUa5aY9g6uKFNj/9BS0cX/57eqyhTscYf8PAtDgsrOzi6+qBhq76IDAtGeOh7AED56o3RsssIeBYsAcsC9ihdqR7KVW2I21dVf9VbJpPh+qkNKFenNzz9AmBl7436nf9CjDgEj2+fzHQ+t0KVUanRYHgVq5Hh+5EhL/H+xW3UajMBNs5FYG7tilqtJyAlOQGB1w/lVHV+2L49u1Czdl0E1KwNR0cn9Ok3CDo6Ojh5/GiG5T08vdG5a09UqlxVKTPhSxMnz0D1GrXg6OQMF1c3DBwyHKGhIXj6xXFZ3Q7u3Y7qtRqgao16cHB0QY++w6Cto4vTJzL+Tg7t3wm/4qXQqFkb2Ds4o1X7bnB188TRg7sVZUxNzZX+rl+9iIKFi6GAta2qqvVdMpkMV05sQKUGveDtXx3WDl5o2n0moiND8Oi/zLdzjyKVUL3ZIPgUz3g7/0wS+RGHN09Bs56zVJJFkBNCj53H4/Hz8XFf5p9HbrF7zx7Url0bNWvWgJOjI/r36wcdHV0cO348w/Jenp7o3rUrqlSunOn+/c/OnbC0tMTQIYPh5eUFa2trFPf3h62NTU5W5ZvUcd7ymZ6evtL5i66uXrbXT52kst/3Ly/Kd424Tp064caNG9i/fz8uX74MmUyGunXrIjk5WVEmLi4Os2fPxsaNG3H+/Hm8fv0aw4YNU7w/c+ZMbN68GWvXrsWlS5cgkUiwd+/eTNe5e/du2NvbY9KkSfjw4YNSg/B75syZg3Xr1mHNmjW4ePEiIiIisGeP8gn/9OnTsWHDBixfvhwPHjzA4MGD0a5dO5w7d+7HP5hfkJKcjBdPg1CoaEnFNKFQiEJ+JfEk6H6G8zx5dB+F/EoqTStSrDSePEorL5VKsXTuJNRr2hb2Tq7fjeO/qxcQHR2FygH1f7EmPy885C0k4jB4FSmjmKanbwRn98J48fhOhvOkpCTjzfOH8CqcNo9QKIRX4TJ4+dU8Ny4cwsiuFTFtaBPs3zIfSYnxXywnCZpaOkrltbR1kJyciDfPH2ZH9TIVFvIOEnEYfIqUVkzTMzCCi0dhPM+s3snJeP08UGkeoVAIn8Kl8TzobobzJCbE498z+2BhZQdTc+tM44mPi4G+ockv1ubXRYW9RawkFM4+aek0unpGsHUpinfPb/3yclNSkgBA6fsVCIXQ0NTGm6c3fz3gbJCcnIynTx/Dz89fMU0oFKKonz8ePcq+7S42Vn4h4nfJZEhOTsbzp49RxK+4YppQKEQRvxJ4/OhBhvM8fnQfRfxKKE0r6l8Kjx9lfFwUR0bgv+uXUa2m6o5hPyIy9C1iokLhWvCL7VzfCHZuRfDm6e0sLVsqlWL3yuEoV7srrOzUl1ZHcsnJyXjy9CmKfXFhWSgUopifHwIfPfrl5V65chWeHu6YMm0aWrZug779+uPI0Ywv+qiCus9b9u/ciB5tamHUwA44sHsTUlNTslgjys9y56WvX/TkyRPs378fly5dQrly8h+lzZs3w8HBAXv37kXz5vJu7eTkZCxfvhxubm4AgH79+mHSpEmK5SxatAijRo1CkyZNAACLFy/G4cOHM12vmZkZNDQ0YGRkBGvrzE9IMzJ//nyMGjUKTZs2BQAsX74cx44dU7yfmJiIadOm4eTJkyhbVn6/haurKy5evIgVK1agcuXKGS43MTERiYnK6TBJSYnQ1tbJsHxGoiViSKWpMPkqTcpEZIb3b19lOI9YHA4TUfryYnFaOuGBXRuhIdRA7QYtfiiOMycOoEix0jC3UF06juRTvEYm5krTjUzMIRGHZThPrCQSUmkqjEVfzSMyx8f3LxSvS1SoCzMLW5iYWeLdq8fYv3kePr5/ie7D5gMAfIqWx9lDm3Dj4mH4l6sFiTgMR3ctBwBERYZmVxUzJImU1y1dHUzMFJ/J12KiP9X7689KZI7gdy+Vpp09uh17Ns1HYkI8Ctg6Y+C45dDM5Arvs0e3cePf4+g3auEv1ubXxUjkn7OBsXKdDIzMESvJ+Pv/EebWrjA2s8W5PXNQu+0kaOno4fqpdYiODEasJGe/2++RSKIglUoh+iptSiQyxbs3b7JlHVKpFH+vWAof34JwcnbJlmVmVbQkSn6cS3fcMsW7zI5zkRHpyotEZhBnkq517tQR6Orpo3S5StkTdDaJiZJvc4ZfbeeGxhaIifr17RwALh5eBaGGBsrUaJ+l5VD2kEgkn/ZvkdJ0kUiEN1nYvz8EB+PgocNo2qQJWrVsicePH2PZ8hXQ1NREjYDM75PMKeo8b6nVoAVc3LxgaGiMx4/uYtv65RBHhKN9t4FZqBHlZ/mqERcYGAhNTU2ULp3WI2Bubg4vLy8EBgYqpunr6ysacABgY2ODkJAQAEBUVBQ+fvyIUqVKKd7X0NBA8eLFIc3mpxxGRUXhw4cPSvFqamqiRIkSipTKp0+fIi4uDjVqKKetJCUloVixYpkue/r06Zg4UTmHv3u/4ejZf0Q21uDnPX/6CEf378C0+et+KDUyPCwEd29dxcDhU3I0rusXDmLbyrSGfK9RS3JsXeUD0nLkbR09YWxqicWTuiE0+A0srR3gU7QcGrcfgu2rJmPj4tHQ1NJGrWY98CzwPwiE2du5fvX8IWxZmfbZ9h21KFuX/7XSFevCp2gZSCLDcGL/BqyaOxx/TlkHra8uLrx7/RTL/hqM+s17wtcv45vLs9ODq/txdEvafWzN+67IkfVoaGihac9FOLxxDOYPLQWBUAPO3mXhWrASgDyaD/KF5UsX4vWrl5gxe766Q1Gp0ycPo2KVGj91ES0n3L18AAfWp23nbQctz5H1vH95H1dPbETPCbtUlgJP6iGTyeDh4Y7OneQD1ri7ueHlq1c4dPiIWhpxOeFHz1vqNW6t+N/RxR2amlpYvWQmWnXsDS0tbVWEmuPy6iiQv6t81Yj7UV/ndgsEgnT3oWUHoVCYbrlfpnX+iJiYGADAoUOHYGdnp/Sejk7mJwSjRo3CkCFDlKY9eP1z91MZGYsgFGogKlL56nKUOAIiU/MM5xGJzNPdPBwljoDoU89O0IPbkERFon+XJor3pdJUbFqzCEf2b8fC1cqppOdOHoSRkQn8S2c80lt2KVyiKpw9iihepyTL096io8JhYmqpmB4dFQ4754xH6jMwNoVQqJGuxypaHJ6uZ+tLn0euDAt+DUtr+Yh91ep3RNV6HSCJDIWeoTEiQt7jwJYFsLCy/7UKZqJoySpKI0h+TveTiL+udwTsnT0zXIah0ad6R2VUb+Wbv/UMjKBnYIQCNk5w8SiCIZ0q4va10yhZoY6izPs3zzB/Yg9UCGiKun90z3Idf4R70Wro4lJU8frz5xArCYehSVoPcGx0OKzsM/7+f5S1UyF0+d8+JMRHQ5qSDH0jM6yf0Rw2ToWytNysMjY2gVAohDhSeTAPsTgSIrOMBzX4GcuXLsKNa1cx7a+5sLCw/P4MKmJkbCI/zqU7bkVmfpwzNUtXXiyOgEiUfnCXwPt38P7tawwerv6BMbz8qsLONe04l/ppO4+RhCsNPBIjCYO1w68PIvXq8U3ERodj3rBqimlSaSqObZuJK8fXY/DszO8rppxhbGz8af8WK00Xi8UwzcL+bWZqCkcHR6Vpjg4OuHTp319eZlb8Ductn7l7FkRqaipCP36Arf23R3cmyki+asT5+PggJSUFV69eVaRThoeHIygoCL6+PzYsvYmJCQoUKIDr16+jUiV56ktqair++++/dIOUfElbWxupn0bZ+8zS0hLBwcGQyWSKqze3b99WWpeNjQ2uXr2qWFdKSgpu3rwJf3/5fSm+vr7Q0dHB69evM02dzIiOjk66Rp629s/lZmtqacHF3QsP7t5AybLydUulUjy4cwM16/2R4Twe3oVw/84NpWF3792+Bg9v+Qlqhap10uWezxg3CBWq1kHlgHpK02UyGc6dPISKVWtDM5ObiLOLrp4BdPUMlNZtLLJA0L2rsP/UaIuPi8HLp/dQoWbLDJehqakFB1dfPL5/FUVLVQcg/7we37+CirVbZzgPALx7GQQAMDZVbvAIBAKYmMlPrG5eOgxTc2s4uGbv6JyZ1fvRvWtwcEmr94sn91CpZsajbGlqacHR1QeP7l2DXyn5SZtUKsWje9dQpU6rDOcBABlkkMmA5E8NZgB4/+Yp5k3ogTJVGqBxm/7ZUcUfoqNrCB3dtMFlZDIZDIwt8fLRZRT4dDKbGB+D9y/uoFilzL/Ln6GrJ78nLOLjSwS/uo9KDdWbcqOlpQV3d0/cufMfypQrD0D+Pd69fQv1GjT65eXKZDKsWLYYVy5fxLQZc2Btrb4BDzKipaUFV3dP3LtzE6XKyo/DUqkU9+7cRO36TTOcx9O7EO7dvol6jdJSq+7eugFP7/QN8VMnDsLV3QvOru45U4GfoKNnCB095e3c0MQSzx9eho2jfDtPiI/Bu2d3UbLqr2/nRcs1hKtvWaVpG+d0Q9FyjVCsQpNM5qKcpKWlBQ93d9y+cxvlysm/G6lUitu3b6NBg1+/V9PX1xdv371Tmvbu3TtYWannQo26z1u+9PLFEwiEQhiLsn4RjPKnfNWI8/DwQKNGjdC9e3esWLECRkZGGDlyJOzs7NCo0Y+fhPTv3x/Tp0+Hu7s7vL29sWjRIkRGRn6zG93Z2Rnnz59Hq1atoKOjAwsLC1SpUgWhoaH466+/8Mcff+Do0aM4cuQIjI2NFfMNHDgQM2bMgIeHB7y9vTF37lyl4X6NjIwwbNgwDB48GFKpFBUqVEBUVBQuXboEY2NjdOyYs8/cqdu4NZbPmwxXd2+4eRbEkX3bkJCQoBhkZOnciTAzt0Srjn0AALUbtsDkUX1waM8W+JUoh8sXTuL500fo1m+kvD7GJjAyVh6oQkNTEyJTs3RXqh7cvYHQj+9RpWbDHK1jRgQCAarUbYdju1fAysYR5lZ2OLhtMUxMLVGkZNrV5UWTuqFIqWqoXFv+3Keq9Ttg05IxcHQtCCf3wjh7eCMSE+NRpkpjAEBo8BvcvHgIvv4VYWAowvvXj7F7/V9w9ykOO6e0Z/Wc3L8Wvn7lIRAIcefqSZzYuxqdB8+GUKiR4/WuXq8tjuxaBSsbR1hY2WH/tiUQmVrCr1RVRbl5E3rAr3Q1VP3USAto0B7rFo+Fk5svnN0L4fShzUhKjEe5qvL9LvTjW9y8dAw+RcvCyNgUkeEfcWzvWmhr66CQv7yX9d3rp5g/oTt8/cohoH57RH26P08oFMLIJOPh63PycyhZvQP+PbIMZlZOMLGwx4X9C2AoslJ67tvWeR3h6VcDxau2AwAkJcQiMvS14n1x2Ft8fBMIXQMTmJjJRyV8dPMI9AzNYGJmi5B3QTi5Yxo8/ALg4ltBpXXMSKMmzTB/7l9w9/CCp6cX9u/bjYTEBFSvURsAMG/2DJiZW6Bj524A5JkFb17L7zNJSUlBRHgYnj97Cl09PdjayjMHli9diPNnT2PMuEnQ09NHZIT8ire+gcE3swlUqX7jllgybxrcPLzh7umDQ/v+QWJCPKoG1AUALJozBWbmFmjbqRcAoF7DPzB+ZH8c2L0N/iXL4tL5U3j29BF69vtTablxcbG4cvEsOnTN+LmX6iYQCFCmRgecP7Ac5gWcYWphh9N7FsLI1AreXzz3bd1fneDjH4DSAfLtPDEhFhEhadt5ZOhbfHgdCD0DE4jMbaFvaAp9Q+UTVw0NTRiaWMDC5vuDWf1ONAz0YeCe1tOk72IP46LeSIqIQsKbHx/E7HfQtEkTzJ47Fx4eHvDy9MSeffuQkJiAmp9u15g1ew7Mzc3RpXMnAPL9+/Vr+feckpKCsPBwPHv2DHp6erC1lR/PmjRpjCFDh2Hb9u2oVLEigoIe4/CRoxg4QHUX4b6mjvOWx4/u4VnQA/gWKQ5dPX08eXQfm/5egApVasHQ0Bh5hey3HgYy76Vu56tGHACsXbsWAwcORP369ZGUlIRKlSrh8OHDmQ6Pm5ERI0YgODgYHTp0gIaGBnr06IFatWpBQyPzE+hJkyahZ8+ecHNzQ2JiImQyGXx8fLB06VJMmzYNkydPRrNmzTBs2DCsXLlSMd/QoUPx4cMHdOzYEUKhEF26dEGTJk0QFRWlKDN58mRYWlpi+vTpeP78OUQiEfz9/TF69Ohf+5B+QtmKAZBERWLn5r8hjgyHk6sHRk6cp7hpODz0I4SCtPu0PH2KoO+wifhn00ps37Ac1rYOGDJmJhyc3DJbRabOHj8AT5/CsHNwzq7q/JSARl2QlBiPrSsmIj4uGq7exdBn9HKl+7fCPr5BrESseF28XG3ESCJwaMcSRIvDYOfsjT6jlyvSCjU1tRB07wrOHN6EpMR4mJpbo2jpGqjVtIfSuh/euojju1chJTkJds5e6D58IQoWy9mU0s9qNu6ExMR4bF4xGXGx0XD3Lob+/1uqVO/Qj28QI0lLuytRvhaiJZE4sG0ZJOIw2Dt7of+YpYo0Ui0tbTwJ/A+nDm1GXKwExibmcPfxx59T18P4UwPtv8snEC2JxNXzh3D1fNrQ7maWNpi27IhK6v6l0jW7IykxHkc3j0NCnAT27sXRsv/fSiNLRoa+QVxM2ufw4dV9bJ2X9mDX0zunAwAKlWmC+p1mAJAPJnFq54xPqZqWKFSmEcrX7aOiWn1bxcpVESWJwpaN6+QPA3Z1w4RJ0xXPiAoNDVG6LzMiIhyD+vdSvN6z6x/s2fUPChUugmkz5wIAjhw6AAAYPWKo0roGDv4T1WvUyukq/ZDylapDEiXG9k2rIY6MgLOrO8ZMmg3Rp+NcWOhHCIRpJwhePoUx8M/x2LpxFbZsWAkbW3sMHzMNjs7KDZRL509BBhnKV/597w2qULcbkpPicWCdfDt39CyOdkNWQevL7TzktdJ2/v7lfaybmXYB8dg2+bbtV74xmnSbobrgVcCkeCGUPbVR8dp3tvx3982G3bjbdZS6wvollStXQpQkChs3bvq0f7tiyqRJiv07JDRUaTsPj4hA3/4DFK937dqNXbt2o3Dhwpg1U/49e3l6Ytz//oe169Zh85atsLYugF49e6Ba1apQF3Wct2hpauPyhZPYtXU1kpOTYFXAFnUatUTdxtmTuUH5k0CWEzd75TNSqRQ+Pj5o0aIFJk+erO5wftnNxxmPnJbXhcer76Gj6qQlTP1+oTzoZVjeei7PjyrnmD0jSOY2idLfozdP1R6G/j73FaqSUeWs3ZOaW/k+Uv9zJNUhIlW1WRi/i+Kev2e9Z+/O3gH+stOwpnnvqWr5ricuO7x69QrHjx9H5cqVkZiYiMWLF+PFixdo06aNukMjIiIiIlK53zqbMg/Ke81SFRAKhVi3bh1KliyJ8uXL4969ezh58iR8fLJ3UAkiIiIiIqKvsSfuFzg4OODSpUvqDoOIiIiIiPIhNuKIiIiIiChLOMqGajGdkoiIiIiIKBdhI46IiIiIiCgXYTolERERERFliZTDU6oUe+KIiIiIiIhyETbiiIiIiIiIchGmUxIRERERUZZwdErVYk8cERERERFRLsJGHBERERERUS7CdEoiIiIiIsoSplOqFnviiIiIiIiIchE24oiIiIiIiHIRplMSEREREVGWSJlPqVLsiSMiIiIiIspF2IgjIiIiIiLKRZhOSUREREREWSKTqjuC/IU9cURERERERLkIG3FERERERES5CNMpiYiIiIgoS2QcnVKl2BNHRERERESUi7ARR0RERERElIswnZKIiIiIiLJEytEpVYo9cURERERERLkIG3FERERERES5CNMpiYiIiIgoSzg6pWqxJ46IiIiIiCgXYSOOiIiIiIgoF2E6JRERERERZYmU2ZQqxZ44IiIiIiKiXIQ9caRgohGl7hDUQqYrUHcIavE+2ljdIaiFgW7+fJCNjixe3SGoRWiymbpDUIu4hPx5XCv96JC6Q1CLh9711B2CWhjevqXuEIjUho04IiIiIiLKEhnzKVWK6ZRERERERES5CBtxREREREREuQjTKYmIiIiIKEv4rG/VYk8cERERERFRLsJGHBERERERUS7CdEoiIiIiIsoSKUenVCn2xBEREREREeUibMQRERERERHlIkynJCIiIiKiLJFxeEqVYk8cERERERFRLsJGHBERERERUS7CdEoiIiIiIsoSmVTdEeQv7IkjIiIiIiL6SREREWjbti2MjY0hEonQtWtXxMTE/NC8MpkMderUgUAgwN69e3963WzEERERERER/aS2bdviwYMHOHHiBA4ePIjz58+jR48ePzTv/PnzIRAIfnndTKckIiIiIqIskf7Go1MmJiYiMTFRaZqOjg50dHR+eZmBgYE4evQorl+/jhIlSgAAFi1ahLp162L27NmwtbXNdN7bt29jzpw5uHHjBmxsbH5p/eyJIyIiIiKiPGv69OkwMTFR+ps+fXqWlnn58mWIRCJFAw4AAgICIBQKcfXq1Uzni4uLQ5s2bbBkyRJYW1v/8vrZE0dERERERHnWqFGjMGTIEKVpWemFA4Dg4GBYWVkpTdPU1ISZmRmCg4MznW/w4MEoV64cGjVqlKX1sxFHRERERERZ8js/7PtnUidHjhyJmTNnfrNMYGDgL8Wxf/9+nD59Grdu3fql+b/ERhwRERERERGAoUOHolOnTt8s4+rqCmtra4SEhChNT0lJQURERKZpkqdPn8azZ88gEomUpjdr1gwVK1bE2bNnfzhONuKIiIiIiIgAWFpawtLS8rvlypYtC7FYjJs3b6J48eIA5I00qVSK0qVLZzjPyJEj0a1bN6VphQsXxrx589CgQYOfipONOCIiIiIiyhKp9PdNp8wJPj4+qF27Nrp3747ly5cjOTkZ/fr1Q6tWrRQjU7579w7Vq1fHhg0bUKpUKVhbW2fYS+fo6AgXF5efWj9HpyQiIiIiIvpJmzdvhre3N6pXr466deuiQoUKWLlypeL95ORkBAUFIS4uLtvXzZ44IiIiIiKin2RmZoYtW7Zk+r6zs/N3B3z51QFh2IgjIiIiIqIs+Y0Hp8yTmE5JRERERESUi7ARR0RERERElIswnZKIiIiIiLJEls9Gp1Q39sQRERERERHlImzEERERERER5SJMpyQiIiIioiyRcnhKlWJPHBERERERUS7CRtw3dOrUCY0bN1Z3GOlMmDABfn5+6g6DiIiIiIjUIF+nU3bq1Anr168HAGhpacHR0REdOnTA6NGjoampiQULFvzyU9Tzs4MH9mPXrp2IjIyEi4srevXuAy8vrwzLvnr1Eps2bsTTp08QEhKC7j16onHjJpkue8eO7Vi/bi0aNWqMHj175VQVfsjxQztxaM8mREVGwNHFHR17DIWbZ8FMy1+9eAr/bF6JsJAPKGDrgNYd+8KvRDnF+7u2rMLlCycREfYRGppacHH3Qot2veDuVUhpObeuX8Ke7avx+uUzaGlpw6dQMQwZ81eO1fNrMpkMx3ctxtUz/yA+NhrOnsXQtMs4WFo7f3O+S8e34NyhNYiOCoONoxcadxwDR7ciivfDPr7GwS2z8DLoP6QkJ8GraAU07jgGRiYWijJvXzzE4W1z8Ob5fQiFQhQuWRMN2g2Hjq5BTlU3UzKZDKf3LMKNc/8gIS4ajh7F0LDDeJh/43N4GXQdFw+vwftXDxAtDkXr/ovgWzwg0/L7103A9bPbUaf1SJSr1TEHavHz9h88hJ27diMiMhKuLi7o06snvL08Myz78tUrbNi0GU+fPsPHkBD07N4NTRs3SlcuLCwcq9euw/WbN5GYmAhbGxsMHTwQnh4eOV0dBZlMhn1bl+P8yT2Ii42Gu3dRtO85GgVsHb853+nD23F07wZEicPh4OyJNt2Gw9UzbZ9NTkrE9rVzce3icaSkJKGgX1m06zkKJiJzRZmHd69i75ZlePvqKXR09VCuan00bdsXGhrpf6I/fniNiUPaQCgUYvHm89n3AfwEmUyGiwcX4s7Ff5AYL4Gdqz9qtpkAMyvnTOe5fHQFHt8+jojg59DU0oWdWzFUbjwM5tauqgv8J+w/cBA7d+1C5OftvHevTH/HXr56hY0bN+HJ06cICQlBzx7d0SSDC8BhYWFYvXYtbtxI286HDB4MT0/VbefZxaxCCbgO7QoT/0LQtbXCjWZ98HH/KXWH9ctkMhn2b1uGCyf2ID4uGm7eRdG2x2gUsHX65nxnjmzH8b3rESUOh72zJ1p3GwEXD/n+Hxsdhf3bluHhnSuICAuGobEpipWqgoat+0DfwEgV1VI5jk6pWvm+J6527dr48OEDnjx5gqFDh2LChAmYNWsWAMDExAQikUi9AeYy58+dw6pVq9CmTTssXLQYLq6uGDt2DMRicYblExMTYW1jjU6du8DU1PSby378OAhHjxyGi4tLDkT+cy5fOIHNqxegaatumDJvPRydPTBj/CBEiSMyLP848C4Wzx6HKjUaYOr89ShRuhLmThuON6+eKcpY2zmiU8+hmLFoM8bPXAFLKxvMGD8QkqhIRZlr/57GsnkTUal6fUxfsBHjZ65Euco1c7y+Xzp7cDUuHtuEpp3Ho/+kbdDW0cPfM3ogOSkx03luXz6CA5tnokbTPhg0ZSdsHb3x94weiIkKBwAkJcRh1YzuEECAnqPXou/4zUhNScba2X0hlUoBAFGRIVg5vQvMCzii/8Rt6DZ8JYLfPsX25WNUUu+vXTj8N66c2ISGHSeg57jt0NbRx/o53b/5OSQlxsPa0Qv124/97vIf3jyBN8/uwEhklZ1hZ8nZ8xewctXfaNumNZYsnA9XFxeMGTvum/u3jbU1unTqCLNM9u/o6BgM+XM4NDQ1MGXiBKxatgQ9unWBoaFhDtYkvSN71uPkoa1o33M0xsxcDx0dPcyd1Peb3+e1i8ewfe1cNGzZA+PnbIGDswfmTeoLyRfHgW1r5uDOjQvo/edMDJ+yCuKIUCydOUzx/psXj7Fg8gAUKlYO4+duQa+hM3Dn2jns3Lgo3fpSUpKxcu5oePoWy97K/6Srx1fh5pmNqNVmAtoP3wEtHT3sWNgVKcmZf1ZvnlyDf+W2aDd8B1oOXIvU1BTsWNQVSYlxKoz8x5w7dx6rVq1CuzZtsHjRQri6umDM2LHf/R3r0rlTpr9j0dHRGDLsT2hqaGLKpIlYuXwZunfvBkMj1W7n2UXDQB+Su0G4P2CiukPJFsf2rMPpQ1vRrtdojJqxATo6elgw+dv7//WLx/DP2jmo36In/jd7CxycPbFgUh/F/i+OCIU4MhR/dByM8fP/Qef+E3H/1r/YsCRvfGakfvm+EaejowNra2s4OTmhd+/eCAgIwP79+wGkT6esUqUKBgwYgOHDh8PMzAzW1taYMGHCd9exZs0aFCxYEDo6OrCxsUG/fv0U771+/RqNGjWCoaEhjI2N0aJFC3z8+FFp/hkzZqBAgQIwMjJC165dkZCQkG4df//9N3x8fKCrqwtvb28sXbr01z6QLNqzZzdq166NGjVrwtHRCf369Yeujg6OHz+WYXlPTy907dodlStXgZaWVqbLjY+Px6y//kL/AQNVfnKXkSP7tqJqzUaoHFAf9o4u6NJnBHR0dHHu5MEMyx89sB1F/MugftN2sHNwQfN2PeHs6oXjh3YqypSvXAuF/ErBytoO9o6uaNt1EOLjYvH65VMAQGpqCjasmoc2nfohoE5T2Ng5wt7RBWUqZN6Tk91kMhkuHN2A6o17olCJ6rB19EKr3jMgEYfgwc3Mr8KeP7IOpas2R8nKTVHA3h1Nu4yHlo4urp3bDQB48fgWIkPfoWXPabBx9ISNoyda9pqOty/u4+nDKwCAwFtnoaGhhSadxsLK1gUOboXRrMt43Lt+HGHBr1RS/89kMhkuH9+Ayg17wce/OqwdvNCs+wxER4Yg8L+Tmc7nWaQSApoNgm/xGt9cviTyIw5tmoo/ev2VYW+Muuzesxe1a9dCrRoBcHJ0xIB+faCjq4Njx09kWN7L0xPdu3ZBlcqVMt2/d+zcCQtLCwwbPAjeXp6wtrZGcX9/2NrY5GRVlMhkMpw8uAX1m3dDsdJV4ODsia4DJ0EcEYr/rp7NdL7j+zejUo0mqFC9EWwdXNG+1xho6+ji4ql9AIC42GhcOLUXLTsPgU+RUnB280WX/hPw9NEdPAu6CwC4dukY7J090LBlDxSwcYRXoeL4o+NAnDmyA/HxsUrr27NlKaztnFGi/Le3n5wkk8lw4/QGlK3TGx5FA2Bl7436nf5CTFQIHt/OfNtv0X81CpdtCktbD1jZe6NehxmQRLzHx9cPVBj9j9m9Zw9q166NmjVrwMnREf379YOOji6OHT+eYXn5dt4VVSpXznQ7/2fnTlhaWmLokMHw8vJSy3aenUKPncfj8fPxcV/m33lu8Xn/r/dHd/iVqgp7Z090HjAZ4ohQ3Lp2JtP5ThzYhAo1mqJ89UawdXBD257y/f/S6b0AADsnd/QePgdFS1aGlbUDvAuXQuO2/XD3xnmkpqaoqHaUl+X7RtzX9PT0kJSUlOn769evh4GBAa5evYq//voLkyZNwokTGZ/AAMCyZcvQt29f9OjRA/fu3cP+/fvh7u4OAJBKpWjUqBEiIiJw7tw5nDhxAs+fP0fLli0V8+/YsQMTJkzAtGnTcOPGDdjY2KRroG3evBnjxo3D1KlTERgYiGnTpmHs2LGKVFFVSU5OxtOnT+Dnl3aVWCgUws+vGB49CszSspctXYKSpUqhWDH/rIaZZSnJyXjxNAiF/EoqpgmFQhQqWhJPHt3LcJ6nj+6jUNGSStOK+JfB00zKpyQn48yxvdA3MISTizzV5uWzIESGh0IgFGL0wA7o27EeZk4YpNSbl9MiQt8iWhwGj4JlFdP09I3g6FYEr57cznCelJQkvHvxEB6FyiimCYVCeBQqq5gnNSUJAoEAmlraijJaWjoQCIR4GfSffDnJSdDQ1IJQmHbY0tLWAQC8+FRGVSJD3yImKgxuvmmfg66+EezdiuDNsztZWrZUKsXOlSNQoU4XFLD7fdKskpOT8eTpU/j7FVVMEwqFKObnh4ePgn55uVeuXoOnuzumTJuBFm3aoU//gTh8NOOLPjkl7OM7REWGwbdoacU0fQMjuHoUUjS2vpaSnIxXzwLh88U8QqEQvkVKK+Z59SwQqSkpSsu1sXeBmaW1okxKcjK0vtjuAUBbWxfJSYl49SztuBl49xpu/HsS7XqMzHqFsyAq7C1iJaFw9k5LBdfRM4KtS1G8f3Hrh5eTGB8NANDVN8n2GLPi83Ze7Iv7zj9v54GPHv3ycq9cuQpPD3dMmTYNLVu3Qd9+/XHk6NFsiJiyKuzjO0jEYUr7sr6BEVw8CuH5N/b/188C4VNEef/3KVI603kAID42Grr6Br/VxbnsJJPKftu/vIiNuE9kMhlOnjyJY8eOoVq1apmWK1KkCMaPHw8PDw906NABJUqUwKlTmfdATJkyBUOHDsXAgQPh6emJkiVLYtCgQQCAU6dO4d69e9iyZQuKFy+O0qVLY8OGDTh37hyuX78OAJg/fz66du2Krl27wsvLC1OmTIGvr6/SOsaPH485c+agadOmcHFxQdOmTTF48GCsWLEi07gSExMhkUiU/hITM08b+BESiQRSqRQiU5HSdJFIhMiIyIxn+gHnzp3F06dP0alT5yzFl12iJWJIpakwEZkpTTcWmSJKHJ7hPGJxeLryJiJTiCOVy/93/SK6tKiKTn9UwpF92zBy0kIYGYsAACHB7wEAu7b+jcYtO2HY2DkwMDTGlNF9EBMdlU21+7ZocRgAKN2nBgCGJuaK974WGy3/vAy/nsfYHNFR8nkc3YtCW0cPh7bNQVJiPJIS4nBwy1+QSlMhEYcCANwLlkZ0VBjOHlyNlJQkxMVG4fC2eZ/iCs3Wen5PzKe4DU3MlaYbGFsgJiprsVw4/DeEQg2UqdE+S8vJbor9W6ScLmYqEiEy8tf37w/BwTh4+Ahs7WwxbfJE1K9bB8tWrMSJk6q7v+bzfmts8vU+bQ5JJtt19KftOv08ZorlRYnDoample7+FxMTc0WZgsXK4mnQXVy9cBTS1FREhodg/46V8vkj5euOkYixZtEEdOk/AXr66s1EiJHIt28DY+VtX9/IHLGSjD+rr8mkUpz6Zxrs3PxhaZfx/ZTqklO/Yx+Cg3Hw0GHY2dph6pTJqFevLpYtX4ETJ3N/T1ZuJ1H8rmWw/0dm/JseEx0p3/+/+l03Eplneh4QLYnEoX9WoWKNZtkQNVE+H9gEAA4ePAhDQ0MkJydDKpWiTZs230yRLFKkiNJrGxsbhISEZFg2JCQE79+/R/Xq1TN8PzAwEA4ODnBwcFBM8/X1hUgkQmBgIEqWLInAwED06qU8gEfZsmVx5oy8iz82NhbPnj1D165d0b17d0WZlJQUmJhkfoVz+vTpmDhROS+7f/8BGDBwUKbzqENoaChWrliOKVOnQVtb+/sz5HK+hYtj2vwNiJZE4czxfVg0cwwmzl4NE5EZpDL5vWGNm3dCqXLyCw09B/4P/Ts3xNVLp1G9duYDwvyq/y4dwK7VExSvu/y5PNvXAQCGxmZoN2Aedq+dhEvHNkEgEMKvbF3YOftCIJBfa7K290CrntOwf/NMHNk+HwKhEBVqtYOhiTkEwpy9HnXn3wPYv36C4nW7wctyZD3vXj7AleMb0XviLggEghxZx+9GJpPBw90dXTp2AAC4u7nh5atXOHTkCGoEZHzszKor5w5jw/KpitcDxyzMkfX8iEJ+ZdG8wyBsXD4Nf88fC00tLTRo3h1PHt5SbAPrl05G6Yq14VWwuMrje3BtP45tGa94/UefzC8O/qjj2yYi9P0TtB22JcvLyi1kMhk8PNzRuZN8gCLFdn74CGoEqC4lnoCr5w5j04opitf9VLD/x8fFYNHUAbBxcEWDlj1zfH2UP+T7RlzVqlWxbNkyaGtrw9bWFpqa3/5Ivs53FwgEioEXvqanp5dtcWYmJiYGALBq1SqULl1a6T0NDY1M5xs1ahSGDBmiNO3N2/dZisXY2BhCoRDiSLHSdLFYDFOzbw9akpmnT55ALBZjQP+0+wilUinu37+PAwf2Y+++A9+sZ04wMhZBKNRIN4iJRBypNOLcl0Qi83Tlo8SREJkql9fV1YO1rQOsbR3g4V0IQ3r+gbMnDqBR844Qmcp7suwcnRXltbS0YWVti/DQ4GyoWXq+/tWURpBMSZGnGkdHhcHY1FIxPSYqHLZO3hkuw8BI/nl97r1SzCMJV+rR8ypSHqPmHUNsdCSEQg3oGRhjYp+K8LOqoyhTrHx9FCtfH9FRYdDW0YMAApw/vB5mVvbZUt/MeBerBvsMPoeYqHClgUdiJWGwdvT55fW8CrqB2OhwzBmalg0glabi6La/cPn4Bgydo77R3xT7t1i5NyJSLP7uoETfYmZqCidHB6VpDg4OuPjvv7+8zO8pWqoyxn8xgmRKcjIAQBIVAZFZ2nYtEYfDwSXjEQmNPm3XkqivjwMRiuOAicgcKSnJiIuNVuqNi4oKVzpW1GrUDjUbtoU4MgwGBkYIC3mPXZsWwbKAfLsOvHcdt6+fx7F9GwEAMsggk0rRvVlJdOg9BhUDGmfh0/g29yLVYOuclkL7eduPlYTD0CRt24+LDoeVfcbHgC+d2DYJz+6fRZshm2Bsap39AWdRTvyOAfLt3NFBeaRTRwcHXLqUc9s5ZaxoqcpwyWD/j/6J/d/QyFS+/3/1ux4tDk93HpAQH4sFk/tCV08ffUbMhaZm5vf/53Z5NGvxt5XvG3EGBgaKe9Sym5GREZydnXHq1ClUrVo13fs+Pj548+YN3rx5o+iNe/jwIcRisSJl0sfHB1evXkWHDh0U8125ckXxf4ECBWBra4vnz5+jbdu2Pxybjo4OdHR0vpqWcQrAj9LS0oK7uwdu37mNsuXk90tIpVLcvn0b9Rs0+KVlFvXzw5Klyr0/8+fNgb29A/5o3kLlDTgA0NSSD///4M51lChTGcCnhuXd66hZr3mG87h7F8KDu9dRp1ErxbT7t6/B3bvwN9clk8mQkiw/aXJx94aWljY+vH0NL18/APIe19CPH2BhmTM3x+vqGUBXL234fplMBiORBZ4+uAI7Z3ljJSEuBq+f3UXZgFYZLkNTUxt2Lr54+uAKCpWQX3GWSqV4ev8KytVsk668gZH8ROnpgyuIlUTA1z99evPnxt+1s7ugqa0Dz0Ll0pXJTjp6BtD56nMwNLHA84dXYOP06XOIj8HbZ3dRsmrGn8OP8CvfEG5f3G8IAOtnd4dfuYYoVrHpLy83O2hpacHD3R23bt9FubLyGOX79x00rF/vl5fr6+uDN+/eKU179+4drCxzblROPT0D6H31fZqYWiDw7jU4fjppi4+LwfMn91Gldsb7tKaWFpzcfBB49xr8S8uP71KpFIH3rqFaHfl9zU5uPtDQ1MTDu9dQoqy8VzH43UtEhAbDzUs5q0MgEMD00wnktQvHYGZhDSdXeaNo9Ix1ShcLb187iyN71mPU9LUwNc/Z0Ut1dA2ho5uWwimTyWBgbIlXQZdRwEG+7SfGx+D9izvwq9g60+XIZDKc3D4Zj2+fQOshGyGycMi0rDp93s5v37mNcuW+3M5vo0GD+r+8XF9fX7zNaDu3ssxkDsopGf2uGYssEHj3qqLRFh8XgxdP7qPyN/Z/RzcfPLp7FcW+3P/vXkPVumnjGsTHxWDBpD7Q1NJG31HzFfdxE2WHfN+Iy2kTJkxAr169YGVlhTp16iA6OhqXLl1C//79ERAQgMKFC6Nt27aYP38+UlJS0KdPH1SuXBklSpQAAAwcOBCdOnVCiRIlUL58eWzevBkPHjyAq2vas3UmTpyIAQMGwMTEBLVr10ZiYiJu3LiByMjIdL1tOa1Jk6aYO3c2PDw84OnphX379iAhMQE1asiHwZ8zexbMzc3RqXMXAPKbyF+/fg1A3iAJDw/Ds2fPoKenB1tbW+jr68PZ2VlpHbq6ujA2Nk43XZXqNGqNFfMnw8XdB26evji6fzsSExJQubr8ZHbZvIkwNbNEq459AAC1G7TElNG9cWjPZhQrWR6Xz5/A86eB6NpXPkhBQkI89u1YB/9SFSEyM0eMJAonDu1EZHgoSleQn/zp6xugeu0m2Ll1FcwsC8DC0hqH9mwCAJSukPl9nNlJIBCgYu0OOLV3BSysnWBmaY9jOxfCWGSFgsXTUt9WTOuMQiUCUL6m/MJCpTqdsH3FKNi7FIKDW2FcOLoBSYnxKFk5LQX0+rndsLJ1g4GxKV49uY39G6ejYu0OsLJNe6TEpeOb4eRRDDq6+nh8718c2jobdVsOhp6BsUrq/5lAIEDZmh1w9sBymFk7wdTCHqd2L4SRqRV8/NNSo9bO7Ayf4gEoEyD/HBITYhHx8bXifXHYW3x4FQg9QxOIzG2hb2gKfUPlq/0aGpowNLGApY36H63RtEljzJ47D54e7vDy9MSeffuQkJCAmjXkdf5rzlxYmJujy6eUMfn+/Ub+f0oKwsPD8ezZc+jq6cLO1la+zMaNMHjYcGzdvgOVKlZA0OPHOHz0GAZ90fue0wQCAQLqt8HBf/5GARtHWBSwxZ4tyyAys4R/6SqKcrPG9YR/maqoXlfeUK/ZsC1WLxwPZzdfuHgUxMmDW5CYEI/y1RsCkA+OULF6Y2xfOweGhsbQ1TfAllV/wc2riFIj7uie9SjkXw4CgRD/XTmNw3vWotewmRB+ukhl66D8LLWXzx5CIBDA3ilnLkB+i0AgQIlqHfDv4WUwtXSCyMIeFw4sgKGJFTz90rb9bfM7wsOvBopXaQcAOLFtIh5eP4imvZZCW8dAce+ojp4RtLR1VV6Pb2napAlmz50LDw+PtO08MQE1a8hHBZ01ew7Mzc3RpXMnAOl/x8LCw5V+xwCgSZPGGDJ0GLZt345KFSsiKOgxDh85ioED+quljlmlYaAPA/e0nkV9F3sYF/VGUkQUEt58UGNkP+/z/n9459+wsnGERQE77Nu6FCIzSxQrlXYBfu74nvArXRXVPu3/NRq0w9pF4+Dk7gsXj0I4eWALkhLjUb6a/FmY8XExmD+xD5KSEtBl0FQkxMUiIU4+4qyRsali/yb6VWzE5bCOHTsiISEB8+bNw7Bhw2BhYYE//vgDgPzAsW/fPvTv3x+VKlWCUChE7dq1sWhR2vOBWrZsiWfPnmH48OFISEhAs2bN0Lt3bxw7ljZ6W7du3aCvr49Zs2bhzz//hIGBAQoXLqwYQEWVKlWujChJFDZt3Ch/SKqrKyZNmqJItwoNDYFAmHavT0REOAb076t4vXvXLuzetQuFCxfGjJmzVB7/jypbsQaio8TYuWUVoiLD4eTqgRET5sHkU3pkeGiw0j1Nnj5F0HfoJPyzeQV2bFwOa1sHDBn9Fxyc3ADIR7V6//YlLpw+jGiJGIbGJnB198HYGcth75h2Ate6c38INTSwbO4EJCUlwt2zIMZMXQIDQ9U1YqrU74qkxHjsXD0eCXHRcPb0R7cRK5WuMIZ/fIPY6LS0O7+ydRAbHYFjOxchOioMtk7e6DZihVI6ZeiHlzi8fR7iY6JgammHao16olId5Qdcv352D8d3LUZiQhysbF3RrMsEFK/YMMfrnJGKdbshOTEe+9eOR0KcBI6e/ugwVPlziAh5jbgvPof3Lx5gzcy0Oh3ZOhMAUKx8YzTtPl11wf+iKpUqIioqChs2bVbs31MnTfxi/w6F8IvtPjwiAn0GDFS83rl7D3bu3oMihQth1gx5fb08PTHuf6Oxdt0GbN66DdYFCqBXj+6oVrWKKquGOk06IikhHuuXTUFcbDQ8fPwweOxipe8zNPgtYiRixetSFWohWhKJvduWQRIpT70aPG6xUjpVqy5DIRAIsOSvP5GSnIRCnx72/aV7/13CwZ2rkZKSDAdnD/QfOQ+Fi5fP8Tr/qtI1uyM5KR7HtoxDQpwE9m7F0aL/39DUSvusIkPfID4mbdu/dX4rAGDrPOUBe+p2mI7CZdXby/y1ypUrIUoShY0bNym28ymTJim285DQUKXfsfCICPTtP0Dxeteu3di1azcKFy6MWTNnAPi8nf8Pa9etw+YtW2FtXQC9evZAtQyydHIDk+KFUPbURsVr39mjAQBvNuzG3a6jMpvtt1WrSSckJsZj03L5/u/u44eBY5d8tf+/Udr/S37a//dvXQaJOBz2Ll4YMHYJjD/t/6+fP8KLJ/IRqP/XR/l3atryQ7Cwss35iqlYXh0F8nclkMlk/MQJAPD02Qt1h6AW4hSRukNQi/fRqu29+l0kJOePAUO+VsryqbpDUIu3SXbqDkEtHgcbfL9QHlTVKX9u5w+9fz2lOTczvP3jj7XISyoX1Fd3CBnqNfPXR3DNactH/Po9rb8rPmKAiIiIiIgoF2E6JRERERERZQmT+1SLPXFERERERES5CBtxREREREREuQjTKYmIiIiIKEukHJ1SpdgTR0RERERElIuwEUdERERERJSLMJ2SiIiIiIiyhKNTqhZ74oiIiIiIiHIRNuKIiIiIiIhyEaZTEhERERFRlsg4OqVKsSeOiIiIiIgoF2EjjoiIiIiIKBdhOiUREREREWUJ0ylViz1xREREREREuQgbcURERERERLkI0ymJiIiIiChLpHzYt0qxJ46IiIiIiCgXYSOOiIiIiIgoF2E6JRERERERZQlHp1Qt9sQRERERERHlImzEERERERER5SJMpyQiIiIioiyRcXRKlWJPHBERERERUS7CRhwREREREVEuwnRKIiIiIiLKEilHp1Qp9sQRERERERHlImzEERERERER5SJMpyQiIiIioizhw75Viz1xREREREREuQgbcURERERERLkI0ymJiIiIiChL+LBv1WIjjhSOBjmrOwS1KO0Wpe4Q1KKC9r/qDkEtpLr587C352VZdYegFq4FEtQdglroaufPk6mIVDN1h6AWhrdvqTsEtYjxK6buENQjOUjdEdBvgOmUREREREREuUj+vCRNRERERETZRiaVqjuEfIU9cURERERERLkIG3FERERERES5CNMpiYiIiIgoS6R82LdKsSeOiIiIiIgoF2EjjoiIiIiIKBdhOiUREREREWUJH/atWuyJIyIiIiIiykXYiCMiIiIiIspFmE5JRERERERZIuPolCrFnjgiIiIiIqJchI04IiIiIiKiXITplERERERElCVMp1Qt9sQRERERERHlImzEERERERER5SJMpyQiIiIioiyRyqTqDiFfYU8cERERERFRLsJGHBERERERUS7CdEoiIiIiIsoSjk6pWuyJIyIiIiIiykXYiCMiIiIiIspFmE5JRERERERZwnRK1WJPHBERERERUS7CRhwREREREVEuwnRKIiIiIiLKEpmM6ZSqxJ44IiIiIiKinxQREYG2bdvC2NgYIpEIXbt2RUxMzHfnu3z5MqpVqwYDAwMYGxujUqVKiI+P/6l1sxFHRERERET0k9q2bYsHDx7gxIkTOHjwIM6fP48ePXp8c57Lly+jdu3aqFmzJq5du4br16+jX79+EAp/rlnGdEoiIiIiIsoSqVSq7hBUKjAwEEePHsX169dRokQJAMCiRYtQt25dzJ49G7a2thnON3jwYAwYMAAjR45UTPPy8vrp9bMnjoiIiIiI8qzExERIJBKlv8TExCwt8/LlyxCJRIoGHAAEBARAKBTi6tWrGc4TEhKCq1evwsrKCuXKlUOBAgVQuXJlXLx48afXz0YcERERERHlWdOnT4eJiYnS3/Tp07O0zODgYFhZWSlN09TUhJmZGYKDgzOc5/nz5wCACRMmoHv37jh69Cj8/f1RvXp1PHny5KfWz0YcERERERFliUwq+23/Ro0ahaioKKW/UaNGZViPkSNHQiAQfPPv0aNHv/QZfU457dmzJzp37oxixYph3rx58PLywpo1a35qWbwnjoiIiIiI8iwdHR3o6Oj8UNmhQ4eiU6dO3yzj6uoKa2trhISEKE1PSUlBREQErK2tM5zPxsYGAODr66s03cfHB69fv/6h+D5jI+4nvHnzBuPHj8fRo0cRFhYGGxsbNG7cGOPGjYO5ufkPLePly5dwcXHBrVu34Ofnl+0xCgQC7NmzB40bN872Zf8omUyGq0cX4cHlf5CYIIGNsz+qNh8PkaVzpvPcOLkCz+6eQGTIc2hq6cLauRjKNxgKUytXRZndi9vj3bPrSvMVKtsSVVtMzKmqfNOJQ//g0J7NiIoMh6OLBzr0GAo3z4KZlr968RR2bl6BsJAPKGDrgFYd+8KvRHnF+7u2rMKVCycQEfYRGppacHH3RvN2veDuVUhRZlC3xggL+aC03BYd+qDhHx2zv4I/aOfR09i8/xgixFFwd3LAkC6tUdDDNcOy+06ex5Fzl/H8zTsAgJerE3q1bqJUvmzzbhnO27fdH2jXqHb2V+AX7TpyElv2HZHX29kRg7u2g28m9d5/4iyOnPsXL16/BQB4uTqjZ9s/lMpPWbQKR85eUpqvtF8hzB07LOcq8QtkMhkuHVqIe5f+QWK8BLau/qjRagJMrZwznefqsRV4fPs4Ij7K928712Ko1HgYzAqk1f/Oxe0IvHEQIW8eICkhFv1mXYeuvrEKapQxmUyGg9uX4tLJ3YiPi4arlx9a9xgDKxunb8537sg2nNi/HhJxGOydPNGi60g4exTOcPlLpvbFw9uX0GP4PPiVqpauTEy0GNOGNoc4IgSz11+AvoHqPw+ZTIaz+xbhv/P/ICFOAgd3f9RrPx7mBZwznedV0HX8e2w13r98gJioULTsuxje/gHpyoW+f4aTO2fj1ePrkKamwtLWDS36LISJecaDAeSk44d24uDuzYiKjICjizs69hwC928cz69cPIV/Nq1EWEgwrG3t0apTXxQrUS7DsquXzMSpo3vRvttA1GnUSjF9QNcmCAtRTrlq1aE3GjbvkD2V+gUymQz7ty3DhRN7EB8XDTfvomjbYzQK2H57uz9zZDuO712PKHE47J090brbCLh4yH+7YqOjsH/bMjy8cwURYcEwNDZFsVJV0LB1H+gbGKmiWtnGrEIJuA7tChP/QtC1tcKNZn3wcf8pdYdF2czS0hKWlpbfLVe2bFmIxWLcvHkTxYsXBwCcPn0aUqkUpUuXznAeZ2dn2NraIigoSGn648ePUadOnZ+Kk424H/T8+XOULVsWnp6e2Lp1K1xcXPDgwQP8+eefOHLkCK5cuQIzMzN1h/lb+O/037hzfiNqtJkBY3N7XDmyAPuWd0PbkYegqZXxVZB3z66jSIU2sHIoDKk0FZcPzZPPM+IgtHT0FeUKlmmO0nUGKF5raevleH0ycuXCCWxevQCd+4yAu2dBHN2/DTPHD8SsZTtgIkq/HTwOvIsls8eiRYfeKFayAv49dwzzpg3HlHkb4ODkBgCwsXNEx57DYGVth6SkRBzZtxUzxw/AnBW7YGxiqlhWszY9ULVWY8VrXT39r1enMicvXcPC9TswvEc7FHR3xfZDJzF46nxsWzAFZibpTzj/exCEGhVKobCnG7S1tbBp7xEMmjIPm+dOgpW5vI4HV85Rmufy7XuYtmw9qpYprpI6/YiTl65i0bpt+LNnR/h6uGLHweMYMnk2ti6aAdMM6/0INSqURiGvttDR0sKmvYcxeNIsbJo/DZbmad9tmWKFMbpvV8VrLS0tldTnZ1w7sQq3zm5EnfYzYGJhj4sHFmDn4q7oPPZwpvv3myfXUKxSW1g7yffvC/vn4p9FXdF57CFof9q/U5Li4eJbES6+FXFh35wMl6NKJ/auxdnDW9Gh32SYW9nh4LYlWDS5N8bN3wMt7YzreePSUexaPxute/wPzh6FcfrQZiya0hsTFu6DkYnyhb7TBzdBIBB8M4ZNSyfAzskT4oiQb5bLSZeO/I2rJzeicdcZMLWwx5m9C7Bpbjf0nZL58TwpKR4F7L3hV6EZdizpn2GZiJDXWDujDYpV/ANVGvWHjp4hQt8/zXSZOenyhZPY9PdCdOk7HO6eBXFk/3bMGDcYc5Zvy/R4vnjWeLTs2Av+JSvg0rljmDt1BKbNX6c4nn92/fJZPA16AFMziwzX/Ufb7qhWq5HitTqP5wBwbM86nD60FZ0HTIKFlR32bV2KBZP7YuKCXZlu99cvHsM/a+egbc8xcPEshFMHt2DBpD6YtGgvjEVmEEeEQhwZij86DoaNgysiQj9g0/KpEEeEotfw2SquYdZoGOhDcjcIb9btQomdS9Qdzm9HJstfo1P6+Pigdu3a6N69O5YvX47k5GT069cPrVq1UoxM+e7dO1SvXh0bNmxAqVKlIBAI8Oeff2L8+PEoWrQo/Pz8sH79ejx69Ag7d+78qfXznrgf1LdvX2hra+P48eOoXLkyHB0dUadOHZw8eRLv3r3DmDFjAMh7wvbu3as0r0gkwrp16wAALi4uAIBixYpBIBCgSpUqAIBOnTqhcePGmDhxIiwtLWFsbIxevXohKSlJsRxnZ2fMnz9fadl+fn6YMGGC4n0AaNKkCQQCgeK1KslkMtw+twEla/aCa+HqsLD1Qo02MxErCcHzeyczna9Rz7/hU6opzG08YGnnjRptpiM68j1C3j5QKqeprQcDY0vFn7auYU5XKUNH9m1F1ZqNUDmgAewcXdG5z0jo6Oji3MkDGZY/dmA7iviXQf2m7WHn4ILm7XrB2dULJw79oyhTrnItFPIrBStrO9g7uqJt14GIj4vF65dPlZalp6cPkam54k9XVz0NWQDYevAEGlaviPpVK8DFwRbDe7SDjrY2Dp7OeJSliQO7o1mtqvB0cYSznQ1G9eoEqUyGG/cDFWXMTU2U/i5cvw3/gl6wK/D9q2Kqsv3AMTQIqIx61SrCxcEOf/bsCB0dbRw8dT7D8hMG9ULT2tXh6eIEJ3tbjOzdRV7vew+VymlpasLcVKT4MzY0UEV1fphMJsN/ZzagTO3ecC8aAEs7b9Tt+BdiokLw9E7m+/cf/VajUNmmsLD1gJW9N+q0n4HoyPf4+Dpt/y5erRNK1+wBG+eiqqjKN8lkMpw+tBm1m3VH0VJVYe/siY79pyAqMhR3rp3OdL7TBzaifEBTlK3WGDYObmjd43/Q1tHFv6f3KpV78+IRTh3YgHZ9Ms8iOH9sB+JjoxHQUL29MldPbkCl+r3gXaw6Cjh4oXHXmYgWh+DRf5l/3x6FK6Fa00Hw8a+RaZnTu+fDo3Bl1Gj+J2ycfGFm5Qgvv2owMP6xrJbsdHjvVlSt1RBVAurD3tEFXfsMh46ODs6dOJhh+aP7d6Cof2k0aNoOdg7OaNGuJ1zcvHD8oPIJWER4CNavmIu+QydAQzPja+a/0/FcJpPh5MEtqPdHd/h92u47D5gMcUQobl07k+l8Jw5sQoUaTVG+eiPYOrihbc8x0NbRxaVP272dkzt6D5+DoiUrw8raAd6FS6Fx2364e+M8UlNTVFS77BF67Dwej5+Pj/sy3/4pf9m8eTO8vb1RvXp11K1bFxUqVMDKlSsV7ycnJyMoKAhxcXGKaYMGDcKoUaMwePBgFC1aFKdOncKJEyfg5uaW0SoyxUbcD4iIiMCxY8fQp08f6OkpH2Ctra3Rtm1bbN++HTKZ7LvLunbtGgDg5MmT+PDhA3bv3q1479SpUwgMDMTZs2exdetW7N69GxMn/niq4PXr8lTDtWvX4sOHD4rXqiQJf4u46FA4eKallejoGaGAUxEEv7z9w8tJjI8GAOjqmyhND7p5AKv+VwabZzbAvwfnIDnp555unx1SkpPx4ukjFPQrpZgmFApRsGhJPH10L8N5nj66h0JFSypNK+JfJtPyKcnJOHNsL/QNDOHk4qH03oFdG9CrbQ2MGdgeB3dvVNuPYHJyCoKev0LJIml53UKhECWL+OD+4+c/tIyEpCSkpKRm2liJEEfh0n/30KBaxWyJOTskJ6cg6NnLdPUuUaQg7j9+9kPLSEhKREpq+nrfevAI9Tr3R6v+IzFrxXpERcdka+xZFRX+FrGSUDh5Ke/fNs5F8f7FrR9ejmL/NjD5Tkn1CA95B4k4DN5F0tJh9AyM4OxRGM8f381wnpTkZLx+HgivImUU04RCIbwLl8GLoLR5khLjsXbBKLTsNhomphn3znx48wyH/1mBjv2nQCBQ38+0OOwtYqJC4eqb9n3r6hvB3rUI3jy7/cvLlUmleHL3LMysnbFpblfMGlQOf09p8c2GYU6RH8+DlI7PQqEQhfxK4knQ/QznefLoPgr5fXU8L1YaTx6llZdKpVg6dxLqNW0Le6eM06wBYP/OjejRphZGDeyAA7s3qbVRE/ZRvt37FE3b7vUNjODiUQjPg76x3T8LhM8X+4pQKIRPkdKZzgMA8bHR0NU3gIYGE8IodzMzM8OWLVsQHR2NqKgorFmzBoaGaR0Mzs7OkMlkik6bz0aOHIk3b94gNjYW//77LypUqPDT6+be8wOePHkCmUwGHx+fDN/38fFBZGQkQkNDv7uszzm25ubm6W561NbWxpo1a6Cvr4+CBQti0qRJ+PPPPzF58uQfeor752WLRKJMb6j8LDExMd3zMZKTtaGVxVSWuGj5Z6BvqHw1Vd/QArHRYT+0DJlUigt7p8HGxR/mNp6K6Z7+9WFkZgsDYyuEf3iMSwdmIzLkJep1WZSlmH9WtEQMqTQ1XZqNicgMH969ynAesTgcxl+VNxaZQRwZrjTt1vWLWDzrf0hKTIDI1AIjJi2CkbFI8X7N+i3g7OYFQ0NjPHl0D9s3LIU4Mhztug7Klrr9DHF0DFKl0nRpk2Ymxnj1LuOhdb+2dNNOWJqJULKwb4bvHz73L/R1dVCltH+W480u4uhoeb1Fyg0QMxNjvH73IZO5lC3b+A8sTEUo8UVDsEyxwqhcpgRsrSzwLjgEK7bswtApc7Bi2lhoaPwe19tiJZ/27696S/SNzBEr+fH9+8yuabBz9Yelref3Z1CDqEh5XYxFyvU0NjGHRJxxPWOiIyGVpsL4q7RJI5E5Pr57oXi9c90suHoVRdFSVTNcTnJyEtbMH4kmHQbDzNIGYR/fZqUqWRITJf++v+4dMzC2+OHvOyOx0eFISozDpcOrULXJQAT8MQxP71/A9qX90fHP9XD2KvX9hWQTxfHcNP3x/P3bzI/nGR3/xeK04/mBXRuhIdRA7QYtMl13rQYt4PLpeP740V1sW78c4ohwtO82MAs1+nWft20jk69/q8wh+eq36jPFdv/V52EkMseHdy8znCdaEolD/6xCxRrNsh40/VZk0u93ZlD2YSPuJ/xIT1tWFC1aFPr6afnwZcuWRUxMDN68eQMnp2/fVPyzpk+fnq6Xr06bcajbdsJPLSfo5gGc2TFe8bpB9+VZju3srkkI//AEfwzYojS9ULmWiv8tbL2gb2yJvUs7ISrsNUwsHLO83t+BT+HimDp/I2IkYpw5vg+LZ47GhNlrFCcMdRu3UZR1dPGApqYm1iydgZYd+kBLS1tdYf+SDXsO48Sla1g68U/oaGd879eB05dQq2KZTN/PjTbuPoiTl65i8cSR0NFO+84CKqT14Lg5OcDNyQEt+g7HrQePlBp7qvTw2n6c2Jq2fzftsyLLyzy5fSLC3j9B6yFbvl9YRa6dP4StKycrXvcetThH1nP3+lkE3buOUbO2Z1pm3+YFsLZzQelK9XMkhm+5e+UADm5I+77bDMz68Twjsk9DbHsVq4ayNTsBAKwdffDm6S3cPLtNpY24nPD86SMc3b8D0+av++Z9j/Uat1b87+jiDk1NLaxeMhOtOvZWyfH86rnD2LRiiuJ1vzELc3yd8XExWDR1AGwcXNGgZc8cXx9RXsZG3A9wd3eHQCBAYGAgmjRpku79wMBAmJqawtLSEgKBIF1jLzk5OVviEAqF2bbsUaNGYciQIUrTVp/5+R8Nl4JVUWBYEcXr1BT5PXxxMeEwMEl7AGJcTBgsbTPuyfzS2V2T8PLhWTTttwmGom/3Jlo7ytcrDnul0kackbEIQqEGosQRStOjxBEZ3gQPACKROSRflZeIIyAyVb7CraurB2tbB8DWAe7ehTG0ZzOcO7EfDZt3ynC5bl6FkJqaitCPH2Brn70N/e8RGRlCQyhERJREaXpElATmom+nyW3efwwb9x7BwnFD4e7kkGGZ24GP8fp9MKYM/r1+6EVGRvJ6i6OUpkdESdL1zn1ty74j2LTnEOaPHw5354zr/ZmdtRVExkZ4G/xRbY049yLVlO5RU+zfknAYfrl/R4fDyt77u8s7uX0Snt8/i5aDN8HI9Nv7tyoVKVlFaQTJlE/1lIjDYWKadi+mJCoc9s5eGS7D0MgUQqEGJFHKPRbR4nAYi+Rpk0H3ryHs4xsM66icNrNq9lC4e/tj8KTVeHz/Ot69foJbLeS9zzLIj/nDO1dB7WbdUL9ln6xV9hu8ilaF/fi04/nnzyFWEg4jUdr3HSsJQwGH7x/PM6NvZAqhhiYsbdyVplvYuOHN05u/vNxfoTieR6Y/nn99fP5MJDLP8Pgv+tRzG/TgNiRRkejfJe18QSpNxaY1i3Bk/3YsXL0nw+W6exZU6fG8aKnKcPFMG/045dP5RHRUBERmX2z34nA4uHxnu//q84gWh8Pkq57shPhYLJjcF7p6+ugzYi40NfPOxTkidWAj7geYm5ujRo0aWLp0KQYPHqx0X1xwcDA2b96MDh06QCAQwNLSEh8+pKVUPXnyROlmRu1PV95TU1PTrefOnTuIj49XLP/KlSswNDSEg4P8ZO/rZUskErx48UJpGVpaWhku+2sZPS9DS+vnexq1dQ2VBheRyWTQN7LEm8eXYWkn/5FPSojBx1d3Ubhc68wWA5lMhnO7J+P5vZNo2ncDTMztv7vu0HfyBy0aGFt9p2T20tSSD///4M51lChTGYD8/ocHd6+jRr3mGc7j7l0YD+7eQO1GaZ/B/dvX4O6dfujxL8lksm821F89fwyBUAgTkWmmZXKKlpYmvFydcONeICqXKgZA/jncuPcIf9TOOFUMADbtO4J1uw5j/v8GwcfNOdNyB05dhLerEzy+09hRNS0tTXi5OePGvYeoVFo+YqZUKsXNuw/RrE71TOfbvPcw1u86gLljh8LH3eW76wkJj0BUdAzMTUXZFfpPy2j/NjC2xKugy7D6dBKfGB+DDy/vwK/it/fvUzsm4+mdE2g5aCNEFr/Xd6qrZwBdvbT7E2UyGYxFFgi6dxUOLvLGaXxcDF4+uYdKNTPexzW1tODo6oOge1cVjwuQSqUIuncVlevIh5Wv2bgLyldXvhA4Zcgf+KPjMBQuIT+WdB82B8lJCYr3Xz19gI1Lx2PI5LWwtP7+cTErdPQMoaOn/H0bmljieeBlWDumfd9vn99FiSqZf9/fo6GpDVvnQggPVv79ivj4UuWPF5Afz73w4O4NlCz7xfH8zg3UrPdHhvN4eBfC/Ts3lB4XcO/2NXh4yxtEFarWSXfP3Ixxg1Chah1UDqiXaSwvXzyBQCiEsYqO55lt94F3ryoabfFxMXjx5D4q1/7Gdu/mg0d3r6JYaflxXyqVIvDuNVStm5Y9Ex8XgwWT+kBTSxt9R83PdKRLyt2YTqlabMT9oMWLF6NcuXKoVasWpkyZovSIATs7O0ydOhUAUK1aNSxevBhly5ZFamoqRowYoTRMuJWVFfT09HD06FHY29tDV1cXJibyq/dJSUno2rUr/ve//+Hly5cYP348+vXrp7gfrlq1ali3bh0aNGgAkUiEcePGQUNDQylOZ2dnnDp1CuXLl4eOjg5MTVV7ci8QCOBXuQNunFgOkaUzjM3scOXIQhgYW8G1cNpzgvYs7QTXwgEoWrEdAODcrkkIunkQ9bsugZaOgeLeGx1dI2hq6yIq7DWC/jsIZ59K0DUQIez9Y1zYOx22biVgYZvxFcKcVKdRa6yYPwku7j5w8/TF0f3bkJiQgMrV5SlQy+dNgKmZJVp27AsAqNWgJaaO7oXDezbDr2R5XD5/As+fBqJL31EAgISEeOzbsRbFS1WEyMwC0RIxThzaicjwUJSuIG8YPHl0D8+C7sOnSHHo6RngyaN72Lx6PspXrg0DQ/U8T6t1/RqYvGQNvN2cUNDdBdsOnURCYiLqV5U//27iotWwNBOhT1v5vQ8b9x7Bqu37MHFgd9hYWiA8Ut6bpaerA309XcVyY+PicfrKDfTvkPn9JOrUskEtTF20Ct5uLopHDCQkJqLepwFYJi9cCQszU/RuJz/x2bTnEP7etgfjB/X8VG8xAEBPVxf6erqIi0/Amh17UaVsCZiLTPAuOBRLN26HvbUVSvsVyiwMlRMIBPCv2gFXji6DqZUTTMztcengAhiaWMG9aNr+vWNBR7gXrQH/KvL9++T2iXh04yAa91wKbR0DxH6610pbzwha2vLvPTYqFLGSMIhD5Q87DXv/GNo6BjAys4GegUjl9axWry2O7FoFKxsnmFvZ4cC2JTAxtUTRL57ntmBCdxQtXQ1V6sgbNNUatMeGxWPh5FYQTu6FcObQJiQmxqNs1cYAABNTiwwHMzG1tIFFAXkDzdJauYEbIxEDAKztXVT+nDiBQIDSAR1w4eBymBdwhsjCDmf2LISRyErpuW8bZnWCt38ASlWXf99JCbGICEl7aG1k2FsEvw6EnoGJopFWrnZX7Fw+BI6eJeDiXRpP719A0J0z6DR8g0rrCAB1G7fG8nmT4eruDTfPgjiybxsSEhJQOUB+PF86dyLMzC3RqqO8F7R2wxaYPKoPDu3ZAr8S5XD5wkk8f/oI3fqNBAAYGZvAyFi5V15DUxMiUzNFD9vjR/fwLOgBfIsUh66ePp48uo9Nfy9AhSq1YKim47lAIEBA/TY4vPNvWNk4wqKA/BEDIjNLFPviHs6543vCr3RVVKsrb8TWaNAOaxeNg5O7L1w8CuHkgS1ISoxH+WryRyfEx8Vg/sQ+SEpKQJdBU5EQF4uEuFgAgJGxKYRfncf8zjQM9GHgnpb5o+9iD+Oi3kiKiELCmx+7J5oou7AR94M8PDxw48YNjB8/Hi1atFA8jb1x48YYP3684hlxc+bMQefOnVGxYkXY2tpiwYIFuHkzLT1EU1MTCxcuxKRJkzBu3DhUrFgRZ8+eBQBUr14dHh4eqFSpEhITE9G6dWvF4wMAeQrkixcvUL9+fZiYmGDy5MnpeuLmzJmDIUOGYNWqVbCzs8PLly9z+qNJx79aNyQnxePMjnFIjJfAxqU4GvZcpfT8n6iw10iIjVS8vndpKwBg9xLl4bQDWk+DT6mmEGpo4c3jf3Hn3HokJ8XDUGQD9yI1UbJmb9VU6itlKtaAJEqMXVtWIioyHE6unhg+YT5MPqXfhIV+VBpVztOnCPoMnYx/Ni/Hjo3LYG3rgMGj/1I8U0goFOLD21dYcPowoiViGBqbwNXdB/+bsQL2jvKRzTS1tHD5wgns3vY3kpOTYVnABrUbtkKdL+6TU7WA8qUQKYnB39v3IVwsgYezA+aNGaRIK/wYFg7hF/eE7D5+FskpKRg9Z5nScro2b4BuLdKelXTi0jXIZEDN8r/nvTEB5UtDHBWNv7ftQYQ4Ch4ujpjzv6FK9f7yXpg9x04jOSUF/5ut/FyhLi0aoWvLJtAQCvHs1VscOXsJMXFxsDAVoVTRQujeuim0f7NnxZWq0R3JSfE4vkW+f9u5FUezvn8r7d/isDeI/2L/vnNBvn9vn99eaVm1201HobJNAQC3L27D5cNp96Jtm9c2XRlVqtG4MxIT47FlxSTExUbDzbsY+v1vqVIPQujHt4pGFgCUKF8bMZJIHNy2VP6wb2cv9BuzNN0AKblJ+Try4/mB9eOQECeBo0dxtBusfDyPCH2NuJi07/v9y/tYP6uj4vXx7TMAAEXLNUbjrvL/ffxroH77Cbh4eCWObp0Kc2sXtOizEI4eqn8eZNmKAZBERWLn5r8hjgyHk6sHRk6cpxjsJDz0I4RfHc/7DpuIfzatxPYNy2Ft64AhY2ame0bct2hpauPyhZPYtXU1kpOTYFXAFnUatUTdxr/ew5kdajXphMTEeGxaPgVxsdFw9/HDwLFLlLf74DdK233JCrUQLYnE/q3LIBGHw97FCwPGLlFs96+fP8KLJ/KRmP/Xp6HS+qYtPwQLK9U/3P1XmRQvhLKnNipe+84eDQB4s2E37nYdpa6wKJ8SyHJ6tA76IZ06dYJYLE73jDlVWnw4f24Kpd2ivl8oD3JLzPjxBnmdVJg/r13tCS6r7hDUwrVAwvcL5UEfo/JnupqXVeT3C+VBMcm63y+UB8X4FVN3CGpRLzlI3SFkqFbH2+oOIVPH1vupO4Rs93uMW01EREREREQ/hI04IiIiIiKiXCR/5hX9htatW6fuEIiIiIiIfglHp1Qt9sQRERERERHlImzEERERERER5SJMpyQiIiIioiyRSaXqDiFfYU8cERERERFRLsJGHBERERERUS7CdEoiIiIiIsoSjk6pWuyJIyIiIiIiykXYiCMiIiIiIspFmE5JRERERERZIpNxdEpVYk8cERERERFRLsJGHBERERERUS7CdEoiIiIiIsoSKUenVCn2xBEREREREeUibMQRERERERHlIkynJCIiIiKiLJFJOTqlKrEnjoiIiIiIKBdhI46IiIiIiCgXYTolERERERFliYyjU6oUe+KIiIiIiIhyETbiiIiIiIiIchGmUxIRERERUZbIZBydUpXYE0dERERERJSLsBFHRERERESUizCdkoiIiIiIsoSjU6oWe+KIiIiIiIhyETbiiIiIiIiIchGmUxIRERERUZbIpBydUpXYE0dERERERJSLsBFHRERERESUiwhkMhmHkiG1SkxMxPTp0zFq1Cjo6OioOxyVYb1Z7/yA9Wa98wPWm/UmUjU24kjtJBIJTExMEBUVBWNjY3WHozKsN+udH7DerHd+wHqz3kSqxnRKIiIiIiKiXISNOCIiIiIiolyEjTgiIiIiIqJchI04UjsdHR2MHz8+390czHqz3vkB68165wesN+tNpGoc2ISIiIiIiCgXYU8cERERERFRLsJGHBERERERUS7CRhwREREREVEuwkYcERERERFRLsJGHBERERERUS7CRhyRCshkMrx+/RoJCQnqDkXtUlNTcfv2bURGRqo7FMpBSUlJCAoKQkpKirpDUZmUlBScPHkSK1asQHR0NADg/fv3iImJUXNkRESU17ARR2qTn07yZDIZ3N3d8ebNG3WHonKDBg3C6tWrAcgbcJUrV4a/vz8cHBxw9uxZ9QZH2S4uLg5du3aFvr4+ChYsiNevXwMA+vfvjxkzZqg5upzz6tUrFC5cGI0aNULfvn0RGhoKAJg5cyaGDRum5uiIss/GjRtRvnx52Nra4tWrVwCA+fPnY9++fWqOLOe4uroiPDw83XSxWAxXV1c1RETERhypQX48yRMKhfDw8MjwRyCv27lzJ4oWLQoAOHDgAF68eIFHjx5h8ODBGDNmjJqjyzmxsbEYO3YsypUrB3d3d7i6uir95VWjRo3CnTt3cPbsWejq6iqmBwQEYPv27WqMLGcNHDgQJUqUQGRkJPT09BTTmzRpglOnTqkxMqLss2zZMgwZMgR169aFWCxGamoqAEAkEmH+/PnqDS4HvXz5UlHXLyUmJuLdu3dqiIgI0FR3AJT/fHmSV7t2bcX0gIAATJgwASNHjlRjdDlnxowZ+PPPP7Fs2TIUKlRI3eGoTFhYGKytrQEAhw8fRvPmzeHp6YkuXbpgwYIFao4u53Tr1g3nzp1D+/btYWNjA4FAoO6QVGLv3r3Yvn07ypQpo1TnggUL4tmzZ2qMLGdduHAB//77L7S1tZWmOzs754uTvAsXLmDFihV49uwZdu7cCTs7O2zcuBEuLi6oUKGCusPLMfmt3osWLcKqVavQuHFjpYuuJUqUyJM9zvv371f8f+zYMZiYmChep6am4tSpU3B2dlZDZERsxJEa5NeTvA4dOiAuLg5FixaFtra20tV6AIiIiFBTZDmrQIECePjwIWxsbHD06FEsW7YMgLxHVkNDQ83R5ZwjR47g0KFDKF++vLpDUanQ0FBYWVmlmx4bG5unG7JSqTTDK/Vv376FkZGRGiJSnV27dqF9+/Zo27Ytbt26hcTERABAVFQUpk2bhsOHD6s5wpyRH+v94sULFCtWLN10HR0dxMbGqiGinNW4cWMAgEAgQMeOHZXe09LSgrOzM+bMmaOGyIjYiCM1yK8neXk51eRbOnfujBYtWih6owICAgAAV69ehbe3t5qjyzmmpqYwMzNTdxgqV6JECRw6dAj9+/cHAMU+/ffff6Ns2bLqDC1H1axZE/Pnz8fKlSsByOsdExOD8ePHo27dumqOLmdNmTIFy5cvR4cOHbBt2zbF9PLly2PKlClqjCxn5cd6u7i44Pbt23ByclKafvToUfj4+KgpqpwjlUoByOt9/fp1WFhYqDkiojRsxJHK5deTvK+v4uUXEyZMQKFChfDmzRs0b94cOjo6AAANDY08mzoLAJMnT8a4ceOwfv166OvrqzsclZk2bRrq1KmDhw8fIiUlBQsWLMDDhw/x77//4ty5c+oOL8fMmTMHtWrVgq+vLxISEtCmTRs8efIEFhYW2Lp1q7rDy1FBQUGoVKlSuukmJiYQi8WqD0hF8mO9hwwZgr59+yIhIQEymQzXrl3D1q1bMX36dPz999/qDi/HvHjxQt0hEKXDRhypXH49yQOAZ8+eYe3atXj27BkWLFgAKysrHDlyBI6OjihYsKC6w8sxf/zxR7ppeb1RO2fOHDx79gwFChSAs7MztLS0lN7/77//1BRZzqpQoQJu376NGTNmoHDhwjh+/Dj8/f1x+fJlFC5cWN3h5Rh7e3vcuXMH27dvx507dxATE4OuXbuibdu26VKn8xpra2s8ffo03b1BFy9ezNOD+OTHenfr1g16enr43//+h7i4OLRp0wa2trZYsGABWrVqpe7wcsykSZO++f64ceNUFAlRGoFMJpOpOwjKf549e4YZM2YoTnb8/f0xYsSIPH2Sd+7cOdSpUwfly5fH+fPnERgYCFdXV8yYMQM3btzAzp071R1ijsivP34TJ0785vvjx49XUSREOWv69OnYtGkT1qxZgxo1auDw4cN49eoVBg8ejLFjxyqyLvKa/Frvz+Li4hATE5Ph7RF5zdf3ASYnJ+PFixfQ1NSEm5tbnr0oR783NuKIVKRs2bJo3rw5hgwZAiMjI9y5cweurq64du0amjZtirdv36o7xBzBH7/8KSQkBCEhIYp7Sj4rUqSImiLKWRoaGqhUqRJ27dqldC/kx48fYWtrm+GgJ3mFTCbDtGnTMH36dMTFxQGQD3QxbNgwTJ48Wc3R5Zz8Wm+Sk0gk6NSpE5o0aYL27durOxzKh9iII5WTSCQZThcIBNDR0Uk3RHdeYWhoiHv37sHFxUWpEffy5Ut4e3sjISFB3SGqTH768bt58yYCAwMByEdgzWhkt7zk5s2b6NixIwIDA/H1z4tAIMizjRmhUIgyZcogODgYBw4cUKRHf/z4ETY2Nukas3lRUlISnj59ipiYGPj6+sLQ0FDdIalEXq93sWLFfnjQsfx2Ue7evXto0KABXr58qe5QKB/iPXGkciKR6Js/CPb29ujUqRPGjx8PoTDvPI9eJBLhw4cPcHFxUZp+69Yt2NnZqSkq9TA2NsbEiRPRoEGDPNuICwkJQatWrXD27FmIRCIAgFgsRtWqVbFt2zZYWlqqN8Ac0qVLF3h6emL16tUoUKBAnh5x9ksCgQC7du3CjBkzULZsWWzcuBGNGjVSvJcfaGtrw9fXV91hqFxer/fnYfYBICEhAUuXLoWvr69iILIrV67gwYMH6NOnj5oiVJ+oqChERUWpOwzKp9iII5Vbt24dxowZg06dOqFUqVIAgGvXrmH9+vX43//+h9DQUMyePRs6OjoYPXq0mqPNPq1atcKIESPwzz//QCAQQCqV4tKlSxg2bBg6dOig7vBULq//+PXv3x/R0dF48OCBYujthw8fomPHjhgwYECeHbHw+fPn2LVrF9zd3dUdikrJZDJoaGhgwYIFKFiwIFq2bIn//e9/6Natm7pDyxFNmzb94bK7d+/OwUhUKz/W+8v7d7t164YBAwakSxcdP3483rx5o+rQVGbhwoVKr2UyGT58+ICNGzeiTp06aoqK8jumU5LKVa9eHT179kSLFi2Upu/YsQMrVqzAqVOnsHHjRkydOhWPHj1SU5TZLykpCX379sW6deuQmpoKTU1NpKamok2bNli3bl2effD1t378KleujC1btqgpspxlYmKCkydPomTJkkrTr127hpo1a+bZIcgbN26M9u3bo1mzZuoORaWEQiGCg4MVgzycOXMGzZs3h7+/P06dOpXn0kg7d+6s+F8mk2HPnj0wMTFBiRIlAMjTasViMZo2bYq1a9eqK8xsl1/r/ZmJiQlu3LgBDw8PpelPnjxBiRIl8uyFua8zaIRCISwtLVGtWjWMGjUKRkZGaoqM8jM24kjl9PT0cPfu3Qx/BIoWLYq4uDi8ePECBQsWVNwsnpe8fv0a9+/fR0xMDIoVK5buc8hr8uuPn5GRES5cuAA/Pz+l6bdu3ULlypUzvTc0twsLC0PHjh1RqlQpFCpUKN2jFRo2bKimyHKWi4sLbty4AXNzc8W0p0+fokGDBnj8+HGea8R9acSIEYiIiMDy5csVF6NSU1PRp08fGBsbY9asWWqOMGfkx3pbW1tjxowZ6NSpk9L0devWYcSIEfj48aN6AiPKh9iII5Xz9PRE06ZNMWPGDKXpI0eOxJ49exAUFIQbN26gUaNGePfunZqiJMqaRo0aQSwWY+vWrbC1tQUAvHv3Dm3btoWpqSn27Nmj5ghzxoEDB9C+ffsMG6l5eWCTzCQkJODjx49wcnJSdyg5xtLSEhcvXoSXl5fS9KCgIJQrVw7h4eFqiixn5cd6z5gxAxMnTkT37t0Vt0NcvXoVa9aswdixYzFy5Eg1R5jzPqeNOjg4qDkSyu94Txyp3OzZs9G8eXMcOXJEkWp248YNBAYGYteuXQCA69evo2XLluoMM1sMGTLkh8vOnTs3ByNRny5dumDBggXpetxiY2PRv39/rFmzRk2R5azFixejYcOGcHZ2VvzYv3nzBoUKFcKmTZvUHF3O6d+/P9q1a4exY8eiQIEC6g5H7XR1dfN0Aw4AUlJS8OjRo3SNmUePHuXpUTnzY71HjhwJV1dXLFiwQHEc8/Hxwdq1a9PdIpGXpKSkYOLEiVi4cCFiYmIAyEec7t+/P8aPH58u44BIFdgTR2rx8uVLLF++HI8fPwYAeHl5oWfPnoiJiUGhQoXUHF32qVq1qtLr//77DykpKYof/cePH0NDQwPFixfH6dOn1RFijtPQ0MCHDx/SPRA2LCwM1tbWSElJUVNkOU8mk+HkyZOKezt9fHwQEBCg5qhylpGREW7fvg03Nzd1h5LjzMzM8PjxY1hYWMDU1PSbo1BGRESoMDLVGjJkCDZs2IDRo0cr9c7MmDED7du3z7MXqPJrvfOj3r17Y/fu3Zg0aZJiVM7Lly9jwoQJaNy4MZYtW6bmCCk/YiOO1E4ikWDr1q1Ys2YNbty4kWfTrebOnYuzZ89i/fr1MDU1BQBERkaic+fOqFixIoYOHarmCLOXRCKBTCaDqakpnjx5ojSkfmpqKg4cOICRI0fi/fv3aoySslvHjh1RsWLFPDsq45fWr1+PVq1aQUdHB+vWrftmI65jx44qjEy1pFIpZs+ejQULFuDDhw8AABsbGwwcOBBDhw7Ns4M25dd6A/nv+ZcmJibYtm1bupEoDx8+jNatW+fZAV3o98ZGHKnN+fPnsXr1auzatQu2trZo2rQpmjVrlm40v7zCzs4Ox48fVzwE+LP79++jZs2aea4xIxQKv3lSKxAIMHHiRIwZM0aFUeWshQsXokePHtDV1U03KufXBgwYoKKoVGvq1KmYP38+6tWrh8KFC6dLM8qr9Sa5z/dCGhsbqzkS1cov9c6vz7+0srLCuXPnFI+L+SwwMBCVKlVCaGiomiKj/IyNOFKp4OBgrFu3DqtXr4ZEIkGLFi2wfPly3LlzJ08/LBWQp5kdOHAAVapUUZp+5swZNGzYENHR0eoJLIecO3cOMpkM1apVw65du2BmZqZ4T1tbG05OTooBP/KKL0co/HpUzi8JBAI8f/5chZGpTn6t93///QctLS0ULlwYALBv3z6sXbsWvr6+mDBhArS1tdUcIVHWtWzZEs+fP8eGDRvSPf/S3d09zz7/ctKkSXj06BHWrl0LHR0dAEBiYiK6du0KDw8PpWfpEakKG3GkMg0aNMD58+dRr149tG3bFrVr14aGhga0tLTyRSOuQ4cOuHDhAubMmaN0/8Sff/6JihUrYv369WqOMGe8evUKDg4OEAqF6g6FKMeULFkSI0eORLNmzfD8+XP4+vqiadOmuH79OurVq4f58+erO8Qc4+Li8s1e97zacM+P9c6vz79s0qQJTp06BR0dHRQtWhQAcOfOHSQlJaF69epKZfPKQ97p98fRKUlljhw5ggEDBqB37955/tloGVm+fDmGDRuGNm3aIDk5GQCgqamJrl275snnCX32eWS+uLg4vH79GklJSUrvFylSRB1h5bhJkyZh2LBh0NfXV5oeHx+PWbNmYdy4cWqKTHU+XyP81oluXvH48WPFMwH/+ecfxYPsL126hFatWuXpRtygQYOUXicnJ+PWrVs4evQo/vzzT/UEpQL5sd5SqTTDkRi1tLTy7IicACASidCsWTOlaXzEAKkbe+JIZa5cuYLVq1dj+/bt8PHxQfv27dGqVSvY2Njki564z2JjY/Hs2TMAgJubGwwMDNQcUc4KDQ1F586dceTIkQzfz6sD2WQ2Kmd4eDisrKzybL0BYMOGDZg1axaePHkCQP5syD///BPt27dXc2Q5x9jYGDdv3oSHhwdq1KiB+vXrY+DAgXj9+jW8vLwQHx+v7hBVbsmSJbhx4wbWrl2r7lBUKi/XO78+/5Lod8T8JlKZMmXKYNWqVfjw4QN69uyJbdu2wdbWFlKpFCdOnMhz94RlxsDAAEWKFEGRIkXyfAMOkF+tFovFuHr1KvT09HD06FGsX78eHh4e2L9/v7rDyzEymSzDHqg7d+4o3R+Y18ydOxe9e/dG3bp1sWPHDuzYsQO1a9dGr169MG/ePHWHl2NKlCiBKVOmYOPGjTh37hzq1asHAHjx4kW+fV5enTp1FM/+zE/ycr0XL14MiUQCZ2dnuLm5wc3NDS4uLpBIJFi0aJG6w8sx1apVyzBVVCKRoFq1aqoPiAjsiSM1CwoKwurVq7Fx40aIxWLUqFEjz57Yx8bGYsaMGTh16hRCQkLSpZ7kxfsnAPmQ2/v27UOpUqVgbGyMGzduwNPTE/v378dff/2FixcvqjvEbPX5eWFRUVEwNjZWasilpqYiJiYGvXr1wpIlS9QYZc5xcXHBxIkT0aFDB6Xp69evx4QJE/DixQs1RZaz7t69i7Zt2+L169cYMmSIYqCD/v37Izw8HFu2bFFzhKr3119/YenSpXj58qW6Q1GpvF7v/Pj8S6FQiODg4HSZFSEhIbCzs1PcIkGkSrwnjtTKy8sLf/31F6ZPn44DBw5gzZo16g4px3Tr1g3nzp1D+/btYWNjky/uEwLkjdfPP3ympqYIDQ2Fp6cnChcujP/++0/N0WW/+fPnQyaToUuXLpg4cSJMTEwU72lra8PZ2VnxsNi86MOHDyhXrly66eXKlVM8SysvKlKkCO7du5du+qxZs/L088IAoFixYkrHM5lMhuDgYISGhmLp0qVqjCxn5dd6CwQC1KhRAzVq1FB3KDnu7t27iv8fPnyI4OBgxevU1FQcPXoUdnZ2/2/v3qOirPM/gL9nUC5yE0QUExhw8hKKkkSbV0QE0zQv2+IFRdAtUdNWQ90uW1IZEV6OokmbCGSiVJi6ijdkzcVaA5RMwAS5hCgqSCr3y/z+8DjbOGaeXzzzzWfer3P2nHie54/3rIzOZ77f7+cjIhoRizj6YzAxMcGkSZMwadIk0VEkk5aWhv3792Po0KGioxhUnz59cP78eahUKgwcOBBxcXFQqVTYsmULnJycRMdrd3eHOru5uWHIkCH3bQIgZ2q1GikpKXjttdd0ru/atcsoGxqZm5uLjiC5559/XqeYUSqV6Nq1K3x9fdG3b1+ByaRljK978eLFUKvVevMeY2NjUVhYKLsGPoMGDYJCoYBCobjvtkkLCwtZbyOlPzZupyQyEDc3Nxw4cEBvWKjcbd++HS0tLZgzZw6ys7MxduxYVFdXw9TUFAkJCQgKChIdUXINDQ16XTnlOhT4yy+/RFBQEPz9/bVfWGRmZiI9PR0pKSmYPHmy4IRE9P/12GOPYe/evRg8eLDO9ZycHEycOBHl5eWCkkmjtLQUGo0G7u7uOHXqlM4wc1NTUzg6Osp+pZ3+uFjEERnI9u3bsWfPHiQmJuq1nTcmdXV1KCgogIuLCxwcHETHkUxdXR2WL1+OlJQUVFVV6d2Xc3fK7OxsrFu3Dvn5+QDunJlZtmwZvLy8BCcjKRhrJ1ZjfN3m5ub44YcfoFarda4XFhaif//+aGhoEJSMyPhwOyWRgaxZswZFRUXo1q0bVCqV3jY7OZ4PA/TnpXXq1AlPPvkk6uvrERkZKdt5aREREcjIyMBHH32EWbNmYdOmTbh06RLi4uIQFRUlOp6kBg8ejO3bt4uOQQbya98FNzY2wtTU1MBpDMcYX7darcbBgwexaNEinetpaWlwd3cXlEp6SUlJD7x/byMnIkNgEUdkIHI+7/cgq1atwvz58/VWH+vq6rBq1SrZFnH79u1DUlISfH19ERoaiuHDh0OtVsPV1RWfffYZZs6cKTqiJA4cOAATExMEBgbqXD906BDa2trw7LPPCkomrYyMDIwaNUp0DIPasGEDgDuNLj755BNYWVlp77W2tuLrr7+W5dkwY33dALB06VIsWrQI165d054RS09Px5o1a2R3Hu6XlixZovNzc3Mz6urqYGpqik6dOrGIIyG4nZKIJKVUKlFZWalzlgAAjh07hqCgIFy7dk1QMmlZWVkhLy8PLi4u6NmzJ1JTU+Hj44Pi4mIMGDAAt2/fFh1REp6enoiKisK4ceN0rh88eBArVqxAbm6uoGTSMjMzQ8+ePREaGoqQkBA4OzuLjiQ5Nzc3AHfODfXs2VPnbNDdTqyRkZF4+umnRUWUhLG+7rs++ugjvPfee6ioqAAAqFQqvP3220ZXyFy4cAHh4eGIiIjQ+9KKyBBYxBEZUE1NDb744gsUFRUhIiIC9vb2yMnJQbdu3WTXptjY56V5enpi48aNGDlyJPz9/TFo0CDExMRgw4YNiI6Oll0DgLssLCyQn58PlUqlc72kpAQeHh6ora0VE0xi169fx6efforExEScO3cOfn5+mDt3LiZNmiTbrXV3jRo1CqmpqbCzsxMdxaCM9XXfde3aNVhYWOisRBqbrKwsBAcHa2fmERkSizgiA/n+++/h7+8PW1tblJSU4Pz583B3d8cbb7yBsrKy39xz/6hJTEzUzktbv3690c1LW7duHUxMTLB48WIcPXoUEyZMgEajQXNzM9auXau3PUcuunfvjh07dui14z569ChmzJiBq1evCkpmODk5Odi2bRuSk5MBADNmzMDcuXMxcOBAwcmIqD2dOXMGI0aMwM2bN0VHISPEIo7IQPz9/fHkk08iOjoa1tbWyM3Nhbu7O06ePIkZM2agpKREdERJHD9+HEOHDkWHDsZ9BLekpAQ5OTlQq9Xw9PQUHUcyL730Er755hvs3r0bvXr1AnCnc93UqVPx1FNP4ZNPPhGc0DAqKirw8ccfIyoqCh06dEBDQwOeeeYZbNmyBR4eHqLj/W5Lly7FO++8A0tLSyxduvSBz65du9ZAqaRnrK/b2O3du1fnZ41Gg8uXLyM2NhbOzs5IS0sTlIyMmXF/qiIyoO+++w5xcXF61x977DFcuXJFQCJptbS0oLW1FSNHjtReq6ysxJYtW1BbW4uJEydi2LBhAhMalkql0ttiKEfR0dEYO3Ys+vbti549ewIAysvLMXz4cMTExAhOJ63m5mbs2bMH8fHxOHLkCLy9vREbG4vp06fj2rVreOONN/DCCy8gLy9PdNTf7fTp02hubgZwZ+Xxl9ul5eyXr/v06dO/+pyx/P9hLO5tTKZQKNC1a1f4+flhzZo1YkKR0eNKHJGBODo64tChQ/Dy8tJZiTty5AjCwsLw008/iY7YrkJDQ2FqaqotXG/dugUPDw80NDTAyckJeXl52LNnj14DDDlJT0/Xm5f2yiuvwN/fX3AyaWk0Ghw5cgS5ubmwsLCAp6cnRowYITqWpF5++WUkJydDo9Fg1qxZmDdvHvr376/zzJUrV9CjRw+0tbUJSklEv8fdRlz3NuoiEkEpOgCRsZg4cSIiIyO13+IqFAqUlZVhxYoVmDp1quB07S8zM1PndSUlJaG1tRUXLlxAbm4uli5dig8//FBgQmlt3rwZY8eOhbW1NZYsWYIlS5bAxsYG48aNk20zl7sUCgUCAgIQERGBRYsWyb6AA4C8vDxs3LgRFRUVWL9+vV4BBwAODg7IyMgQkE5aYWFhuHXrlt712tpahIWFCUhE1H5qamqwcOFCODg4oHv37ujevTscHBywaNEi1NTUiI5HRowrcUQG8vPPP+PPf/4zsrKycOvWLfTo0QNXrlzBn/70J6SlpcHS0lJ0xHZlaWmJH374QduOe8qUKejZs6d2xlJeXh58fX1l2+iiZ8+eWLlypd5Q3E2bNmH16tW4dOmSoGTSS09PR3p6Oq5evaq36hQfHy8oFUnFxMQEly9fhqOjo87169evo3v37mhpaRGUTFqTJ0++77ZJhUIBc3NzqNVqzJgxA3369BGQTjrG9P6urq7GM888g0uXLmHmzJno168fgDv/fu3YsQPOzs44efKk0XYoJbF4Jo7IQGxtbXHkyBFkZmYiNzcXt2/fxpNPPinbrXXm5uaor6/X/vztt9/qrLyZm5vLdlYacOfb27Fjx+pdDwgIwIoVKwQkMoxVq1YhMjIS3t7ecHJykvXZoHubHTzIxIkTJUwixs2bN6HRaKDRaHDr1i2Ym5tr77W2tuLAgQN6hZ2c2Nra4quvvkLnzp0xePBgAHfOB9bU1CAgIAC7du3CBx98gPT0dAwdOlRw2vZhTO9vAIiMjISpqSmKiorQrVs3vXsBAQGIjIzEunXrBCUkY8aVOCKJ1dfXIz09Hc899xwA4O9//zsaGxu19zt06IDIyEidD0ByMHr0aPj4+OD999/HiRMn4Ovri/Lycjg5OQEAjhw5gvDwcBQWFgpOKo0ZM2bAy8sLEREROtdjYmKQlZWFnTt3CkomLScnJ0RHR2PWrFmio0hOqXy4EwkKhQKtra0SpzE8pVL5wA/xCoUCq1atwuuvv27AVIazcuVK3Lx5E7Gxsdrfhba2NixZsgTW1tZ47733MH/+fJw7dw7/+c9/BKdtH8b0/gbuNKSKi4v71WHeBw8exPz582XbXZr+2FjEEUlsy5Yt2L9/P/bt2wcAsLa2hoeHBywsLAAABQUFWL58Of72t7+JjNnujh8/jmeffRZOTk64fPkypk+fjq1bt2rvL1iwALW1tUhMTBSYUjrvvvsuYmJiMHToUO08vG+//RaZmZlYtmwZbGxstM8uXrxYVMx216VLF5w6dUo7XoDk6/jx49BoNPDz88OXX34Je3t77T1TU1O4urqiR48eAhNKq2vXrsjMzETv3r11rv/4448YMmQIrl+/jrNnz2L48OGyOTtlbO9vMzMzFBUVaTvt3qu8vBxqtRoNDQ0GTkbE7ZREkvvss8+wfPlynWs7duyAu7s7AGD79u3YtGmT7Iq4kSNHIjs7G4cPH0b37t3xwgsv6NwfNGgQfHx8BKWT3tatW2FnZ4e8vDydlvKdO3fWKWYVCoWsirh58+Zhx44dePPNN0VHIYndHR9SXFwMZ2fnh16ZlIuWlhYUFBToFXEFBQXalVdzc3NZbTk0tve3g4MDSkpKfrWIKy4u1vnygsiQWMQRSaywsBADBgzQ/mxubq7zYcfHxwcLFy4UEU1y/fr10x4Ev9eLL75o4DSGVVxcLDqCEA0NDfj4449x9OhReHp6omPHjjr35TQAecOGDXjxxRdhbm6ubdjza+RUqN/L1dUVAFBXV4eysjI0NTXp3JfrcPtZs2Zh7ty5eO211/DUU08BuDMPdPXq1Zg9ezaAO6uVchjufpcxvb8BIDAwEK+//jqOHDkCU1NTnXuNjY14880373v2mcgQuJ2SSGIWFhY4c+bMr3YoKygowKBBg7gdg2Rh1KhRv3pPoVDg2LFjBkwjLTc3N2RlZaFLly7aLqz3o1AocPHiRQMmM6xr164hNDQUaWlp970vx/OAwJ3XFRUVhdjYWFRWVgIAunXrhpdffhkrVqyAiYkJysrKoFQqf3Ul51FjTO9v4M52SW9vb5iZmWHhwoXo27cvNBoN8vPzsXnzZjQ2NiIrKwvOzs6io5IRYhFHJLHHH38cUVFRvzoLLiUlBa+99ppsG3wYq9+ajyW3VtxkvGbOnInS0lKsX78evr6+2L17NyorK/Huu+9izZo1GD9+vOiIkrt58yYA6Jx1JXkoLi7GggULcPjwYdz9yKxQKDBmzBjExsZCrVYLTkjGitspiSQ2btw4/OMf/8D48eP1OlDW19dj1apVRvEhx9jcuHFD5+fm5mb88MMPqKmpgZ+fn6BURO3v2LFj2LNnD7y9vaFUKuHq6ooxY8bAxsYG77//vlH8/cbiTb7c3NyQlpaGGzdu4MKFCwAAtVrNs3AkHFfiiCRWWVmJQYMGwdTUFIsWLdIegj9//jxiY2PR0tKC06dP682gIflpa2tDeHg4evXqpdfs5lE3ZcqUh3ouNTVV4iRiaDQafPHFF8jIyLjvEGS5vm7gTgHz/fffQ6VSwdXVFTt27MDQoUNRXFwMDw8P1NXViY4oicrKSrz66qvawdf3fpySyzbSKVOmICEhATY2Nr/5Ppfz7znRHw1X4ogk1q1bN5w8eRLh4eFYuXKl3naMzZs3s4AzEkqlEkuXLoWvr6/sijhbW1vREYR65ZVXEBcXh1GjRqFbt26y6kj4W/r06YPz589DpVJh4MCBiIuLg0qlwpYtW7RzIeVozpw5KCsrw5tvvinrwde2trba12ZjYyPb10n0qOFKHJEBVVdXa8++yXk7hp2d3UP/Q19dXS1xmj+WAwcOICQkBNeuXRMdhdqRvb09tm/fjnHjxomOYnDbt29HS0sL5syZg+zsbIwdOxZVVVUwNTVFYmIigoKCREeUhLW1NU6cOIFBgwaJjkJERogrcUQGZG9vL+vZaHetX79edAThli5dqvOzRqPB5cuXsX//foSEhAhKRVKxtbXVzn40NsHBwdr/Hjx4MEpLS1FQUAAXFxc4ODgITCYtZ2dnvS2UctXW1oYPP/wQe/fuRVNTE0aPHo233noLFhYWoqMRGS2uxBERSeDeVtxKpRJdu3aFn58fwsLC0KEDv0OTk8TERBw8eBDx8fFG8cH23i8pHkRus8PuOnz4MNasWaPdPipn77zzDt5++234+/vDwsIChw4dwvTp09lll0ggFnFEZDANDQ16g4DZ1Y3koL6+HpMnT0ZmZiZUKpXeEOScnBxByaTxoHlhvyTH2WF32dnZoa6uDi0tLejUqZPen7mctoo//vjjePXVV/HSSy8BAI4ePYrx48ejvr4eSqVScDoi48SvgolIUrW1tVixYgVSUlJQVVWld18uHdzuVVxcjJaWFjz++OM61y9cuICOHTvK/pt7YxMSEoLs7GwEBwcbRWOTjIwM0RGEM6Zt42VlZTrnPf39/aFQKFBRUSGbQeZEjxoWcUQkqeXLlyMjIwMfffQRZs2ahU2bNuHSpUuIi4tDVFSU6HiSmTNnDsLCwvSKuP/+97/45JNP8O9//1tMMInV1tbC0tJSdAyD279/Pw4dOoRhw4aJjkIGYkxnW1taWvTmnHbs2BHNzc2CEhERt1MSkaRcXFyQlJQEX19f2NjYICcnB2q1Gp9++imSk5Nx4MAB0REl8cvX+kuFhYXw9vZGTU2NmGASs7Kywl/+8heEhYUZVUHTt29fpKSkwNPTU3QUMqDW1lZ89dVXyM/PBwB4eHhg4sSJMDExEZysfSmVSjz77LMwMzPTXtu3bx/8/Px0vrThnDgiw+FGZiKSVHV1tbZrn42NjfacyLBhw/D111+LjCYphUKBW7du6V3/+eefZbuFFLjTbr66uhp+fn7o3bs3oqKiUFFRITqW5NasWYPly5ejpKREdBQykMLCQvTr1w+zZ89GamoqUlNTERwcDA8PDxQVFYmO165CQkLg6OgIW1tb7f+Cg4PRo0cPnWtEZDhciSMiSXl6emLjxo0YOXIk/P39MWjQIMTExGDDhg2Ijo5GeXm56IiSmDBhAiwsLJCcnKz9Vr61tRVBQUGora1FWlqa4ITSunbtGj799FMkJCQgPz8fgYGBCAsLw8SJE2XZmdOYmlzQHePGjYNGo8Fnn32mnflZVVWF4OBgKJVK7N+/X3BCIpIzFnFEJKl169bBxMQEixcvxtGjRzFhwgRoNBo0Nzdj7dq1WLJkieiIksjLy8OIESPQuXNnDB8+HABw4sQJ3Lx5E8eOHUP//v0FJzScjRs3IiIiAk1NTXBwcMD8+fOxcuVKdOrUSXS0dpOYmPjA+8Z0fspYWFpa4ttvv8WAAQN0rufm5mLo0KG4ffu2oGREZAxYxBGRQZWWliI7OxtqtVr254cqKioQGxuL3NxcWFhYwNPTE4sWLdJ+ay9nlZWVSExMREJCAkpLSzF58mTMnTsX5eXl+OCDD9CjRw8cPnxYdEyi/zd7e3v861//wpAhQ3SuZ2ZmYsKECVx9JSJJsYgjIkklJSUhKChI50A8ADQ1NWHnzp2YPXu2oGQkhdTUVGzbtg2HDh3CE088gXnz5iE4OBidO3fWPlNUVIR+/frpzQyUC85DNA6zZ89GTk4Otm7dCh8fHwB3us/+9a9/xeDBg5GQkCA2IBHJGos4IpKUiYkJLl++DEdHR53rVVVVcHR0lG2Tj23btsHKygovvPCCzvXPP/8cdXV1st1eZ2tri2nTpmHevHl46qmn7vtMfX09oqOj8dZbbxk4nXSMdR6iMaupqUFISAj27dunPQPZ3NyM559/Htu2bdP54oKIqL2xiCMiSSmVSlRWVqJr164613NzczFq1CjZbjnq3bs34uLiMGrUKJ3rx48fx4svvojz588LSiaturo6WZ11e1gLFy5ERkYG3nnnnfvOQ5w5c6boiCSRwsJC7YiBfv366Y0VISKSAos4IpKEl5cXFAoFcnNz4eHhodORsLW1FcXFxRg7dixSUlIEppSOubk5CgoKoFKpdK6XlJSgX79+qK+vFxNMAjdv3nzoZ+W6rdBY5yEam6VLlz70s2vXrpUwCREZO/n1eSaiP4RJkyYBAM6cOYPAwEBYWVlp75mamkKlUmHq1KmC0knP0dER33//vV4Rl5ubiy5duogJJZHOnTtDoVA88BmNRgOFQiHbbYUPmocYHh4uMhq1o9OnTz/Uc7/1fiAi+r1YxBGRJO6ed1KpVAgKCoK5ubngRIY1ffp0LF68GNbW1hgxYgSAO1splyxZgmnTpglO174yMjJERxDO3d0dxcXFcHFxQd++fZGSkgIfHx/s27ePZ6NkhL/rRPRHwe2UREQSaGpqwqxZs/D5559rt5K2trYiJCQEW7ZsgampqeCE1J6MdR4iERGJwSKOiNqdvb09fvzxRzg4OMDOzu6BW4vk2tjkru+++w4lJSWwsLDAgAED4OrqKjqS5GpqanDq1ClcvXoVbW1tOvfkNlLi4sWLcHNz0/sdN6Z5iEREZHgs4oio3SUmJmLatGkwMzNDYmLiA5+VY6v9mpoavP7669i1axdu3LgBALCzs8O0adPw7rvvynp73b59+zBz5kzcvn0bNjY2OsWNQqGQXdF+7wiNoKAgbNiwAd26dROcjIiI5IxFHBFJpqWlBTt27EBgYKDRfKitrq7GM888g0uXLmHmzJno168fACAvLw87duyAs7MzTp48CTs7O8FJpdG7d2+MGzcOq1evNopRA0qlEleuXNEWcdbW1sjNzdU2OSEiIpICizgiklSnTp2Qn59vFNsIAeCVV15Beno6jh49qle4XrlyBQEBARg9ejTWrVsnKKG0LC0tcfbsWaMpYljEERGRCErRAYhI3nx8fB66LbccfPXVV4iJibnvymP37t0RHR2N3bt3C0hmGIGBgcjKyhIdw2AUCoXeeTi2lyciIqlxxAARSWrBggVYtmwZysvLMXjwYFhaWurcl1vTh8uXL8PDw+NX7/fv3x9XrlwxYCLp7d27V/vf48ePR0REBPLy8jBgwAB07NhR59mJEycaOp6kNBoN5syZAzMzMwBAQ0MD5s+fr/d7npqaKiIeERHJFLdTEpGklEr9BX+FQiHb4c+PPfYYdu3ahWHDht33/okTJxAUFISKigoDJ5PO/f6M70eOf96hoaEP9dy2bdskTkJERMaERRwRSaq0tPSB9+V2Vi4sLAxFRUU4cuSI3iy4xsZGBAYGwt3dHfHx8YISEhER0aOORRwRUTsqLy+Ht7c3zMzMsHDhQvTt2xcajQb5+fnYvHkzGhsbkZWVBWdnZ9FRJZGUlISgoCDt9sK7mpqasHPnTtnNiSMiIhKBRRwRGUReXh7KysrQ1NSkc11uZ6QAoLi4GAsWLMDhw4dx969YhUKBMWPGIDY2Fmq1WnBC6dw7N+2uqqoqODo6ym47JRERkQhsbEJEkrp48SImT56Ms2fPas/CAf/r4CfHD/Vubm5IS0vDjRs3cOHCBQCAWq2Gvb294GTSu3vW8V7l5eWwtbUVkIiIiEh+WMQRkaSWLFkCNzc3pKenw83NDadOnUJVVRWWLVuGmJgY0fEkZWdnBx8fH9ExDMLLy0vbbn/06NHo0OF//7y0traiuLgYY8eOFZiQiIhIPljEEZGkvvnmGxw7dgwODg5QKpVQKpUYNmwY3n//fSxevNioZsjJ2aRJkwAAZ86cQWBgIKysrLT3TE1NoVKpMHXqVEHpiIiI5IVFHBFJqrW1FdbW1gAABwcHVFRUoE+fPnB1dcX58+cFp6P28tZbbwEAVCoVgoKCYG5uLjgRERGRfLGIIyJJ9e/fH7m5uXBzc8PTTz+N6OhomJqa4uOPP4a7u7voeNTOQkJCANzpRnn16lW0tbXp3HdxcRERi4iISFbYnZKIJHXo0CHU1tZiypQpKCwsxHPPPYcff/wRXbp0wa5du+Dn5yc6IrWjCxcuICwsDCdPntS5Ltfh7kRERCKwiCMig6uuroadnd19uxjSo23o0KHo0KEDVq5cCScnJ70/44EDBwpKRkREJB8s4oiIqN1YWloiOzsbffv2FR2FiIhItngmjogkERYW9lDPxcfHS5yEDOmJJ57A9evXRccgIiKSNa7EEZEklEolXF1d4eXlhQf9NbN7924DpiKpHTt2DG+88QZWr16NAQMGoGPHjjr3bWxsBCUjIiKSDxZxRCSJhQsXIjk5Ga6urggNDUVwcDDs7e1FxyKJKZVKANA7C8fGJkRERO2HRRwRSaaxsRGpqamIj4/HyZMnMX78eMydOxcBAQFsaiJTx48ff+D9kSNHGigJERGRfLGIIyKDKC0tRUJCApKSktDS0oJz587ByspKdCwiIiKiRw4bmxCRQSiVSigUCmg0Gm6pk7mamhps3boV+fn5AAAPDw+EhYXB1tZWcDIiIiJ5UIoOQETy1djYiOTkZIwZMwa9e/fG2bNnERsbi7KyMq7CyVRWVhZ69eqFdevWobq6GtXV1Vi7di169eqFnJwc0fGIiIhkgdspiUgSCxYswM6dO+Hs7IywsDDMnDkTDg4OomORxIYPHw61Wo1//vOf6NDhzmaPlpYWzJs3DxcvXsTXX38tOCEREdGjj0UcEUlCqVTCxcUFXl5eD2xikpqaasBUJDULCwucPn1ab9h3Xl4evL29UVdXJygZERGRfPBMHBFJYvbs2exAaYRsbGxQVlamV8T99NNPsLa2FpSKiIhIXljEEZEkEhISREcgAYKCgjB37lzExMRgyJAhAIDMzExERERg+vTpgtMRERHJA4s4IiJqNzExMVAoFJg9ezZaWloAAB07dkR4eDiioqIEpyMiIpIHnokjIqJ2V1dXh6KiIgBAr1690KlTJ8GJiIiI5INFHBERERER0SOE2ymJiOh3CwsLe6jn4uPjJU5CREQkf1yJIyKi302pVMLV1RVeXl540D8ru3fvNmAqIiIieeJKHBER/W7h4eFITk5GcXExQkNDERwcDHt7e9GxiIiIZIkrcURE1C4aGxuRmpqK+Ph4nDx5EuPHj8fcuXMREBDAmYFERETtiEUcERG1u9LSUiQkJCApKQktLS04d+4crKysRMciIiKSBaXoAEREJD9KpRIKhQIajQatra2i4xAREckKizgiImoXjY2NSE5OxpgxY9C7d2+cPXsWsbGxKCsr4yocERFRO2JjEyIi+t0WLFiAnTt3wtnZGWFhYUhOToaDg4PoWERERLLEM3FERPS7KZVKuLi4wMvL64FNTFJTUw2YioiISJ64EkdERL/b7Nmz2YGSiIjIQLgSR0RERERE9AhhYxMiIiIiIqJHCIs4IiIiIiKiRwiLOCIiIiIiokcIizgiIiIiIqJHCIs4IiIiIiKiRwiLOCIiIiIiokcIizgiIiIiIqJHCIs4IiIiIiKiR8j/Ab/YJ8KjO3fRAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "**⭕ Features that influence users to use online food delivery**" + ], + "metadata": { + "id": "RH2xjSNbYViX" + } + }, + { + "cell_type": "code", + "source": [ + "# Set the figure size\n", + "plt.figure(figsize=(20, 10))\n", + "\n", + "# Plot 1: Ease and convenient\n", + "plt.subplot(3, 3, 1)\n", + "sns.countplot(data=data, x='Ease and convenient', hue='Ease and convenient', palette='magma', legend=False)\n", + "plt.title('Ease and convenient')\n", + "\n", + "# Plot 2: Time saving\n", + "plt.subplot(3, 3, 2)\n", + "sns.countplot(data=data, x='Time saving', hue='Time saving', palette='magma', legend=False)\n", + "plt.title('Time saving')\n", + "\n", + "# Plot 3: More restaurant choices\n", + "plt.subplot(3, 3, 3)\n", + "sns.countplot(data=data, x='More restaurant choices', hue='More restaurant choices', palette='magma', legend=False)\n", + "plt.title('More restaurant choices')\n", + "\n", + "# Plot 4: Easy Payment option\n", + "plt.subplot(3, 3, 4)\n", + "sns.countplot(data=data, x='Easy Payment option', hue='Easy Payment option', palette='magma', legend=False)\n", + "plt.title('Easy Payment option')\n", + "\n", + "# Plot 5: More Offers and Discount\n", + "plt.subplot(3, 3, 5)\n", + "sns.countplot(data=data, x='More Offers and Discount', hue='More Offers and Discount', palette='magma', legend=False)\n", + "plt.title('More Offers and Discount')\n", + "\n", + "# Plot 6: Good Food quality\n", + "plt.subplot(3, 3, 6)\n", + "sns.countplot(data=data, x='Good Food quality', hue='Good Food quality', palette='magma', legend=False)\n", + "plt.title('Good Food quality')\n", + "\n", + "# Plot 7: Good Tracking system\n", + "plt.subplot(3, 3, 7)\n", + "sns.countplot(data=data, x='Good Tracking system', hue='Good Tracking system', palette='magma', legend=False)\n", + "plt.title('Good Tracking system')\n", + "\n", + "# Adjust layout to prevent overlap\n", + "plt.tight_layout()\n", + "\n", + "# Show the plot\n", + "plt.show()\n" + ], + "metadata": { + "id": "GU8cAhm6UcOb", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 667 + }, + "outputId": "57aa87cc-beef-422c-b74b-d3184b1926e3" + }, + "execution_count": 18, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB7oAAAPdCAYAAAAULGcNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3QUZfv/8c8mwCakkkiaBAhFmnQ0RpAaCaELKiCP0gRFioAKxq9U0UhHkCKKlOcBRVAQUVA6iAEpYkFEQJpAQIEQAhJCcv/+8LA/liQQYJNNeb/O2XMy99xz7zUz2d1r59qZsRhjjAAAAAAAAAAAAAAAyCNcnB0AAAAAAAAAAAAAAAC3g0I3AAAAAAAAAAAAACBPodANAAAAAAAAAAAAAMhTKHQDAAAAAAAAAAAAAPIUCt0AAAAAAAAAAAAAgDyFQjcAAAAAAAAAAAAAIE+h0A0AAAAAAAAAAAAAyFModAMAAAAAAAAAAAAA8hQK3QAAAAAAAAAAAACAPIVCNwA4wOHDh2WxWDR37lxnh5LrlC5dWl27dnV2GAAAAHeta9euKl26tLPDcKoRI0bIYrE4OwwAAAAgQxaLRX379nXYeBs2bJDFYtGGDRscNiYAx6HQDSDL5s6dK4vFkulj69atzg4RBdRXX32lESNGODsMAACQB90sv73+wYEtAACA7HH9Mcdvv/023XxjjEJDQ2WxWNSyZUsnROhc3333nUaMGKGEhARnh+Jw06dP58QhAHelkLMDAJD3jBo1SmFhYenay5Ur54RokNvt27dPLi7Z+7uqr776StOmTaPYDQAAbtt///tfu+n58+dr9erV6dorVaqk999/X2lpaTkZXq7z+uuv69VXX3V2GAAAIB9yc3PTwoULVa9ePbv2jRs36s8//5TVanVSZM713XffaeTIkeratat8fX2dHY5DTZ8+Xffcc0+uvhpk/fr19c8//6hIkSLODgVABih0A7ht0dHRqlOnjrPDQB5RUL+EAACAvOE///mP3fTWrVu1evXqdO34V6FChVSoEIcSAACA4zVv3lyLFy/WlClT7PKNhQsXqnbt2vr7778d9lxpaWm6cuWK3NzcHDZmdo7rTBcvXpSHh4ezw3AaFxeXfLU/gfyGS5cDyBbjx4/Xww8/LH9/f7m7u6t27dpasmRJun6rV69WvXr15OvrK09PT1WoUEGvvfaaXZ/k5GQNHz5c5cqVk9VqVWhoqAYPHqzk5ORbxrF582Y98cQTKlmypG3ZgQMH6p9//rHr17VrV3l6eur48eNq27atPD09Vbx4cb388stKTU2165uQkKCuXbvKx8dHvr6+6tKly21dOighIUEDBw5U6dKlZbVaVaJECT3zzDN2yfrp06fVo0cPBQYGys3NTdWrV9e8efPsxrl2X/Dx48dr1qxZKlu2rKxWqx544AFt377d1m/8+PGyWCw6cuRIulhiYmJUpEgRnTt3zta2bds2NWvWTD4+PipatKgaNGigLVu22C137d6MBw4csP2a1MfHR926ddOlS5fs+mZ0j+6EhAQNGDBAoaGhslqtKleunMaMGWN3hlRW169r166aNm2aJPtLjwIAADjajffovj5fmTZtmsqUKaOiRYuqadOmOnbsmIwxeuONN1SiRAm5u7urTZs2Onv2bLpxV65cqUceeUQeHh7y8vJSixYttGfPnlvGk5KSopEjR6p8+fJyc3OTv7+/6tWrp9WrV9v6/PTTT+ratavKlCkjNzc3BQUFqXv37jpz5oytz5IlS2SxWLRx48Z0z/Hee+/JYrHol19+kZTxPbqv3Qdx2bJluv/++2W1WlWlShWtWrUq3XgbNmxQnTp15ObmprJly+q9997jvt8AAECS1KlTJ505c8Yul7ly5YqWLFmip556KsNlLl68qJdeesl2jKlChQoaP368jDF2/a7lKwsWLFCVKlVktVptucrx48fVvXt3BQYG2vKYDz/8MEsxO2LcqVOnqkqVKipatKiKFSumOnXqaOHChZL+zb1eeeUVSVJYWJjtuNfhw4clSXPmzFHjxo0VEBAgq9WqypUra8aMGRnGmdGVEG88bnftMvIbN27UCy+8oICAAJUoUUKSdOTIEb3wwguqUKGC3N3d5e/vryeeeMIWy41jbNmyRYMGDVLx4sXl4eGhxx57TH/99Zfdc+/Zs0cbN260rVfDhg1vur3T0tL0zjvvqGrVqnJzc1Px4sXVrFkz7dixI13frOSmP/zwg6Kjo+Xt7S1PT081adIk3e05M7tH97Zt29S8eXMVK1ZMHh4eqlatmt555x27Pr/99psef/xx+fn5yc3NTXXq1NHy5cvt+mQlpweQOX6GDeC2nT9/Pt0vKC0Wi/z9/W3T77zzjlq3bq3OnTvrypUr+vjjj/XEE09oxYoVatGihSRpz549atmypapVq6ZRo0bJarXqwIEDdkXVtLQ0tW7dWt9++6169eqlSpUq6eeff9akSZP0+++/a9myZTeNdfHixbp06ZJ69+4tf39/ff/995o6dar+/PNPLV682K5vamqqoqKiFB4ervHjx2vNmjWaMGGCypYtq969e0v6955Abdq00bfffqvnn39elSpV0tKlS9WlS5csbbukpCQ98sgj2rt3r7p3765atWrp77//1vLly/Xnn3/qnnvu0T///KOGDRvqwIED6tu3r8LCwrR48WJ17dpVCQkJevHFF+3GXLhwoS5cuKDnnntOFotFY8eOVbt27fTHH3+ocOHCevLJJzV48GB98skntsT4mk8++URNmzZVsWLFJEnr1q1TdHS0ateureHDh8vFxcWWMG/evFkPPvig3fJPPvmkwsLCFBsbq127dumDDz5QQECAxowZk+k2uHTpkho0aKDjx4/rueeeU8mSJfXdd98pJiZGJ0+e1OTJk29r/Z577jmdOHEiw0uMAgAA5IQFCxboypUr6tevn86ePauxY8fqySefVOPGjbVhwwYNGTJEBw4c0NSpU/Xyyy/bHeD873//qy5duigqKkpjxozRpUuXNGPGDNWrV08//PCDXWH9RiNGjFBsbKyeffZZPfjgg0pMTNSOHTu0a9cuPfroo5L+/WHpH3/8oW7duikoKEh79uzRrFmztGfPHm3dulUWi0UtWrSQp6enPvnkEzVo0MDuORYtWqQqVaro/vvvv+k2+Pbbb/XZZ5/phRdekJeXl6ZMmaL27dvr6NGjtu8JP/zwg5o1a6bg4GCNHDlSqampGjVqlIoXL36HWx4AAOQnpUuXVkREhD766CNFR0dL+vcHgefPn1fHjh01ZcoUu/7GGLVu3Vrr169Xjx49VKNGDX399dd65ZVXdPz4cU2aNMmu/7p16/TJJ5+ob9++uueee1S6dGmdOnVKDz30kK1gXbx4ca1cuVI9evRQYmKiBgwYcMu472bc999/X/3799fjjz+uF198UZcvX9ZPP/2kbdu26amnnlK7du30+++/66OPPtKkSZN0zz33SJItf5oxY4aqVKmi1q1bq1ChQvriiy/0wgsvKC0tTX369LnjffHCCy+oePHiGjZsmC5evChJ2r59u7777jt17NhRJUqU0OHDhzVjxgw1bNhQv/76q4oWLWo3Rr9+/VSsWDENHz5chw8f1uTJk9W3b18tWrRIkjR58mT169dPnp6e+r//+z9JUmBg4E3j6tGjh+bOnavo6Gg9++yzunr1qjZv3qytW7faXYE0K7npnj179Mgjj8jb21uDBw9W4cKF9d5776lhw4bauHGjwsPDM41j9erVatmypYKDg/Xiiy8qKChIe/fu1YoVK2zHbvfs2aO6devq3nvv1auvvioPDw998sknatu2rT799FM99thjkrKW0wO4CQMAWTRnzhwjKcOH1Wq163vp0iW76StXrpj777/fNG7c2NY2adIkI8n89ddfmT7nf//7X+Pi4mI2b95s1z5z5kwjyWzZsuWmMd8YhzHGxMbGGovFYo4cOWJr69Kli5FkRo0aZde3Zs2apnbt2rbpZcuWGUlm7NixtrarV6+aRx55xEgyc+bMuWk8w4YNM5LMZ599lm5eWlqaMcaYyZMnG0nmf//7n23elStXTEREhPH09DSJiYnGGGMOHTpkJBl/f39z9uxZW9/PP//cSDJffPGFrS0iIsJuPYwx5vvvvzeSzPz5823PX758eRMVFWWLxZh/t2FYWJh59NFHbW3Dhw83kkz37t3txnzssceMv7+/XVupUqVMly5dbNNvvPGG8fDwML///rtdv1dffdW4urqao0eP3vb69enTx/CRBgAAHOFmeUWXLl1MqVKlbNPX8pXixYubhIQEW3tMTIyRZKpXr25SUlJs7Z06dTJFihQxly9fNsYYc+HCBePr62t69uxp9zzx8fHGx8cnXfuNqlevblq0aHHTPhnlwx999JGRZDZt2mQXW0BAgLl69aqt7eTJk8bFxcUuR76WB15PkilSpIg5cOCAre3HH380kszUqVNtba1atTJFixY1x48ft7Xt37/fFCpUiFwOAIAC7Noxx+3bt5t3333XeHl52XKYJ554wjRq1MgY8+8xputzn2vH6UaPHm033uOPP24sFotdbiLJuLi4mD179tj17dGjhwkODjZ///23XXvHjh2Nj49PhrnU9e523DZt2pgqVarc9DnGjRtnJJlDhw6lm5dRfFFRUaZMmTLp4hw+fHi6vjcet7u2L+rVq2eXF2b2XHFxcXbHF68fIzIy0u4Y48CBA42rq6td3lylShXToEGDdONmZN26dUaS6d+/f7p51z9PVnPTtm3bmiJFipiDBw/a2k6cOGG8vLxM/fr1bW3r1683ksz69euNMf8eCw4LCzOlSpUy586dyzSOJk2amKpVq9py/2vzH374YVO+fHlbW1ZyegCZ49LlAG7btGnTtHr1arvHypUr7fq4u7vb/j537pzOnz+vRx55RLt27bK1+/r6SpI+//xzu0tWX2/x4sWqVKmSKlasqL///tv2aNy4sSRp/fr1N431+jguXryov//+Ww8//LCMMfrhhx/S9X/++eftph955BH98ccftumvvvpKhQoVsp3hLUmurq7q16/fTeO45tNPP1X16tVtv9i73rXLNX711VcKCgpSp06dbPMKFy6s/v37KykpKd0lJTt06GA7I/tazJLs4u7QoYN27typgwcP2toWLVokq9WqNm3aSJJ2796t/fv366mnntKZM2ds2/rixYtq0qSJNm3alG4/ZbS9zpw5o8TExEy3weLFi/XII4+oWLFidvs0MjJSqamp2rRp022vHwAAgDM98cQT8vHxsU1fO/vjP//5j939JcPDw3XlyhUdP35c0r9ngiQkJKhTp052eZGrq6vCw8Nvmev6+vpqz5492r9/f6Z9rs+HL1++rL///lsPPfSQJNnl5h06dNDp06ftLsm4ZMkSpaWlqUOHDrfcBpGRkSpbtqxtulq1avL29rblbKmpqVqzZo3atm2rkJAQW79y5crZztgCAAB48skn9c8//2jFihW6cOGCVqxYkelly7/66iu5urqqf//+du0vvfSSjDHpjlc2aNBAlStXtk0bY/Tpp5+qVatWMsbY5WNRUVE6f/68Xb6UmbsZ19fXV3/++afdbfpux/W53rWrcDZo0EB//PGHzp8/f0djSlLPnj3l6uqa6XOlpKTozJkzKleunHx9fTPcTr169bK7Pc0jjzyi1NTUDG+vmBWffvqpLBaLhg8fnm7ejbfByUpu+s0336ht27YqU6aMrV9wcLCeeuopffvtt5ke3/zhhx906NAhDRgwwHZ8+8Y4zp49q3Xr1unJJ5/UhQsXbPv/zJkzioqK0v79+23fCbKS0wPIHJcuB3DbHnzwQbtLwWRkxYoVGj16tHbv3m13L+3rk44OHTrogw8+0LPPPqtXX31VTZo0Ubt27fT444/LxeXf3+Hs379fe/fuzfRyhqdPn75pHEePHtWwYcO0fPlyu/tQS0qX7F27r8v1ihUrZrfckSNHFBwcLE9PT7t+FSpUuGkc1xw8eFDt27e/aZ8jR46ofPnytm1wTaVKlWzzr1eyZMl0MUuyi/uJJ57QoEGDtGjRIr322msyxmjx4sW2e9BIsiVTN7sM+/nz5+2Kzjd77mvj3mj//v366aefsrxPs7J+AAAAznRjvnKt6B0aGpph+7U85lr+de1HnDfKLJ+6ZtSoUWrTpo3uu+8+3X///WrWrJmefvppVatWzdbn7NmzGjlypD7++ON0edb1+XCzZs3k4+OjRYsWqUmTJpL+/WFkjRo1dN999900Din9NpDsc+nTp0/rn3/+Ubly5dL1y6gNAAAUTMWLF1dkZKQWLlyoS5cuKTU1VY8//niGfY8cOaKQkBB5eXnZtWd2DC0sLMxu+q+//lJCQoJmzZqlWbNmZfgctzr2eLfjDhkyRGvWrNGDDz6ocuXKqWnTpnrqqadUt27dWz6vJG3ZskXDhw9XXFycLl26ZDfv/Pnzdj/GvB03rpMk/fPPP4qNjdWcOXN0/Phxu/ugZ1RUd/QxvYMHDyokJER+fn637Hur3PSvv/7SpUuXMjymW6lSJaWlpenYsWOqUqVKhnFIuumtfQ4cOCBjjIYOHaqhQ4dm2Of06dO69957s5TTA8gchW4ADrd582a1bt1a9evX1/Tp0xUcHKzChQtrzpw5Wrhwoa2fu7u7Nm3apPXr1+vLL7/UqlWrtGjRIjVu3FjffPONXF1dlZaWpqpVq2rixIkZPteNBw+vl5qaqkcffVRnz57VkCFDVLFiRXl4eOj48ePq2rVrurOTb/yVYl6RWdzXJ5shISF65JFH9Mknn+i1117T1q1bdfToUbt7aV/bHuPGjVONGjUyHPPGAn9WnvtGaWlpevTRRzV48OAM5994IPVOngMAACAnZZav3CqPuZZ//fe//1VQUFC6ftefDZ6R+vXr6+DBg/r888/1zTff6IMPPtCkSZM0c+ZMPfvss5L+PSvqu+++0yuvvKIaNWrI09NTaWlpatasmV0+bLVa1bZtWy1dulTTp0/XqVOntGXLFr311lu33gBZWFcAAICseuqpp9SzZ0/Fx8crOjo63Vmzd+r6M5Kl/5+L/ec//8n0xI+sFBvvZtxKlSpp3759WrFihVatWqVPP/1U06dP17BhwzRy5MibPu/BgwfVpEkTVaxYURMnTlRoaKiKFCmir776SpMmTcr0CprXS01NzdI6Sf/ec3vOnDkaMGCAIiIi5OPjI4vFoo4dO2b4XM7MD52dm17bHi+//LKioqIy7HPtx55ZyekBZI5CNwCH+/TTT+Xm5qavv/5aVqvV1j5nzpx0fV1cXNSkSRM1adJEEydO1FtvvaX/+7//0/r1622XmPnxxx/VpEmTdJeguZWff/5Zv//+u+bNm6dnnnnG1r569eo7XrdSpUpp7dq1SkpKsiv67tu3L0vLly1bVr/88sstn+Onn35SWlqa3Vndv/32m23+nejQoYNeeOEF7du3T4sWLVLRokXVqlUru9ikf88cioyMvKPnyIqyZcsqKSnJoc9xu/8bAAAAucG1/CsgIOCOcyM/Pz9169ZN3bp1U1JSkurXr68RI0bo2Wef1blz57R27VqNHDlSw4YNsy2T2WURO3TooHnz5mnt2rXau3evjDFZumx5VgQEBMjNzU0HDhxINy+jNgAAUHA99thjeu6557R161YtWrQo036lSpXSmjVrdOHCBbuzurN6DK148eLy8vJSamqqQ49T3e64Hh4e6tChgzp06KArV66oXbt2evPNNxUTEyM3N7dMj3t98cUXSk5O1vLly+3OYM7o9jfFihVTQkKCXduVK1d08uTJLK/XkiVL1KVLF02YMMHWdvny5XTj3o7bOaZXtmxZff311zp79myWzuq+meLFi6to0aIZHtP97bff5OLikukJVtdy+F9++SXT/XvtcuiFCxfO0v/AzXJ6ADfHPboBOJyrq6ssFovdLwIPHz6sZcuW2fU7e/ZsumWvnUl87XLnTz75pI4fP673338/Xd9//vlHFy9evGkckv0v9Ywxeuedd7K8Ljdq3ry5rl69qhkzZtjaUlNTNXXq1Cwt3759e/34449aunRpunnX4mzevLni4+PtEvmrV69q6tSp8vT0VIMGDe4o9vbt28vV1VUfffSRFi9erJYtW8rDw8M2v3bt2ipbtqzGjx+vpKSkdMv/9ddfd/S8N3ryyScVFxenr7/+Ot28hIQEXb169bbHvLYed5NYAwAA5LSoqCh5e3vrrbfeUkpKSrr5t8q/zpw5Yzft6empcuXK2XLpjPJhSZo8eXKG40VGRsrPz0+LFi3SokWL9OCDD2Z42co74erqqsjISC1btkwnTpywtR84cCDd/TMBAEDB5unpqRkzZmjEiBF2J2ncqHnz5kpNTdW7775r1z5p0iRZLBZFR0ff9HlcXV3Vvn17ffrppxmemHKnx8JuZ9wb87kiRYqocuXKMsbY8sPMjntllOudP38+w5ONypYtq02bNtm1zZo1K9MzujNbrxvzyqlTp97WGDfy8PDI8vG89u3byxiT4Znut3umtqurq5o2barPP/9chw8ftrWfOnVKCxcuVL169TK9jVCtWrUUFhamyZMnp4v9WhwBAQFq2LCh3nvvvQx/THCz/4Ebc3oAN8cZ3QBu28qVK22/jLzeww8/rDJlyqhFixaaOHGimjVrpqeeekqnT5/WtGnTVK5cOf3000+2/qNGjdKmTZvUokULlSpVSqdPn9b06dNVokQJ1atXT5L09NNP65NPPtHzzz+v9evXq27dukpNTdVvv/2mTz75RF9//XWm9wuvWLGiypYtq5dfflnHjx+Xt7e3Pv3007u6t3OrVq1Ut25dvfrqqzp8+LAqV66szz77LMP70GTklVde0ZIlS/TEE0+oe/fuql27ts6ePavly5dr5syZql69unr16qX33ntPXbt21c6dO1W6dGktWbJEW7Zs0eTJk9PddyirAgIC1KhRI02cOFEXLlxId3aOi4uLPvjgA0VHR6tKlSrq1q2b7r33Xh0/flzr16+Xt7e3vvjiizt67hu3wfLly9WyZUt17dpVtWvX1sWLF/Xzzz9ryZIlOnz4sO65557bGrN27dqSpP79+ysqKkqurq7q2LHjXccKAACQnby9vTVjxgw9/fTTqlWrljp27KjixYvr6NGj+vLLL1W3bt10B26vV7lyZTVs2FC1a9eWn5+fduzYoSVLlqhv37628evXr6+xY8cqJSVF9957r7755hsdOnQow/EKFy6sdu3a6eOPP9bFixc1fvx4h67viBEj9M0336hu3brq3bu37cD0/fffr927dzv0uQAAQN6W2SW/r9eqVSs1atRI//d//6fDhw+revXq+uabb/T5559rwIABtjNvb+btt9/W+vXrFR4erp49e6py5co6e/asdu3apTVr1mR4ok5WZHXcpk2bKigoSHXr1lVgYKD27t2rd999Vy1atLAdA7x23Ov//u//1LFjRxUuXFitWrVS06ZNVaRIEbVq1UrPPfeckpKS9P777ysgICBdcfXZZ5/V888/r/bt2+vRRx/Vjz/+qK+//vq2jsG1bNlS//3vf+Xj46PKlSsrLi5Oa9askb+//x1to2vrNmPGDI0ePVrlypVTQECAGjdunGHfRo0a6emnn9aUKVO0f/9+2614Nm/erEaNGtly4KwaPXq0Vq9erXr16umFF15QoUKF9N577yk5OVljx47NdDkXFxfNmDFDrVq1Uo0aNdStWzcFBwfrt99+0549e2wn90ybNk316tVT1apV1bNnT5UpU0anTp1SXFyc/vzzT/3444+Sbp3TA7g5Ct0Abtv1lz283pw5c1SmTBk1btxYs2fP1ttvv60BAwYoLCxMY8aM0eHDh+0K3a1bt9bhw4f14Ycf6u+//9Y999yjBg0aaOTIkfLx8ZH0b+KwbNkyTZo0SfPnz9fSpUtVtGhRlSlTRi+++GK6+zlfr3Dhwvriiy/Uv39/xcbGys3NTY899pj69u2r6tWr39G6u7i4aPny5RowYID+97//yWKxqHXr1powYYJq1qx5y+U9PT21efNmDR8+XEuXLtW8efMUEBCgJk2aqESJEpL+vQfOhg0b9Oqrr2revHlKTExUhQoVNGfOHHXt2vWO4r6mQ4cOWrNmjby8vNS8efN08xs2bKi4uDi98cYbevfdd5WUlKSgoCCFh4frueeeu6vnvqZo0aLauHGj3nrrLS1evFjz58+Xt7e37rvvPrt9fzvatWunfv366eOPP9b//vc/GWModAMAgDzhqaeeUkhIiN5++22NGzdOycnJuvfee/XII4+oW7duN122f//+Wr58ub755hslJyerVKlSGj16tF555RVbn4ULF6pfv36aNm2ajDFq2rSpVq5cqZCQkAzH7NChgz744ANZLBY9+eSTDl3X2rVra+XKlXr55Zc1dOhQhYaGatSoUdq7d2+GP6QFAAC4mWvH6YYNG6ZFixZpzpw5Kl26tMaNG6eXXnopS2MEBgbq+++/16hRo/TZZ59p+vTp8vf3V5UqVTRmzJg7ji2r4z733HNasGCBJk6cqKSkJJUoUUL9+/fX66+/buvzwAMP6I033tDMmTO1atUqpaWl6dChQ6pQoYKWLFmi119/XS+//LKCgoLUu3dvFS9eXN27d7eLp2fPnjp06JBmz56tVatW6ZFHHtHq1avVpEmTLK/TO++8I1dXVy1YsECXL19W3bp1tWbNmkzvQZ0Vw4YN05EjRzR27FhduHBBDRo0yLTQLf17/LlatWqaPXu2XnnlFfn4+KhOnTp6+OGHb/u5q1Spos2bNysmJkaxsbFKS0tTeHi4/ve//yk8PPymy0ZFRWn9+vUaOXKkJkyYoLS0NJUtW1Y9e/a09alcubJ27NihkSNHau7cuTpz5owCAgJUs2ZNu+PrWcnpAWTOYm73mg4AAAAAAAAO0rZtW+3ZsyfTe4cDAAAAAJAR7tENAAAAAAByxD///GM3vX//fn311Vdq2LChcwICAAAAAORZnNENAAAAAAByRHBwsLp27aoyZcroyJEjmjFjhpKTk/XDDz+ofPnyzg4PAAAAAJCHcI9uAAAAAACQI5o1a6aPPvpI8fHxslqtioiI0FtvvUWRGwAAAABw2zijGwAAAAAAAAAAAACQp3CPbgAAAAAAAAAAAABAnsKlyyWlpaXpxIkT8vLyksVicXY4AAAA2coYowsXLigkJEQuLvzu0VHIKQEAQEFDXpk9yCsBAEBBcjc5JYVuSSdOnFBoaKizwwAAAMhRx44dU4kSJZwdRr5BTgkAAAqq/JJXbtq0SePGjdPOnTt18uRJLV26VG3btrXNz6zoPHbsWL3yyiuSpNKlS+vIkSN282NjY/Xqq69mOQ7ySgAAUBDdSU5JoVuSl5eXpH83oLe3t5OjAQAAyF6JiYkKDQ215UBwDHJKAABQ0OS3vPLixYuqXr26unfvrnbt2qWbf/LkSbvplStXqkePHmrfvr1d+6hRo9SzZ0/b9O1uH/JKAABQkNxNTkmhW///15je3t4kjwAAoMDgMoiORU4JAAAKqvySV0ZHRys6OjrT+UFBQXbTn3/+uRo1aqQyZcrYtXt5eaXrezvIKwEAQEF0JzklN88BAAAAAAAAgNtw6tQpffnll+rRo0e6eW+//bb8/f1Vs2ZNjRs3TlevXr3pWMnJyUpMTLR7AAAA4NY4oxsAAAAAAAAAbsO8efPk5eWV7hLn/fv3V61ateTn56fvvvtOMTExOnnypCZOnJjpWLGxsRo5cmR2hwwAAJDvUOgGAAAAAAAAgNvw4YcfqnPnznJzc7NrHzRokO3vatWqqUiRInruuecUGxsrq9Wa4VgxMTF2y127TyUAAABujkI3AAAAAAAAAGTR5s2btW/fPi1atOiWfcPDw3X16lUdPnxYFSpUyLCP1WrNtAgOAACAzHGPbgAAAAAAAADIotmzZ6t27dqqXr36Lfvu3r1bLi4uCggIyIHIAAAAChbO6AYAAAAAAABQ4CUlJenAgQO26UOHDmn37t3y8/NTyZIlJf17WfHFixdrwoQJ6ZaPi4vTtm3b1KhRI3l5eSkuLk4DBw7Uf/7zHxUrVizH1gMAAKCgoNANAAAAAAAAoMDbsWOHGjVqZJu+dt/sLl26aO7cuZKkjz/+WMYYderUKd3yVqtVH3/8sUaMGKHk5GSFhYVp4MCBdvffBgAAgONYjDHG2UE4W2Jionx8fHT+/Hl5e3s7OxwAAIBsRe6TPdiuAACgoCH/yR5sVwAAUJDcTe7DPboBAAAAAAAAAAAAAHkKly4HkC983Ow1Z4dQoHRc9ZazQwAAAMgW5JU5i7wSAADkV+SVOYu8EiiYOKMbAAAAAAAAAAAAAJCnUOgGAABAnrdp0ya1atVKISEhslgsWrZsWaZ9n3/+eVksFk2ePNmu/ezZs+rcubO8vb3l6+urHj16KCkpKXsDBwAAAAAAAHBHKHQDAAAgz7t48aKqV6+uadOm3bTf0qVLtXXrVoWEhKSb17lzZ+3Zs0erV6/WihUrtGnTJvXq1Su7QgYAAAAAAABwF7hHNwAAAPK86OhoRUdH37TP8ePH1a9fP3399ddq0aKF3by9e/dq1apV2r59u+rUqSNJmjp1qpo3b67x48dnWBhPTk5WcnKybToxMdEBawIAAAAAAAAgKzijGwAAAPleWlqann76ab3yyiuqUqVKuvlxcXHy9fW1FbklKTIyUi4uLtq2bVuGY8bGxsrHx8f2CA0Nzbb4AQAAAAAAANij0A0AAIB8b8yYMSpUqJD69++f4fz4+HgFBATYtRUqVEh+fn6Kj4/PcJmYmBidP3/e9jh27JjD4wYAAAAAAACQMS5dDgAAgHxt586deuedd7Rr1y5ZLBaHjWu1WmW1Wh02HgAAAAAAAICs44xuAAAA5GubN2/W6dOnVbJkSRUqVEiFChXSkSNH9NJLL6l06dKSpKCgIJ0+fdpuuatXr+rs2bMKCgpyQtQAAAAAAAAAboYzugEAAJCvPf3004qMjLRri4qK0tNPP61u3bpJkiIiIpSQkKCdO3eqdu3akqR169YpLS1N4eHhOR4zAAAAAAAAgJuj0A0AAIA8LykpSQcOHLBNHzp0SLt375afn59Kliwpf39/u/6FCxdWUFCQKlSoIEmqVKmSmjVrpp49e2rmzJlKSUlR37591bFjR4WEhOTougAAAAAAAAC4NS5dDgAAgDxvx44dqlmzpmrWrClJGjRokGrWrKlhw4ZleYwFCxaoYsWKatKkiZo3b6569epp1qxZ2RUyAAAAAAAAgLvAGd0AAADI8xo2bChjTJb7Hz58OF2bn5+fFi5c6MCoAAAAAAAAAGQXzugGAAAAAAAAAAAAAOQpFLoBAAAAAAAAAAAAAHkKhW4AAAAAAAAAAAAAQJ5CoRsAAAAAAAAAAAAAkKdQ6AYAAAAAAAAAAAAA5CkUugEAAAAAAAAAAAAAeQqFbgAAAAAAAAAAAABAnkKhGwAAAAAAAAAAAACQp1DoBgAAAAAAAAAAAADkKRS6AQAAAAAAAAAAAAB5CoVuAAAAAAAAAAXepk2b1KpVK4WEhMhisWjZsmV287t27SqLxWL3aNasmV2fs2fPqnPnzvL29pavr6969OihpKSkHFwLAACAgoNCNwAAAAAAAIAC7+LFi6pevbqmTZuWaZ9mzZrp5MmTtsdHH31kN79z587as2ePVq9erRUrVmjTpk3q1atXdocOAABQIBVydgAAAAAAAAAA4GzR0dGKjo6+aR+r1aqgoKAM5+3du1erVq3S9u3bVadOHUnS1KlT1bx5c40fP14hISEOjxkAAKAg44xuAAAAAAAAAMiCDRs2KCAgQBUqVFDv3r115swZ27y4uDj5+vraitySFBkZKRcXF23bti3TMZOTk5WYmGj3AAAAwK1R6AYAAAAAAACAW2jWrJnmz5+vtWvXasyYMdq4caOio6OVmpoqSYqPj1dAQIDdMoUKFZKfn5/i4+MzHTc2NlY+Pj62R2hoaLauBwAAQH7BpcsBAAAAAAAA4BY6duxo+7tq1aqqVq2aypYtqw0bNqhJkyZ3PG5MTIwGDRpkm05MTKTYDQAAkAWc0Q0AAAAAAAAAt6lMmTK65557dODAAUlSUFCQTp8+bdfn6tWrOnv2bKb39Zb+ve+3t7e33QMAAAC3RqEbAAAAAAAAAG7Tn3/+qTNnzig4OFiSFBERoYSEBO3cudPWZ926dUpLS1N4eLizwgQAAMi3uHQ5AAAAAAAAgAIvKSnJdna2JB06dEi7d++Wn5+f/Pz8NHLkSLVv315BQUE6ePCgBg8erHLlyikqKkqSVKlSJTVr1kw9e/bUzJkzlZKSor59+6pjx44KCQlx1moBAADkW049ozs2NlYPPPCAvLy8FBAQoLZt22rfvn12fS5fvqw+ffrI399fnp6eat++vU6dOmXX5+jRo2rRooWKFi2qgIAAvfLKK7p69WpOrgoAAAAAAACAPGzHjh2qWbOmatasKUkaNGiQatasqWHDhsnV1VU//fSTWrdurfvuu089evRQ7dq1tXnzZlmtVtsYCxYsUMWKFdWkSRM1b95c9erV06xZs5y1SgAAAPmaU8/o3rhxo/r06aMHHnhAV69e1WuvvaamTZvq119/lYeHhyRp4MCB+vLLL7V48WL5+Piob9++ateunbZs2SJJSk1NVYsWLRQUFKTvvvtOJ0+e1DPPPKPChQvrrbfecubqAQAAAAAAAMgjGjZsKGNMpvO//vrrW47h5+enhQsXOjIsAAAAZMKphe5Vq1bZTc+dO1cBAQHauXOn6tevr/Pnz2v27NlauHChGjduLEmaM2eOKlWqpK1bt+qhhx7SN998o19//VVr1qxRYGCgatSooTfeeENDhgzRiBEjVKRIkXTPm5ycrOTkZNt0YmJi9q4oAAAAAAAAAAAAAMBhnHrp8hudP39e0r+/fJSknTt3KiUlRZGRkbY+FStWVMmSJRUXFydJiouLU9WqVRUYGGjrExUVpcTERO3ZsyfD54mNjZWPj4/tERoaml2rBAAAgBywadMmtWrVSiEhIbJYLFq2bJltXkpKioYMGaKqVavKw8NDISEheuaZZ3TixAm7Mc6ePavOnTvL29tbvr6+6tGjh5KSknJ4TQAAAAAAAABkRa4pdKelpWnAgAGqW7eu7r//fklSfHy8ihQpIl9fX7u+gYGBio+Pt/W5vsh9bf61eRmJiYnR+fPnbY9jx445eG0AAACQky5evKjq1atr2rRp6eZdunRJu3bt0tChQ7Vr1y599tln2rdvn1q3bm3Xr3PnztqzZ49Wr16tFStWaNOmTerVq1dOrQIAAAAAAACA2+DUS5dfr0+fPvrll1/07bffZvtzWa1WWa3WbH8eAAAA5Izo6GhFR0dnOM/Hx0erV6+2a3v33Xf14IMP6ujRoypZsqT27t2rVatWafv27apTp44kaerUqWrevLnGjx+vkJCQdONyOxwAAAAAAADAeXLFGd19+/bVihUrtH79epUoUcLWHhQUpCtXrighIcGu/6lTpxQUFGTrc+rUqXTzr80DAAAAbnT+/HlZLBbblYPi4uLk6+trK3JLUmRkpFxcXLRt27YMx+B2OAAAAAAAAIDzOLXQbYxR3759tXTpUq1bt05hYWF282vXrq3ChQtr7dq1trZ9+/bp6NGjioiIkCRFRETo559/1unTp219Vq9eLW9vb1WuXDlnVgQAAAB5xuXLlzVkyBB16tRJ3t7ekv695U1AQIBdv0KFCsnPz4/b4QAAAAAAAAC5kFMvXd6nTx8tXLhQn3/+uby8vGwHEX18fOTu7i4fHx/16NFDgwYNkp+fn7y9vdWvXz9FRETooYcekiQ1bdpUlStX1tNPP62xY8cqPj5er7/+uvr06cPlyQEAAGAnJSVFTz75pIwxmjFjxl2Nxe1wAAAAAAAAAOdxaqH72sHFhg0b2rXPmTNHXbt2lSRNmjRJLi4uat++vZKTkxUVFaXp06fb+rq6umrFihXq3bu3IiIi5OHhoS5dumjUqFE5tRoAAADIA64VuY8cOaJ169bZzuaW/r3lzfVXCJKkq1ev6uzZs9wOBwAAAAAAAMiFnFroNsbcso+bm5umTZumadOmZdqnVKlS+uqrrxwZGgAAAPKRa0Xu/fv3a/369fL397ebHxERoYSEBO3cuVO1a9eWJK1bt05paWkKDw93RsgAAAAAAAAAbsKphW4AAADAEZKSknTgwAHb9KFDh7R79275+fkpODhYjz/+uHbt2qUVK1YoNTXVdsscPz8/FSlSRJUqVVKzZs3Us2dPzZw5UykpKerbt686duyokJAQZ60WAAAAAAAAgExQ6AYAAECet2PHDjVq1Mg2PWjQIElSly5dNGLECC1fvlySVKNGDbvl1q9fb7uNzoIFC9S3b181adLEduucKVOm5Ej8AAAAAAAAAG4PhW4AAADkeQ0bNrzpbXGycsscPz8/LVy40JFhAQAAAAAAAMgmFLoBAAAA4C69UHWws0MoUKb/PNbZIQAAAAAAACdzcXYAAAAAAAAAAAAAAADcDgrdAAAAAAAAAAAAAIA8hUI3AAAAAAAAAAAAACBPodANAAAAAAAAAAAAAMhTKHQDAAAAAAAAAAAAAPIUCt0AAAAAAAAAAAAAgDyFQjcAAAAAAAAAAAAAIE+h0A0AAAAAAAAAAAAAyFModAMAAAAAAAAAAAAA8hQK3QAAAAAAAAAAAACAPIVCNwAAAAAAAAAAAAAgT6HQDQAAAAAAAKDA27Rpk1q1aqWQkBBZLBYtW7bMNi8lJUVDhgxR1apV5eHhoZCQED3zzDM6ceKE3RilS5eWxWKxe7z99ts5vCYAAAAFA4VuAAAAAAAAAAXexYsXVb16dU2bNi3dvEuXLmnXrl0aOnSodu3apc8++0z79u1T69at0/UdNWqUTp48aXv069cvJ8IHAAAocAo5OwAAAAAAAAAAcLbo6GhFR0dnOM/Hx0erV6+2a3v33Xf14IMP6ujRoypZsqSt3cvLS0FBQdkaKwAAADijGwAAAAAAAABu2/nz52WxWOTr62vX/vbbb8vf3181a9bUuHHjdPXq1ZuOk5ycrMTERLsHAAAAbo0zugEAAAAAAADgNly+fFlDhgxRp06d5O3tbWvv37+/atWqJT8/P3333XeKiYnRyZMnNXHixEzHio2N1ciRI3MibAAAgHyFQjcAAAAAAAAAZFFKSoqefPJJGWM0Y8YMu3mDBg2y/V2tWjUVKVJEzz33nGJjY2W1WjMcLyYmxm65xMREhYaGZk/wAAAA+QiFbgAAAAAAAADIgmtF7iNHjmjdunV2Z3NnJDw8XFevXtXhw4dVoUKFDPtYrdZMi+AAAADIHIVuAAAAAAAAALiFa0Xu/fv3a/369fL397/lMrt375aLi4sCAgJyIEIAAICChUI3AAAAAAAAgAIvKSlJBw4csE0fOnRIu3fvlp+fn4KDg/X4449r165dWrFihVJTUxUfHy9J8vPzU5EiRRQXF6dt27apUaNG8vLyUlxcnAYOHKj//Oc/KlasmLNWCwAAIN+i0A0AAAAAAACgwNuxY4caNWpkm7523+wuXbpoxIgRWr58uSSpRo0adsutX79eDRs2lNVq1ccff6wRI0YoOTlZYWFhGjhwoN39twEAAOA4Ls4OAAAAALhbmzZtUqtWrRQSEiKLxaJly5bZzTfGaNiwYQoODpa7u7siIyO1f/9+uz5nz55V586d5e3tLV9fX/Xo0UNJSUk5uBYAAABwpoYNG8oYk+4xd+5clS5dOsN5xhg1bNhQklSrVi1t3bpVCQkJ+ueff/Trr78qJiaG+28DAABkEwrdAAAAyPMuXryo6tWra9q0aRnOHzt2rKZMmaKZM2dq27Zt8vDwUFRUlC5fvmzr07lzZ+3Zs0erV6/WihUrtGnTJvXq1SunVgEAAAAAAADAbeDS5QAAAMjzoqOjFR0dneE8Y4wmT56s119/XW3atJEkzZ8/X4GBgVq2bJk6duyovXv3atWqVdq+fbvq1KkjSZo6daqaN2+u8ePHKyQkJN24ycnJSk5Otk0nJiZmw5oBAAAAAAAAyAhndAMAACBfO3TokOLj4xUZGWlr8/HxUXh4uOLi4iRJcXFx8vX1tRW5JSkyMlIuLi7atm1bhuPGxsbKx8fH9ggNDc3eFQEAAAAAAABgQ6EbAAAA+Vp8fLwkKTAw0K49MDDQNi8+Pl4BAQF28wsVKiQ/Pz9bnxvFxMTo/PnztsexY8eyIXoAAAAAAAAAGeHS5QAAAMAdsFqtslqtzg4DAAAAAAAAKJA4oxsAAAD5WlBQkCTp1KlTdu2nTp2yzQsKCtLp06ft5l+9elVnz5619QEAAAAAAACQe1DoBgAAQL4WFhamoKAgrV271taWmJiobdu2KSIiQpIUERGhhIQE7dy509Zn3bp1SktLU3h4eI7HDAAAAAAAAODmuHQ5AAAA8rykpCQdOHDANn3o0CHt3r1bfn5+KlmypAYMGKDRo0erfPnyCgsL09ChQxUSEqK2bdtKkipVqqRmzZqpZ8+emjlzplJSUtS3b1917NhRISEhTlorAAAAAAAAAJmh0A0AAIA8b8eOHWrUqJFtetCgQZKkLl26aO7cuRo8eLAuXryoXr16KSEhQfXq1dOqVavk5uZmW2bBggXq27evmjRpIhcXF7Vv315TpkzJ8XUBAAAAAAAAcGsUugEAAJDnNWzYUMaYTOdbLBaNGjVKo0aNyrSPn5+fFi5cmB3hAQAAAAAAAHAw7tENAAAAAAAAAAAAAMhTKHQDAAAAAAAAAAAAAPIUCt0AAAAAAAAAAAAAgDzFqYXuTZs2qVWrVgoJCZHFYtGyZcvs5nft2lUWi8Xu0axZM7s+Z8+eVefOneXt7S1fX1/16NFDSUlJObgWAAAAAAAAAAAAAICc5NRC98WLF1W9enVNmzYt0z7NmjXTyZMnbY+PPvrIbn7nzp21Z88erV69WitWrNCmTZvUq1ev7A4dAAAAAAAAAAAAAOAkhZz55NHR0YqOjr5pH6vVqqCgoAzn7d27V6tWrdL27dtVp04dSdLUqVPVvHlzjR8/XiEhIRkul5ycrOTkZNt0YmLiHa4BAAAAAAAAAAAAACCn5fp7dG/YsEEBAQGqUKGCevfurTNnztjmxcXFydfX11bklqTIyEi5uLho27ZtmY4ZGxsrHx8f2yM0NDRb1wEAAAAAAAAAAAAA4Di5utDdrFkzzZ8/X2vXrtWYMWO0ceNGRUdHKzU1VZIUHx+vgIAAu2UKFSokPz8/xcfHZzpuTEyMzp8/b3scO3YsW9cDAAAAAAAAAAAAAOA4Tr10+a107NjR9nfVqlVVrVo1lS1bVhs2bFCTJk3ueFyr1Sqr1eqIEAEAAAAAAAAAAAAAOSxXn9F9ozJlyuiee+7RgQMHJElBQUE6ffq0XZ+rV6/q7Nmzmd7XGwAAAAAAAAAAAACQt+WpQveff/6pM2fOKDg4WJIUERGhhIQE7dy509Zn3bp1SktLU3h4uLPCBAAAAAAAAAAAAABkI6deujwpKcl2drYkHTp0SLt375afn5/8/Pw0cuRItW/fXkFBQTp48KAGDx6scuXKKSoqSpJUqVIlNWvWTD179tTMmTOVkpKivn37qmPHjgoJCXHWagEAAAAAAAAAAAAAspFTC907duxQo0aNbNODBg2SJHXp0kUzZszQTz/9pHnz5ikhIUEhISFq2rSp3njjDbv7ay9YsEB9+/ZVkyZN5OLiovbt22vKlCk5vi4AAAAAAAAAANyNF6oOdnYIBcr0n8c6OwQAwF1waqG7YcOGMsZkOv/rr7++5Rh+fn5auHChI8MCAAAAAAAAAAAAAORieeoe3QAAAAAAAACQHTZt2qRWrVopJCREFotFy5Yts5tvjNGwYcMUHBwsd3d3RUZGav/+/XZ9zp49q86dO8vb21u+vr7q0aOHkpKScnAtAAAACg4K3QAAAAAAAAAKvIsXL6p69eqaNm1ahvPHjh2rKVOmaObMmdq2bZs8PDwUFRWly5cv2/p07txZe/bs0erVq7VixQpt2rRJvXr1yqlVAAAAKFCceulyAAAAAAAAAMgNoqOjFR0dneE8Y4wmT56s119/XW3atJEkzZ8/X4GBgVq2bJk6duyovXv3atWqVdq+fbvq1KkjSZo6daqaN2+u8ePHKyQkJMOxk5OTlZycbJtOTEx08JoBAADkT3d0Rnfjxo2VkJCQrj0xMVGNGze+25gAAABQAJBTAgAAwBFyIq88dOiQ4uPjFRkZaWvz8fFReHi44uLiJElxcXHy9fW1FbklKTIyUi4uLtq2bVumY8fGxsrHx8f2CA0NdUjMAAAA+d0dFbo3bNigK1eupGu/fPmyNm/efNdBAQAAIP8jpwQAAIAj5EReGR8fL0kKDAy0aw8MDLTNi4+PV0BAgN38QoUKyc/Pz9YnIzExMTp//rztcezYMYfEDAAAkN/d1qXLf/rpJ9vfv/76q12ClpqaqlWrVunee+91XHQAAADId8gpAQAA4Aj5Ja+0Wq2yWq3ODgMAACDPua1Cd40aNWSxWGSxWDK87I+7u7umTp3qsOAAAACQ/5BTAgAAwBFyMq8MCgqSJJ06dUrBwcG29lOnTqlGjRq2PqdPn7Zb7urVqzp79qxteQAAADjObRW6Dx06JGOMypQpo++//17Fixe3zStSpIgCAgLk6urq8CABAACQf5BTAgAAwBFyMq8MCwtTUFCQ1q5daytsJyYmatu2berdu7ckKSIiQgkJCdq5c6dq164tSVq3bp3S0tIUHh7ukDgAAADw/91WobtUqVKSpLS0tGwJBgAAAPmfM3LK1NRUjRgxQv/73/8UHx+vkJAQde3aVa+//rosFoskyRij4cOH6/3331dCQoLq1q2rGTNmqHz58jkWJwAAALLO0XllUlKSDhw4YJs+dOiQdu/eLT8/P5UsWVIDBgzQ6NGjVb58eYWFhWno0KEKCQlR27ZtJUmVKlVSs2bN1LNnT82cOVMpKSnq27evOnbsqJCQEIfECAAAgP/vtgrd19u/f7/Wr1+v06dPp0smhw0bdteBAQAAIP/LqZxyzJgxmjFjhubNm6cqVapox44d6tatm3x8fNS/f39J0tixYzVlyhTNmzfPduAyKipKv/76q9zc3BwWCwAAABzPEXnljh071KhRI9v0oEGDJEldunTR3LlzNXjwYF28eFG9evVSQkKC6tWrp1WrVtnligsWLFDfvn3VpEkTubi4qH379poyZYoD1hAAAAA3uqNC9/vvv6/evXvrnnvuUVBQkO0sGEmyWCwUugEAAHBLOZlTfvfdd2rTpo1atGghSSpdurQ++ugjff/995L+PZt78uTJev3119WmTRtJ0vz58xUYGKhly5apY8eO6cZMTk5WcnKybToxMdFh8QIAACDrHJVXNmzYUMaYTOdbLBaNGjVKo0aNyrSPn5+fFi5cmPXgAQAAcMfuqNA9evRovfnmmxoyZIij4wEAAEABkZM55cMPP6xZs2bp999/13333acff/xR3377rSZOnCjp38tSxsfHKzIy0raMj4+PwsPDFRcXl2GhOzY2ViNHjsz22AEAAHBzHKsEAAAomO6o0H3u3Dk98cQTjo4FAAAABUhO5pSvvvqqEhMTVbFiRbm6uio1NVVvvvmmOnfuLEmKj4+XJAUGBtotFxgYaJt3o5iYGNvlLKV/z+gODQ3NpjUAAABAZjhWCQAAUDC53MlCTzzxhL755htHxwIAAIACJCdzyk8++UQLFizQwoULtWvXLs2bN0/jx4/XvHnz7nhMq9Uqb29vuwcAAAByHscqAQAACqY7OqO7XLlyGjp0qLZu3aqqVauqcOHCdvP79+/vkOAAAACQf+VkTvnKK6/o1VdftV2CvGrVqjpy5IhiY2PVpUsXBQUFSZJOnTql4OBg23KnTp1SjRo1HBYHAAAAHI9jlQAAAAXTHRW6Z82aJU9PT23cuFEbN260m2exWEgeAQAAcEs5mVNeunRJLi72FzNydXVVWlqaJCksLExBQUFau3atrbCdmJiobdu2qXfv3g6LAwAAAI7HsUoAAICC6Y4K3YcOHXJ0HAAAAChgcjKnbNWqld58802VLFlSVapU0Q8//KCJEyeqe/fukv49ADpgwACNHj1a5cuXV1hYmIYOHaqQkBC1bds2x+IEAADA7eNYJQAAQMF0R4VuAAAAIC+ZOnWqhg4dqhdeeEGnT59WSEiInnvuOQ0bNszWZ/Dgwbp48aJ69eqlhIQE1atXT6tWrZKbm5sTIwcAAAAAAACQkTsqdF878yUzH3744R0FAwAAgIIjJ3NKLy8vTZ48WZMnT860j8Vi0ahRozRq1CiHPS8AAACyH8cqAQAACqY7KnSfO3fObjolJUW//PKLEhIS1LhxY4cEBgAAgPyNnBIAAACOQF4JAABQMN1RoXvp0qXp2tLS0tS7d2+VLVv2roMCAABA/kdOCQAAAEcgrwQAACiYXBw2kIuLBg0apEmTJjlqSAAAABQw5JQAAABwBPJKAACA/M9hhW5JOnjwoK5everIIQEAAFDAkFMCAADAEcgrAQAA8rc7unT5oEGD7KaNMTp58qS+/PJLdenSxSGBAQAAIH8jpwQAAIAjkFcCAAAUTHdU6P7hhx/spl1cXFS8eHFNmDBB3bt3d0hgAAAAyN/IKQEAAOAI5JUAAAAF0x0VutevX+/oOAAAAFDAkFMCAADAEcgrAQAACqY7KnRf89dff2nfvn2SpAoVKqh48eIOCQoAAAAFBzklAAAAHIG8EgAAoGBxuZOFLl68qO7duys4OFj169dX/fr1FRISoh49eujSpUuOjhEAAAD5EDklAAAAHIG8EgAAoGC6o0L3oEGDtHHjRn3xxRdKSEhQQkKCPv/8c23cuFEvvfSSo2MEAABAPkROCQAAAEcgrwQAACiY7ujS5Z9++qmWLFmihg0b2tqaN28ud3d3Pfnkk5oxY4aj4gMAAEA+RU4JAAAARyCvBAAAKJju6IzuS5cuKTAwMF17QEAAlwMCAABAlpBTAgAAwBHIKwEAAAqmOyp0R0REaPjw4bp8+bKt7Z9//tHIkSMVERHhsOAAAACQf5FTAgAAwBHIKwEAAAqmO7p0+eTJk9WsWTOVKFFC1atXlyT9+OOPslqt+uabbxwaIAAAAPInckoAAAA4AnklAABAwXRHhe6qVatq//79WrBggX777TdJUqdOndS5c2e5u7s7NEAAAADkT+SUAAAAcATySgAAgILpjgrdsbGxCgwMVM+ePe3aP/zwQ/31118aMmSIQ4IDAABA/kVOCQDITodeGujsEAqUsAmTnB0CCjDySgAAgILpju7R/d5776lixYrp2qtUqaKZM2fedVAAAADI/8gpAQAA4Ag5mVeWLl1aFosl3aNPnz6SpIYNG6ab9/zzzzs0BgAAAPzrjs7ojo+PV3BwcLr24sWL6+TJk3cdFAAAAPI/ckoAAAA4Qk7mldu3b1dqaqpt+pdfftGjjz6qJ554wtbWs2dPjRo1yjZdtGhRh8YAAACAf91RoTs0NFRbtmxRWFiYXfuWLVsUEhLikMAAAACQv5FTAgAAwBFyMq8sXry43fTbb7+tsmXLqkGDBra2okWLKigoKMtjJicnKzk52TadmJh494ECAAAUAHdU6O7Zs6cGDBiglJQUNW7cWJK0du1aDR48WC+99JJDAwQAAED+RE4JAAAAR3BWXnnlyhX973//06BBg2SxWGztCxYs0P/+9z8FBQWpVatWGjp06E3P6o6NjdXIkSOzLU4AAID86o4K3a+88orOnDmjF154QVeuXJEkubm5aciQIYqJicnyOJs2bdK4ceO0c+dOnTx5UkuXLlXbtm1t840xGj58uN5//30lJCSobt26mjFjhsqXL2/rc/bsWfXr109ffPGFXFxc1L59e73zzjvy9PS8k1UDAABADnFUTgkAAICCzVl55bJly5SQkKCuXbva2p566imVKlVKISEh+umnnzRkyBDt27dPn332WabjxMTEaNCgQbbpxMREhYaGZlvcAAAA+cUdFbotFovGjBmjoUOHau/evXJ3d1f58uVltVpva5yLFy+qevXq6t69u9q1a5du/tixYzVlyhTNmzdPYWFhGjp0qKKiovTrr7/Kzc1NktS5c2edPHlSq1evVkpKirp166ZevXpp4cKFd7JqAAAAyCGOyikBAABQsDkrr5w9e7aio6PtLo/eq1cv299Vq1ZVcHCwmjRpooMHD6ps2bIZjmO1WsmBAQAA7oDL3Szs6empBx54QPfff/8dJWPR0dEaPXq0HnvssXTzjDGaPHmyXn/9dbVp00bVqlXT/PnzdeLECS1btkyStHfvXq1atUoffPCBwsPDVa9ePU2dOlUff/yxTpw4cTerBgAAgBxytzllVh0/flz/+c9/5O/vL3d3d1WtWlU7duywzTfGaNiwYQoODpa7u7siIyO1f//+bIsHAAAAjpVTeaUkHTlyRGvWrNGzzz57037h4eGSpAMHDmRrPAAAAAXRXRW6s9OhQ4cUHx+vyMhIW5uPj4/Cw8MVFxcnSYqLi5Ovr6/q1Klj6xMZGSkXFxdt27Yt07GTk5OVmJho9wAAAED+de7cOdWtW1eFCxfWypUr9euvv2rChAkqVqyYrc+1qwnNnDlT27Ztk4eHh6KionT58mUnRg4AAIDcaM6cOQoICFCLFi1u2m/37t2SpODg4ByICgAAoGC5o0uX54T4+HhJUmBgoF17YGCgbV58fLwCAgLs5hcqVEh+fn62PhmJjY3VyJEjHRwxAAAAcqsxY8YoNDRUc+bMsbWFhYXZ/r7xakKSNH/+fAUGBmrZsmXq2LFjujGTk5OVnJxsm+bHkwAAAAVDWlqa5syZoy5duqhQof9/ePXgwYNauHChmjdvLn9/f/30008aOHCg6tevr2rVqjkxYgAAgPwp157RnZ1iYmJ0/vx52+PYsWPODgkAAADZaPny5apTp46eeOIJBQQEqGbNmnr//fdt87NyNaEbxcbGysfHx/YIDQ3N9vUAAACA861Zs0ZHjx5V9+7d7dqLFCmiNWvWqGnTpqpYsaJeeukltW/fXl988YWTIgUAAMjfcu0Z3UFBQZKkU6dO2V3a59SpU6pRo4atz+nTp+2Wu3r1qs6ePWtbPiNWqzXb79MDAACA3OOPP/7QjBkzNGjQIL322mvavn27+vfvryJFiqhLly5ZuprQjWJiYjRo0CDbdGJiIsVuAACAAqBp06YyxqRrDw0N1caNG50QEQAAQMGUa8/oDgsLU1BQkNauXWtrS0xM1LZt2xQRESFJioiIUEJCgnbu3Gnrs27dOqWlpSk8PDzHYwYAAEDulJaWplq1aumtt95SzZo11atXL/Xs2VMzZ8684zGtVqu8vb3tHgAAAAAAAAByhlML3UlJSdq9e7d2794t6d9LRu7evVtHjx6VxWLRgAEDNHr0aC1fvlw///yznnnmGYWEhKht27aSpEqVKqlZs2bq2bOnvv/+e23ZskV9+/ZVx44dFRIS4rwVAwAAQK4SHBysypUr27VVqlRJR48elWR/NaHrnTp16qZXCgIAAAAAAADgHE4tdO/YsUM1a9ZUzZo1JUmDBg1SzZo1NWzYMEnS4MGD1a9fP/Xq1UsPPPCAkpKStGrVKrm5udnGWLBggSpWrKgmTZqoefPmqlevnmbNmuWU9QEAAEDuVLduXe3bt8+u7ffff1epUqUkZe1qQgAAAAAAAAByD6feo7thw4YZ3s/mGovFolGjRmnUqFGZ9vHz89PChQuzIzwAAADkEwMHDtTDDz+st956S08++aS+//57zZo1y/YDyeuvJlS+fHmFhYVp6NChdlcTAgAAAAAAAJB7OLXQDQAAAOSEBx54QEuXLlVMTIxGjRqlsLAwTZ48WZ07d7b1GTx4sC5evKhevXopISFB9erVS3c1IQAAAAAAAAC5A4VuAAAAFAgtW7ZUy5YtM52flasJAQAAAAAAAMgdKHQDAAAATlKjxJPODqFA2f3nJ84OAQAAAAAAAA7i4uwAAAAAAAAAAAAAAAC4HRS6AQAAAAAAAAAAAAB5CoVuAAAAAAAAAAAAAECeQqEbAAAAAAAAAAAAAJCnUOgGAAAAAAAAAAAAAOQpFLoBAAAAAAAAAAAAAHkKhW4AAAAAAAAAAAAAQJ5CoRsAAAAAAAAAAAAAkKdQ6AYAAAAAAAAAAAAA5CkUugEAAAAAAAAAAAAAeQqFbgAAAAAAAAAAAABAnkKhGwAAAAAAAAAAAACQp1DoBgAAAAAAAAAAAADkKYWcHQAAAAAAAAAA4M7UKPGks0MocHb/+YmzQwAAAOKMbgAAAAAAAAAAAABAHkOhGwAAAAAAAAAAAACQp1DoBgAAAAAAAAAAAADkKRS6AQAAAAAAACALRowYIYvFYveoWLGibf7ly5fVp08f+fv7y9PTU+3bt9epU6ecGDEAAED+RaEbAAAAAAAAALKoSpUqOnnypO3x7bff2uYNHDhQX3zxhRYvXqyNGzfqxIkTateunROjBQAAyL8KOTsAAAAAAAAAAMgrChUqpKCgoHTt58+f1+zZs7Vw4UI1btxYkjRnzhxVqlRJW7du1UMPPZTheMnJyUpOTrZNJyYmZk/gAAAA+QxndAMAAAAAAABAFu3fv18hISEqU6aMOnfurKNHj0qSdu7cqZSUFEVGRtr6VqxYUSVLllRcXFym48XGxsrHx8f2CA0NzfZ1AAAAyA8odAMAAKDAefvtt2WxWDRgwABbG/dTBAAAwK2Eh4dr7ty5WrVqlWbMmKFDhw7pkUce0YULFxQfH68iRYrI19fXbpnAwEDFx8dnOmZMTIzOnz9vexw7diyb1wIAACB/4NLlAAAAKFC2b9+u9957T9WqVbNrHzhwoL788kstXrxYPj4+6tu3r9q1a6ctW7Y4KVIAAADkNtHR0ba/q1WrpvDwcJUqVUqffPKJ3N3d72hMq9Uqq9XqqBABAAAKDArdKNBeqDrY2SEUKNN/HuvsEAAABVxSUpI6d+6s999/X6NHj7a138n9FLmXIgAAAHx9fXXffffpwIEDevTRR3XlyhUlJCTYndV96tSpDO/pDQAAgLvDpcsBAABQYPTp00ctWrSwu2+idGf3U+ReigAAAEhKStLBgwcVHBys2rVrq3Dhwlq7dq1t/r59+3T06FFFREQ4MUoAAID8iTO6AQAAUCB8/PHH2rVrl7Zv355u3p3cTzEmJkaDBg2yTScmJlLsBgAAyOdefvlltWrVSqVKldKJEyc0fPhwubq6qlOnTvLx8VGPHj00aNAg+fn5ydvbW/369VNERESGVwgCAADA3aHQDQAAgHzv2LFjevHFF7V69Wq5ubk5ZEzupQgAAFDw/Pnnn+rUqZPOnDmj4sWLq169etq6dauKFy8uSZo0aZJcXFzUvn17JScnKyoqStOnT3dy1AAAAPkThW4AAADkezt37tTp06dVq1YtW1tqaqo2bdqkd999V19//TX3UwQAAMAtffzxxzed7+bmpmnTpmnatGk5FBEAAMiqcyvGOjuEAqVYy8HZ/hwUugEAAJDvNWnSRD///LNdW7du3VSxYkUNGTJEoaGhtvsptm/fXhL3UwQAAAAAAAByMwrdAAAAyPe8vLx0//3327V5eHjI39/f1s79FAEAAAAAAIC8g0I3AAAAIO6nCAAAAAAAAOQlFLoBAABQIG3YsMFumvspAgAAAAAAAHkHhW4AAJBtzq0Y6+wQCpRiLQc7OwQAAAAAAAAAyBEuzg4AAAAAAAAAAAAAAIDbQaEbAAAAAAAAAAAAAJCnUOgGAAAAAAAAAAAAAOQpubrQPWLECFksFrtHxYoVbfMvX76sPn36yN/fX56enmrfvr1OnTrlxIgBAAAAAAAAAAAAANktVxe6JalKlSo6efKk7fHtt9/a5g0cOFBffPGFFi9erI0bN+rEiRNq166dE6MFAAAAAAAAAAAAAGS3Qs4O4FYKFSqkoKCgdO3nz5/X7NmztXDhQjVu3FiSNGfOHFWqVElbt27VQw89lNOhAgAAAAAAAAAAAAByQK4/o3v//v0KCQlRmTJl1LlzZx09elSStHPnTqWkpCgyMtLWt2LFiipZsqTi4uJuOmZycrISExPtHgAAAAAAAAAAAACAvCFXF7rDw8M1d+5crVq1SjNmzNChQ4f0yCOP6MKFC4qPj1eRIkXk6+trt0xgYKDi4+NvOm5sbKx8fHxsj9DQ0GxcCwAAAAAAAAAAAACAI+XqS5dHR0fb/q5WrZrCw8NVqlQpffLJJ3J3d7/jcWNiYjRo0CDbdGJiIsVuAAAAAAAAAAAAAMgjcvUZ3Tfy9fXVfffdpwMHDigoKEhXrlxRQkKCXZ9Tp05leE/v61mtVnl7e9s9AAAAAAAAAAAAAAB5Q54qdCclJengwYMKDg5W7dq1VbhwYa1du9Y2f9++fTp69KgiIiKcGCUAAAAAAAAAAAAAIDvl6kuXv/zyy2rVqpVKlSqlEydOaPjw4XJ1dVWnTp3k4+OjHj16aNCgQfLz85O3t7f69euniIgIPfTQQ84OHQAAAAAAAAAAAACQTXJ1ofvPP/9Up06ddObMGRUvXlz16tXT1q1bVbx4cUnSpEmT5OLiovbt2ys5OVlRUVGaPn26k6MGAAAAAAAAAAAAAGSnXF3o/vjjj286383NTdOmTdO0adNyKCIAAAAAAAAAAAAAgLPlqXt0AwAAAAAAAAAAAABAoRsAAAAAAAAAAAAAkKdQ6AYAAAAAAAAAAAAA5CkUugEAAAAAAAAAAAAAeQqFbgAAAAAAAAAAAABAnkKhGwAAAAAAAACyIDY2Vg888IC8vLwUEBCgtm3bat++fXZ9GjZsKIvFYvd4/vnnnRQxAABA/kWhGwAAAAAAAACyYOPGjerTp4+2bt2q1atXKyUlRU2bNtXFixft+vXs2VMnT560PcaOHeukiAEAAPIvCt0AAADI97Jy5s3ly5fVp08f+fv7y9PTU+3bt9epU6ecFDEAAAByo1WrVqlr166qUqWKqlevrrlz5+ro0aPauXOnXb+iRYsqKCjI9vD29s50zOTkZCUmJto9AAAAcGsUugEAAJDvZeXMm4EDB+qLL77Q4sWLtXHjRp04cULt2rVzYtQAAADI7c6fPy9J8vPzs2tfsGCB7rnnHt1///2KiYnRpUuXMh0jNjZWPj4+tkdoaGi2xgwAAJBfFHJ2AAAAAEB2W7Vqld303LlzFRAQoJ07d6p+/fo6f/68Zs+erYULF6px48aSpDlz5qhSpUraunWrHnrooXRjJicnKzk52TbNmTcAAAAFS1pamgYMGKC6devq/vvvt7U/9dRTKlWqlEJCQvTTTz9pyJAh2rdvnz777LMMx4mJidGgQYNs04mJiRS7AQAAsoBCNwAAAAqcG8+82blzp1JSUhQZGWnrU7FiRZUsWVJxcXEZFrpjY2M1cuTInAkYAAAAuU6fPn30yy+/6Ntvv7Vr79Wrl+3vqlWrKjg4WE2aNNHBgwdVtmzZdONYrVZZrdZsjxcAACC/4dLlAAAAKFAyOvMmPj5eRYoUka+vr13fwMBAxcfHZzhOTEyMzp8/b3scO3Ysu0MHAABALtG3b1+tWLFC69evV4kSJW7aNzw8XJJ04MCBnAgNAACgwOCMbgAAABQomZ15c7s48wYAAKDgMcaoX79+Wrp0qTZs2KCwsLBbLrN7925JUnBwcDZHBwAAULBQ6AYAAECBce3Mm02bNtmdeRMUFKQrV64oISHB7qzuU6dOKSgoyAmRAgAAIDfq06ePFi5cqM8//1xeXl62q//4+PjI3d1dBw8e1MKFC9W8eXP5+/vrp59+0sCBA1W/fn1Vq1bNydEDAADkL1y6HAAAAPmeMUZ9+/bV0qVLtW7dunRn3tSuXVuFCxfW2rVrbW379u3T0aNHFRERkdPhAgAAIJeaMWOGzp8/r4YNGyo4ONj2WLRokSSpSJEiWrNmjZo2baqKFSvqpZdeUvv27fXFF184OXIAAID8hzO6AQAAkO/d6swbHx8f9ejRQ4MGDZKfn5+8vb3Vr18/RURE6KGHHnJy9AAAAMgtjDE3nR8aGqqNGzfmUDQAAAAFG4VuAAAA5HszZsyQJDVs2NCufc6cOerataskadKkSXJxcVH79u2VnJysqKgoTZ8+PYcjBQAAAAAAAJAVFLoBAACQ793qzBtJcnNz07Rp0zRt2rQciAgAAAAAAADA3eAe3QAAAAAAAAAAAACAPIVCNwAAAAAAAAAAAAAgT6HQDQAAAAAAAAAAAADIUyh0AwAAAAAAAAAAAADylELODgAAAAAAAAAAAADIjQ69NNDZIRQoYRMmOTsE5CEUuu9AjRJPOjuEAmX3n584OwQAAAAAAAAAAAAAuQiXLgcAAAAAAAAAAAAA5CkUugEAAAAAAAAAAAAAeQqFbgAAAAAAAAAAAABAnkKhGwAAAAAAAAAAAACQpxRydgAAAAAAAABAZs6tGOvsEAqUYi0HOzsEAAAAIEs4oxsAAAAAAAAAAAAAkKdQ6AYAAAAAAAAAAAAA5CkUugEAAAAAAAAAAAAAeQqFbgAAAAAAAAAAAABAnkKhGwAAAAAAAAAAAACQp1DoBgAAAAAAAAAAAADkKYWcHQAAANc79NJAZ4dQ4IRNmOTsEAAAAAAAAAAAuC2c0Q0AAAAAAAAAAAAAyFModAMAAAAAAAAAAAAA8hQK3QAAAAAAAAAAAACAPIVCNwAAAAAAAAAAAAAgT8k3he5p06apdOnScnNzU3h4uL7//ntnhwQAAIA8iLwSAAAAd4ucEgAAIPvli0L3okWLNGjQIA0fPly7du1S9erVFRUVpdOnTzs7NAAAAOQh5JUAAAC4W+SUAAAAOaOQswNwhIkTJ6pnz57q1q2bJGnmzJn68ssv9eGHH+rVV19N1z85OVnJycm26fPnz0uSEhMTs/R8qWkpDogaWZXV/XInrqQm37oTHCY79+Wlq+zLnJSd+/JCMvsyp2Xn/ky8dDnbxkZ6rlncl9f2uTEmO8PJk24nr7zbnFIir8xp5JX5B3ll/kFemX+QU+YfWc0pJfLKzHCsMv8jr8w/yCvzD/LK/IO8Mv/IiWOVFpPHM9ErV66oaNGiWrJkidq2bWtr79KlixISEvT555+nW2bEiBEaOXJkDkYJAACQ+xw7dkwlSpRwdhi5xu3mleSUAAAA/yKv/P84VgkAAHBn7iSnzPNndP/9999KTU1VYGCgXXtgYKB+++23DJeJiYnRoEGDbNNpaWk6e/as/P39ZbFYsjVeZ0lMTFRoaKiOHTsmb29vZ4eDu8C+zD/Yl/kH+zJ/KQj70xijCxcuKCQkxNmh5Cq3m1cWxJxSKhivkYKCfZl/sC/zD/Zl/lFQ9iV5ZXocq8y6gvI6KQjYl/kH+zL/YF/mHwVhX95NTpnnC913wmq1ymq12rX5+vo6J5gc5u3tnW9fCAUN+zL/YF/mH+zL/CW/708fHx9nh5DnFeScUsr/r5GChH2Zf7Av8w/2Zf5REPYleeXdI6/M/6+TgoJ9mX+wL/MP9mX+kd/35Z3mlC4OjiPH3XPPPXJ1ddWpU6fs2k+dOqWgoCAnRQUAAIC8hrwSAAAAd4ucEgAAIOfk+UJ3kSJFVLt2ba1du9bWlpaWprVr1yoiIsKJkQEAACAvIa8EAADA3SKnBAAAyDn54tLlgwYNUpcuXVSnTh09+OCDmjx5si5evKhu3bo5O7Rcw2q1avjw4ekug4S8h32Zf7Av8w/2Zf7C/izYyCtvjddI/sG+zD/Yl/kH+zL/YF8WbOSUWcPrJP9gX+Yf7Mv8g32Zf7Avb85ijDHODsIR3n33XY0bN07x8fGqUaOGpkyZovDwcGeHBQAAgDyGvBIAAAB3i5wSAAAg++WbQjcAAAAAAAAAAAAAoGDI8/foBgAAAAAAAAAAAAAULBS6AQAAAAAAAAAAAAB5CoVuAAAAAAAAAAAAAECeQqEbd23Dhg2yWCxKSEhwdij5VunSpTV58mRnhwEUCNnxeps7d658fX1t0yNGjFCNGjUc+hwFncVi0bJly5wdBoC7RF6Z/cgrgexBLpK/8R0ByFvIKbMfOSWQs8hF8h6+H+QcCt25SNeuXWWxWPT222/btS9btkwWi8Vhz3P48GFZLBbt3r3bYWPmFX/99Zd69+6tkiVLymq1KigoSFFRUdqyZYutD29AyKq4uDi5urqqRYsWzg4lV+L1lrmXX35Za9eudXYYecK1z0aLxaLChQsrMDBQjz76qD788EOlpaXZ+p08eVLR0dFOjBTIXcgrsx+fc3Ak8srci1zEsXjvzBzfEZAbkVNmP94X4UjklLfGay5z5CJZw/eD3IdCdy7j5uamMWPG6Ny5c84ORVeuXHF2CA7Xvn17/fDDD5o3b55+//13LV++XA0bNtSZM2dua5z8uG3uREHfDrNnz1a/fv20adMmnThx4q7GSk1NtfsgzA94vWXO09NT/v7+To0hJSXFqc9/O5o1a6aTJ0/q8OHDWrlypRo1aqQXX3xRLVu21NWrVyVJQUFBslqtTosxP/6fIu8jr8xefM45VkHfDuSVuRu5iOPw3pk5viMgtyKnzF68LzpWQd8O5JS3xmsuc+QiWcf3g1zGINfo0qWLadmypalYsaJ55ZVXbO1Lly411++qzZs3m3r16hk3NzdTokQJ069fP5OUlGSbL8ksXbrUbmwfHx8zZ84c2/zrHw0aNLA9f5s2bczo0aNNcHCwKV26tDHGmPnz55vatWsbT09PExgYaDp16mROnTplG3v9+vVGkjl37pxjN4iDnTt3zkgyGzZsyLRPqVKl7LZNqVKljDHGDB8+3FSvXt28//77pnTp0sZisRhjjDly5Ihp3bq18fDwMF5eXuaJJ54w8fHxtvGuLTd//nxTqlQp4+3tbTp06GASExNtfRITE81TTz1lihYtaoKCgszEiRNNgwYNzIsvvmgX16RJk4wxxnTr1s20aNHCLu4rV66Y4sWLmw8++CDD9fr7779Nx44dTUhIiHF3dzf333+/WbhwoV2frMYxatQo8/TTTxsvLy/TpUsXY8yt/ycvX75sXnrpJRMSEmKKFi1qHnzwQbN+/fpM90NecOHCBePp6Wl+++0306FDB/Pmm2/azf/8889NuXLljNVqNQ0bNjRz5861e53MmTPH+Pj4mM8//9xUqlTJuLq6mkOHDmVpW91qe+cGBfn1Zsy/+zc0NNS4u7ubtm3bmvHjxxsfH590sV6zfv1688ADD5iiRYsaHx8f8/DDD5vDhw8bY4w5cOCAad26tQkICDAeHh6mTp06ZvXq1XbPd+LECdO8eXPj5uZmSpcubRYsWGC3Hsb8+94/ffp006pVK1O0aFEzfPhwY4wxy5YtMzVr1jRWq9WEhYWZESNGmJSUFNty586dMz169DD33HOP8fLyMo0aNTK7d+/OdN0d7dpn043Wrl1rJJn333/fGGP/2ZecnGz69OljgoKCjNVqNSVLljRvvfWWbdkJEyaY+++/3xQtWtSUKFHC9O7d21y4cMFu/FmzZpkSJUrY9uGECRMy3Ic3/p9mZXvdapsDjkBemb0K8ucceaXjkVfmbuQijlOQ3zuN4TsC8iZyyuxVkN8XySkdj5zy1grya84YchFH4ftB7kOhOxe59gL57LPPjJubmzl27Jgxxj55PHDggPHw8DCTJk0yv//+u9myZYupWbOm6dq1q22cWyWP33//vZFk1qxZY06ePGnOnDlje35PT0/z9NNPm19++cX88ssvxhhjZs+ebb766itz8OBBExcXZyIiIkx0dLRt7LySPKakpBhPT08zYMAAc/ny5Qz7nD592kgyc+bMMSdPnjSnT582xvz7JuHh4WGaNWtmdu3aZX788UeTmppqatSoYerVq2d27Nhhtm7damrXrm1Lxq8t5+npadq1a2d+/vlns2nTJhMUFGRee+01W59nn33WlCpVyqxZs8b8/PPP5rHHHjNeXl6ZfpBt2bLFuLq6mhMnTtjmf/bZZ8bDwyPdm981f/75pxk3bpz54YcfzMGDB82UKVOMq6ur2bZt223H4e3tbcaPH28OHDhge9zqf/LZZ581Dz/8sNm0aZM5cOCAGTdunLFareb333+/5X7LrWbPnm3q1KljjDHmiy++MGXLljVpaWnGGGP++OMPU7hwYfPyyy+b3377zXz00Ufm3nvvTZc8Fi5c2Dz88MNmy5Yt5rfffjMXL1685bbKyvbODQry623r1q3GxcXFjBkzxuzbt8+88847xtfXN9PEMSUlxfj4+JiXX37ZHDhwwPz6669m7ty55siRI8YYY3bv3m1mzpxpfv75Z/P777+b119/3bi5udnmG2NMZGSkqVGjhtm6davZuXOnadCggXF3d0+XOAYEBJgPP/zQHDx40Bw5csRs2rTJeHt7m7lz55qDBw+ab775xpQuXdqMGDHCbuxWrVqZ7du3m99//9289NJLxt/f3/bZkd0ySx6NMaZ69eq2z6PrP/vGjRtnQkNDzaZNm8zhw4fN5s2b7b4wT5o0yaxbt84cOnTIrF271lSoUMH07t3bNv/bb781Li4uZty4cWbfvn1m2rRpxs/PL90+vPH/1Jhbb6+sbHPAEcgrs1dB/pwjr3Q88srcjVzEcQryeyffEZBXkVNmr4L8vkhO6XjklLdWkF9z5CKOw/eD3IdCdy5y/QvkoYceMt27dzfG2CePPXr0ML169bJbbvPmzcbFxcX8888/xphbJ4+HDh0ykswPP/yQ7vkDAwNNcnLyTePcvn27kWR708wryaMxxixZssQUK1bMuLm5mYcfftjExMTYXvDXZLT9hg8fbgoXLmz7YDPGmG+++ca4urqao0eP2tr27NljJJnvv//etlzRokXtfqH1yiuvmPDwcGPMv7/WKly4sFm8eLFtfkJCgilatGimH2TGGFO5cmUzZswY23SrVq1uO3lo0aKFeemll247jrZt29qNc6v/ySNHjhhXV1dz/Phxuz5NmjQxMTExtxVzbvLwww+byZMnG2P+/eC/5557bL9mHDJkiLn//vvt+v/f//1fuuRRkt2vp7KyrbLyHpBbFNTXW6dOnUzz5s3t2jp06JBp4njmzJlb/pr0RlWqVDFTp041xhizd+9eI8ls377dNn///v1GUrrEccCAAXbjNGnSxO7Xg8YY89///tcEBwcbY/793/L29k6X/JctW9a89957WY73btwseezQoYOpVKmSMcb+f6lfv36mcePGti90t7J48WLj7+9vN+6Nv4zt3Llzun144/9pVrbXrbY54CjkldmvoH7OZYS88u6QV+Zu5CKOVVDfO/mOgLyKnDL7FdT3xYyQU94dcsqsKaivOXIRx+H7Qe7DPbpzqTFjxmjevHnau3evXfuPP/6ouXPnytPT0/aIiopSWlqaDh06dNfPW7VqVRUpUsSubefOnWrVqpVKliwpLy8vNWjQQJJ09OjRu36+nNa+fXudOHFCy5cvV7NmzbRhwwbVqlVLc+fOveWypUqVUvHixW3Te/fuVWhoqEJDQ21tlStXlq+vr91+K126tLy8vGzTwcHBOn36tCTpjz/+UEpKih588EHbfB8fH1WoUOGmsTz77LOaM2eOJOnUqVNauXKlunfvnmn/1NRUvfHGG6patar8/Pzk6empr7/+2rYPbyeOOnXq2E3f6n/y559/Vmpqqu677z67Phs3btTBgwdvup651b59+/T999+rU6dOkqRChQqpQ4cOmj17tm3+Aw88YLfM9dv2miJFiqhatWq26axsq+x+D3Ckgvp627t3r8LDw+3aIiIiMu3v5+enrl27KioqSq1atdI777yjkydP2uYnJSXp5ZdfVqVKleTr6ytPT0/t3bvX9vrdt2+fChUqpFq1atmWKVeunIoVK5buuTJ6/Y4aNcru/6lnz546efKkLl26pB9//FFJSUny9/e363Po0KFc8fo1xshisaRr79q1q3bv3q0KFSqof//++uabb+zmr1mzRk2aNNG9994rLy8vPf300zpz5owuXbok6d9teuNrNqPX8I3/p1nZXrfa5kB2IK/MHgX1c4680rHIK/M2cpHbV1DfO/mOgPyAnDJ7FNT3RXJKxyKnzLqC+pojF8kZfD9wjkLODgAZq1+/vqKiohQTE6OuXbva2pOSkvTcc8+pf//+6ZYpWbKkJMliscgYYzcvJSUlS8/r4eFhN33x4kVFRUUpKipKCxYsUPHixXX06FFFRUXl2ZvZu7m56dFHH9Wjjz6qoUOH6tlnn9Xw4cPttnNGbtw2WVW4cGG7aYvForS0tDsa65pnnnlGr776quLi4vTdd98pLCxMjzzySKb9x40bp3feeUeTJ09W1apV5eHhoQEDBtzRPrxxO9zqf/Knn36Sq6urdu7cKVdXV7v5np6et/38ucHs2bN19epVhYSE2NqMMbJarXr33XezPI67u7vdB19SUtItt1VW3gNyk4L4ersTc+bMUf/+/bVq1SotWrRIr7/+ulavXq2HHnpIL7/8slavXq3x48erXLlycnd31+OPP+6w1+/IkSPVrl27dH3d3NyUlJSk4OBgbdiwId18X1/f235+R9u7d6/CwsLStdeqVUuHDh3SypUrtWbNGj355JOKjIzUkiVLdPjwYbVs2VK9e/fWm2++KT8/P3377bfq0aOHrly5oqJFi2b5+TPanrfaXrfa5kB2IK/MPgXxc4680rHIK/M2cpE7UxDfO+8E3xGQ25BTZp+C+L5ITulY5JS3pyC+5u4Eucjt4/uBc1DozsXefvtt1ahRw+7XO7Vq1dKvv/6qcuXKZbpc8eLF7X5ds3//frtfXlz7FWRqauotY/jtt9905swZvf3227ZfJu3YseO21yU3q1y5spYtW2abLly4cJa2TaVKlXTs2DEdO3bMtm1+/fVXJSQkqHLlyll67jJlyqhw4cLavn277YP//Pnz+v3331W/fv1Ml/P391fbtm01Z84cxcXFqVu3bjd9ni1btqhNmzb6z3/+I0lKS0vT77//bovzTuOQbv0/WbNmTaWmpur06dMO/7B1hqtXr2r+/PmaMGGCmjZtajevbdu2+uijj1ShQgV99dVXdvO2b99+y7Gzsq2y8h6QmxWE11ulSpW0bds2u7atW7feMr6aNWuqZs2aiomJUUREhBYuXKiHHnpIW7ZsUdeuXfXYY49J+jf5OHz4sG25ChUq6OrVq/rhhx9Uu3ZtSdKBAwd07ty5Wz5nrVq1tG/fvkz/n2rVqqX4+HgVKlRIpUuXvuV4OWndunX6+eefNXDgwAzne3t7q0OHDurQoYMef/xxNWvWTGfPntXOnTuVlpamCRMmyMXl3wvbfPLJJ3bLVqhQId1rNiuv4axsr1ttcyC7kFfmjILwOUde6TjklXkbuYjjFIT3Tr4jIL8gp8wZBeF9kZzSccgp715BeM2Ri2Q/vh84D4XuXKxq1arq3LmzpkyZYmsbMmSIHnroIfXt21fPPvusPDw89Ouvv2r16tW2X2c1btxY7777riIiIpSamqohQ4bY/WooICBA7u7uWrVqlUqUKCE3Nzf5+PhkGEPJkiVVpEgRTZ06Vc8//7x++eUXvfHGG9m74tnkzJkzeuKJJ9S9e3dVq1ZNXl5e2rFjh8aOHas2bdrY+pUuXVpr165V3bp1ZbVaM7ychiRFRkba9tHkyZN19epVvfDCC2rQoEG6y21kxsvLS126dNErr7wiPz8/BQQEaPjw4XJxccnwEhfXe/bZZ9WyZUulpqaqS5cuN+1bvnx5LVmyRN99952KFSumiRMn6tSpU7YP3LuJ41b/k/fdd586d+6sZ555RhMmTFDNmjX1119/ae3atapWrZpatGiRpW2VW6xYsULnzp1Tjx490r1u2rdvr9mzZ+uTTz7RxIkTNWTIEPXo0UO7d++2Xf7mZtszK9sqK+8BuUFBfr31799fdevW1fjx49WmTRt9/fXXWrVqVab9Dx06pFmzZql169YKCQnRvn37tH//fj3zzDOS/n39fvbZZ2rVqpUsFouGDh1q96vPihUrKjIyUr169dKMGTNUuHBhvfTSS+l+hZuRYcOGqWXLlipZsqQef/xxubi46Mcff9Qvv/yi0aNHKzIyUhEREWrbtq3Gjh2r++67TydOnNCXX36pxx57LMvb/m4lJycrPj5eqampOnXqlFatWqXY2Fi1bNnStp2uN3HiRAUHB6tmzZpycXHR4sWLFRQUJF9fX5UrV04pKSmaOnWqWrVqpS1btmjmzJl2y/fr10/169fXxIkT1apVK61bt04rV6685fbMyva61TYHsgt5pWMV5M858krHIa/MO8hFHKMgv3fyHQH5BTmlYxXk90VySschp8y6gvyaIxdxLL4f5DJOuzs40snoJvaHDh0yRYoUMdfvqu+//948+uijxtPT03h4eJhq1aqZN9980zb/+PHjpmnTpsbDw8OUL1/efPXVV8bHx8fMmTPH1uf99983oaGhxsXFxTRo0CDT5zfGmIULF5rSpUsbq9VqIiIizPLly40k88MPPxhjjFm/fr2RZM6dO+egLZE9Ll++bF599VVTq1Yt4+PjY4oWLWoqVKhgXn/9dXPp0iVbv+XLl5ty5cqZQoUKmVKlShljjBk+fLipXr16ujGPHDliWrdubTw8PIyXl5d54oknTHx8vG1+RstNmjTJNq4xxiQmJpqnnnrKFC1a1AQFBZmJEyeaBx980Lz66qu2PqVKlTKTJk2yGyctLc2UKlXKNG/e/JbrfubMGdOmTRvj6elpAgICzOuvv26eeeYZu/19p3EYc+v/yStXrphhw4aZ0qVLm8KFC5vg4GDz2GOPmZ9++umWsec2LVu2zHSbb9u2zUgyP/74o/n8889NuXLljNVqNQ0bNjQzZswwksw///xjjDFmzpw5xsfHJ90YWdlWt9reuUFBfr0ZY8zs2bNNiRIljLu7u2nVqpUZP3683f6+Ptb4+HjTtm1bExwcbIoUKWJKlSplhg0bZlJTU40x/34ONGrUyLi7u5vQ0FDz7rvvmgYNGpgXX3zRNt6JEydMdHS0sVqtplSpUmbhwoUmICDAzJw509ZHklm6dGm6WFetWmUefvhh4+7ubry9vc2DDz5oZs2aZbfN+vXrZ0JCQkzhwoVNaGio6dy5szl69GiWtsXd6tKli5FkJJlChQqZ4sWLm8jISPPhhx/atpEx9us3a9YsU6NGDePh4WG8vb1NkyZNzK5du2x9J06caIKDg427u7uJiooy8+fPT/c5NmvWLHPvvfcad3d307ZtWzN69GgTFBRkm5/Z/2lWttettjngCOSV2asgf86RVzoOeWXeQC7iOAX5vdMYviMgbyKnzF4F+X2RnNJxyCmzriC/5owhF3EUvh/kPhZjbrhBCgCnunjxou69915NmDBBPXr0yLRfUlKS7r33Xs2ZMyfD+yfkVBzImjfffFMzZ87UsWPHnB0KrpNbXm+O9ueffyo0NFRr1qxRkyZNnB1OvtCzZ0/99ttv2rx5s7NDAYAsyy2fc+SVjkVeWTCRi+Sc3PLe6Wh8RwBwp3LL+yI5pWORU+ZeueU152jkIo7F94P/j0uXA072ww8/6LffftODDz6o8+fPa9SoUZJkd7mU66Wlpenvv//WhAkT5Ovrq9atWzslDtzc9OnT9cADD8jf319btmzRuHHj1LdvX2eHVeDlltebo61bt05JSUmqWrWqTp48qcGDB6t06dK3vG8VMjd+/Hg9+uij8vDw0MqVKzVv3jxNnz7d2WEBwE3lls858krHIq8smMhFck5uee90NL4jALhTueV9kZzSscgpc6/c8ppzNHIRx+L7QeYodAO5wPjx47Vv3z4VKVJEtWvX1ubNm3XPPfdk2Pfo0aMKCwtTiRIlNHfuXBUq5LiX8e3EgZvbv3+/Ro8erbNnz6pkyZJ66aWXFBMT4+ywoNzzenOklJQUvfbaa/rjjz/k5eWlhx9+WAsWLLC75xluz/fff6+xY8fqwoULKlOmjKZMmaJnn33W2WEBwC3lls858krHIa8smMhFclZuee90JL4jALgbueV9kZzSccgpc7fc8ppzJHIRx+L7Qea4dDkAAAAAAAAAAAAAIE9xcXYAAAAAAAAAAAAAAADcDgrdAAAAAAAAAAAAAIA8hUI3AAAAAAAAAAAAACBPodANAAAAAAAAAAAAAMhTKHQDgINZLBYtW7bM2WFku7lz58rX19fZYQAAADhd165d1bZtW2eH4XDkewAAAMhtNmzYIIvFooSEhLsap6AcwwXyOwrdALJd165dZbFY0j2aNWvm7NBwFzp06KDff//doWM6KlEFAABwlIzy2OsfI0aM0DvvvKO5c+c6O1SHy458DwAAIDtcO/74/PPPp5vXp08fWSwWde3aNecDyyYNGzbUgAEDnB3GbctNcZ88eVLR0dHODgPAXSrk7AAAFAzNmjXTnDlz7NqsVquTooEjuLu7y93d3dlhAAAAZKuTJ0/a/l60aJGGDRumffv22do8PT3l6enpjNCyHfkeAADIS0JDQ/Xxxx9r0qRJthzm8uXLWrhwoUqWLHlXYxtjlJqaqkKF7r6kcuXKFRUpUuSux8kpeS3erAoKCnJ2CAAcgDO6AeQIq9WqoKAgu0exYsVs8ydOnKiqVavKw8NDoaGheuGFF5SUlGSbf+TIEbVq1UrFihWTh4eHqlSpoq+++so2/5dfflF0dLQ8PT0VGBiop59+Wn///Xem8Zw5c0adOnXSvffeq6JFi6pq1ar66KOP7Po0bNhQ/fv31+DBg+Xn56egoCCNGDHCrs/+/ftVv359ubm5qXLlylq9evUtt0VaWprGjh2rcuXKyWq1qmTJknrzzTdt83/++Wc1btxY7u7u8vf3V69evey2xbVLY44fP17BwcHy9/dXnz59lJKSIkl67bXXFB4enu55q1evrlGjRtmmP/jgA1WqVElubm6qWLGipk+fbpt3+PBhWSwWffbZZ2rUqJGKFi2q6tWrKy4uztYno0tZfv7556pVq5bc3NxUpkwZjRw5UlevXrXNt1gs+uCDD/TYY4+paNGiKl++vJYvX257zkaNGkmSihUrlu9+aQsAAPKm6/NXHx8fWSwWuzZPT890ly5v2LCh+vXrpwEDBqhYsWIKDAzU+++/r4sXL6pbt27y8vJSuXLltHLlSrvnut2c9mY5cmpqqnr06KGwsDC5u7urQoUKeuedd2zLfvPNN3Jzc0t3JZ0XX3xRjRs3lpQ+3xsxYoRq1Kih//73vypdurR8fHzUsWNHXbhwwdbnwoUL6ty5szw8PBQcHKxJkyblqjN3AABA/lWrVi2Fhobqs88+s7V99tlnKlmypGrWrGnXNzk5Wf3791dAQIDc3NxUr149bd++3Tb/2lUHV65cqdq1a8tqterbb79VWlqaYmNjbTlW9erVtWTJkpvGVbp0ab3xxht65pln5O3trV69ekmSvv32Wz3yyCNyd3dXaGio+vfvr4sXL9qWmz59uv4fe/cdXUW19nH8l0IKCUkMJUVCkSJIl2aAKy1KF66AgLkQiqBUARXkXqkqCEgXaSrFCxZEUOHSQVCkdwFphiKQgEISaQGS/f7ByrwckkASkpyU72etWTp79sw8cyY5PJlnZk+pUqXk5uYmPz8/tWnTRtLda4ObNm3SlClTrFGGTp069dD8T0r6iepWrVrZXINLLt7BgwerdOnSyps3r5544gkNHTrUuh4pPTxXTC7upMTGxmrw4MEKCgqSq6urSpYsqU8//dSmz+7du1WtWjXlzZtXtWrVsrkZVZJmzJihEiVKyMXFRU8++aQ+//xzm+X3D13+xx9/qEOHDvL19ZWHh4eqVaum7du3W8sfdN3TGKMRI0aoSJEicnV1VWBgoPr165fksQFIXxS6AWQJjo6Omjp1qg4dOqT58+drw4YNGjRokLW8d+/eio2N1ebNm3Xw4EGNHTvWenImKipKDRo0UJUqVbRr1y6tWrVKkZGReumll5Ld382bN1W1alWtWLFCv/76q3r06KGOHTtqx44dNv3mz58vDw8Pbd++XePGjdOoUaOsYnZ8fLxefPFFubi4aPv27Zo5c6YGDx780GMdMmSIPvjgAw0dOlSHDx/WokWL5OfnJ0m6du2aGjVqpMcee0w7d+7U4sWLtW7dOvXp08dmGxs3btTJkye1ceNGzZ8/X/PmzbOGywwNDdWOHTt08uRJq/+hQ4d04MABvfzyy5KkhQsXatiwYXr//fd15MgRjR49WkOHDtX8+fNt9vOf//xHb775pvbt26fSpUurQ4cONoXre/3000/q1KmTXn/9dR0+fFizZs3SvHnzbIr4kjRy5Ei99NJLOnDggJo2barQ0FBdvnxZQUFBWrJkiSTp6NGjunDhQqJkHAAAILuYP3++ChQooB07dqhv377q2bOn2rZtq1q1amnPnj16/vnn1bFjR12/fl1S2nLaB+XI8fHxKly4sBYvXqzDhw9r2LBh+ve//62vv/5aktSwYUP5+PhY+Zd0tzj+1VdfKTQ0NNl9njx5UsuWLdPy5cu1fPlybdq0SR988IG1fODAgdqyZYu+//57rV27Vj/99JP27NnzSJ8lAABASnXt2tVmVMnPPvtMXbp0SdRv0KBBWrJkiebPn689e/aoZMmSatSokS5fvmzT7+2339YHH3ygI0eOqGLFihozZowWLFigmTNn6tChQxowYID+9a9/adOmTQ+M68MPP1SlSpW0d+9eDR06VCdPnlTjxo3VunVrHThwQF999ZV+/vln6xrgrl271K9fP40aNUpHjx7VqlWr9Oyzz0qSpkyZouDgYHXv3l0XLlzQhQsXFBQU9ND8LzXuj1eS8uXLp3nz5unw4cOaMmWK5syZo0mTJtms96BcMbm4k9KpUyd98cUXmjp1qo4cOaJZs2YlGkXpP//5jyZMmKBdu3bJ2dlZXbt2tZYtXbpUr7/+ut544w39+uuvevXVV9WlSxdt3Lgxyf1dvXpVdevW1blz5/T9999r//79GjRokOLj4yU9/LrnkiVLNGnSJM2aNUvHjx/XsmXLVKFChVR/7gDSwABABgsLCzNOTk7Gw8PDZnr//feTXWfx4sUmf/781nyFChXMiBEjkuz77rvvmueff96m7ezZs0aSOXr0aIrjbNasmXnjjTes+bp165o6derY9KlevboZPHiwMcaY1atXG2dnZ3Pu3Dlr+cqVK40ks3Tp0iT3ERMTY1xdXc2cOXOSXD579mzz2GOPmatXr1ptK1asMI6OjiYiIsIYc/fzLFq0qLlz547Vp23btqZdu3bWfKVKlcyoUaOs+SFDhpiaNWta8yVKlDCLFi2y2fe7775rgoODjTHGhIeHG0nmk08+sZYfOnTISDJHjhwxxhgzd+5c4+3tbS1v2LChGT16tM02P//8cxMQEGDNSzLvvPOONX/16lUjyaxcudIYY8zGjRuNJHPlypUkPx8AAAB7uj//SRAWFmZatmxpzd+fR965c8d4eHiYjh07Wm0XLlwwkszWrVuNMWnLaR+UIyeld+/epnXr1tb866+/bho0aGDNr1692ri6ulq52P3HO3z4cJM3b14TExNjtb311ltWnhkTE2Py5MljFi9ebC2PiooyefPmNa+//nqK4wQAAEithHzs4sWLxtXV1Zw6dcqcOnXKuLm5mUuXLpmWLVuasLAwY8zd61F58uQxCxcutNa/deuWCQwMNOPGjTPG/P81qmXLlll9bt68afLmzWt++eUXm31369bNdOjQIdnYihYtalq1apVonR49eti0/fTTT8bR0dHcuHHDLFmyxHh5ednkXfeqW7duivKr+/O/pNa797NJLt6kjB8/3lStWtWaf1iumNK4jx49aiSZtWvXJrk84dysW7fOaluxYoWRZG7cuGGMMaZWrVqme/fuNuu1bdvWNG3a1Jq/9xrurFmzTL58+cxff/2V5D4fdt1zwoQJpnTp0ubWrVsPPDYA6Y93dAPIFPXr19eMGTNs2nx9fa3/X7duncaMGaPffvtNMTExunPnjm7evKnr168rb9686tevn3r27Kk1a9YoJCRErVu3VsWKFSVJ+/fv18aNG5N8N+LJkydVunTpRO1xcXEaPXq0vv76a507d063bt1SbGys8ubNa9MvYR8JAgICdPHiRUnSkSNHFBQUpMDAQGt5cHDwAz+HI0eOKDY2Vg0bNkx2eaVKleTh4WG11a5dW/Hx8Tp69Kj15He5cuXk5ORkE9fBgwet+dDQUH322WcaOnSojDH64osvNHDgQEl3nxo/efKkunXrpu7du1vr3LlzR97e3skef0BAgCTp4sWLKlOmTKLY9+/fry1bttg8wR0XF2dzHu/fpoeHh7y8vKzPFAAAIKe4N+dxcnJS/vz5bZ7qSMjrEvKgtOS0D8qRJWn69On67LPPdObMGd24cUO3bt1S5cqVreWhoaF65plndP78eQUGBmrhwoVq1qxZotfT3KtYsWLKly+fNX9vfvz777/r9u3bqlGjhrXc29tbTz75ZLLbAwAASE8FCxZUs2bNNG/ePBlj1KxZMxUoUMCmz8mTJ3X79m3Vrl3basuTJ49q1KihI0eO2PStVq2a9f8nTpzQ9evX9dxzz9n0uXXrVqKh0e9373aku7nfgQMHtHDhQqvNGKP4+HiFh4frueeeU9GiRfXEE0+ocePGaty4sfUqwAd5WP6XUvfHK0lfffWVpk6dqpMnT+rq1au6c+eOvLy8bPo8KFdMqX379snJyUl169Z9YL/krlsWKVJER44csYZcT1C7du1kR4/ct2+fqlSpYnO9+l4Pu+7Ztm1bTZ482TpfTZs2VYsWLdLlne4AHozfMgCZwsPDQyVLlkxy2alTp9S8eXP17NlT77//vnx9ffXzzz+rW7duunXrlvLmzatXXnlFjRo10ooVK7RmzRqNGTNGEyZMUN++fXX16lW1aNFCY8eOTbTthCTnfuPHj9eUKVM0efJk693g/fv3161bt2z65cmTx2bewcHBGrImLdzd3dO87r0eFleHDh00ePBg7dmzRzdu3NDZs2fVrl07SbLe9z1nzpxE7/K+t3h+/34cHBwkKdnjv3r1qkaOHKkXX3wx0TI3N7cUxw4AAJATJJXzPCi3SktO+6Ac+csvv9Sbb76pCRMmKDg4WPny5dP48eNt3jNYvXp1lShRQl9++aV69uyppUuXWq/DSc1xkcsBAICspGvXrtYQ4NOnT3+kbd37MErCNbUVK1bo8ccft+nn6uqa4u0kbOvVV19N8j3ORYoUkYuLi/bs2aMff/xRa9as0bBhwzRixAjt3Lkz2ZsSU5L/OTo6yhhjs96979lOLt6tW7cqNDRUI0eOVKNGjeTt7a0vv/xSEyZMsOmXHrliSq+fpua65aPu82HXPYOCgnT06FGtW7dOa9euVa9evTR+/Hht2rQp0WcCIH1R6AZgd7t371Z8fLwmTJggR0dHSUry3TFBQUF67bXX9Nprr2nIkCGaM2eO+vbtq6efflpLlixRsWLFUnyX3JYtW9SyZUv961//knQ3CTp27JieeuqpFMddtmxZnT17VhcuXLAuPm7btu2B65QqVUru7u5av369XnnllSS3OW/ePF27ds1KKLds2SJHR8dUPQlTuHBh1a1bVwsXLtSNGzf03HPPqVChQpLuPj0UGBio33///YHvX0ytp59+WkePHk32hoaUcHFxkXT3jkgAAIDcJC05rZR8jrxlyxbVqlVLvXr1svqePHky0fqhoaFauHChChcuLEdHRzVr1izNx/DEE08oT5482rlzp4oUKSJJio6O1rFjx6x3SgIAAGS0xo0b69atW3JwcFCjRo0SLS9RooRcXFy0ZcsWFS1aVNLdYu/OnTvVv3//ZLf71FNPydXVVWfOnHno08YP8/TTT+vw4cMPvI7m7OyskJAQhYSEaPjw4fLx8dGGDRv04osvysXFJdH1s5TkfwULFtSFCxes+bi4OP3666+qX7/+A+P95ZdfVLRoUf3nP/+x2k6fPp2iY71XUnHfr0KFCoqPj9emTZsUEhKS6n1Id6+xbtmyRWFhYVbbli1bkr32W7FiRX3yySe6fPlykk91p+S6p7u7u1q0aKEWLVqod+/eKlOmjA4ePKinn346TccAIGUodAPIFLGxsYqIiLBpc3Z2VoECBVSyZEndvn1b06ZNU4sWLbRlyxbNnDnTpm///v3VpEkTlS5dWleuXNHGjRtVtmxZSVLv3r01Z84cdejQQYMGDZKvr69OnDihL7/8Up988kmip5SluwXnb775Rr/88osee+wxTZw4UZGRkakqdIeEhKh06dIKCwvT+PHjFRMTY5PsJcXNzU2DBw/WoEGD5OLiotq1a+vSpUs6dOiQunXrptDQUA0fPlxhYWEaMWKELl26pL59+6pjx47W8JYplbCtW7duadKkSTbLRo4cqX79+snb21uNGzdWbGysdu3apStXrlhDnKfWsGHD1Lx5cxUpUkRt2rSRo6Oj9u/fr19//VXvvfdeirZRtGhROTg4aPny5WratKnc3d2THL4TAAAgp0lLTvugHLlUqVJasGCBVq9ereLFi+vzzz/Xzp07Vbx4cZtthIaGasSIEXr//ffVpk2bhz6N9CD58uVTWFiY3nrrLfn6+qpQoUIaPny4HB0dradsAAAAMpqTk5M1BHlSOZSHh4d69uxp5SxFihTRuHHjdP36dXXr1i3Z7ebLl09vvvmmBgwYoPj4eNWpU0fR0dHasmWLvLy8bIqqDzN48GA988wz6tOnj1555RV5eHjo8OHDWrt2rT766CMtX75cv//+u5599lk99thj+t///qf4+HjrQZhixYpp+/btOnXqlDw9PeXr65ui/K9BgwYaOHCgVqxYoRIlSmjixImKiop6aLylSpXSmTNn9OWXX6p69epasWKFli5dmuLjTZBU3AkPPt3bJywsTF27dtXUqVNVqVIlnT59WhcvXtRLL72Uov289dZbeumll1SlShWFhITohx9+0Lfffqt169Yl2b9Dhw4aPXq0WrVqpTFjxiggIEB79+5VYGCggoODH3rdc968eYqLi1PNmjWVN29e/fe//5W7u7t1IwWAjOP48C4A8OhWrVqlgIAAm6lOnTqSpEqVKmnixIkaO3asypcvr4ULF2rMmDE268fFxal3794qW7asGjdurNKlS+vjjz+WJAUGBmrLli2Ki4vT888/rwoVKqh///7y8fFJlCgleOedd/T000+rUaNGqlevnvz9/dWqVatUHZOjo6OWLl2qGzduqEaNGnrllVds3tOSnKFDh+qNN97QsGHDVLZsWbVr1856V03evHm1evVqXb58WdWrV1ebNm3UsGFDffTRR6mKTZLatGmjv/76S9evX090bK+88oo++eQTzZ07VxUqVFDdunU1b968RBc+U6NRo0Zavny51qxZo+rVq+uZZ57RpEmTUpXQPf744xo5cqTefvtt+fn5WcNMAQAA5HRpyWkflCO/+uqrevHFF9WuXTvVrFlTf/31l83TPQlKliypGjVq6MCBA+ky2s/EiRMVHBys5s2bKyQkRLVr11bZsmVtXmUDAACQ0by8vBK9P/peH3zwgVq3bq2OHTvq6aef1okTJ7R69Wo99thjD9zuu+++q6FDh2rMmDFWDrZixYpUX1OrWLGiNm3apGPHjukf//iHqlSpomHDhikwMFCS5OPjo2+//VYNGjRQ2bJlNXPmTH3xxRcqV66cJOnNN9+Uk5OTnnrqKRUsWFBnzpxJUf7XtWtXhYWFqVOnTqpbt66eeOKJhz7NLUkvvPCCBgwYoD59+qhy5cr65ZdfNHTo0FQdc3JxJ2XGjBlq06aNevXqpTJlyqh79+66du1aivfTqlUrTZkyRR9++KHKlSunWbNmae7cuapXr16S/V1cXLRmzRoVKlRITZs2VYUKFfTBBx9YN0o87Lqnj4+P5syZo9q1a6tixYpat26dfvjhB+XPnz91HxCAVHMw97+QAQAAAAAAIB1cu3ZNjz/+uCZMmPDAJ6QAAAAAAEgthi4HAAAAAADpYu/evfrtt99Uo0YNRUdHa9SoUZKkli1b2jkyAAAAAEBOQ6EbAAAAAACkmw8//FBHjx6Vi4uLqlatqp9++kkFChSwd1gAAAAAgByGocsBAAAAAAAAAAAAANmKo70DAAAAAAAAAAAAAAAgNSh0AwAAAAAAAAAAAACyFQrdAAAAAAAAAAAAAIBshUI3AAAAAAAAAAAAACBbodANAAAAAAAAAAAAAMhWKHQDAAAAAAAAAAAAALIVCt0AAAAAAAAAAAAAgGyFQjcAAAAAAAAAAAAAIFuh0A0AAAAAAAAAAAAAyFYodAMAAAAAAAAAAAAAshUK3QAAAAAAAAAAAACAbIVCNwAAAAAAAAAAAAAgW6HQDQAAAAAAAAAAAADIVih0AwAAAAAAAAAAAACyFQrdAAC7qVevnurVq2fvMAAAAGzcuXNHgwYNUlBQkBwdHdWqVStJ0tWrV/XKK6/I399fDg4O6t+/v13jzEwjRoyQg4NDhmybnBAAAORm8+bNk4ODg06dOmXvUFIsI3PD9JJUjMWKFVPnzp3tExCADEGhG0CKJCRcyU3btm2zd4iJ3Bufo6OjAgMD9fzzz+vHH3+0d2iZatGiRZo8ebLd9n/48GGNGDEiWyXrAADA1r254M8//5xouTFGQUFBcnBwUPPmze0Q4YPdvn1bU6dOVfXq1ZUvXz55enqqevXqmjp1qm7fvp2o/2effabx48erTZs2mj9/vgYMGCBJGj16tObNm6eePXvq888/V8eOHTP7ULK8zp072+Thnp6eeuKJJ9SmTRstWbJE8fHx9g4xU5w/f14jRozQvn377B0KAAC4R3h4uPr06aPSpUsrb968yps3r5566in17t1bBw4csHd4D5RQuE1qmjlzpr3Dy5a4bglkf872DgBA9jJq1CgVL148UXvJkiXtEM3DPffcc+rUqZOMMQoPD9fHH3+sBg0aaMWKFWrSpIm9w8sUixYt0q+//mq3J44OHz6skSNHql69eipWrJjNsjVr1tglJgAAkDZubm5atGiR6tSpY9O+adMm/fHHH3J1dbVTZMm7du2amjVrpk2bNql58+bq3LmzHB0dtWrVKr3++uv69ttvtWLFCnl4eFjrbNiwQY8//rgmTZpks60NGzbomWee0fDhwzP7MLIVV1dXffLJJ5KkGzdu6PTp0/rhhx/Upk0b1atXT9999528vLys/jkxJzx//rxGjhypYsWKqXLlyvYOBwAASFq+fLnatWsnZ2dnhYaGqlKlSnJ0dNRvv/2mb7/9VjNmzFB4eLiKFi1q71AfaMaMGfL09LRpq1mzpp2iyV6OHj0qR8f/f/7zQdctAWQPFLoBpEqTJk1UrVo1e4eRYqVLl9a//vUva/6f//ynKlasqMmTJ+eaQndW5uLiYu8QAABAKjRt2lSLFy/W1KlT5ez8/39OLlq0SFWrVtWff/6ZbvuKj4/XrVu35Obm9kjbGThwoDZt2qRp06apT58+VnvPnj01ffp09enTR2+++aZmzJhhLbt48aJ8fHwSbevixYt66qmnHimee6XXMWY1zs7ONjm4JL333nv64IMPNGTIEHXv3l1fffWVtYycEAAAZLSTJ0+qffv2Klq0qNavX6+AgACb5WPHjtXHH39sUwTNqtq0aaMCBQrYO4xsKSvemAvg0WT9b20A2c6HH36oWrVqKX/+/HJ3d1fVqlX1zTffJOq3du1a1alTRz4+PvL09NSTTz6pf//735Luvv/Qw8NDr7/+eqL1/vjjDzk5OWnMmDGpjq1ChQoqUKCAwsPDJUk//fST2rZtqyJFisjV1VVBQUEaMGCAbty4Ya0zd+5cOTg4aO/evYm2N3r0aDk5OencuXOS7r5fsHz58jpw4IDq1q2rvHnzqmTJktbxb9q0STVr1pS7u7uefPJJrVu3LtE2z507p65du8rPz0+urq4qV66cPvvsM5s+P/74oxwcHPT111/r/fffV+HCheXm5qaGDRvqxIkTVr969eppxYoVOn36tDWU0cPuTrxz547effddlShRQq6uripWrJj+/e9/KzY21qZfsWLF1Lx5c61Zs0aVK1eWm5ubnnrqKX377bdWn3nz5qlt27aSpPr161sxJAwfn9T7GC9evKhu3brJz89Pbm5uqlSpkubPn2/T59SpU3JwcNCHH36o2bNnW7FWr15dO3fufODxAQCAtOvQoYP++usvrV271mq7deuWvvnmG7388stJrnPt2jW98cYbCgoKkqurq5588kl9+OGHMsbY9HNwcFCfPn20cOFClStXTq6urlq1apWklOVHSfnjjz/06aefqkGDBjZF7gS9e/dW/fr19cknn+iPP/6wcoyNGzfq0KFDNrmLg4ODwsPDtWLFCqs9YYjD2NhYDR8+XCVLlrRyykGDBiXKnx50jF9++aWqVq2qfPnyycvLSxUqVNCUKVMeeowpzb0T9r1s2TKVL1/e+hwT9n+vn3/+WdWrV5ebm5tKlCihWbNmPTSOlHj77bf1/PPPa/HixTp27JjVnlROOG3aNJUrV0558+bVY489pmrVqmnRokU2fc6dO6du3bopMDBQrq6uKl68uHr27Klbt25ZfX7//Xe1bdtWvr6+yps3r5555hmtWLHCZjvJvRcz4bzf++qjhHz/8OHDql+/vvLmzavHH39c48aNs1mvevXqkqQuXbpYPy/z5s1Lw6cGAADSw7hx43Tt2jXNnTs3UZFbunujXr9+/RQUFGTTvmHDBv3jH/+Qh4eHfHx81LJlSx05ciTR+nv37lWTJk3k5eUlT09PNWzYMMlXPR46dEgNGjSQu7u7ChcurPfeey/dX+2yePFiVa1aVe7u7ipQoID+9a9/Wdcu03Jsj5obJly7c3d3V40aNfTTTz8lyv9Sk4+l5Hpucu59R/eDrluGhYWpQIECSb7m6Pnnn9eTTz6Zqs8AQMbhiW4AqRIdHZ3oSR0HBwflz5/fmp8yZYpeeOEFhYaG6tatW/ryyy/Vtm1bLV++XM2aNZN0N6lr3ry5KlasqFGjRsnV1VUnTpzQli1bJEmenp765z//qa+++koTJ06Uk5OTtf0vvvhCxhiFhoamOv4rV67oypUr1lDrixcv1vXr19WzZ0/lz59fO3bs0LRp0/THH39o8eLFku7eJdm7d28tXLhQVapUsdnewoULVa9ePT3++OM2+2jevLnat2+vtm3basaMGWrfvr0WLlyo/v3767XXXtPLL79svffx7NmzypcvnyQpMjJSzzzzjHUhsmDBglq5cqW6deummJiYRMOPf/DBB3J0dNSbb76p6OhojRs3TqGhodq+fbsk6T//+Y+io6P1xx9/WENv3j+00f1eeeUVzZ8/X23atNEbb7yh7du3a8yYMTpy5IiWLl1q0/f48eNq166dXnvtNYWFhWnu3Llq27atVq1apeeee07PPvus+vXrp6lTp+rf//63ypYtK0nWf+9348YN1atXTydOnFCfPn1UvHhxLV68WJ07d1ZUVFSiGx8WLVqkv//+W6+++qocHBw0btw4vfjii/r999+VJ0+eBx4nAABIvWLFiik4OFhffPGFNTrOypUrFR0drfbt22vq1Kk2/Y0xeuGFF7Rx40Z169ZNlStX1urVq/XWW2/p3LlzSQ4N/vXXX6tPnz4qUKCAihUrlur86F4rV65UXFycOnXqlGyfTp06aePGjVq1apU6dOigzz//XO+//76uXr1q3VhZtmxZff755xowYIAKFy6sN954Q5JUsGBBxcfH64UXXtDPP/+sHj16qGzZsjp48KAmTZqkY8eOadmyZQ89xrVr16pDhw5q2LChxo4dK0k6cuSItmzZkuSNn/dKSe6d4Oeff9a3336rXr16KV++fJo6dapat26tM2fOWPn8wYMH9fzzz6tgwYIaMWKE7ty5o+HDh8vPz++BcaRUx44dtWbNGq1du1alS5dOss+cOXPUr18/tWnTRq+//rpu3rypAwcOaPv27dYNFefPn1eNGjUUFRWlHj16qEyZMjp37py++eYbXb9+XS4uLoqMjFStWrV0/fp19evXT/nz59f8+fP1wgsv6JtvvtE///nPNB3DlStX1LhxY7344ot66aWX9M0332jw4MGqUKGCmjRporJly2rUqFEaNmyYevTooX/84x+SpFq1aqXtQwMAAI9s+fLlKlmyZKqG+F63bp2aNGmiJ554QiNGjNCNGzc0bdo01a5dW3v27LEeJjl06JD+8Y9/yMvLS4MGDVKePHk0a9Ys1atXz3roRZIiIiJUv3593blzR2+//bY8PDw0e/Zsubu7p+pYLl++bDPv5OSkxx57TNLd4m2XLl1UvXp1jRkzRpGRkZoyZYq2bNmivXv3WqMWpfTYHjU3/PTTT/Xqq6+qVq1a6t+/v37//Xe98MIL8vX1TXRTQUql5HpuSjzoumXHjh21YMECrV69Ws2bN7fWiYiI0IYNG3iVEZCVGABIgblz5xpJSU6urq42fa9fv24zf+vWLVO+fHnToEEDq23SpElGkrl06VKy+1y9erWRZFauXGnTXrFiRVO3bt2HxizJdOvWzVy6dMlcvHjRbN++3TRs2NBIMhMmTEgyVmOMGTNmjHFwcDCnT5+22jp06GACAwNNXFyc1bZnzx4jycydO9dqq1u3rpFkFi1aZLX99ttvRpJxdHQ027ZtS3R8967frVs3ExAQYP7880+bmNq3b2+8vb2teDdu3GgkmbJly5rY2Fir35QpU4wkc/DgQautWbNmpmjRog/9vIwxZt++fUaSeeWVV2za33zzTSPJbNiwwWorWrSokWSWLFlitUVHR5uAgABTpUoVq23x4sVGktm4cWOi/dWtW9fmXE6ePNlIMv/973+ttlu3bpng4GDj6elpYmJijDHGhIeHG0kmf/785vLly1bf7777zkgyP/zwQ4qOFwAApExCLrhz507z0UcfmXz58ll5Sdu2bU39+vWNMXfzg2bNmlnrLVu2zEgy7733ns322rRpYxwcHMyJEyestoR86dChQzZ9U5ofJaV///5Gktm7d2+yfRJyuoEDB1ptdevWNeXKlUvU9/7jM8aYzz//3Dg6OpqffvrJpn3mzJlGktmyZctDj/H11183Xl5e5s6dO8nGmZyU5N4J+3ZxcbH5zPfv328kmWnTplltrVq1Mm5ubja58OHDh42Tk5NJySWEsLAw4+HhkezyvXv3GklmwIABVtv9OWHLli2T/Pzv1alTJ+Po6Gh27tyZaFl8fLwx5v/P/73n5u+//zbFixc3xYoVs3L7hJ/v8PBwm+0k5Nz35rEJ+f6CBQusttjYWOPv729at25tte3cuTNRrg8AAOwjOjraSDKtWrVKtOzKlSvm0qVL1nRvblW5cmVTqFAh89dff1lt+/fvN46OjqZTp05WW6tWrYyLi4s5efKk1Xb+/HmTL18+8+yzz1ptCbnJ9u3brbaLFy8ab2/vJHOR+w0fPjzJa7MJ1/1u3bplChUqZMqXL29u3Lhhrbd8+XIjyQwbNixNx5bW3DAhnsqVK9tcv5w9e7aRZJP/pSYfS+n13ITP615FixY1YWFh1nxy1y3j4uJM4cKFTbt27WzaJ06caBwcHMzvv//+wGMHkHkYuhxAqkyfPl1r1661mVauXGnT5967EK9cuaLo6Gj94x//0J49e6z2hLsHv/vuu2SH5wkJCVFgYKAWLlxotf366686cOBAonf+JefTTz9VwYIFVahQIdWsWVNbtmzRwIEDrSd/7o312rVr+vPPP1WrVi0ZY2yGKu/UqZPOnz+vjRs3Wm0LFy6Uu7u7WrdubbNPT09PtW/f3pp/8skn5ePjo7Jly9rcNZrw/7///ruku088LVmyRC1atJAxRn/++ac1NWrUSNHR0TafoXR3KMR732mY8LRIwjZT63//+5+ku++yvFfCU0v3D/MYGBho8ySMl5eXOnXqpL179yoiIiJN+/f391eHDh2stjx58qhfv366evWqNm3aZNO/Xbt21h2r0qMfPwAAeLiXXnpJN27c0PLly/X3339r+fLlyQ5b/r///U9OTk7q16+fTfsbb7whY0yiPLJu3bo278BOS350r7///luSrNFzkpKwLCYm5sEHnozFixerbNmyKlOmjE18DRo0kCSb/DGpY5Tu5sbXrl2zGRI+pVKSeycICQlRiRIlrPmKFSvKy8vLyp3i4uK0evVqtWrVSkWKFLH6lS1bVo0aNUp1bElJGF0o4dwkxcfHR3/88Ueyr6SJj4/XsmXL1KJFC1WrVi3RcgcHB0l3f/5q1KihOnXq2Oy/R48eOnXqlA4fPpzmY7j37xEXFxfVqFGDHBQAgCwqIc9LapTDevXqqWDBgtY0ffp0SdKFCxe0b98+de7cWb6+vlb/ihUr6rnnnrOuocXFxWnNmjVq1aqVnnjiCatfQECAXn75Zf3888/W/v/3v//pmWeeUY0aNax+BQsWTPWolUuWLLG5Nptw7XTXrl26ePGievXqJTc3N6t/s2bNVKZMGeu6XmqO7VFyw4R4XnvtNZvrl507d5a3t3eqjvleKb2e+ygcHR0VGhqq77//3iZvXbhwoWrVqqXixYuny34APDoK3QBSpUaNGgoJCbGZ6tevb9Nn+fLleuaZZ+Tm5iZfX18VLFhQM2bMUHR0tNWnXbt2ql27tl555RX5+fmpffv2+vrrr22K3gkJxbJly3T9+nVJd5MJNzc36/0pD9OyZUutXbtW69at0/bt2/Xnn39qwoQJcnS8+/V35swZK6nz9PRUwYIFVbduXUmyife5555TQECAlTjGx8friy++UMuWLRNdOC1cuLB1cS2Bt7d3ouF4EhK6K1euSJIuXbqkqKgozZ492ybBLliwoLp06SLp7vur73VvkinJKvombDO1Tp8+LUdHR2to9wT+/v7y8fHR6dOnbdpLliyZ6FgThqC8/506Kd1/qVKlrPOTIGHooPv3n97HDwAAHq5gwYIKCQnRokWL9O233youLk5t2rRJsu/p06cVGBiYKF9K7t/2+y8YpSU/ulfCfh9UVE1JMfxBjh8/rkOHDiWKLyEnuj++pC6K9erVS6VLl1aTJk1UuHBhde3aNcl3ZyclJbl3gvtzJ+lu/nRvPnrjxg2VKlUqUb/0eg/h1atXJT348x48eLA8PT1Vo0YNlSpVSr1797ZecZQQZ0xMjMqXL//AfZ0+fTrJuJP7+UuppPL9ez9HAACQtSTkHQl5yL1mzZqltWvX6r///a9Ne0KekFwu8eeff+ratWu6dOmSrl+/nmy/+Ph4nT171tpmeuRZzz77rM212dq1az805jJlyljLU3Nsj5IbJuzn/vXz5Mljc1NAaqX0eu6j6tSpk27cuGG9yvHo0aPavXu3OnbsmG77APDoeEc3gHT1008/6YUXXtCzzz6rjz/+WAEBAcqTJ4/mzp2rRYsWWf3c3d21efNmbdy4UStWrNCqVav01VdfqUGDBlqzZo31Tu5OnTpp/PjxWrZsmTp06KBFixapefPmKb7rr3DhwgoJCUlyWVxcnJ577jldvnxZgwcPVpkyZeTh4aFz586pc+fONkV3Jycnvfzyy5ozZ44+/vhjbdmyRefPn0/yyfJ73yeeknZjjCRZ+/vXv/6lsLCwJPtWrFgxVdtMq/sv3GVVGXX8AADgwV5++WV1795dERERatKkiTVaz6O6//2EacmP7pVQ0Dxw4IAqV66cZJ8DBw5IUqKnrFMqPj5eFSpU0MSJE5Ncfv/Njkm9g7FQoULat2+fVq9erZUrV2rlypWaO3euOnXqpPnz5ye775Tm3gmyQu7066+/SlKiGyvvVbZsWR09elTLly/XqlWrtGTJEn388ccaNmyYRo4cme4xJZf7xsXFJdmeFT5HAACQct7e3goICLDykHsljLiYlgc2kH5Smo+l5nruo3rqqadUtWpV/fe//1WnTp303//+Vy4uLnrppZfSbR8AHh2FbgDpasmSJXJzc9Pq1avl6upqtc+dOzdRX0dHRzVs2FANGzbUxIkTNXr0aP3nP//Rxo0breJ0+fLlVaVKFS1cuFCFCxfWmTNnNG3atHSJ9eDBgzp27Jjmz5+vTp06We3JDRnZqVMnTZgwQT/88INWrlypggULptsQjtLdp6Py5cunuLi4ZIvzaZGaonXRokUVHx+v48ePWxeGJSkyMlJRUVEqWrSoTf8TJ07IGGOzj2PHjkmSihUrlqb9HzhwQPHx8TZPdf/222/WcgAAYH///Oc/9eqrr2rbtm366quvku1XtGhRrVu3Tn///bfNE7wp/bf9UfOjJk2ayMnJSZ9//rlNvnevBQsWyNnZWY0bN0719iWpRIkS2r9/vxo2bPhINwu6uLioRYsWatGiheLj49WrVy/NmjVLQ4cOTbYonJrcOyUKFiwod3d3HT9+PNGyo0ePpmmb9/v888/l4OCg55577oH9PDw81K5dO7Vr1063bt3Siy++qPfff19DhgxRwYIF5eXlleTF6nsVLVo0ybjv//lLGBUoKirKpl9an/iWss+NowAA5BbNmjXTJ598oh07dtgMHZ6chDwhuVyiQIEC8vDwkJubm/LmzZtsP0dHR+vGx6JFi2ZonnVvzAmv0bl3HwnLU3Nsj5IbJuzn+PHjNvHcvn1b4eHhqlSpktWW0nwstddzH+ZhOVunTp00cOBAXbhwQYsWLVKzZs1sXqMIwP4YuhxAunJycpKDg4PN3XanTp3SsmXLbPpdvnw50boJT9nExsbatHfs2FFr1qzR5MmTlT9/fjVp0iTdYpVsn7wwxmjKlClJ9q9YsaIqVqyoTz75REuWLFH79u3l7Jx+9ws5OTmpdevWWrJkSZIX7S5dupSm7Xp4eKR42J6mTZtKkiZPnmzTnvCEUrNmzWzaz58/bw3fI91959GCBQtUuXJl+fv7W/uXEieqye0/IiLC5oL5nTt3NG3aNHl6elrDEAEAAPvy9PTUjBkzNGLECLVo0SLZfk2bNlVcXJw++ugjm/ZJkybJwcHhoXndo+ZHQUFB6tKli9atW6cZM2YkWj5z5kxt2LBB3bp1U+HChR+4reS89NJLOnfunObMmZNo2Y0bN3Tt2rWHbuOvv/6ymXd0dLSeVL8/N75XSnPvlHJyclKjRo20bNkynTlzxmo/cuSIVq9enaZt3uuDDz7QmjVr1K5duySHwExw/+fh4uKip556SsYY3b59W46OjmrVqpV++OEH7dq1K9H6Cfl906ZNtWPHDm3dutVadu3aNc2ePVvFihWznuJPeG/55s2brX5xcXGaPXt2mo81NTkwAADIeIMGDVLevHnVtWtXRUZGJlp+/8gsAQEBqly5subPn2/z7/mvv/6qNWvWWNfQnJyc9Pzzz+u7776zeSo8MjJSixYtUp06deTl5SXpbm6ybds27dixw+p36dIl61WJj6patWoqVKiQZs6caZNDrly5UkeOHLGu66Xm2B4lN6xWrZoKFiyomTNn6tatW1b7vHnzEuVIKc3HUns992EelrN16NBBDg4Oev311/X7778nObonAPviiW4AqbJy5UrrCYh71apVS0888YSaNWumiRMnqnHjxnr55Zd18eJFTZ8+XSVLlrSGhZSkUaNGafPmzWrWrJmKFi2qixcv6uOPP1bhwoVVp04dm22//PLLGjRokJYuXaqePXsqT5486XIsZcqUUYkSJfTmm2/q3Llz8vLy0pIlSx74br1OnTrpzTfflKQMSWw++OADbdy4UTVr1lT37t311FNP6fLly9qzZ4/WrVuX5A0CD1O1alV99dVXGjhwoKpXry5PT89kL0hXqlRJYWFhmj17tqKiolS3bl3t2LFD8+fPV6tWrRK9j7106dLq1q2bdu7cKT8/P3322WeKjIy0eYqocuXKcnJy0tixYxUdHS1XV1c1aNBAhQoVSrT/Hj16aNasWercubN2796tYsWK6ZtvvtGWLVs0efLkNL87EwAApL/khhK/V4sWLVS/fn395z//0alTp1SpUiWtWbNG3333nfr3729d0HqQR82PJk2apN9++029evXSqlWrrCe3V69ere+++05169bVhAkTUnbQSejYsaO+/vprvfbaa9q4caNq166tuLg4/fbbb/r666+1evVqVatW7YHbeOWVV3T58mU1aNBAhQsX1unTpzVt2jRVrlzZZpSd+6U0906NkSNHatWqVfrHP/6hXr16WTcdlitXLsXbvHPnjvWey5s3b+r06dP6/vvvdeDAAdWvX/+hBeTnn39e/v7+ql27tvz8/HTkyBF99NFHatasmZUPjh49WmvWrFHdunXVo0cPlS1bVhcuXNDixYv1888/y8fHR2+//ba++OILNWnSRP369ZOvr6/mz5+v8PBwLVmyxBpBqFy5cnrmmWc0ZMgQXb58Wb6+vvryyy91586dNH2G0t2LtT4+Ppo5c6by5csnDw8P1axZM8l3tAMAgIxXqlQpLVq0SB06dNCTTz6p0NBQVapUScYYhYeHa9GiRXJ0dLS5+XH8+PFq0qSJgoOD1a1bN924cUPTpk2Tt7e3RowYYfV77733tHbtWtWpU0e9evWSs7OzZs2apdjYWI0bN87qN2jQIH3++edq3LixXn/9dXl4eGj27NnWCIePKk+ePBo7dqy6dOmiunXrqkOHDoqMjNSUKVNUrFgxDRgwINXH9ii5YZ48efTee+/p1VdfVYMGDdSuXTuFh4dr7ty5id7RndJ8LC3Xcx/kYdctCxYsqMaNG2vx4sXy8fFJ9BAQgCzAAEAKzJ0710hKdpo7d67V99NPPzWlSpUyrq6upkyZMmbu3Llm+PDh5t6vnPXr15uWLVuawMBA4+LiYgIDA02HDh3MsWPHktx/06ZNjSTzyy+/pDhmSaZ3794P7HP48GETEhJiPD09TYECBUz37t3N/v37Ex1TggsXLhgnJydTunTpJLdXt25dU65cuUTtRYsWNc2aNUtRjJGRkaZ3794mKCjI5MmTx/j7+5uGDRua2bNnW302btxoJJnFixfbrBseHp4o9qtXr5qXX37Z+Pj4GEmmaNGiD/hEjLl9+7YZOXKkKV68uMmTJ48JCgoyQ4YMMTdv3kzymFavXm0qVqxone/7YzLGmDlz5pgnnnjCODk5GUlm48aN1udVt27dRMffpUsXU6BAAePi4mIqVKiQ6FwkHOf48eMT7UuSGT58+AOPEQAApE5CLrhz584H9ksq5/n777/NgAEDTGBgoMmTJ48pVaqUGT9+vImPj7fp96DcLSX50YPExsaaSZMmmapVqxoPDw+TN29e8/TTT5vJkyebW7duJeqf2pzu1q1bZuzYsaZcuXLG1dXVPPbYY6Zq1apm5MiRJjo6+qHH+M0335jnn3/eFCpUyLi4uJgiRYqYV1991Vy4cOGhx5aS3PtB+y5atKgJCwuzadu0aZOpWrWqcXFxMU888YSZOXNmkttMSlhYmM3fCXnz5jXFihUzrVu3Nt98842Ji4tLtM79OeGsWbPMs88+a/Lnz29cXV1NiRIlzFtvvWXzWRpjzOnTp02nTp1MwYIFjaurq3niiSdM7969TWxsrNXn5MmTpk2bNsbHx8e4ubmZGjVqmOXLlyeK4eTJkyYkJMS4uroaPz8/8+9//9usXbvWJndNiDWpn42wsLBEefZ3331nnnrqKePs7Jzs3xcAACBznThxwvTs2dOULFnSuLm5GXd3d1OmTBnz2muvmX379iXqv27dOlO7dm3j7u5uvLy8TIsWLczhw4cT9duzZ49p1KiR8fT0NHnz5jX169dP8jrmgQMHTN26dY2bm5t5/PHHzbvvvms+/fRTI8mEh4c/MPaEfOzSpUsP7PfVV1+ZKlWqGFdXV+Pr62tCQ0PNH3/8keZje5Tc0BhjPv74Y1O8eHHj6upqqlWrZjZv3pzkNcGU5mMpvZ6bVIxJ5b7JXbdM8PXXXxtJpkePHik6XgCZy8GY+8bkAIAs6J///KcOHjyoEydO2DWOP//8UwEBARo2bJiGDh1q11jsrVixYipfvryWL19u71AAAAAAAAAAZBP16tWTJP344492jSMlvvvuO7Vq1UqbN2/WP/7xD3uHA+A+vKMbQJZ34cIFrVixQh07drR3KJo3b57i4uKyRCwAAAAAAAAAgIwzZ84cPfHEE4letwkga+Ad3QCyrPDwcG3ZskWffPKJ8uTJo1dffdVusWzYsEGHDx/W+++/r1atWqlYsWJ2iwUAAAAAAAAAkHG+/PJLHThwQCtWrNCUKVPk4OBg75AAJIFCN4Asa9OmTerSpYuKFCmi+fPny9/f326xjBo1Sr/88otq166tadOm2S0OAAAAAAAAAEDG6tChgzw9PdWtWzf16tXL3uEASAbv6AYAAAAAAAAAAAAAZCu8oxsAAAAAAAAAAAAAkK1Q6AYAAAAAAAAAAAAAZCu8o1tSfHy8zp8/r3z58snBwcHe4QAAAGQoY4z+/vtvBQYGytGR+x7TCzklAADIbcgrMwZ5JQAAyE0eJaek0C3p/PnzCgoKsncYAAAAmers2bMqXLiwvcPIMcgpAQBAbkVemb7IKwEAQG6UlpySQrekfPnySbr7AXp5edk5GgAAgIwVExOjoKAgKwdC+iCnBAAAuQ15ZcYgrwQAALnJo+SUFLolawggLy8vkkcAAJBrMAxi+iKnBAAAuRV5ZfoirwQAALlRWnJKXp4DAAAAAAAAAAAAAMhWKHQDAAAAAAAAAAAAALIVCt0AAAAAAAAAAAAAgGyFQjcAAAAAAAAAAAAAIFuh0A0AAAAAAAAAAAAAyFYodAMAAAAAAAAAAAAAshUK3QAAAAAAAAAAAACAbIVCNwAAAAAAAIBcb/PmzWrRooUCAwPl4OCgZcuWJdv3tddek4ODgyZPnmzTfvnyZYWGhsrLy0s+Pj7q1q2brl69mrGBAwAA5FLO9g4AANLDl43/be8QcpX2q0bbOwQAAIAMQV6ZucgrAWQl165dU6VKldS1a1e9+OKLyfZbunSptm3bpsDAwETLQkNDdeHCBa1du1a3b99Wly5d1KNHDy1atCgjQweQBZFXZi7ySiB3otANAAAAAAAAINdr0qSJmjRp8sA+586dU9++fbV69Wo1a9bMZtmRI0e0atUq7dy5U9WqVZMkTZs2TU2bNtWHH36YZGFckmJjYxUbG2vNx8TEPOKRAAAA5A52Hbqc4YAAAAAAAAAAZAfx8fHq2LGj3nrrLZUrVy7R8q1bt8rHx8cqcktSSEiIHB0dtX379mS3O2bMGHl7e1tTUFBQhsQPAACQ09i10J0wHND06dMf2O9hwwEdOnRIa9eu1fLly7V582b16NEjo0IGAAAAAAAAkAuNHTtWzs7O6tevX5LLIyIiVKhQIZs2Z2dn+fr6KiIiItntDhkyRNHR0dZ09uzZdI0bAAAgp7Lr0OUMBwQAAAAAAAAgq9u9e7emTJmiPXv2yMHBIV237erqKldX13TdJgAAQG5g1ye6H4bhgAAAAAAAAADY208//aSLFy+qSJEicnZ2lrOzs06fPq033nhDxYoVkyT5+/vr4sWLNuvduXNHly9flr+/vx2iBgAAyNmydKGb4YAAAAAAAAAA2FvHjh114MAB7du3z5oCAwP11ltvafXq1ZKk4OBgRUVFaffu3dZ6GzZsUHx8vGrWrGmv0AEAAHIsuw5d/iAMBwQAAAAAAAAgs1y9elUnTpyw5sPDw7Vv3z75+vqqSJEiyp8/v03/PHnyyN/fX08++aQkqWzZsmrcuLG6d++umTNn6vbt2+rTp4/at2+f7CsWAQAAkHZZ9oluhgMCAAAAAAAAkFl27dqlKlWqqEqVKpKkgQMHqkqVKho2bFiKt7Fw4UKVKVNGDRs2VNOmTVWnTh3Nnj07o0IGAADI1bLsE90dO3ZUSEiITVujRo3UsWNHdenSRZLtcEBVq1aVxHBAAAAAAAAAAFKvXr16MsakuP+pU6cStfn6+mrRokXpGBUAAACSY9dCN8MBAQAAAAAAAAAAAABSy65DlzMcEAAAAAAAAAAAAAAgtez6RDfDAQEAAAAAAAAAAAAAUsuuT3QDAAAAAAAAAAAAAJBaFLoBAAAAAAAAAAAAANkKhW4AAAAAAAAAAAAAQLZCoRsAAAAAAAAAAAAAkK1Q6AYAAAAAAAAAAAAAZCsUugEAAJDtbd68WS1atFBgYKAcHBy0bNkya9nt27c1ePBgVahQQR4eHgoMDFSnTp10/vx5m21cvnxZoaGh8vLyko+Pj7p166arV69m8pEAAAAAAAAASAkK3QAAAMj2rl27pkqVKmn69OmJll2/fl179uzR0KFDtWfPHn377bc6evSoXnjhBZt+oaGhOnTokNauXavly5dr8+bN6tGjR2YdAgAAAAAAAIBUcLZ3AAAAAMCjatKkiZo0aZLkMm9vb61du9am7aOPPlKNGjV05swZFSlSREeOHNGqVau0c+dOVatWTZI0bdo0NW3aVB9++KECAwMz/BgAAAAAAAAApBxPdAMAACDXiY6OloODg3x8fCRJW7dulY+Pj1XklqSQkBA5Ojpq+/btSW4jNjZWMTExNhMAAAAAAACAzEGhGwAAALnKzZs3NXjwYHXo0EFeXl6SpIiICBUqVMimn7Ozs3x9fRUREZHkdsaMGSNvb29rCgoKyvDYAQAAAAAAANxFoRsAAAC5xu3bt/XSSy/JGKMZM2Y80raGDBmi6Ohoazp79mw6RQkAAAAAAADgYXhHNwAAAHKFhCL36dOntWHDButpbkny9/fXxYsXbfrfuXNHly9flr+/f5Lbc3V1laura4bGDAAAAAAAACBpPNENAACAHC+hyH38+HGtW7dO+fPnt1keHBysqKgo7d6922rbsGGD4uPjVbNmzcwOFwAAAAAAAMBD8EQ3AAAAsr2rV6/qxIkT1nx4eLj27dsnX19fBQQEqE2bNtqzZ4+WL1+uuLg4673bvr6+cnFxUdmyZdW4cWN1795dM2fO1O3bt9WnTx+1b99egYGB9josAAAAAAAAAMmg0A0AAIBsb9euXapfv741P3DgQElSWFiYRowYoe+//16SVLlyZZv1Nm7cqHr16kmSFi5cqD59+qhhw4ZydHRU69atNXXq1EyJHwAAAAAAAEDqUOgGAABAtlevXj0ZY5Jd/qBlCXx9fbVo0aL0DAsAAAAAAABABuEd3QAAAAAAAAAAAACAbIVCNwAAAAAAAAAAAAAgW6HQDQAAAAAAAAAAAADIVih0AwAAAAAAAMj1Nm/erBYtWigwMFAODg5atmyZtez27dsaPHiwKlSoIA8PDwUGBqpTp046f/68zTYuX76s0NBQeXl5ycfHR926ddPVq1cz+UgAAAByBwrdAAAAAAAAAHK9a9euqVKlSpo+fXqiZdevX9eePXs0dOhQ7dmzR99++62OHj2qF154waZfaGioDh06pLVr12r58uXavHmzevTokVmHAAAAkKs42zsAAAAAAAAAALC3Jk2aqEmTJkku8/b21tq1a23aPvroI9WoUUNnzpxRkSJFdOTIEa1atUo7d+5UtWrVJEnTpk1T06ZN9eGHHyowMDDDjwEAACA3sesT3QwHBAAAAAAAACA7io6OloODg3x8fCRJW7dulY+Pj1XklqSQkBA5Ojpq+/btyW4nNjZWMTExNhMAAAAezq6FboYDAgAAAAAAAJDd3Lx5U4MHD1aHDh3k5eUlSYqIiFChQoVs+jk7O8vX11cRERHJbmvMmDHy9va2pqCgoAyNHQAAIKew69Dl9hoOKDY2VrGxsdY8d0kCAAAAAAAASInbt2/rpZdekjFGM2bMeOTtDRkyRAMHDrTmY2JiKHYDAACkgF2f6E6t9BoOiLskAQAAAAAAAKRWQpH79OnTWrt2rfU0tyT5+/vr4sWLNv3v3Lmjy5cvy9/fP9lturq6ysvLy2YCAADAw2WbQnd6Dgc0ZMgQRUdHW9PZs2czNHYAAAAAAAAA2VtCkfv48eNat26d8ufPb7M8ODhYUVFR2r17t9W2YcMGxcfHq2bNmpkdLgAAQI5n16HLUyq9hwNydXWVq6trOkQGAAAAAAAAICe4evWqTpw4Yc2Hh4dr37598vX1VUBAgNq0aaM9e/Zo+fLliouLsx608fX1lYuLi8qWLavGjRure/fumjlzpm7fvq0+ffqoffv2yb5iEQAAAGmX5Qvd9w4HtGHDhnQZDggAAAAAAAAA7rVr1y7Vr1/fmk94b3ZYWJhGjBih77//XpJUuXJlm/U2btyoevXqSZIWLlyoPn36qGHDhnJ0dFTr1q01derUTIkfAAAgt8nShe57hwPauHHjA4cDqlq1qiSGAwIAAAAAAACQevXq1ZMxJtnlD1qWwNfXV4sWLUrPsAAAAJAMuxa6GQ4IAAAAAAAAAAAAAJBadi10MxwQAAAAAAAAAAAAACC17FroZjggAAAAAAAAAAAAAEBqOdo7AAAAAAAAAAAAAAAAUoNCNwAAAAAAAAAAAAAgW6HQDQAAAAAAAAAAAADIVuz6jm4AAAAAAAAAQNpVLvySvUPIdfb98bW9QwAAAOKJbgAAAAAAAAAAAABANkOhGwAAAAAAAAAAAACQrVDoBgAAAAAAAAAAAABkKxS6AQAAAAAAAAAAAADZCoVuAAAAZHubN29WixYtFBgYKAcHBy1btsxmuTFGw4YNU0BAgNzd3RUSEqLjx4/b9Ll8+bJCQ0Pl5eUlHx8fdevWTVevXs3EowAAAAAAAACQUhS6AQAAkO1du3ZNlSpV0vTp05NcPm7cOE2dOlUzZ87U9u3b5eHhoUaNGunmzZtWn9DQUB06dEhr167V8uXLtXnzZvXo0SOzDgEAAAAAAABAKjjbOwAAAADgUTVp0kRNmjRJcpkxRpMnT9Y777yjli1bSpIWLFggPz8/LVu2TO3bt9eRI0e0atUq7dy5U9WqVZMkTZs2TU2bNtWHH36owMDATDsWAAAAAAAAAA/HE90AAADI0cLDwxUREaGQkBCrzdvbWzVr1tTWrVslSVu3bpWPj49V5JakkJAQOTo6avv27UluNzY2VjExMTYTAAAAAAAAgMxBoRsAAAA5WkREhCTJz8/Ppt3Pz89aFhERoUKFCtksd3Z2lq+vr9XnfmPGjJG3t7c1BQUFZUD0AAAAAAAAAJJCoRsAAABIgyFDhig6Otqazp49a++QAAAAAAAAgFyDQjcAAAByNH9/f0lSZGSkTXtkZKS1zN/fXxcvXrRZfufOHV2+fNnqcz9XV1d5eXnZTAAAAAAAAAAyB4VuAAAA5GjFixeXv7+/1q9fb7XFxMRo+/btCg4OliQFBwcrKipKu3fvtvps2LBB8fHxqlmzZqbHDAAAAAAAAODBnO0dAAAAAPCorl69qhMnTljz4eHh2rdvn3x9fVWkSBH1799f7733nkqVKqXixYtr6NChCgwMVKtWrSRJZcuWVePGjdW9e3fNnDlTt2/fVp8+fdS+fXsFBgba6agAAAAAAAAAJIdCNwAAALK9Xbt2qX79+tb8wIEDJUlhYWGaN2+eBg0apGvXrqlHjx6KiopSnTp1tGrVKrm5uVnrLFy4UH369FHDhg3l6Oio1q1ba+rUqZl+LAAAAAAAAAAejkI3AAAAsr169erJGJPscgcHB40aNUqjRo1Kto+vr68WLVqUEeEBAAAAAAAASGe8oxsAAAAAAAAAAAAAkK1Q6AYAAAAAAACQ623evFktWrRQYGCgHBwctGzZMpvlxhgNGzZMAQEBcnd3V0hIiI4fP27T5/LlywoNDZWXl5d8fHzUrVs3Xb16NROPAgAAIPeg0A0AAAAAAAAg17t27ZoqVaqk6dOnJ7l83Lhxmjp1qmbOnKnt27fLw8NDjRo10s2bN60+oaGhOnTokNauXavly5dr8+bN6tGjR2YdAgAAQK5i13d0b968WePHj9fu3bt14cIFLV26VK1atbKWG2M0fPhwzZkzR1FRUapdu7ZmzJihUqVKWX0uX76svn376ocffpCjo6Nat26tKVOmyNPT0w5HBAAAACA36lVhkL1DyFU+PjjO3iEAAHKgJk2aqEmTJkkuM8Zo8uTJeuedd9SyZUtJ0oIFC+Tn56dly5apffv2OnLkiFatWqWdO3eqWrVqkqRp06apadOm+vDDDxUYGJjktmNjYxUbG2vNx8TEpPORAQAA5Ex2faKbuyQBAAAAAAAAZHXh4eGKiIhQSEiI1ebt7a2aNWtq69atkqStW7fKx8fHKnJLUkhIiBwdHbV9+/Zktz1mzBh5e3tbU1BQUMYdCAAAQA5i1ye6uUsSAAAAAAAAQFYXEREhSfLz87Np9/Pzs5ZFRESoUKFCNsudnZ3l6+tr9UnKkCFDNHDgQGs+JiaGYjcAAEAKZNl3dHOXJAAAAAAAAICcztXVVV5eXjYTAAAAHi7LFroz+i7J6Ohoazp79mw6Rw8AAAAAAAAgp/D395ckRUZG2rRHRkZay/z9/XXx4kWb5Xfu3NHly5etPgAAAEg/WbbQnZG4SxIAAAAAAABAShUvXlz+/v5av3691RYTE6Pt27crODhYkhQcHKyoqCjt3r3b6rNhwwbFx8erZs2amR4zAABATmfXd3Q/yL13SQYEBFjtkZGRqly5stWHuyQBAAAAAAAAPKqrV6/qxIkT1nx4eLj27dsnX19fFSlSRP3799d7772nUqVKqXjx4ho6dKgCAwPVqlUrSVLZsmXVuHFjde/eXTNnztTt27fVp08ftW/fXoGBgXY6KgAAgJwryz7RzV2SAAAAAAAAADLLrl27VKVKFVWpUkWSNHDgQFWpUkXDhg2TJA0aNEh9+/ZVjx49VL16dV29elWrVq2Sm5ubtY2FCxeqTJkyatiwoZo2bao6depo9uzZdjkeAACAnM6uT3RzlyQAAAAAAACArKBevXoyxiS73MHBQaNGjdKoUaOS7ePr66tFixZlRHgAAAC4j10L3bt27VL9+vWt+YEDB0qSwsLCNG/ePA0aNEjXrl1Tjx49FBUVpTp16iR5l2SfPn3UsGFDOTo6qnXr1po6dWqmHwsAAAAAAAAAAAAAIHPYtdDNXZIAAAAAAAAAAAAAgNTKsu/oBgAAAAAAAAAAAAAgKRS6AQAAAAAAAAAAAADZCoVuAAAAAAAAAAAAAEC2QqEbAAAAAAAAAAAAAJCtONs7AMCeelUYZO8QcpWPD46zdwgAAAAAAAAAAADIAXiiGwAAAAAAAAAAAACQrVDoBgAAAAAAAAAAAABkKxS6AQAAAAAAAAAAAADZCoVuAAAAAAAAAAAAAEC2QqEbAAAAAAAAAAAAAJCtUOgGAAAAAAAAAAAAAGQrFLoBAACQ48XFxWno0KEqXry43N3dVaJECb377rsyxlh9jDEaNmyYAgIC5O7urpCQEB0/ftyOUQMAAAAAAABIDoVuAAAA5Hhjx47VjBkz9NFHH+nIkSMaO3asxo0bp2nTpll9xo0bp6lTp2rmzJnavn27PDw81KhRI928edOOkQMAAAAAAABIirO9AwAAAAAy2i+//KKWLVuqWbNmkqRixYrpiy++0I4dOyTdfZp78uTJeuedd9SyZUtJ0oIFC+Tn56dly5apffv2ibYZGxur2NhYaz4mJiYTjgQAAAAAAACAxBPdAAAAyAVq1aql9evX69ixY5Kk/fv36+eff1aTJk0kSeHh4YqIiFBISIi1jre3t2rWrKmtW7cmuc0xY8bI29vbmoKCgjL+QAAAAAAAAABI4oluAAAA5AJvv/22YmJiVKZMGTk5OSkuLk7vv/++QkNDJUkRERGSJD8/P5v1/Pz8rGX3GzJkiAYOHGjNx8TEUOwGAAAAAAAAMgmFbgAAAOR4X3/9tRYuXKhFixapXLly2rdvn/r376/AwECFhYWlaZuurq5ydXVN50gBAAAAAAAApESahi5v0KCBoqKiErXHxMSoQYMGjxoTAAAAcoHMzCnfeustvf3222rfvr0qVKigjh07asCAARozZowkyd/fX5IUGRlps15kZKS1DAAAAFkT1yoBAABypzQVun/88UfdunUrUfvNmzf1008/PXJQAAAAyPkyM6e8fv26HB1tU18nJyfFx8dLkooXLy5/f3+tX7/eWh4TE6Pt27crODg4XWMBAABA+uJaJQAAQO6UqqHLDxw4YP3/4cOHbd5XGBcXp1WrVunxxx9Pv+gAAACQ49gjp2zRooXef/99FSlSROXKldPevXs1ceJEde3aVZLk4OCg/v3767333lOpUqVUvHhxDR06VIGBgWrVqlW6xgIAAID0wbVKAACA3C1Vhe7KlSvLwcFBDg4OSQ774+7urmnTpqVbcAAAAMh57JFTTps2TUOHDlWvXr108eJFBQYG6tVXX9WwYcOsPoMGDdK1a9fUo0cPRUVFqU6dOlq1apXc3NzSNRYAAACkD3vklXFxcRoxYoT++9//KiIiQoGBgercubPeeecdOTg4SJKMMRo+fLjmzJmjqKgo1a5dWzNmzFCpUqXSNRYAAIDcLlWF7vDwcBlj9MQTT2jHjh0qWLCgtczFxUWFChWSk5NTugcJAACAnMMeOWW+fPk0efJkTZ48Odk+Dg4OGjVqlEaNGpWu+wYAAEDGsEdeOXbsWM2YMUPz589XuXLltGvXLnXp0kXe3t7q16+fJGncuHGaOnWq5s+fb40U1KhRIx0+fJibKAEAANJRqgrdRYsWlSTrXYYZjTskAQAAcp7MzimzssqFX7J3CLnKvj++tncIAAAgHdkjr/zll1/UsmVLNWvWTJJUrFgxffHFF9qxY4eku9cqJ0+erHfeeUctW7aUJC1YsEB+fn5atmyZ2rdvn2mxAgAA5HSpKnTf6/jx49q4caMuXryYKJm8dwjIR8EdkgAAADlbZuSUAAAAyPkyK6+sVauWZs+erWPHjql06dLav3+/fv75Z02cOFHS3afMIyIiFBISYq3j7e2tmjVrauvWrUkWumNjYxUbG2vNx8TEpFu8AAAAOVmaCt1z5sxRz549VaBAAfn7+1tPV0t3h3xMr+Qxo+6QJHkEAACwv8zKKQEAAJCzZWZe+fbbbysmJkZlypSRk5OT4uLi9P777ys0NFSSFBERIUny8/OzWc/Pz89adr8xY8Zo5MiR6RYjAABAbpGmQvd7772n999/X4MHD07veGxkxB2SEskjAABAVpBZOSUAAABytszMK7/++mstXLhQixYtUrly5bRv3z71799fgYGBCgsLS9M2hwwZooEDB1rzMTExCgoKSq+QAQAAcqw0FbqvXLmitm3bpncsiWTEHZISySMAAEBWkFk5JQAAAHK2zMwr33rrLb399tvWAzYVKlTQ6dOnNWbMGIWFhcnf31+SFBkZqYCAAGu9yMhIVa5cOclturq6ytXVNcNjBwAAyGkc07JS27ZttWbNmvSOJZF775Dcs2eP5s+frw8//FDz589/pO26urrKy8vLZgIAAEDmyqycEgAAADlbZuaV169fl6Oj7SVVJycn673gxYsXl7+/v9avX28tj4mJ0fbt2xUcHJwpMQIAAOQWaXqiu2TJkho6dKi2bdumChUqKE+ePDbL+/Xrly7BZcQdkgAAAMgaMiunBAAAQM6WmXllixYt9P7776tIkSIqV66c9u7dq4kTJ6pr166S7r4TvH///nrvvfdUqlQpFS9eXEOHDlVgYKBatWqVbnEAAAAgjYXu2bNny9PTU5s2bdKmTZtsljk4OKRb8piaOyQTCtsJd0j27NkzXWIAAABAxsisnBIAAAA5W2bmldOmTdPQoUPVq1cvXbx4UYGBgXr11Vc1bNgwq8+gQYN07do19ejRQ1FRUapTp45WrVolNze3dIsDAAAAaSx0h4eHp3ccSeIOSQAAgJwrs3JKAAAA5GyZmVfmy5dPkydP1uTJk5Pt4+DgoFGjRmnUqFGZFhcAAEBulKZCd2bhDkkAAAAAAAAAAAAAwP3SVOhOeKI6OZ999lmagrlfVr1DsnLhlzJtX5D2/fG1vUMAAAAZILNySgAAAORs5JUAAAC5U5oK3VeuXLGZv337tn799VdFRUWpQYMG6RIYAAAAcjZySgAAAKQH8koAAIDcKU2F7qVLlyZqi4+PV8+ePVWiRIlHDgoAAAA5HzklAAAA0gN5JQAAQO7kmG4bcnTUwIEDNWnSpPTaJAAAAHIZckoAAACkB/JKAACAnC/dCt2SdPLkSd25cyc9NwkAAIBchpwSAAAA6YG8EgAAIGdL09DlAwcOtJk3xujChQtasWKFwsLC0iUwAAAA5GzklAAAAEgP5JUAAAC5U5oK3Xv37rWZd3R0VMGCBTVhwgR17do1XQIDAABAzkZOCQAAgPRAXgkAAJA7panQvXHjxvSOAwAAALkMOSUAAADSA3klAABA7pSmQneCS5cu6ejRo5KkJ598UgULFkyXoAAAAJB7kFMCAAAgPZBXAgAA5C6OaVnp2rVr6tq1qwICAvTss8/q2WefVWBgoLp166br16+nd4wAAADIgcgpAQAAkB7IKwEAAHKnNBW6Bw4cqE2bNumHH35QVFSUoqKi9N1332nTpk1644030jtGAAAA5EDklAAAAEgP5JUAAAC5U5qGLl+yZIm++eYb1atXz2pr2rSp3N3d9dJLL2nGjBnpFR8AAAByKHJKAAAApAfySgAAgNwpTYXu69evy8/PL1F7oUKFGA4IAAAAKUJOCQAAgPRAXgkAyEjhbwywdwi5SvEJk+wdArKRNBW6g4ODNXz4cC1YsEBubm6SpBs3bmjkyJEKDg5O1wABAACQM5FTAgAyEhckMxcXJGFP5JUAAAC5U5oK3ZMnT1bjxo1VuHBhVapUSZK0f/9+ubq6as2aNekaIAAAAHImckoAAACkB/JKAACA3MkxLStVqFBBx48f15gxY1S5cmVVrlxZH3zwgU6cOKFy5cqld4wAAADIgTI7pzx37pz+9a9/KX/+/HJ3d1eFChW0a9cua7kxRsOGDVNAQIDc3d0VEhKi48ePp3scAAAASF9cqwQAAMid0vRE95gxY+Tn56fu3bvbtH/22We6dOmSBg8enC7BAQAAIOfKzJzyypUrql27turXr6+VK1eqYMGCOn78uB577DGrz7hx4zR16lTNnz9fxYsX19ChQ9WoUSMdPnzYGgITAAAAWQ/XKgEAAHKnND3RPWvWLJUpUyZRe7ly5TRz5sxHDgoAAAA5X2bmlGPHjlVQUJDmzp2rGjVqqHjx4nr++edVokQJSXef5p48ebLeeecdtWzZUhUrVtSCBQt0/vx5LVu2LMltxsbGKiYmxmYCAABA5uNaJQAAQO6UpkJ3RESEAgICErUXLFhQFy5ceOSgAAAAkPNlZk75/fffq1q1amrbtq0KFSqkKlWqaM6cOdby8PBwRUREKCQkxGrz9vZWzZo1tXXr1iS3OWbMGHl7e1tTUFBQusYMAACAlOFaJQAAQO6UpkJ3UFCQtmzZkqh9y5YtCgwMfOSgAAAAkPNlZk75+++/a8aMGSpVqpRWr16tnj17ql+/fpo/f76kuxdHJcnPz89mPT8/P2vZ/YYMGaLo6GhrOnv2bLrGDAAAgJThWiUAAEDulKZ3dHfv3l39+/fX7du31aBBA0nS+vXrNWjQIL3xxhvpGiAAAABypszMKePj41WtWjWNHj1aklSlShX9+uuvmjlzpsLCwtK0TVdXV7m6uqZnmAAAAEgDrlUCAADkTmkqdL/11lv666+/1KtXL926dUuS5ObmpsGDB2vIkCHpGiAAAABypszMKQMCAvTUU0/ZtJUtW1ZLliyRJPn7+0uSIiMjbYa9jIyMVOXKldM1FgAAAKSvzL5Wee7cOQ0ePFgrV67U9evXVbJkSc2dO1fVqlWTJBljNHz4cM2ZM0dRUVGqXbu2NboQAAAA0k+ahi53cHDQ2LFjdenSJW3btk379+/X5cuXNWzYsPSODwAAADlUZuaUtWvX1tGjR23ajh07pqJFi0qSihcvLn9/f61fv95aHhMTo+3btys4ODjd4wEAAED6ycy88sqVK6pdu7by5MmjlStX6vDhw5owYYIee+wxq8+4ceM0depUzZw5U9u3b5eHh4caNWqkmzdvpns8AAAAuVmaCt0JPD09Vb16dZUvXz7Dhm08d+6c/vWvfyl//vxyd3dXhQoVtGvXLmu5MUbDhg1TQECA3N3dFRISouPHj2dILAAAAEh/mZFTDhgwQNu2bdPo0aN14sQJLVq0SLNnz1bv3r0l3b042r9/f7333nv6/vvvdfDgQXXq1EmBgYFq1apVhsQEAACA9JUZeeXYsWMVFBSkuXPnqkaNGipevLief/55lShRQtLda5WTJ0/WO++8o5YtW6pixYpasGCBzp8/r2XLlmVITAAAALnVIxW6Mxp3SAIAACA9VK9eXUuXLtUXX3yh8uXL691339XkyZMVGhpq9Rk0aJD69u2rHj16qHr16rp69apWrVolNzc3O0YOAACArOT7779XtWrV1LZtWxUqVEhVqlTRnDlzrOXh4eGKiIhQSEiI1ebt7a2aNWtq69atSW4zNjZWMTExNhMAAAAeLk3v6M4s994hmaB48eLW/99/h6QkLViwQH5+flq2bJnat2+f5HZjY2MVGxtrzZM8AgAA5HzNmzdX8+bNk13u4OCgUaNGadSoUZkYFQAAALKT33//XTNmzNDAgQP173//Wzt37lS/fv3k4uKisLAwRURESJL8/Pxs1vPz87OW3W/MmDEaOXJkhscOAACQ02TpJ7oz4g5J6W7y6O3tbU1BQUEZehwAAAAAAAAAsr/4+Hg9/fTTGj16tKpUqaIePXqoe/fumjlzZpq3OWTIEEVHR1vT2bNn0zFiAACAnCtLF7oT7pAsVaqUVq9erZ49e6pfv36aP3++JKXpDkmJ5BEAAAAAAABA6gUEBOipp56yaStbtqzOnDkjSfL395ckRUZG2vSJjIy0lt3P1dVVXl5eNhMAAAAeLksPXR4fH69q1app9OjRkqQqVaro119/1cyZMxUWFpbm7bq6usrV1TW9wgQAAAAAAACQC9SuXVtHjx61aTt27JiKFi0q6e5rF/39/bV+/XpVrlxZ0t3XJm7fvl09e/bM7HABAABytCz9RHdG3CEJAAAAAAAAAGkxYMAAbdu2TaNHj9aJEye0aNEizZ49W71795YkOTg4qH///nrvvff0/fff6+DBg+rUqZMCAwPVqlUr+wYPAACQw2TpQndq7pBMkHCHZHBwcKbGCgAAAAAAACBnq169upYuXaovvvhC5cuX17vvvqvJkycrNDTU6jNo0CD17dtXPXr0UPXq1XX16lWtWrVKbm5udowcAAAg58nSQ5cPGDBAtWrV0ujRo/XSSy9px44dmj17tmbPni3J9g7JUqVKqXjx4ho6dCh3SAIAAAAAAADIEM2bN1fz5s2TXe7g4KBRo0Zp1KhRmRgVAABA7pOlC90Jd0gOGTJEo0aNUvHixZO8Q/LatWvq0aOHoqKiVKdOHe6QBAAAAAAAAAAAAIAcLEsXuiXukAQAAAAAAAAAAAAA2MrS7+gGAAAAAAAAAAAAAOB+FLoBAAAAAAAAAAAAANkKhW4AAAAAAAAAAAAAQLZCoRsAAAAAAAAAAAAAkK1Q6AYAAAAAAAAAAAAAZCsUugEAAAAAAAAAAAAA2YqzvQMAAOBe4W8MsHcIuU7xCZPsHQIAAAAAAAAAAKnCE90AAAAAAAAAAAAAgGyFQjcAAAAAAAAAAAAAIFth6HIAAAAAAAAAALKAXhUG2TuEXOXjg+PsHQIA4BHwRDcAAAAAAAAAAAAAIFuh0A0AAAAAAAAAAAAAyFYodAMAAAAAAAAAAAAAshUK3QAAAAAAAAAAAACAbIVCNwAAAAAAAAAAAAAgW6HQDQAAAAAAAAAAAADIVih0AwAAINf54IMP5ODgoP79+1ttN2/eVO/evZU/f355enqqdevWioyMtF+QAAAAAAAAAJJFoRsAAAC5ys6dOzVr1ixVrFjRpn3AgAH64YcftHjxYm3atEnnz5/Xiy++aKcoAQAAAAAAADwIhW4AAADkGlevXlVoaKjmzJmjxx57zGqPjo7Wp59+qokTJ6pBgwaqWrWq5s6dq19++UXbtm2zY8QAAAAAAAAAkkKhGwAAALlG79691axZM4WEhNi07969W7dv37ZpL1OmjIoUKaKtW7cmua3Y2FjFxMTYTAAAAAAAAAAyh7O9AwAAAAAyw5dffqk9e/Zo586diZZFRETIxcVFPj4+Nu1+fn6KiIhIcntjxozRyJEjMyJUAAAAAAAAAA/BE90AAADI8c6ePavXX39dCxculJubW7psc8iQIYqOjrams2fPpst2AQAAkD188MEHcnBwUP/+/a22mzdvqnfv3sqfP788PT3VunVrRUZG2i9IAACAHCxbFbpJHgEAAJAWu3fv1sWLF/X000/L2dlZzs7O2rRpk6ZOnSpnZ2f5+fnp1q1bioqKslkvMjJS/v7+SW7T1dVVXl5eNhMAAAByh507d2rWrFmqWLGiTfuAAQP0ww8/aPHixdq0aZPOnz+vF1980U5RAgAA5GzZptBN8ggAAIC0atiwoQ4ePKh9+/ZZU7Vq1RQaGmr9f548ebR+/XprnaNHj+rMmTMKDg62Y+QAAADIaq5evarQ0FDNmTNHjz32mNUeHR2tTz/9VBMnTlSDBg1UtWpVzZ07V7/88ou2bduW7PZiY2MVExNjMwEAAODhskWhm+QRAAAAjyJfvnwqX768zeTh4aH8+fOrfPny8vb2Vrdu3TRw4EBt3LhRu3fvVpcuXRQcHKxnnnnG3uEDAAAgC+ndu7eaNWumkJAQm/bdu3fr9u3bNu1lypRRkSJFtHXr1mS3N2bMGHl7e1tTUFBQhsUOAACQk2SLQjfJIwAAADLapEmT1Lx5c7Vu3VrPPvus/P399e2339o7LAAAAGQhX375pfbs2aMxY8YkWhYRESEXFxf5+PjYtPv5+SkiIiLZbQ4ZMkTR0dHWdPbs2fQOGwAAIEdytncAD5OQPO7cuTPRskdJHgcOHGjNx8TEUOwGAADIZX788UebeTc3N02fPl3Tp0+3T0AAAADI0s6ePavXX39da9eulZubW7pt19XVVa6urum2PQAAgNwiSxe6SR4BAAAAAAAAZAW7d+/WxYsX9fTTT1ttcXFx2rx5sz766COtXr1at27dUlRUlM2DOZGRkfL397dDxAAAADlblh66/N7k0dnZWc7Oztq0aZOmTp0qZ2dn+fn5WcnjvUgeAQAAAAAAAKSnhg0b6uDBg9q3b581VatWTaGhodb/58mTR+vXr7fWOXr0qM6cOaPg4GA7Rg4AAJAzZeknuhOSx3t16dJFZcqU0eDBgxUUFGQlj61bt5ZE8ggAAAAAAAAg/eXLl0/ly5e3afPw8FD+/Pmt9m7dumngwIHy9fWVl5eX+vbtq+DgYD3zzDP2CBkAACBHy9KFbpJHAAAAAAAAANnFpEmT5OjoqNatWys2NlaNGjXSxx9/bO+wAAAAcqQsXehOCZJHAAAAAAAAAPbw448/2sy7ublp+vTpmj59un0CAgAAyEWyXaGb5BEAAAAAAAAAAAAAcjdHewcAAAAAAAAAAAAAAEBqUOgGAAAAAAAAAAAAAGQrFLoBAAAAAAAAAAAAANkKhW4AAAAAAAAAAAAAQLZCoRsAAAAAAAAAAAAAkK1Q6AYAAAAAAAAAAAAAZCsUugEAAAAAAAAAAAAA2QqFbgAAAAAAAAAAAABAtkKhGwAAAAAAAAAAAACQrVDoBgAAAAAAAAAAAABkKxS6AQAAAAAAAAAAAADZCoVuAAAAAAAAAAAAAEC2QqEbAAAAAAAAAAAAAJCtUOgGAAAAAAAAAAAAAGQrFLoBAAAAAAAAAAAAANkKhW4AAAAAAAAAAAAAQLZCoRsAAAAAAAAAAAAAkK042zsAAAAAAAAAIDlXlo+zdwi5ymPNB9k7BAAAACBFeKIbAAAAAAAAAAAAAJCt8EQ3AADIMDx9k7l4+iZ5Y8aM0bfffqvffvtN7u7uqlWrlsaOHasnn3zS6nPz5k298cYb+vLLLxUbG6tGjRrp448/lp+fnx0jBwAAAAAAAJAUnugGAABAjrdp0yb17t1b27Zt09q1a3X79m09//zzunbtmtVnwIAB+uGHH7R48WJt2rRJ58+f14svvmjHqAEAAAAAAAAkh0I3AAAAcrxVq1apc+fOKleunCpVqqR58+bpzJkz2r17tyQpOjpan376qSZOnKgGDRqoatWqmjt3rn755Rdt27bNztEDAAAgqxgzZoyqV6+ufPnyqVChQmrVqpWOHj1q0+fmzZvq3bu38ufPL09PT7Vu3VqRkZF2ihgAACDnytKFbhJHAAAAZITo6GhJkq+vryRp9+7dun37tkJCQqw+ZcqUUZEiRbR169YktxEbG6uYmBibCQAAADkbIwUBAABkHVm60E3iCAAAgPQWHx+v/v37q3bt2ipfvrwkKSIiQi4uLvLx8bHp6+fnp4iIiCS3M2bMGHl7e1tTUFBQRocOAAAAO2OkIAAAgKzD2d4BPMiqVats5ufNm6dChQpp9+7devbZZ63EcdGiRWrQoIEkae7cuSpbtqy2bdumZ555JsntxsbGKjY21prn6RsAAIDco3fv3vr111/1888/P9J2hgwZooEDB1rzMTExFLsBAABymdSOFJTU9UquVQIAAKRNln6i+37pMcSkxNM3AAAAuVWfPn20fPlybdy4UYULF7ba/f39devWLUVFRdn0j4yMlL+/f5LbcnV1lZeXl80EAACA3IORggAAAOwr2xS60ytxlO4+fRMdHW1NZ8+ezcjQAQAAYGfGGPXp00dLly7Vhg0bVLx4cZvlVatWVZ48ebR+/Xqr7ejRozpz5oyCg4MzO1wAAABkAwkjBX355ZePtB2uVQIAAKRNlh66/F7pNcSkdPfpG1dX13SICgAAANlB7969tWjRIn333XfKly+fdVOkt7e33N3d5e3trW7dumngwIHy9fWVl5eX+vbtq+Dg4GRfhwMAAIDcK2GkoM2bNyc7UtC9D+c8bKQgrlUCAACkXrYodKdn4ggAAIDcZ8aMGZKkevXq2bTPnTtXnTt3liRNmjRJjo6Oat26tWJjY9WoUSN9/PHHmRwpAAAAsjJjjPr27aulS5fqxx9/fOBIQa1bt5bESEEAAGQVV5aPs3cIucpjzQdl+D6ydKGbxBEAAADpwRjz0D5ubm6aPn26pk+fngkRAQAAIDtipCAAAICsI0sXukkcAQAAAAAAAGQVjBQEAACQdWTpQjeJIwAAAAAAAICsgpGCAAAAso4sXegmcQQAAAAAAAAAAAAA3M/R3gEAAAAAAAAAAAAAAJAaFLoBAAAAAAAAAAAAANkKhW4AAAAAAAAAAAAAQLZCoRsAAAAAAAAAAAAAkK1Q6AYAAAAAAAAAAAAAZCsUugEAAAAAAAAAAAAA2QqFbgAAAAAAAAAAAABAtkKhGwAAAAAAAAAAAACQrVDoBgAAAAAAAAAAAABkKxS6AQAAAAAAAAAAAADZCoVuAAAAAAAAAAAAAEC2QqEbAAAAAAAAAAAAAJCtUOgGAAAAAAAAAAAAAGQrFLoBAAAAAAAAAAAAANkKhW4AAAAAAAAAAAAAQLZCoRsAAAAAAAAAAAAAkK1Q6AYAAAAAAAAAAAAAZCsUugEAAAAAAAAAAAAA2QqFbgAAAAAAAAAAAABAtkKhGwAAAAAAAAAAAACQrVDoBgAAAAAAAAAAAABkKxS6AQAAAAAAAAAAAADZSo4pdE+fPl3FihWTm5ubatasqR07dtg7JAAAAGRD5JUAAAB4VOSUAAAAGS9HFLq/+uorDRw4UMOHD9eePXtUqVIlNWrUSBcvXrR3aAAAAMhGyCsBAADwqMgpAQAAMoezvQNIDxMnTlT37t3VpUsXSdLMmTO1YsUKffbZZ3r77bcT9Y+NjVVsbKw1Hx0dLUmKiYlJ0f7i4m+nQ9RIqZSel7S4FRf78E5INxl5Lq/f4Vxmpow8l3/Hci4zW0aez5jrNzNs20jMKYXnMuGcG2MyMpxsKTV55aPmlBJ5ZWYjr8w5yCtzDvLKnIOcMudIaU4pkVcmh2uVOR95Zc5BXplzkFfmHOSVOUdmXKt0MNk8E71165by5s2rb775Rq1atbLaw8LCFBUVpe+++y7ROiNGjNDIkSMzMUoAAICs5+zZsypcuLC9w8gyUptXklMCAADcRV75/7hWCQAAkDZpySmz/RPdf/75p+Li4uTn52fT7ufnp99++y3JdYYMGaKBAwda8/Hx8bp8+bLy588vBweHDI3XXmJiYhQUFKSzZ8/Ky8vL3uHgEXAucw7OZc7BucxZcsP5NMbo77//VmBgoL1DyVJSm1fmxpxSyh2/I7kF5zLn4FzmHJzLnCO3nEvyysS4VplyueX3JDfgXOYcnMucg3OZc+SGc/koOWW2L3Snhaurq1xdXW3afHx87BNMJvPy8sqxvwi5Decy5+Bc5hycy5wlp59Pb29ve4eQ7eXmnFLK+b8juQnnMufgXOYcnMucIzecS/LKR0demfN/T3ILzmXOwbnMOTiXOUdOP5dpzSkd0zmOTFegQAE5OTkpMjLSpj0yMlL+/v52igoAAADZDXklAAAAHhU5JQAAQObJ9oVuFxcXVa1aVevXr7fa4uPjtX79egUHB9sxMgAAAGQn5JUAAAB4VOSUAAAAmSdHDF0+cOBAhYWFqVq1aqpRo4YmT56sa9euqUuXLvYOLctwdXXV8OHDEw2DhOyHc5lzcC5zDs5lzsL5zN3IKx+O35Gcg3OZc3Aucw7OZc7BuczdyClTht+TnINzmXNwLnMOzmXOwbl8MAdjjLF3EOnho48+0vjx4xUREaHKlStr6tSpqlmzpr3DAgAAQDZDXgkAAIBHRU4JAACQ8XJMoRsAAAAAAAAAAAAAkDtk+3d0AwAAAAAAAAAAAAByFwrdAAAAAAAAAAAAAIBshUI3AAAAAAAAAAAAACBbodCNR/bjjz/KwcFBUVFR9g4lxypWrJgmT55s7zCAHMfBwUHLli2zdxjIIBnx3Tlv3jz5+PhY8yNGjFDlypXTdR9AbkZemfHIK4GMQV6Zs5FXAtkLOWXK8G8XkPPw917WR16Z/ih0ZyGdO3eWg4ODPvjgA5v2ZcuWycHBId32c+rUKTk4OGjfvn3pts3s4tKlS+rZs6eKFCkiV1dX+fv7q1GjRtqyZYvVhyQPKbV161Y5OTmpWbNm9g4F90n4PnVwcFCePHnk5+en5557Tp999pni4+OtfhcuXFCTJk3sGGn2wHdn8t58802tX7/e3mEAiZBXZjy+G5GeyCuzLvLK9MV3Z/LIK5EVkVNmT/zblXuRU6Yfcpasj3OUvNyWV1LozmLc3Nw0duxYXblyxd6h6NatW/YOId21bt1ae/fu1fz583Xs2DF9//33qlevnv76669UbScnfjZpkds/h08//VR9+/bV5s2bdf78+UfaVlxcnM0fG3h0jRs31oULF3Tq1CmtXLlS9evX1+uvv67mzZvrzp07kiR/f3+5urraLcbs8jvEd2fyPD09lT9/frvGcPv2bbvuH1kXeWXG4rsxfeX2z4G8Mmsjr0w/fHcmj7wSWRU5ZfbEv125Ezll+iFnSV8Z8TlwjpKX6/JKgywjLCzMNG/e3JQpU8a89dZbVvvSpUvNvafqp59+MnXq1DFubm6mcOHCpm/fvubq1avWcklm6dKlNtv29vY2c+fOtZbfO9WtW9faf8uWLc17771nAgICTLFixYwxxixYsMBUrVrVeHp6Gj8/P9OhQwcTGRlpbXvjxo1Gkrly5Ur6fiDp7MqVK0aS+fHHH5PtU7RoUZvPpmjRosYYY4YPH24qVapk5syZY4oVK2YcHByMMcacPn3avPDCC8bDw8Pky5fPtG3b1kRERFjbS1hvwYIFpmjRosbLy8u0a9fOxMTEWH1iYmLMyy+/bPLmzWv8/f3NxIkTTd26dc3rr79uE9ekSZOMMcZ06dLFNGvWzCbuW7dumYIFC5pPPvkkyeP6888/Tfv27U1gYKBxd3c35cuXN4sWLbLpk9I4Ro0aZTp27Gjy5ctnwsLCjDEP/5m8efOmeeONN0xgYKDJmzevqVGjhtm4cWOy5yE7+Pvvv42np6f57bffTLt27cz7779vs/y7774zJUuWNK6urqZevXpm3rx5Nr8nc+fONd7e3ua7774zZcuWNU5OTiY8PDxFn9XDPm/8//fZ/davX28kmTlz5hhjbL8vY2NjTe/evY2/v79xdXU1RYoUMaNHj7bWnTBhgilfvrzJmzevKVy4sOnZs6f5+++/bbY/e/ZsU7hwYePu7m5atWplJkyYYLy9va3lyX2XXLlyxXTr1s0UKFDA5MuXz9SvX9/s27fPZtvLli0zVapUMa6urqZ48eJmxIgR5vbt2+nwaT1Ybv7uNObu72pQUJB1Tj/88MMkz2mCjRs3murVq5u8efMab29vU6tWLXPq1CljjDEnTpwwL7zwgilUqJDx8PAw1apVM2vXrrXZ3/nz503Tpk2Nm5ubKVasmFm4cKHNcRhz9+f2448/Ni1atDB58+Y1w4cPN8Y8/GckJT9nyDnIKzNWbv5uJK9Mf+SVWRt5ZfrJzd+dxpBXInsip8ye+LcrdyKnTD+5OWfJLn/v5eZzZAx55f0odGchCUnIt99+a9zc3MzZs2eNMbbJ44kTJ4yHh4eZNGmSOXbsmNmyZYupUqWK6dy5s7WdhyWPO3bsMJLMunXrzIULF8xff/1l7d/T09N07NjR/Prrr+bXX381xhjz6aefmv/973/m5MmTZuvWrSY4ONg0adLE2nZ2SR5v375tPD09Tf/+/c3NmzeT7HPx4kUjycydO9dcuHDBXLx40Rhz94vBw8PDNG7c2OzZs8fs37/fxMXFmcqVK5s6deqYXbt2mW3btpmqVatayXjCep6enubFF180Bw8eNJs3bzb+/v7m3//+t9XnlVdeMUWLFjXr1q0zBw8eNP/85z9Nvnz5kv3y27Jli3FycjLnz5+3ln/77bfGw8MjUYKZ4I8//jDjx483e/fuNSdPnjRTp041Tk5OZvv27amOw8vLy3z44YfmxIkT1vSwn8lXXnnF1KpVy2zevNmcOHHCjB8/3ri6uppjx4499LxlVZ9++qmpVq2aMcaYH374wZQoUcLEx8cbY4z5/fffTZ48ecybb75pfvvtN/PFF1+Yxx9/PFHymCdPHlOrVi2zZcsW89tvv5lr16499LNKyeeN5P+oM8aYSpUqWd9h935fjh8/3gQFBZnNmzebU6dOmZ9++skmkZs0aZLZsGGDCQ8PN+vXrzdPPvmk6dmzp7X8559/No6Ojmb8+PHm6NGjZvr06cbX1zdRknH/d4kxxoSEhJgWLVqYnTt3mmPHjpk33njD5M+f3/p+3rx5s/Hy8jLz5s0zJ0+eNGvWrDHFihUzI0aMSMdPLWm5+btz27ZtxtHR0YwdO9YcPXrUTJkyxfj4+CSbON6+fdt4e3ubN99805w4ccIcPnzYzJs3z5w+fdoYY8y+ffvMzJkzzcGDB82xY8fMO++8Y9zc3Kzlxtz9WahcubLZtm2b2b17t6lbt65xd3dPlDgWKlTIfPbZZ+bkyZPm9OnTKfoZedjPGXIW8sqMlZu/G8kr0x95ZdZGXpl+cvN3J3klsityyuyJf7tyJ3LK9JObc5bs8vdebj5H5JWJUejOQu5NQp555hnTtWtXY4xt8titWzfTo0cPm/V++ukn4+joaG7cuGGMeXjyGB4ebiSZvXv3Jtq/n5+fiY2NfWCcO3fuNJKsX7TslDx+88035rHHHjNubm6mVq1aZsiQIVZSlSCpz2/48OEmT5481pehMcasWbPGODk5mTNnzlhthw4dMpLMjh07rPXy5s1rc1fPW2+9ZWrWrGmMuXuHT548eczixYut5VFRUSZv3rzJfvkZY8xTTz1lxo4da823aNEi1clDs2bNzBtvvJHqOFq1amWznYf9TJ4+fdo4OTmZc+fO2fRp2LChGTJkSKpizkpq1aplJk+ebIy5+49FgQIFrLvLBg8ebMqXL2/T/z//+U+i5FGSzd1JKfmsUvIdgAf/UdeuXTtTtmxZY4zt73vfvn1NgwYNrD8CHmbx4sUmf/78Ntu9/w680NDQREnG/d8lP/30k/Hy8kqUlJUoUcLMmjXLGHP3Z+DeO6mNMebzzz83AQEBKYr1UeXW784OHTqYpk2b2rS1a9cu2cTxr7/+eujdpPcrV66cmTZtmjHGmCNHjhhJZufOndby48ePG0mJEsf+/fvbbOdhPyMp+TlDzkJemfFy63djUsgrHw15ZdZGXpm+cut3J3klsityyuyJf7tyJ3LK9JVbc5akZNW/93LrOSKvTIx3dGdRY8eO1fz583XkyBGb9v3792vevHny9PS0pkaNGik+Pl7h4eGPvN8KFSrIxcXFpm337t1q0aKFihQponz58qlu3bqSpDNnzjzy/jJb69atdf78eX3//fdq3LixfvzxRz399NOaN2/eQ9ctWrSoChYsaM0fOXJEQUFBCgoKstqeeuop+fj42Jy3YsWKKV++fNZ8QECALl68KEn6/fffdfv2bdWoUcNa7u3trSeffPKBsbzyyiuaO3euJCkyMlIrV65U165dk+0fFxend999VxUqVJCvr688PT21evVq6xymJo5q1arZzD/sZ/LgwYOKi4tT6dKlbfps2rRJJ0+efOBxZlVHjx7Vjh071KFDB0mSs7Oz2rVrp08//dRaXr16dZt17v1sE7i4uKhixYrWfEo+q4z+DsgNjDFycHBI1N65c2ft27dPTz75pPr166c1a9bYLF+3bp0aNmyoxx9/XPny5VPHjh31119/6fr165Lunvf7z3NS5/3+75L9+/fr6tWryp8/v815DQ8Ptznvo0aNslnevXt3Xbhwwdp/Rsqt351HjhxRzZo1bdqCg4OT7e/r66vOnTurUaNGatGihaZMmaILFy5Yy69evao333xTZcuWlY+Pjzw9PXXkyBHru/jo0aNydnb+P/buPD7Gq///+Hsi+yaWkIRIaIilsdaSaq3R2CJaRVWLWlv70lJ31dLqbamttLX01qA3XbSoaoVQFFVbxVKRolF6i6XWhgqS8/vDz3yNJISGZHg9H495PFznnOtcn2vmmnEynznnUtWqVa37hISEqECBAhmOldln8a2ukexcZ3hwMa68Nx7Wz0bGlTmLcaV9Y1x55x7Wz07GlXgQMKZ8MPB/14OJMWXOe1jHLPb0997D+hoxrszIMdstcV/VqVNHkZGRGjp0qDp16mQtT0lJUY8ePdS3b98M+5QoUUKSZLFYdO0HFP8nuzd+9/DwsNm+cOGCIiMjFRkZqfnz58vX11eHDx9WZGSkLl++fIdnlTe4urqqUaNGatSokd5880117dpVI0aMsHmeM3Pzc5NdTk5ONtsWi0Xp6el31dd1HTp00Ouvv65Nmzbpxx9/VMmSJfXkk09m2f7dd9/Ve++9pylTpigsLEweHh7q37//Xb2GNz8Pt7smd+3apXz58mn79u3Kly+fTb2np+cdHz8vmD17tq5evaqAgABrmTFGLi4uev/997Pdj5ubm80fFykpKbd9rrLzGYBbS0hIUMmSJTOUV61aVUlJSVq+fLlWrVqlNm3aKCIiQl9++aUOHTqk5s2b65VXXtE777yjggULasOGDerSpYsuX74sd3f3bB8/s/eQv7+/1q5dm6Gtj4+Ptc2oUaP0zDPPZGjj6uqa7WP/Ew/jZ+fdiImJUd++fRUbG6vPP/9cw4YNU1xcnGrVqqVXX31VcXFxmjBhgkJCQuTm5qZnn302xz6Lb3WNZOc6w4OLceW98zB+NjKuzFmMK+0b48q78zB+dt4NxpXIaxhTPhj4v+vBxJjy3ngYxyz29vfew/ga3Y0HfVxJojsPGzt2rCpXrmzzi4+qVatq7969CgkJyXI/X19fm19k7N+/3+bXbdd/BZmWlnbbGPbt26dTp05p7Nix1l+zbNu27Y7PJS8rX768lixZYt12cnLK1nNTrlw5HTlyREeOHLE+N3v37tXZs2dVvnz5bB27VKlScnJy0tatW63/8Z87d06//vqr6tSpk+V+hQoVUsuWLRUTE6NNmzbppZdeuuVxNm7cqOjoaL3wwguSpPT0dP3666/WOO82Dun212SVKlWUlpamEydO5PgHdG64evWq5s2bp4kTJ+qpp56yqWvZsqU+/fRThYaG6rvvvrOp27p16237zs5zlZ3PAGTt+++/1+7duzVgwIBM6729vdW2bVu1bdtWzz77rBo3bqzTp09r+/btSk9P18SJE+XgcG0xlC+++MJm39DQ0Ayvc3Ze96pVq+rYsWNydHRUcHBwlm0SExPz1Ov+MHx2litXTps3b7Yp++mnn24bX5UqVVSlShUNHTpU4eHhWrBggWrVqqWNGzeqU6dOevrppyVdG+wdOnTIul9oaKiuXr2qHTt2qFq1apKkAwcO6MyZM7c95u2ukexcZ3iwMa68Px6Gz0bGlTmHcaV9Y1yZcx6Gz07GlXhQMKa0b/zf9WBiTHn/PAxjFnv/e+9heI0YV2ZEojsPCwsLU/v27TV16lRr2ZAhQ1SrVi317t1bXbt2lYeHh/bu3au4uDjrr7MaNGig999/X+Hh4UpLS9OQIUNsfmlSpEgRubm5KTY2VsWLF5erq6vy58+faQwlSpSQs7Ozpk2bppdffll79uzR22+/fW9P/B45deqUWrdurc6dO6tixYry8vLStm3bNH78eEVHR1vbBQcHa/Xq1apdu7ZcXFwyXYJBkiIiIqyv0ZQpU3T16lX17NlTdevWzbBEQ1a8vLzUsWNHvfbaaypYsKCKFCmiESNGyMHBIdNlhG7UtWtXNW/eXGlpaerYseMt25YuXVpffvmlfvzxRxUoUECTJk3S8ePHrR/S/ySO212TZcqUUfv27dWhQwdNnDhRVapU0cmTJ7V69WpVrFhRzZo1y9ZzlVcsW7ZMZ86cUZcuXTK8b1q1aqXZs2friy++0KRJkzRkyBB16dJF8fHx1iVTbvV8Zue5ys5nAK5JTU3VsWPHlJaWpuPHjys2NlZjxoxR8+bN1aFDhwztJ02aJH9/f1WpUkUODg5auHCh/Pz85OPjo5CQEF25ckXTpk1TVFSUNm7cqBkzZtjs36dPH9WpU0eTJk1SVFSUvv/+ey1fvvy276GIiAiFh4erZcuWGj9+vMqUKaOjR4/q22+/1dNPP63HHntMw4cPV/PmzVWiRAk9++yzcnBw0M6dO7Vnzx6NHj06R5+3mz3Mn519+/ZV7dq1NWHCBEVHR2vFihWKjY3Nsn1SUpJmzZqlFi1aKCAgQImJidq/f7/1eitdurQWLVqkqKgoWSwWvfnmmza/+ixbtqwiIiLUvXt3TZ8+XU5OTho0aFCGX1Rn5nbXSHauMzzYGFfmrIf5s5FxZc5hXGk/GFfmjIf5s5NxJR4UjCntB/93PTwYU+a8h3nMYi9/7z3MrxHjykxk+27euOc6duxooqOjbcqSkpKMs7OzufGl2rJli2nUqJHx9PQ0Hh4epmLFiuadd96x1v/vf/8zTz31lPHw8DClS5c23333ncmfP7+JiYmxtvnoo49MYGCgcXBwMHXr1s3y+MYYs2DBAhMcHGxcXFxMeHi4Wbp0qZFkduzYYYwxZs2aNUaSOXPmTA49E/fGpUuXzOuvv26qVq1q8ufPb9zd3U1oaKgZNmyYuXjxorXd0qVLTUhIiHF0dDRBQUHGGGNGjBhhKlWqlKHP33//3bRo0cJ4eHgYLy8v07p1a3Ps2DFrfWb7TZ482dqvMcacP3/ePP/888bd3d34+fmZSZMmmRo1apjXX3/d2iYoKMhMnjzZpp/09HQTFBRkmjZtettzP3XqlImOjjaenp6mSJEiZtiwYaZDhw42r/fdxmHM7a/Jy5cvm+HDh5vg4GDj5ORk/P39zdNPP2127dp129jzmubNm2f5nG/evNlIMjt37jRff/21CQkJMS4uLqZevXpm+vTpRpL5+++/jTHGxMTEmPz582foIzvP1e2eb1z7PJNkJBlHR0fj6+trIiIizMcff2zS0tKs7SSZxYsXG2OMmTVrlqlcubLx8PAw3t7epmHDhubnn3+2tp00aZLx9/c3bm5uJjIy0sybNy/DZ9+sWbNMsWLFjJubm2nZsqUZPXq08fPzs9Zn9Vly/vx506dPHxMQEGCcnJxMYGCgad++vTl8+LC1TWxsrHn88ceNm5ub8fb2NjVq1DCzZs3KuSctCw/zZ6cxxsyePdsUL17cuLm5maioKDNhwgSb9+6NsR47dsy0bNnS+Pv7G2dnZxMUFGSGDx9uveaSkpJM/fr1jZubmwkMDDTvv/++qVu3runXr5+1v6NHj5omTZoYFxcXExQUZBYsWGCKFCliZsyYYW1z43V7o9tdI9m5zvDgYFx5bz3Mn42MK3MO40r7wLgy5zzMn53GMK6EfWJMaZ/4v+vhwpgy5z3MYxZ7+XvvYX6NjGFceTPL/w8AQB5x4cIFFStWTBMnTlSXLl2ybJeSkqJixYopJiYm03sc3K84kD3vvPOOZsyYoSNHjuR2KLiPunXrpn379mn9+vW5HcoDL698dua0P/74Q4GBgVq1apUaNmyY2+EAsDN55bORcWXOYlz5cGJcef/klc/OnMa4EsD9xv9deRtjSvuXV8Ys/L2XtbzyGuW0vDauZOlyIJft2LFD+/btU40aNXTu3Dm99dZbkmSzxMaN0tPT9eeff2rixIny8fFRixYtciUO3NqHH36o6tWrq1ChQtq4caPeffdd9e7dO7fDwj02YcIENWrUSB4eHlq+fLnmzp2rDz/8MLfDeiDllc/OnPb9998rJSVFYWFhSk5O1uDBgxUcHHzb+xwBgJR3PhsZV+YsxpUPJ8aV909e+ezMaYwrAdxv/N+VtzGmtH95ZczC33tZyyuvUU7L6+NKEt1AHjBhwgQlJibK2dlZ1apV0/r161W4cOFM2x4+fFglS5ZU8eLFNWfOHDk65tzb+E7iwK3t379fo0eP1unTp1WiRAkNGjRIQ4cOze2wcI9t2bJF48eP119//aVSpUpp6tSp6tq1a26H9cDKK5+dOenKlSv617/+pd9++01eXl56/PHHNX/+fJv71wHAreSVz0bGlTmHceXDiXHl/ZVXPjtzEuNKAPcb/3flbYwpHwx5ZczC33tZyyuvUU7K6+NKli4HAAAAAAAAAAAAANgVh9wOAAAAAAAAAAAAAACAO0GiGwAAAAAAAAAAAABgV0h0AwAAAAAAAAAAAADsColuAAAAAAAAAAAAAIBdIdENAAAAAAAAAAAAALArJLoBADlq5MiRqly5cm6HAQAAcM8cO3ZMjRo1koeHh3x8fLIss3fBwcGaMmVKnusLAADgYWCxWLRkyZLcDsPG2rVrZbFYdPbs2dwORfXq1VP//v2t24w3gYcTiW4A91SnTp1ksVgyPBo3bpxrMY0cOdIah6Ojo4KDgzVgwAClpKTkWkw55X4PNjMbcL/66qtavXr1fTk+AACwL9fHhi+//HKGul69eslisahTp073PcfyuQAAbVJJREFUP7D/75dfflGbNm3k6+srFxcXlSlTRsOHD9fFixdt2k2ePFnJycmKj4/Xr7/+mmXZg+7mcXXhwoVVp04dTZkyRampqTZtt27dqu7du+dSpHcuL32JCwAAcsexY8fUr18/hYSEyNXVVUWLFlXt2rU1ffr0DOPD3JDV964HDhzI7dByxc3jzbz4QwEAOc8xtwMA8OBr3LixYmJibMpcXFxyKZprKlSooFWrVunq1avauHGjOnfurIsXL2rmzJm5GteDwNPTU56enrkdBgAAyKMCAwP12WefafLkyXJzc5MkXbp0SQsWLFCJEiX+Ud/GGKWlpcnR8c7/1P3pp58UERGhiIgIffvttypatKi2bNmiQYMGafXq1VqzZo2cnZ0lSQcPHlS1atVUunRp6/6Zld2py5cvW49hL66Pq9PT03Xq1CmtXbtWo0eP1ieffKK1a9fKy8tLkuTr65vLkQIAAGTfb7/9ptq1a8vHx0f//ve/FRYWJhcXF+3evVuzZs1SsWLF1KJFi9wOM9PvXR/WcdfDet7Aw44Z3QDuORcXF/n5+dk8ChQoYK2fNGmSwsLC5OHhocDAQPXs2dNmdvXvv/+uqKgoFShQQB4eHqpQoYK+++47GWMUEhKiCRMm2BwvPj7+tr9edHR0lJ+fn4oXL662bduqffv2Wrp0qSTpk08+0WOPPSYvLy/5+fnp+eef14kTJyQp28e0WCyaOXOmmjdvLnd3d5UrV06bNm3SgQMHVK9ePXl4eOjxxx/XwYMHbfr5+uuvVbVqVbm6uqpUqVIaNWqUrl69aq23WCz6z3/+o6efflru7u4qXbq0Ne5Dhw6pfv36kqQCBQrcdkbUV199pQoVKsjFxUXBwcGaOHGiTX1wcLDefvtttWvXTh4eHipWrJg++OADm3pJevrpp2WxWKzbNy9dnp6errfeekvFixeXi4uLKleurNjYWGv9oUOHZLFYtGjRItWvX1/u7u6qVKmSNm3alGXsAADAflWtWlWBgYFatGiRtWzRokUqUaKEqlSpYtM2NTVVffv2VZEiReTq6qonnnhCW7dutdZfn3W7fPlyVatWTS4uLtqwYYPS09M1ZswYlSxZUm5ubqpUqZK+/PLLLGMyxqhLly4qV66cFi1apBo1aigoKEitW7fWN998o02bNmny5MmSro2BvvrqK82bN8863sqsTJLOnj2rrl27ytfXV97e3mrQoIF27txpPe71cdN//vMflSxZUq6urpKkL7/8UmFhYXJzc1OhQoUUERGhCxcuZBp7WlqaunTpYj3X0NBQvffeezZtOnXqpJYtW2rChAny9/dXoUKF1KtXL125csXa5sSJE4qKipKbm5tKliyp+fPn3+pltLo+rg4ICFBYWJj69OmjdevWac+ePRo3bpy13Y1LSRpjNHLkSJUoUUIuLi4KCAhQ3759rW1TU1M1ZMgQBQYGysXFRSEhIZo9e7a1ft26dapRo4ZcXFzk7++v119/3WbMnNmylZUrV9bIkSOt2zk5rgYAAA+enj17ytHRUdu2bVObNm1Urlw5lSpVStHR0fr2228VFRVlbXv48GFFR0fL09NT3t7eatOmjY4fP27T3/Tp0/XII4/I2dlZoaGh+uSTT2zq9+/frzp16sjV1VXly5dXXFxctuLM7HvXfPnySbr9mOl2Y21J+u6771SmTBm5ubmpfv36OnTo0G1jyuxcbpxdndnKOde/W73e/6lTp9SuXTsVK1ZM7u7uCgsL06effnrL4944Bszse8tDhw7JwcFB27Zts9lvypQpCgoKUnp6+m3PDUDeQ6IbQK5zcHDQ1KlT9csvv2ju3Ln6/vvvNXjwYGt9r169lJqaqh9++EG7d+/WuHHj5OnpKYvFos6dO2f41WJMTIzq1KmjkJCQbMfg5uamy5cvS5KuXLmit99+Wzt37tSSJUt06NAh6xdbd3LMt99+Wx06dFB8fLzKli2r559/Xj169NDQoUO1bds2GWPUu3dva/v169erQ4cO6tevn/bu3auZM2dqzpw5euedd2yONWrUKLVp00a7du1S06ZN1b59e50+fVqBgYH66quvJEmJiYlKTk7O8CXnddu3b1ebNm303HPPaffu3Ro5cqTefPNNzZkzx6bdu+++q0qVKmnHjh16/fXX1a9fP+tA+/rANyYmRsnJyRkGwte99957mjhxoiZMmKBdu3YpMjJSLVq00P79+23avfHGG3r11VcVHx+vMmXKqF27djaDbwAA8OC4eTz18ccf66WXXsrQbvDgwfrqq680d+5c/fzzzwoJCVFkZKROnz5t0+7111/X2LFjlZCQoIoVK2rMmDGaN2+eZsyYoV9++UUDBgzQCy+8oHXr1mUaT3x8vPbu3auBAwfKwcH2z+RKlSopIiLC+sXa1q1b1bhxY7Vp08Y63sqsTJJat26tEydOaPny5dq+fbuqVq2qhg0b2sR/4MABffXVV1q0aJHi4+OVnJysdu3aqXPnzkpISNDatWv1zDPPyBiTaezp6ekqXry4Fi5cqL1792r48OH617/+pS+++MKm3Zo1a3Tw4EGtWbNGc+fO1Zw5c2zGfp06ddKRI0e0Zs0affnll/rwww+tP/a8U2XLllWTJk1sfsxwo6+++kqTJ0/WzJkztX//fi1ZskRhYWHW+g4dOujTTz/V1KlTlZCQoJkzZ1pXDPrf//6npk2bqnr16tq5c6emT5+u2bNna/To0XccZ06MqwEAwIPn1KlTWrlypXr16iUPD49M21gsFknXxmLR0dE6ffq01q1bp7i4OP32229q27atte3ixYvVr18/DRo0SHv27FGPHj300ksvac2aNdY+nnnmGTk7O2vz5s2aMWOGhgwZ8o/OITtjptuNtY8cOaJnnnlGUVFRio+PV9euXfX666/f8rg5dS6XLl1StWrV9O2332rPnj3q3r27XnzxRW3ZsiVb+2f2vWVwcLAiIiIy/V63U6dOGf4OAGAnDADcQx07djT58uUzHh4eNo933nkny30WLlxoChUqZN0OCwszI0eOzLTt//73P5MvXz6zefNmY4wxly9fNoULFzZz5szJsv8RI0aYSpUqWbe3bdtmChcubJ599tlM22/dutVIMn/99Ve2jynJDBs2zLq9adMmI8nMnj3bWvbpp58aV1dX63bDhg3Nv//9b5tjf/LJJ8bf3z/LflNSUowks3z5cmOMMWvWrDGSzJkzZ7I8f2OMef75502jRo1syl577TVTvnx563ZQUJBp3LixTZu2bduaJk2a2MSzePFimzY3P78BAQEZXu/q1aubnj17GmOMSUpKMpLMf/7zH2v9L7/8YiSZhISEW54HAACwLx07djTR0dHmxIkTxsXFxRw6dMgcOnTIuLq6mpMnT5ro6GjTsWNHY8y1cY6Tk5OZP3++df/Lly+bgIAAM378eGPM/419lixZYm1z6dIl4+7ubn788UebY3fp0sW0a9cu07g+++wzI8ns2LEj0/q+ffsaNzc36/aNcWZVtn79euPt7W0uXbpk0+6RRx4xM2fONMZcGzc5OTmZEydOWOu3b99uJJlDhw5lGkt29OrVy7Rq1cq63bFjRxMUFGSuXr1qLWvdurVp27atMcaYxMREI8ls2bLFWp+QkGAkmcmTJ2d5nJvHfTcaMmSIzXMWFBRk7WvixImmTJky5vLlyxn2ux5LXFxcpv3+61//MqGhoSY9Pd1a9sEHHxhPT0+TlpaW4VjXVapUyYwYMcK6nVPjagAA8OD56aefjCSzaNEim/JChQpZv9scPHiwMcaYlStXmnz58pnDhw9b213/Xuv62Orxxx833bp1s+mrdevWpmnTpsYYY1asWGEcHR3N//73P2v98uXLM/3e7UaZfe96/fvN242ZsjPWHjp0qM13hcZcG+PdaoyUnXPJbJy1Y8cOI8kkJSVleb7NmjUzgwYNsm7XrVvX9OvXz7p98xgws+fv888/NwUKFLCO0bdv324sFsstjwsgb+MnKgDuufr16ys+Pt7m8fLLL1vrV61apYYNG6pYsWLy8vLSiy++qFOnTunixYuSpL59+2r06NGqXbu2RowYoV27dln3DQgIULNmzfTxxx9Lkr755hulpqaqdevWt4xp9+7d8vT0lJubm2rUqKHw8HC9//77kq7Ndo6KilKJEiXk5eWlunXrSrq2DNGdHLNixYrWfxctWlSSbGaqFC1aVJcuXdL58+clSTt37tRbb71lvce1p6enunXrpuTkZOtzcXO/Hh4e8vb2vuPZNgkJCapdu7ZNWe3atbV//36lpaVZy8LDw23ahIeHKyEhIdvHOX/+vI4ePZrpsW7u58bz8vf3l6S7nkUEAADyNl9fXzVr1kxz5sxRTEyMmjVrpsKFC9u0OXjwoK5cuWIzjnByclKNGjUyjCMee+wx678PHDigixcvqlGjRjbjqnnz5mW4bczNTBazpu/Gzp07lZKSokKFCtnEkZSUZBNHUFCQzf0EK1WqpIYNGyosLEytW7fWRx99pDNnztzyWB988IGqVasmX19feXp6atasWdax63UVKlSwLmMpXRtvXR9rJSQkyNHRUdWqVbPWly1bVj4+Pnd9/sYY60ynm7Vu3Vp///23SpUqpW7dumnx4sXWlXzi4+OVL18+6xj8ZgkJCQoPD7fpu3bt2kpJSdEff/xxRzHmxLgaAAA8PLZs2aL4+HhVqFBBqampkq6NTQIDAxUYGGhtV758efn4+FjHrFl9D3djfWBgoAICAqz1N38nl5Wbv3edOnWqtc9bjZmyM9ZOSEhQzZo1bY53u7j+ybncKC0tTW+//bbCwsJUsGBBeXp6asWKFRnGuHeqZcuWypcvnxYvXixJmjNnjurXr29d6hyA/XHM7QAAPPg8PDyyXEb80KFDat68uV555RW98847KliwoDZs2KAuXbro8uXLcnd3V9euXRUZGalvv/1WK1eu1JgxYzRx4kT16dNHktS1a1e9+OKLmjx5smJiYtS2bVu5u7vfMqbQ0FAtXbpUjo6OCggIkLOzsyTpwoULioyMVGRkpObPny9fX18dPnxYkZGR1qXNs3tMJycn67+vDyozK7t+/5eUlBSNGjVKzzzzTIZ4r9+v8eY+rvfzINxD5lbPDQAAePB07tzZehuXDz744B/1deOSkikpKZKkb7/9VsWKFbNp5+Likun+ZcqUkXTti7mb7xN+vfx6m+xKSUmRv7+/1q5dm6HuxgTyzcth5suXT3Fxcfrxxx+1cuVKTZs2TW+88YY2b96skiVLZujrs88+06uvvqqJEycqPDxcXl5eevfdd7V582abdvd7DJmQkJBpvJIUGBioxMRErVq1SnFxcerZs6feffddrVu3Tm5ubv/42A4ODhl+tHDj/cive1DH1QAA4J8JCQmRxWJRYmKiTXmpUqUkKUfGKznlVt+75lXXlwi/cbx281jt3Xff1XvvvacpU6YoLCxMHh4e6t+/v833s3fD2dlZHTp0UExMjJ555hktWLCAW9QAdo4Z3QBy1fbt25Wenq6JEyeqVq1aKlOmjI4ePZqhXWBgoF5++WUtWrRIgwYN0kcffWSta9q0qTw8PDR9+nTFxsaqc+fOtz2us7OzQkJCFBwcbE1yS9K+fft06tQpjR07Vk8++aTKli2b6ayOuznm7VStWlWJiYkKCQnJ8MjuPWKun8uNs7IzU65cOW3cuNGmbOPGjSpTpozNTJ+ffvrJps1PP/2kcuXKWbednJxueSxvb28FBARkeqzy5cvf+mQAAMADrXHjxrp8+bKuXLmiyMjIDPWPPPKInJ2dbcYRV65c0datW285jihfvrxcXFx0+PDhDGOqG2fa3Khy5coqW7asJk+enCHRuXPnTq1atUrt2rW7o/OrWrWqjh07JkdHxwxx3Dx7/WYWi0W1a9fWqFGjtGPHDjk7O1tnndxs48aNevzxx9WzZ09VqVJFISEht525frOyZcvq6tWr2r59u7UsMTFRZ8+evaN+rtu3b59iY2PVqlWrLNu4ubkpKipKU6dO1dq1a7Vp0ybt3r1bYWFhSk9Pz/J+6uXKldOmTZtsvhjduHGjvLy8VLx4cUnXVgxITk621p8/f15JSUl3dA7ZHVcDAIAHT6FChdSoUSO9//77unDhwi3blitXTkeOHNGRI0esZXv37tXZs2etY9asvoe7sf7IkSM245ebv5O7U7cbM2VnrF2uXLkM98S+XVzZOZfrqxnd2CY+Pt6mzcaNGxUdHa0XXnhBlSpVUqlSpfTrr79m48z/T1bfW3bt2lWrVq3Shx9+qKtXr2Y66QiA/SDRDeCeS01N1bFjx2wef/75p6Rrv5C8cuWKpk2bpt9++02ffPKJZsyYYbN///79tWLFCiUlJennn3/WmjVrbJKt+fLlU6dOnTR06FCVLl36rpbDua5EiRJydna2xrN06VK9/fbbGdrl5DGvGz58uObNm6dRo0bpl19+UUJCgj777DMNGzYs230EBQXJYrFo2bJlOnnypHVG080GDRqk1atX6+2339avv/6quXPn6v3339err75q027jxo0aP368fv31V33wwQdauHCh+vXrZ60PDg7W6tWrdezYsSyX1Hzttdc0btw4ff7550pMTNTrr7+u+Ph4m34AAMDDJ1++fEpISNDevXttfmh3nYeHh1555RW99tprio2N1d69e9WtWzddvHhRXbp0ybJfLy8vvfrqqxowYIDmzp2rgwcP6ueff9a0adM0d+7cTPexWCyaPXu29u7dq1atWmnLli06fPiwFi5cqKioKIWHh6t///53dH4REREKDw9Xy5YttXLlSh06dEg//vij3njjDW3bti3L/TZv3qx///vf2rZtmw4fPqxFixbp5MmTNuPfG5UuXVrbtm3TihUr9Ouvv+rNN9/U1q1b7yjW0NBQNW7cWD169NDmzZu1fft2de3aNVuzla5evapjx47p6NGj2r17t6ZNm6a6deuqcuXKeu211zLdZ86cOZo9e7b27Nmj3377Tf/973/l5uamoKAgBQcHq2PHjurcubOWLFmipKQkrV27Vl988YUkqWfPnjpy5Ij69Omjffv26euvv9aIESM0cOBA649DGzRooE8++UTr16/X7t271bFjx0yvsVvJ7rgaAAA8mK4nQR977DF9/vnnSkhIUGJiov773/9q37591rFFRESEwsLC1L59e/3888/asmWLOnTooLp161pvr/Paa69pzpw5mj59uvbv369JkyZp0aJF1u/hIiIiVKZMGXXs2FE7d+7U+vXr9cYbb/yj+G83ZsrOWPvll1/W/v379dprrykxMVELFizQnDlzbnnc7JzL9R+gjhw5Uvv379e3336riRMn2rQpXbq0dZWjhIQE9ejRQ8ePH7+j5yCr7y3LlSunWrVqaciQIWrXrl2emqEP4C7k5g3CATz4OnbsaCRleISGhlrbTJo0yfj7+xs3NzcTGRlp5s2bZySZM2fOGGOM6d27t3nkkUeMi4uL8fX1NS+++KL5888/bY5z8OBBI8mMHz/+tjGNGDHCVKpUKcv6BQsWmODgYOPi4mLCw8PN0qVLjSSzY8eObB9Tklm8eLF1OykpKUMfa9assTlPY4yJjY01jz/+uHFzczPe3t6mRo0aZtasWVn2a4wx+fPnNzExMdbtt956y/j5+RmLxWI6duyY5Xl++eWXpnz58sbJycmUKFHCvPvuuzb1QUFBZtSoUaZ169bG3d3d+Pn5mffee8+mzdKlS01ISIhxdHQ0QUFBxpiMz29aWpoZOXKkKVasmHFycjKVKlUyy5cvv+Vzc+bMGSPJrFmzJsv4AQCA/enYsaOJjo7Osj46Otpm/PL333+bPn36mMKFCxsXFxdTu3Zts2XLFmt9ZuMpY4xJT083U6ZMMaGhocbJycn4+vqayMhIs27dulvGt2vXLtOqVStTsGBB4+TkZB555BEzbNgwc+HChVvGmVXZ+fPnTZ8+fUxAQIBxcnIygYGBpn379ubw4cPGmMzHpXv37jWRkZHG19fXuLi4mDJlyphp06ZlGfOlS5dMp06dTP78+Y2Pj4955ZVXzOuvv27Tb2bPe79+/UzdunWt28nJyaZZs2bGxcXFlChRwsybN88EBQWZyZMnZ3nsESNGWMf3+fLlMwULFjRPPPGEmTx5srl06ZJN2xv7Wrx4salZs6bx9vY2Hh4eplatWmbVqlXWtn///bcZMGCA8ff3N87OziYkJMR8/PHH1vq1a9ea6tWrG2dnZ+Pn52eGDBlirly5Yq0/d+6cadu2rfH29jaBgYFmzpw5plKlSmbEiBHWNjk5rgYAAA+mo0ePmt69e5uSJUsaJycn4+npaWrUqGHeffddm/Hh77//blq0aGE8PDyMl5eXad26tTl27JhNXx9++KEpVaqUcXJyMmXKlDHz5s2zqU9MTDRPPPGEcXZ2NmXKlDGxsbGZjldudLux9e3GTLcbaxtjzDfffGNCQkKMi4uLefLJJ83HH3+c6fj7Ts9lw4YNJiwszLi6uponn3zSLFy40EgySUlJxhhjTp06ZaKjo42np6cpUqSIGTZsmOnQoYPN+datW9f069fPun3z2DWz7y2vmz17tpGU4XwB2B+LMTfduAoA7ND69evVsGFDHTlyREWLFn1gj3k/BQcHq3///nc8ewkAAAAAAAAArrNYLFq8eLFatmyZ26FIkt5++20tXLhQu3btyu1QAPxDjrkdAAD8E6mpqTp58qRGjhyp1q1b35eEc24cEwAAAAAAAABw91JSUnTo0CG9//77Gj16dG6HAyAHcI9uAHbt008/VVBQkM6ePavx48c/sMcEAAAAAAAAANy93r17q1q1aqpXr546d+6c2+EAyAEsXQ4AAAAAAAAAAAAAsCvM6AYAAAAAAAAAAAAA2BUS3QAAAAAAAAAAAAAAu0KiGwAAAAAAAAAAAABgV0h0AwAAAAAAAAAAAADsColuAAAAAAAAAAAAAIBdIdENAAAAAAAAAAAAALArJLoBAAAAAAAAAAAAAHaFRDcAAAAAAAAAAAAAwK6Q6AYAAAAAAAAAAAAA2BUS3QAAAAAAAAAAAAAAu0KiGwAAAAAAAAAAAABgV0h0AwAAAAAAAAAAAADsColuAAAAAAAAAAAAAIBdIdENAAAAAAAAAAAAALArJLoB2J05c+bIYrHo0KFDuR1KttSrV0+PPvrobdsFBwerU6dO9z4gAAAAAAAAAAAAO0eiG8AtJSUlqXfv3ipTpozc3d3l7u6u8uXLq1evXtq1a1duh5epQ4cOyWKxZOthL8nyB8mCBQs0ZcqU3A4DAAAAAAAAAADYMcfcDgBA3rVs2TK1bdtWjo6Oat++vSpVqiQHBwft27dPixYt0vTp05WUlKSgoKDcDtWGr6+vPvnkE5uyiRMn6o8//tDkyZMztM0rEhMT5eDw4P/+aMGCBdqzZ4/69++f26EAAAAAAAAAAAA7RaIbQKYOHjyo5557TkFBQVq9erX8/f1t6seNG6cPP/wwTyZmPTw89MILL9iUffbZZzpz5kyG8hsZY3Tp0iW5ubnd6xAz5eLikivHBQAAAAAAAAAAsDd5L0MFIE8YP368Lly4oJiYmAxJbklydHRU3759FRgYaFP+/fff68knn5SHh4d8fHwUHR2thISEDPvv2LFDTZo0kbe3tzw9PdWwYUP99NNPGdr98ssvatCggdzc3FS8eHGNHj1a6enpOXKOwcHBat68uVasWKHHHntMbm5umjlzpiQpJiZGDRo0UJEiReTi4qLy5ctr+vTpmfazfPly1a1bV15eXvL29lb16tW1YMGCWx575cqVcnd3V7t27XT16lVrPDfeo/v6vcg3btyogQMHytfXVx4eHnr66ad18uRJm/7S09M1cuRIBQQEyN3dXfXr19fevXuzfd/vzz77TNWqVbOeQ1hYmN577z1J0m+//SaLxZJhNrwk/fjjj7JYLPr0008lSX/99Zf69++v4OBgubi4qEiRImrUqJF+/vlnSdfuV/7tt9/q999/ty4fHxwcbO0vNTVVI0aMUEhIiFxcXBQYGKjBgwcrNTXV5rgWi0W9e/fWwoULVb58ebm5uSk8PFy7d++WJM2cOVMhISFydXVVvXr1WKIeAAAAAAAAAIAHDDO6AWRq2bJlCgkJUc2aNbO9z6pVq9SkSROVKlVKI0eO1N9//61p06apdu3a+vnnn60JzV9++UVPPvmkvL29NXjwYDk5OWnmzJmqV6+e1q1bZz3msWPHVL9+fV29elWvv/66PDw8NGvWrBydcZ2YmKh27dqpR48e6tatm0JDQyVJ06dPV4UKFdSiRQs5Ojrqm2++Uc+ePZWenq5evXpZ958zZ446d+6sChUqaOjQofLx8dGOHTsUGxur559/PtNjLlu2TM8++6zatm2rjz/+WPny5btljH369FGBAgU0YsQIHTp0SFOmTFHv3r31+eefW9sMHTpU48ePV1RUlCIjI7Vz505FRkbq0qVLt30O4uLi1K5dOzVs2FDjxo2TJCUkJGjjxo3q16+fSpUqpdq1a2v+/PkaMGCAzb7z58+Xl5eXoqOjJUkvv/yyvvzyS/Xu3Vvly5fXqVOntGHDBiUkJKhq1ap64403dO7cOZtl5D09PSVdS9a3aNFCGzZsUPfu3VWuXDnt3r1bkydP1q+//qolS5bYHHv9+vVaunSp9fUYM2aMmjdvrsGDB+vDDz9Uz549debMGY0fP16dO3fW999/f9vnAgAAAAAAAAAA2AcS3QAyOH/+vI4ePaqWLVtmqDt79qx1BrJ0bZnw64nn1157TQULFtSmTZtUsGBBSVLLli1VpUoVjRgxQnPnzpUkDRs2TFeuXNGGDRtUqlQpSVKHDh0UGhqqwYMHa926dZKuLY9+8uRJbd68WTVq1JAkdezYUaVLl86xcz1w4IBiY2MVGRlpU75u3TqbhHrv3r3VuHFjTZo0yZpYPXfunPr27asaNWpo7dq1cnV1tbY3xmR6vEWLFum5555Tp06dNGPGjGwt/V6oUCGtXLlSFotF0rWE8NSpU3Xu3Dnlz59fx48f16RJk9SyZUstXrzYut+oUaM0cuTI2/b/7bffytvbWytWrMgy6d6hQwf16NFD+/btU9myZSVJV65c0RdffKFnnnlG7u7u1r66deumiRMnWvcdPHiw9d+NGjVSsWLFMl1GfsGCBVq1apXWrVunJ554wlr+6KOP6uWXX9aPP/6oxx9/3FqemJioffv2WX9AUaBAAfXo0UOjR4/Wr7/+Ki8vL0lSWlqaxowZo0OHDtnMHgcAAAAAAAAAAPaLpcsBZHD+/HlJ/zfT9kb16tWTr6+v9fHBBx9IkpKTkxUfH69OnTpZk9ySVLFiRTVq1EjfffedpGtJx5UrV6ply5bWJLck+fv76/nnn9eGDRusx//uu+9Uq1Yta5Jbknx9fdW+ffscO9eSJUtmSHJLsklynzt3Tn/++afq1q2r3377TefOnZN0bSb0X3/9pddff90myS3JmpS+0aeffqq2bduqR48emjlzZrbvb969e3eb/p588kmlpaXp999/lyStXr1aV69eVc+ePW3269OnT7b69/Hx0YULFxQXF5dlmzZt2sjV1VXz58+3lq1YsUJ//vmnTcLax8dHmzdv1tGjR7N17BstXLhQ5cqVU9myZfXnn39aHw0aNJAkrVmzxqZ9w4YNbRLX11cCaNWqlTXJfWP5b7/9dscxAQAAAAAAAACAvIlEN4AMricJU1JSMtTNnDlTcXFx+u9//2tTfj3pen3p7xuVK1dOf/75py5cuKCTJ0/q4sWLWbZLT0/XkSNHrH1mNns7s33vVsmSJTMt37hxoyIiIqz3Gvf19dW//vUvSbImug8ePCjp2ozj20lKStILL7ygVq1aadq0aZkmwrNSokQJm+0CBQpIks6cOSPp/577kJAQm3YFCxa0tr2Vnj17qkyZMmrSpImKFy+uzp07KzY21qaNj4+PoqKibO49Pn/+fBUrVsyaiJau3dt9z549CgwMVI0aNTRy5MhsJ5j379+vX375xeaHFL6+vipTpowk6cSJEzbtb35e8ufPL0kZ7ht/vfz68wUAAAAAAAAAAOwfS5cDyCB//vzy9/fXnj17MtRdnx176NCh+xzVvZHZ/b4PHjyohg0bqmzZspo0aZICAwPl7Oys7777TpMnT1Z6evodH8ff31/+/v767rvvtG3bNj322GPZ3jer5cSzWh79ThUpUkTx8fFasWKFli9fruXLlysmJkYdOnSwLjcvXVu+fOHChfrxxx8VFhampUuXqmfPnjYz09u0aaMnn3xSixcv1sqVK/Xuu+9q3LhxWrRokZo0aXLLONLT0xUWFqZJkyZlWn9zAjur5+VeP18AAAAAAAAAACD3kegGkKlmzZrpP//5j7Zs2WKzdHhWgoKCJF27b/LN9u3bp8KFC8vDw0Ourq5yd3fPsp2Dg4M1oRkUFKT9+/dnaJfZvjnpm2++UWpqqpYuXWoza/jmpbMfeeQRSdKePXsyzKa+maurq5YtW6YGDRqocePGWrdunSpUqJAj8V5/7g8cOGAzQ/3UqVPZnsXs7OysqKgoRUVFKT09XT179tTMmTP15ptvWs+tcePG8vX11fz581WzZk1dvHhRL774Yoa+/P391bNnT/Xs2VMnTpxQ1apV9c4771gT3VnNZn/kkUe0c+dONWzY8I5mvAMAAAAAAAAAgIcPS5cDyNTgwYPl7u6uzp076/jx4xnqb54d6+/vr8qVK2vu3Lk6e/astXzPnj1auXKlmjZtKunabNunnnpKX3/9tc2s8OPHj2vBggV64okn5O3tLUlq2rSpfvrpJ23ZssXa7uTJkzb3ib4Xrs8IvvEcz507p5iYGJt2Tz31lLy8vDRmzBhdunTJpi6z2cP58+fXihUrVKRIETVq1Mi69Pk/1bBhQzk6Omr69Ok25e+//3629j916pTNtoODgypWrChJSk1NtZY7OjqqXbt2+uKLLzRnzhyFhYVZ20nX7r9+fVn364oUKaKAgACbfjw8PDK0k67NBv/f//6njz76KEPd33//rQsXLmTrfAAAAAAAAAAAwIOPGd0AMlW6dGktWLBA7dq1U2hoqNq3b69KlSrJGKOkpCQtWLBADg4OKl68uHWfd999V02aNFF4eLi6dOmiv//+W9OmTVP+/Pk1cuRIa7vRo0crLi5OTzzxhHr27ClHR0fNnDlTqampGj9+vLXd4MGD9cknn6hx48bq16+fPDw8NGvWLAUFBWnXrl337Nyfeuop6wznHj16KCUlRR999JGKFCmi5ORkaztvb29NnjxZXbt2VfXq1fX888+rQIEC2rlzpy5evGiz7Pd1hQsXtp57RESENmzYoGLFiv2jeIsWLap+/fpp4sSJatGihRo3bqydO3dq+fLlKly48G1nR3ft2lWnT59WgwYNVLx4cf3++++aNm2aKleurHLlytm07dChg6ZOnao1a9Zo3LhxNnV//fWXihcvrmeffVaVKlWSp6enVq1apa1bt2rixInWdtWqVdPnn3+ugQMHqnr16vL09FRUVJRefPFFffHFF3r55Ze1Zs0a1a5dW2lpadq3b5+++OILrVix4o6WfAcAAAAAAAAAAA8uEt0AshQdHa3du3dr4sSJWrlypT7++GNZLBYFBQWpWbNmevnll1WpUiVr+4iICMXGxmrEiBEaPny4nJycVLduXY0bN85mSe0KFSpo/fr1Gjp0qMaMGaP09HTVrFlT//3vf633AJeuzRJfs2aN+vTpo7Fjx6pQoUJ6+eWXFRAQoC5dutyz8w4NDdWXX36pYcOG6dVXX5Wfn59eeeUV+fr6qnPnzjZtu3TpoiJFimjs2LF6++235eTkpLJly2rAgAFZ9l+sWDGtWrVKTz75pBo1aqQffvhBhQsX/kcxjxs3Tu7u7vroo4+0atUqhYeHa+XKlXriiSfk6up6y31feOEFzZo1Sx9++KHOnj0rPz8/tW3bViNHjrS5/7Z0LUldoUIFJSQkqH379jZ17u7u6tmzp1auXKlFixYpPT1dISEh+vDDD/XKK69Y2/Xs2VPx8fGKiYnR5MmTFRQUpKioKDk4OGjJkiWaPHmy5s2bp8WLF8vd3V2lSpVSv379VKZMmX/0HAEAAAAAAAAAgAeHxWS2vi4AwO6dPXtWBQoU0OjRo/XGG2/kWL9VqlRRwYIFtXr16hzrEwAAAAAAAAAA4E5wj24AeAD8/fffGcqmTJkiSapXr16OHWfbtm2Kj49Xhw4dcqxPAAAAAAAAAACAO8WMbgB4AMyZM0dz5sxR06ZN5enpqQ0bNujTTz/VU089pRUrVvzj/vfs2aPt27dr4sSJ+vPPP/Xbb7/ddkl0AAAAAAAAAACAe4V7dAPAA6BixYpydHTU+PHjdf78eRUtWlT9+vXT6NGjc6T/L7/8Um+99ZZCQ0P16aefkuQGAAAAAAAAAAC5ihndAAAAAAAAAAAAAAC7wj26AQAAAAAAAAAAAAB2haXLJaWnp+vo0aPy8vKSxWLJ7XAAAADuKWOM/vrrLwUEBMjBgd89AgAAAAAAALA/JLolHT16VIGBgbkdBgAAwH115MgRFS9ePLfDAAAAAAAAAIA7RqJbkpeXl6RrX/Z6e3vncjQAAAD31vnz5xUYGGgdAwEAAAAAAACAvSHRLVmXK/f29ibRDQAAHhrcsgUAAAAAAACAveKmjAAAAAAAAAAAAAAAu0KiGwAAAAAAAAAAAABgV0h0AwAAAAAAAAAAAADsColuAAAAAAAAAAAAAIBdIdENAAAAAAAAAAAAALArJLoBAAAAAAAAAAAAAHaFRDcAAAAAAAAAAAAAwK6Q6AYAAAAAAAAAAAAA2BUS3QAAAAAAAAAAAAAAu+KY2wEAualn2ODcDuGh8uHu8bkdAgAAAAAAAAAAAB4AzOgGAAAAAAAAAAAAANgVEt0AAAAAAAAAAAAAALtCohsAAAAAAAAAAAAAYFdIdAMAAAAAAAAAAAAA7AqJbgAAAAAAAAAAAACAXSHRDQAAAAAAAAAAAACwKyS6AQAAAAAAAAAAAAB2hUQ3AAAAAAAAAAAAAMCukOgGAAAAAAAAAAAAANgVEt0AAAAAAAAAAAAAALtCohsAAAAAAAAAAAAAYFdyNdH9ww8/KCoqSgEBAbJYLFqyZIlNfadOnWSxWGwejRs3tmlz+vRptW/fXt7e3vLx8VGXLl2UkpJyH88CAAAAAAAAAAAAAHA/5Wqi+8KFC6pUqZI++OCDLNs0btxYycnJ1senn35qU9++fXv98ssviouL07Jly/TDDz+oe/fu9zp0AAAAAAAAAAAAAEAucczNgzdp0kRNmjS5ZRsXFxf5+fllWpeQkKDY2Fht3bpVjz32mCRp2rRpatq0qSZMmKCAgIAcjxkAAAAAAAAAAAAAkLvy/D26165dqyJFiig0NFSvvPKKTp06Za3btGmTfHx8rEluSYqIiJCDg4M2b96cZZ+pqak6f/68zQMAAAAAAAAAAAAAYB/ydKK7cePGmjdvnlavXq1x48Zp3bp1atKkidLS0iRJx44dU5EiRWz2cXR0VMGCBXXs2LEs+x0zZozy589vfQQGBt7T8wAAAAAAAAAAAAAA5JxcXbr8dp577jnrv8PCwlSxYkU98sgjWrt2rRo2bHjX/Q4dOlQDBw60bp8/f55kNwAAAAAAAAAAAADYiTw9o/tmpUqVUuHChXXgwAFJkp+fn06cOGHT5urVqzp9+nSW9/WWrt3329vb2+YBAAAAAAAAAAAAALAPdpXo/uOPP3Tq1Cn5+/tLksLDw3X27Flt377d2ub7779Xenq6atasmVthAgAAAAAAAAAAAADuoVxdujwlJcU6O1uSkpKSFB8fr4IFC6pgwYIaNWqUWrVqJT8/Px08eFCDBw9WSEiIIiMjJUnlypVT48aN1a1bN82YMUNXrlxR79699dxzzykgICC3TgsAAAAAAAAAAAAAcA/l6ozubdu2qUqVKqpSpYokaeDAgapSpYqGDx+ufPnyadeuXWrRooXKlCmjLl26qFq1alq/fr1cXFysfcyfP19ly5ZVw4YN1bRpUz3xxBOaNWtWbp0SAAAAAAAAAAAAAOAey9UZ3fXq1ZMxJsv6FStW3LaPggULasGCBTkZFgAAAAAAAAAAAAAgD7Ore3QDAAAAAAAAAAAAAECiGwAAAAAAAAAAAABgV0h0AwAAAAAAAAAAAADsColuAAAAAAAAAAAAAIBdIdENAAAAAAAAAAAAALArJLoBAAAAAAAAAAAAAHaFRDcAAAAAAAAAAAAAwK6Q6AYAAAAAAAAAAAAA2BUS3QAAAAAAAAAAAAAAu0KiGwAAAAAAAAAAAABgV0h0AwAAAAAAAAAAAADsColuAAAAAAAAAAAAAIBdIdENAAAAAAAAAAAAALArJLoBAAAAAAAAAAAAAHaFRDcAAAAAAAAAAAAAwK6Q6AYAAAAAAAAAAAAA2BUS3QAAAAAAAAAAAAAAu0KiGwAAAAAAAAAAAABgV0h0AwAAAAAAAAAAAADsColuAAAAAAAAAAAAAIBdIdENAAAAAAAAAAAAALArJLoBAAAAAAAAAAAAAHaFRDcAAAAAAAAAAAAAwK6Q6AYAAAAAAAAAAAAA2BUS3QAAAAAAAAAAAAAAu0KiGwAAAAAAAAAAAABgV3I10f3DDz8oKipKAQEBslgsWrJkibXuypUrGjJkiMLCwuTh4aGAgAB16NBBR48etekjODhYFovF5jF27Nj7fCYAAAAAAAAAAAAAgPslVxPdFy5cUKVKlfTBBx9kqLt48aJ+/vlnvfnmm/r555+1aNEiJSYmqkWLFhnavvXWW0pOTrY++vTpcz/CBwAAAAAAAAAAAADkAsfcPHiTJk3UpEmTTOvy58+vuLg4m7L3339fNWrU0OHDh1WiRAlruZeXl/z8/O5prAAAAAAAAAAAAACAvMGu7tF97tw5WSwW+fj42JSPHTtWhQoVUpUqVfTuu+/q6tWrt+wnNTVV58+ft3kAAAAAAAAAAAAAAOxDrs7ovhOXLl3SkCFD1K5dO3l7e1vL+/btq6pVq6pgwYL68ccfNXToUCUnJ2vSpElZ9jVmzBiNGjXqfoQNAAAAAAAAAAAAAMhhdpHovnLlitq0aSNjjKZPn25TN3DgQOu/K1asKGdnZ/Xo0UNjxoyRi4tLpv0NHTrUZr/z588rMDDw3gQPAAAAAAAAAAAAAMhReT7RfT3J/fvvv+v777+3mc2dmZo1a+rq1as6dOiQQkNDM23j4uKSZRIcAAAAAAAAAAAAAJC35elE9/Uk9/79+7VmzRoVKlTotvvEx8fLwcFBRYoUuQ8RAgAAAAAAAAAAAADut1xNdKekpOjAgQPW7aSkJMXHx6tgwYLy9/fXs88+q59//lnLli1TWlqajh07JkkqWLCgnJ2dtWnTJm3evFn169eXl5eXNm3apAEDBuiFF15QgQIFcuu0AAAAAAAAAAAAAAD3UK4murdt26b69etbt6/fN7tjx44aOXKkli5dKkmqXLmyzX5r1qxRvXr15OLios8++0wjR45UamqqSpYsqQEDBtjcfxsAAAAAAAAAAAAA8GDJ1UR3vXr1ZIzJsv5WdZJUtWpV/fTTTzkdFgAAAAAAAAAAAAAgD3PI7QAAAAAAAAAAAAAAALgTJLoBAAAAAAAAAAAAAHaFRDcAAAAAAAAAAAAAwK6Q6AYAAAAAAAAAAAAA2BUS3QAAAAAAAAAAAAAAu0KiGwAAAAAAAAAAAABgV0h0AwAAAAAAAAAAAADsColuAAAAAAAAAAAAAIBdIdENAAAAAAAAAAAAALArJLoBAAAAAAAAAAAAAHaFRDcAAAAAAAAAAAAAwK6Q6AYAAAAAAAAAAAAA2BUS3QAAAAAAAAAAAAAAu+KY2wEAQE74rPG/cjuEh8pzsf/O7RAAAAAAAAAAAMBDjBndAAAAAAAAAAAAAAC7QqIbAAAAAAAAAAAAAGBXSHQDAAAAAAAAAAAAAOwKiW4AAAAAAAAAAAAAgF0h0Q0AAAAAAAAAAAAAsCskugEAAAAAAAAAAAAAdoVENwAAAAAAAAAAAADArpDoBgAAAAAAAAAAAADYFRLdAAAAAAAAAAAAAAC7QqIbAAAAAAAAAAAAAGBXSHQDAAAAAAAAAAAAAOwKiW4AAAAAAAAAAAAAgF3J1UT3Dz/8oKioKAUEBMhisWjJkiU29cYYDR8+XP7+/nJzc1NERIT2799v0+b06dNq3769vL295ePjoy5duiglJeU+ngUAAAAAAAAAAAAA4H7K1UT3hQsXVKlSJX3wwQeZ1o8fP15Tp07VjBkztHnzZnl4eCgyMlKXLl2ytmnfvr1++eUXxcXFadmyZfrhhx/UvXv3+3UKAAAAAAAAAAAAAID7zDE3D96kSRM1adIk0zpjjKZMmaJhw4YpOjpakjRv3jwVLVpUS5Ys0XPPPaeEhATFxsZq69ateuyxxyRJ06ZNU9OmTTVhwgQFBARk2ndqaqpSU1Ot2+fPn8/hMwMAAAAAAAAAAAAA3Ct59h7dSUlJOnbsmCIiIqxl+fPnV82aNbVp0yZJ0qZNm+Tj42NNcktSRESEHBwctHnz5iz7HjNmjPLnz299BAYG3rsTAQAAAAAAAAAAAADkqDyb6D527JgkqWjRojblRYsWtdYdO3ZMRYoUsal3dHRUwYIFrW0yM3ToUJ07d876OHLkSA5HDwAAAAAAAAAAAAC4V3J16fLc4uLiIhcXl9wOAwAAAAAAAAAAAABwF/LsjG4/Pz9J0vHjx23Kjx8/bq3z8/PTiRMnbOqvXr2q06dPW9sAAAAAAAAAAAAAAB4seTbRXbJkSfn5+Wn16tXWsvPnz2vz5s0KDw+XJIWHh+vs2bPavn27tc3333+v9PR01axZ877HDAAAAAAAAAAAAAC493J16fKUlBQdOHDAup2UlKT4+HgVLFhQJUqUUP/+/TV69GiVLl1aJUuW1JtvvqmAgAC1bNlSklSuXDk1btxY3bp104wZM3TlyhX17t1bzz33nAICAnLprAAAAAAAAAAAAAAA99Jdzehu0KCBzp49m6H8/PnzatCgQbb72bZtm6pUqaIqVapIkgYOHKgqVapo+PDhkqTBgwerT58+6t69u6pXr66UlBTFxsbK1dXV2sf8+fNVtmxZNWzYUE2bNtUTTzyhWbNm3c1pAQAAAAAAAAAAAADswF3N6F67dq0uX76cofzSpUtav359tvupV6+ejDFZ1lssFr311lt66623smxTsGBBLViwINvHBAAAAAAAAAAAAADYtztKdO/atcv677179+rYsWPW7bS0NMXGxqpYsWI5Fx0AAAAAAAAAAAAAADe5o0R35cqVZbFYZLFYMl2i3M3NTdOmTcux4AAAAAAAAAAAAAAAuNkdJbqTkpJkjFGpUqW0ZcsW+fr6WuucnZ1VpEgR5cuXL8eDBAAAAAAAAAAAAADgujtKdAcFBUmS0tPT70kwAAAAAAAAAAAAAADczh0lum+0f/9+rVmzRidOnMiQ+B4+fPg/DgwAAAAAAAAAAAAAgMzcVaL7o48+0iuvvKLChQvLz89PFovFWmexWEh0AwAAAAAAAAAAAADumbtKdI8ePVrvvPOOhgwZktPxAAAAAAAAAAAAAABwSw53s9OZM2fUunXrnI4FAAAAAAAAAAAAAIDbuqtEd+vWrbVy5cqcjgUAAAAAAAAAAAAAgNu6q6XLQ0JC9Oabb+qnn35SWFiYnJycbOr79u2bI8EBAAAAAAAAAAAAAHCzu0p0z5o1S56enlq3bp3WrVtnU2exWEh0AwAAAAAAAAAAAADumbtKdCclJeV0HAAAAAAAAAAAAAAAZMtd3aMbAAAAAAAAAAAAAIDcclczujt37nzL+o8//viuggEAAAAAAAAAAAAA4HbuKtF95swZm+0rV65oz549Onv2rBo0aJAjgQEAAAAAAAAAAAAAkJm7SnQvXrw4Q1l6erpeeeUVPfLII/84KAAAAAAAAAAAAAAAspJj9+h2cHDQwIEDNXny5JzqEgAAAAAAAAAAAACADHIs0S1JBw8e1NWrV3OySwAAAAAAAAAAAAAAbNzV0uUDBw602TbGKDk5Wd9++606duyYI4EBAAAAAAAAAAAAAJCZu0p079ixw2bbwcFBvr6+mjhxojp37pwjgQEAAAAAAAAAAAAAkJm7SnSvWbMmp+MAAAAAAAAAAAAAACBb7irRfd3JkyeVmJgoSQoNDZWvr2+OBAUAAAAAAAAAAAAAQFYc7manCxcuqHPnzvL391edOnVUp04dBQQEqEuXLrp48WJOxwgAAAAAAAAAAAAAgNVdJboHDhyodevW6ZtvvtHZs2d19uxZff3111q3bp0GDRqU0zECAAAAAAAAAAAAAGB1V0uXf/XVV/ryyy9Vr149a1nTpk3l5uamNm3aaPr06TkVHwAAAAAAAAAAAAAANu5qRvfFixdVtGjRDOVFihTJ8aXLg4ODZbFYMjx69eolSapXr16GupdffjlHYwAAAAAAAAAAAAAA5B13legODw/XiBEjdOnSJWvZ33//rVGjRik8PDzHgpOkrVu3Kjk52fqIi4uTJLVu3draplu3bjZtxo8fn6MxAAAAAAAAAAAAAADyjrtaunzKlClq3LixihcvrkqVKkmSdu7cKRcXF61cuTJHA/T19bXZHjt2rB555BHVrVvXWubu7i4/P78cPS4AAAAAAAAAAAAAIG+6qxndYWFh2r9/v8aMGaPKlSurcuXKGjt2rA4cOKAKFSrkdIxWly9f1n//+1917txZFovFWj5//nwVLlxYjz76qIYOHXrb5dNTU1N1/vx5mwcAAAAAAAAAAAAAwD7c1YzuMWPGqGjRourWrZtN+ccff6yTJ09qyJAhORLczZYsWaKzZ8+qU6dO1rLnn39eQUFBCggI0K5duzRkyBAlJiZq0aJFt4x/1KhR9yRGAAAAAAAAAAAAAMC9dVczumfOnKmyZctmKK9QoYJmzJjxj4PKyuzZs9WkSRMFBARYy7p3767IyEiFhYWpffv2mjdvnhYvXqyDBw9m2c/QoUN17tw56+PIkSP3LGYAAAAAAAAAAAAAQM66qxndx44dk7+/f4ZyX19fJScn/+OgMvP7779r1apVt5ypLUk1a9aUJB04cECPPPJIpm1cXFzk4uKS4zECAAAAAAAAAAAAAO69u5rRHRgYqI0bN2Yo37hxo81s65wUExOjIkWKqFmzZrdsFx8fL0mZJuIBAAAAAAAAAAAAAPbvrmZ0d+vWTf3799eVK1fUoEEDSdLq1as1ePBgDRo0KEcDlKT09HTFxMSoY8eOcnT8v5APHjyoBQsWqGnTpipUqJB27dqlAQMGqE6dOqpYsWKOxwEAAAAAAAAAAAAAyH13leh+7bXXdOrUKfXs2VOXL1+WJLm6umrIkCEaOnRojgYoSatWrdLhw4fVuXNnm3JnZ2etWrVKU6ZM0YULFxQYGKhWrVpp2LBhOR4DAAAAAAAAAAAAACBvuKtEt8Vi0bhx4/Tmm28qISFBbm5uKl269D277/VTTz0lY0yG8sDAQK1bt+6eHBMAAAAAAAAAAAAAkDfdVaL7Ok9PT1WvXj2nYgEAAAAAAAAAAAAA4LYccjsAAAAAAAAAAAAAAADuBIluAAAAAAAAAAAAAIBd+UdLlz+sKhdvk9shPFTi//git0MAAAAAAAAAAAAAkIcwoxsAAAAAAAAAAAAAYFdIdAMAAAAAAAAAAAAA7AqJbgAAAAAAAAAAAACAXSHRDQAAAAAAAAAAAACwKyS6AQAAAAAAAAAAAAB2hUQ3AAAAAAAAAAAAAMCukOgGAAAAAAAAAAAAANgVEt0AAAAAAAAAAAAAALtCohsAAAAAAAAAAAAAYFdIdAMAAAAAAAAAAAAA7AqJbgAAAAAAAAAAAACAXSHRDQAAAAAAAAAAAACwKyS6AQAAAAAAAAAAAAB2hUQ3AAAAAAAAAAAAAMCukOgGAAAAAAAAAAAAANgVEt0AAAAAAAAAAAAAALtCohsAAAAAAAAAAAAAYFdIdAMAAAAAAAAAAAAA7AqJbgAAAAAAAAAAAACAXSHRDQAAAAAAAAAAAACwKyS6AQAAAAAAAAAAAAB2hUQ3AAAAAAAAAAAAAMCu5OlE98iRI2WxWGweZcuWtdZfunRJvXr1UqFCheTp6alWrVrp+PHjuRgxAAAAAAAAAAAAAOBey9OJbkmqUKGCkpOTrY8NGzZY6wYMGKBvvvlGCxcu1Lp163T06FE988wzuRgtAAAAAAAAAAAAAOBec8ztAG7H0dFRfn5+GcrPnTun2bNna8GCBWrQoIEkKSYmRuXKldNPP/2kWrVqZdlnamqqUlNTrdvnz5/P+cABAAAAAAAAAAAAAPdEnp/RvX//fgUEBKhUqVJq3769Dh8+LEnavn27rly5ooiICGvbsmXLqkSJEtq0adMt+xwzZozy589vfQQGBt7TcwAAAAAAAAAAAAAA5Jw8neiuWbOm5syZo9jYWE2fPl1JSUl68skn9ddff+nYsWNydnaWj4+PzT5FixbVsWPHbtnv0KFDde7cOevjyJEj9/AsAAAAAAAAAAAAAAA5KU8vXd6kSRPrvytWrKiaNWsqKChIX3zxhdzc3O66XxcXF7m4uOREiAAAAAAAAAAAAACA+yxPz+i+mY+Pj8qUKaMDBw7Iz89Ply9f1tmzZ23aHD9+PNN7egMAAAAAAAAAAAAAHgx2lehOSUnRwYMH5e/vr2rVqsnJyUmrV6+21icmJurw4cMKDw/PxSgBAAAAAAAAAAAAAPdSnl66/NVXX1VUVJSCgoJ09OhRjRgxQvny5VO7du2UP39+denSRQMHDlTBggXl7e2tPn36KDw8XLVq1crt0AEAAAAAAAAAAAAA90ieTnT/8ccfateunU6dOiVfX1898cQT+umnn+Tr6ytJmjx5shwcHNSqVSulpqYqMjJSH374YS5HDQAAAAAAAAAAAAC4l/J0ovuzzz67Zb2rq6s++OADffDBB/cpIgAAAAAAAAAAAABAbrOre3QDAAAAAAAAAAAAAECiGwAAAAAAAAAAAABgV0h0AwAAAAAAAAAAAADsColuAAAAAAAAAAAAAIBdIdENAAAAAAAAAAAAALArJLoBAAAAAAAAAAAAAHaFRDcAAAAAAAAAAAAAwK6Q6AYAAAAAAAAAAAAA2BUS3QAAAAAAAAAAAAAAu0KiGwAAAAAAAAAAAABgV0h0AwAAAAAAAAAAAADsColuAAAAAAAAAAAAAIBdIdENAAAAAAAAAAAAALArJLoBAAAAAAAAAAAAAHaFRDcAAAAAAAAAAAAAwK6Q6AYAAAAAAAAAAAAA2BUS3QAAAAAAAAAAAAAAu0KiGwAAAAAAAAAAAABgV0h0AwAAAAAAAAAAAADsColuAAAAAAAAAAAAAIBdIdENAAAAAAAAAAAAALArJLoBAAAAAAAAAAAAAHaFRDcAAAAAAAAAAAAAwK6Q6AYAAAAAAAAAAAAA2BUS3QAAAAAAAAAAAAAAu0KiGwAAAAAAAAAAAABgVxxzO4BbGTNmjBYtWqR9+/bJzc1Njz/+uMaNG6fQ0FBrm3r16mndunU2+/Xo0UMzZsy43+ECAHJA0qABuR3CQ6fkxMm5HQIAAAAAAAAAAHckT8/oXrdunXr16qWffvpJcXFxunLlip566ilduHDBpl23bt2UnJxsfYwfPz6XIgYAAAAAAAAAAAAA3Gt5ekZ3bGyszfacOXNUpEgRbd++XXXq1LGWu7u7y8/PL9v9pqamKjU11bp9/vz5fx4sAAAAAAAAAAAAAOC+yNMzum927tw5SVLBggVtyufPn6/ChQvr0Ucf1dChQ3Xx4sVb9jNmzBjlz5/f+ggMDLxnMQMAAAAAAAAAAAAAclaentF9o/T0dPXv31+1a9fWo48+ai1//vnnFRQUpICAAO3atUtDhgxRYmKiFi1alGVfQ4cO1cCBA63b58+fJ9kNAAAAAAAAAAAAAHbCbhLdvXr10p49e7Rhwwab8u7du1v/HRYWJn9/fzVs2FAHDx7UI488kmlfLi4ucnFxuafxAgAAAAAAAAAAAADuDbtYurx3795atmyZ1qxZo+LFi9+ybc2aNSVJBw4cuB+hAQAAAAAAAAAAAADuszw9o9sYoz59+mjx4sVau3atSpYsedt94uPjJUn+/v73ODoAAAAAAAAAAAAAQG7I04nuXr16acGCBfr666/l5eWlY8eOSZLy588vNzc3HTx4UAsWLFDTpk1VqFAh7dq1SwMGDFCdOnVUsWLFXI4eAAAAAAAAAAAAAHAv5OlE9/Tp0yVJ9erVsymPiYlRp06d5OzsrFWrVmnKlCm6cOGCAgMD1apVKw0bNiwXogUAADc7s2x8bofwUCnQfHBuhwAAAAAAAAAA90WeTnQbY25ZHxgYqHXr1t2naAAAAAAAAAAAAAAAeYFDbgcAAAAAAAAAAAAAAMCdINENAAAAAAAAAAAAALArJLoBAAAAAAAAAAAAAHaFRDcAAAAAAAAAAAAAwK6Q6AYAAAAAAAAAAAAA2BUS3QAAAAAAAAAAAAAAu0KiGwAAAAAAAAAAAABgV0h0AwAAAAAAAAAAAADsColuAAAAAAAAAAAAAIBdIdENAAAAAAAAAAAAALArJLoBAAAAAAAAAAAAAHaFRDcAAAAAAAAAAAAAwK6Q6AYAAAAAAAAAAAAA2BUS3QAAAAAAAAAAAAAAu0KiGwAAAAAAAAAAAABgV0h0AwAAAAAAAAAAAADsColuAAAAAAAAAAAAAIBdIdENAAAAAAAAAAAAALArJLoBAAAAAAAAAAAAAHaFRDcAAAAAAAAAAAAAwK6Q6AYAAAAAAAAAAAAA2BUS3QAAAAAAAAAAAAAAu0KiGwAAAAAAAAAAAABgV0h0AwAAAAAAAAAAAADsColuAAAAAAAAAAAAAIBdeWAS3R988IGCg4Pl6uqqmjVrasuWLbkdEgAAAAAAAAAAAADgHnggEt2ff/65Bg4cqBEjRujnn39WpUqVFBkZqRMnTuR2aAAAAAAAAAAAAACAHPZAJLonTZqkbt266aWXXlL58uU1Y8YMubu76+OPP87t0AAAAAAAAAAAAAAAOcwxtwP4py5fvqzt27dr6NCh1jIHBwdFRERo06ZNme6Tmpqq1NRU6/a5c+ckSefPn8/WMdPSr/yDiHGnsvu63I3Laam3b4Qccy9fy4tXeS3vp3v5Wv6Vymt5v93L1/P8xUv3rG9klC+br+X119wYcy/DAQAAAAAAAIB7xu4T3X/++afS0tJUtGhRm/KiRYtq3759me4zZswYjRo1KkN5YGDgPYkR/0z+/PlzOwTkkNn5p+Z2CMghXfJPyu0QkJM+mJ7bESDHjLij1n/99Rf/zwIAAAAAAACwS3af6L4bQ4cO1cCBA63b6enpOn36tAoVKiSLxZKLkd0758+fV2BgoI4cOSJvb+/cDgf/AK/lg4PX8sHBa/lgeRheT2OM/vrrLwUEBOR2KAAAAAAAAABwV+w+0V24cGHly5dPx48ftyk/fvy4/Pz8Mt3HxcVFLi4uNmU+Pj73KsQ8xdvb+4H90v5hw2v54OC1fHDwWj5YHvTXk5ncAAAAAAAAAOyZQ24H8E85OzurWrVqWr16tbUsPT1dq1evVnh4eC5GBgAAAAAAAAAAAAC4F+x+RrckDRw4UB07dtRjjz2mGjVqaMqUKbpw4YJeeuml3A4NAAAAAAAAAAAAAJDDHohEd9u2bXXy5EkNHz5cx44dU+XKlRUbG6uiRYvmdmh5houLi0aMGJFhyXbYH17LBwev5YOD1/LBwusJAAAAAAAAAHmfxRhjcjsIAAAAAAAAAAAAAACyy+7v0Q0AAAAAAAAAAAAAeLiQ6AYAAAAAAAAAAAAA2BUS3QAAAAAAAAAAAAAAu0KiG//Y2rVrZbFYdPbs2dwOBcjzgoODNWXKlNwOA/+fxWLRkiVLcjsM3CP34v02Z84c+fj4WLdHjhypypUr5+gxAAAAAAAAAAC3R6I7D+nUqZMsFovGjh1rU75kyRJZLJYcO86hQ4dksVgUHx+fY30i+zZt2qR8+fKpWbNmuR2KXTt58qReeeUVlShRQi4uLvLz81NkZKQ2btxobUMS8+F1/fPUYrHIyclJRYsWVaNGjfTxxx8rPT3d2i45OVlNmjTJxUjtA++3rL366qtavXp1bocBAAAAAAAAAA8dEt15jKurq8aNG6czZ87kdii6fPlybofwQJo9e7b69OmjH374QUePHv1HfaWlpdkk7R4mrVq10o4dOzR37lz9+uuvWrp0qerVq6dTp07dUT9c59c8iM9D48aNlZycrEOHDmn58uWqX7+++vXrp+bNm+vq1auSJD8/P7m4uORajPbyvPN+y5qnp6cKFSqUqzFcuXIlV48PAAAAAAAAALmBRHceExERIT8/P40ZMybLNhs2bNCTTz4pNzc3BQYGqm/fvrpw4YK1PrNZdT4+PpozZ44kqWTJkpKkKlWqyGKxqF69epKuzYBs2bKl3nnnHQUEBCg0NFSS9Mknn+ixxx6Tl5eX/Pz89Pzzz+vEiRM5d9IPkZSUFH3++ed65ZVX1KxZM+trct3SpUtVunRpubq6qn79+po7d67NsvDXl8xdunSpypcvLxcXFx0+fFipqal69dVXVaxYMXl4eKhmzZpau3atTd+3u27sydmzZ7V+/XqNGzdO9evXV1BQkGrUqKGhQ4eqRYsWkq4tWSxJTz/9tCwWi3X7+jLD//nPf1SyZEm5urpKkg4fPqzo6Gh5enrK29tbbdq00fHjx63HvL7fJ598ouDgYOXPn1/PPfec/vrrL2ubv/76S+3bt5eHh4f8/f01efJk1atXT/3798/0PDp37qzmzZvblF25ckVFihTR7NmzM93n1KlTateunYoVKyZ3d3eFhYXp008/tWmTnTiCg4P19ttvq0OHDvL29lb37t0l3f46yc61lldcn3lcrFgxVa1aVf/617/09ddfa/ny5db33o2fl5cvX1bv3r3l7+8vV1dXBQUF2XwWT5o0SWFhYfLw8FBgYKB69uyplJQUm2N+9NFHCgwMlLu7u55++mlNmjQp02Wub77+zp49q65du8rX11fe3t5q0KCBdu7cadP3119/rapVq8rV1VWlSpXSqFGjrAn7e+lhfr9J1z53S5QoYX1Nb07u37x0+dq1a1WjRg15eHjIx8dHtWvX1u+//y5JOnjwoKKjo1W0aFF5enqqevXqWrVqlU1/ycnJatasmdzc3FSyZEktWLAgwxLsFotF06dPV4sWLeTh4aF33nlH0u2vkexcZwAAAAAAAABgL0h05zH58uXTv//9b02bNk1//PFHhvqDBw+qcePGatWqlXbt2qXPP/9cGzZsUO/evbN9jC1btkiSVq1apeTkZC1atMhat3r1aiUmJiouLk7Lli2TdC0R8Pbbb2vnzp1asmSJDh06pE6dOv2zE31IffHFFypbtqxCQ0P1wgsv6OOPP5YxRpKUlJSkZ599Vi1bttTOnTvVo0cPvfHGGxn6uHjxosaNG6f//Oc/+uWXX1SkSBH17t1bmzZt0meffaZdu3apdevWaty4sfbv3y8pZ66bvMTT01Oenp5asmSJUlNTM22zdetWSVJMTIySk5Ot25J04MABffXVV1q0aJHi4+OVnp6u6OhonT59WuvWrVNcXJx+++03tW3b1qbPgwcPasmSJVq2bJmWLVumdevW2dxqYODAgdq4caOWLl2quLg4rV+/Xj///HOW59G1a1fFxsYqOTnZWrZs2TJdvHgxw7Gvu3TpkqpVq6Zvv/1We/bsUffu3fXiiy9a39d3EseECRNUqVIl7dixQ2+++Wa2rpPbXWt5XYMGDVSpUiWbz73rpk6dqqVLl+qLL75QYmKi5s+fb03YSpKDg4OmTp2qX375RXPnztX333+vwYMHW+s3btyol19+Wf369VN8fLwaNWpkTUDe6ObrT5Jat26tEydOaPny5dq+fbuqVq2qhg0b6vTp05Kk9evXq0OHDurXr5/27t2rmTNnas6cOZn2n9Me5vfb5s2b1aVLF/Xu3Vvx8fGqX7++Ro8eneUxrl69qpYtW6pu3bratWuXNm3apO7du1tvP5KSkqKmTZtq9erV2rFjhxo3bqyoqCgdPnzY2keHDh109OhRrV27Vl999ZVmzZqV6Y/LRo4cqaefflq7d+9W586ds3WN3O46AwAAAAAAAAC7YpBndOzY0URHRxtjjKlVq5bp3LmzMcaYxYsXm+svVZcuXUz37t1t9lu/fr1xcHAwf//9tzHGGElm8eLFNm3y589vYmJijDHGJCUlGUlmx44dGY5ftGhRk5qaess4t27daiSZv/76yxhjzJo1a4wkc+bMmTs844fP448/bqZMmWKMMebKlSumcOHCZs2aNcYYY4YMGWIeffRRm/ZvvPGGzXMbExNjJJn4+Hhrm99//93ky5fP/O9//7PZt2HDhmbo0KHGmOxdN/bmyy+/NAUKFDCurq7m8ccfN0OHDjU7d+60aZPZe2HEiBHGycnJnDhxwlq2cuVKky9fPnP48GFr2S+//GIkmS1btlj3c3d3N+fPn7e2ee2110zNmjWNMcacP3/eODk5mYULF1rrz549a9zd3U2/fv2sZUFBQWby5MnW7fLly5tx48ZZt6OiokynTp3u6Llo1qyZGTRo0B3H0bJlS5t+bnedZOdayytu/Dy9Wdu2bU25cuWMMbbXSJ8+fUyDBg1Menp6to6xcOFCU6hQIZt+mzVrZtOmffv2Jn/+/NbtzK6/9evXG29vb3Pp0iWbfR955BEzc+ZMY8y15/jf//63Tf0nn3xi/P39sxXrP/Wwvt/atWtnmjZtalPWtm3bDK9ppUqVjDHGnDp1ykgya9euzbLPm1WoUMFMmzbNGGNMQkKCkWS2bt1qrd+/f7+RZHMekkz//v1t+rndNZKd6wwAAAAAAAAA7AkzuvOocePGae7cuUpISLAp37lzp+bMmWOdYefp6anIyEilp6crKSnpHx83LCxMzs7ONmXbt29XVFSUSpQoIS8vL9WtW1eSbGag4fYSExO1ZcsWtWvXTpLk6Oiotm3bWpfMTUxMVPXq1W32qVGjRoZ+nJ2dVbFiRev27t27lZaWpjJlythcF+vWrdPBgwcl3fvrJje0atVKR48e1dKlS9W4cWOtXbtWVatWzbAcfGaCgoLk6+tr3U5ISFBgYKACAwOtZeXLl5ePj4/NezA4OFheXl7WbX9/f+tMy99++01Xrlyxec3y589vvQVAVrp27aqYmBhJ0vHjx7V8+XJ17tw5y/ZpaWl6++23FRYWpoIFC8rT01MrVqywvh/vJI7HHnvMZvt210l2rjV7YIyxzrC9UadOnRQfH6/Q0FD17dtXK1eutKlftWqVGjZsqGLFisnLy0svvviiTp06pYsXL0q69h6++T2b2Xv45utv586dSklJUaFChWye16SkJJv38FtvvWVT361bNyUnJ1uPfy89rO+3hIQE1axZ06YsPDw8y/YFCxZUp06dFBkZqaioKL333ns2M8hTUlL06quvqly5cvLx8ZGnp6cSEhKs79/ExEQ5OjqqatWq1n1CQkJUoECBDMfK7P17q2skO9cZAAAAAAAAANgTx9wOAJmrU6eOIiMjNXToUJtlwlNSUtSjRw/17ds3wz4lSpSQdO3eneb/L4d93ZUrV7J1XA8PD5vtCxcuKDIyUpGRkZo/f758fX11+PBhRUZG6vLly3d4Vg+32bNn6+rVqwoICLCWGWPk4uKi999/P9v9uLm52STpUlJSlC9fPm3fvl358uWzaevp6Wltc7vrxh65urqqUaNGatSokd5880117dpVI0aMuO3S+jdf59nl5ORks22xWJSenn5XfV3XoUMHvf7669q0aZN+/PFHlSxZUk8++WSW7d9991299957mjJlivV+0f3797+r9+PNz8PtrpNdu3bd9lqzBwkJCSpZsmSG8qpVqyopKUnLly/XqlWr1KZNG0VEROjLL7/UoUOH1Lx5c73yyit65513VLBgQW3YsEFdunTR5cuX5e7unu3jZ/a8+/v7Z3qv8+v3905JSdGoUaP0zDPPZGhz/b7X99rD+H67GzExMerbt69iY2P1+eefa9iwYYqLi1OtWrX06quvKi4uThMmTFBISIjc3Nz07LPP5tj791bXSHauMwAAAAAAAACwJyS687CxY8eqcuXKNjPUqlatqr179yokJCTL/Xx9fW1mkO3fv99mxt/1GdtpaWm3jWHfvn06deqUxo4da519t23btjs+l4fd1atXNW/ePE2cOFFPPfWUTV3Lli316aefKjQ0VN99951N3Y33uc1KlSpVlJaWphMnTmSZsMnOdfMgKF++vJYsWWLddnJyytZ1Xq5cOR05ckRHjhyxXud79+7V2bNnVb58+Wwdu1SpUnJyctLWrVutPx44d+6cfv31V9WpUyfL/QoVKqSWLVsqJiZGmzZt0ksvvXTL42zcuFHR0dF64YUXJEnp6en69ddfrXHebRzS7a+T7Fxred3333+v3bt3a8CAAZnWe3t7q23btmrbtq2effZZNW7cWKdPn9b27duVnp6uiRMnysHh2mIoX3zxhc2+oaGhGd6z2XkPV61aVceOHZOjo6PNPcFvbpOYmJin3sMPw/utXLly2rx5s03ZTz/9dNv4qlSpoipVqmjo0KEKDw/XggULVKtWLW3cuFGdOnXS008/LelacvrQoUPW/UJDQ3X16lXt2LFD1apVk3TtHudnzpy57TFvd41k5zoDAAAAAAAAAHtCojsPCwsLU/v27TV16lRr2ZAhQ1SrVi317t1bXbt2lYeHh/bu3au4uDjrrOAGDRro/fffV3h4uNLS0jRkyBCbmXFFihSRm5ubYmNjVbx4cbm6uip//vyZxlCiRAk5Oztr2rRpevnll7Vnzx69/fbb9/bEH0DLli3TmTNn1KVLlwzPdatWrTR79mx98cUXmjRpkoYMGaIuXbooPj7euixwZsssX1emTBm1b99eHTp00MSJE1WlShWdPHlSq1evVsWKFdWsWbNsXTf25NSpU2rdurU6d+6sihUrysvLS9u2bdP48eMVHR1tbRccHKzVq1erdu3acnFxyXT5X0mKiIiwvt+mTJmiq1evqmfPnqpbt26G5YGz4uXlpY4dO+q1115TwYIFVaRIEY0YMUIODg63fP2ka8spN2/eXGlpaerYseMt25YuXVpffvmlfvzxRxUoUECTJk3S8ePHrQnCfxLH7a6T7FxreUlqaqqOHTumtLQ0HT9+XLGxsRozZoyaN2+uDh06ZGg/adIk+fv7q0qVKnJwcNDChQvl5+cnHx8fhYSE6MqVK5o2bZqioqK0ceNGzZgxw2b/Pn36qE6dOpo0aZKioqL0/fffa/ny5bd93iMiIhQeHq6WLVtq/PjxKlOmjI4ePapvv/1WTz/9tB577DENHz5czZs3V4kSJfTss8/KwcFBO3fu1J49ezR69Ogcfd5u9jC/3/r27avatWtrwoQJio6O1ooVKxQbG5tl+6SkJM2aNUstWrRQQECAEhMTtX//fuv1Vrp0aS1atEhRUVGyWCx68803bWaply1bVhEREerevbumT58uJycnDRo0KMNKHpm53TWSnesMAAAAAAAAAOwJ9+jO49566y2bL8ErVqyodevW6ddff9WTTz6pKlWqaPjw4TbLYU+cOFGBgYF68skn9fzzz+vVV1+1WVbX0dFRU6dO1cyZMxUQEGCTqLiZr6+v5syZo4ULF6p8+fIaO3asJkyYcG9O9gE2e/ZsRUREZPqDglatWmnbtm3666+/9OWXX2rRokWqWLGipk+frjfeeEOS5OLicsv+Y2Ji1KFDBw0aNEihoaFq2bKlzUzH7Fw39sTT01M1a9bU5MmTVadOHT366KN688031a1bN5vE/cSJExUXF6fAwEBVqVIly/4sFou+/vprFShQQHXq1FFERIRKlSqlzz///I7imjRpksLDw9W8eXNFRESodu3aKleu3G2Xlo6IiJC/v78iIyNv+5oMGzZMVatWVWRkpOrVqyc/Pz+1bNkyR+LIznVyu2stL4mNjZW/v7+Cg4PVuHFjrVmzRlOnTtXXX3+dYel16VrydPz48XrsscdUvXp1HTp0SN99950cHBxUqVIlTZo0SePGjdOjjz6q+fPna8yYMTb7165dWzNmzNCkSZNUqVIlxcbGasCAAbd93i0Wi7777jvVqVNHL730ksqUKaPnnntOv//+u4oWLSpJioyM1LJly7Ry5UpVr15dtWrV0uTJkxUUFJRzT1gWHub3W61atfTRRx/pvffeU6VKlbRy5UoNGzYsy/bu7u7at2+fWrVqpTJlyqh79+7q1auXevToYY25QIECevzxxxUVFaXIyEib+3FL0rx581S0aFHVqVNHTz/9tLp16yYvL6/bntftrpHsXGcAAAAAAAAAYE8s5uabOQPIM9555x3NmDFDR44cye1QcBcuXLigYsWKaeLEierSpUuW7VJSUlSsWDHFxMRken/d+xUHcl63bt20b98+rV+/PrdDeeDllfdbTvvjjz8UGBioVatWqWHDhrkdDgAAAAAAAADkGSxdDuQhH374oapXr65ChQpp48aNevfdd9W7d+/cDgvZtGPHDu3bt081atTQuXPn9NZbb0lSlqsmpKen688//9TEiRPl4+OjFi1a5EocyDkTJkxQo0aN5OHhoeXLl2vu3Ln68MMPczusB1Jeeb/ltO+//14pKSkKCwtTcnKyBg8erODg4FveexwAAAAAAAAAHkYkuoE8ZP/+/Ro9erROnz6tEiVKaNCgQRo6dGhuh4U7MGHCBCUmJsrZ2VnVqlXT+vXrVbhw4UzbHj58WCVLllTx4sU1Z84cOTrm3EfyncSBnLNlyxaNHz9ef/31l0qVKqWpU6eqa9euuR3WAyuvvN9y0pUrV/Svf/1Lv/32m7y8vPT4449r/vz5cnJyyu3QAAAAAAAAACBPYelyAAAAAAAAAAAAAIBdccjtAAAAAAAAAAAAAAAAuBMkugEAAAAAAAAAAAAAdoVENwAAAAAAAAAAAADArpDoBgAAAAAAAAAAAADYFRLdAAAAAAAAAAAAAAC7QqIbwAPJYrFoyZIluR2G1dq1a2WxWHT27NlM6w8dOiSLxaL4+Pj7GhcAAAAAAAAAAIA9ItEN4J44duyY+vXrp5CQELm6uqpo0aKqXbu2pk+frosXL+ZqbBaL5ZaPkSNH3veYAgMDlZycrEcfffS+Hzun1KtXT/3798/tMAAAAAAAAAAAwEPAMbcDAPDg+e2331S7dm35+Pjo3//+t8LCwuTi4qLdu3dr1qxZKlasmFq0aJFr8SUnJ1v//fnnn2v48OFKTEy0lnl6elr/bYxRWlqaHB3v7cdlvnz55Ofnd0+PAQAAAAAAAAAA8KBgRjeAHNezZ085Ojpq27ZtatOmjcqVK6dSpUopOjpa3377raKioqxtDx8+rOjoaHl6esrb21tt2rTR8ePHbfqbPn26HnnkETk7Oys0NFSffPKJTf3+/ftVp04dubq6qnz58oqLi7tlfH5+ftZH/vz5ZbFYrNv79u2Tl5eXli9frmrVqsnFxUUbNmzQwYMHFR0draJFi8rT01PVq1fXqlWrbPpNTU3VkCFDFBgYKBcXF4WEhGj27NmZxnDx4kU1adJEtWvX1tmzZzMsXX59qfPVq1frsccek7u7ux5//HGbhLwkjR49WkWKFJGXl5e6du2q119/XZUrV87y3M+cOaP27dvL19dXbm5uKl26tGJiYiRJDRo0UO/evW3anzx5Us7Ozlq9erUk6cMPP1Tp0qWts/SfffZZSVKnTp20bt06vffee9aZ8YcOHZIk7dmzR02aNJGnp6eKFi2qF198UX/++af1GPXq1VOfPn3Uv39/FShQQEWLFtVHH32kCxcu6KWXXpKXl5dCQkK0fPnyW76uAAAAAAAAAADg4UGiG0COOnXqlFauXKlevXrJw8Mj0zYWi0WSlJ6erujoaJ0+fVrr1q1TXFycfvvtN7Vt29badvHixerXr58GDRqkPXv2qEePHnrppZe0Zs0aax/PPPOMnJ2dtXnzZs2YMUNDhgz5x+fx+uuva+zYsUpISFDFihWVkpKipk2bavXq1dqxY4caN26sqKgoHT582LpPhw4d9Omnn2rq1KlKSEjQzJkzbWaHX3f27Fk1atRI6enpiouLk4+PT5ZxvPHGG5o4caK2bdsmR0dHde7c2Vo3f/58vfPOOxo3bpy2b9+uEiVKaPr06bc8rzfffFN79+7V8uXLlZCQoOnTp6tw4cKSpK5du2rBggVKTU21tv/vf/+rYsWKqUGDBtq2bZv69u2rt956S4mJiYqNjVWdOnUkSe+9957Cw8PVrVs3JScnKzk5WYGBgTp79qwaNGigKlWqaNu2bYqNjdXx48fVpk0bm7jmzp2rwoULa8uWLerTp49eeeUVtW7dWo8//rh+/vlnPfXUU3rxxRdzfdl7AAAAAAAAAACQN1iMMSa3gwDw4Ni8ebNq1aqlRYsW6emnn7aWFy5cWJcuXZIk9erVS+PGjVNcXJyaNGmipKQkBQYGSpL27t2rChUqaMuWLapevbpq166tChUqaNasWda+2rRpowsXLujbb7/VypUr1axZM/3+++8KCAiQJMXGxqpJkyZavHixWrZsect458yZo/79++vs2bOSrs2krl+/vpYsWaLo6Ohb7vvoo4/q5ZdfVu/evfXrr78qNDRUcXFxioiIyND2er8JCQlq27atSpcurQULFsjZ2VmSdOjQIZUsWVI7duxQ5cr/r717C4ly6+M4/rMxMTBSSspADDN1lFGRQeyA2jgWIUVJBCY2FnZRERRMgRR10QEJKSspIzof1KgxQYIoOsl0ULAxqslMmlIKoqILS6lG90Xsh3c67bavvG3f/f3AA/M86/+sWWu88OLHWivNqL98+bJyc3MlSRcuXFB+fr56e3sVGhqqzMxMWa1WVVVVGd8zY8YM9fT0GCvDvzZv3jyNGzdOhw8f/qatr69PEydOVHV1tRFEp6amqqCgQJs3b5bL5dLSpUvV3d2t0aNHf/N+Tk6O0tLSVFlZaTzbunWrmpqadPHiReNZd3e3oqOj1d7ervj4eOXk5Mjv96upqUmS5Pf7NWbMGBUUFOj48eOSvpz5HhUVpVu3bikzM/NnfxYAAAAAAAAAAPAvwIpuAP8Tzc3N8ng8Sk5ONlYMe71eRUdHGyG3JCUlJSk8PFxer9eomT59ekBf06dPD2iPjo42Qm5Jmjp16n89XqvVGnDf09Mjp9Mps9ms8PBwhYWFyev1Giu6PR6PTCaTsrOzf9pvXl6e4uLiVFdXZ4TcP5OSkmJ8joqKkiS9evVKktTe3q6MjIyA+q/vv7ZixQrV1tYqLS1N69ev182bN4220NBQFRcXGyF4a2ur7t+/r5KSEmPsMTExio2NVXFxsU6dOvWXK6zb2tp09epVhYWFGVdiYqIkqbOz87vzNJlMGjt2rCwWi/Fs/PjxAXMHAAAAAAAAAAD/bgTdAIZUXFycgoKCvjlLOjY2VnFxcRo1atRvGtnf8/W2606nU/X19dq+fbuamprk8XhksVj08eNHSfrleeXn5+vGjRt6+PDhL9WPHDnS+PyfW74P1pw5c/Ts2TOtXbtWL168UG5urpxOp9FeWlqqS5cuqbu7W0eOHJHNZlNMTIwkafTo0WptbVVNTY2ioqK0adMmpaamGqvhv6enp0dz586Vx+MJuP48V/178/xzrkM9dwAAAAAAAAAA8P+DoBvAkBo7dqzy8vJUVVWl9+/f/7TWbDarq6tLXV1dxrOHDx/q3bt3SkpKMmrcbnfAe263O6C9q6tLL1++NNpv3749VNMJ+M6SkhItWLBAFotFEyZMkM/nM9otFov6+/t1/fr1n/ZTXl4uh8Oh3NzcXw67fyQhIUEtLS0Bz76+/57IyEg5HA6dPHlSlZWVAdvCWywWWa1WHTx4UKdPnw44E1ySgoODZbfbtWPHDt27d08+n09XrlyRJIWEhMjv9wfUp6en68GDB5o0aZLi4uICrh+d4Q4AAAAAAAAAAPBXCLoBDLl9+/bp8+fPslqtqqurk9frVXt7u06ePKlHjx7JZDJJkux2uywWi4qKitTa2qrm5mYtWbJE2dnZxtbh69at09GjR7V//351dHRo586dcrlcxipku92u+Ph4ORwOtbW1qampSRs2bBjyOU2ZMkUul0sej0dtbW1avHhxwOriSZMmyeFwaNmyZTp//ryePn2qa9eu6cyZM9/0VVFRoaKiItlsNj169GjQY1q9erUOHTqkY8eOqaOjQ1u3btW9e/eM1c/fs2nTJjU0NOjJkyd68OCBGhsbZTabA2pKS0tVXl6ugYGBgHPWGxsbtWfPHnk8Hj179kzHjx9Xf3+/EhISjN/gzp078vl8ev36tfr7+7Vq1Sq9fftWhYWFamlpUWdnpy5evKilS5d+E4oDAAAAAAAAAAD8KoJuAENu8uTJunv3rux2u8rKypSamiqr1aq9e/fK6XRqy5Ytkr5sR93Q0KCIiAhlZWXJbrcrNjZWdXV1Rl/z58/X7t27VVFRoeTkZB04cEBHjhxRTk6OJGnEiBGqr69Xb2+vMjIyVFpaqm3btg35nHbu3KmIiAhNmzZNc+fO1ezZs5Wenh5Qs3//fi1cuFArV65UYmKili9f/sNV7bt27dKiRYtks9n0+PHjQY2pqKhIZWVlcjqdSk9P19OnT1VSUqLQ0NAfvhMSEqKysjKlpKQoKytLJpNJtbW1ATWFhYUKDg5WYWFhQF/h4eFyuVyy2Wwym82qrq5WTU2NkpOTJX3Z3t1kMikpKUmRkZF6/vy5Jk6cKLfbLb/fr1mzZslisWjNmjUKDw/XiBH8CwIAAAAAAAAAAIMTNDAwMPC7BwEAGBp5eXmaMGGCTpw4Meg+fD6fJk+erJaWlm/CfAAAAAAAAAAAgH+C4N89AADA4Hz48EHV1dWaPXu2TCaTampqdPnyZV26dGlQ/X369Elv3rzRxo0blZmZScgNAAAAAAAAAAD+sQi6AWCYCgoK0oULF7Rt2zb19fUpISFB586dk91uH1R/brdbM2fOVHx8vM6ePTvEowUAAAAAAAAAABg6bF0OAAAAAAAAAAAAABhWRvzuAQAAAAAAAAAAAAAA8HcQdAMAAAAAAAAAAAAAhhWCbgAAAAAAAAAAAADAsELQDQAAAAAAAAAAAAAYVgi6AQAAAAAAAAAAAADDCkE3AAAAAAAAAAAAAGBYIegGAAAAAAAAAAAAAAwrBN0AAAAAAAAAAAAAgGHlD96TY66tpqFBAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "⭕ **Features that discourage users from using online food delivery**" + ], + "metadata": { + "id": "ZhTAShmnYsSL" + } + }, + { + "cell_type": "code", + "source": [ + "# Set the figure size\n", + "plt.figure(figsize=(20, 10))\n", + "\n", + "# Plot 1: Self Cooking\n", + "plt.subplot(3, 3, 1)\n", + "sns.countplot(data=data, x='Self Cooking', hue='Self Cooking', palette='Oranges', legend=False)\n", + "plt.title('Self Cooking')\n", + "\n", + "# Plot 2: Health Concern\n", + "plt.subplot(3, 3, 2)\n", + "sns.countplot(data=data, x='Health Concern', hue='Health Concern', palette='Oranges', legend=False)\n", + "plt.title('Health Concern')\n", + "\n", + "# Plot 3: Late Delivery\n", + "plt.subplot(3, 3, 3)\n", + "sns.countplot(data=data, x='Late Delivery', hue='Late Delivery', palette='Oranges', legend=False)\n", + "plt.title('Late Delivery')\n", + "\n", + "# Plot 4: Poor Hygiene\n", + "plt.subplot(3, 3, 4)\n", + "sns.countplot(data=data, x='Poor Hygiene', hue='Poor Hygiene', palette='Oranges', legend=False)\n", + "plt.title('Poor Hygiene')\n", + "\n", + "# Plot 5: Bad Past Experience\n", + "plt.subplot(3, 3, 5)\n", + "sns.countplot(data=data, x='Bad past experience', hue='Bad past experience', palette='Oranges', legend=False)\n", + "plt.title('Bad past experience')\n", + "\n", + "# Plot 6: Unavailability\n", + "plt.subplot(3, 3, 6)\n", + "sns.countplot(data=data, x='Unavailability', hue='Unavailability', palette='Oranges', legend=False)\n", + "plt.title('Unavailability')\n", + "\n", + "# Plot 7: Unaffordable\n", + "plt.subplot(3, 3, 7)\n", + "sns.countplot(data=data, x='Unaffordable', hue='Unaffordable', palette='Oranges', legend=False)\n", + "plt.title('Unaffordable')\n", + "\n", + "# Adjust layout to prevent overlap\n", + "plt.tight_layout()\n", + "\n", + "# Show the plot\n", + "plt.show()\n" + ], + "metadata": { + "id": "SzcGkGCrVX7b", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 667 + }, + "outputId": "36bf1475-d0f5-4ec8-db9a-b093668c3d69" + }, + "execution_count": 19, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB7oAAAPdCAYAAAAULGcNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZyN9f//8eeZwcyY1YhZNIwla8gSjWTXICKypYyIPgrZovkUooSyRSItdp+KJC0UsiX7XtkbSzEUjTFkjJn37w8/17fTzJjBmeXMedxvt3O7ua73+7yv13WuuS6vc17XYjPGGAEAAAAAAAAAAAAA4CTccjoAAAAAAAAAAAAAAABuBYVuAAAAAAAAAAAAAIBTodANAAAAAAAAAAAAAHAqFLoBAAAAAAAAAAAAAE6FQjcAAAAAAAAAAAAAwKlQ6AYAAAAAAAAAAAAAOBUK3QAAAAAAAAAAAAAAp0KhGwAAAAAAAAAAAADgVCh0AwAAAAAAAAAAAACcCoVuAPj/unXrpvDwcLt5CQkJeuaZZxQcHCybzab+/fvnSGwZWbt2rWw2mxYvXnzTfrNnz5bNZtOxY8eyJzAAAAAX8+qrr8pms91S3z///DOLowIAAAAcKzw8XN26dbOmb/w+uXbt2hyLCYDrodANwGnt27dPjz/+uEqUKCFPT08VK1ZMTZs21dSpUx22jDfeeEOzZ89W7969NW/ePD311FM37Z+cnKxZs2apQYMGCgwMlIeHh8LDw/X0009r+/btDosLAAAAqd04qS+9vKtBgwa69957szmq6znl0qVLs2z8tWvXqm3btgoODlaBAgVUtGhRtWrVSkuWLMmyZQIAALiyjPLOW3H58mW9+uqrWVIgttls1itfvnwKDAxUjRo19MILL+iXX35x+PIAILvly+kAAOB2/Pjjj2rYsKGKFy+unj17Kjg4WCdPntTmzZv19ttvq2/fvg5Zzvfff68HHnhAI0aMyLDv33//rbZt22rFihWqV6+e/vvf/yowMFDHjh3Tp59+qjlz5ujEiRO6++67HRLb7XjqqafUqVMneXh45FgMAAAAruaNN97Q448/rjZt2jh87BEjRmjUqFG655579Oyzz6pEiRI6d+6cvvnmG7Vr104LFizQE0884fDlAgAAwDEuX76skSNHSrp+YqajNW3aVF27dpUxRhcuXNCePXs0Z84cvfvuuxo3bpwGDhzokOXUq1dPf//9twoUKOCQ8QAgMyh0A3BKo0ePlr+/v7Zt26aAgAC7trNnzzpsOWfPnlXFihUz1ffFF1/UihUrNGnSpFS3OB8xYoQmTZrksLhul7u7u9zd3XM6DAAAADjA4sWLNWrUKD3++ONauHCh8ufPb7W9+OKL+vbbb5WUlJSDEd6ZK1euqECBAnJz42Z0AAAAt6ts2bJ68skn7eaNHTtWrVq10qBBg1S+fHm1aNHijpfj5uYmT0/POx7nVl26dEne3t7ZvlwAuQPfFgE4paNHj6pSpUqpitySVLRo0VTz5s+frxo1asjLy0uBgYHq1KmTTp48me74N54pExMTo6+//tq6xU96z7b+7bff9N5776lp06ZpPsfb3d1dgwcPtruae9euXWrevLn8/Pzk4+Ojxo0ba/Pmzane++uvv6p9+/YKDAxUwYIF9cADD+jrr79ON/YbEhMT1bJlS/n7++vHH3+UlPYzusPDw9WyZUv98MMPqlWrljw9PVWqVCnNnTs31Zh79+5V/fr15eXlpbvvvluvv/66Zs2axXO/AQCAU8tMrrhhwwa1b99exYsXl4eHh8LCwjRgwAD9/fffNx3bZrPp0qVLmjNnjpVT/vNZhpIUFxenbt26KSAgQP7+/nr66ad1+fLlDOMeNmyYAgMD9dFHH9kVuW+IjIxUy5YtremzZ8+qR48eCgoKkqenp6pWrao5c+bYvefYsWOy2WwaP368Zs6cqdKlS8vDw0P333+/tm3blmoZBw4cUIcOHVSkSBF5eXmpXLlyevnll+36/P777+revbuCgoLk4eGhSpUq6aOPPrLrcyP//vjjj/XKK6+oWLFiKliwoOLj49WtWzf5+Pjo999/V5s2beTj46MiRYpo8ODBSk5OzvBzAgAAyAlXr17V8OHDVaNGDfn7+8vb21sPPfSQ1qxZY/U5duyYihQpIkkaOXKklS+++uqrVp8DBw7o8ccfV2BgoDw9PVWzZk0tW7bsjmIrXLiwPv74Y+XLl0+jR4+2a0tMTNSIESNUpkwZK+8dMmSIEhMTbzrmv5/R3adPH/n4+KSZ13bu3FnBwcF2udzy5cv10EMPydvbW76+vnrkkUf0888/273vRl549OhRtWjRQr6+vurSpYtGjBih/Pnz648//ki1rF69eikgIEBXrlzJ7McDwIlwRTcAp1SiRAlt2rRJP/30U4bPWRw9erSGDRumDh066JlnntEff/yhqVOnql69etq1a1eaxfIKFSpo3rx5GjBggO6++24NGjRIkqzE89+WL1+ua9euZfgM7xt+/vlnPfTQQ/Lz89OQIUOUP39+vffee2rQoIHWrVun2rVrS5LOnDmjOnXq6PLly+rXr58KFy6sOXPm6NFHH9XixYv12GOPpTn+33//rdatW2v79u1atWqV7r///pvGc+TIET3++OPq0aOHoqKi9NFHH6lbt26qUaOGKlWqJOn6D5QNGzaUzWZTdHS0vL299cEHH3AbdAAAkOtcuHBBf/75Z6r5aV3dnNlccdGiRbp8+bJ69+6twoULa+vWrZo6dap+++03LVq0KN1Y5s2bp2eeeUa1atVSr169JEmlS5e269OhQweVLFlSY8aM0c6dO/XBBx+oaNGiGjduXLrjHj58WAcOHFD37t3l6+ub4Wfy999/q0GDBjpy5Ij69OmjkiVLatGiRerWrZvi4uL0wgsv2PVfuHChLl68qGeffVY2m01vvvmm2rZtq19//dUqqu/du1cPPfSQ8ufPr169eik8PFxHjx7Vl19+af1geubMGT3wwAOy2Wzq06ePihQpouXLl6tHjx6Kj49PdZLoa6+9pgIFCmjw4MFKTEy0bn2ZnJysyMhI1a5dW+PHj9eqVas0YcIElS5dWr17985w/QEAALJbfHy8PvjgA3Xu3Fk9e/bUxYsX9eGHHyoyMlJbt27VfffdpyJFimj69Onq3bu3HnvsMbVt21aSVKVKFUnXf0N88MEHVaxYMb300kvy9vbWp59+qjZt2uizzz5L97fBzChevLjq16+vNWvWKD4+Xn5+fkpJSdGjjz6qH374Qb169VKFChW0b98+TZo0SYcOHdLSpUszPX7Hjh01bdo0ff3112rfvr01//Lly/ryyy/VrVs3686T8+bNU1RUlCIjIzVu3DhdvnxZ06dPV926dbVr1y6Fh4db77927ZoiIyNVt25djR8/XgULFlRERIRGjRqlTz75RH369LH6Xr16VYsXL1a7du1y5GpzANnAAIAT+u6774y7u7txd3c3ERERZsiQIebbb781V69etet37Ngx4+7ubkaPHm03f9++fSZfvnx286OiokyJEiXs+pUoUcI88sgjGcYzYMAAI8ns2rUrU/G3adPGFChQwBw9etSad+rUKePr62vq1atnzevfv7+RZDZs2GDNu3jxoilZsqQJDw83ycnJxhhj1qxZYySZRYsWmYsXL5r69eubu+66K1U8s2bNMpJMTEyM3TpKMuvXr7fmnT171nh4eJhBgwZZ8/r27WtsNpvdmOfOnTOBgYGpxgQAAMgJN3Kdm70qVapk9b+VXPHy5cupljdmzBhjs9nM8ePHrXkjRoww//6q7e3tbaKiolK9/0bf7t27281/7LHHTOHChW+6rl988YWRZCZNmnTTfjdMnjzZSDLz58+35l29etVEREQYHx8fEx8fb4wxJiYmxkgyhQsXNufPn0+1vC+//NKaV69ePePr62u3/sYYk5KSYv27R48eJiQkxPz55592fTp16mT8/f2tz/VGPluqVKlUn3VUVJSRZEaNGmU3v1q1aqZGjRqZWn8AAABHupF3btu2Ld0+165dM4mJiXbz/vrrLxMUFGSX//3xxx9GkhkxYkSqMRo3bmwqV65srly5Ys1LSUkxderUMffcc0+GcUoyzz//fLrtL7zwgpFk9uzZY4wxZt68ecbNzc3ut0hjjJkxY4aRZDZu3GjNK1GihF2OeyOfW7NmjRVnsWLFTLt27ezG+vTTT+1+i7x48aIJCAgwPXv2tOsXGxtr/P397ebfyAtfeumlVOsSERFhateubTdvyZIldjEByHu4dTkAp9S0aVNt2rRJjz76qPbs2aM333xTkZGRKlasmN2te5YsWaKUlBR16NBBf/75p/UKDg7WPffcY3eroDsRHx8vSZm6miY5OVnfffed2rRpo1KlSlnzQ0JC9MQTT+iHH36wxvvmm29Uq1Yt1a1b1+rn4+OjXr166dixY/rll1/sxr5w4YIefvhhHThwQGvXrtV9992XqfgrVqyohx56yJouUqSIypUrp19//dWat2LFCkVERNiNGRgYqC5dumRqGQAAANll2rRpWrlyZarXjStjbriVXNHLy8v696VLl/Tnn3+qTp06MsZo165ddxTvf/7zH7vphx56SOfOnbNywrTcSv4pXc8rg4OD1blzZ2te/vz51a9fPyUkJGjdunV2/Tt27KhChQrZxSTJyg//+OMPrV+/Xt27d1fx4sXt3muz2SRJxhh99tlnatWqlYwxdp9xZGSkLly4oJ07d9q9Nyoqyu6z/qe0Pqd/5qsAAAC5ibu7u3V3mpSUFJ0/f17Xrl1TzZo1U+VAaTl//ry+//57dejQQRcvXrTyqHPnzikyMlKHDx/W77//fkcx+vj4SJIuXrwo6fpdjCpUqKDy5cvb5W6NGjWSpFv6LdVms6l9+/b65ptvlJCQYM3/5JNPVKxYMev3zpUrVyouLk6dO3e2W6a7u7tq166d5jLTuqNP165dtWXLFh09etSat2DBAoWFhal+/fqZjhuAc+HW5QCc1v33368lS5bo6tWr2rNnjz7//HNNmjRJjz/+uHbv3q2KFSvq8OHDMsbonnvuSXOMtJ5leDv8/Pwk/V9SeDN//PGHLl++rHLlyqVqq1ChglJSUnTy5ElVqlRJx48ft25j/u9+knT8+HG7W7f3799fV65c0a5du6xbjmfGv3+clKRChQrpr7/+sqaPHz+uiIiIVP3KlCmT6eUAAABkh1q1aqlmzZqp5hcqVMjulua3kiueOHFCw4cP17Jly+xyJOn6yYZ34t+52I0C819//WXlmf92K/mndD2Xu+eee+TmZn+++z/zyszGJP1fwftmjxH6448/FBcXp5kzZ2rmzJlp9jl79qzddMmSJdPs5+npmeoxQv/OVwEAAHKbOXPmaMKECTpw4IDdY3TSy3n+6ciRIzLGaNiwYRo2bFiafc6ePatixYrddnw3CtA3Tp48fPiw9u/fn+7jG/+du2WkY8eOmjx5spYtW6YnnnhCCQkJ+uabb6zH49xYpiSrmP5v/86H8+XLp7vvvjvNZfXv318LFizQ8OHDdeHCBX311VcaMGCAtSwAeQ+FbgBOr0CBArr//vt1//33q2zZsnr66ae1aNEijRgxQikpKbLZbFq+fLn1zJd/unHW4p0qX768JGnfvn2Zvoo6K7Ru3Voff/yxxo4dq7lz56b6ITM9aX020vWrcAAAAPKqzOaKycnJatq0qc6fP6+hQ4eqfPny8vb21u+//65u3bopJSXljuK4nVzsn/lnVnBEfnjjc3nyyScVFRWVZp9/X2Wf3tXc6cUDAACQW82fP1/dunVTmzZt9OKLL6po0aJyd3fXmDFj7K46Ts+NXGrw4MGKjIxMs8+dXoDy008/yd3d3Sq8p6SkqHLlypo4cWKa/cPCwm5p/AceeEDh4eH69NNP9cQTT+jLL7/U33//rY4dO1p9bqznvHnzFBwcnGqMfPnsy1geHh5p/uZZqFAhtWzZ0ip0L168WImJiXryySdvKWYAzoVCN4A85caVO6dPn5YklS5dWsYYlSxZUmXLls2y5TZv3lzu7u6aP3++nnrqqZv2LVKkiAoWLKiDBw+majtw4IDc3NyspLFEiRLp9rvR/k9t2rTRww8/rG7dusnX11fTp0+/3VVKpUSJEjpy5Eiq+WnNAwAAcAaZzRX37dunQ4cOac6cOeratas1f+XKlZlaTlZcQVK2bFmVK1dOX3zxhd5+++0MT+AsUaKE9u7dq5SUFLsfBtPLKzNy4xE8P/30U7p9ihQpIl9fXyUnJ6tJkya3ND4AAICzW7x4sUqVKqUlS5bY5YMjRoyw65derngj38qfP3+W5FInTpzQunXrFBERYV3RXbp0ae3Zs0eNGzd2WA7boUMHvf3224qPj9cnn3yi8PBwPfDAA1Z76dKlJUlFixa94/Xs2rWrWrdurW3btmnBggWqVq3aLd31EoDz4RndAJzSmjVr0rya5JtvvpEk67bgbdu2lbu7u0aOHJmqvzFG586dc0g8YWFh6tmzp7777jtNnTo1VXtKSoomTJig3377Te7u7nr44Yf1xRdf6NixY1afM2fOaOHChapbt651S54WLVpo69at2rRpk9Xv0qVLmjlzpsLDw1WxYsVUy+rataumTJmiGTNmaOjQoQ5ZP0mKjIzUpk2btHv3bmve+fPntWDBAoctAwAAIDtlNle8cTXxP/sYY/T2229najne3t6Ki4tzTND/MHLkSJ07d07PPPOMrl27lqr9u+++01dffSXpel4ZGxurTz75xGq/du2apk6dKh8fn1t+bmGRIkVUr149ffTRRzpx4oRd243Pyd3dXe3atdNnn32WZkH8jz/+uKVlAgAAOJO0csgtW7bY/c4nSQULFpSkVPli0aJF1aBBA7333nvWRT3/dCe51Pnz59W5c2clJyfr5ZdftuZ36NBBv//+u95///1U7/n777916dKlW15Wx44dlZiYqDlz5mjFihXq0KGDXXtkZKT8/Pz0xhtv2N3e/YZbWc/mzZvrrrvu0rhx47Ru3Tqu5gZcAFd0A3BKffv21eXLl/XYY4+pfPnyunr1qn788UfrrMCnn35a0vUzAl9//XVFR0fr2LFjatOmjXx9fRUTE6PPP/9cvXr10uDBgx0S04QJE3T06FH169dPS5YsUcuWLVWoUCGdOHFCixYt0oEDB9SpUydJ0uuvv66VK1eqbt26eu6555QvXz699957SkxM1JtvvmmN+dJLL+l///ufmjdvrn79+ikwMFBz5sxRTEyMPvvss3RvTd6nTx/Fx8fr5Zdflr+/v/773//e8foNGTJE8+fPV9OmTdW3b195e3vrgw8+UPHixXX+/HmedQMAAJxOZnPF8uXLq3Tp0ho8eLB+//13+fn56bPPPsv086Fr1KihVatWaeLEiQoNDVXJkiVVu3btO46/Y8eO2rdvn0aPHq1du3apc+fOKlGihM6dO6cVK1Zo9erVWrhwoSSpV69eeu+999StWzft2LFD4eHhWrx4sTZu3KjJkydbV/HciilTpqhu3bqqXr26evXqpZIlS+rYsWP6+uuvrZMjx44dqzVr1qh27drq2bOnKlasqPPnz2vnzp1atWqVzp8/f8efAwAAQE756KOPtGLFilTzX3jhBbVs2VJLlizRY489pkceeUQxMTGaMWOGKlasaD0bW7r+6JaKFSvqk08+UdmyZRUYGKh7771X9957r6ZNm6a6deuqcuXK6tmzp0qVKqUzZ85o06ZN+u2337Rnz54MYzx06JDmz58vY4zi4+O1Z88eLVq0SAkJCZo4caKaNWtm9X3qqaf06aef6j//+Y/WrFmjBx98UMnJyTpw4IA+/fRTffvtt9YdNTOrevXqKlOmjF5++WUlJiba3bZcuv4M7unTp+upp55S9erV1alTJxUpUkQnTpzQ119/rQcffFDvvPNOppaVP39+derUSe+8847c3d3VuXPnW4oVgPOh0A3AKY0fP16LFi3SN998o5kzZ+rq1asqXry4nnvuOb3yyisKCAiw+r700ksqW7asJk2apJEjR0q6fgX2ww8/rEcffdRhMRUsWFDLly/X7NmzNWfOHL322mu6fPmyQkND1ahRIy1YsEDFihWTJFWqVEkbNmxQdHS0xowZo5SUFNWuXVvz58+3+9EzKChIP/74o4YOHaqpU6fqypUrqlKlir788ks98sgjN43nv//9ry5cuGAVu59//vk7Wr+wsDCtWbNG/fr10xtvvKEiRYro+eefl7e3t/r16ydPT887Gh8AACAnZCZXzJ8/v7788kv169dPY8aMkaenpx577DH16dNHVatWzXAZEydOVK9evfTKK6/o77//VlRUlEMK3dL1EygbNWqkKVOmaPr06Tp//rwKFSqkBx54QF988YW1Dl5eXlq7dq1eeuklzZkzR/Hx8SpXrpxmzZqlbt263dayq1atqs2bN2vYsGGaPn26rly5ohIlSthdpRMUFKStW7dq1KhRWrJkid59910VLlxYlSpV0rhx4xzxEQAAAOSY9B4b2K1bN3Xr1k2xsbF677339O2336pixYqaP3++Fi1apLVr19r1/+CDD9S3b18NGDBAV69e1YgRI3TvvfeqYsWK2r59u0aOHKnZs2fr3LlzKlq0qKpVq6bhw4dnKsaVK1dq5cqVcnNzk5+fn0qWLKmoqCj16tUr1d0i3dzctHTpUk2aNElz587V559/roIFC6pUqVJ64YUXbvvRkB07dtTo0aNVpkwZVa9ePVX7E088odDQUI0dO1ZvvfWWEhMTVaxYMT300EPWBU2Z1bVrV73zzjtq3LixQkJCbiteAM7DZtK69y8AAJnUv39/vffee0pISLBuyQQAAAAAAAAA2W3Pnj267777NHfuXD311FM5HQ6ALMYzugEAmfb333/bTZ87d07z5s1T3bp1KXIDAAAAAAAAyFHvv/++fHx81LZt25wOBUA24NblAIBMi4iIUIMGDVShQgWdOXNGH374oeLj4zVs2LCcDg0AAAAAAACAi/ryyy/1yy+/aObMmerTp4+8vb1zOiQA2YBblwMAMu2///2vFi9erN9++002m03Vq1fXiBEj1KRJk5wODQAAAAAAAICLCg8P15kzZxQZGal58+bJ19c3p0MCkA0odAMAAAAAAAAAAAAAnArP6AYAAAAAAAAAAAAAOBWe0S0pJSVFp06dkq+vr2w2W06HAwAAkKWMMbp48aJCQ0Pl5sZ5j45CTgkAAFwNeWXWIK8EAACu5E5ySgrdkk6dOqWwsLCcDgMAACBbnTx5UnfffXdOh5FnkFMCAABXRV7pWOSVAADAFd1OTkmhW5Kvr6+k6x+gn59fDkcDAACQteLj4xUWFmblQHAMckoAAOBqyCuzBnklAABwJXeSU1LolqxbAPn5+ZE8AgAAl8FtEB2LnBIAALgq8krHIq8EAACu6HZySh6eAwAAAAAAAAAAAABwKhS6AQAAAAAAAAAAAABOhUI3AAAAAAAAAAAAAMCpUOgGAAAAAAAAAAAAADgVCt0AAAAAAAAAAAAAAKdCoRsAAAAAAAAAAAAA4FQodAMAAAAAAAAAAAAAnAqFbgAAAAAAAAAAAACAU6HQDQAAAKe3fv16tWrVSqGhobLZbFq6dKnVlpSUpKFDh6py5cry9vZWaGiounbtqlOnTtmNcf78eXXp0kV+fn4KCAhQjx49lJCQkM1rAgAAAAAAACAz8uV0AAAA/NOuXhVzOgSXU23mLzkdAnDHLl26pKpVq6p79+5q27atXdvly5e1c+dODRs2TFWrVtVff/2lF154QY8++qi2b99u9evSpYtOnz6tlStXKikpSU8//bR69eqlhQsXZvfqAMhBp95un9MhuJTQFxbldAgAAOQq51dOzOkQXEpg04E5HQIA4A5Q6AYAAIDTa968uZo3b55mm7+/v1auXGk375133lGtWrV04sQJFS9eXPv379eKFSu0bds21axZU5I0depUtWjRQuPHj1doaGiqcRMTE5WYmGhNx8fHO3CNAAAAAAAAANwMty4HAACAy7lw4YJsNpsCAgIkSZs2bVJAQIBV5JakJk2ayM3NTVu2bElzjDFjxsjf3996hYWFZUfoAAAAAAAAAEShGwAAAC7mypUrGjp0qDp37iw/Pz9JUmxsrIoWLWrXL1++fAoMDFRsbGya40RHR+vChQvW6+TJk1keOwAAAAAAAIDruHU5AAAAXEZSUpI6dOggY4ymT59+R2N5eHjIw8PDQZEBAID0zGma+hEiyDpRK0/ldAgAAABAplDoBgAAgEu4UeQ+fvy4vv/+e+tqbkkKDg7W2bNn7fpfu3ZN58+fV3BwcHaHCgAAAAAAACAD3LocAAAAed6NIvfhw4e1atUqFS5c2K49IiJCcXFx2rFjhzXv+++/V0pKimrXrp3d4QIAAAAAAADIAFd0AwAAwOklJCToyJEj1nRMTIx2796twMBAhYSE6PHHH9fOnTv11VdfKTk52XrudmBgoAoUKKAKFSqoWbNm6tmzp2bMmKGkpCT16dNHnTp1Umgot0sFAAAAAAAAchsK3QAAAHB627dvV8OGDa3pgQMHSpKioqL06quvatmyZZKk++67z+59a9asUYMGDSRJCxYsUJ8+fdS4cWO5ubmpXbt2mjJlSrbEDwAAAAAAAODWUOgGAACA02vQoIGMMem236zthsDAQC1cuNCRYQEAAAAAAADIIjyjGwAAAAAAAAAAAADgVCh0AwAAAAAAAAAAAACcCoVuAAAAAAAAAAAAAIBTodANAAAAAAAAAAAAAHAqFLoBAAAAAAAAAAAAAE6FQjcAAAAAAAAAl7d+/Xq1atVKoaGhstlsWrp0qV17t27dZLPZ7F7NmjWz63P+/Hl16dJFfn5+CggIUI8ePZSQkJCNawEAAOA6KHQDAAAAAAAAcHmXLl1S1apVNW3atHT7NGvWTKdPn7Ze//vf/+zau3Tpop9//lkrV67UV199pfXr16tXr15ZHToAAIBLypfTAQAAAAAAAABATmvevLmaN29+0z4eHh4KDg5Os23//v1asWKFtm3bppo1a0qSpk6dqhYtWmj8+PEKDQ11eMwAAACujCu6AQAAAAAAACAT1q5dq6JFi6pcuXLq3bu3zp07Z7Vt2rRJAQEBVpFbkpo0aSI3Nzdt2bIl3TETExMVHx9v9wIAAEDGcrTQzXNvAAAAAAAAADiDZs2aae7cuVq9erXGjRundevWqXnz5kpOTpYkxcbGqmjRonbvyZcvnwIDAxUbG5vuuGPGjJG/v7/1CgsLy9L1AAAAyCty9NblN5570717d7Vt2zbNPs2aNdOsWbOsaQ8PD7v2Ll266PTp01q5cqWSkpL09NNPq1evXlq4cGGWxg4AAAAAAADAdXTq1Mn6d+XKlVWlShWVLl1aa9euVePGjW973OjoaA0cONCajo+Pp9gNAACQCTla6Oa5NwAAAAAAAACcUalSpXTXXXfpyJEjaty4sYKDg3X27Fm7PteuXdP58+fT/X1Tuv77578v7gEAAEDGcv0zunnuDQAAAAAAAIDc5rffftO5c+cUEhIiSYqIiFBcXJx27Nhh9fn++++VkpKi2rVr51SYAAAAeVauLnTz3BsAAAAAAAAA2SEhIUG7d+/W7t27JUkxMTHavXu3Tpw4oYSEBL344ovavHmzjh07ptWrV6t169YqU6aMIiMjJUkVKlRQs2bN1LNnT23dulUbN25Unz591KlTJ+48CQAAkAVy9NblGeG5NwAAAAAAAACyw/bt29WwYUNr+sbvh1FRUZo+fbr27t2rOXPmKC4uTqGhoXr44Yf12muv2d12fMGCBerTp48aN24sNzc3tWvXTlOmTMn2dQEAAHAFubrQ/W889wYAAAAAAABAVmjQoIGMMem2f/vttxmOERgYqIULFzoyLAAAAKQjV9+6/N947g0AAAAAAAAAAAAAIEev6E5ISNCRI0es6RvPvQkMDFRgYKBGjhypdu3aKTg4WEePHtWQIUPSfe7NjBkzlJSUxHNvAAAAAAAAAAAAACCPy9Erurdv365q1aqpWrVqkq4/96ZatWoaPny43N3dtXfvXj366KMqW7asevTooRo1amjDhg2pnntTvnx5NW7cWC1atFDdunU1c+bMnFolAAAAAAAAAAAAAEAWy9ErunnuDQAAAAAAAAAAAADgVjnVM7oBAAAAAAAAAAAAAKDQDQAAAAAAAAAAAABwKhS6AQAAAAAAAAAAAABOhUI3AAAAAAAAAAAAAMCpUOgGAAAAAAAAAAAAADgVCt0AAAAAAAAAAAAAAKdCoRsAAAAAAAAAAAAA4FTy5XQAAOAIp95un9MhuJTQFxbldAgAAAAAAAAAAMCFcUU3AAAAnN769evVqlUrhYaGymazaenSpXbtxhgNHz5cISEh8vLyUpMmTXT48GG7PufPn1eXLl3k5+engIAA9ejRQwkJCdm4FgAAAAAAAAAyi0I3AAAAnN6lS5dUtWpVTZs2Lc32N998U1OmTNGMGTO0ZcsWeXt7KzIyUleuXLH6dOnSRT///LNWrlypr776SuvXr1evXr2yaxUAAAAAAAAA3AJuXQ4AAACn17x5czVv3jzNNmOMJk+erFdeeUWtW7eWJM2dO1dBQUFaunSpOnXqpP3792vFihXatm2batasKUmaOnWqWrRoofHjxys0NDTVuImJiUpMTLSm4+Pjs2DNAAAAAAAAAKSFK7oBAACQp8XExCg2NlZNmjSx5vn7+6t27dratGmTJGnTpk0KCAiwityS1KRJE7m5uWnLli1pjjtmzBj5+/tbr7CwsKxdEQAAAAAAAAAWCt0AAADI02JjYyVJQUFBdvODgoKsttjYWBUtWtSuPV++fAoMDLT6/Ft0dLQuXLhgvU6ePJkF0QMAAAAAAABIC7cuBwAAAG6Dh4eHPDw8cjoMAAAAAAAAwCVxRTcAAADytODgYEnSmTNn7OafOXPGagsODtbZs2ft2q9du6bz589bfQAAAAAAAADkHhS6AQAAkKeVLFlSwcHBWr16tTUvPj5eW7ZsUUREhCQpIiJCcXFx2rFjh9Xn+++/V0pKimrXrp3tMQMAAAAAAAC4OW5dDgAAAKeXkJCgI0eOWNMxMTHavXu3AgMDVbx4cfXv31+vv/667rnnHpUsWVLDhg1TaGio2rRpI0mqUKGCmjVrpp49e2rGjBlKSkpSnz591KlTJ4WGhubQWgEAAAAAAABID4VuAAAAOL3t27erYcOG1vTAgQMlSVFRUZo9e7aGDBmiS5cuqVevXoqLi1PdunW1YsUKeXp6Wu9ZsGCB+vTpo8aNG8vNzU3t2rXTlClTsn1dAAAAAAAAAGSMQjcAAACcXoMGDWSMSbfdZrNp1KhRGjVqVLp9AgMDtXDhwqwIDwAAAAAAAICD8YxuAAAAAAAAAAAAAIBTodANAAAAAAAAAAAAAHAqFLoBAAAAAAAAAAAAAE6FQjcAAAAAAAAAl7d+/Xq1atVKoaGhstlsWrp0qdWWlJSkoUOHqnLlyvL29lZoaKi6du2qU6dO2Y0RHh4um81m9xo7dmw2rwkAAIBroNANAAAAAAAAwOVdunRJVatW1bRp01K1Xb58WTt37tSwYcO0c+dOLVmyRAcPHtSjjz6aqu+oUaN0+vRp69W3b9/sCB8AAMDl5MvpAAAAAAAAAAAgpzVv3lzNmzdPs83f318rV660m/fOO++oVq1aOnHihIoXL27N9/X1VXBwcKaXm5iYqMTERGs6Pj7+FiMHAABwTTl6RTe3AwIAAAAAAADgjC5cuCCbzaaAgAC7+WPHjlXhwoVVrVo1vfXWW7p27dpNxxkzZoz8/f2tV1hYWBZGDQAAkHfkaKGb2wEBAAAAAAAAcDZXrlzR0KFD1blzZ/n5+Vnz+/Xrp48//lhr1qzRs88+qzfeeENDhgy56VjR0dG6cOGC9Tp58mRWhw8AAJAn5Oity7kdEAAAAAAAAABnkpSUpA4dOsgYo+nTp9u1DRw40Pp3lSpVVKBAAT377LMaM2aMPDw80hzPw8Mj3TYAAACkL0ev6L5V3A4IAAAAAAAAQE65UeQ+fvy4Vq5caXc1d1pq166ta9eu6dixY9kTIAAAgAvJ0Su6b8XNbgdUvXp1BQYG6scff1R0dLROnz6tiRMnpjtWdHS03dmV8fHxFLsBAAAAAAAApOtGkfvw4cNas2aNChcunOF7du/eLTc3NxUtWjQbIgQAAHAtTlHo5nZAAAAAAAAAALJSQkKCjhw5Yk3HxMRo9+7dCgwMVEhIiB5//HHt3LlTX331lZKTkxUbGytJCgwMVIECBbRp0yZt2bJFDRs2lK+vrzZt2qQBAwboySefVKFChXJqtQAAAPKsXF/o/uftgL7//vtbuh1QuXLlsilKAAAAAAAAAM5s+/btatiwoTV94wKbqKgovfrqq1q2bJkk6b777rN735o1a9SgQQN5eHjo448/1quvvqrExESVLFlSAwYMsLtQBwAAAI6Tqwvd3A4IAAAAAAAAQHZo0KCBjDHptt+sTZKqV6+uzZs3OzosAAAApCNHC93cDggAAAAAAAAAAAAAcKtytNDN7YAAAAAAAAAAAAAAALcqRwvd3A4IAAAAAAAAAAAAAHCr3HI6AAAAAAAAAAAAAAAAbgWFbgAAAAAAAAAAAACAU6HQDQAAAAAAAAAAAABwKhS6AQAAAAAAAAAAAABOhUI3AAAAAAAAAAAAAMCpUOgGAAAAAAAAAAAAADgVCt0AAAAAAAAAAAAAAKdCoRsAAAAAAAAAAAAA4FQodAMAAAAAAAAAAAAAnAqFbgAAAAAAAAAAAACAU6HQDQAAAAAAAAAAAABwKhS6AQAAkOclJydr2LBhKlmypLy8vFS6dGm99tprMsZYfYwxGj58uEJCQuTl5aUmTZro8OHDORg1AAAAAAAAgPRQ6AYAAECeN27cOE2fPl3vvPOO9u/fr3HjxunNN9/U1KlTrT5vvvmmpkyZohkzZmjLli3y9vZWZGSkrly5koORAwAAAAAAAEhLvpwOAAAAAMhqP/74o1q3bq1HHnlEkhQeHq7//e9/2rp1q6TrV3NPnjxZr7zyilq3bi1Jmjt3roKCgrR06VJ16tQp1ZiJiYlKTEy0puPj47NhTQAAAAAAAABIXNENAAAAF1CnTh2tXr1ahw4dkiTt2bNHP/zwg5o3by5JiomJUWxsrJo0aWK9x9/fX7Vr19amTZvSHHPMmDHy9/e3XmFhYVm/IgAAAAAAAAAkcUU3AAAAXMBLL72k+Ph4lS9fXu7u7kpOTtbo0aPVpUsXSVJsbKwkKSgoyO59QUFBVtu/RUdHa+DAgdZ0fHw8xW4AAAAAAAAgm1DoBgAAQJ736aefasGCBVq4cKEqVaqk3bt3q3///goNDVVUVNRtjenh4SEPDw8HRwoAAAAAAAAgMyh0AwAAIM978cUX9dJLL1nP2q5cubKOHz+uMWPGKCoqSsHBwZKkM2fOKCQkxHrfmTNndN999+VEyAAAAAAAAABugmd0AwAAIM+7fPmy3NzsU193d3elpKRIkkqWLKng4GCtXr3aao+Pj9eWLVsUERGRrbECAAAAAAAAyBhXdAMAACDPa9WqlUaPHq3ixYurUqVK2rVrlyZOnKju3btLkmw2m/r376/XX39d99xzj0qWLKlhw4YpNDRUbdq0ydngAQAAAAAAAKRCoRsAAAB53tSpUzVs2DA999xzOnv2rEJDQ/Xss89q+PDhVp8hQ4bo0qVL6tWrl+Li4lS3bl2tWLFCnp6eORg5AAAAAAAAgLRQ6AYAAECe5+vrq8mTJ2vy5Mnp9rHZbBo1apRGjRqVfYEBAAAAAAAAuC08oxsAAAAAAACAy1u/fr1atWql0NBQ2Ww2LV261K7dGKPhw4crJCREXl5eatKkiQ4fPmzX5/z58+rSpYv8/PwUEBCgHj16KCEhIRvXAgAAwHVQ6AYAAAAAAADg8i5duqSqVatq2rRpaba/+eabmjJlimbMmKEtW7bI29tbkZGRunLlitWnS5cu+vnnn7Vy5Up99dVXWr9+vXr16pVdqwAAAOBScrTQzVmSAAAAAAAAAHKD5s2b6/XXX9djjz2Wqs0Yo8mTJ+uVV15R69atVaVKFc2dO1enTp2yftPcv3+/VqxYoQ8++EC1a9dW3bp1NXXqVH388cc6depUustNTExUfHy83QsAAAAZy9FCN2dJAgAAAAAAAMjtYmJiFBsbqyZNmljz/P39Vbt2bW3atEmStGnTJgUEBKhmzZpWnyZNmsjNzU1btmxJd+wxY8bI39/feoWFhWXdigAAAOQh+XJy4c2bN1fz5s3TbPv3WZKSNHfuXAUFBWnp0qXq1KmTdZbktm3brARy6tSpatGihcaPH6/Q0NBsWxcAAAAAAAAAeVNsbKwkKSgoyG5+UFCQ1RYbG6uiRYvatefLl0+BgYFWn7RER0dr4MCB1nR8fDzFbgAAgEzItc/ozsqzJLkdEAAAAAAAAIDcwMPDQ35+fnYvAAAAZCzXFrqz8ixJbgcEAAAAAAAAILOCg4MlSWfOnLGbf+bMGastODhYZ8+etWu/du2azp8/b/UBAACA4+TaQndWio6O1oULF6zXyZMnczokAAAAAAAAALlUyZIlFRwcrNWrV1vz4uPjtWXLFkVEREiSIiIiFBcXpx07dlh9vv/+e6WkpKh27drZHjMAAEBed1uF7kaNGikuLi7V/Pj4eDVq1OhOY5KUtWdJcjsgAACAnJcdOSUAAADyPkfllQkJCdq9e7d2794t6fqjFXfv3q0TJ07IZrOpf//+ev3117Vs2TLt27dPXbt2VWhoqNq0aSNJqlChgpo1a6aePXtq69at2rhxo/r06aNOnTopNDTUAWsKAACAf7qtQvfatWt19erVVPOvXLmiDRs23HFQEmdJAgAA5HXZkVMCAAAg73NUXrl9+3ZVq1ZN1apVkyQNHDhQ1apV0/DhwyVJQ4YMUd++fdWrVy/df//9SkhI0IoVK+Tp6WmNsWDBApUvX16NGzdWixYtVLduXc2cOfMO1xAAAABpyXcrnffu3Wv9+5dffrF7DnZycrJWrFihYsWKZXq8hIQEHTlyxJq+cZZkYGCgihcvbp0lec8996hkyZIaNmxYumdJzpgxQ0lJSZwlCQAAkMs5OqcEAACAa3J0XtmgQQMZY9Jtt9lsGjVqlEaNGpVun8DAQC1cuDDTywQAAMDtu6VC93333SebzSabzZbmbX+8vLw0derUTI+3fft2NWzY0JoeOHCgJCkqKkqzZ8/WkCFDdOnSJfXq1UtxcXGqW7dummdJ9unTR40bN5abm5vatWunKVOm3MpqAQAAIBs5OqcEAACAayKvBAAAcG23VOiOiYmRMUalSpXS1q1bVaRIEautQIECKlq0qNzd3TM9HmdJAgAAuB5H55QAAABwTeSVAAAAru2WCt0lSpSQJKWkpGRJMAAAAMj7yCkBAADgCOSVAAAAru2WCt3/dPjwYa1Zs0Znz55NlUwOHz78jgMDAABA3kdOCQAAAEcgrwQAAHA9t1Xofv/999W7d2/dddddCg4Ols1ms9psNhvJIwAAADJETin9fWxLTofgUrzCa+d0CAAAIAuQVwIAALim2yp0v/766xo9erSGDh3q6HgAAADgIsgpAQAA4AjklQAAAK7ptgrdf/31l9q3b+/oWAAAAOBCyCmRl5xfOTGnQ3ApgU0H5nQIAIBchLwSAADANbndzpvat2+v7777ztGxAAAAwIWQUwIAAMARyCsBAABc021d0V2mTBkNGzZMmzdvVuXKlZU/f3679n79+jkkOAAAAORd5JQAAABwBPJKAAAA13Rbhe6ZM2fKx8dH69at07p16+zabDYbySMAAAAyRE4JAAAARyCvBAAAcE23VeiOiYlxdBwAAABwMeSUAAAAcATySgAAANd0W4VuAAAAAAAAAEDO+/vYlpwOweV4hdfO6RAAAIBus9DdvXv3m7Z/9NFHtxUMAAAAXAc5JQAAAByBvBIAAMA13Vah+6+//rKbTkpK0k8//aS4uDg1atTIIYEBAAAgbyOnBAAAgCOQVwIAALim2yp0f/7556nmpaSkqHfv3ipduvQdBwUAAIC8j5wSAAAAjkBeCQAA4JrcHDaQm5sGDhyoSZMmOWpIAAAAuBhySgAAADgCeSUAAEDe57BCtyQdPXpU165dc+SQAAAAcDHklAAAAHAE8koAAIC87bZuXT5w4EC7aWOMTp8+ra+//lpRUVEOCQwAAAB5W3bnlL///ruGDh2q5cuX6/LlyypTpoxmzZqlmjVrWssfMWKE3n//fcXFxenBBx/U9OnTdc899zg8FgAAADgOv1UCAAC4ptsqdO/atctu2s3NTUWKFNGECRPUvXt3hwQGAACAvC07c8q//vpLDz74oBo2bKjly5erSJEiOnz4sAoVKmT1efPNNzVlyhTNmTNHJUuW1LBhwxQZGalffvlFnp6eDo0HAAAAjsNvlQAAAK7ptgrda9ascXQcAAAAcDHZmVOOGzdOYWFhmjVrljWvZMmS1r+NMZo8ebJeeeUVtW7dWpI0d+5cBQUFaenSperUqVOqMRMTE5WYmGhNx8fHZ+EaAAAAID38VgkAAOCa7ugZ3X/88Yd++OEH/fDDD/rjjz8cFRMAAABcSHbklMuWLVPNmjXVvn17FS1aVNWqVdP7779vtcfExCg2NlZNmjSx5vn7+6t27dratGlTmmOOGTNG/v7+1issLCxLYgcAAEDm8FslAACAa7mtQvelS5fUvXt3hYSEqF69eqpXr55CQ0PVo0cPXb582dExAgAAIA/Kzpzy119/tZ63/e2336p3797q16+f5syZI0mKjY2VJAUFBdm9LygoyGr7t+joaF24cMF6nTx50qExAwAAIHP4rRIAAMA13Vahe+DAgVq3bp2+/PJLxcXFKS4uTl988YXWrVunQYMGOTpGAAAA5EHZmVOmpKSoevXqeuONN1StWjX16tVLPXv21IwZM257TA8PD/n5+dm9AAAAkP34rRIAAMA13dYzuj/77DMtXrxYDRo0sOa1aNFCXl5e6tChg6ZPn+6o+AAAAJBHZWdOGRISoooVK9rNq1Chgj777DNJUnBwsCTpzJkzCgkJsfqcOXNG9913n8PiAAAAgOPxWyUAAIBruq0rui9fvpzqto6SVLRoUW4HBAAAgEzJzpzywQcf1MGDB+3mHTp0SCVKlJAklSxZUsHBwVq9erXVHh8fry1btigiIsKhsQAAAMCx+K0SAADANd1WoTsiIkIjRozQlStXrHl///23Ro4cyQ+BAAAAyJTszCkHDBigzZs364033tCRI0e0cOFCzZw5U88//7wkyWazqX///nr99de1bNky7du3T127dlVoaKjatGnj0FgAAADgWNmZV4aHh8tms6V63cgrGzRokKrtP//5j0NjAAAAwHW3devyyZMnq1mzZrr77rtVtWpVSdKePXvk4eGh7777zqEBAgAAIG/Kzpzy/vvv1+eff67o6GiNGjVKJUuW1OTJk9WlSxerz5AhQ3Tp0iX16tVLcXFxqlu3rlasWCFPT0+HxgIAAADHys68ctu2bUpOTramf/rpJzVt2lTt27e35vXs2VOjRo2ypgsWLOjQGAAAAHDdbRW6K1eurMOHD2vBggU6cOCAJKlz587q0qWLvLy8HBpgeHi4jh8/nmr+c889p2nTpqlBgwZat26dXduzzz6rGTNmODQOAAAAOFZ25pSS1LJlS7Vs2TLddpvNplGjRtn9KAkAAIDcLzvzyiJFithNjx07VqVLl1b9+vWteQULFlRwcLBDlwsAAIDUbqvQPWbMGAUFBalnz5528z/66CP98ccfGjp0qEOCkzhLEgAAIK/KzpwSAAAAeVdO5ZVXr17V/PnzNXDgQNlsNmv+ggULNH/+fAUHB6tVq1YaNmzYTX+vTExMVGJiojUdHx+fJfECAADkNbf1jO733ntP5cuXTzW/UqVKDr+SukiRIgoODrZeX331VbpnSd54+fn53XTMxMRExcfH270AAACQvbIzpwQAAEDelVN55dKlSxUXF6du3bpZ85544gnNnz9fa9asUXR0tObNm6cnn3zypuOMGTNG/v7+1issLCzLYgYAAMhLbuuK7tjYWIWEhKSaX6RIEZ0+ffqOg0qPo86SHDNmjEaOHJllcQIAACBjOZVTAgAAIG/Jqbzyww8/VPPmzRUaGmrN69Wrl/XvypUrKyQkRI0bN9bRo0dVunTpNMeJjo7WwIEDren4+HiK3QCQi+zqVTGnQ3Ap1Wb+ktMhwInc1hXdYWFh2rhxY6r5GzdutEvsHM1RZ0lGR0frwoUL1uvkyZNZFjMAAADSllM5JQAAAPKWnMgrjx8/rlWrVumZZ565ab/atWtLko4cOZJuHw8PD/n5+dm9AAAAkLHbuqK7Z8+e6t+/v5KSktSoUSNJ0urVqzVkyBANGjTIoQH+k6POkvTw8JCHh0eWxQkAAICM5VROCQAAgLwlJ/LKWbNmqWjRonrkkUdu2m/37t2SlOYV5wAAALgzt1XofvHFF3Xu3Dk999xzunr1qiTJ09NTQ4cOVXR0tEMDvOHGWZJLliy5ab9/niWZXqEbAAAAOS8nckoAAADkPdmdV6akpGjWrFmKiopSvnz/9/Pq0aNHtXDhQrVo0UKFCxfW3r17NWDAANWrV09VqlRxeBwAAACu7rYK3TabTePGjdOwYcO0f/9+eXl56Z577snSq6Q5SxIAACBvyYmcEgAAAHlPdueVq1at0okTJ9S9e3e7+QUKFNCqVas0efJkXbp0SWFhYWrXrp1eeeWVLIkDAADA1d1WofsGHx8f3X///Y6KJV2cJQkAAJB3ZVdOCQAAgLwtu/LKhx9+WMaYVPPDwsK0bt26LF8+AAAArrujQnd24SxJAAAAAAAAAAAAAMANTlHo5ixJAAAAAAAAAAAAAMANbjkdAAAAAAAAAAAAAAAAt4JCNwAAAAAAAAAAAADAqVDoBgAAAAAAAAAAAAA4FQrdAAAAAAAAAAAAAACnQqEbAAAAAAAAAAAAAOBUKHQDAAAAAAAAAAAAAJwKhW4AAAAAAAAAAAAAgFOh0A0AAAAAAAAAAAAAcCoUugEAAAAAAAAAAAAAToVCNwAAAAAAAAAAAADAqVDoBgAAAAAAAAAAAAA4FQrdAAAAAAAAAAAAAACnQqEbAAAAAAAAAAAAAOBUKHQDAAAAAAAAAAAAAJwKhW4AAAAAAAAAAAAAgFOh0A0AAAAAAAAAAAAAcCoUugEAAAAAAAAAAAAAToVCNwAAAAAAAAAAAADAqVDoBgAAgMsZO3asbDab+vfvb827cuWKnn/+eRUuXFg+Pj5q166dzpw5k3NBAgAAAAAAAEgXhW4AAAC4lG3btum9995TlSpV7OYPGDBAX375pRYtWqR169bp1KlTatu2bQ5FCQAAAAAAAOBmKHQDAADAZSQkJKhLly56//33VahQIWv+hQsX9OGHH2rixIlq1KiRatSooVmzZunHH3/U5s2b0xwrMTFR8fHxdi8AAAAAAAAA2YNCNwAAAFzG888/r0ceeURNmjSxm79jxw4lJSXZzS9fvryKFy+uTZs2pTnWmDFj5O/vb73CwsKyNHYAAAAAAAAA/4dCNwAAAFzCxx9/rJ07d2rMmDGp2mJjY1WgQAEFBATYzQ8KClJsbGya40VHR+vChQvW6+TJk1kRNgAAAAAAAIA0UOgGAABAnnfy5Em98MILWrBggTw9PR0ypoeHh/z8/OxeAAAAyNteffVV2Ww2u1f58uWt9itXruj5559X4cKF5ePjo3bt2unMmTM5GDEAAEDelasL3SSOAAAAcIQdO3bo7Nmzql69uvLly6d8+fJp3bp1mjJlivLly6egoCBdvXpVcXFxdu87c+aMgoODcyZoAAAA5EqVKlXS6dOnrdcPP/xgtQ0YMEBffvmlFi1apHXr1unUqVNq27ZtDkYLAACQd+XL6QAyUqlSJa1atcqazpfv/0IeMGCAvv76ay1atEj+/v7q06eP2rZtq40bN+ZEqAAAAMilGjdurH379tnNe/rpp1W+fHkNHTpUYWFhyp8/v1avXq127dpJkg4ePKgTJ04oIiIiJ0IGAABALpUvX740T4a8cOGCPvzwQy1cuFCNGjWSJM2aNUsVKlTQ5s2b9cADD2R3qAAAAHlari90kzgCAADgTvn6+uree++1m+ft7a3ChQtb83v06KGBAwcqMDBQfn5+6tu3ryIiIsgrAQAAYOfw4cMKDQ2Vp6enIiIiNGbMGBUvXlw7duxQUlKSmjRpYvUtX768ihcvrk2bNqWbVyYmJioxMdGajo+Pz/J1AAAAyAty9a3Lpf9LHEuVKqUuXbroxIkTkpRh4ngziYmJio+Pt3sBAADAtU2aNEktW7ZUu3btVK9ePQUHB2vJkiU5HRYAAABykdq1a2v27NlasWKFpk+frpiYGD300EO6ePGiYmNjVaBAAQUEBNi9JygoSLGxsemOOWbMGPn7+1uvsLCwLF4LAACAvCFXX9F9I3EsV66cTp8+rZEjR+qhhx7STz/9dNuJo3Q9eRw5cmQWRg4AAIDcbu3atXbTnp6emjZtmqZNm5YzAQEAACDXa968ufXvKlWqqHbt2ipRooQ+/fRTeXl53daY0dHRGjhwoDUdHx9PsRsAACATcnWhOysSR4nkEQAAAAAAAMCdCwgIUNmyZXXkyBE1bdpUV69eVVxcnN3FOWfOnEnz0Yw3eHh4yMPDIxuiBQAAyFty/a3L/+mfiWNwcLCVOP5TRomjdD159PPzs3sBAAAAAAAAwK1ISEjQ0aNHFRISoho1aih//vxavXq11X7w4EGdOHFCERERORglAABA3pSrr+j+txuJ41NPPWWXOLZr105S9iWOfx/bkqXjw55XeO2cDgEAAAAAAADQ4MGD1apVK5UoUUKnTp3SiBEj5O7urs6dO8vf3189evTQwIEDFRgYKD8/P/Xt21cRERF64IEHcjp0AACAPCdXF7pJHAEAAAAAAADkFr/99ps6d+6sc+fOqUiRIqpbt642b96sIkWKSJImTZokNzc3tWvXTomJiYqMjNS7776bw1EDAADkTbm60E3iCAAAAAAAACC3+Pjjj2/a7unpqWnTpmnatGnZFBEAAIDrytWFbhJHAAAAAAAAAAAAAMC/ueV0AAAAAAAAAAAAAAAA3AoK3QAAAAAAAAAAAAAAp0KhGwAAAAAAAAAAAADgVCh0AwAAAAAAAAAAAACcCoVuAAAAAAAAAAAAAIBTodANAAAAAAAAAAAAAHAqFLoBAAAAAAAAAAAAAE6FQjcAAAAAAAAAAAAAwKlQ6AYAAAAAAAAAAAAAOBUK3QAAAAAAAAAAAAAAp0KhGwAAAAAAAAAAAADgVCh0AwAAAAAAAAAAAACcCoVuAAAAAAAAAAAAAIBTodANAAAAAAAAAAAAAHAqFLoBAAAAAAAAAAAAAE6FQjcAAAAAAAAAAAAAwKnky+kAAAAAAAAAAAAAACArzWkamtMhuJSolaeyfBlc0Q0AAAAAAAAAAAAAcCoUugEAAAAAAAAAAAAAToVblwMAAAAAAAAAADjQqbfb53QILiX0hUU5HQKAHMAV3QAAAAAAAAAAAAAAp0KhGwAAAAAAAAAAAADgVCh0AwAAIM8bM2aM7r//fvn6+qpo0aJq06aNDh48aNfnypUrev7551W4cGH5+PioXbt2OnPmTA5FDAAAAAAAAOBmKHQDAAAgz1u3bp2ef/55bd68WStXrlRSUpIefvhhXbp0yeozYMAAffnll1q0aJHWrVunU6dOqW3btjkYNQAAAAAAAID0UOgGAABAnrdixQp169ZNlSpVUtWqVTV79mydOHFCO3bskCRduHBBH374oSZOnKhGjRqpRo0amjVrln788Udt3rw5zTETExMVHx9v9wIAAEDelpk7BTVo0EA2m83u9Z///CeHIgYAAMi7cnWhm8QRAAAAWeHChQuSpMDAQEnSjh07lJSUpCZNmlh9ypcvr+LFi2vTpk1pjjFmzBj5+/tbr7CwsKwPHAAAADkqM3cKkqSePXvq9OnT1uvNN9/MoYgBAADyrnw5HcDN3Egc77//fl27dk3//e9/9fDDD+uXX36Rt7e31a9nz54aNWqUNV2wYMGcCBcAAABOICUlRf3799eDDz6oe++9V5IUGxurAgUKKCAgwK5vUFCQYmNj0xwnOjpaAwcOtKbj4+MpdgMAAORxK1assJuePXu2ihYtqh07dqhevXrW/IIFCyo4ODi7wwMAAHApubrQTeIIAAAAR3v++ef1008/6YcffrijcTw8POTh4eGgqAAAAOCM/n2noBsWLFig+fPnKzg4WK1atdKwYcPSvTgnMTFRiYmJ1jSPxAEAAMicXH3r8n+7WeJ411136d5771V0dLQuX75803F4niIAAIBr6tOnj7766iutWbNGd999tzU/ODhYV69eVVxcnF3/M2fOcEIlAAAA0pTWnYIk6YknntD8+fO1Zs0aRUdHa968eXryySfTHYdH4gAAANyeXH1F9z/dLHEsUaKEQkNDtXfvXg0dOlQHDx7UkiVL0h1rzJgxGjlyZHaEDQAAgFzAGKO+ffvq888/19q1a1WyZEm79ho1aih//vxavXq12rVrJ0k6ePCgTpw4oYiIiJwIGQAAALlcencK6tWrl/XvypUrKyQkRI0bN9bRo0dVunTpVOPwSBwAAIDb4zSFbkcljhLJIwAAgKt5/vnntXDhQn3xxRfy9fW1nrvt7+8vLy8v+fv7q0ePHho4cKACAwPl5+envn37KiIiQg888EAORw8AAIDc5sadgtavX293p6C01K5dW5J05MiRNH+v5JE4AAAAt8cpCt2OTBwlkkcAAABXM336dElSgwYN7ObPmjVL3bp1kyRNmjRJbm5uateunRITExUZGal33303myMFAABAbpbRnYLSsnv3bklSSEhIFkcHAADgWnJ1oZvEEQAAAI5gjMmwj6enp6ZNm6Zp06ZlQ0QAAABwRhndKejo0aNauHChWrRoocKFC2vv3r0aMGCA6tWrpypVquRw9AAAAHlLri50kzgCAAAAAAAAyC0yulNQgQIFtGrVKk2ePFmXLl1SWFiY2rVrp1deeSUHogUAAMjbcnWhm8QRAAAAAAAAQG6R0Z2CwsLCtG7dumyKBgAAwLXl6kI3iSMAAAAAAAAAAAAA4N/ccjoAAAAAAAAAAAAAAABuRa6+ohvIaudXTszpEFxKYNOBOR0CAAAAAAAAAAAA8gCu6AYAAAAAAAAAAAAAOBWu6AYAAAAAAHnOrl4VczoEl1Jt5i85HQIAAAAAF8MV3QAAAAAAAAAAAAAAp0KhGwAAAAAAAAAAAADgVCh0AwAAAAAAAAAAAACcCs/oBgAAWWZO09CcDsGlRK08ldMhAAAAAAAAAEC24IpuAAAAAAAAAAAAAIBTodANAAAAAAAAAAAAAHAqFLoBAAAAAAAAAAAAAE6FQjcAAAAAAAAAAAAAwKlQ6AYAAAAAAAAAAAAAOBUK3QAAAAAAAAAAAAAAp0KhGwAAAAAAAAAAAADgVCh0AwAAAAAAAAAAAACcCoVuAAAAAAAAAAAAAIBTodANAAAAAAAAAAAAAHAqFLoBAAAAAAAAAAAAAE6FQjcAAAAAAAAAAAAAwKlQ6AYAAAAAAAAAAAAAOBUK3QAAAAAAAAAAAAAAp0KhGwAAAAAAAAAAAADgVCh0AwAAAAAAAAAAAACcCoVuAAAAAAAAAAAAAIBTyTOF7mnTpik8PFyenp6qXbu2tm7dmtMhAQAAwAmRVwIAAOBOkVMCAABkvTxR6P7kk080cOBAjRgxQjt37lTVqlUVGRmps2fP5nRoAAAAcCLklQAAALhT5JQAAADZI19OB+AIEydOVM+ePfX0009LkmbMmKGvv/5aH330kV566aVU/RMTE5WYmGhNX7hwQZIUHx+fqeX9ffGSA6JGZiVlcrvcjvhLV7JsbKSWLwu35cUrSVk2NlLL7PHydiRcTc6ysZG2rNyef19LybKxkVpmt+WNfsaYrAzHKd1KXnmnOaVEXpndyCvzDvLKvIO8Mu8gp8w7bmVbklemjd8q8z7yyryDvDLvIK/MO8gr847s+K3SZpw8E7169aoKFiyoxYsXq02bNtb8qKgoxcXF6Ysvvkj1nldffVUjR47MxigBAAByn5MnT+ruu+/O6TByjVvNK8kpAQAAriOv/D/8VgkAAHB7biendPoruv/8808lJycrKCjIbn5QUJAOHDiQ5nuio6M1cOBAazolJUXnz59X4cKFZbPZsjTenBIfH6+wsDCdPHlSfn5+OR0O7gDbMu9gW+YdbMu8xRW2pzFGFy9eVGhoaE6Hkqvcal7pijml5Br7iKtgW+YdbMu8g22Zd7jKtiSvTI3fKjPPVfYTV8C2zDvYlnkH2zLvcIVteSc5pdMXum+Hh4eHPDw87OYFBATkTDDZzM/PL8/uCK6GbZl3sC3zDrZl3pLXt6e/v39Oh+D0XDmnlPL+PuJK2JZ5B9sy72Bb5h2usC3JK+8ceWXe309cBdsy72Bb5h1sy7wjr2/L280p3RwcR7a766675O7urjNnztjNP3PmjIKDg3MoKgAAADgb8koAAADcKXJKAACA7OP0he4CBQqoRo0aWr16tTUvJSVFq1evVkRERA5GBgAAAGdCXgkAAIA7RU4JAACQffLErcsHDhyoqKgo1axZU7Vq1dLkyZN16dIlPf300zkdWq7h4eGhESNGpLoNEpwP2zLvYFvmHWzLvIXt6drIKzPGPpJ3sC3zDrZl3sG2zDvYlq6NnDJz2E/yDrZl3sG2zDvYlnkH2/LmbMYYk9NBOMI777yjt956S7Gxsbrvvvs0ZcoU1a5dO6fDAgAAgJMhrwQAAMCdIqcEAADIenmm0A0AAAAAAAAAAAAAcA1O/4xuAAAAAAAAAAAAAIBrodANAAAAAAAAAAAAAHAqFLoBAAAAAAAAAAAAAE6FQjfu2Nq1a2Wz2RQXF5fToeRZ4eHhmjx5ck6Hgf/PZrNp6dKlOR0GgAxkxbFz9uzZCggIsKZfffVV3XfffQ5dBuDKyCuzHnklkH3IRZwT3/cA50dOCdwaviPkHuQheR/fERyPQncu0q1bN9lsNo0dO9Zu/tKlS2Wz2Ry2nGPHjslms2n37t0OG9NZ/PHHH+rdu7eKFy8uDw8PBQcHKzIyUhs3brT68J+J67qxD9psNuXPn19BQUFq2rSpPvroI6WkpFj9Tp8+rebNm+dgpHC0TZs2yd3dXY888khOh5IrcexM3+DBg7V69eqcDgNIhbwy63FshCORi9wc+1v6yEUyj+97wK0jp3QN5CGOQ86C9JCHOB77W/pc7TsChe5cxtPTU+PGjdNff/2V06Ho6tWrOR2Cw7Vr1067du3SnDlzdOjQIS1btkwNGjTQuXPnbmmcvPjZ3I68+Dk0a9ZMp0+f1rFjx7R8+XI1bNhQL7zwglq2bKlr165JkoKDg+Xh4ZFjMebFzz2nffjhh+rbt6/Wr1+vU6dO3dFYycnJdglqXsCxM30+Pj4qXLhwjsaQlJSUo8tH7kVembU4NjqWq38O5CI3x/6WPnKRW8P3PeDWkVPmfeQhjkPO4lh57XMgD3Es9rf0udx3BINcIyoqyrRs2dKUL1/evPjii9b8zz//3PxzU23YsMHUrVvXeHp6mrvvvtv07dvXJCQkWO2SzOeff243tr+/v5k1a5bV/s9X/fr1reW3bt3avP766yYkJMSEh4cbY4yZO3euqVGjhvHx8TFBQUGmc+fO5syZM9bYa9asMZLMX3/95dgPxMH++usvI8msXbs23T4lSpSw+2xKlChhjDFmxIgRpmrVqub999834eHhxmazGWOMOX78uHn00UeNt7e38fX1Ne3btzexsbHWeDfeN3fuXFOiRAnj5+dnOnbsaOLj460+8fHx5oknnjAFCxY0wcHBZuLEiaZ+/frmhRdesItr0qRJxhhjnn76afPII4/YxX316lVTpEgR88EHH6S5Xn/++afp1KmTCQ0NNV5eXubee+81CxcutOuT2ThGjRplnnrqKePr62uioqKMMRn/TV65csUMGjTIhIaGmoIFC5patWqZNWvWpLsdcsqNfeDfVq9ebSSZ999/3xhjv48lJiaa559/3gQHBxsPDw9TvHhx88Ybb1jvnTBhgrn33ntNwYIFzd1332169+5tLl68aDf+zJkzzd133228vLxMmzZtzIQJE4y/v7/Vnt7f319//WV69Ohh7rrrLuPr62saNmxodu/ebTf20qVLTbVq1YyHh4cpWbKkefXVV01SUpIDPq284+LFi8bHx8ccOHDAdOzY0YwePdqu/YsvvjBlypQxHh4epkGDBmb27Nl2x7xZs2YZf39/88UXX5gKFSoYd3d3ExMTk6m/+4z2ndzAlY+dxlzfvmFhYdb+OX78+DT3zxvWrFlj7r//flOwYEHj7+9v6tSpY44dO2aMMebIkSPm0UcfNUWLFjXe3t6mZs2aZuXKlXbLO3XqlGnRooXx9PQ04eHhZsGCBXbrYcz1Y9C7775rWrVqZQoWLGhGjBhhjMl4f8/MMQN5B3ll1nLlYyN5peORi9ycK+9vxpCLOBLf94BbR06Z95GHOI4r5yx8R8gYeYhjufL+ZgzfEf6NQncucuNgt2TJEuPp6WlOnjxpjLFPHo8cOWK8vb3NpEmTzKFDh8zGjRtNtWrVTLdu3axxMkoet27daiSZVatWmdOnT5tz585Zy/fx8TFPPfWU+emnn8xPP/1kjDHmww8/NN988405evSo2bRpk4mIiDDNmze3xnaW5DEpKcn4+PiY/v37mytXrqTZ5+zZs0aSmTVrljl9+rQ5e/asMeb6gcHb29s0a9bM7Ny50+zZs8ckJyeb++67z9StW9ds377dbN682dSoUcNKxm+8z8fHx7Rt29bs27fPrF+/3gQHB5v//ve/Vp9nnnnGlChRwqxatcrs27fPPPbYY8bX1zfdg9/GjRuNu7u7OXXqlNW+ZMkS4+3tneo/sht+++0389Zbb5ldu3aZo0ePmilTphh3d3ezZcuWW47Dz8/PjB8/3hw5csR6ZfQ3+cwzz5g6deqY9evXmyNHjpi33nrLeHh4mEOHDmW43bJTegmHMcZUrVrV+rv/5z721ltvmbCwMLN+/Xpz7Ngxs2HDBrtEbtKkSeb77783MTExZvXq1aZcuXKmd+/eVvsPP/xg3NzczFtvvWUOHjxopk2bZgIDA1P9x/Tvvz9jjGnSpIlp1aqV2bZtmzl06JAZNGiQKVy4sLVPr1+/3vj5+ZnZs2ebo0ePmu+++86Eh4ebV1991YGfmvP78MMPTc2aNY0xxnz55ZemdOnSJiUlxRhjzK+//mry589vBg8ebA4cOGD+97//mWLFiqX6Upc/f35Tp04ds3HjRnPgwAFz6dKlDP/uM7Pv5AaufOzcvHmzcXNzM+PGjTMHDx40b7/9tgkICEg3cUxKSjL+/v5m8ODB5siRI+aXX34xs2fPNsePHzfGGLN7924zY8YMs2/fPnPo0CHzyiuvGE9PT6vdmOv79X333Wc2b95sduzYYerXr2+8vLxSJY5FixY1H330kTl69Kg5fvx4pvb3jI4ZyFvIK7OWKx8bySsdj1zk5lx5fyMXcSy+7wG3jpwy7yMPcRxXzln4jpAx8hDHcuX9je8IqVHozkX+ebB74IEHTPfu3Y0x9sljjx49TK9evezet2HDBuPm5mb+/vtvY0zGyWNMTIyRZHbt2pVq+UFBQSYxMfGmcW7bts1IsnY0Z0oeFy9ebAoVKmQ8PT1NnTp1THR0tHXwviGtz2/EiBEmf/781sHQGGO+++474+7ubk6cOGHN+/nnn40ks3XrVut9BQsWtDur58UXXzS1a9c2xlw/wyd//vxm0aJFVntcXJwpWLBgugc/Y4ypWLGiGTdunDXdqlWrW04EH3nkETNo0KBbjqNNmzZ242T0N3n8+HHj7u5ufv/9d7s+jRs3NtHR0bcUc1a7WcLRsWNHU6FCBWOM/d9I3759TaNGjawvARlZtGiRKVy4sN24/z5rq0uXLqn+Y/r339+GDRuMn59fqv/IS5cubd577z1jzPXP+J9n+RljzLx580xISEimYnUVderUMZMnTzbGXP+P/6677rLO+hw6dKi599577fq//PLLqb7USbI70ywzf/eZOZ7nFq567OzcubNp0aKF3byOHTummzieO3cuw7NJ/61SpUpm6tSpxhhj9u/fbySZbdu2We2HDx82klIljv3797cbJ6P9PTPHDOQt5JVZz1WPjWkhr7wz5CIZc9X9jVzEsfi+B9w6csq8jzzEsVw1Z0kL3xHskYc4nqvub3xHSI1ndOdS48aN05w5c7R//367+Xv27NHs2bPl4+NjvSIjI5WSkqKYmJg7Xm7lypVVoEABu3k7duxQq1atVLx4cfn6+qp+/fqSpBMnTtzx8rJbu3btdOrUKS1btkzNmjXT2rVrVb16dc2ePTvD95YoUUJFihSxpvfv36+wsDCFhYVZ8ypWrKiAgAC77RYeHi5fX19rOiQkRGfPnpUk/frrr0pKSlKtWrWsdn9/f5UrV+6msTzzzDOaNWuWJOnMmTNavny5unfvnm7/5ORkvfbaa6pcubICAwPl4+Ojb7/91tqGtxJHzZo17aYz+pvct2+fkpOTVbZsWbs+69at09GjR2+6nrmJMUY2my3V/G7dumn37t0qV66c+vXrp++++86ufdWqVWrcuLGKFSsmX19fPfXUUzp37pwuX74sSTp48KDd5y4p1bSU+u9vz549SkhIUOHChe0+15iYGOtz3bNnj0aNGmXX3rNnT50+fdpavqs7ePCgtm7dqs6dO0uS8uXLp44dO+rDDz+02u+//36796S1fQoUKKAqVapY05n5u8/q47kjueqxc//+/apdu7bdvIiIiHT7BwYGqlu3boqMjFSrVq309ttv6/Tp01Z7QkKCBg8erAoVKiggIEA+Pj7av3+/dSw+ePCg8uXLp+rVq1vvKVOmjAoVKpRqWWkdi2+2v2fmmIG8i7wya7jqsZG80rHIRTLHVfc3cpHsw/c9IGPklHkPeYjjuWrOwneEO0MecntcdX/jO0Jq+TLdE9mqXr16ioyMVHR0tLp162bNT0hI0LPPPqt+/fqlek/x4sUlSTabTddPoPg/mX3wu7e3t930pUuXFBkZqcjISC1YsEBFihTRiRMnFBkZqatXr97iWuUOnp6eatq0qZo2baphw4bpmWee0YgRI+w+57T8+7PJrPz589tN22w2paSk3NZYN3Tt2lUvvfSSNm3apB9//FElS5bUQw89lG7/t956S2+//bYmT56sypUry9vbW/3797+tbfjvzyGjv8m9e/fK3d1dO3bskLu7u127j4/PLS8/p+zfv18lS5ZMNb969eqKiYnR8uXLtWrVKnXo0EFNmjTR4sWLdezYMbVs2VK9e/fW6NGjFRgYqB9++EE9evTQ1atXVbBgwUwvP63PPSQkRGvXrk3VNyAgwOozcuRItW3bNlUfT0/PTC87L/vwww917do1hYaGWvOMMfLw8NA777yT6XG8vLzsEtKEhIQM/+4zczzPTVzx2Hk7Zs2apX79+mnFihX65JNP9Morr2jlypV64IEHNHjwYK1cuVLjx49XmTJl5OXlpccff9xhx+Kb7e+ZOWYg7yKvzDqueGwkr3QscpHMc8X97XaQi9wevu8BGSOnzHvIQ7KGK+YsfEe4M+Qht88V97fbkde/I1DozsXGjh2r++67z+6Mj+rVq+uXX35RmTJl0n1fkSJF7M7IOHz4sN1ZNDfOgkxOTs4whgMHDujcuXMaO3asdTbL9u3bb3ldcrOKFStq6dKl1nT+/Pkz9dlUqFBBJ0+e1MmTJ63P5pdfflFcXJwqVqyYqWWXKlVK+fPn17Zt26wk7sKFCzp06JDq1auX7vsKFy6sNm3aaNasWdq0aZOefvrpmy5n48aNat26tZ588klJUkpKig4dOmTFebtxSBn/TVarVk3Jyck6e/asww/Q2eX777/Xvn37NGDAgDTb/fz81LFjR3Xs2FGPP/64mjVrpvPnz2vHjh1KSUnRhAkT5OZ2/QYan376qd17y5Urp23bttnN+/d0WqpXr67Y2Fjly5dP4eHh6fY5ePDgTY8XruzatWuaO3euJkyYoIcfftiurU2bNvrf//6ncuXK6ZtvvrFry8z2yczffWaO57mZKxw7K1SooC1bttjN27x5c4bxVatWTdWqVVN0dLQiIiK0cOFCPfDAA9q4caO6deumxx57TNL1ZO/YsWPW+8qVK6dr165p165dqlGjhiTpyJEj+uuvvzJcZkb7e2aOGcjbyCuzhyscG8krHYdc5M64wv5GLpI9+L4HZB45Zd5BHpJ9XCFn4TvC7SMPcSxX2N/4jpAahe5crHLlyurSpYumTJlizRs6dKgeeOAB9enTR88884y8vb31yy+/aOXKldaZdo0aNdI777yjiIgIJScna+jQoXZnmhQtWlReXl5asWKF7r77bnl6esrf3z/NGIoXL64CBQpo6tSp+s9//qOffvpJr732WtaueBY5d+6c2rdvr+7du6tKlSry9fXV9u3b9eabb6p169ZWv/DwcK1evVoPPvigPDw80rwFgyQ1adLE2kaTJ0/WtWvX9Nxzz6l+/fqpbtGQHl9fX0VFRenFF19UYGCgihYtqhEjRsjNzS3N25X80zPPPKOWLVsqOTlZUVFRN+17zz33aPHixfrxxx9VqFAhTZw4UWfOnLEO0ncSR0Z/k2XLllWXLl3UtWtXTZgwQdWqVdMff/yh1atXq0qVKnrkkUcy9Vlll8TERMXGxio5OVlnzpzRihUrNGbMGLVs2VJdu3ZN1X/ixIkKCQlRtWrV5ObmpkWLFik4OFgBAQEqU6aMkpKSNHXqVLVq1UobN27UjBkz7N7ft29f1atXTxMnTlSrVq30/fffa/ny5Rl+7k2aNFFERITatGmjN998U2XLltWpU6f09ddf67HHHlPNmjU1fPhwtWzZUsWLF9fjjz8uNzc37dmzRz/99JNef/11h35uzuirr77SX3/9pR49eqQ6BrZr104ffvihPv30U02cOFFDhw5Vjx49tHv3buv2NzfbRpn5u8/M8Tw3cOVjZ79+/fTggw9q/Pjxat26tb799lutWLEi3f4xMTGaOXOmHn30UYWGhurgwYM6fPiwdey45557tGTJErVq1Uo2m03Dhg2zO+uzfPnyatKkiXr16qXp06crf/78GjRoUKqz49OS0f6emWMG8jbySsdy5WMjeaXjkItkjivvb+Qijsf3PeDOkFPmHeQhjufKOQvfETKHPMRxXHl/4ztCGjL9NG9kuaioKNO6dWu7eTExMaZAgQLmn5tq69atpmnTpsbHx8d4e3ubKlWqmNGjR1vtv//+u3n44YeNt7e3ueeee8w333xj/P39zaxZs6w+77//vgkLCzNubm6mfv366S7fGGMWLlxowsPDjYeHh4mIiDDLli0zksyuXbuMMcasWbPGSDJ//fWXgz6JrHHlyhXz0ksvmerVqxt/f39TsGBBU65cOfPKK6+Yy5cvW/2WLVtmypQpY/Lly2dKlChhjDFmxIgRpmrVqqnGPH78uHn00UeNt7e38fX1Ne3btzexsbFWe1rvmzRpkjWuMcbEx8ebJ554whQsWNAEBwebiRMnmlq1apmXXnrJ6lOiRAkzadIku3FSUlJMiRIlTIsWLTJc93PnzpnWrVsbHx8fU7RoUfPKK6+Yrl272m3v243DmIz/Jq9evWqGDx9uwsPDTf78+U1ISIh57LHHzN69ezOMPTtFRUUZSUaSyZcvnylSpIhp0qSJ+eijj0xycrLVT5L5/PPPjTHGzJw509x3333G29vb+Pn5mcaNG5udO3dafSdOnGhCQkKMl5eXiYyMNHPnzk21v8ycOdMUK1bMeHl5mTZt2pjXX3/dBAcHW+3p/f3Fx8ebvn37mtDQUJM/f34TFhZmunTpYk6cOGH1WbFihalTp47x8vIyfn5+platWmbmzJmO+9CcWMuWLdPdf7Zs2WIkmT179pgvvvjClClTxnh4eJgGDRqY6dOnG0nm77//NsYYM2vWLOPv759qjMz83We07+QGrnzsNMaYDz/80Nx9993Gy8vLtGrVyowfP95ue/8z1tjYWNOmTRsTEhJiChQoYEqUKGGGDx9uHT9iYmJMw4YNjZeXlwkLCzPvvPOOqV+/vnnhhRes8U6dOmWaN29uPDw8TIkSJczChQtN0aJFzYwZM6w+/zwG/VNG+3tmjhnIO8grs5YrHxvJKx2HXCRzXHl/M4ZcxJH4vgfcOnLKvIs8xPFcOWfhO0LGyEMcy5X3N2P4jvBvtv8fAIBc4tKlSypWrJgmTJigHj16pNsvISFBxYoV06xZs9J8xkF2xQHH69mzpw4cOKANGzbkdChIw+jRozVjxgydPHkyp0PBP+SWY6ej/fbbbwoLC9OqVavUuHHjnA4HgJPJLcdG8krHIhfJnXLL/uZo5CKOx/c9AM6MPMT55Zache8IOYM8JHvllv3N0XLbdwRuXQ7ksF27dunAgQOqVauWLly4oFGjRkmS3S02/iklJUV//vmnJkyYoICAAD366KM5EgccZ/z48WratKm8vb21fPlyzZkzR++++25Oh4X/791339X999+vwoULa+PGjXrrrbfUp0+fnA7L5eWWY6ejff/990pISFDlypV1+vRpDRkyROHh4Rk+swoApNxzbCSvdCxykdwpt+xvjkYu4nh83wPgzMhDnF9uyVn4jpAzyEOyV27Z3xwtt39HoNAN5ALjx4/XwYMHVaBAAdWoUUMbNmzQXXfdlWbfEydOqGTJkrr77rs1e/Zs5cvnuN34VuKA42zdulVvvvmmLl68qFKlSmnKlCl65plncjos/H+HDx/W66+/rvPnz6t48eIaNGiQoqOjczosKPccOx0pKSlJ//3vf/Xrr7/K19dXderU0YIFC+yeXwcAN5Nbjo3klY5DLpJ75Zb9zZHIRRyP73sAnBl5SN6QW3IWviNkP/KQ7Jdb9jdHyu3fEbh1OQAAAAAAAAAAAADAqbjldAAAAAAAAAAAAAAAANwKCt0AAAAAAAAAAAAAAKdCoRsAAAAAAAAAAAAA4FQodAMAAAAAAAAAAAAAnAqFbgBIx6uvvqr77rsv1bygoCDZbDYtXbo0R+L6Zyz/ju+fZs+erYCAgGyLBwAAAKmtXbtWNptNcXFxN+0XHh6uyZMnZ0tMAAAAwO1q0KCB+vfvb02TxwLISRS6AeRJf/zxh3r37q3ixYvLw8NDwcHBioyM1MaNG297zP3792vkyJF67733dPr0aTVv3jzdvp999pkaNGggf39/+fj4qEqVKho1apTOnz9/28u/VR07dtShQ4eybXkAAADOolu3bmrTpk2q+ZktSt8JR5+MGBsbq759+6pUqVLy8PBQWFiYWrVqpdWrVztsGQAAALh16eWcmeXIvDE8PFw2m002m01eXl4KDw9Xhw4d9P3339/x2Nu2bVOvXr0cECUA3DoK3QDypHbt2mnXrl2aM2eODh06pGXLlqlBgwY6d+7cbY959OhRSVLr1q0VHBwsDw+PNPu9/PLL6tixo+6//34tX75cP/30kyZMmKA9e/Zo3rx5t738W+Xl5aWiRYtm2/IAAACQvY4dO6YaNWro+++/11tvvaV9+/ZpxYoVatiwoZ5//vmcDu+mrl69mtMhAAAAuJRRo0bp9OnTOnjwoObOnauAgAA1adJEo0ePvqNxixQpooIFCzooytSMMbp27VqWjQ/AuVHoBpDnxMXFacOGDRo3bpwaNmyoEiVKqFatWoqOjtajjz5q1++ZZ55RkSJF5Ofnp0aNGmnPnj1pjvnqq6+qVatWkiQ3NzfZbLY0+23dulVvvPGGJkyYoLfeekt16tRReHi4mjZtqs8++0xRUVFW3+nTp6t06dIqUKCAypUrl6oIfuLECbVu3Vo+Pj7y8/NThw4ddObMmXTX++jRoypVqpT69OkjY0yqsz5v3Op83rx5Cg8Pl7+/vzp16qSLFy9afS5evKguXbrI29tbISEhmjRpUqrbEQEAALiSH374QQ899JC8vLwUFhamfv366dKlS1b7vHnzVLNmTfn6+io4OFhPPPGEzp49m+ZYa9eu1dNPP60LFy5YV9S8+uqrVvvly5fVvXt3+fr6qnjx4po5c+ZNY3vuuedks9m0detWtWvXTmXLllWlSpU0cOBAbd682eqXUV6ZmTwxJSVFb775psqUKSMPDw8VL17c7kfRkydPqkOHDgoICFBgYKBat26tY8eOWe03rmgaPXq0QkNDVa5cOR07dkw2m01LlixRw4YNVbBgQVWtWlWbNm3KcLsAAAA4u4kTJ6py5cry9vZWWFiYnnvuOSUkJEi6ed6YmJiowYMHq1ixYvL29lbt2rW1du3aDJd3I18tXry46tWrp5kzZ2rYsGEaPny4Dh48aPX76aef1Lx5c/n4+CgoKEhPPfWU/vzzz3TH/eety5944gl17NjRrj0pKUl33XWX5s6dK+l6XjlmzBiVLFlSXl5eqlq1qhYvXmz1v3GXpeXLl6tGjRry8PDQ/Pnz5ebmpu3bt9uNPXnyZJUoUUIpKSkZrj+AvIlCN4A8x8fHRz4+Plq6dKkSExPT7de+fXudPXtWy5cv144dO1S9enU1btw4zduLDx48WLNmzZIknT59WqdPn05zzAULFsjHx0fPPfdcmu03Cs+ff/65XnjhBQ0aNEg//fSTnn32WT399NNas2aNpOsJX+vWrXX+/HmtW7dOK1eu1K+//poqUbxh7969qlu3rp544gm988476Rbijx49qqVLl+qrr77SV199pXXr1mns2LFW+8CBA7Vx40YtW7ZMK1eu1IYNG7Rz5860P0AAAIA87ujRo2rWrJnatWunvXv36pNPPtEPP/ygPn36WH2SkpL02muvac+ePVq6dKmOHTumbt26pTlenTp1NHnyZPn5+Vk55eDBg632CRMmqGbNmtq1a5eee+459e7d2+5Hx386f/68VqxYoeeff17e3t6p2m/knZnNKzPKE6OjozV27FgNGzZMv/zyixYuXKigoCDrM4iMjJSvr682bNigjRs3ysfHR82aNbO7cnv16tU6ePCgVq5cqa+++sqa//LLL2vw4MHavXu3ypYtq86dO3PVDgAAyPPc3Nw0ZcoU/fzzz5ozZ46+//57DRkyRNLN88Y+ffpo06ZN+vjjj7V37161b99ezZo10+HDh285hhdeeEHGGH3xxReSrl8Y1KhRI1WrVk3bt2/XihUrdObMGXXo0CFT43Xp0kVffvmlVbCXpG+//VaXL1/WY489JkkaM2aM5s6dqxkzZujnn3/WgAED9OSTT2rdunV2Y7300ksaO3as9u/fr0cffVRNmjSxfp+9YdasWerWrZvc3Ch1AS7LAEAetHjxYlOoUCHj6elp6tSpY6Kjo82ePXus9g0bNhg/Pz9z5coVu/eVLl3avPfee8YYY0aMGGGqVq1qtX3++ecmo8Nm8+bNTZUqVTKMr06dOqZnz55289q3b29atGhhjDHmu+++M+7u7ubEiRNW+88//2wkma1bt9rFt3HjRlOoUCEzfvx4u/FmzZpl/P39rekRI0aYggULmvj4eGveiy++aGrXrm2MMSY+Pt7kz5/fLFq0yGqPi4szBQsWNC+88EKG6wQAAOAsoqKijLu7u/H29rZ7eXp6Gknmr7/+MsYY06NHD9OrVy+7927YsMG4ubmZv//+O82xt23bZiSZixcvGmOMWbNmjd2Y/87RbihRooR58sknremUlBRTtGhRM3369DSXs2XLFiPJLFmy5Kbrmtm8MqM80cPDw7z//vtpLmPevHmmXLlyJiUlxZqXmJhovLy8zLfffmuMuf6ZBwUFmcTERKtPTEyMkWQ++OCDVLHt37//pusFAACQ20VFRZnWrVtnuv+iRYtM4cKFrem08sbjx48bd3d38/vvv9vNb9y4sYmOjk537BIlSphJkyal2RYUFGR69+5tjDHmtddeMw8//LBd+8mTJ40kc/DgQWOMMfXr17f7rfCfYyclJZm77rrLzJ0712rv3Lmz6dixozHGmCtXrpiCBQuaH3/80W4ZPXr0MJ07dzbG/F/+vHTpUrs+n3zyiSlUqJD1e+6OHTuMzWYzMTEx6a43gLyP01wA5Ent2rXTqVOntGzZMjVr1kxr165V9erVNXv2bEnSnj17lJCQoMKFC1tXgPv4+CgmJsZ6FvftMMZkqt/+/fv14IMP2s178MEHtX//fqs9LCxMYWFhVnvFihUVEBBg9ZGu34ayadOmGj58uAYNGpThcsPDw+Xr62tNh4SEWLfW/PXXX5WUlKRatWpZ7f7+/ipXrlym1gkAAMCZNGzYULt377Z7ffDBB3Z99uzZo9mzZ9vli5GRkUpJSVFMTIwkaceOHWrVqpWKFy8uX19f1a9fX9L1PO1WValSxfq3zWZTcHBwurdBv5W8MzN55c3yxP379ysxMVGNGzdOcxl79uzRkSNH5Ovra31OgYGBunLlil1uXblyZRUoUOCm6x0SEiJJ6a43AABAXrFq1So1btxYxYoVk6+vr5566imdO3dOly9fTvc9+/btU3JyssqWLWuXo65bt+62f9M0xlh3h9yzZ4/WrFljN3b58uUlKVPj58uXTx06dNCCBQskSZcuXdIXX3yhLl26SJKOHDmiy5cvq2nTpnbLmDt3bqrxa9asaTfdpk0bubu76/PPP5ckzZ49Ww0bNlR4ePhtrTeAvCFfTgcAAFnF09NTTZs2VdOmTTVs2DA988wzGjFihLp166aEhASFhISk+fyafz7X+laVLVtWP/zwg5KSkpQ/f/7bDz6TihQpotDQUP3vf/9T9+7d5efnd9P+/47JZrPxDBsAAOCSvL29VaZMGbt5v/32m910QkKCnn32WfXr1y/V+4sXL65Lly4pMjJSkZGRWrBggYoUKaITJ04oMjLS7pbdmXUrudo999wjm82mAwcO3PJybnXZXl5eN31vQkKCatSoYf2g+U9FihSx/p3WLdb/vewbP7KSowIAgLzs2LFjatmypXr37q3Ro0crMDBQP/zwg3r06KGrV6+qYMGCab4vISFB7u7u2rFjh9zd3e3afHx8bjmOc+fO6Y8//lDJkiWt8Vu1aqVx48al6nvjhMSMdOnSRfXr19fZs2e1cuVKeXl5qVmzZtb4kvT111+rWLFidu/z8PCwm/537ligQAF17dpVs2bNUtu2bbVw4UK9/fbbmVtRAHkWV3QDcBkVK1bUpUuXJEnVq1dXbGys8uXLpzJlyti97rrrrttexhNPPKGEhAS9++67abbHxcVJkipUqKCNGzfatW3cuFEVK1a02k+ePKmTJ09a7b/88ovi4uKsPtL1Hx2/+uoreXp6KjIyUhcvXrzt2EuVKqX8+fNr27Zt1rwLFy7o0KFDtz0mAACAM6tevbp++eWXVPlimTJlVKBAAR04cEDnzp3T2LFj9dBDD6l8+fIZXolcoEABJScn33FsgYGBioyM1LRp06wc95/+mXdmJq+8mXvuuUdeXl5avXp1mu3Vq1fX4cOHVbRo0VSfk7+//62vHAAAQB63Y8cOpaSkaMKECXrggQdUtmxZnTp1yq5PWnljtWrVlJycrLNnz6bKu4KDg285jrfffltubm5q06aNpOt53c8//6zw8PBU46d30uK/1alTR2FhYfrkk0+0YMECtW/f3jqxsWLFivLw8NCJEydSjf/POxCl55lnntGqVav07rvv6tq1a2rbtu0trzOAvIVCN4A859y5c2rUqJHmz5+vvXv3KiYmRosWLdKbb76p1q1bS5KaNGmiiIgItWnTRt99952OHTumH3/8US+//LK2b99+28uuXbu2hgwZokGDBmnIkCHatGmTjh8/rtWrV6t9+/aaM2eOJOnFF1/U7NmzNX36dB0+fFgTJ07UkiVLNHjwYCu+ypUrq0uXLtq5c6e2bt2qrl27qn79+qlu2+Pt7a2vv/5a+fLlU/Pmza0zI2+Vr6+voqKi9OKLL2rNmjX6+eef1aNHD7m5uVlX1gAAALiSoUOH6scff1SfPn20e/duHT58WF988YX69Okj6fpV3QUKFNDUqVP166+/atmyZXrttdduOmZ4eLgSEhK0evVq/fnnnze9NWVGpk2bpuTkZNWqVUufffaZDh8+rP3792vKlCmKiIiQdGt5ZXo8PT01dOhQDRkyxLqt5ObNm/Xhhx9Kun7Vzl133aXWrVtrw4YNiomJ0dq1a9WvX79UV8kDAAC4kgsXLqR6XM7JkydVpkwZJSUlWXnkvHnzNGPGDLv3ppU3li1bVl26dFHXrl21ZMkSxcTEaOvWrRozZoy+/vrrm8Zy8eJFxcbG6uTJk1q/fr169eql119/XaNHj7budPT888/r/Pnz6ty5s7Zt26ajR4/q22+/1dNPP31LJ2s+8cQTmjFjhlauXGndtly6/vvj4MGDNWDAAM2ZM0dHjx7Vzp07NXXqVOt305upUKGCHnjgAQ0dOlSdO3fO8M5DAPI+Ct0A8hwfHx/Vrl1bkyZNUr169XTvvfdq2LBh6tmzp9555x1J12+J+M0336hevXp6+umnVbZsWXXq1EnHjx9XUFDQHS1/3LhxWrhwobZs2aLIyEhVqlRJAwcOVJUqVRQVFSXp+jNl3n77bY0fP16VKlXSe++9p1mzZqlBgwZWfF988YUKFSqkevXqqUmTJipVqpQ++eSTdNd5+fLlMsbokUceSfOqnsyYOHGiIiIi1LJlSzVp0kQPPvigKlSoIE9Pz9saDwAAwJlVqVJF69at06FDh/TQQw+pWrVqGj58uEJDQyVdvy337NmztWjRIlWsWFFjx47V+PHjbzpmnTp19J///EcdO3ZUkSJF9Oabb952fKVKldLOnTvVsGFDDRo0SPfee6+aNm2q1atXa/r06ZJuPa9Mz7BhwzRo0CANHz5cFSpUUMeOHa2r1wsWLKj169erePHiatu2rSpUqKAePXroypUrGT5aBwAAIC9bu3atqlWrZvcaOXKkqlatqokTJ2rcuHG69957tWDBAo0ZM8buvenljbNmzVLXrl01aNAglStXTm3atNG2bdtUvHjxm8YyfPhwhYSEqEyZMnrqqad04cIFrV69WkOHDrX6hIaGauPGjUpOTtbDDz+sypUrq3///goICJCbW+bLSV26dNEvv/yiYsWK6cEHH7Rre+211zRs2DCNGTNGFSpUULNmzfT1119bt0/PyI3bu3fv3j3T8QDIu2zGGJPTQQAAcqdLly6pWLFimjBhgnr06JHT4QAAAAAAAABwYa+99poWLVqkvXv35nQoAHKBfDkdAAAg99i1a5cOHDigWrVq6cKFCxo1apQkWbd8BwAAAAAAAPD/2LvzuKrK9f//743IBpFBSNigqKSmpqamZWjHkVJzPFJmUQ6Z9im1HEqjj3MWaWrkkKbHHD5pg5VmdrJjOJU5D6VpqIXDScFKgcBElPv3Rz/Xty2oqJv59Xw81qPWfd/r3tfaa7O62tdea6Ggpaen68iRI5o5c6YmTpxY2OEAKCK4dTkAwMmUKVPUoEEDRUZGKiMjQ19//bVuueWWwg4LAAAAAAAAQCk1aNAgNW7cWK1ateK25QAs3LocAAAAAAAAAAAAAFCscEU3AAAAAAAAAAAAAKBYodANAAAAAAAAAAAAAChWKHQDAAAAAAAAAAAAAIoVCt0AAAAAAAAAAAAAgGKFQjcAAAAAAAAAAAAAoFih0A0AAAAAAAAAAAAAKFYodAMAAAAAAAAAAAAAihUK3QAAAAAAAAAAAACAYoVCNwAAAAAAAAAAAACgWKHQDQAAAAAAAAAAAAAoVih0AwAAAAAAAAAAAACKFQrdAAAAAAAAAAAAAIBihUI3AAAAAAAAAAAAAKBYodANAAAAAAAAAAAAAChWKHQDQAnTp08fVatWrbDDAAAAKFJsNpvGjRtX2GGUeuPGjZPNZivsMAAAAPA3ueVo1apVU58+fa57rvXr18tms+mjjz665tjcvse8PG9fuHChbDabjhw5ct2xACj5KHQDKBYuJTSXFk9PT912220aNGiQkpOTCzs8y6Wk8Lfffsu1v1q1aurUqVMBRwUAAFD0XJ7f2Ww2BQUFqXXr1vriiy8KO7wC9dZbb2nhwoWFHQYAAADy6FrfAdarV0+tWrUq2KBKEfJnAJdQ6AZQrEyYMEH/93//p5kzZ6pZs2aaPXu2IiIidPbs2cIOrciYN2+eEhISCjsMAACAPLmU3y1evFgjRozQr7/+qgceeECrVq0q7NAKTGn6om7UqFH6888/CzsMAAAA/E1h5Wh5+R7z8ccf159//qmqVatabaUpfwZwde6FHQAAXI8OHTqoSZMmkqQnn3xSgYGBmjZtmj799FM98sgjBRLD2bNnVa5cuQJ5rRtRtmzZwg4BAAAgz/6e30lSv379FBwcrPfee4874ZQgGRkZ8vb2lru7u9zd+SoCAACgKCmsHC0v32OWKVNGZcqUKYBoABRHXNENoFhr06aNJCkxMVGSdOHCBb388suqXr267Ha7qlWrppdeekmZmZk5tn3rrbdUt25d2e12hYaGauDAgUpJSXEa06pVK9WrV087d+5UixYtVK5cOb300ksuid0Yo2rVqqlr1645+s6dOyc/Pz899dRTVtvRo0fVpUsXeXt7KygoSEOHDtWXX34pm82m9evXW+Nye7ZNdna24uLiVLduXXl6eio4OFhPPfWUzpw54zTu0q3Vv/nmG919993y9PTUrbfeqsWLF+eIMSUlRUOGDFFYWJjsdrtq1KihSZMmKTs7++beGAAAUKr5+/vLy8srxxdtU6ZMUbNmzRQYGCgvLy81btw41+f+ZWZmaujQoapYsaJ8fHzUpUsX/fe//83Ta196nuAHH3ygl156SQ6HQ97e3urSpYuOHz/uNPbrr7/WQw89pCpVqshutyssLExDhw7NcSVMUlKS+vbtq8qVK8tutyskJERdu3a1njFYrVo1/fDDD9qwYYN1C/dr3eYyL7nd2LFj5ebmpvj4eKdtBwwYIA8PD3333XfXvc+StHXrVrVv315+fn4qV66cWrZsqU2bNjmNuXQrz/379+vRRx9VhQoVdO+99zr1Xe7dd99V48aN5eXlpYCAAPXs2TPH61/Kzffv36/WrVurXLlyqlSpkiZPnpxjvnPnzmncuHG67bbb5OnpqZCQEHXv3l0//fTTdb2PAAAAN+tSvvXhhx/qlVdeUeXKleXp6am2bdvq8OHDTmPzkmNOmTJFNptNR48ezfFaMTEx8vDwsPKZvOasV8rR/u706dN6/vnnVb9+fZUvX16+vr7q0KGDlVde7uLFi9fML3P7HvNylz+j+0r5888//yybzaY33ngjxxzffvutbDab3nvvvau+FoDih59RAyjWLn1RFRgYKOmvq7wXLVqkBx98UMOHD9fWrVsVGxurAwcOaPny5dZ248aN0/jx4xUZGamnn35aCQkJmj17trZv365NmzY5/Zrw999/V4cOHdSzZ0899thjCg4OvmZcp0+fzrX970Vgm82mxx57TJMnT9bp06cVEBBg9X322WdKS0vTY489JumvK2DatGmjkydP6rnnnpPD4dDSpUu1bt26PL1PTz31lBYuXKi+ffvq2WefVWJiombOnKndu3fn2N/Dhw/rwQcfVL9+/dS7d2+988476tOnjxo3bqy6detK+uuq9pYtW+qXX37RU089pSpVqujbb79VTEyMTp48qbi4uDzFBQAAkJqaqt9++03GGJ06dUozZsxQenq6lQdd8uabb6pLly6Kjo7W+fPn9f777+uhhx7SqlWr1LFjR2vck08+qXfffVePPvqomjVrprVr1zr158Urr7wim82mkSNH6tSpU4qLi1NkZKT27NkjLy8vSdKyZct09uxZPf300woMDNS2bds0Y8YM/fe//9WyZcusuaKiovTDDz9o8ODBqlatmk6dOqU1a9bo2LFjqlatmuLi4jR48GCVL19e//u//ytJ18w385LbjRo1Sp999pn69eunvXv3ysfHR19++aXmzZunl19+WQ0aNLjufV67dq06dOigxo0bW4X0BQsWqE2bNvr666919913O8350EMPqWbNmnr11VdljLnq+z169Gj16NFDTz75pH799VfNmDFDLVq00O7du+Xv72+NPXPmjNq3b6/u3burR48e+uijjzRy5EjVr19fHTp0kPTXl6qdOnVSfHy8evbsqeeee05//PGH1qxZo3379ql69ep5fh8BAABc5bXXXpObm5uef/55paamavLkyYqOjtbWrVutMXnJMXv06KERI0boww8/1AsvvOD0Gh9++KHuv/9+VahQIc/z5dXPP/+sFStW6KGHHlJ4eLiSk5P19ttvq2XLltq/f79CQ0Odxuclv7wRV8qfb731VjVv3lxLlizR0KFDnbZZsmSJfHx8cr3gCEAxZwCgGFiwYIGRZL766ivz66+/muPHj5v333/fBAYGGi8vL/Pf//7X7Nmzx0gyTz75pNO2zz//vJFk1q5da4wx5tSpU8bDw8Pcf//95uLFi9a4mTNnGknmnXfesdpatmxpJJk5c+bkKc6xY8caSVddOnbsaI1PSEgwkszs2bOd5unSpYupVq2ayc7ONsYYM3XqVCPJrFixwhrz559/mtq1axtJZt26dVZ77969TdWqVa31r7/+2kgyS5YscXqN1atX52ivWrWqkWQ2btxotZ06dcrY7XYzfPhwq+3ll1823t7e5uDBg05zvvjii6ZMmTLm2LFjeXq/AABA6XUpv7t8sdvtZuHChTnGnz171mn9/Pnzpl69eqZNmzZW26V88JlnnnEa++ijjxpJZuzYsVeNad26dUaSqVSpkklLS7PaP/zwQyPJvPnmm1eMxxhjYmNjjc1mM0ePHjXGGHPmzBkjybz++utXfd26deuali1bXnXMJdeT2+3du9d4eHiYJ5980pw5c8ZUqlTJNGnSxGRlZV33PmdnZ5uaNWuadu3aWTnqpfchPDzc3HfffVbbpZz4kUceyRH/pb5Ljhw5YsqUKWNeeeUVp3F79+417u7uTu2XcvPFixdbbZmZmcbhcJioqCir7Z133jGSzLRp03K8/qXYr+d9BAAAuNylnObXX3/Ntf/v+d2lfKtOnTomMzPTGvPmm28aSWbv3r1WW15yTGOMiYiIMI0bN3Yat23bthy5Ul7nuzxHM+av7wl79+5trZ87d87pu1RjjElMTDR2u91MmDDBaruenPry7zGNMTny9kv/35CYmGi1XSl/fvvtt40kc+DAAavt/Pnz5pZbbnHaFwAlB7cuB1CsREZGqmLFigoLC1PPnj1Vvnx5LV++XJUqVdK///1vSdKwYcOcthk+fLgk6fPPP5ckffXVVzp//ryGDBkiN7f/dxrs37+/fH19rXGX2O129e3b97ri/Pjjj7VmzZocy+VX59x2221q2rSplixZYrWdPn1aX3zxhaKjo61bBq1evVqVKlVSly5drHGenp7q37//NWNZtmyZ/Pz8dN999+m3336zlsaNG6t8+fI5rgq//fbb9Y9//MNar1ixomrVqqWff/7Zac5//OMfqlChgtOckZGRunjxojZu3Hhd7xcAACi9Zs2aZeVK7777rlq3bq0nn3xSn3zyidO4v1/1cebMGaWmpuof//iHdu3aZbVfygefffZZp22HDBlyXTH16tVLPj4+1vqDDz6okJAQa/7L48nIyNBvv/2mZs2ayRij3bt3W2M8PDy0fv16l90O+3pyu3r16mn8+PH617/+pXbt2um3337TokWLcn3+4rX2ec+ePTp06JAeffRR/f7779brZmRkqG3bttq4cWOOR9j8z//8zzX355NPPlF2drZ69OjhtD8Oh0M1a9bMkauWL1/e6Wp/Dw8P3X333U656scff6xbbrlFgwcPzvF6l/Lr682RAQAAblbfvn3l4eFhrV/6/u3veUxeckxJevjhh7Vz506nx7J88MEHstvtTlct53W+vLDb7dZ3qRcvXtTvv/+u8uXLq1atWk45+SV5yaldrUePHvL09HT6rvXLL7/Ub7/9luOOUQBKBm5dDqBYmTVrlm677Ta5u7srODhYtWrVshKso0ePys3NTTVq1HDaxuFwyN/f33puzaV/1qpVy2mch4eHbr311hzPt6lUqZJTEpoXLVq00C233JKj3dPTM0dbr169NGjQIB09elRVq1bVsmXLlJWVpccff9wac/ToUVWvXj3Hs3Iu39fcHDp0SKmpqQoKCsq1/9SpU07rVapUyTGmQoUKTl/OHjp0SN9//70qVqyYpzkBAACu5O6771aTJk2s9UceeUSNGjXSoEGD1KlTJysPW7VqlSZOnKg9e/YoMzPTGv/3/OhSPnjp1tSXXJ73XUvNmjWd1m02m2rUqGE9F1CSjh07pjFjxmjlypU5itipqamS/voycNKkSRo+fLiCg4N1zz33qFOnTurVq5ccDsd1xXTJ9eZ2L7zwgt5//31t27ZNr776qm6//fZct7vWPh86dEiS1Lt37yvGlpqaat0mU5LCw8PztD/GmByvf8nltw+vXLlyjpy4QoUK+v777631n376SbVq1cq1oP/3172e9xEAAOB6XZ6zXP6d26W86e+5ZF5yTOmvR8QMGzZMH3zwgV566SUZY7Rs2TJ16NBBvr6+1z1fXmRnZ+vNN9/UW2+9pcTERF28eNHqu/RYyb/LS07tav7+/urcubOWLl2ql19+WdJfty2vVKmS2rRpk2+vC6DwUOgGUKxc/kVobi5PIm/WzTwzJi969uypoUOHasmSJXrppZf07rvvqkmTJtf9heyVZGdnKygoyOmXjH93ebG6TJkyuY4zf3uuYnZ2tu677z6NGDEi17G33XbbDUYLAABKOzc3N7Vu3VpvvvmmDh06pLp16+rrr79Wly5d1KJFC7311lsKCQlR2bJltWDBAi1durTAY7x48aLuu+8+nT59WiNHjlTt2rXl7e2tX375RX369HG6snnIkCHq3LmzVqxYoS+//FKjR49WbGys1q5dq0aNGl33a19vbvfzzz9bReq9e/de9+v9/XUl6fXXX1fDhg1zHVO+fHmn9bzk0dnZ2bLZbPriiy9yzUMvnzMvuWpeXO/7CAAA8HeXLmb5888/c+0/e/ZsjgterpXHXE+OGRoaqn/84x/68MMP9dJLL2nLli06duyYJk2aZI25nvny4tVXX9Xo0aP1xBNP6OWXX1ZAQIDc3Nw0ZMiQ654rP/Xq1UvLli3Tt99+q/r162vlypV65plnnO7sCaDkoNANoMSoWrWqsrOzdejQIdWpU8dqT05OVkpKiqpWrWqNk6SEhATdeuut1rjz588rMTFRkZGRBRp3QECAOnbsqCVLlig6OlqbNm1SXFyc05iqVatq//79MsY4FfIPHz58zfmrV6+ur776Ss2bN3dZ0b569epKT08v8PcKAACUDhcuXJAkpaenS/rrVtSenp768ssvZbfbrXELFixw2u5SPnjpit5LEhISruv1LxWGLzHG6PDhw7rjjjsk/VUwPnjwoBYtWqRevXpZ49asWZPrfNWrV9fw4cM1fPhwHTp0SA0bNtTUqVP17rvvSrq+H2peT26XnZ2tPn36yNfXV0OGDNGrr76qBx98UN27d7/ufb50lbyvr69Lc8Dq1avLGKPw8HCX/ViyevXq2rp1q7KysnJcEf73Ma7OkQEAQOnx9+8Xw8LCnPrOnj2r48eP6/7777+uOa83x3z44Yf1zDPPKCEhQR988IHKlSunzp073/B81/LRRx+pdevWmj9/vlN7SkpKrne2vFZ+eTOulj+3b99eFStW1JIlS9S0aVOdPXvW6c6ZAEoWfsICoMR44IEHJClHkXjatGmSpI4dO0r66znfHh4emj59utOVH/Pnz1dqaqo1riA9/vjj2r9/v1544QWVKVNGPXv2dOpv166dfvnlF61cudJqO3funObNm3fNuXv06KGLFy9at+v5uwsXLiglJeW64+3Ro4c2b96sL7/8MkdfSkqK9eU0AADA9crKytJ//vMfeXh4WD9eLFOmjGw2m9PtEY8cOaIVK1Y4bduhQwdJ0vTp053aL88Pr2Xx4sX6448/rPWPPvpIJ0+etOa/dDXO33NJY4zefPNNp3nOnj2rc+fOObVVr15dPj4+Trdf9/b2znNOdj253bRp0/Ttt99q7ty5evnll9WsWTM9/fTT+u233657nxs3bqzq1atrypQp1g8Q/u7XX3/NU/yX6969u8qUKaPx48fnuCrbGKPff//9uueMiorSb7/9ppkzZ+bou/Qa+ZEjAwCA0qNt27by8PDQ7Nmzc1zNPHfuXF24cMHKo/IqrznmJVFRUSpTpozee+89LVu2TJ06dZK3t/cNz5eX+C7P15YtW6Zffvkl1/HXyi9vxtXyZ3d3dz3yyCP68MMPtXDhQtWvX98lxXUARRNXdAMoMRo0aKDevXtr7ty5SklJUcuWLbVt2zYtWrRI3bp1U+vWrSX9dRvCmJgYjR8/Xu3bt1eXLl2UkJCgt956S3fddZcee+yxAo+9Y8eOCgwMtJ6lc/mzAp966inNnDlTjzzyiJ577jmFhIRoyZIl1i2QrvYrxpYtW+qpp55SbGys9uzZo/vvv19ly5bVoUOHtGzZMr355pt68MEHryveF154QStXrlSnTp3Up08fNW7cWBkZGdq7d68++ugjHTlyJNdfcgIAAFzuiy++0I8//ijpr+ciL126VIcOHdKLL75oPV+wY8eOmjZtmtq3b69HH31Up06d0qxZs1SjRg2nZzM3bNhQjzzyiN566y2lpqaqWbNmio+Pz9NdcP4uICBA9957r/r27avk5GTFxcWpRo0a6t+/vySpdu3aql69up5//nn98ssv8vX11ccff5zjuYcHDx5U27Zt1aNHD91+++1yd3fX8uXLlZyc7PTDxsaNG2v27NmaOHGiatSooaCgoCs+QzCvud2BAwc0evRo9enTx7qyZ+HChWrYsKGeeeYZffjhh9e1z25ubvrXv/6lDh06qG7duurbt68qVaqkX375RevWrZOvr68+++yz63qfpb8K/xMnTlRMTIyOHDmibt26ycfHR4mJiVq+fLkGDBig559//rrm7NWrlxYvXqxhw4Zp27Zt+sc//qGMjAx99dVXeuaZZ9S1a9d8yZEBAEDpERQUpDFjxmjUqFFq0aKFunTponLlyunbb7/Ve++9p/vvv9/p6uq8yGuO+fcYWrdurWnTpumPP/7Qww8/fFPzXUunTp00YcIE9e3bV82aNdPevXu1ZMkSpztm/t218subca38uVevXpo+fbrWrVvndDt3ACWQAYBiYMGCBUaS2b59+1XHZWVlmfHjx5vw8HBTtmxZExYWZmJiYsy5c+dyjJ05c6apXbu2KVu2rAkODjZPP/20OXPmjNOYli1bmrp16+Y5zrFjxxpJ5tdff821v2rVqqZjx4659j3zzDNGklm6dGmu/T///LPp2LGj8fLyMhUrVjTDhw83H3/8sZFktmzZYo3r3bu3qVq1ao7t586daxo3bmy8vLyMj4+PqV+/vhkxYoQ5ceLENeNr2bKladmypVPbH3/8YWJiYkyNGjWMh4eHueWWW0yzZs3MlClTzPnz53PdBwAAgEsu5Xd/Xzw9PU3Dhg3N7NmzTXZ2ttP4+fPnm5o1axq73W5q165tFixYYOVef/fnn3+aZ5991gQGBhpvb2/TuXNnc/z4cSPJjB079qoxrVu3zkgy7733nomJiTFBQUHGy8vLdOzY0Rw9etRp7P79+01kZKQpX768ueWWW0z//v3Nd999ZySZBQsWGGOM+e2338zAgQNN7dq1jbe3t/Hz8zNNmzY1H374odNcSUlJpmPHjsbHx8dIypF35eZqud2FCxfMXXfdZSpXrmxSUlKctnvzzTeNJPPBBx9c9z4bY8zu3btN9+7dTWBgoLHb7aZq1aqmR48eJj4+3hpztZw4t2NmjDEff/yxuffee423t7fx9vY2tWvXNgMHDjQJCQnWmCvl5rnlv2fPnjX/+7//a/1/gcPhMA8++KD56aef8vw+AgAAXMu7775r7rnnHuPt7W3lqePHj3f6LvJSvrVs2TKnbRMTE51yR2PylmP+3bx584wk4+PjY/78888c/XmdL7ccrWrVqqZ3797W+rlz58zw4cNNSEiI8fLyMs2bNzebN2/O8b3h9eSXueVxl+ftl/6/ITEx0WrLS/5ct25d4+bmZv773//m6ANQctiMuexeEwCAQjF06FDNnz9fSUlJKleuXJ62iYuL09ChQ/Xf//5XlSpVyucIAQAASrb169erdevWWrZsWam5mrc07jMAAABKvkaNGikgIEDx8fGFHQqAfMQzugGgCDh37pzeffddRUVFXbHI/eeff+bY5u2331bNmjUpcgMAAAAAAACApB07dmjPnj3q1atXYYcCIJ/xjG4AKESnTp3SV199pY8++ki///67nnvuuSuO7d69u6pUqaKGDRsqNTVV7777rn788UctWbKkACMGAAAAAAAAgKJn37592rlzp6ZOnaqQkJAczy0HUPJQ6AaAQrR//35FR0crKChI06dPV8OGDa84tl27dvrXv/6lJUuW6OLFi7r99tv1/vvvk7ABAAAAAAAAKPU++ugjTZgwQbVq1dJ7770nT0/Pwg4JQD7jGd0AAAAAAAAAAAAAgGKFZ3QDAAAAAAAAAAAAAIoVCt0AAAAAAAAAAAAAgGKFZ3RLys7O1okTJ+Tj4yObzVbY4QAAAOQrY4z++OMPhYaGys2N3z26CjklAAAobcgr8wd5JQAAKE1uJqek0C3pxIkTCgsLK+wwAAAACtTx48dVuXLlwg6jxCCnBAAApRV5pWuRVwIAgNLoRnJKCt2SfHx8JP31Bvr6+hZyNAAAAPkrLS1NYWFhVg4E1yCnBAAApQ15Zf4grwQAAKXJzeSUFLol6xZAvr6+JI8AAKDU4DaIrkVOCQAASivyStcirwQAAKXRjeSUPDwHAAAAAAAAAAAAAFCsUOgGAAAAAAAAAAAAABQrFLoBAAAAAAAAAAAAAMUKhW4AAAAAAAAAAAAAQLFCoRsAAAAAAAAAAAAAUKxQ6AYAAAAAAAAAAAAAFCsUugEAAAAAAAAAAAAAxQqFbgAAAAAAAAAAAABAseJe2AEAAPB3uwfcXtghlDqN5u4v7BAAAABcjryyYJFTAgCAkoq8smCRV+J6cEU3AAAAAAAAAAAAAKBYodANAACAYm/jxo3q3LmzQkNDZbPZtGLFiiuO/Z//+R/ZbDbFxcU5tZ8+fVrR0dHy9fWVv7+/+vXrp/T09PwNHAAAAAAAAMANodANAACAYi8jI0MNGjTQrFmzrjpu+fLl2rJli0JDQ3P0RUdH64cfftCaNWu0atUqbdy4UQMGDMivkAEAAAAAAADcBJ7RDQAAgGKvQ4cO6tChw1XH/PLLLxo8eLC+/PJLdezY0anvwIEDWr16tbZv364mTZpIkmbMmKEHHnhAU6ZMybUwnpmZqczMTGs9LS3NBXsCAAAAAAAAIC8odAMoEU68+VBhh1CqhD63rLBDAIDrkp2drccff1wvvPCC6tatm6N/8+bN8vf3t4rckhQZGSk3Nzdt3bpV//znP3NsExsbq/Hjx+dr3AAAAAAAAAByx63LAQAAUOJNmjRJ7u7uevbZZ3PtT0pKUlBQkFObu7u7AgIClJSUlOs2MTExSk1NtZbjx4+7PG4AAAAAAAAAueOKbgAAAJRoO3fu1Jtvvqldu3bJZrO5bF673S673e6y+QAAAAAAAADkHVd0AwAAoET7+uuvderUKVWpUkXu7u5yd3fX0aNHNXz4cFWrVk2S5HA4dOrUKaftLly4oNOnT8vhcBRC1AAAAChoGzduVOfOnRUaGiqbzaYVK1ZYfVlZWRo5cqTq168vb29vhYaGqlevXjpx4oTTHKdPn1Z0dLR8fX3l7++vfv36KT09vYD3BAAAoHSg0A0AAIAS7fHHH9f333+vPXv2WEtoaKheeOEFffnll5KkiIgIpaSkaOfOndZ2a9euVXZ2tpo2bVpYoQMAAKAAZWRkqEGDBpo1a1aOvrNnz2rXrl0aPXq0du3apU8++UQJCQnq0qWL07jo6Gj98MMPWrNmjVatWqWNGzdqwIABBbULAAAApQq3LgcAAECxl56ersOHD1vriYmJ2rNnjwICAlSlShUFBgY6jS9btqwcDodq1aolSapTp47at2+v/v37a86cOcrKytKgQYPUs2dPhYaGFui+AAAAoHB06NBBHTp0yLXPz89Pa9ascWqbOXOm7r77bh07dkxVqlTRgQMHtHr1am3fvl1NmjSRJM2YMUMPPPCApkyZQl4JAADgYlzRDQAAgGJvx44datSokRo1aiRJGjZsmBo1aqQxY8bkeY4lS5aodu3aatu2rR544AHde++9mjt3bn6FDAAAgGIuNTVVNptN/v7+kqTNmzfL39/fKnJLUmRkpNzc3LR169YrzpOZmam0tDSnBQAAANfGFd0AAAAo9lq1aiVjTJ7HHzlyJEdbQECAli5d6sKoAAAAUFKdO3dOI0eO1COPPCJfX19JUlJSkoKCgpzGubu7KyAgQElJSVecKzY2VuPHj8/XeAEAAEoirugGAAAAAAAAgDzKyspSjx49ZIzR7Nmzb3q+mJgYpaamWsvx48ddECUAAEDJxxXdAAAAAAAAAJAHl4rcR48e1dq1a62ruSXJ4XDo1KlTTuMvXLig06dPy+FwXHFOu90uu92ebzEDAACUVFzRDQAAAAAAAADXcKnIfejQIX311VcKDAx06o+IiFBKSop27txpta1du1bZ2dlq2rRpQYcLAABQ4nFFNwAAAAAAAIBSLz09XYcPH7bWExMTtWfPHgUEBCgkJEQPPvigdu3apVWrVunixYvWc7cDAgLk4eGhOnXqqH379urfv7/mzJmjrKwsDRo0SD179lRoaGhh7RYAAECJRaEbAAAAAAAAQKm3Y8cOtW7d2lofNmyYJKl3794aN26cVq5cKUlq2LCh03br1q1Tq1atJElLlizRoEGD1LZtW7m5uSkqKkrTp08vkPgBAABKGwrdAAAAAAAAAEq9Vq1ayRhzxf6r9V0SEBCgpUuXujIsAAAAXAHP6AYAAAAAAAAAAAAAFCsUugEAAAAAAAAAAAAAxQqFbgAAAAAAAAAAAABAsVKohe6NGzeqc+fOCg0Nlc1m04oVK5z6jTEaM2aMQkJC5OXlpcjISB06dMhpzOnTpxUdHS1fX1/5+/urX79+Sk9PL8C9AAAAAAAAAAAAAAAUpEItdGdkZKhBgwaaNWtWrv2TJ0/W9OnTNWfOHG3dulXe3t5q166dzp07Z42Jjo7WDz/8oDVr1mjVqlXauHGjBgwYUFC7AAAAAAAAAAAAAAAoYO6F+eIdOnRQhw4dcu0zxiguLk6jRo1S165dJUmLFy9WcHCwVqxYoZ49e+rAgQNavXq1tm/friZNmkiSZsyYoQceeEBTpkxRaGhoge0LAAAAAAAAAAAAAKBgFNlndCcmJiopKUmRkZFWm5+fn5o2barNmzdLkjZv3ix/f3+ryC1JkZGRcnNz09atW684d2ZmptLS0pwWAAAAAAAAAAAAAEDxUGQL3UlJSZKk4OBgp/bg4GCrLykpSUFBQU797u7uCggIsMbkJjY2Vn5+ftYSFhbm4ugBAAAAAAAAAAAAAPmlyBa681NMTIxSU1Ot5fjx44UdEgAAAAAAAAAAAAAgj4psodvhcEiSkpOTndqTk5OtPofDoVOnTjn1X7hwQadPn7bG5MZut8vX19dpAQAAAAAAAAAAAAAUD0W20B0eHi6Hw6H4+HirLS0tTVu3blVERIQkKSIiQikpKdq5c6c1Zu3atcrOzlbTpk0LPGYAAAAAAAAAAAAAQP5zL8wXT09P1+HDh631xMRE7dmzRwEBAapSpYqGDBmiiRMnqmbNmgoPD9fo0aMVGhqqbt26SZLq1Kmj9u3bq3///pozZ46ysrI0aNAg9ezZU6GhoYW0VwAAAAAAAAAAAACA/FSohe4dO3aodevW1vqwYcMkSb1799bChQs1YsQIZWRkaMCAAUpJSdG9996r1atXy9PT09pmyZIlGjRokNq2bSs3NzdFRUVp+vTpBb4vAAAAAAAAAAAAAICCUaiF7latWskYc8V+m82mCRMmaMKECVccExAQoKVLl+ZHeAAAAAAAAAAAAACAIqjIPqMbAAAAAAAAAAAAAIDcUOgGAAAAAAAAAAAAABQrFLoBAABQ7G3cuFGdO3dWaGiobDabVqxYYfVlZWVp5MiRql+/vry9vRUaGqpevXrpxIkTTnOcPn1a0dHR8vX1lb+/v/r166f09PQC3hMAAAAAAAAAeUGhGwAAAMVeRkaGGjRooFmzZuXoO3v2rHbt2qXRo0dr165d+uSTT5SQkKAuXbo4jYuOjtYPP/ygNWvWaNWqVdq4caMGDBhQULsAAAAAAAAA4Dq4F3YAAAAAwM3q0KGDOnTokGufn5+f1qxZ49Q2c+ZM3X333Tp27JiqVKmiAwcOaPXq1dq+fbuaNGkiSZoxY4YeeOABTZkyRaGhoTnmzczMVGZmprWelpbmwj0CAAAAAAAAcDVc0Q0AAIBSJzU1VTabTf7+/pKkzZs3y9/f3ypyS1JkZKTc3Ny0devWXOeIjY2Vn5+ftYSFhRVE6AAAAAAAAABEoRsAAAClzLlz5zRy5Eg98sgj8vX1lSQlJSUpKCjIaZy7u7sCAgKUlJSU6zwxMTFKTU21luPHj+d77AAAAAAAAAD+wq3LAQAAUGpkZWWpR48eMsZo9uzZNzWX3W6X3W53UWQAAAAAAAAArgeFbgAAAJQKl4rcR48e1dq1a62ruSXJ4XDo1KlTTuMvXLig06dPy+FwFHSoAAAAAAAAAK6BW5cDAACgxLtU5D506JC++uorBQYGOvVHREQoJSVFO3futNrWrl2r7OxsNW3atKDDBQAAAAAAAHANXNENAACAYi89PV2HDx+21hMTE7Vnzx4FBAQoJCREDz74oHbt2qVVq1bp4sWL1nO3AwIC5OHhoTp16qh9+/bq37+/5syZo6ysLA0aNEg9e/ZUaGhoYe0WAAAAAAAAgCug0A0AAIBib8eOHWrdurW1PmzYMElS7969NW7cOK1cuVKS1LBhQ6ft1q1bp1atWkmSlixZokGDBqlt27Zyc3NTVFSUpk+fXiDxAwAAAAAAALg+FLoBAABQ7LVq1UrGmCv2X63vkoCAAC1dutSVYQEAAAAAAADIJzyjGwAAAAAAAECpt3HjRnXu3FmhoaGy2WxasWKFU78xRmPGjFFISIi8vLwUGRmpQ4cOOY05ffq0oqOj5evrK39/f/Xr10/p6ekFuBcAAAClB4VuAAAAAAAAAKVeRkaGGjRooFmzZuXaP3nyZE2fPl1z5szR1q1b5e3trXbt2uncuXPWmOjoaP3www9as2aNVq1apY0bN2rAgAEFtQsAAAClCrcuBwAAAAAAAFDqdejQQR06dMi1zxijuLg4jRo1Sl27dpUkLV68WMHBwVqxYoV69uypAwcOaPXq1dq+fbuaNGkiSZoxY4YeeOABTZkyRaGhobnOnZmZqczMTGs9LS3NxXsGAABQMnFFNwAAAAAAAABcRWJiopKSkhQZGWm1+fn5qWnTptq8ebMkafPmzfL397eK3JIUGRkpNzc3bd269Ypzx8bGys/Pz1rCwsLyb0cAAABKEArdAAAAAAAAAHAVSUlJkqTg4GCn9uDgYKsvKSlJQUFBTv3u7u4KCAiwxuQmJiZGqamp1nL8+HEXRw8AAFAycevyG/DnkSv/AhOu51WtaWGHAAAAAAAAAOQLu90uu91e2GEAAAAUO1zRDQAAAAAAAABX4XA4JEnJyclO7cnJyVafw+HQqVOnnPovXLig06dPW2MAAADgOhS6AQAAAAAAAOAqwsPD5XA4FB8fb7WlpaVp69atioiIkCRFREQoJSVFO3futMasXbtW2dnZatqUOxYCAAC4GrcuBwAAAAAAAFDqpaen6/Dhw9Z6YmKi9uzZo4CAAFWpUkVDhgzRxIkTVbNmTYWHh2v06NEKDQ1Vt27dJEl16tRR+/bt1b9/f82ZM0dZWVkaNGiQevbsqdDQ0ELaKwAAgJKLQjcAAAAAAACAUm/Hjh1q3bq1tT5s2DBJUu/evbVw4UKNGDFCGRkZGjBggFJSUnTvvfdq9erV8vT0tLZZsmSJBg0apLZt28rNzU1RUVGaPn16ge8LAABAaUChGwAAAAAAAECp16pVKxljrthvs9k0YcIETZgw4YpjAgICtHTp0vwIDwAAAJfhGd0AAAAAAAAAAAAAgGKFQjcAAAAAAAAAAAAAoFjh1uUAAAAAAAAAAAAudOLNhwo7hFIl9LllhR0CgELAFd0AAAAAAAAAAAAAgGKFQjcAAAAAAAAAAAAAoFih0A0AAAAAAAAAAAAAKFYodAMAAAAAAAAAAAAAipUiXei+ePGiRo8erfDwcHl5eal69ep6+eWXZYyxxhhjNGbMGIWEhMjLy0uRkZE6dOhQIUYNAAAAAAAAAAAAAMhPRbrQPWnSJM2ePVszZ87UgQMHNGnSJE2ePFkzZsywxkyePFnTp0/XnDlztHXrVnl7e6tdu3Y6d+5cIUYOAAAAAAAAAAAAAMgv7oUdwNV8++236tq1qzp27ChJqlatmt577z1t27ZN0l9Xc8fFxWnUqFHq2rWrJGnx4sUKDg7WihUr1LNnz0KLHQAAAAAAAAAAAACQP4r0Fd3NmjVTfHy8Dh48KEn67rvv9M0336hDhw6SpMTERCUlJSkyMtLaxs/PT02bNtXmzZuvOG9mZqbS0tKcFgAAAAAAAAAAAABA8VCkC90vvviievbsqdq1a6ts2bJq1KiRhgwZoujoaElSUlKSJCk4ONhpu+DgYKsvN7GxsfLz87OWsLCw/NsJAAAA5LuNGzeqc+fOCg0Nlc1m04oVK5z6jTEaM2aMQkJC5OXlpcjISB06dMhpzOnTpxUdHS1fX1/5+/urX79+Sk9PL8C9AAAAAAAAAJBXRbrQ/eGHH2rJkiVaunSpdu3apUWLFmnKlClatGjRTc0bExOj1NRUazl+/LiLIgYAAEBhyMjIUIMGDTRr1qxc+ydPnqzp06drzpw52rp1q7y9vdWuXTudO3fOGhMdHa0ffvhBa9as0apVq7Rx40YNGDCgoHYBAAAAAAAAwHUo0s/ofuGFF6yruiWpfv36Onr0qGJjY9W7d285HA5JUnJyskJCQqztkpOT1bBhwyvOa7fbZbfb8zV2AAAAFJwOHTpYj7e5nDFGcXFxGjVqlLp27SpJWrx4sYKDg7VixQr17NlTBw4c0OrVq7V9+3Y1adJEkjRjxgw98MADmjJlikJDQ3PMm5mZqczMTGudx+EAAAAAAAAABadIX9F99uxZubk5h1imTBllZ2dLksLDw+VwOBQfH2/1p6WlaevWrYqIiCjQWAEAAFA0JSYmKikpSZGRkVabn5+fmjZtqs2bN0uSNm/eLH9/f6vILUmRkZFyc3PT1q1bc52Xx+EAAAAAAAAAhadIF7o7d+6sV155RZ9//rmOHDmi5cuXa9q0afrnP/8pSbLZbBoyZIgmTpyolStXau/everVq5dCQ0PVrVu3wg0eAAAARUJSUpIkKTg42Kk9ODjY6ktKSlJQUJBTv7u7uwICAqwxl+NxOAAAAAAAAEDhKdK3Lp8xY4ZGjx6tZ555RqdOnVJoaKieeuopjRkzxhozYsQIZWRkaMCAAUpJSdG9996r1atXy9PTsxAjBwAAQEnH43CAkunEmw8VdgilSuhzywo7BAAAAABAMVWkC90+Pj6Ki4tTXFzcFcfYbDZNmDBBEyZMKLjAAAAAUGw4HA5JUnJyskJCQqz25ORkNWzY0Bpz6tQpp+0uXLig06dPW9sDAAAAAAAAKDqK9K3LAQAAgJsVHh4uh8Oh+Ph4qy0tLU1bt25VRESEJCkiIkIpKSnauXOnNWbt2rXKzs5W06ZNCzxmAAAAAAAAAFdXpK/oBgAAAPIiPT1dhw8fttYTExO1Z88eBQQEqEqVKhoyZIgmTpyomjVrKjw8XKNHj1ZoaKi6desmSapTp47at2+v/v37a86cOcrKytKgQYPUs2dPhYaGFtJeAQAAAAAAALgSCt0AAAAo9nbs2KHWrVtb68OGDZMk9e7dWwsXLtSIESOUkZGhAQMGKCUlRffee69Wr14tT09Pa5slS5Zo0KBBatu2rdzc3BQVFaXp06cX+L4AAAAAAAAAuDYK3QAAACj2WrVqJWPMFfttNpsmTJigCRMmXHFMQECAli5dmh/hAQAAAAAAAHAxntENAAAAAAAAAAAAAChWKHQDAAAAAAAAAAAAAIoVCt0AAAAAAAAAAAAAgGKFQjcAAAAAAAAAAAAAoFih0A0AAAAAAAAAeXDx4kWNHj1a4eHh8vLyUvXq1fXyyy/LGGONMcZozJgxCgkJkZeXlyIjI3Xo0KFCjBoAAKBkotANAAAAAAAAAHkwadIkzZ49WzNnztSBAwc0adIkTZ48WTNmzLDGTJ48WdOnT9ecOXO0detWeXt7q127djp37lwhRg4AAFDyuBd2AAAAAAAAAABQHHz77bfq2rWrOnbsKEmqVq2a3nvvPW3btk3SX1dzx8XFadSoUerataskafHixQoODtaKFSvUs2fPQosdAACgpOGKbgAAAAAAAADIg2bNmik+Pl4HDx6UJH333Xf65ptv1KFDB0lSYmKikpKSFBkZaW3j5+enpk2bavPmzbnOmZmZqbS0NKcFAAAA18YV3QAAAAAAAACQBy+++KLS0tJUu3ZtlSlTRhcvXtQrr7yi6OhoSVJSUpIkKTg42Gm74OBgq+9ysbGxGj9+fP4GDgAAUAJxRTcAAAAAAAAA5MGHH36oJUuWaOnSpdq1a5cWLVqkKVOmaNGiRTc8Z0xMjFJTU63l+PHjLowYAACg5OKKbgAAAAAAAADIgxdeeEEvvvii9azt+vXr6+jRo4qNjVXv3r3lcDgkScnJyQoJCbG2S05OVsOGDXOd0263y26353vsAAAAJQ1XdAMAAAAAAABAHpw9e1Zubs5fqZYpU0bZ2dmSpPDwcDkcDsXHx1v9aWlp2rp1qyIiIgo0VgAAgJKOK7oBAAAAAAAAIA86d+6sV155RVWqVFHdunW1e/duTZs2TU888YQkyWazaciQIZo4caJq1qyp8PBwjR49WqGhoerWrVvhBg8AAFDCUOgGAAAAAAAAgDyYMWOGRo8erWeeeUanTp1SaGionnrqKY0ZM8YaM2LECGVkZGjAgAFKSUnRvffeq9WrV8vT07MQIwcAACh5KHQDAAAAAAAAQB74+PgoLi5OcXFxVxxjs9k0YcIETZgwoeACAwAAKIV4RjcAAAAAAAAAAAAAoFih0A0AAAAAAAAAAAAAKFZu6Nblbdq00SeffCJ/f3+n9rS0NHXr1k1r1651RWwAAAAowcgppT+PbC3sEEoVr2pNCzsEAACQD8grAQAASqcbuqJ7/fr1On/+fI72c+fO6euvv77poAAAAFDykVMCAADAFcgrAQAASqfruqL7+++/t/59//79SkpKstYvXryo1atXq1KlSq6LDgAAACUOOSUAAABcgbwSAACgdLuuQnfDhg1ls9lks9nUpk2bHP1eXl6aMWOGy4IDAABAyUNOCQAAAFcgrwQAACjdrqvQnZiYKGOMbr31Vm3btk0VK1a0+jw8PBQUFKQyZcq4PEgAAACUHOSUAAAAcAXyyr/8eWRrYYdQ6nhVa1rYIQAAAF1nobtq1aqSpOzs7HwJBgAAACVfYeSUFy9e1Lhx4/Tuu+8qKSlJoaGh6tOnj0aNGiWbzSZJMsZo7NixmjdvnlJSUtS8eXPNnj1bNWvWLLA4AQAAkHd8VwkAAFC6XVeh++8OHTqkdevW6dSpUzmSyTFjxtx0YAAAACj5CiqnnDRpkmbPnq1Fixapbt262rFjh/r27Ss/Pz89++yzkqTJkydr+vTpWrRokcLDwzV69Gi1a9dO+/fvl6enp8tiAQAAgOvxXSUAAEDpc0OF7nnz5unpp5/WLbfcIofDYV0FI0k2m43kEQAAANdUkDnlt99+q65du6pjx46SpGrVqum9997Ttm3bJP11NXdcXJxGjRqlrl27SpIWL16s4OBgrVixQj179swxZ2ZmpjIzM631tLQ0l8ULAACAvOO7SgAAgNLphgrdEydO1CuvvKKRI0e6Oh4AAACUEgWZUzZr1kxz587VwYMHddttt+m7777TN998o2nTpkn66/mOSUlJioyMtLbx8/NT06ZNtXnz5lwL3bGxsRo/fny+xw4AAICr47tKAACA0umGCt1nzpzRQw895OpYAAAAUIoUZE754osvKi0tTbVr11aZMmV08eJFvfLKK4qOjpYkJSUlSZKCg4OdtgsODrb6LhcTE6Nhw4ZZ62lpaQoLC8unPQAAAMCV8F0lAABA6eR2Ixs99NBD+s9//uPqWAAAAFCKFGRO+eGHH2rJkiVaunSpdu3apUWLFmnKlClatGjRDc9pt9vl6+vrtAAAAKDg8V0lAABA6XRDV3TXqFFDo0eP1pYtW1S/fn2VLVvWqf/ZZ591SXCS9Msvv2jkyJH64osvdPbsWdWoUUMLFixQkyZNJP31PMWxY8dq3rx5SklJUfPmzTV79mzVrFnTZTEAAADA9Qoyp3zhhRf04osvWrcgr1+/vo4eParY2Fj17t1bDodDkpScnKyQkBBru+TkZDVs2NBlcQAAAMD1CjKvBAAAQNFxQ4XuuXPnqnz58tqwYYM2bNjg1Gez2VyWPJ45c0bNmzdX69at9cUXX6hixYo6dOiQKlSoYI2ZPHmypk+frkWLFik8PFyjR49Wu3bttH//fnl6erokDgAAALheQeWUknT27Fm5uTnfzKhMmTLKzs6WJIWHh8vhcCg+Pt4qbKelpWnr1q16+umnXRYHAAAAXK8g80oAAAAUHTdU6E5MTHR1HLmaNGmSwsLCtGDBAqstPDzc+ndjjOLi4jRq1Ch17dpVkrR48WIFBwdrxYoV1hU7l8vMzFRmZqa1npaWlk97AAAAgCspqJxSkjp37qxXXnlFVapUUd26dbV7925NmzZNTzzxhKS/vgAdMmSIJk6cqJo1a1o/oAwNDVW3bt0KLE4AAABcv4LMKwEAAFB03NAzugvKypUr1aRJEz300EMKCgpSo0aNNG/ePKs/MTFRSUlJioyMtNr8/PzUtGlTbd68+YrzxsbGys/Pz1rCwsLydT8AAABQuGbMmKEHH3xQzzzzjOrUqaPnn39eTz31lF5++WVrzIgRIzR48GANGDBAd911l9LT07V69WruEgQAAAAAAAAUQTd0RfelK1+u5J133rmhYC73888/a/bs2Ro2bJheeuklbd++Xc8++6w8PDzUu3dvJSUlSZKCg4OdtgsODrb6chMTE6Nhw4ZZ62lpaRS7AQAAClhB5ZSS5OPjo7i4OMXFxV1xjM1m04QJEzRhwgSXvS4AAADyX0HmlQAAACg6bqjQfebMGaf1rKws7du3TykpKWrTpo1LApOk7OxsNWnSRK+++qokqVGjRtq3b5/mzJmj3r173/C8drtddrvdVWECAADgBhRUTgkAAICSjbwSAACgdLqhQvfy5ctztGVnZ+vpp59W9erVbzqoS0JCQnT77bc7tdWpU0cff/yxJMnhcEiSkpOTFRISYo1JTk5Ww4YNXRYHAAAAXK+gckoAAACUbOSVAAAApZPLntHt5uamYcOG6Y033nDVlGrevLkSEhKc2g4ePKiqVatKksLDw+VwOBQfH2/1p6WlaevWrYqIiHBZHAAAACgY+ZFTAgAAoPQhrwQAACj5buiK7iv56aefdOHCBZfNN3ToUDVr1kyvvvqqevTooW3btmnu3LmaO3eupL+eozhkyBBNnDhRNWvWVHh4uEaPHq3Q0FB169bNZXEAAACg4Lg6pwQAAEDpRF4JAABQst1QoXvYsGFO68YYnTx5Up9//vlNPTv7cnfddZeWL1+umJgYTZgwQeHh4YqLi1N0dLQ1ZsSIEcrIyNCAAQOUkpKie++9V6tXr5anp6fL4gAAAIDrFVROCQAAgJKNvBIAAKB0uqFC9+7du53W3dzcVLFiRU2dOlVPPPGESwK7pFOnTurUqdMV+202myZMmKAJEya49HUBAACQvwoypwQAAEDJRV4JAABQOt1QoXvdunWujgMAAAClDDklAAAAXIG8EgAA5MWi+0ILO4RSpfeaE/n+Gjf1jO5ff/1VCQkJkqRatWqpYsWKLgkKAAAApQc5JQAAAFyBvBIAAKB0cbuRjTIyMvTEE08oJCRELVq0UIsWLRQaGqp+/frp7Nmzro4RAAAAJRA5JQAAAFyBvBIAAKB0uqFC97Bhw7RhwwZ99tlnSklJUUpKij799FNt2LBBw4cPd3WMAAAAKIHIKQEAAOAKBZ1X/vLLL3rssccUGBgoLy8v1a9fXzt27LD6jTEaM2aMQkJC5OXlpcjISB06dMjlcQAAAJR2N3Tr8o8//lgfffSRWrVqZbU98MAD8vLyUo8ePTR79mxXxQcAAIASipwSAAAArlCQeeWZM2fUvHlztW7dWl988YUqVqyoQ4cOqUKFCtaYyZMna/r06Vq0aJHCw8M1evRotWvXTvv375enp6fLYgEAACjtbqjQffbsWQUHB+doDwoK4nZAAAAAyBNySgAAALhCQeaVkyZNUlhYmBYsWGC1hYeHW/9ujFFcXJxGjRqlrl27SpIWL16s4OBgrVixQj179swxZ2ZmpjIzM631tLQ0l8YMAABQUt3QrcsjIiI0duxYnTt3zmr7888/NX78eEVERLgsOAAAAJRc5JQAAABwhYLMK1euXKkmTZrooYceUlBQkBo1aqR58+ZZ/YmJiUpKSlJkZKTV5ufnp6ZNm2rz5s25zhkbGys/Pz9rCQsLc2nMAAAAJdUNXdEdFxen9u3bq3LlymrQoIEk6bvvvpPdbtd//vMflwYIAACAkomcEgAAAK5QkHnlzz//rNmzZ2vYsGF66aWXtH37dj377LPy8PBQ7969lZSUJEk5rjAPDg62+i4XExOjYcOGWetpaWkUuwEAAPLghgrd9evX16FDh7RkyRL9+OOPkqRHHnlE0dHR8vLycmmAAAAAKJnIKQEAAOAKBZlXZmdnq0mTJnr11VclSY0aNdK+ffs0Z84c9e7d+4bmtNvtstvtrgwTAACgVLihQndsbKyCg4PVv39/p/Z33nlHv/76q0aOHOmS4ID8dnrNtMIOoVQJuG/YtQcBAEoNckoAAAC4QkHmlSEhIbr99tud2urUqaOPP/5YkuRwOCRJycnJCgkJscYkJyerYcOGLosDAAAAN/iM7rffflu1a9fO0V63bl3NmTPnpoMCAABAyUdOCQAAAFcoyLyyefPmSkhIcGo7ePCgqlatKkkKDw+Xw+FQfHy81Z+WlqatW7e6/HnhAAAApd0NXdGdlJTk9IvESypWrKiTJ0/edFAAAAAo+cgpAQAA4AoFmVcOHTpUzZo106uvvqoePXpo27Ztmjt3rubOnStJstlsGjJkiCZOnKiaNWsqPDxco0ePVmhoqLp16+bSWAAAAEq7G7qiOywsTJs2bcrRvmnTJoWGht50UAAAACj5yCkBAADgCgWZV951111avny53nvvPdWrV08vv/yy4uLiFB0dbY0ZMWKEBg8erAEDBuiuu+5Senq6Vq9eLU9PT5fGAgAAUNrd0BXd/fv315AhQ5SVlaU2bdpIkuLj4zVixAgNHz7cpQECAACgZCKnBAAAgCsUdF7ZqVMnderU6Yr9NptNEyZM0IQJE1z+2gAAAPh/bqjQ/cILL+j333/XM888o/Pnz0uSPD09NXLkSMXExLg0QAAAAJRM5JQAAABwBfJKAACA0umGCt02m02TJk3S6NGjdeDAAXl5ealmzZqy2+2ujg8AAAAlFDklAAAAXIG8EgAAoHS6oWd0X1K+fHndddddqlevHokjAAAAbkhB5ZS//PKLHnvsMQUGBsrLy0v169fXjh07rH5jjMaMGaOQkBB5eXkpMjJShw4dyrd4AAAA4Fp8VwkAAFC63FShGwAAACgOzpw5o+bNm6ts2bL64osvtH//fk2dOlUVKlSwxkyePFnTp0/XnDlztHXrVnl7e6tdu3Y6d+5cIUYOAAAAAAAAIDc3dOtyAAAAoDiZNGmSwsLCtGDBAqstPDzc+ndjjOLi4jRq1Ch17dpVkrR48WIFBwdrxYoV6tmzZ445MzMzlZmZaa2npaXl4x4AAAAAAAAA+Duu6AYAAECJt3LlSjVp0kQPPfSQgoKC1KhRI82bN8/qT0xMVFJSkiIjI602Pz8/NW3aVJs3b851ztjYWPn5+VlLWFhYvu8HAAAAAAAAgL9Q6AYAAECJ9/PPP2v27NmqWbOmvvzySz399NN69tlntWjRIklSUlKSJCk4ONhpu+DgYKvvcjExMUpNTbWW48eP5+9OAAAAAAAAALBw63IAAACUeNnZ2WrSpIleffVVSVKjRo20b98+zZkzR717976hOe12u+x2uyvDBAAAAAAAAJBHXNENAACAEi8kJES33367U1udOnV07NgxSZLD4ZAkJScnO41JTk62+gAAAAAAAAAUHRS6AQAAUOI1b95cCQkJTm0HDx5U1apVJUnh4eFyOByKj4+3+tPS0rR161ZFREQUaKwAAAAAAAAAro1blwMAAKDEGzp0qJo1a6ZXX31VPXr00LZt2zR37lzNnTtXkmSz2TRkyBBNnDhRNWvWVHh4uEaPHq3Q0FB169atcIMHAAAAAAAAkAOFbgAAAJR4d911l5YvX66YmBhNmDBB4eHhiouLU3R0tDVmxIgRysjI0IABA5SSkqJ7771Xq1evlqenZyFGDgAAAAAAACA3FLoBAABQKnTq1EmdOnW6Yr/NZtOECRM0YcKEAowKAAAAAAAAwI3gGd0AAAAAAAAAAAAAgGKFQjcAAAAAAAAAAAAAoFih0A0AAAAAAAAAAAAAKFYodAMAAAAAAAAAAAAAipViVeh+7bXXZLPZNGTIEKvt3LlzGjhwoAIDA1W+fHlFRUUpOTm58IIEAAAAAAAAAAAAAOSrYlPo3r59u95++23dcccdTu1Dhw7VZ599pmXLlmnDhg06ceKEunfvXkhRAgAAAAAAAAAAAADyW7EodKenpys6Olrz5s1ThQoVrPbU1FTNnz9f06ZNU5s2bdS4cWMtWLBA3377rbZs2XLF+TIzM5WWlua0AAAAAAAAAAAAAACKh2JR6B44cKA6duyoyMhIp/adO3cqKyvLqb127dqqUqWKNm/efMX5YmNj5efnZy1hYWH5FjsAAAAAAAAAAAAAwLWKfKH7/fff165duxQbG5ujLykpSR4eHvL393dqDw4OVlJS0hXnjImJUWpqqrUcP37c1WEDAAAAAAAAAAAAAPKJe2EHcDXHjx/Xc889pzVr1sjT09Nl89rtdtntdpfNBwAAAAAAAAAAAAAoOEX6iu6dO3fq1KlTuvPOO+Xu7i53d3dt2LBB06dPl7u7u4KDg3X+/HmlpKQ4bZecnCyHw1E4QQMAAAAAAAAAAAAA8lWRvqK7bdu22rt3r1Nb3759Vbt2bY0cOVJhYWEqW7as4uPjFRUVJUlKSEjQsWPHFBERURghAwAAAAAAAAAAAADyWZEudPv4+KhevXpObd7e3goMDLTa+/Xrp2HDhikgIEC+vr4aPHiwIiIidM899xRGyAAAAAAAAAAAAACAfFakb12eF2+88YY6deqkqKgotWjRQg6HQ5988klhhwUAAAAAAACgBHvttddks9k0ZMgQq+3cuXMaOHCgAgMDVb58eUVFRSk5ObnwggQAACjBivQV3blZv36907qnp6dmzZqlWbNmFU5AAAAAAAAAAEqV7du36+2339Ydd9zh1D506FB9/vnnWrZsmfz8/DRo0CB1795dmzZtKqRIAQAASq5if0U3AAAAAAAAABSU9PR0RUdHa968eapQoYLVnpqaqvnz52vatGlq06aNGjdurAULFujbb7/Vli1brjhfZmam0tLSnBYAAABcG4VuAAAAAAAAAMijgQMHqmPHjoqMjHRq37lzp7Kyspzaa9eurSpVqmjz5s1XnC82NlZ+fn7WEhYWlm+xAwAAlCQUugEAAAAAAAAgD95//33t2rVLsbGxOfqSkpLk4eEhf39/p/bg4GAlJSVdcc6YmBilpqZay/Hjx10dNgAAQIlU7J7RDQAAAAAAAAAF7fjx43ruuee0Zs0aeXp6umxeu90uu93usvkAAABKC67oBgAAAAAAAIBr2Llzp06dOqU777xT7u7ucnd314YNGzR9+nS5u7srODhY58+fV0pKitN2ycnJcjgchRM0AABACcYV3QAAAAAAAABwDW3bttXevXud2vr27avatWtr5MiRCgsLU9myZRUfH6+oqChJUkJCgo4dO6aIiIjCCBkAAKBEo9ANAAAAAAAAANfg4+OjevXqObV5e3srMDDQau/Xr5+GDRumgIAA+fr6avDgwYqIiNA999xTGCEDAACUaNy6HAAAAKXOa6+9JpvNpiFDhlht586d08CBAxUYGKjy5csrKipKycnJhRckAAAAip033nhDnTp1UlRUlFq0aCGHw6FPPvmksMMCAAAokbiiGwAAAKXK9u3b9fbbb+uOO+5wah86dKg+//xzLVu2TH5+fho0aJC6d++uTZs2FVKkAAAAKOrWr1/vtO7p6alZs2Zp1qxZhRMQAABAKcIV3QAAACg10tPTFR0drXnz5qlChQpWe2pqqubPn69p06apTZs2aty4sRYsWKBvv/1WW7ZsyXWuzMxMpaWlOS0AAAAAAAAACgaFbgAAAJQaAwcOVMeOHRUZGenUvnPnTmVlZTm1165dW1WqVNHmzZtznSs2NlZ+fn7WEhYWlq+xAwAAAAAAAPh/KHQDAACgVHj//fe1a9cuxcbG5uhLSkqSh4eH/P39ndqDg4OVlJSU63wxMTFKTU21luPHj+dH2AAAAAAAAABywTO6AQAAUOIdP35czz33nNasWSNPT0+XzGm322W3210yFwAAAAAAAIDrwxXdAAAAKPF27typU6dO6c4775S7u7vc3d21YcMGTZ8+Xe7u7goODtb58+eVkpLitF1ycrIcDkfhBA0AAAAAAADgiriiGwAAACVe27ZttXfvXqe2vn37qnbt2ho5cqTCwsJUtmxZxcfHKyoqSpKUkJCgY8eOKSIiojBCBgAAAAAAAHAVFLoBAABQ4vn4+KhevXpObd7e3goMDLTa+/Xrp2HDhikgIEC+vr4aPHiwIiIidM899xRGyAAAAAAAAACugkI3AAAAIOmNN96Qm5uboqKilJmZqXbt2umtt94q7LAAAAAAAAAA5IJCNwAAAEql9evXO617enpq1qxZmjVrVuEEBAAAAAAAACDPKHQDAAAAAAAAAFAEnF4zrbBDKFUC7htW2CEAAG6CW2EHAAAAAAAAAAAAAADA9aDQDQAAAAAAAAAAAAAoVih0AwAAAAAAAAAAAACKFZ7RDQAA8s2i+0ILO4RSpfeaE4UdAgAAAAAAAAAUCK7oBgAAAAAAAAAAAAAUKxS6AQAAAAAAAAAAAADFCrcuBwAAAICbdHrNtMIOoVQJuG9YYYcAAAAAAAAKGVd0AwAAAAAAAAAAAACKFa7oBgAAAAAAQJG16L7Qwg6hVOm95kRhhwAAAADkCVd0AwAAAAAAAAAAAACKFQrdAAAAAAAAAAAAAIBihUI3AAAAAAAAAAAAAKBYKdKF7tjYWN11113y8fFRUFCQunXrpoSEBKcx586d08CBAxUYGKjy5csrKipKycnJhRQxAAAAAAAAAAAAACC/FelC94YNGzRw4EBt2bJFa9asUVZWlu6//35lZGRYY4YOHarPPvtMy5Yt04YNG3TixAl17969EKMGAAAAAAAAAAAAAOQn98IO4GpWr17ttL5w4UIFBQVp586datGihVJTUzV//nwtXbpUbdq0kSQtWLBAderU0ZYtW3TPPffkOm9mZqYyMzOt9bS0tPzbCQAAAAAAAAAAAACASxXpK7ovl5qaKkkKCAiQJO3cuVNZWVmKjIy0xtSuXVtVqlTR5s2brzhPbGys/Pz8rCUsLCx/AwcAAAAAAAAAAAAAuEyxKXRnZ2dryJAhat68uerVqydJSkpKkoeHh/z9/Z3GBgcHKykp6YpzxcTEKDU11VqOHz+en6EDAAAAAAAAKAFiY2N11113ycfHR0FBQerWrZsSEhKcxpw7d04DBw5UYGCgypcvr6ioKCUnJxdSxAAAACVXsSl0Dxw4UPv27dP7779/03PZ7Xb5+vo6LQAAAAAAAABwNRs2bNDAgQO1ZcsWrVmzRllZWbr//vuVkZFhjRk6dKg+++wzLVu2TBs2bNCJEyfUvXv3QowaAACgZCrSz+i+ZNCgQVq1apU2btyoypUrW+0Oh0Pnz59XSkqK01XdycnJcjgchRApAAAAAAAAgJJq9erVTusLFy5UUFCQdu7cqRYtWig1NVXz58/X0qVL1aZNG0nSggULVKdOHW3ZskX33HNPYYQNAABQIhXpK7qNMRo0aJCWL1+utWvXKjw83Km/cePGKlu2rOLj4622hIQEHTt2TBEREQUdLgAAAAAAAIBSJDU1VZIUEBAgSdq5c6eysrIUGRlpjaldu7aqVKmizZs35zpHZmam0tLSnBYAAABcW5G+onvgwIFaunSpPv30U/n4+FjP3fbz85OXl5f8/PzUr18/DRs2TAEBAfL19dXgwYMVERHBryMBAAAAAAAA5Jvs7GwNGTJEzZs3V7169SRJSUlJ8vDwcLr7pCQFBwdb321eLjY2VuPHj8/vcAEAAEqcIn1F9+zZs5WamqpWrVopJCTEWj744ANrzBtvvKFOnTopKipKLVq0kMPh0CeffFKIUQMAAKCoiY2N1V133SUfHx8FBQWpW7duSkhIcBpz7tw5DRw4UIGBgSpfvryioqKUnJxcSBEDAACgqBs4cKD27dun999//6bmiYmJUWpqqrUcP37cRRECAACUbEW60G2MyXXp06ePNcbT01OzZs3S6dOnlZGRoU8++YTncwMAAMDJhg0bNHDgQG3ZskVr1qxRVlaW7r//fmVkZFhjhg4dqs8++0zLli3Thg0bdOLECXXv3r0QowYAAEBRNWjQIK1atUrr1q1T5cqVrXaHw6Hz588rJSXFaXxycvIVv7O02+3y9fV1WgAAAHBtRfrW5QAAAIArrF692ml94cKFCgoK0s6dO9WiRQulpqZq/vz5Wrp0qdq0aSNJWrBggerUqaMtW7bk+liczMxMZWZmWus8SxEAAKDkM8Zo8ODBWr58udavX6/w8HCn/saNG6ts2bKKj49XVFSUJCkhIUHHjh1TREREYYQMAABQYhXpK7oBAACA/JCamipJCggIkCTt3LlTWVlZioyMtMbUrl1bVapU0ebNm3OdIzY2Vn5+ftYSFhaW/4EDAACgUA0cOFDvvvuuli5dKh8fHyUlJSkpKUl//vmnJMnPz0/9+vXTsGHDtG7dOu3cuVN9+/ZVRERErj+eBAAAwI2j0A0AAIBSJTs7W0OGDFHz5s1Vr149SVJSUpI8PDzk7+/vNDY4OFhJSUm5zsOzFAEAAEqf2bNnKzU1Va1atVJISIi1fPDBB9aYN954Q506dVJUVJRatGghh8OhTz75pBCjBgAAKJm4dTkAAABKlYEDB2rfvn365ptvbmoeu90uu93uoqgAAABQHBhjrjnG09NTs2bN0qxZswogIgAAgNKLK7oBAABQagwaNEirVq3SunXrVLlyZavd4XDo/PnzSklJcRqfnJwsh8NRwFECAAAAAAAAuBYK3QAAACjxjDEaNGiQli9frrVr1yo8PNypv3Hjxipbtqzi4+OttoSEBB07dkwREREFHS4AAAAAAACAa+DW5QAAACjxBg4cqKVLl+rTTz+Vj4+P9dxtPz8/eXl5yc/PT/369dOwYcMUEBAgX19fDR48WBEREbrnnnsKOXoAAAAAAAAAl6PQDQAAgBJv9uzZkqRWrVo5tS9YsEB9+vSRJL3xxhtyc3NTVFSUMjMz1a5dO7311lsFHCkAAAAAAACAvKDQDQAAgBLPGHPNMZ6enpo1a5ZmzZpVABEBAAAAAAAAuBk8oxsAAAAAAAAAAAAAUKxQ6AYAAAAAAAAAAAAAFCsUugEAAAAAAAAAAAAAxQqFbgAAAAAAAAAAAABAsUKhGwAAAAAAAAAAAABQrFDoBgAAAAAAAAAAAAAUKxS6AQAAAAAAAAAAAADFCoVuAAAAAAAAAAAAAECxQqEbAAAAAAAAAAAAAFCsUOgGAAAAAAAAAAAAABQrFLoBAAAAAAAAAAAAAMUKhW4AAAAAAAAAAAAAQLFCoRsAAAAAAAAAAAAAUKxQ6AYAAAAAAAAAAAAAFCsUugEAAAAAAAAAAAAAxQqFbgAAAAAAAAAAAABAsUKhGwAAAAAAAAAAAABQrFDoBgAAAAAAAAAAAAAUKxS6AQAAAAAAAAAAAADFCoVuAAAAAAAAAAAAAECxQqEbAAAAAAAAAAAAAFCsUOgGAAAAAAAAAAAAABQrJabQPWvWLFWrVk2enp5q2rSptm3bVtghAQAAoBgirwQAAMDNIqcEAADIfyWi0P3BBx9o2LBhGjt2rHbt2qUGDRqoXbt2OnXqVGGHBgAAgGKEvBIAAAA3i5wSAACgYLgXdgCuMG3aNPXv3199+/aVJM2ZM0eff/653nnnHb344os5xmdmZiozM9NaT01NlSSlpaXl6fX+/CPDBVEjr7LyeFxuRFrGuXybGzm55+Ox/ONcVr7NjZzyer68EennL+bb3Mhdfh7PPy9k59vcyCmvx/LSOGNMfoZTLF1PXnmzOaVEXlnQyCtLDvLKkoO8suQgpyw5rudYklfmju8qSz7yypKDvLLkIK8sOcgrS46C+K7SZop5Jnr+/HmVK1dOH330kbp162a19+7dWykpKfr0009zbDNu3DiNHz++AKMEAAAoeo4fP67KlSsXdhhFxvXmleSUAAAAfyGv/H/4rhIAAODG3EhOWeyv6P7tt9908eJFBQcHO7UHBwfrxx9/zHWbmJgYDRs2zFrPzs7W6dOnFRgYKJvNlq/xFpa0tDSFhYXp+PHj8vX1LexwcBM4liUHx7Lk4FiWLKXheBpj9Mcffyg0NLSwQylSrjevLI05pVQ6/kZKC45lycGxLDk4liVHaTmW5JU58V1l3pWWv5PSgGNZcnAsSw6OZclRGo7lzeSUxb7QfSPsdrvsdrtTm7+/f+EEU8B8fX1L7B9CacOxLDk4liUHx7JkKenH08/Pr7BDKPZKc04plfy/kdKEY1lycCxLDo5lyVEajiV55c0jryz5fyelBcey5OBYlhwcy5KjpB/LG80p3VwcR4G75ZZbVKZMGSUnJzu1Jycny+FwFFJUAAAAKG7IKwEAAHCzyCkBAAAKTrEvdHt4eKhx48aKj4+32rKzsxUfH6+IiIhCjAwAAADFCXklAAAAbhY5JQAAQMEpEbcuHzZsmHr37q0mTZro7rvvVlxcnDIyMtS3b9/CDq3IsNvtGjt2bI7bIKH44ViWHBzLkoNjWbJwPEs38spr42+k5OBYlhwcy5KDY1lycCxLN3LKvOHvpOTgWJYcHMuSg2NZcnAsr85mjDGFHYQrzJw5U6+//rqSkpLUsGFDTZ8+XU2bNi3ssAAAAFDMkFcCAADgZpFTAgAA5L8SU+gGAAAAAAAAAAAAAJQOxf4Z3QAAAAAAAAAAAACA0oVCNwAAAAAAAAAAAACgWKHQDQAAAAAAAAAAAAAoVih046atX79eNptNKSkphR1KiVWtWjXFxcUVdhhAiWOz2bRixYrCDgP5JD/OnQsXLpS/v7+1Pm7cODVs2NClrwGUZuSV+Y+8Esgf5JUlG3klULyQU+Y/ckogf5BTlnzkla5HobsI6dOnj2w2m1577TWn9hUrVshms7nsdY4cOSKbzaY9e/a4bM7i4tdff9XTTz+tKlWqyG63y+FwqF27dtq0aZM1hv+YIK82b96sMmXKqGPHjoUdCi5z6Xxqs9lUtmxZBQcH67777tM777yj7Oxsa9zJkyfVoUOHQoy0eODceWXPP/+84uPjCzsMIAfyyvzHuRGuRF5ZdJFXuhbnzisjr0RRRE6Z/zgvwpXIKYsuckrX4/x5ZaUtr6TQXcR4enpq0qRJOnPmTGGHovPnzxd2CC4XFRWl3bt3a9GiRTp48KBWrlypVq1a6ffff7+ueUrie3MjSvv7MH/+fA0ePFgbN27UiRMnbmquixcvOiU1uHnt27fXyZMndeTIEX3xxRdq3bq1nnvuOXXq1EkXLlyQJDkcDtnt9kKLsbj8DXHuvLLy5csrMDCwUGPIysoq1NdH0UVemb84N7pWaX8fyCuLNvJK1+HceWXklSiqyCnzF+dF1yrt7wM5ZdFGTulanD+vrNTllQZFRu/evU2nTp1M7dq1zQsvvGC1L1++3Pz9UH399dfm3nvvNZ6enqZy5cpm8ODBJj093eqXZJYvX+40t5+fn1mwYIHV//elZcuW1ut37drVTJw40YSEhJhq1aoZY4xZvHixady4sSlfvrwJDg42jzzyiElOTrbmXrdunZFkzpw549o3xMXOnDljJJn169dfcUzVqlWd3puqVasaY4wZO3asadCggZk3b56pVq2asdlsxhhjjh49arp06WK8vb2Nj4+Peeihh0xSUpI136XtFi9ebKpWrWp8fX3Nww8/bNLS0qwxaWlp5tFHHzXlypUzDofDTJs2zbRs2dI899xzTnG98cYbxhhj+vbtazp27OgU9/nz503FihXNv/71r1z367fffjM9e/Y0oaGhxsvLy9SrV88sXbrUaUxe45gwYYJ5/PHHjY+Pj+ndu7cx5tqfyXPnzpnhw4eb0NBQU65cOXP33XebdevWXfE4FAd//PGHKV++vPnxxx/Nww8/bF555RWn/k8//dTUqFHD2O1206pVK7Nw4UKnv5MFCxYYPz8/8+mnn5o6deqYMmXKmMTExDy9V9d6v/H/zmeXi4+PN5LMvHnzjDHO58vMzEwzcOBA43A4jN1uN1WqVDGvvvqqte3UqVNNvXr1TLly5UzlypXN008/bf744w+n+efOnWsqV65svLy8TLdu3czUqVONn5+f1X+lc8mZM2dMv379zC233GJ8fHxM69atzZ49e5zmXrFihWnUqJGx2+0mPDzcjBs3zmRlZbng3bq60nzuNOavv9WwsDDrmE6ZMiXXY3rJunXrzF133WXKlStn/Pz8TLNmzcyRI0eMMcYcPnzYdOnSxQQFBRlvb2/TpEkTs2bNGqfXO3HihHnggQeMp6enqVatmlmyZInTfhjz1+f2rbfeMp07dzblypUzY8eONcZc+zOSl88ZSg7yyvxVms+N5JWuR15ZtJFXuk5pPncaQ16J4omcMn+V5vMiOaXrkVMWbeSUrlWaz5/GkFdejkJ3EXLpZPfJJ58YT09Pc/z4cWOMc/J4+PBh4+3tbd544w1z8OBBs2nTJtOoUSPTp08fa55rJY/btm0zksxXX31lTp48aX7//Xfr9cuXL28ef/xxs2/fPrNv3z5jjDHz5883//73v81PP/1kNm/ebCIiIkyHDh2suYtL8piVlWXKly9vhgwZYs6dO5frmFOnThlJZsGCBebkyZPm1KlTxpi/Tgze3t6mffv2ZteuXea7774zFy9eNA0bNjT33nuv2bFjh9myZYtp3LixlYxf2q58+fKme/fuZu/evWbjxo3G4XCYl156yRrz5JNPmqpVq5qvvvrK7N271/zzn/80Pj4+Vzz5bdq0yZQpU8acOHHC6v/kk0+Mt7d3jv+QXfLf//7XvP7662b37t3mp59+MtOnTzdlypQxW7duve44fH19zZQpU8zhw4et5VqfySeffNI0a9bMbNy40Rw+fNi8/vrrxm63m4MHD17zuBVV8+fPN02aNDHGGPPZZ5+Z6tWrm+zsbGOMMT///LMpW7asef75582PP/5o3nvvPVOpUqUcyWPZsmVNs2bNzKZNm8yPP/5oMjIyrvle5eX9xpWTR2OMadCggXUO+/v58vXXXzdhYWFm48aN5siRI+brr792+p+sN954w6xdu9YkJiaa+Ph4U6tWLfP0009b/d98841xc3Mzr7/+uklISDCzZs0yAQEBOZKMy88lxhgTGRlpOnfubLZv324OHjxohg8fbgIDA63z88aNG42vr69ZuHCh+emnn8x//vMfU61aNTNu3DgXvmu5K83nzi1bthg3NzczadIkk5CQYN58803j7+9/xcQxKyvL+Pn5meeff94cPnzY7N+/3yxcuNAcPXrUGGPMnj17zJw5c8zevXvNwYMHzahRo4ynp6fVb8xfn4WGDRuaLVu2mJ07d5qWLVsaLy+vHIljUFCQeeedd8xPP/1kjh49mqfPyLU+ZyhZyCvzV2k+N5JXuh55ZdFGXuk6pfncSV6J4oqcMn+V5vMiOaXrkVMWbeSUrlWaz5/klTlR6C5C/n6yu+eee8wTTzxhjHFOHvv162cGDBjgtN3XX39t3NzczJ9//mmMuXbymJiYaCSZ3bt353j94OBgk5mZedU4t2/fbiRZf2jFJXk0xpiPPvrIVKhQwXh6eppmzZqZmJgY6+R9SW7v39ixY03ZsmWtk6ExxvznP/8xZcqUMceOHbPafvjhByPJbNu2zdquXLlyTr/qeeGFF0zTpk2NMX/9wqds2bJm2bJlVn9KSoopV67cFU9+xhhz++23m0mTJlnrnTt3vu7koWPHjmb48OHXHUe3bt2c5rnWZ/Lo0aOmTJky5pdffnEa07ZtWxMTE3NdMRclzZo1M3FxccaYv/5jccstt1i/Zhw5cqSpV6+e0/j//d//zZE8SnL6dVJe3qu8nANw9eTx4YcfNnXq1DHGOP+9Dx482LRp08b6n4BrWbZsmQkMDHSa9/Jf4EVHR+dIMi4/l3z99dfG19c3R1JWvXp18/bbbxtj/voM/P0Xm8YY83//938mJCQkT7HerNJ67nzkkUfMAw884NT28MMPXzFx/P3336/5a9LL1a1b18yYMcMYY8yBAweMJLN9+3ar/9ChQ0ZSjsRxyJAhTvNc6zOSl88ZShbyyvxXWs+NuSGvvDnklUUbeaVrldZzJ3kliityyvxXWs+LuSGnvDnklEUbOaXrldbzJ3llTjyju4iaNGmSFi1apAMHDji1f/fdd1q4cKHKly9vLe3atVN2drYSExNv+nXr168vDw8Pp7adO3eqc+fOqlKlinx8fNSyZUtJ0rFjx2769QpaVFSUTpw4oZUrV6p9+/Zav3697rzzTi1cuPCa21atWlUVK1a01g8cOKCwsDCFhYVZbbfffrv8/f2djlu1atXk4+NjrYeEhOjUqVOSpJ9//llZWVm6++67rX4/Pz/VqlXrqrE8+eSTWrBggSQpOTlZX3zxhZ544okrjr948aJefvll1a9fXwEBASpfvry+/PJL6xheTxxNmjRxWr/WZ3Lv3r26ePGibrvtNqcxGzZs0E8//XTV/SyqEhIStG3bNj3yyCOSJHd3dz388MOaP3++1X/XXXc5bfP39/YSDw8P3XHHHdZ6Xt6r/D4HlAbGGNlsthztffr00Z49e1SrVi09++yz+s9//uPU/9VXX6lt27aqVKmSfHx89Pjjj+v333/X2bNnJf113C8/zrkd98vPJd99953S09MVGBjodFwTExOdjvuECROc+vv376+TJ09ar5+fSuu588CBA2ratKlTW0RExBXHBwQEqE+fPmrXrp06d+6sN998UydPnrT609PT9fzzz6tOnTry9/dX+fLldeDAAetcnJCQIHd3d915553WNjVq1FCFChVyvFZu5+KrfUby8jlDyUVemT9K67mRvNK1yCuLN/LK61daz53klSgJyCnzR2k9L5JTuhY5ZfFGTnljSuv5k7wyJ/c8j0SBatGihdq1a6eYmBj16dPHak9PT9dTTz2lZ599Nsc2VapUkSTZbDb99QOK/yevD3739vZ2Ws/IyFC7du3Url07LVmyRBUrVtSxY8fUrl07nT9//jr3qmjw9PTUfffdp/vuu0+jR4/Wk08+qbFjxzq9z7m5/L3Jq7Jlyzqt22w2ZWdn39Bcl/Tq1UsvvviiNm/erG+//Vbh4eH6xz/+ccXxr7/+ut58803FxcWpfv368vb21pAhQ27oGF7+PlzrM/n999+rTJky2rlzp8qUKePUX758+et+/aJg/vz5unDhgkJDQ602Y4zsdrtmzpyZ53m8vLyckpj09PRrvld5OQfg6g4cOKDw8PAc7XfeeacSExP1xRdf6KuvvlKPHj0UGRmpjz76SEeOHFGnTp309NNP65VXXlFAQIC++eYb9evXT+fPn1e5cuXy/Pq5/Q2FhIRo/fr1Ocb6+/tbY8aPH6/u3bvnGOPp6Znn174ZpfHceSMWLFigZ599VqtXr9YHH3ygUaNGac2aNbrnnnv0/PPPa82aNZoyZYpq1KghLy8vPfjggy47F1/tM5KXzxlKLvLK/FMaz43kla5FXlm8kVfemNJ47rwR5JUoasgp809pPC+SU7oWOWXxRk5540rj+fNGlPS8kkJ3Efbaa6+pYcOGTr/4uPPOO7V//37VqFHjittVrFjR6RcZhw4dcvoVzaVfQV68ePGaMfz444/6/fff9dprr1m/ZtmxY8d170tRdvvtt2vFihXWetmyZfP03tSpU0fHjx/X8ePHrfdm//79SklJ0e23356n17711ltVtmxZbd++3foPf2pqqg4ePKgWLVpccbvAwEB169ZNCxYs0ObNm9W3b9+rvs6mTZvUtWtXPfbYY5Kk7OxsHTx40IrzRuOQrv2ZbNSokS5evKhTp065/ARdGC5cuKDFixdr6tSpuv/++536unXrpvfee0+1atXSv//9b6e+7du3X3PuvLxXeTkH4MrWrl2rvXv3aujQobn2+/r66uGHH9bDDz+sBx98UO3bt9fp06e1c+dOZWdna+rUqXJz++tmKB9++KHTtrVq1cpxnPNy3O+8804lJSXJ3d1d1apVu+KYhISEInXcS8O5s06dOtq6datT25YtW64ZX6NGjdSoUSPFxMQoIiJCS5cu1T333KNNmzapT58++uc//ynpr2TvyJEj1na1atXShQsXtHv3bjVu3FiSdPjwYZ05c+aar3mtz0hePmco2cgrC0ZpODeSV7oOeWXxRl7pOqXh3EleiZKCnLJglIbzIjml65BTFm/klK5VGs6f5JU5UeguwurXr6/o6GhNnz7dahs5cqTuueceDRo0SE8++aS8vb21f/9+rVmzxvp1Vps2bTRz5kxFRETo4sWLGjlypNMvTYKCguTl5aXVq1ercuXK8vT0lJ+fX64xVKlSRR4eHpoxY4b+53/+R/v27dPLL7+cvzueT37//Xc99NBDeuKJJ3THHXfIx8dHO3bs0OTJk9W1a1drXLVq1RQfH6/mzZvLbrfnegsGSYqMjLSOUVxcnC5cuKBnnnlGLVu2zHGLhivx8fFR79699cILLyggIEBBQUEaO3as3Nzccr1dyd89+eST6tSpky5evKjevXtfdWzNmjX10Ucf6dtvv1WFChU0bdo0JScnWyfpm4njWp/J2267TdHR0erVq5emTp2qRo0a6ddff1V8fLzuuOMOdezYMU/vVVGxatUqnTlzRv369cvxdxMVFaX58+frww8/1LRp0zRy5Ej169dPe/bssW6ZcrX3My/vVV7OAfhLZmamkpKSdPHiRSUnJ2v16tWKjY1Vp06d1KtXrxzjp02bppCQEDVq1Ehubm5atmyZHA6H/P39VaNGDWVlZWnGjBnq3LmzNm3apDlz5jhtP3jwYLVo0ULTpk1T586dtXbtWn3xxRfX/BuKjIxURESEunXrpsmTJ+u2227TiRMn9Pnnn+uf//ynmjRpojFjxqhTp06qUqWKHnzwQbm5uem7777Tvn37NHHiRJe+b5crzefOZ599Vs2bN9eUKVPUtWtXffnll1q9evUVxycmJmru3Lnq0qWLQkNDlZCQoEOHDlmft5o1a+qTTz5R586dZbPZNHr0aKdffdauXVuRkZEaMGCAZs+erbJly2r48OE5flGdm2t9RvLyOUPJRl7pWqX53Ehe6TrklcUHeaVrlOZzJ3klSgpyStcqzedFckrXIacsPsgpXac0nz/JK3OR56d5I9/17t3bdO3a1aktMTHReHh4mL8fqm3btpn77rvPlC9f3nh7e5s77rjDvPLKK1b/L7/8Yu6//37j7e1tatasaf79738bPz8/s2DBAmvMvHnzTFhYmHFzczMtW7a84usbY8zSpUtNtWrVjN1uNxEREWblypVGktm9e7cxxph169YZSebMmTMueifyx7lz58yLL75o7rzzTuPn52fKlStnatWqZUaNGmXOnj1rjVu5cqWpUaOGcXd3N1WrVjXGGDN27FjToEGDHHMePXrUdOnSxXh7exsfHx/z0EMPmaSkJKs/t+3eeOMNa15jjElLSzOPPvqoKVeunHE4HGbatGnm7rvvNi+++KI1pmrVquaNN95wmic7O9tUrVrVPPDAA9fc999//9107drVlC9f3gQFBZlRo0aZXr16OR3vG43DmGt/Js+fP2/GjBljqlWrZsqWLWtCQkLMP//5T/P9999fM/aiplOnTld8z7du3Wokme+++858+umnpkaNGsZut5tWrVqZ2bNnG0nmzz//NMYYs2DBAuPn55djjry8V9d6v/HX+UySkWTc3d1NxYoVTWRkpHnnnXfMxYsXrXGSzPLly40xxsydO9c0bNjQeHt7G19fX9O2bVuza9cua+y0adNMSEiI8fLyMu3atTOLFy/Oce6bO3euqVSpkvHy8jLdunUzEydONA6Hw+q/0rkkLS3NDB482ISGhpqyZcuasLAwEx0dbY4dO2aNWb16tWnWrJnx8vIyvr6+5u677zZz58513Zt2BaX53GmMMfPnzzeVK1c2Xl5epnPnzmbKlClOf7t/jzUpKcl069bNhISEGA8PD1O1alUzZswY6zOXmJhoWrdubby8vExYWJiZOXOmadmypXnuuees+U6cOGE6dOhg7Ha7qVq1qlm6dKkJCgoyc+bMscb8/XP7d9f6jOTlc4aSg7wyf5XmcyN5peuQVxYP5JWuU5rPncaQV6J4IqfMX6X5vEhO6TrklMUDOaVrlebzpzHklZez/f8BACgiMjIyVKlSJU2dOlX9+vW74rj09HRVqlRJCxYsyPUZBwUVB/LmlVde0Zw5c3T8+PHCDgUFqH///vrxxx/19ddfF3YoJV5ROXe62n//+1+FhYXpq6++Utu2bQs7HADFTFE5N5JXuhZ5ZelEXllwisq509XIKwHcqKJyXiSndC1yytKJnLJgFZXzp6sVtbySW5cDhWz37t368ccfdffddys1NVUTJkyQJKdbbPxddna2fvvtN02dOlX+/v7q0qVLocSBq3vrrbd01113KTAwUJs2bdLrr7+uQYMGFXZYyGdTpkzRfffdJ29vb33xxRdatGiR3nrrrcIOq0QqKudOV1u7dq3S09NVv359nTx5UiNGjFC1atWu+QwyAJCKzrmRvNK1yCtLJ/LKglNUzp2uRl4J4EYVlfMiOaVrkVOWTuSUBauonD9drajnlRS6gSJgypQpSkhIkIeHhxo3bqyvv/5at9xyS65jjx07pvDwcFWuXFkLFy6Uu7vr/oyvJw5c3aFDhzRx4kSdPn1aVapU0fDhwxUTE1PYYSGfbdu2TZMnT9Yff/yhW2+9VdOnT9eTTz5Z2GGVWEXl3OlKWVlZeumll/Tzzz/Lx8dHzZo105IlS5yeXwcAV1NUzo3kla5DXlk6kVcWrKJy7nQl8koAN6OonBfJKV2HnLJ0IqcseEXl/OlKRT2v5NblAAAAAAAAAAAAAIBixa2wAwAAAAAAAAAAAAAA4HpQ6AYAAAAAAAAAAAAAFCsUugEAAAAAAAAAAAAAxQqFbgAAAAAAAAAAAABAsUKhGwAAAAAAAAAAAABQrFDoBoBibv369bLZbEpJSSnsUAAAAIq1cePGqWHDhoUdRrF35MgR2Ww27dmzp7BDAQAAwDUsXLhQ/v7+1vqN5MQ2m00rVqy4Yv/l+eHl32deHgMA5BWFbgAlRp8+fWSz2WSz2eTh4aEaNWpowoQJunDhQqHE0q1btxzt+VGUbtasmU6ePCk/Pz+XzQkAAFBU/T3ns9lsCgwMVPv27fX9998XdmgucaU8sjgJCwvTyZMnVa9evcIOBQAAoFC0atVKQ4YMydFeFAu6Dz/8sA4ePJivr3Gt/PDyGPgBKoC8otANoERp3769Tp48qUOHDmn48OEaN26cXn/99Xx7vfPnz+fb3Hnl4eEhh8Mhm81W2KEAAAAUiEs538mTJxUfHy93d3d16tSpsMOC/sqPy5QpI4fDIXd398IOBwAAANfg5eWloKCgfH2Na+WHBREDgJKJQjeAEsVut8vhcKhq1ap6+umnFRkZqZUrV0qSzpw5o169eqlChQoqV66cOnTooEOHDjlt//HHH6tu3bqy2+2qVq2apk6d6tRfrVo1vfzyy+rVq5d8fX01YMCAG441IyNDvr6++uijj5zaV6xYIW9vb/3xxx+SpG+//VYNGzaUp6enmjRpohUrVlz1Vj+S9M033+gf//iHvLy8FBYWpmeffVYZGRlO+/Hqq6/qiSeekI+Pj6pUqaK5c+c6xXH8+HH16NFD/v7+CggIUNeuXXXkyJEb3l8AAABXuZTzORwONWzYUC+++KKOHz+uX3/91RozcuRI3XbbbSpXrpxuvfVWjR49WllZWU7zvPbaawoODpaPj4/69eunc+fOXfV1L+Vdn3/+ue644w55enrqnnvu0b59+6wxv//+ux555BFVqlRJ5cqVU/369fXee+85zfPRRx+pfv368vLyUmBgoCIjI5WRkaFx48Zp0aJF+vTTT60r1tevX59rLNnZ2YqNjVV4eLi8vLzUoEEDK680xigyMlLt2rWTMUaSdPr0aVWuXFljxozJ875IecsrL8+Pc7t1+b59+9ShQweVL19ewcHBevzxx/Xbb79Z/a1atdKzzz6rESNGKCAgQA6HQ+PGjXOKJSUlRU899ZSCg4Pl6empevXqadWqVXmOFQAAoCi5dCefKVOmKCQkRIGBgRo4cKBTzvp///d/atKkiXx8fORwOPToo4/q1KlTkv7KBytXrqzZs2c7zbt79265ubnp6NGjkqRp06apfv368vb2VlhYmJ555hmlp6db4691lfn27dt133336ZZbbpGfn59atmypXbt25Rh38uRJdejQQV5eXrr11ludvvO81qNt/h7DwoULNX78eH333XdWTrxw4UI98cQTOX7cmpWVpaCgIM2fP/+K8QMo2Sh0AyjRvLy8rKuu+/Tpox07dmjlypXavHmzjDF64IEHrORx586d6tGjh3r27Km9e/dq3LhxGj16tBYuXOg055QpU9SgQQPt3r1bo0ePvuHYvL291bNnTy1YsMCpfcGCBXrwwQfl4+OjtLQ0de7cWfXr19euXbv08ssva+TIkVed96efflL79u0VFRWl77//Xh988IG++eYbDRo0yGnc1KlT1aRJE+3evVvPPPOMnn76aSUkJEj6K0ls166dfHx89PXXX2vTpk0qX7682rdvXySuYgcAALgkPT1d7777rmrUqKHAwECr3cfHRwsXLtT+/fv15ptvat68eXrjjTes/g8//FDjxo3Tq6++qh07digkJERvvfVWnl7zhRde0NSpU7V9+3ZVrFhRnTt3tnLKc+fOqXHjxvr888+1b98+DRgwQI8//ri2bdsm6a8vAB955BE98cQTOnDggNavX6/u3bvLGKPnn39ePXr0cLpivVmzZrnGEBsbq8WLF2vOnDn64YcfNHToUD322GPasGGDbDabFi1apO3bt2v69OmSpP/5n/9RpUqVrEJ3XvYlr3nltfLjlJQUtWnTRo0aNdKOHTu0evVqJScnq0ePHk7jFi1aJG9vb23dulWTJ0/WhAkTtGbNGkl/fZHboUOH/6+9O4/7as7/x/+4Ku2b0q7NFo1EljQ+CFGWyBhrhoiMkS1LGjszEwZjGcOYoTD2GdsYIkaWZFcGSZoSoxhRSSPV9f7+4ef9c6m0KFdv7vfb7X27Xed1Xud1nuec93Vu53Y9rnNORo8enb/85S95/fXXc8EFF6Rq1arLVSsAwOrksccey6RJk/LYY4/lhhtuyPDhwyv8LXL+/Pk5//zzM27cuNxzzz2ZMmVK+vXrlySpUqVKDjzwwNxyyy0Vxrz55puzzTbbpG3btsV+V1xxRV577bXccMMN+ec//5lTTz11mWv85JNPcuihh+app57KM888k/XXXz+77bZb8SadL5155pnZZ599Mm7cuPTt2zcHHHBAxo8fv9z7ZP/9989JJ52UH/3oR8Vr4v333z9HHHFERowYkWnTphX73n///Zk7d27233//5V4P8D1RAPieOPTQQwt77bVXoVAoFMrLywsjR44s1KhRo3DyyScX3nzzzUKSwujRo4v9P/zww0KtWrUKd9xxR6FQKBQOOuigws4771xhzFNOOaXQsWPH4nTbtm0Lffr0WaZaqlatWqhTp06FT82aNQtJCh9//HGhUCgUnn322ULVqlUL7733XqFQKBTef//9QrVq1QqjRo0qFAqFwtVXX11o3Lhx4X//+19x7D/96U+FJIWXX365UCgUCo899liFMfv3718YMGBAhXqefPLJQpUqVYrjtG3btnDwwQcX55eXlxeaNm1auPrqqwuFQqFw0003FTp06FAoLy8v9pk3b16hVq1ahYceemip2w8AsKp8/TorSaFFixaFF1988RuX++1vf1vYfPPNi9PdunUr/OIXv6jQp2vXroXOnTsvcYwvr7tuu+22YtuMGTMKtWrVKtx+++1LXG733XcvnHTSSYVCoVB48cUXC0kKU6ZMWeL2fXlNuySfffZZoXbt2oWnn366Qnv//v0LBx54YHH6jjvuKNSsWbNw2mmnFerUqVN48803l2tblvW68uvXx5MnT65wvXr++ecXdtlllwp93nnnnUKSwoQJEwqFQqGw/fbbF/7v//6vQp8tt9yyMHjw4EKhUCg89NBDhSpVqhT7f92y1AoA8F3ZfvvtC8cff/wi7cOGDSs0aNCgUCh8cd3Xtm3bwoIFC4rz991338L++++/xHGff/75QpLCJ598UigUCoWXX365UFZWVnj77bcLhUKhsHDhwkKrVq2Kf+NbnDvvvLPQuHHjxdZUKBQKZ5999jdeEy9cuLBQr169wt///vdiW5LCz3/+8wr9unbtWjj66KMLhcKi14df/3vmstbQsWPHwoUXXlic7t27d6Ffv35LrBX4/nNHN/C9cv/996du3bqpWbNmdt111+y///4555xzMn78+FSrVi1du3Yt9m3cuHE6dOhQ/M/C8ePHZ5tttqkw3jbbbJOJEydm4cKFxbYttthimWrZYYcdMnbs2AqfP//5zxX6bLXVVvnRj36UG264IUnyl7/8JW3bts12222XJJkwYULxUZJfXeabjBs3LsOHD0/dunWLn549e6a8vDyTJ08u9ttkk02KP5eVlaV58+bFRx+NGzcub731VurVq1cco1GjRvnss88yadKkZdp+AIBV5avXWc8991x69uyZXXfdtfh4xiS5/fbbs80226R58+apW7duzjjjjEydOrU4f/z48RWuDZOkW7duy7T+r/Zr1KhRhWvKhQsX5vzzz0+nTp3SqFGj1K1bNw899FBx3Z07d85OO+2UTp06Zd99982f/vSnfPzxx8u1/W+99Vbmzp2bnXfeucI134033ljhWm3ffffN3nvvnQsuuCAXX3xx1l9//eXalmW9rlza9fG4cePy2GOPVRhnww03TJIK9X71+jRJWrRoUbw+HTt2bNZee+1ssMEGS1zHstQKALA6+dGPflR8Qk1S8fon+eIJlL17906bNm1Sr169bL/99klSvLbcdNNNs9FGGxXv6n788cfzwQcfZN999y2O8cgjj2SnnXZKq1atUq9evfzsZz/LjBkzMnfu3GWq8f3338+RRx6Z9ddfPw0aNEj9+vUzZ86cCtfWyaLX0t26dVuhO7q/yRFHHFF8Oub777+fBx98MIcffvhKXQdQWqpVdgEAK9MOO+yQq6++OtWrV0/Lli1TrdrKP83VqVNnmfutt956FdrefffdRfodccQRueqqq3Laaadl2LBhOeyww1JWVrbC9c2ZMydHHXVUjjvuuEXmtWnTpvjzGmusUWFeWVlZysvLi2NsvvnmufnmmxcZo0mTJitcGwDAyvD166w///nPadCgQf70pz/lV7/6VcaMGZO+ffvm3HPPTc+ePdOgQYPcdtttueSSS1Z5bb/97W9z+eWX57LLLiu+C/GEE04ovv6latWqGTlyZJ5++uk8/PDDufLKK3P66afn2WefTfv27ZdpHV++U/Ef//hHWrVqVWFejRo1ij/PnTs3L774YqpWrZqJEycu97Ys63Xl0q6P58yZk969e+fCCy9cZF6LFi2KP3/T9WmtWrVWSq0AAN+F+vXrZ9asWYu0z5w5Mw0aNChOf9P1z6effpqePXumZ8+eufnmm9OkSZNMnTo1PXv2rPBqwb59++aWW27JaaedlltuuSW9evUqvtJnypQp2WOPPXL00Ufn17/+dRo1apSnnnoq/fv3z+eff57atWsvdVsOPfTQzJgxI5dffnnatm2bGjVqpFu3bpXyesNDDjkkp512WsaMGZOnn3467du3z7bbbvud1wGsPgTdwPfK4sLlJNloo42yYMGCPPvss8X3HM6YMSMTJkxIx44di31Gjx5dYbnRo0dngw02qPCflSvbwQcfnFNPPTVXXHFFXn/99Rx66KHFeR06dMhf/vKXzJs3r/hHy+eff/4bx+vSpUtef/31xe6HZdWlS5fcfvvtadq0aerXr7/C4wAAfBfKyspSpUqV/O9//0uSPP3002nbtm1OP/30Yp+v3u2dfHHt9+yzz+aQQw4ptj3zzDPLtL5nnnmmGJ5+/PHHefPNN7PRRhsl+eL6ca+99srBBx+c5It3S7/55pvFa84v691mm22yzTbb5Kyzzkrbtm1z9913Z9CgQalevXqFpwktTseOHVOjRo1MnTq1eFfP4px00kmpUqVKHnzwwey2227Zfffds+OOOy7ztqyM68ovx/nb3/6Wdu3arfA/om6yySZ599138+abby72ru6VVSsAwMrQoUOHPPzww4u0v/TSS0t8Qs3XvfHGG5kxY0YuuOCCtG7dOknywgsvLNLvoIMOyhlnnJEXX3wxf/3rX3PNNdcU57344ospLy/PJZdckipVvnjA7x133LFc2zJ69Oj84Q9/yG677ZYkeeedd/Lhhx8u0u+ZZ55Z5Np6s802W651fWlJ18SNGzdOnz59MmzYsIwZMyaHHXbYCo0PfH94dDnwg7D++utnr732ypFHHpmnnnoq48aNy8EHH5xWrVplr732SvLFHwIfffTRnH/++XnzzTdzww035Pe//31OPvnkVVrbmmuumZ/85Cc55ZRTsssuu2TttdcuzjvooINSXl6eAQMGZPz48XnooYdy8cUXJ8kS7/oePHhwnn766QwcODBjx47NxIkTc++992bgwIHLXFPfvn2z1lprZa+99sqTTz6ZyZMnZ9SoUTnuuOMWe1c6AMB3ad68eZk+fXqmT5+e8ePH59hjjy3eNZx8ce03derU3HbbbZk0aVKuuOKK3H333RXGOP7443P99ddn2LBhefPNN3P22WfntddeW6b1n3feeXn00Ufz6quvpl+/fllrrbXSp0+f4rq/vGN7/PjxOeqoo/L+++8Xl3322Wfzm9/8Ji+88EKmTp2au+66K//973+L4XK7du3yyiuvZMKECfnwww8zf/78RdZfr169nHzyyTnxxBNzww03ZNKkSXnppZdy5ZVXFl+J849//CPXX399br755uy888455ZRTcuihhy7ymPRv2paVcV2ZJMccc0w++uijHHjggXn++eczadKkPPTQQznssMOWGup/afvtt892222XffbZJyNHjszkyZPz4IMPZsSIESu1VgCAleHoo4/Om2++meOOO654bXfppZfm1ltvzUknnbRMY7Rp0ybVq1fPlVdemX//+9+57777cv755y/Sr127dvnxj3+c/v37Z+HChdlzzz2L89Zbb73Mnz+/OMZNN91UIQhfFuuvv35uuummjB8/Ps8++2z69u272Kft3Hnnnbn++uuL19bPPffcCl+LtWvXLpMnT87YsWPz4YcfZt68ecV5RxxxRG644YaMHz++wg1DwA+ToBv4wRg2bFg233zz7LHHHunWrVsKhUIeeOCB4iOCunTpkjvuuCO33XZbNt5445x11lk577zz0q9fv1Ve25ePC/r6O2Xq16+fv//97xk7dmw23XTTnH766TnrrLOSpMJ7u79qk002yeOPP54333wz2267bTbbbLOcddZZadmy5TLXU7t27TzxxBNp06ZNfvKTn2SjjTZK//7989lnn7nDGwCodCNGjEiLFi3SokWLdO3aNc8//3zuvPPOdO/ePUmy55575sQTT8zAgQOz6aab5umnn86ZZ55ZYYz9998/Z555Zk499dRsvvnmefvtt3P00Ucv0/ovuOCCHH/88dl8880zffr0/P3vf0/16tWTJGeccUa6dOmSnj17pnv37mnevHkxOE6+uL574oknsttuu2WDDTbIGWeckUsuuSS77rprkuTII49Mhw4dssUWW6RJkyaLPHHoS+eff37OPPPMDB06NBtttFF69eqVf/zjH2nfvn3++9//pn///jnnnHPSpUuXJMm5556bZs2a5ec///kyb8vKuK5MkpYtW2b06NFZuHBhdtlll3Tq1CknnHBCGjZsWLyzaFn87W9/y5ZbbpkDDzwwHTt2zKmnnloMyldWrQAAK8M666yTJ554Im+88UZ69OiRrl275o477sidd96ZXr16LdMYTZo0yfDhw3PnnXemY8eOueCCC4o3wHxd3759M27cuOy9994VQujOnTvn0ksvzYUXXpiNN944N998c4YOHbpc23Ldddfl448/TpcuXfKzn/0sxx13XJo2bbpIv3PPPTe33XZbNtlkk9x444259dZbKzzVaHnss88+6dWrV3bYYYc0adIkt956a3Fejx490qJFi/Ts2dO1HpCyQqFQqOwiAH7obrrpppx44ol57733in9YXJKbb745hx12WGbNmrXUdxUCALDyjBo1KjvssEM+/vjjNGzYsLLL+Va+T9sCAMAPx5w5c9KqVasMGzYsP/nJTyq7HKCSeUc3QCWaO3dupk2blgsuuCBHHXXU804+wwAASBVJREFUYkPuG2+8Meuss05atWqVcePGZfDgwdlvv/2E3AAAAADAD0J5eXk+/PDDXHLJJWnYsGGFR7QDP1weXQ5QiS666KJsuOGGad68eYYMGbLYPtOnT8/BBx+cjTbaKCeeeGL23XffXHvttd9xpQAAAAAAlWPq1Klp1qxZbrnlllx//fWpVs19nIBHlwMAAAAAAABQYtzRDQAAAAAAAEBJEXQDAAAAAAAAUFIE3QAAAAAAAACUFEE3AAAAAAAAACVF0A0AAAAAAABASRF0AwAAAAAAAFBSBN0AAAAAAAAAlBRBNwAAAAAAAAAlRdANAAAAAAAAQEkRdAMAAAAAAABQUgTdAAAAAAAAAJQUQTcAAAAAAAAAJUXQDQAAAAAAAEBJEXQDAAAAAAAAUFIE3QDLacSIEdl0001Ts2bNlJWVZebMmUmSm266KRtuuGHWWGONNGzYcJXWMGXKlJSVlWX48OHLvew555yTsrKyfPjhh0vt265du/Tr12/5CwQAAAAAAFiFBN1ASVlaSLvxxhune/fuq2z9M2bMyH777ZdatWrlqquuyk033ZQ6derkjTfeSL9+/bLuuuvmT3/6U6699tpVVgMAAAAAAMAPXbXKLgCglDz//PP55JNPcv7556dHjx7F9lGjRqW8vDyXX3551ltvvUqsEAAAAAAA4PvPHd0Ay+GDDz5IkkUeTb6k9m9j7ty5K20sAAAAAACA7xNBN/C9NWrUqJSVleWOO+7Ir3/966y99tqpWbNmdtppp7z11lsV+j755JPZd99906ZNm9SoUSOtW7fOiSeemP/973/FPt27d8+hhx6aJNlyyy1TVlaWfv36pV27djn77LOTJE2aNElZWVnOOeec4nJ/+MMf8qMf/Sg1atRIy5Ytc8wxxxTf6/3VsTfeeOO8+OKL2W677VK7du388pe/TJLMnDkz/fr1S4MGDdKwYcMceuihiyyfJK+88kr69euXddZZJzVr1kzz5s1z+OGHZ8aMGYvdPx9++GH222+/1K9fP40bN87xxx+fzz77bKn7debMmTnhhBPSunXr1KhRI+utt14uvPDClJeXL3VZAAAAAACAlcGjy4HvvQsuuCBVqlTJySefnFmzZuWiiy5K37598+yzzxb73HnnnZk7d26OPvroNG7cOM8991yuvPLKvPvuu7nzzjuTJKeffno6dOiQa6+9Nuedd17at2+fddddN3369MmNN96Yu+++O1dffXXq1q2bTTbZJMkX7xQ/99xz06NHjxx99NGZMGFCrr766jz//PMZPXp01lhjjWINM2bMyK677poDDjggBx98cJo1a5ZCoZC99torTz31VH7+859no402yt13310M3L9q5MiR+fe//53DDjsszZs3z2uvvZZrr702r732Wp555pmUlZVV6L/ffvulXbt2GTp0aJ555plcccUV+fjjj3PjjTcucV/OnTs322+/ff7zn//kqKOOSps2bfL0009nyJAhmTZtWi677LJvc6gAAAAAAACWiaAb+N777LPPMnbs2FSvXj1Jsuaaa+b444/Pq6++mo033jhJcuGFF6ZWrVrFZQYMGJD11lsvv/zlLzN16tS0adMmO++8c/7zn//k2muvza677potttii2H/s2LG5++6789Of/jRrrbVWkuS///1vhg4dml122SUPPvhgqlT54iEaG264YQYOHJi//OUvOeyww4pjTJ8+Pddcc02OOuqoYtu9996bJ554IhdddFFOOeWUJMnRRx+dHXbYYZHt/MUvfpGTTjqpQtvWW2+dAw88ME899VS23XbbCvPat2+fe++9N0lyzDHHpH79+vnDH/6Qk08+uRjUf92ll16aSZMm5eWXX87666+fJDnqqKPSsmXL/Pa3v81JJ52U1q1bL/FYAAAAAAAArAweXQ587x122GHFkDtJMfD997//XWz7asj96aef5sMPP8yPf/zjFAqFvPzyyyu03kceeSSff/55TjjhhGLInSRHHnlk6tevn3/84x8V+teoUaNC8J0kDzzwQKpVq5ajjz662Fa1atUce+yxi6zvq9vw2Wef5cMPP8zWW2+dJHnppZcW6X/MMcdUmP5yzAceeGCJ23TnnXdm2223zZprrpkPP/yw+OnRo0cWLlyYJ554YonLAgAAAAAArCzu6Aa+d77+iO42bdpUmF5zzTWTJB9//HGxberUqTnrrLNy3333VWhPklmzZq1QHW+//XaSpEOHDhXaq1evnnXWWac4/0utWrWqEMh/OUaLFi1St27dCu1fHzNJPvroo5x77rm57bbb8sEHHyx1G768I/tL6667bqpUqZIpU6YscZsmTpyYV155JU2aNFns/K+vFwAAAAAAYFUQdAMlpWbNmkmS//3vf4udP3fu3GKfL1WtWnWxfQuFQpJk4cKF2XnnnfPRRx9l8ODB2XDDDVOnTp385z//Sb9+/VJeXr4St2DJvnpH9orYb7/98vTTT+eUU07Jpptumrp166a8vDy9evVapm34+j8ILE55eXl23nnnnHrqqYudv8EGGyx33QAAAAAAAMtL0A2UlLZt2yZJJkyYsMi7oOfOnZt33nknu+yyy3KN+a9//StvvvlmbrjhhhxyyCHF9pEjR660WtdZZ51i++eff57JkyenR48eyzTGo48+mjlz5lS4q3vChAkV+n388cd59NFHc+655+ass84qtk+cOHGJY0+cODHt27cvTr/11lspLy9Pu3btlrjMuuuumzlz5ixT7QAAAAAAAKuKd3QDJWWnnXZK9erVc/XVVy9yl/K1116bBQsWZNddd12uMb+84/vLO7y//Pnyyy//VrX26NEj1atXzxVXXFFh7Ouuuy6zZs3K7rvvvtQxdttttyxYsCBXX311sW3hwoW58sorl7oNSXLZZZctceyrrrqqwvSXY37T/ttvv/0yZsyYPPTQQ4vMmzlzZhYsWLDEZQEAAAAAAFYWd3QDJaVp06Y566yzcsYZZ2S77bbLnnvumdq1a+fpp5/Orbfeml122SW9e/derjE33HDDrLvuujn55JPzn//8J/Xr18/f/va3Rd7VvbyaNGmSIUOG5Nxzz02vXr2y5557ZsKECfnDH/6QLbfcMgcffPBSx+jdu3e22WabnHbaaZkyZUo6duyYu+66a5F3btevXz/bbbddLrroosyfPz+tWrXKww8/nMmTJy9x7MmTJ2fPPfdMr169MmbMmPzlL3/JQQcdlM6dOy9xmVNOOSX33Xdf9thjj/Tr1y+bb755Pv300/zrX//KX//610yZMiVrrbXWsu8kAAAAAACAFSDoBkrO6aefnnbt2uX3v/99zjvvvCxYsCDt27fPueeem8GDB6dKleV7WMUaa6yRv//97znuuOMydOjQ1KxZM3vvvXcGDhz4jaHvsjjnnHPSpEmT/P73v8+JJ56YRo0aZcCAAfnNb36TNdZYY6nLV6lSJffdd19OOOGE/OUvf0lZWVn23HPPXHLJJdlss80q9L3lllty7LHH5qqrrkqhUMguu+ySBx98MC1btlzs2LfffnvOOuusnHbaaalWrVoGDhyY3/72t99YT+3atfP444/nN7/5Te68887ceOONqV+/fjbYYIOce+65adCgwbLvHAAAAAAAgBVUVvj6c24BAAAAAAAAYDXmHd0AAAAAAAAAlBRBNwAAAAAAAAAlRdANAAAAAAAAQEkRdAMAAAAAAABQUgTdAAAAAAAAAJSUapVdwOqgvLw87733XurVq5eysrLKLgcAYJUqFAr55JNP0rJly1Sp4v8eAQAAAIDSI+hO8t5776V169aVXQYAwHfqnXfeydprr13ZZQAAAAAALDdBd5J69eol+eKPvfXr16/kagAAVq3Zs2endevWxWsgAAAAAIBSI+hOio8rr1+/vqAbAPjB8MoWAAAAAKBUeSkjAAAAAAAAACVF0A0AAAAAAABASRF0AwAAAAAAAFBSBN0AAAAAAAAAlBRBNwAAAAAAAAAlRdANAAAAAAAAQEkRdAMAAAAAAABQUgTdAAAAAAAAAJQUQTcAAAAAAAAAJaVaZRcAAF/18oCOlV3CD85m175e2SUAAAAAAMByqdQ7up944on07t07LVu2TFlZWe65554K8/v165eysrIKn169elXo89FHH6Vv376pX79+GjZsmP79+2fOnDnf4VYAAAAAAAAA8F2q1KD7008/TefOnXPVVVctsU+vXr0ybdq04ufWW2+tML9v37557bXXMnLkyNx///154oknMmDAgFVdOgAAAAAAAACVpFIfXb7rrrtm1113/cY+NWrUSPPmzRc7b/z48RkxYkSef/75bLHFFkmSK6+8MrvttlsuvvjitGzZcrHLzZs3L/PmzStOz549ewW3AAAAAAAAAIDvWqXe0b0sRo0alaZNm6ZDhw45+uijM2PGjOK8MWPGpGHDhsWQO0l69OiRKlWq5Nlnn13imEOHDk2DBg2Kn9atW6/SbQAAAAAAAABg5Vmtg+5evXrlxhtvzKOPPpoLL7wwjz/+eHbdddcsXLgwSTJ9+vQ0bdq0wjLVqlVLo0aNMn369CWOO2TIkMyaNav4eeedd1bpdgAAAAAAAACw8lTqo8uX5oADDij+3KlTp2yyySZZd911M2rUqOy0004rPG6NGjVSo0aNlVEiAAAAAAAAAN+x1fqO7q9bZ511stZaa+Wtt95KkjRv3jwffPBBhT4LFizIRx99tMT3egMAAAAAAABQ2koq6H733XczY8aMtGjRIknSrVu3zJw5My+++GKxzz//+c+Ul5ena9eulVUmAAAAAAAAAKtQpT66fM6cOcW7s5Nk8uTJGTt2bBo1apRGjRrl3HPPzT777JPmzZtn0qRJOfXUU7PeeuulZ8+eSZKNNtoovXr1ypFHHplrrrkm8+fPz8CBA3PAAQekZcuWlbVZAAAAAAAAAKxClXpH9wsvvJDNNtssm222WZJk0KBB2WyzzXLWWWelatWqeeWVV7Lnnntmgw02SP/+/bP55pvnySefrPB+7Ztvvjkbbrhhdtppp+y22275v//7v1x77bWVtUkAAAAAAAAArGKVekd39+7dUygUljj/oYceWuoYjRo1yi233LIyywIAAAAAAABgNVZS7+gGAAAAAAAAAEE3AAAAAAAAACVF0A0AAAAAAABASRF0AwAAAAAAAFBSBN0AAAAAAAAAlBRBNwAAAAAAAAAlRdANAAAAAAAAQEkRdAMAAAAAAABQUgTdAAAAAAAAAJQUQTcAAAAAAAAAJUXQDQAAAAAAAEBJEXQDAAAAAAAAUFIE3QAAAAAAAACUFEE3AAAAAAAAACVF0A0AAAAAAABASRF0AwAAAAAAAFBSBN0AAAAAAAAAlBRBNwAAAAAAAAAlRdANAAAAAAAAQEkRdAMAAAAAAABQUgTdAAAAAAAAAJQUQTcAAAAAAAAAJUXQDQAAAAAAAEBJEXQDAAAAAAAAUFIE3QAAAAAAAACUFEE3AAAAAAAAACVF0A0AAAAAAABASanUoPuJJ55I796907Jly5SVleWee+4pzps/f34GDx6cTp06pU6dOmnZsmUOOeSQvPfeexXGaNeuXcrKyip8Lrjggu94SwAAAAAAAAD4rlRq0P3pp5+mc+fOueqqqxaZN3fu3Lz00ks588wz89JLL+Wuu+7KhAkTsueeey7S97zzzsu0adOKn2OPPfa7KB8AAAAAAACASlCtMle+6667Ztddd13svAYNGmTkyJEV2n7/+99nq622ytSpU9OmTZtie7169dK8efNVWisAAAAAAAAAq4eSekf3rFmzUlZWloYNG1Zov+CCC9K4ceNsttlm+e1vf5sFCxZ84zjz5s3L7NmzK3wAAAAAAAAAKA2Vekf38vjss88yePDgHHjggalfv36x/bjjjkuXLl3SqFGjPP300xkyZEimTZuWSy+9dIljDR06NOeee+53UTYAAAAAAAAAK1lZoVAoVHYRSVJWVpa77747ffr0WWTe/Pnzs88+++Tdd9/NqFGjKgTdX3f99dfnqKOOypw5c1KjRo3F9pk3b17mzZtXnJ49e3Zat26dWbNmfePYAKx6Lw/oWNkl/OBsdu3rlV0C37HZs2enQYMGrn0AAAAAgJK12t/RPX/+/Oy33355++23889//nOpf4zt2rVrFixYkClTpqRDhw6L7VOjRo0lhuAAAAAAAAAArN5W66D7y5B74sSJeeyxx9K4ceOlLjN27NhUqVIlTZs2/Q4qBAAAAAAAAOC7VqlB95w5c/LWW28VpydPnpyxY8emUaNGadGiRX7605/mpZdeyv3335+FCxdm+vTpSZJGjRqlevXqGTNmTJ599tnssMMOqVevXsaMGZMTTzwxBx98cNZcc83K2iwAAAAAAAAAVqFKDbpfeOGF7LDDDsXpQYMGJUkOPfTQnHPOObnvvvuSJJtuummF5R577LF07949NWrUyG233ZZzzjkn8+bNS/v27XPiiScWxwEAAAAAAADg+6dSg+7u3bunUCgscf43zUuSLl265JlnnlnZZQEAAAAAAACwGqtS2QUAAAAAAAAAwPIQdAMAAAAAAABQUgTdAAAAAAAAAJQUQTcAAAAAAAAAJUXQDQAAAAAAAEBJEXQDAAAAAAAAUFIE3QAAAAAAAACUFEE3AAAAAAAAACVF0A0AAAAAAABASRF0AwAAAAAAAFBSBN0AAAAAAAAAlBRBNwAAAAAAAAAlRdANAAAAAAAAQEkRdAMAAAAAAABQUgTdAAAAAAAAAJQUQTcAAAAAAAAAJUXQDQAAAAAAAEBJEXQDAAAAAAAAUFIE3QAAAAAAAACUFEE3AAAAAAAAACVF0A0AAAAAAABASRF0AwAAAAAAAFBSBN0AAAAAAAAAlBRBNwAAAAAAAAAlRdANAAAAAAAAQEkRdAMAAAAAAABQUgTdAAAAAAAAAJQUQTcAAAAAAAAAJaVSg+4nnngivXv3TsuWLVNWVpZ77rmnwvxCoZCzzjorLVq0SK1atdKjR49MnDixQp+PPvooffv2Tf369dOwYcP0798/c+bM+Q63AgAAAAAAAIDvUqUG3Z9++mk6d+6cq666arHzL7roolxxxRW55ppr8uyzz6ZOnTrp2bNnPvvss2Kfvn375rXXXsvIkSNz//3354knnsiAAQO+q00AAAAAAAAA4DtWVigUCpVdRJKUlZXl7rvvTp8+fZJ8cTd3y5Ytc9JJJ+Xkk09OksyaNSvNmjXL8OHDc8ABB2T8+PHp2LFjnn/++WyxxRZJkhEjRmS33XbLu+++m5YtWy7TumfPnp0GDRpk1qxZqV+//irZPgCWzcsDOlZ2CT84m137emWXwHfMtQ8AAAAAUOpW23d0T548OdOnT0+PHj2KbQ0aNEjXrl0zZsyYJMmYMWPSsGHDYsidJD169EiVKlXy7LPPLnHsefPmZfbs2RU+AAAAAAAAAJSG1Tbonj59epKkWbNmFdqbNWtWnDd9+vQ0bdq0wvxq1aqlUaNGxT6LM3To0DRo0KD4ad269UquHgAAAAAAAIBVZbUNulelIUOGZNasWcXPO++8U9klAQAAAAAAALCMVtugu3nz5kmS999/v0L7+++/X5zXvHnzfPDBBxXmL1iwIB999FGxz+LUqFEj9evXr/ABAAAAAAAAoDSstkF3+/bt07x58zz66KPFttmzZ+fZZ59Nt27dkiTdunXLzJkz8+KLLxb7/POf/0x5eXm6du36ndcMAAAAAAAAwKpXrTJXPmfOnLz11lvF6cmTJ2fs2LFp1KhR2rRpkxNOOCG/+tWvsv7666d9+/Y588wz07Jly/Tp0ydJstFGG6VXr1458sgjc80112T+/PkZOHBgDjjggLRs2bKStgoAAAAAAACAValSg+4XXnghO+ywQ3F60KBBSZJDDz00w4cPz6mnnppPP/00AwYMyMyZM/N///d/GTFiRGrWrFlc5uabb87AgQOz0047pUqVKtlnn31yxRVXfOfbAgAAAAAAAMB3o6xQKBQqu4jKNnv27DRo0CCzZs3yvm6ASvbygI6VXcIPzmbXvl7ZJfAdc+0DAAAAAJS61fYd3QAAAAAAAACwOIJuAAAAAAAAAEqKoBsAAAAAAACAkiLoBgAAAAAAAKCkCLoBAAAAAAAAKCmCbgAAAAAAAABKygoF3TvuuGNmzpy5SPvs2bOz4447ftuaAAAAAAAAAGCJVijoHjVqVD7//PNF2j/77LM8+eST37ooAAAAAAAAAFiSasvT+ZVXXin+/Prrr2f69OnF6YULF2bEiBFp1arVyqsOAAAAAAAAAL5muYLuTTfdNGVlZSkrK1vsI8pr1aqVK6+8cqUVBwAAAAAAAABft1xB9+TJk1MoFLLOOuvkueeeS5MmTYrzqlevnqZNm6Zq1aorvUgAAAAAAAAA+NJyBd1t27ZNkpSXl6+SYgAAAAAAAABgaZYr6P6qiRMn5rHHHssHH3ywSPB91llnfevCAAAAAAAAAGBxVijo/tOf/pSjjz46a621Vpo3b56ysrLivLKyMkE3AAAAAAAAAKvMCgXdv/rVr/LrX/86gwcPXtn1AAAAAAAAAMA3qrIiC3388cfZd999V3YtAAAAAAAAALBUKxR077vvvnn44YdXdi0AAAAAAAAAsFQr9Ojy9dZbL2eeeWaeeeaZdOrUKWussUaF+ccdd9xKKQ4AAAAAAAAAvq6sUCgUlneh9u3bL3nAsrL8+9///lZFfddmz56dBg0aZNasWalfv35llwPwg/bygI6VXcIPzmbXvl7ZJfAdc+0DAAAAAJS6Fbqje/LkySu7DgAAAAAAAABYJisUdAMALIsbdm5Z2SX8oBw68r3KLgEAAAAA4DuxQkH34Ycf/o3zr7/++hUqBgAAAAAAAACWZoWC7o8//rjC9Pz58/Pqq69m5syZ2XHHHVdKYQAAAAAAAACwOCsUdN99992LtJWXl+foo4/Ouuuu+62LAgAAAAAAAIAlqbLSBqpSJYMGDcrvfve7lTUkAAAAAAAAACxipQXdSTJp0qQsWLBgZQ4JAAAAAAAAABWs0KPLBw0aVGG6UChk2rRp+cc//pFDDz10pRQGAAAAAAAAAIuzQkH3yy+/XGG6SpUqadKkSS655JIcfvjhK6UwAAAAAAAAAFicFQq6H3vssZVdxxK1a9cub7/99iLtv/jFL3LVVVele/fuefzxxyvMO+qoo3LNNdd8VyUCAAAAAAAA8B1aoaD7S//9738zYcKEJEmHDh3SpEmTlVLUVz3//PNZuHBhcfrVV1/NzjvvnH333bfYduSRR+a8884rTteuXXul1wEAAAAAAADA6mGFgu5PP/00xx57bG688caUl5cnSapWrZpDDjkkV1555UoNmr8enl9wwQVZd911s/322xfbateunebNmy/zmPPmzcu8efOK07Nnz/72hQIAAAAAAADwnaiyIgsNGjQojz/+eP7+979n5syZmTlzZu699948/vjjOemkk1Z2jUWff/55/vKXv+Twww9PWVlZsf3mm2/OWmutlY033jhDhgzJ3Llzv3GcoUOHpkGDBsVP69atV1nNAAAAAAAAAKxcK3RH99/+9rf89a9/Tffu3Yttu+22W2rVqpX99tsvV1999cqqr4J77rknM2fOTL9+/YptBx10UNq2bZuWLVvmlVdeyeDBgzNhwoTcddddSxxnyJAhGTRoUHF69uzZwm4AAAAAAACAErFCQffcuXPTrFmzRdqbNm261Lupv43rrrsuu+66a1q2bFlsGzBgQPHnTp06pUWLFtlpp50yadKkrLvuuosdp0aNGqlRo8YqqxMAAAAAAACAVWeFHl3erVu3nH322fnss8+Kbf/73/9y7rnnplu3biutuK96++2388gjj+SII474xn5du3ZNkrz11lurpA4AAAAAAAAAKtcK3dF92WWXpVevXll77bXTuXPnJMm4ceNSo0aNPPzwwyu1wC8NGzYsTZs2ze677/6N/caOHZskadGixSqpAwAAAAAAAIDKtUJBd6dOnTJx4sTcfPPNeeONN5IkBx54YPr27ZtatWqt1AKTpLy8PMOGDcuhhx6aatX+/5InTZqUW265JbvttlsaN26cV155JSeeeGK22267bLLJJiu9DgAAAAAAAAAq3woF3UOHDk2zZs1y5JFHVmi//vrr89///jeDBw9eKcV96ZFHHsnUqVNz+OGHV2ivXr16HnnkkVx22WX59NNP07p16+yzzz4544wzVur6AQAAAAAAAFh9rFDQ/cc//jG33HLLIu0/+tGPcsABB6z0oHuXXXZJoVBYpL1169Z5/PHHV+q6AAAAAAAAAFi9VVmRhaZPn77Yd2A3adIk06ZN+9ZFAQAAAAAAAMCSrFDQ3bp164wePXqR9tGjR6dly5bfuigAAAAAAAAAWJIVenT5kUcemRNOOCHz58/PjjvumCR59NFHc+qpp+akk05aqQUCAAAAAAAAwFetUNB9yimnZMaMGfnFL36Rzz//PElSs2bNDB48OEOGDFmpBQIAAAAAAADAV61Q0F1WVpYLL7wwZ555ZsaPH59atWpl/fXXT40aNVZ2fQAAAAAAAABQwQoF3V+qW7duttxyy5VVCwAAAAAAAAAsVZXKLgAAAAAAAAAAloegGwAAAAAAAICSIugGAAAAAAAAoKQIugEAAAAAAAAoKYJuAAAAAAAAAEpKtcouAGBleO/yfSu7hB+UlsffWdklAAAAAAAAP2CC7hXwvynPVnYJPyi12nWt7BIAAAAAAACA1YhHlwMAAAAAAABQUgTdAAAAAAAAAJQUQTcAAAAAAAAAJUXQDQAAAAAAAEBJEXQDAAAAAAAAUFIE3QAAAAAAAACUFEE3AAAAAAAAACVF0A0AAAAAAABASRF0AwAAAAAAAFBSBN0AAAAAAAAAlBRBNwAAAAAAAAAlRdANAAAAAAAAQEkRdAMAAAAAAABQUgTdAAAAAAAAAJSU1TroPuecc1JWVlbhs+GGGxbnf/bZZznmmGPSuHHj1K1bN/vss0/ef//9SqwYAAAAAAAAgFVttQ66k+RHP/pRpk2bVvw89dRTxXknnnhi/v73v+fOO+/M448/nvfeey8/+clPKrFaAAAAAAAAAFa1apVdwNJUq1YtzZs3X6R91qxZue6663LLLbdkxx13TJIMGzYsG220UZ555plsvfXW33WpAAAAAAAAAHwHVvs7uidOnJiWLVtmnXXWSd++fTN16tQkyYsvvpj58+enR48exb4bbrhh2rRpkzFjxnzjmPPmzcvs2bMrfAAAAAAAAAAoDat10N21a9cMHz48I0aMyNVXX53Jkydn2223zSeffJLp06enevXqadiwYYVlmjVrlunTp3/juEOHDk2DBg2Kn9atW6/CrQAAAAAAAABgZVqtH12+6667Fn/eZJNN0rVr17Rt2zZ33HFHatWqtcLjDhkyJIMGDSpOz549W9gNAAAAAAAAUCJW6zu6v65hw4bZYIMN8tZbb6V58+b5/PPPM3PmzAp93n///cW+0/uratSokfr161f4AAAAAAAAAFAaSironjNnTiZNmpQWLVpk8803zxprrJFHH320OH/ChAmZOnVqunXrVolVAgAAAAAAALAqrdaPLj/55JPTu3fvtG3bNu+9917OPvvsVK1aNQceeGAaNGiQ/v37Z9CgQWnUqFHq16+fY489Nt26dcvWW29d2aUDAAAAAAAAsIqs1kH3u+++mwMPPDAzZsxIkyZN8n//93955pln0qRJkyTJ7373u1SpUiX77LNP5s2bl549e+YPf/hDJVcNAAAAAAAAwKq0Wgfdt9122zfOr1mzZq666qpcddVV31FFAAAAAAAAAFS2knpHNwAAAAAAAAAIugEAAAAAAAAoKYJuAAAAAAAAAEqKoBsAAAAAAACAkiLoBgAAAAAAAKCkCLoBAAAAAAAAKCmCbgAAAAAAAABKiqAbAAAAAAAAgJIi6AYAAAAAAACgpAi6AQAAAAAAACgpgm4AAAAAAAAASoqgGwAAAAAAAICSIugGAAAAAAAAoKQIugEAAAAAAAAoKYJuAAAAAAAAAEqKoBsAAAAAAACAkiLoBgAAAAAAAKCkCLoBAAAAAAAAKCmCbgAAAAAAAABKiqAbAAAAAAAAgJIi6AYAAAAAAACgpAi6AQAAAAAAACgpgm4AAAAAAAAASoqgGwAAAAAAAICSIugGAAAAAAAAoKQIugEAAAAAAAAoKYJuAAAAAAAAAEpKtcouACrTRyMvrewSflAa7TyosksAAAAAAADge2C1vqN76NCh2XLLLVOvXr00bdo0ffr0yYQJEyr06d69e8rKyip8fv7zn1dSxQAAAAAAAACsaqt10P3444/nmGOOyTPPPJORI0dm/vz52WWXXfLpp59W6HfkkUdm2rRpxc9FF11USRUDAAAAAAAAsKqt1o8uHzFiRIXp4cOHp2nTpnnxxRez3XbbFdtr166d5s2bL/O48+bNy7x584rTs2fP/vbFAgAAAAAAAPCdWK3v6P66WbNmJUkaNWpUof3mm2/OWmutlY033jhDhgzJ3Llzv3GcoUOHpkGDBsVP69atV1nNAAAAAAAAAKxcq/Ud3V9VXl6eE044Idtss0023njjYvtBBx2Utm3bpmXLlnnllVcyePDgTJgwIXfdddcSxxoyZEgGDRpUnJ49e7awGwAAAAAAAKBElEzQfcwxx+TVV1/NU089VaF9wIABxZ87deqUFi1aZKeddsqkSZOy7rrrLnasGjVqpEaNGqu0XgAAAAAAAABWjZJ4dPnAgQNz//3357HHHsvaa6/9jX27du2aJHnrrbe+i9IAAAAAAAAA+I6t1nd0FwqFHHvssbn77rszatSotG/ffqnLjB07NknSokWLVVwdAAAAAAAAAJVhtQ66jznmmNxyyy259957U69evUyfPj1J0qBBg9SqVSuTJk3KLbfckt122y2NGzfOK6+8khNPPDHbbbddNtlkk0quHgAAAAAAAIBVYbUOuq+++uokSffu3Su0Dxs2LP369Uv16tXzyCOP5LLLLsunn36a1q1bZ5999skZZ5xRCdUCAAAAAAAA8F1YrYPuQqHwjfNbt26dxx9//DuqBgAAAAAAAIDVQZXKLgAAAAAAAAAAloegGwAAAAAAAICSIugGAAAAAAAAoKQIugEAAAAAAAAoKYJuAAAAAAAAAEqKoBsAAAAAAACAkiLoBgAAAAAAAKCkCLoBAAAAAAAAKCmCbgAAAAAAAABKiqAbAAAAAAAAgJIi6AYAAAAAAACgpAi6AQAAAAAAACgpgm4AAAAAAAAASoqgGwAAAAAAAICSIugGAAAAAAAAoKQIugEAAAAAAAAoKYJuAAAAAAAAAEqKoBsAAAAAAACAkiLoBgAAAAAAAKCkCLoBAAAAAAAAKCmCbgAAAAAAAABKiqAbAAAAAAAAgJIi6AYAAAAAAACgpAi6AQAAAAAAACgpgm4AAAAAAAAASoqgGwAAAAAAAICSIugGAAAAAAAAoKR8b4Luq666Ku3atUvNmjXTtWvXPPfcc5VdEgAAAAAAAACrwPci6L799tszaNCgnH322XnppZfSuXPn9OzZMx988EFllwYAAAAAAADASva9CLovvfTSHHnkkTnssMPSsWPHXHPNNaldu3auv/76yi4NAAAAAAAAgJWsWmUX8G19/vnnefHFFzNkyJBiW5UqVdKjR4+MGTNmscvMmzcv8+bNK07PmjUrSTJ79uxlWuf/Pvn0W1TM8pq/jMdlRcz+9LNVNjaLqrYKj+Unn81fZWOzqGU9X66IOZ8vXGVjs3ir8nj+b0H5KhubRS3rsfyyX6FQWJXlAAAAAACsMiUfdH/44YdZuHBhmjVrVqG9WbNmeeONNxa7zNChQ3Puuecu0t66detVUiPwpdMruwBWltMaVHYFrEw3OJ7fF0c3WL5j+cknn6TBci4DAAAAALA6KPmge0UMGTIkgwYNKk6Xl5fno48+SuPGjVNWVlaJla06s2fPTuvWrfPOO++kfv36lV0O34Jj+f3hWH5/OJbfLz+E41koFPLJJ5+kZcuWlV0KAAAAAMAKKfmge6211krVqlXz/vvvV2h///3307x588UuU6NGjdSoUaNCW8OGDVdViauV+vXrf2//aP9D41h+fziW3x+O5ffL9/14upMbAAAAAChlVSq7gG+revXq2XzzzfPoo48W28rLy/Poo4+mW7dulVgZAAAAAAAAAKtCyd/RnSSDBg3KoYcemi222CJbbbVVLrvssnz66ac57LDDKrs0AAAAAAAAAFay70XQvf/+++e///1vzjrrrEyfPj2bbrppRowYkWbNmlV2aauNGjVq5Oyzz17kke2UHsfy+8Ox/P5wLL9fHE8AAAAAgNVfWaFQKFR2EQAAAAAAAACwrEr+Hd0AAAAAAAAA/LAIugEAAAAAAAAoKYJuAAAAAAAAAEqKoJtvbdSoUSkrK8vMmTMru5TvrXbt2uWyyy6r7DLge6esrCz33HNPZZfBKrIqzp3Dhw9Pw4YNi9PnnHNONt1005W6DgAAAAAAlk7QvRrp169fysrKcsEFF1Rov+eee1JWVrbS1jNlypSUlZVl7NixK23MUvHf//43Rx99dNq0aZMaNWqkefPm6dmzZ0aPHl3sI/hiWY0ZMyZVq1bN7rvvXtml8DVfnk/LysqyxhprpFmzZtl5551z/fXXp7y8vNhv2rRp2XXXXSux0tLg3LlkJ598ch599NHKLgMAAAAA4AdH0L2aqVmzZi688MJ8/PHHlV1KPv/888ouYaXbZ5998vLLL+eGG27Im2++mfvuuy/du3fPjBkzlmuc7+O+WRE/9P1w3XXX5dhjj80TTzyR995771uNtXDhwgoBLN9er169Mm3atEyZMiUPPvhgdthhhxx//PHZY489smDBgiRJ8+bNU6NGjUqrsVR+h5w7l6xu3bpp3LhxpdYwf/78Sl0/AAAAAEBlEHSvZnr06JHmzZtn6NChS+zz1FNPZdttt02tWrXSunXrHHfccfn000+L8xd3V13Dhg0zfPjwJEn79u2TJJtttlnKysrSvXv3JF/cAdmnT5/8+te/TsuWLdOhQ4ckyU033ZQtttgi9erVS/PmzXPQQQflgw8+WHkb/R2ZOXNmnnzyyVx44YXZYYcd0rZt22y11VYZMmRI9txzzyRfPOY2Sfbee++UlZUVp798NO2f//zntG/fPjVr1kySTJ06NXvttVfq1q2b+vXrZ7/99sv7779fXOeXy910001p165dGjRokAMOOCCffPJJsc8nn3ySvn37pk6dOmnRokV+97vfpXv37jnhhBMWux2HH3549thjjwpt8+fPT9OmTXPdddctdpkZM2bkwAMPTKtWrVK7du106tQpt956a4U+y1JHu3btcv755+eQQw5J/fr1M2DAgCRL/07OmzcvJ598clq1apU6deqka9euGTVq1OIPVImYM2dObr/99hx99NHZfffdi79fX7rvvvuy/vrrp2bNmtlhhx1yww03VHjE/5ePP77vvvvSsWPH1KhRI1OnTl2mfbW0/c0XvrzzuFWrVunSpUt++ctf5t57782DDz5YPF5fPV9+/vnnGThwYFq0aJGaNWumbdu2Fc7Fl156aTp16pQ6deqkdevW+cUvfpE5c+ZUWOef/vSntG7dOrVr187ee++dSy+9dLGPuf76uWTmzJk54ogj0qRJk9SvXz877rhjxo0bV2Hse++9N126dEnNmjWzzjrr5Nxzzy0G9qvSD/ncmXzxu9qmTZviMf16uP/1R5ePGjUqW221VerUqZOGDRtmm222ydtvv50kmTRpUvbaa680a9YsdevWzZZbbplHHnmkwnjTpk3L7rvvnlq1aqV9+/a55ZZbFnkEe1lZWa6++ursueeeqVOnTn79618nWfp3ZFm+ZwAAAAAApULQvZqpWrVqfvOb3+TKK6/Mu+++u8j8SZMmpVevXtlnn33yyiuv5Pbbb89TTz2VgQMHLvM6nnvuuSTJI488kmnTpuWuu+4qznv00UczYcKEjBw5Mvfff3+SL4KA888/P+PGjcs999yTKVOmpF+/ft9uQytB3bp1U7du3dxzzz2ZN2/eYvs8//zzSZJhw4Zl2rRpxekkeeutt/K3v/0td911V8aOHZvy8vLstdde+eijj/L4449n5MiR+fe//53999+/wpiTJk3KPffck/vvvz/3339/Hn/88QqPpx80aFBGjx6d++67LyNHjsyTTz6Zl156aYnbccQRR2TEiBGZNm1ase3+++/P3LlzF1n3lz777LNsvvnm+cc//pFXX301AwYMyM9+9rPid2F56rj44ovTuXPnvPzyyznzzDOX6Ts5cODAjBkzJrfddlteeeWV7LvvvunVq1cmTpy4xO1c3d1xxx3ZcMMN06FDhxx88MG5/vrrUygUkiSTJ0/OT3/60/Tp0yfjxo3LUUcdldNPP32RMebOnZsLL7wwf/7zn/Paa6+ladOmS91XK+Mc8EO24447pnPnzhXOe1+64oorct999+WOO+7IhAkTcvPNNxcD2ySpUqVKrrjiirz22mu54YYb8s9//jOnnnpqcf7o0aPz85//PMcff3zGjh2bnXfeuRhAftXXzyVJsu++++aDDz7Igw8+mBdffDFdunTJTjvtlI8++ihJ8uSTT+aQQw7J8ccfn9dffz1//OMfM3z48MWOv7L9kM+dzz77bPr375+BAwdm7Nix2WGHHfKrX/1qietYsGBB+vTpk+233z6vvPJKxowZkwEDBhRfPzJnzpzstttuefTRR/Pyyy+nV69e6d27d6ZOnVoc45BDDsl7772XUaNG5W9/+1uuvfbaxf5z2TnnnJO99947//rXv3L44Ycv03dkad8zAAAAAICSUmC1ceihhxb22muvQqFQKGy99daFww8/vFAoFAp333134ctD1b9//8KAAQMqLPfkk08WqlSpUvjf//5XKBQKhSSFu+++u0KfBg0aFIYNG1YoFAqFyZMnF5IUXn755UXW36xZs8K8efO+sc7nn3++kKTwySefFAqFQuGxxx4rJCl8/PHHy7nF372//vWvhTXXXLNQs2bNwo9//OPCkCFDCuPGjavQZ3H77+yzzy6sscYahQ8++KDY9vDDDxeqVq1amDp1arHttddeKyQpPPfcc8XlateuXZg9e3axzymnnFLo2rVroVAoFGbPnl1YY401CnfeeWdx/syZMwu1a9cuHH/88cW2tm3bFn73u98Vpzt27Fi48MILi9O9e/cu9OvXb7n2xe6771446aSTlruOPn36VBhnad/Jt99+u1C1atXCf/7znwp9dtppp8KQIUOWq+bVyY9//OPCZZddVigUCoX58+cX1lprrcJjjz1WKBQKhcGDBxc23njjCv1PP/30Cr8nw4YNKyQpjB07tthnWfbVspwDqHg+/br999+/sNFGGxUKhYq/78cee2xhxx13LJSXly/TOu68885C48aNK4y7++67V+jTt2/fQoMGDYrTizuXPPnkk4X69esXPvvsswrLrrvuuoU//vGPhULhi+/Ab37zmwrzb7rppkKLFi2WqdZv64d67jzwwAMLu+22W4W2/ffff5Fj2rlz50KhUCjMmDGjkKQwatSoJY75dT/60Y8KV155ZaFQKBTGjx9fSFJ4/vnni/MnTpxYSFJhO5IUTjjhhArjLO07sizfMwAAAACAUuKO7tXUhRdemBtuuCHjx4+v0D5u3LgMHz68eIdd3bp107Nnz5SXl2fy5Mnfer2dOnVK9erVK7S9+OKL6d27d9q0aZN69epl++23T5IKd6CVin322Sfvvfde7rvvvvTq1SujRo1Kly5dFnns9OK0bds2TZo0KU6PHz8+rVu3TuvWrYttHTt2TMOGDSsct3bt2qVevXrF6RYtWhTvzvv3v/+d+fPnZ6uttirOb9CgQfGx8UtyxBFHZNiwYUmS999/Pw8++GAOP/zwJfZfuHBhzj///HTq1CmNGjVK3bp189BDDxWP4fLUscUWW1SYXtp38l//+lcWLlyYDTbYoEKfxx9/PJMmTfrG7VxdTZgwIc8991wOPPDAJEm1atWy//77Fx9/PGHChGy55ZYVlvnqvv1S9erVs8kmmxSnl2VfrepzwA9BoVAo3mH7Vf369cvYsWPToUOHHHfccXn44YcrzH/kkUey0047pVWrVqlXr15+9rOfZcaMGZk7d26SL47714/z4o77188l48aNy5w5c9K4ceMKx3Xy5MkVjvt5551XYf6RRx6ZadOmFde/Kv1Qz53jx49P165dK7R169Ztif0bNWqUfv36pWfPnundu3cuv/zyCneQz5kzJyeffHI22mijNGzYMHXr1s348eOL5+IJEyakWrVq6dKlS3GZ9dZbL2uuueYi61rcufibviPL8j0DAAAAACgl1Sq7ABZvu+22S8+ePTNkyJAKjwmfM2dOjjrqqBx33HGLLNOmTZskX7y7s/D/PUL5S/Pnz1+m9dapU6fC9KeffpqePXumZ8+eufnmm9OkSZNMnTo1PXv2zOeff76cW7V6qFmzZnbeeefsvPPOOfPMM3PEEUfk7LPPXurj2L++b5bVGmusUWG6rKws5eXlKzTWlw455JCcdtppGTNmTJ5++um0b98+22677RL7//a3v83ll1+eyy67rPiO4RNOOGGFjuHX98PSvpOvvPJKqlatmhdffDFVq1atML9u3brLvf7VwXXXXZcFCxakZcuWxbZCoZAaNWrk97///TKPU6tWrQqB65w5c5a6r5blHMA3Gz9+fNq3b79Ie5cuXTJ58uQ8+OCDeeSRR7LffvulR48e+etf/5opU6Zkjz32yNFHH51f//rXadSoUZ566qn0798/n3/+eWrXrr3M61/c71CLFi0W+976L9/vPWfOnJx77rn5yU9+skifL997var9EM+dK2LYsGE57rjjMmLEiNx+++0544wzMnLkyGy99dY5+eSTM3LkyFx88cVZb731UqtWrfz0pz9daefib/qOLMv3DAAAAACglAi6V2MXXHBBNt100wp3qHXp0iWvv/561ltvvSUu16RJkwp3kE2cOLHCHX9f3rG9cOHCpdbwxhtvZMaMGbnggguKd9+98MILy70tq7OOHTvmnnvuKU6vscYay7RvNtpoo7zzzjt55513ivvm9ddfz8yZM9OxY8dlWvc666yTNdZYI88//3wxpJw1a1befPPNbLfddktcrnHjxunTp0+GDRuWMWPG5LDDDvvG9YwePTp77bVXDj744CRJeXl53nzzzWKdK1pHsvTv5GabbZaFCxfmgw8+WOmBUmVYsGBBbrzxxlxyySXZZZddKszr06dPbr311nTo0CEPPPBAhXlffWfxkizLvlqWcwBL9s9//jP/+te/cuKJJy52fv369bP//vtn//33z09/+tP06tUrH330UV588cWUl5fnkksuSZUqXzwM5Y477qiwbIcOHRY5zsty3Lt06ZLp06enWrVqFd4J/vU+EyZMWK2O+w/h3LnRRhvl2WefrdD2zDPPLLW+zTbbLJtttlmGDBmSbt265ZZbbsnWW2+d0aNHp1+/ftl7772TfBFOT5kypbhchw4dsmDBgrz88svZfPPNk3zxjvOPP/54qetc2ndkWb5nAAAAAAClRNC9GuvUqVP69u2bK664otg2ePDgbL311hk4cGCOOOKI1KlTJ6+//npGjhxZvJN0xx13zO9///t069YtCxcuzODBgyvcGde0adPUqlUrI0aMyNprr52aNWumQYMGi62hTZs2qV69eq688sr8/Oc/z6uvvprzzz9/1W74KjJjxozsu+++Ofzww7PJJpukXr16eeGFF3LRRRdlr732KvZr165dHn300WyzzTapUaPGYh8ZmyQ9evQoHqPLLrssCxYsyC9+8Ytsv/32izxSdknq1auXQw89NKecckoaNWqUpk2b5uyzz06VKlUW+2jlrzriiCOyxx57ZOHChTn00EO/se/666+fv/71r3n66aez5ppr5tJLL837779fDJW+TR1L+05usMEG6du3bw455JBccskl2WyzzfLf//43jz76aDbZZJPsvvvuy7SvVhf3339/Pv744/Tv33+R35t99tkn1113Xe64445ceumlGTx4cPr375+xY8cWH/H8TftzWfbVspwD+MK8efMyffr0LFy4MO+//35GjBiRoUOHZo899sghhxyySP9LL700LVq0yGabbZYqVarkzjvvTPPmzdOwYcOst956mT9/fq688sr07t07o0ePzjXXXFNh+WOPPTbbbbddLr300vTu3Tv//Oc/8+CDDy71d6hHjx7p1q1b+vTpk4suuigbbLBB3nvvvfzjH//I3nvvnS222CJnnXVW9thjj7Rp0yY//elPU6VKlYwbNy6vvvpqfvWrX63U/fZ1P+Rz53HHHZdtttkmF198cfbaa6889NBDGTFixBL7T548Oddee2323HPPtGzZMhMmTMjEiROL37f1118/d911V3r37p2ysrKceeaZFe5S33DDDdOjR48MGDAgV199ddZYY42cdNJJizz9YXGW9h1Zlu8ZAAAAAEAp8Y7u1dx5551X4Y/gm2yySR5//PG8+eab2XbbbbPZZpvlrLPOqvAI5UsuuSStW7fOtttum4MOOignn3xyhcfqVqtWLVdccUX++Mc/pmXLlhWCiq9r0qRJhg8fnjvvvDMdO3bMBRdckIsvvnjVbOwqVrdu3XTt2jW/+93vst1222XjjTfOmWeemSOPPLJCQHjJJZdk5MiRad26dTbbbLMljldWVpZ77703a665Zrbbbrv06NEj66yzTm6//fblquvSSy9Nt27dsscee6RHjx7ZZpttstFGGy31ccQ9evRIixYt0rNnzwrHf3HOOOOMdOnSJT179kz37t3TvHnz9OnTZ6XUsSzfyWHDhuWQQw7JSSedlA4dOqRPnz4V7sQsJdddd1169Oix2H8O2WefffLCCy/kk08+yV//+tfcdddd2WSTTXL11Vfn9NNPT5LUqFHjG8df2r5alv3NF0aMGJEWLVqkXbt26dWrVx577LFcccUVuffeexd5NHzyRXh60UUXZYsttsiWW26ZKVOm5IEHHkiVKlXSuXPnXHrppbnwwguz8cYb5+abb87QoUMrLL/NNtvkmmuuyaWXXprOnTtnxIgROfHEE5f6O1RWVpYHHngg2223XQ477LBssMEGOeCAA/L222+nWbNmSZKePXvm/vvvz8MPP5wtt9wyW2+9dX73u9+lbdu2K2+HLcEP+dy59dZb509/+lMuv/zydO7cOQ8//HDOOOOMJfavXbt23njjjeyzzz7ZYIMNMmDAgBxzzDE56qijijWvueaa+fGPf5zevXunZ8+eFd7HnSQ33nhjmjVrlu222y577713jjzyyNSrV2+p27W078iyfM8AAAAAAEpJWeHrL3MGKtWnn36aVq1a5ZJLLkn//v2X2G/OnDlp1apVhg0btth3sn5XdbBsfv3rX+eaa67JO++8U9ml8B068sgj88Ybb+TJJ5+s7FK+91aXc+fK9u6776Z169Z55JFHstNOO1V2OQAAAAAAqw2PLodK9vLLL+eNN97IVlttlVmzZuW8885LkiXeaV9eXp4PP/wwl1xySRo2bJg999yzUurgm/3hD3/IlltumcaNG2f06NH57W9/m4EDB1Z2WaxiF198cXbeeefUqVMnDz74YG644Yb84Q9/qOyyvpdWl3PnyvbPf/4zc+bMSadOnTJt2rSceuqpadeu3Te+exwAAAAA4IdI0A2rgYsvvjgTJkxI9erVs/nmm+fJJ5/MWmuttdi+U6dOTfv27bP22mtn+PDhqVZt5f0aL08dfLOJEyfmV7/6VT766KO0adMmJ510UoYMGVLZZbGKPffcc7nooovyySefZJ111skVV1yRI444orLL+t5aXc6dK9P8+fPzy1/+Mv/+979Tr169/PjHP87NN9+cNdZYo7JLAwAAAABYrXh0OQAAAAAAAAAlpUplFwAAAAAAAAAAy0PQDQAAAAAAAEBJEXQDAAAAAAAAUFIE3QAAAAAAAACUFEE3AAAAAAAAACVF0A3wLYwePTqdOnXKGmuskT59+iyxbWUZNWpUysrKMnPmzGVepnv37jnhhBO+sU+7du1y2WWXfavaAAAAAAAAviuCbuB7Z0nB7vDhw9OwYcOVuq5BgwZl0003zeTJkzN8+PAltgEAAAAAALDyCLoBvoVJkyZlxx13zNprr10M0RfXtrw+//zzlVckAAAAAADA94ygG/hB6tevX/r06ZOLL744LVq0SOPGjXPMMcdk/vz5xT433XRTtthii9SrVy/NmzfPQQcdlA8++CBJMmXKlJSVlWXGjBk5/PDDU1ZWluHDhy+2LUkef/zxbLXVVqlRo0ZatGiR0047LQsWLCiuq3v37hk4cGBOOOGErLXWWunZs2eS5IEHHsgGG2yQWrVqZYcddsiUKVMqbMeMGTNy4IEHplWrVqldu3Y6deqUW2+9dZHtXbBgQQYOHJgGDRpkrbXWyplnnplCobDE/TNz5swcccQRadKkSerXr58dd9wx48aNW9HdDQAAAAAAsFIJuoEfrMceeyyTJk3KY489lhtuuCHDhw+v8Kjx+fPn5/zzz8+4ceNyzz33ZMqUKenXr1+SpHXr1pk2bVrq16+fyy67LNOmTcu+++67SNv++++f//znP9ltt92y5ZZbZty4cbn66qtz3XXX5Ve/+lWFem644YZUr149o0ePzjXXXJN33nknP/nJT9K7d++MHTs2RxxxRE477bQKy3z22WfZfPPN849//COvvvpqBgwYkJ/97Gd57rnnFhm7WrVqee6553L55Zfn0ksvzZ///Ocl7pt99903H3zwQR588MG8+OKL6dKlS3baaad89NFH326nAwAAAAAArATVKrsAgMqy5ppr5ve//32qVq2aDTfcMLvvvnseffTRHHnkkUmSww8/vNh3nXXWyRVXXJEtt9wyc+bMSd26ddO8efOUlZWlQYMGad68eZKkTp06i7T94Q9/SOvWrfP73/8+ZWVl2XDDDfPee+9l8ODBOeuss1Klyhf/c7T++uvnoosuKq7zl7/8ZdZdd91ccsklSZIOHTrkX//6Vy688MJin1atWuXkk08uTh977LF56KGHcscdd2SrrbYqtrdu3Tq/+93vUlZWVhznd7/7XXFbv+qpp57Kc889lw8++CA1atRIklx88cW555578te//jUDBgz4djseAAAAAADgW3JHN/CD9aMf/ShVq1YtTrdo0aL4aPIkefHFF9O7d++0adMm9erVy/bbb58kmTp16nKtZ/z48enWrVvKysqKbdtss03mzJmTd999t9i2+eabL7Jc165dK7R169atwvTChQtz/vnnp1OnTmnUqFHq1q2bhx56aJEat9566wrr79atWyZOnJiFCxcuUu+4ceMyZ86cNG7cOHXr1i1+Jk+enEmTJi3XtgMAAAAAAKwK7ugGvnfq16+fWbNmLdI+c+bMNGjQoDi9xhprVJhfVlaW8vLyJMmnn36anj17pmfPnrn55pvTpEmTTJ06NT179sznn3++SuquU6fOci/z29/+Npdffnkuu+yydOrUKXXq1MkJJ5zwrWqcM2dOWrRokVGjRi0yr2HDhis8LgAAAAAAwMoi6Aa+dzp06JCHH354kfaXXnopG2ywwTKN8cYbb2TGjBm54IIL0rp16yTJCy+8sEL1bLTRRvnb3/6WQqFQvKt69OjRqVevXtZee+1vXO6+++6r0PbMM89UmB49enT22muvHHzwwUmS8vLyvPnmm+nYsWOFfs8+++wi46y//voV7mj/UpcuXTJ9+vRUq1Yt7dq1W+btBAAAAAAA+K54dDnwvXP00UfnzTffzHHHHZdXXnklEyZMyKWXXppbb701J5100jKN0aZNm1SvXj1XXnll/v3vf+e+++7L+eefv0L1/OIXv8g777yTY489Nm+88UbuvffenH322Rk0aFDx/dyL8/Of/zwTJ07MKaeckgkTJuSWW27J8OHDK/RZf/31M3LkyDz99NMZP358jjrqqLz//vuLjDV16tQMGjQoEyZMyK233porr7wyxx9//GLX26NHj3Tr1i19+vTJww8/nClTpuTpp5/O6aefvsJhPwAAAAAAwMok6Aa+d9ZZZ5088cQTeeONN9KjR4907do1d9xxR+6888706tVrmcZo0qRJhg8fnjvvvDMdO3bMBRdckIsvvniF6mnVqlUeeOCBPPfcc+ncuXN+/vOfp3///jnjjDO+cbk2bdrkb3/7W+6555507tw511xzTX7zm99U6HPGGWekS5cu6dmzZ7p3757mzZunT58+i4x1yCGH5H//+1+22mqrHHPMMTn++OMzYMCAxa63rKwsDzzwQLbbbrscdthh2WCDDXLAAQfk7bffTrNmzVZoHwAAAAAAAKxMZYVCoVDZRQAAAAAAAADAsnJHNwAAAAAAAAAlRdANAAAAAAAAQEkRdAMAAAAAAABQUgTdAAAAAAAAAJQUQTcAAAAAAAAAJUXQDQAAAAAAAEBJEXQDAAAAAAAAUFIE3QAAAAAAAACUFEE3AAAAAAAAACVF0A0AAAAAAABASRF0AwAAAAAAAFBS/h+hRdN/moH/aAAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "⭕ **Time Factor**" + ], + "metadata": { + "id": "42cC_qa0WxQV" + } + }, + { + "cell_type": "code", + "source": [ + "# Set the figure size\n", + "plt.figure(figsize=(20,10))\n", + "\n", + "# Plot 1: Distribution of 'Influence of time'\n", + "plt.subplot(2,3,1)\n", + "sns.histplot(data['Influence of time'], bins=30, kde=True)\n", + "plt.title('Influence of time')\n", + "plt.xticks(rotation=60)\n", + "\n", + "# Plot 2: Distribution of 'Maximum wait time'\n", + "plt.subplot(2,3,2)\n", + "sns.histplot(data['Maximum wait time'], bins=30, kde=True)\n", + "plt.title('Maximum wait time')\n", + "plt.xticks(rotation=60)\n", + "\n", + "# Plot 3: Distribution of 'Less Delivery time'\n", + "plt.subplot(2,3,3)\n", + "sns.histplot(data['Less Delivery time'], bins=30, kde=True)\n", + "plt.title('Less Delivery time')\n", + "plt.xticks(rotation=60)\n", + "\n", + "plt.tight_layout()\n", + "plt.show()" + ], + "metadata": { + "id": "m8_IHWeNWW6j", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 404 + }, + "outputId": "776a0fb7-77fa-4dad-fe13-cd6ff475e690" + }, + "execution_count": 20, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8YAAAJRCAYAAAA3XN0MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXhU9fXH8c9Mlsk6ExLIRsKOQNgFhRRQBAQBccMqioCWilq0FSq1tIiirai1iguCWgVFqJYW/SlVBAQBZRGwKLIJCCQsSQjZ92Rmfn8kMzICQsJMbpb363nmeci9d+49d/o0fnPPnHNMTqfTKQAAAAAAAAAAAAAAGiiz0QEAAAAAAAAAAAAAAOBLJMYBAAAAAAAAAAAAAA0aiXEAAAAAAAAAAAAAQINGYhwAAAAAAAAAAAAA0KCRGAcAAAAAAAAAAAAANGgkxgEAAAAAAAAAAAAADRqJcQAAAAAAAAAAAABAg0ZiHAAAAAAAAAAAAADQoJEYBwAAAAAAAAAAAAA0aCTGATQYBQUF+vWvf63Y2FiZTCY9+OCDOnz4sEwmkxYuXGh0eHXSihUr1KNHDwUFBclkMiknJ6fa52jVqpXuvPNOr8cGAABQ15hMJj322GNGh1FvLFy4UCaTSYcPH/b6uR977DGZTCavnxcAAKCx+fzzz2UymfT555+7t915551q1aqVYTH5gi/XpgDqDxLjAOoM1+Jk27ZtNXr/k08+qYULF+q+++7TokWLNG7cOC9H2LCcOnVKt9xyi4KDgzV37lwtWrRIoaGhZz1248aNeuyxx2qUOAcAALgYrjWiyWTSF198ccZ+p9OpxMREmUwmXXvttQZEiOp45ZVXLvhLq0VFRXrsscc8HtICAAB408U+j6wtp6+JTSaTgoKCFB8fr2HDhunFF19Ufn6+0SHWGU8++aQ++OADo8MAUEf5Gx0AAHjLmjVr1LdvXz366KPubXwD8Ny2bt2q/Px8PfHEExoyZMjPHrtx40bNmjVLd955pyIiIjz27du3T2Yz37MCAAC+FRQUpCVLlqh///4e29etW6ejR4/KYrH4PIbi4mL5+/Nn9IUaN26cxowZ4/G/zSuvvKKmTZteUMehoqIizZo1S5I0cOBAj30zZszQH//4R2+GCwAAUOc9/vjjat26tcrLy5WWlqbPP/9cDz74oJ577jl9+OGH6tatm1eu8/rrr8vhcHjlXLXtySef1M0336wbbrjBY/vZ1qYAGh/+ogfQYGRkZCgpKcnoMOqNjIwMSToj0V1dLCYBAEBtGDFihJYuXaoXX3zRIzm9ZMkS9erVS5mZmT6PISgoyOfXaEj8/Pzk5+fnk3P7+/vzJQUAANDoDB8+XL1793b/PH36dK1Zs0bXXnutrrvuOu3Zs0fBwcEXfZ2AgICLPkd1ORwOlZWV+WzN7cu1KYD6gxI/AHXanXfeqbCwMB07dkw33HCDwsLC1KxZMz300EOy2+2SfpyDc+jQIf33v/91txQ6V7X4wIEDz6g4cV3rp7NzHA6H5syZo86dOysoKEgxMTG65557lJ2d7XFcq1atdO211+qLL77Q5ZdfrqCgILVp00Zvv/32GdfJycnRlClT1KpVK1ksFiUkJGj8+PEeD3NLS0v16KOPql27drJYLEpMTNQf/vAHlZaWXtDntnTpUvXq1UvBwcFq2rSp7rjjDh07dszjM5gwYYIk6bLLLpPJZDpn1c5jjz2madOmSZJat259xuf70xnjrtZOX3zxhX7729+qWbNmioiI0D333KOysjLl5ORo/PjxatKkiZo0aaI//OEPcjqdNfrcAQBA43Hbbbfp1KlTWrVqlXtbWVmZ/v3vf+v2228/63ueffZZ/eIXv1BUVJSCg4PVq1cv/fvf//Y4ZsGCBTKZTHrzzTc9tj/55JMymUz6+OOP3dt+OmPcNef6+++/1x133CGbzaZmzZrpkUcekdPpVGpqqq6//npZrVbFxsbq73//u8c1zjXn8GxzHgcOHKguXbro22+/1ZVXXqmQkBC1a9fOfT/r1q1Tnz59FBwcrA4dOmj16tU/+3k6nU41bdpUU6dOdW9zOByKiIiQn5+fxwidp59+Wv7+/iooKJAkffvtt7rzzjvVpk0bBQUFKTY2Vr/61a906tSpn72/Vq1aadeuXVq3bp17TXm2dblU2fmpWbNmkqRZs2a5j3d9/mebMW4ymXT//fdr6dKlSkpKUnBwsJKTk7Vz505J0quvvqp27dopKChIAwcOPOvfC1u2bNE111wjm82mkJAQXXnllfryyy9/9rMEAAAN37Fjx/SrX/1KMTExslgs6ty58xnrR0l66aWX1LlzZ4WEhKhJkybq3bu3lixZ4t6fn5+vBx980P1cMDo6WldffbW+/vrrGsc2aNAgPfLIIzpy5Ijeeecdj3179+7VzTffrMjISAUFBal379768MMPz3vO05+TlpeXKzIyUnfdddcZx+Xl5SkoKEgPPfSQe9uFPtd0rd0WL16szp07y2Kx6JNPPlGrVq10/fXXn3GtkpIS2Ww23XPPPeeM22QyqbCwUG+99ZZ7/eh6bnm2tbfrme7nn3+u3r17Kzg4WF27dnWvw5ctW6auXbsqKChIvXr10v/+978zrlnTzxiAMUiMA6jz7Ha7hg0bpqioKD377LO68sor9fe//12vvfaaJKlTp05atGiRmjZtqh49emjRokVatGiR+0Haxbjnnns0bdo09evXTy+88ILuuusuLV68WMOGDVN5ebnHsQcOHNDNN9+sq6++Wn//+9/VpEkT3Xnnndq1a5f7mIKCAg0YMEAvvfSShg4dqhdeeEH33nuv9u7dq6NHj0qqfCB53XXX6dlnn9WoUaP00ksv6YYbbtDzzz+vW2+99bwxL1y4ULfccov8/Pw0e/Zs3X333Vq2bJn69+/vfsD55z//WZMmTZJU2YJp0aJF51xU3nTTTbrtttskSc8///wFf74PPPCA9u/fr1mzZum6667Ta6+9pkceeUSjRo2S3W7Xk08+qf79++tvf/ubFi1aVOPPHQAANA6tWrVScnKy/vnPf7q3ffLJJ8rNzdWYMWPO+p4XXnhBPXv21OOPP64nn3xS/v7++uUvf6n//ve/7mPuuusuXXvttZo6dapSU1MlSTt37tSsWbM0ceJEjRgx4ryx3XrrrXI4HHrqqafUp08f/eUvf9GcOXN09dVXq3nz5nr66afVrl07PfTQQ1q/fn2NP4Ps7Gxde+216tOnj5555hlZLBaNGTNG7733nsaMGaMRI0boqaeeUmFhoW6++eafnTVpMpnUr18/j3i+/fZb5ebmSpJHMnjDhg3q2bOnwsLCJEmrVq3SDz/8oLvuuksvvfSSxowZo3fffVcjRow44wuPp5szZ44SEhLUsWNH95ryz3/+81mPbdasmebNmydJuvHGG93H33TTTT/7GW3YsEG///3vNWHCBD322GPas2ePrr32Ws2dO1cvvviifvOb32jatGnatGmTfvWrX3m8d82aNbriiiuUl5enRx99VE8++aRycnI0aNAgffXVVz97XQAA0HClp6erb9++Wr16te6//3698MILateunSZOnKg5c+a4j3v99df129/+VklJSZozZ45mzZqlHj16aMuWLe5j7r33Xs2bN0+jR4/WK6+8ooceekjBwcHas2fPRcU4btw4SdLKlSvd23bt2qW+fftqz549+uMf/6i///3vCg0N1Q033KD333//gs8dEBCgG2+8UR988IHKyso89n3wwQcqLS11r8er+1xzzZo1mjJlim699Va98MILat26te644w598sknysrK8jj2o48+Ul5enu64445zxrpo0SJZLBYNGDDAvX78uUS6VPlM9/bbb9eoUaM0e/ZsZWdna9SoUVq8eLGmTJmiO+64Q7NmzdLBgwd1yy23eLSY99ZnDKAWOQGgjliwYIFTknPr1q3ubRMmTHBKcj7++OMex/bs2dPZq1cvj20tW7Z0jhw50mPboUOHnJKcCxYscG+78sornVdeeeUZ158wYYKzZcuW7p83bNjglORcvHixx3ErVqw4Y3vLli2dkpzr1693b8vIyHBaLBbn73//e/e2mTNnOiU5ly1bdsb1HQ6H0+l0OhctWuQ0m83ODRs2eOyfP3++U5Lzyy+/POO9LmVlZc7o6Ghnly5dnMXFxe7ty5cvd0pyzpw5073tbJ/3ufztb39zSnIeOnTojH0tW7Z0Tpgw4YzzDhs2zH1PTqfTmZyc7DSZTM57773Xva2iosKZkJDg8b9HdT53AADQ8J2+Znn55Zed4eHhzqKiIqfT6XT+8pe/dF511VVOp/Psa0HXcS5lZWXOLl26OAcNGuSx/cSJE87IyEjn1Vdf7SwtLXX27NnT2aJFC2dubq7HcZKcjz76qPvnRx991CnJOWnSJPc21/rGZDI5n3rqKff27OxsZ3Bw8FnXTT9dY61du9Ypybl27Vr3tiuvvNIpyblkyRL3tr179zolOc1ms3Pz5s3u7Z9++ukZa+Cz+dvf/ub08/Nz5uXlOZ1Op/PFF190tmzZ0nn55Zc7H374YafT6XTa7XZnRESEc8qUKe73/fRzdTqdzn/+859nrIfPdn+dO3c+61r8bE6ePHnGZ+7i+uxPJ8lpsVg8rvfqq686JTljY2Pd9+l0Op3Tp0/3iM3hcDjbt29/xhq2qKjI2bp1a+fVV199QTEDAID65UKej02cONEZFxfnzMzM9Ng+ZswYp81mc6+Nrr/+emfnzp1/9no2m805efJkn8Rps9mcPXv2dP88ePBgZ9euXZ0lJSXubQ6Hw/mLX/zC2b59e/e2s609f/qc1LW+/OijjzyuOWLECGebNm3cP1fnuaZrHbtr1y6PY/ft2+eU5Jw3b57H9uuuu87ZqlUrj7Xa2YSGhnqsuV3OtjZ1PdPduHHjGfcaHBzsPHLkiHu7a115+ud0oZ8xgLqDinEA9cK9997r8fOAAQP0ww8/+PSaS5culc1m09VXX63MzEz3q1evXgoLC9PatWs9jk9KStKAAQPcPzdr1kwdOnTwiPM///mPunfvrhtvvPGM67laQS5dulSdOnVSx44dPa47aNAgSTrjuqfbtm2bMjIy9Jvf/MZjHs/IkSPVsWNHj+ooX5s4caJHe8s+ffrI6XRq4sSJ7m1+fn7q3bu3x2dU3c8dAAA0HrfccouKi4u1fPly5efna/ny5edsoy7JY75idna2cnNzNWDAgDNaVcbGxmru3LlatWqVBgwYoB07dujNN9+U1Wq9oLh+/etfu//tWt/8dN0TERFxxtqwusLCwjyq4zt06KCIiAh16tRJffr0cW93/ft81xowYIDsdrs2btwoqbLaesCAARowYIA2bNggSfruu++Uk5Pjsc49/XMtKSlRZmam+vbtK0kX1QbUGwYPHuwxHsn1WYwePVrh4eFnbHd9Rjt27ND+/ft1++2369SpU+41aGFhoQYPHqz169d7VAcBAIDGwel06j//+Y9GjRolp9Pp8axq2LBhys3Nda9/IiIidPToUW3duvWc54uIiNCWLVt0/Phxr8caFhbm7hiUlZWlNWvW6JZbblF+fr475lOnTmnYsGHav3+/x9jF8xk0aJCaNm2q9957z70tOztbq1at8qgEr+5zzSuvvFJJSUke2y655BL16dNHixcvdm/LysrSJ598orFjx54xTudiJSUlKTk52f2za504aNAgtWjR4oztrvWjtz9jALXD3+gAAOB8goKCzmjb3aRJE5/Pm96/f79yc3MVHR191v0ZGRkeP5++UHL5aZwHDx7U6NGjz3vdPXv2nLNV+U+ve7ojR45IqnxI+lMdO3bUF1988bPX9qaffh42m02SlJiYeMb20z+j6n7uAACg8WjWrJmGDBmiJUuWqKioSHa7XTfffPM5j1++fLn+8pe/aMeOHR4zDc/2MG3MmDF655139N///leTJk3S4MGDLzius617goKC1LRp0zO2/3QOd3UkJCScEbvNZjvr+krSedfLl156qUJCQrRhwwYNGzZMGzZs0KxZsxQbG6uXXnpJJSUl7gR5//793e/LysrSrFmz9O67756xNnO1YjdKddag0o+f0f79+yVJEyZMOOe5c3Nz1aRJE6/FCgAA6r6TJ08qJydHr732mnus40+51kMPP/ywVq9ercsvv1zt2rXT0KFDdfvtt6tfv37uY5955hlNmDBBiYmJ6tWrl0aMGKHx48erTZs2Fx1rQUGB+3nagQMH5HQ69cgjj+iRRx45Z9zNmze/oHP7+/tr9OjRWrJkiUpLS2WxWLRs2TKVl5d7JMar+1yzdevWZz1u/Pjxuv/++3XkyBG1bNlSS5cuVXl5ubtlvDfVdP3o7c8YQO0gMQ6gzvPz8/Pq+Uwm01lnH9rtdo+fHQ6HoqOjPb6deLqfLvDOFefZrvVzHA6Hunbtqueee+6s+3+6KKurzvV5nG376Z9RdT93AADQuNx+++26++67lZaWpuHDhysiIuKsx23YsEHXXXedrrjiCr3yyiuKi4tTQECAFixYoCVLlpxx/KlTp7Rt2zZJ0u7du+VwOGQ2X1iTtbOtby5kbXiuapefrkvPd86arkMDAgLUp08frV+/XgcOHFBaWpoGDBigmJgYlZeXa8uWLdqwYYM6duzosQa75ZZbtHHjRk2bNk09evRQWFiYHA6HrrnmGsOrqmv6Gbni/tvf/qYePXqc9VjXjHUAANB4uNYId9xxxzm/QNetWzdJUqdOnbRv3z4tX75cK1as0H/+8x+98sormjlzpmbNmiWpch01YMAAvf/++1q5cqX+9re/6emnn9ayZcs0fPjwGsd59OhR5ebmql27dh5xP/TQQxo2bNhZ3+M69kKNGTNGr776qj755BPdcMMN+te//qWOHTuqe/fu7mOq+1zz9E5EP73WlClTtHjxYv3pT3/SO++8o969e5+1GOhiXez60ZufMQDfIzEOoNFp0qTJWdtKuqqtXdq2bavVq1erX79+51ykVVfbtm313XffnfeYb775RoMHD652a6CWLVtKkvbt2+duUeSyb98+9/7q8naLop/ji88dAAA0HDfeeKPuuecebd682aOV40/95z//UVBQkD799FNZLBb39gULFpz1+MmTJys/P1+zZ8/W9OnTNWfOHE2dOtXr8Z/OVX2ck5Pjsf2n61JfGjBggJ5++mmtXr1aTZs2VceOHWUymdS5c2dt2LBBGzZs0LXXXus+Pjs7W5999plmzZqlmTNnure7Kq7Ppzrrytpeg0qS1WrVkCFDau26AACgbmvWrJnCw8Nlt9svaI0QGhqqW2+9VbfeeqvKysp000036a9//aumT5/uHnsYFxen3/zmN/rNb36jjIwMXXrppfrrX/96UYnxRYsWSZI7QeuqQA8ICPDa2uaKK65QXFyc3nvvPfXv319r1qzRn//8Z49jLua55ukiIyM1cuRILV68WGPHjtWXX36pOXPmXNB7a2sN6YvPGIDvMWMcQKPTtm1b7d27VydPnnRv++abb/Tll196HHfLLbfIbrfriSeeOOMcFRUVZzzAvBCjR4/WN998o/fff/+Mfa5vG95yyy06duyYXn/99TOOKS4uVmFh4TnP37t3b0VHR2v+/Pke7UI/+eQT7dmzRyNHjqx2zFLlol4686GtL/jicwcAAA1HWFiY5s2bp8cee0yjRo0653F+fn4ymUwe1deHDx/WBx98cMax//73v/Xee+/pqaee0h//+EeNGTNGM2bM0Pfff++LW3BzJWPXr1/v3ma328/ZptMXBgwYoNLSUs2ZM0f9+/d3P0gcMGCAFi1apOPHj3vMF3dVzvy0Gv1CH1SGhoZe8HouJCREUu2sQXv16qW2bdvq2WefVUFBwRn7T//bAQAANB5+fn4aPXq0/vOf/5y12OX0NcJPR+YEBgYqKSlJTqdT5eXlstvtZ4ydiY6OVnx8vMdzvOpas2aNnnjiCbVu3Vpjx451n3fgwIF69dVXdeLEiZ+N+0KZzWbdfPPN+uijj7Ro0SJVVFR4tFGXLu655k+NGzdOu3fv1rRp0+Tn56cxY8Zc0Puqs968GL74jAH4HhXjABqdX/3qV3ruuec0bNgwTZw4URkZGZo/f746d+6svLw893FXXnml7rnnHs2ePVs7duzQ0KFDFRAQoP3792vp0qV64YUXfnam5dlMmzZN//73v/XLX/5Sv/rVr9SrVy9lZWXpww8/1Pz589W9e3eNGzdO//rXv3Tvvfdq7dq16tevn+x2u/bu3at//etf+vTTT9W7d++znj8gIEBPP/207rrrLl155ZW67bbblJ6erhdeeEGtWrXSlClTavSZ9erVS5L05z//WWPGjFFAQIBGjRrlTph7ky8+dwAA0LD83Bxol5EjR+q5557TNddco9tvv10ZGRmaO3eu2rVrp2+//dZ9XEZGhu677z5dddVVuv/++yVJL7/8stauXas777xTX3zxxQW3VK+uzp07q2/fvpo+fbqysrIUGRmpd999VxUVFT653tkkJyfL399f+/bt06RJk9zbr7jiCs2bN0+SPBLjVqtVV1xxhZ555hmVl5erefPmWrlypQ4dOnRB1+vVq5fmzZunv/zlL2rXrp2io6PP6HTkEhwcrKSkJL333nu65JJLFBkZqS5duqhLly4XccdnZzab9Y9//EPDhw9X586dddddd6l58+Y6duyY1q5dK6vVqo8++sjr1wUAAHXDm2++qRUrVpyx/Xe/+52eeuoprV27Vn369NHdd9+tpKQkZWVl6euvv9bq1auVlZUlSRo6dKhiY2PVr18/xcTEaM+ePXr55Zc1cuRIhYeHKycnRwkJCbr55pvVvXt3hYWFafXq1dq6dav+/ve/X1Ccn3zyifbu3auKigqlp6drzZo1WrVqlVq2bKkPP/zQXZUuSXPnzlX//v3VtWtX3X333WrTpo3S09O1adMmHT16VN988021P6dbb71VL730kh599FF17dpVnTp18th/Mc81f2rkyJGKiorS0qVLNXz4cPf89PPp1auXVq9ereeee07x8fFq3bq1+vTpU+17vRC++IwB+BaJcQCNTqdOnfT2229r5syZmjp1qpKSkrRo0SItWbJEn3/+ucex8+fPV69evfTqq6/qT3/6k/z9/dWqVSvdcccd6tevX7WvHRYWpg0bNujRRx/V+++/r7feekvR0dEaPHiwEhISJFU+lPvggw/0/PPP6+2339b777+vkJAQtWnTRr/73e90ySWX/Ow17rzzToWEhOipp57Sww8/rNDQUN144416+umnzzmD83wuu+wyPfHEE5o/f75WrFghh8OhQ4cO+SQxLnn/cwcAAI3PoEGD9MYbb+ipp57Sgw8+qNatW+vpp5/W4cOHPRLj9913n0pLS7VgwQJ3tXRUVJRee+01XX/99Xr22Wf1hz/8wWdxLl68WPfcc4+eeuopRUREaOLEibrqqqt09dVX++yapwsNDVXPnj21detW9e/f373dlQxPTEw8YxzPkiVL9MADD2ju3LlyOp0aOnSoPvnkE8XHx5/3ejNnztSRI0f0zDPPKD8/X1deeeU5E+OS9I9//EMPPPCApkyZorKyMj366KM+SYxL0sCBA7Vp0yY98cQTevnll1VQUKDY2Fj16dNH99xzj0+uCQAA6gbXFwJ/6s4771RCQoK++uorPf7441q2bJleeeUVRUVFqXPnznr66afdx95zzz1avHixnnvuORUUFCghIUG//e1vNWPGDEmV3XB+85vfaOXKlVq2bJkcDofatWunV155Rffdd98FxekaZRMYGKjIyEh17dpVc+bM0V133aXw8HCPY5OSkrRt2zbNmjVLCxcu1KlTpxQdHa2ePXt6jMSpjl/84hdKTExUamrqGdXi0sU/1zxdYGCgbr31Vr3yyisaN27cBb/vueee06RJkzRjxgwVFxdrwoQJPkuM++IzBuBbJudP+58BAAAAAAAAAAAABpoyZYreeOMNpaWlucfsAMDFYMY4AAAAAAAAAAAA6oySkhK98847Gj16NElxAF5DK3UAAAAAAAAAAAAYLiMjQ6tXr9a///1vnTp1Sr/73e+MDglAA0JiHAAAAAAAAAAAAIbbvXu3xo4dq+joaL344ovq0aOH0SEBaECYMQ4AAAAAAAAAAAAAaNCYMQ4AAAAAAAAAAAAAaNBIjAMAAAAAAAAAAAAAGjRmjEtyOBw6fvy4wsPDZTKZjA4HAACgTnM6ncrPz1d8fLzMZr5n6cKaEgAA4MKxpjw31pUAAAAXrjrrShLjko4fP67ExESjwwAAAKhXUlNTlZCQYHQYdQZrSgAAgOpjTXkm1pUAAADVdyHrShLjksLDwyVVfmBWq9XgaAAAAOq2vLw8JSYmutdQqMSaEgAA4MKxpjw31pUAAAAXrjrrShLjkrslkdVqZbEJAABwgWjr6Ik1JQAAQPWxpjwT60oAAIDqu5B1JQN8AAAAAAAAAAAAAAANGolxAAAAAAAAAAAAAECDRmIcAAAAAAAAAAAAANCgkRgHAAAAAAAAAAAAADRoJMYBAAAAAAAAAAAAAA0aiXEAAAAAAAAAAAAAQINGYhwAAAAAAAAAfuKpp56SyWTSgw8+6N5WUlKiyZMnKyoqSmFhYRo9erTS09M93peSkqKRI0cqJCRE0dHRmjZtmioqKmo5egAAAPwUiXEAAAAAAAAAOM3WrVv16quvqlu3bh7bp0yZoo8++khLly7VunXrdPz4cd10003u/Xa7XSNHjlRZWZk2btyot956SwsXLtTMmTNr+xYAAADwEyTGAQAAAAAAAKBKQUGBxo4dq9dff11NmjRxb8/NzdUbb7yh5557ToMGDVKvXr20YMECbdy4UZs3b5YkrVy5Urt379Y777yjHj16aPjw4XriiSc0d+5clZWVGXVLAAAAEIlxAAAAAAAAAHCbPHmyRo4cqSFDhnhs3759u8rLyz22d+zYUS1atNCmTZskSZs2bVLXrl0VExPjPmbYsGHKy8vTrl27aucGAAAAcFb+RgcAAAAAAAAAAHXBu+++q6+//lpbt249Y19aWpoCAwMVERHhsT0mJkZpaWnuY05Pirv2u/adTWlpqUpLS90/5+XlXcwtAAAA4ByoGAcAAAAAAADQ6KWmpup3v/udFi9erKCgoFq77uzZs2Wz2dyvxMTEWrs2AABAY0JiHAAAAAAAAECjt337dmVkZOjSSy+Vv7+//P39tW7dOr344ovy9/dXTEyMysrKlJOT4/G+9PR0xcbGSpJiY2OVnp5+xn7XvrOZPn26cnNz3a/U1FTv3xwAAABIjAMAAAAAAADA4MGDtXPnTu3YscP96t27t8aOHev+d0BAgD777DP3e/bt26eUlBQlJydLkpKTk7Vz505lZGS4j1m1apWsVquSkpLOel2LxSKr1erxAgAAgPcxYxwNzuxP9ig6PEj92kWpQ0y4TCaT0SEBAAAA9VaF3aHtR7L11aEsmUxSSKC/erVsom4JNtbaAIAGJTw8XF26dPHYFhoaqqioKPf2iRMnaurUqYqMjJTVatUDDzyg5ORk9e3bV5I0dOhQJSUlady4cXrmmWeUlpamGTNmaPLkybJYLLV+TwDgDRl5JVq6/aiKyipk8ffT6F4Jah4RbHRYAFBtJMbRoBSWVuiNDYdU4XBKknokRmju2Ev5jzQAAABQTaUVdr227gf944tDyi0uP2N/UpxV91zZRtd1jydBDgBoNJ5//nmZzWaNHj1apaWlGjZsmF555RX3fj8/Py1fvlz33XefkpOTFRoaqgkTJujxxx83MGoAqLmM/BL98tVNOnKqyL1tyZYU/fu+ZCU0CTEwMgCoPpPT6XQaHYTR8vLyZLPZlJubS6uiei6vpFzvfpWiLw+c0pZDp1RS7lBkaKBeHddLl7WKNDo8AAAaBNZOZ8fngobkfynZemjpNzp4slCS1CQkQP3bN1NooJ9OFZZp3fcnVVbhkCTd1LO5/nJjF4UE8r1rAMCFY+10bnw2AOqK3OJyjXlts/acyFPziGAN7RyjdftO6ofMQrVuGqql9yaraRjdMAAYqzprJ8NnjB87dkx33HGHoqKiFBwcrK5du2rbtm3u/U6nUzNnzlRcXJyCg4M1ZMgQ7d+/3+McWVlZGjt2rKxWqyIiIjRx4kQVFBTU9q2gDrAGBWjSFW311q8u16opV6pLc6uyCss06e1tOp5TbHR4AAAAQJ23dl+Gbnt9sw6eLFTTsEDNubWHts24Wi/d1lNPje6m18f31ld/GqzfDW4vs0la9r9junHuRp0qKDU6dAAAAABe9Mf/fKs9J/LULNyiJXf30aOjOmvx3X3UPCJYhzIL9bt3/2d0iABQLYYmxrOzs9WvXz8FBATok08+0e7du/X3v/9dTZo0cR/zzDPP6MUXX9T8+fO1ZcsWhYaGatiwYSopKXEfM3bsWO3atUurVq3S8uXLtX79ek2aNMmIW0IdkhgZon/f+wt1aW5VdlG5Ji/52l3VAgAAAOBMy789rrvf2qaScoeu6tBMn00dqBt6Npef2bNVekRIoKZcfYn+eXdfNQu3aF96vn711jYVlVUYFDkAAAAAb/o+PV+ffJcmk0lacOdlahkVKkmKswXr7YmXK8DPpC8PnNL2I9kGRwoAF87QxPjTTz+txMRELViwQJdffrlat26toUOHqm3btpIqq8XnzJmjGTNm6Prrr1e3bt309ttv6/jx4/rggw8kSXv27NGKFSv0j3/8Q3369FH//v310ksv6d1339Xx48cNvDvUBUEBfpo3tpesQf76X0qOXvn8gNEhAQAAAHXSlh9O6cF3d6jC4dR13eP12vjesoUE/Ox7+rSJ0j/v7quIkAB9k5qjyYu/VoWdL6MCAAAA9d38dQclSdd0jlWX5jaPfW2bhenGns09jgOA+sDQxPiHH36o3r1765e//KWio6PVs2dPvf766+79hw4dUlpamoYMGeLeZrPZ1KdPH23atEmStGnTJkVERKh3797uY4YMGSKz2awtW7ac9bqlpaXKy8vzeKHhSowM0V9u7CpJenXdD8rIKznPOwAAAIDGJTWrSPct/loVDqdGdovTnFt7KMDvwv5cbBcdpjcmXKagALPW7jvJgzEAAACgnjuWU6wPd1QWHt57ZduzHjPpirYymaRVu9O1Pz2/NsMDgBozNDH+ww8/aN68eWrfvr0+/fRT3Xffffrtb3+rt956S5KUlpYmSYqJifF4X0xMjHtfWlqaoqOjPfb7+/srMjLSfcxPzZ49Wzabzf1KTEz09q2hjhnVLU49W0SouNyu51d/b3Q4AAAAQJ1RUm7XpEXblVVYpi7NrXr25u4y/6R1+vn0atlET1Z9GfWFz/Zr93G+fAwAAADUV//Y8IMqHE79om2UuidGnPWYdtFhGppUmbt5df0PtRgdANScoYlxh8OhSy+9VE8++aR69uypSZMm6e6779b8+fN9et3p06crNzfX/UpNTfXp9WA8k8mkP4/oJEl6b2uqDmQUGBwRAAAAUDc8v+p77TmRp6ZhgXptXG8FB/rV6Dw39myuoUkxKrc7NfVfO1RWQUt1AAAAoL4prbDr39uOSjp3tbiLa///7TimvJJyn8cGABfL0MR4XFyckpKSPLZ16tRJKSkpkqTY2FhJUnp6uscx6enp7n2xsbHKyMjw2F9RUaGsrCz3MT9lsVhktVo9Xmj4ereK1JBOMXI4pTe/PGR0OAAAAIDhth/J0msbKqs7nrqpm+Ijgmt8LpPJpL/e2FWRoYHam5av1zdQNQIAAADUNxsPnlJ+aYWiwy3q367pzx7bs0UTtWkWqnK7U2v3ZvzssQBQFxiaGO/Xr5/27dvnse37779Xy5YtJUmtW7dWbGysPvvsM/f+vLw8bdmyRcnJyZKk5ORk5eTkaPv27e5j1qxZI4fDoT59+tTCXaA++fWA1pKkZV8fVU5RmcHRAAAAAMYpLrPr9//6Rk6nNPrSBA1Jijn/m86jWbhFM0ZWdmqa//lBZRWy5gYAAADqk5W7KkfUDu0cc0EjloZ1jq16X/p5jgQA4xmaGJ8yZYo2b96sJ598UgcOHNCSJUv02muvafLkyZIqKw4efPBB/eUvf9GHH36onTt3avz48YqPj9cNN9wgqbLC/JprrtHdd9+tr776Sl9++aXuv/9+jRkzRvHx8QbeHeqiPq0j1SnOqpJyh97dSgt9AAAANF7z1x3U4VNFirUGaeaopPO/4QLd0KO5OsdblV9aoZfW7PfaeQEAAAD4lt3hdCe4XQnv83Ed9/m+DJWU230WGwB4g6GJ8csuu0zvv/++/vnPf6pLly564oknNGfOHI0dO9Z9zB/+8Ac98MADmjRpki677DIVFBRoxYoVCgoKch+zePFidezYUYMHD9aIESPUv39/vfbaa0bcEuo4k8mku/q1kiS9vfGwKuzMPQQAAEDjk5pVpPnrDkqSZo5Kki04wGvnNptN+tOIyqrxdzYf0ZFThV47NwAAAADf2X4kW6cKy2QN8lffNlEX9J5uzW2KtQapsMyuLw9k+jhCALg4hibGJenaa6/Vzp07VVJSoj179ujuu+/22G8ymfT4448rLS1NJSUlWr16tS655BKPYyIjI7VkyRLl5+crNzdXb775psLCwmrzNlCPXNc9Xk1CAnQ8t0QbD54yOhwAAOAF69ev16hRoxQfHy+TyaQPPvjgjGP27Nmj6667TjabTaGhobrsssuUkpLi3l9SUqLJkycrKipKYWFhGj16tNLTaQWHhunJj/eotMKh5DZRGt7lwipBqqNfu6a68pJmKrc79cJqqsYBAACA+uDTqjbqgzvFKMDvwtJHZrNJQzvHeLwfAOoqwxPjQG0LCvDTqO6VbfY/+N8xg6MBAADeUFhYqO7du2vu3Lln3X/w4EH1799fHTt21Oeff65vv/1WjzzyiEcXoilTpuijjz7S0qVLtW7dOh0/flw33XRTbd0CUGs2HTylT75Lk5/ZpEevS5LJdP65gTXx0NAOkqQPvzmuYznFPrkGAAAAAO9wOp3uxPaFtlF3cR2/ek8GXVoB1Gn+RgcAGOGGns319qYjWrErTX8pq1BIIP9XAACgPhs+fLiGDx9+zv1//vOfNWLECD3zzDPubW3btnX/Ozc3V2+88YaWLFmiQYMGSZIWLFigTp06afPmzerbt6/vggdqkdPp1NMr9kqSbr+8hTrGWn12ra4JNv2ibZQ2HjylN784pEeu9d4ccwAAAADedSizUEezixXob9aVlzSr1nsvbx0pa5C/sgrLtPNYrnq2aOKjKAHg4lAxjkapZ2KEWkaFqKjMrpW7aJEKAEBD5nA49N///leXXHKJhg0bpujoaPXp08ej3fr27dtVXl6uIUOGuLd17NhRLVq00KZNmwyIGvCN1XsytCM1R8EBfnpgcDufX++eKyu/gPLPr1KUW1Tu8+sBAAAAqJkth7IkVT47Dw70q9Z7A/zMurx15UzyrYezvB4bAHgLiXE0SiaTSTf0aC5JWkY7dQAAGrSMjAwVFBToqaee0jXXXKOVK1fqxhtv1E033aR169ZJktLS0hQYGKiIiAiP98bExCgt7ewz0kpLS5WXl+fxAuoyh8OpZz/dJ0m6q18rRYcHnecdF++K9k3VMTZcRWV2Ldp82OfXAwAAAFAzX1Ulxvu0jqzR+13vc50HAOoiEuNotK7vUTlnfOOBTOUWU70CAEBD5XBUzje7/vrrNWXKFPXo0UN//OMfde2112r+/Pk1Pu/s2bNls9ncr8TERG+FDPjER98e1770fIUH+eueK9qe/w1eYDKZdM+VbSRJ72xOYd4gAAAAUEe5Etquyu/quvy0xLjD4fRaXADgTSTG0Wi1aRam9tFhqnA49fm+DKPDAQAAPtK0aVP5+/srKclzvnGnTp2UkpIiSYqNjVVZWZlycnI8jklPT1dsbOxZzzt9+nTl5ua6X6mpqT6JH/AGh8Opl9cckCRNGtBGtpCAWrv2iK5xigwNVFpeidbuO1lr1wUAAABwYY5mF+lYTrH8zSZd2jKiRufoHG9VSKCf8koqtC8937sBAoCXkBhHo3Z1UowkaeVu5owDANBQBQYG6rLLLtO+ffs8tn///fdq2bKlJKlXr14KCAjQZ5995t6/b98+paSkKDk5+azntVgsslqtHi+grlq5O037MwoUHuSvCf1a1eq1Lf5+urlXgqTKWeMAAAAA6pYtP1RWi3dNsCkk0L9G5/D3M6tXyyaSaKcOoO4iMY5GzZUYX7fvpEor7AZHAwAAaqqgoEA7duzQjh07JEmHDh3Sjh073BXh06ZN03vvvafXX39dBw4c0Msvv6yPPvpIv/nNbyRJNptNEydO1NSpU7V27Vpt375dd911l5KTk9W3b1+jbgvwCqfTqZfXVlaL3/mLVrIG1V61uMuYyypHDXy+L0PHcopr/foAAAAAzu3HNuo1my/uwpxxAHUdiXE0at0TIhQdblFBaYU2/8B/rAEAqK+2bdumnj17qmfPnpKkqVOnqmfPnpo5c6Yk6cYbb9T8+fP1zDPPqGvXrvrHP/6h//znP+rfv7/7HM8//7yuvfZajR49WldccYViY2O1bNkyQ+4H8KZ135/Ud8fyFBzgp7v6tTYkhjbNwpTcJkoOp/TeVsYOAAAAAHXJV4crn433ucjEuGs++ZZDWXI6mTMOoO4hMY5GzWw2aXCnyqrxVbvTDI4GAADU1MCBA+V0Os94LVy40H3Mr371K+3fv1/FxcXasWOHrr/+eo9zBAUFae7cucrKylJhYaGWLVt2zvniQH3yyucHJUm392mhyNBAw+K4vU8LSdK/tqbK7uAhGQAAAFAXZOSV6FBmoUwmqXeri0uMd0uwKdDfrMyCUv2QWeilCAHAe0iMo9Eb0ilakrT++0yDIwEAAAC865vUHH11KEv+ZpN+PcCYanGXoZ1jZA3yV1peibYcOmVoLAAAAAAqfZ2SI0nqGGu96LFLQQF+6pEQIUn6X9V5AaAuITGORq9vmygF+JmUklWkI6f4FhsAAAAajtc3/CBJuq5HvOJswYbGYvH304iucZKkD/53zNBYAAAAAFT67liuJKlbc5tXztc1ofI8O4/meOV8AOBNJMbR6IVa/HVpiyaSpPX7qRoHAABAw5CaVaSPd56QJP26fxuDo6l0Q8/mkqRPdqappNxucDQAAAAAdlYlxrskeCkxXpVgd50XAOoSEuOApCsuaSZJ2vD9SYMjAQAAALzjzS8PyeGUBrRvqqR4q9HhSJIubxWpeFuQ8ksrtHZvhtHhAAAAAI2a0+n0esV4l6rz7D6Rpwq7wyvnBABvITEOqPJhoSRtOnhK5fzHGgAAAPVcfkm5/rU1VZL06wF1o1pcksxmk0b1iJckfbCDduoAAACAkY7nluhUYZn8zSZ1iA33yjnbNA1VaKCfSsodOniS0aUA6hYS44CkzvE2NQkJUH5phb5JzTE6HAAAAOCi/Hv7URWW2dUuOkxXVH0JtK64oUdlO/W1e08qt7jc4GgAAACAxmvn0cpq8UtiwhUU4OeVc5rNJnWOp506gLrJ3+gAgLrAz2xSv3ZNtfzbE9qwP1O9W0UaHRIAAAAakJSUFGVmZtbKtRxOp15bWzkiaFCCWf/73/9q5brVkWD119G8Cr254itd2TLY6HA8NG3aVC1atDA6DAAAAMDnXG3Uu3qpjbpL1wSbvjqcpZ1Hc3RzrwSvnhsALgaJcaBKctsoLf/2hL46lGV0KAAAAGhAUlJS1LFTJxUXFdXK9YLa9FLML2fJUVKgGXfcrD+Xl9TKdavDNuAORfxijGa//bGmfvCk0eF4CA4J0d49e0iOAwAAoMH71pUYT/ByYrw5FeMA6iYS40CVPq0rq8S/TslWaYVdFn/vtI4BAABA45aZmanioiKNffhvimnR1ufX+yLDX+kl0iXNgvXLOUt8fr2ayCkz6bM0Kbxjsm57aZn868iQr/SUg1r89DRlZmaSGAcAAECD5nQ6fVYx3qXqfLtP5KnC7pC/Xx1Z8ANo9EiMA1XaNgtT07BAZRaU6dujubqMduoAAADwopgWbZXQvrNPr5FdVKb0lCOSpH5d2igiJNCn16up5k6ntuYcVl5JhcqbtFCr6HCjQwIAAAAaleO5JcoqLJO/2aQOsd5dj7dpGqrQQD8Vltl18GSh188PADXF13SAKiaTSZdXVY1v+eGUwdEAAADA6XSq3O4wOox65dvUyoqP1k1D62xSXKpce7eLDpMkHcwoNDgaAAAAoPHZebTyb4dLYsIVFODd7qlms0md4yurxr89muPVcwPAxaBiHDhNn9ZR+nhnmrYcytL9RgcDAADQCDmdTn26K02ffJemrw5l6URuiQL9zYoKDdTADs00qnu8+raOktlsMjrUOqeswqHdJ/IkSd29PCPQF9pFh+nrlBwdyixUhcMhfzPf2wYAAABqy56qvx06x1t9cv6keKu+OpylvWn5Pjk/ANQEiXHgNH3aVFaMbz+SrXK7QwHMPgEAAKg12w5n6a8f79H/UnI8tpdVOHQit0T//CpV//wqVT0SI/SXG7q459ah0p4TeSqzO9QkJEAtIkOMDue8Yq1BCrX4qbDUrqNZxWrVNNTokAAAAIBG4/v0yoS1r9qcd6w6r+s6AFAXkBgHTnNJdLgiQgKUU1SuncdydWmLJkaHBAAA0ChsPJCp2/+xRZIUEuincX1b6spLmqlDbLiKy+06lFmoj3ee0Ic7jmtHao6ue/kL3XtlWz00tAPV46qstP+mqkVh94QImUx1/zMxmUxq3TRU3x3L06FThSTGAQAAgFq0z8eJ8UuqzruPinEAdQjlsMBpzGaTeresrBr/+ki2wdEAAAA0Hn3aRKlrc5tuuzxRnz80UNNHdNIv2jVVVJhFCU1CNKB9M82+qZvWPDRQo7rHy+GUXvn8oO59Z7uKyiqMDt9wKVlFyi4qV6CfWZ3ifNMK0RdaVyXDD2UWyul0GhwNAKCxmzdvnrp16yar1Sqr1ark5GR98skn7v0DBw6UyWTyeN17770e50hJSdHIkSMVEhKi6OhoTZs2TRUVrFUA1C0l5XYdziyUJHWI8VFivOq8Gfmlyi4s88k1AKC6SIwDP9GrZWWV+HYS4wAAALXGz2zSf+77hWbf1E3R1qBzHhdjDdJLt/XUC2N6KNDPrJW703Xb61uUX1Jei9HWPd8czZUkJcVZFehff/7MS2wSIj+zSfklFTrFwzIAgMESEhL01FNPafv27dq2bZsGDRqk66+/Xrt27XIfc/fdd+vEiRPu1zPPPOPeZ7fbNXLkSJWVlWnjxo166623tHDhQs2cOdOI2wGAczqQUSCHU4oICVCzcItPrhFm8VdCk2BJP1anA4DR6s8TE6CWuBLjX6dkU7UCAABQi6qT0L2+R3P9c1IfNQkJ0DepOZr41jYVl9l9GF3dlVtcrkNV1R7dEuvX3PUAP7MSqx6Wue4BAACjjBo1SiNGjFD79u11ySWX6K9//avCwsK0efNm9zEhISGKjY11v6zWHzu1rFy5Urt379Y777yjHj16aPjw4XriiSc0d+5clZXxBTAAdYd7vnhMuE/HMLmq0ZkzDqCuIDEO/ES3BJv8zSal55XqWE6x0eEAAADgHHq1jNSiiX0UbvHXV4eydN/i7aqwO4wOq9Z9WzVbvGVkiJqEBBobTA2c3k4dAIC6wm63691331VhYaGSk5Pd2xcvXqymTZuqS5cumj59uoqKitz7Nm3apK5duyomJsa9bdiwYcrLy/OoOgcAo/l6vrgLc8YB1DUkxoGfCArwU+f4ym/70k4dAACgbuvS3KYFd12m4AA/fb7vpGZ/stfokGpVud2hXcfzJNW/anEXV2L8RG5Jo636BwDUHTt37lRYWJgsFovuvfdevf/++0pKSpIk3X777XrnnXe0du1aTZ8+XYsWLdIdd9zhfm9aWppHUlyS++e0tLRzXrO0tFR5eXkeLwDwJVei+hIfzRd3cVWMkxgHUFeQGAfO4lJXO3US4wAAAHVe71aRev7W7pKkN744pGVfHzU4otqzLz1fpRUOWYP81Soq1OhwaiQ8KEBNwyor3Q+fomocAGCsDh06aMeOHdqyZYvuu+8+TZgwQbt375YkTZo0ScOGDVPXrl01duxYvf3223r//fd18ODBi7rm7NmzZbPZ3K/ExERv3AoAnNP3VYnqjj6uGHdVpO9Lz2dsKYA6gcQ4cBaXtnDNGc8xNhAAAABckGu6xOmBQe0kSX9ctlO7jzf8Siun06lvUnMkSd0SImT24WxAX3Ml9Y9kFZ3nSAAAfCswMFDt2rVTr169NHv2bHXv3l0vvPDCWY/t06ePJOnAgQOSpNjYWKWnp3sc4/o5Njb2nNecPn26cnNz3a/U1FRv3AoAnFVeSbmO55ZIktr7uGK8TbNQ+ZlNyi+pUFpeiU+vBQAXgsQ4cBa9qirGd5/IU1FZhcHRAAAA4EJMGXKJrurQTGUVDv3u3f+ppLxht+U+nluizIIy+ZtN7lFA9VXLqBBJUsqpIipJAAB1isPhUGlp6Vn37dixQ5IUFxcnSUpOTtbOnTuVkZHhPmbVqlWyWq3uduxnY7FYZLVaPV4A4Cv7q+aLx9mCZAsO8Om1LP5+7tFJtFMHUBeQGAfOIj4iWDFWi+wOp3tmIwAAAOo2s9mkZ3/ZXc3CLdqfUaC//neP0SH51LdV1eIdYsMVFOBnbDAXKc4WrAA/k4rL7TqZf/bkAwAAvjZ9+nStX79ehw8f1s6dOzV9+nR9/vnnGjt2rA4ePKgnnnhC27dv1+HDh/Xhhx9q/PjxuuKKK9StWzdJ0tChQ5WUlKRx48bpm2++0aeffqoZM2Zo8uTJslgsBt8dAFTaW5Wg7uDjNuourjnj36eTGAdgPBLjwDl0T4iQJHd7SgAAANR9UWEWPXdL5bzxRZuPaO3ejPO8o34qKK3QgZMFkn5ct9ZnfmaTEptUVo3TTh0AYJSMjAyNHz9eHTp00ODBg7V161Z9+umnuvrqqxUYGKjVq1dr6NCh6tixo37/+99r9OjR+uijj9zv9/Pz0/Lly+Xn56fk5GTdcccdGj9+vB5//HED7woAPO1Pr/w74hIft1F3cV1nX1pBrVwPAH6Ov9EBAHVV98QIrdydrm+O5hodCgAAAKphQPtm+lW/1nrzy0P68/s7tXLqlQqzNKw/fXYey5XDKcVHBKlZeMOoQGsRFaIfMgt15FSRLmsVaXQ4AIBG6I033jjnvsTERK1bt+6852jZsqU+/vhjb4YFAF51sOoLtu2ahdXK9dpFh3lcFwCMRMU4cA5UjAMAANRf04Z1UIvIEB3PLdHfVuw1Ohyvsjuc+u5Y5Zc3G0K1uEvLyMqK8RO5xSqrcBgcDQAAANAw/XCyUJLUpllorVzPdZ0fThbI6XTWyjUB4FxIjAPn0DXBJklKySpSVmGZwdEAAACgOoID/fTkjV0lSW9vPqLtR7IMjsh7DmQUqKjMrtBAP7WtpSqP2hAREihbcIAcTuloNu3UAQAAAG8rKqvQsZxiSaq1vyVaNw2VySTllVQos4Dn7ACMRWIcOAdbcIDaNK38Ntu3R3OMDQYAAADV1r99U93cK0FOp/Twf3aqtMJudEhe8U3V2rRrc5v8zCZjg/EyV9U4c8YBAAAA7zuUWVktHhkaqCahgbVyzaAAPyU0CZZUWTUOAEYiMQ78jG5VVePfpDJnHAAAoD6aMbKTmoYF6kBGgeZ9ftDocC5ael6JTuSWyGySujS3GR2O1yVWJcaPZhcbHAkAAADQ8Bx0tVFvWjtt1F3aNHXNGS+s1esCwE+RGAd+RvfECElUjAMAANRXESGBeuy6zpKkuWsPaH96vsERXRxXtXj76HCFWvyNDcYHmldVkmQVlqmwtMLgaAAAAICGxVWxXdsjmVzXo2IcgNFIjAM/o1tChCTpm6NUjAMAANRXI7vGaUinaJXbnZq+bKccDqfRIdVIQUmF9qVVJvZ7VH2Bs6EJDvBTszCLJLlnHwIAAADwDnfFeLNarhivut5BEuMADEZiHPgZSXFWmU1SZkGpMvJKjA4HAAAANWAymfT49V0UEuinbUey9e+vjxodUo3sSM2Rwyk1jwhWrC3I6HB8xjV/MJU54wAAAIBXHcwwuGI8k1bqAIxFYhz4GcGBfmpT9R/tXcfzDI4GAAAANRUfEawpQy6RJD31yV7lFJUZHFH1lFbYtfNYZRejS1tGGBuMj7kS48wZBwAAALzH4XDqUFVium10LSfGoysrxlOzilRaYa/VawPA6UiMA+fROd4qSdp1nHbqAADUVevXr9eoUaMUHx8vk8mkDz744JzH3nvvvTKZTJozZ47H9qysLI0dO1ZWq1URERGaOHGiCgpo89aQ3NmvlTrEhCursEzPfLrP6HCq5btjeSqzOxQZEqjWUbXb9rC2NW8SLJOknOJy5ZeUGx0OAAAA0CCcyCtRcbldAX4mJVZ9GbW2NAuzKNziL4dTOnKKzlAAjENiHDiPHxPjVIwDAFBXFRYWqnv37po7d+7PHvf+++9r8+bNio+PP2Pf2LFjtWvXLq1atUrLly/X+vXrNWnSJF+FDAME+Jn1xA1dJEn//CpF/0vJNjiiC2N3OLUjNUdSZbW4yWQyNiAfs/j7KdpaOWecqnEAAADAO36omu/dMipU/n61mxoymUxqU1Wl7mrnDgBGIDEOnEfneJskEuMAANRlw4cP11/+8hfdeOON5zzm2LFjeuCBB7R48WIFBAR47NuzZ49WrFihf/zjH+rTp4/69++vl156Se+++66OHz/u6/BRiy5vHanRlybI6ZRmfPCd7A6n0SGd1770fBWUVig00E8dYsONDqdWJDQJkURiHAAAAPAWV0K6TVNjOlC1rbouc8YBGInEOHAerorxlKwi5dHKEQCAesnhcGjcuHGaNm2aOnfufMb+TZs2KSIiQr1793ZvGzJkiMxms7Zs2XLWc5aWliovL8/jhfph+oiOsgb5a9fxPL2z+YjR4fwsp9Opr49UVrb3SIyQv7lx/Annau2Ymk2bRQAAAMAbfjBovrhLWyrGAdQBjeOpCnARIkIC1Tyi8sHcbqrGAQCol55++mn5+/vrt7/97Vn3p6WlKTo62mObv7+/IiMjlZaWdtb3zJ49Wzabzf1KTEz0etzwjaZhFv3hmo6SpGc/3aeM/BKDIzq3I6eKdKqwTIF+ZnVtbjM6nFoTZwuW2STll1Qot5gvpwIAAAAX64eTlYlxoyrGXdc9SMU4AAP5G3nxxx57TLNmzfLY1qFDB+3du1eSVFJSot///vd69913VVpaqmHDhumVV15RTEyM+/iUlBTdd999Wrt2rcLCwjRhwgTNnj1b/v6G3hoamKR4q47lFGvX8Tz1bRNldDgAAKAatm/frhdeeEFff/21V2czT58+XVOnTnX/nJeXV6vJ8ZSUFGVmZtba9RqaDv5OtYsM0IGscj206Es92LeJz661Z8+eGr93e1W1eJfmVlkC/LwVUp0X6G9WjDVIJ3JLdDS7SLbgxvOlAAAAAMAXDlUlpFsblBhvVXXdI6dIjAMwjuHZ486dO2v16tXun09PaE+ZMkX//e9/tXTpUtlsNt1///266aab9OWXX0qS7Ha7Ro4cqdjYWG3cuFEnTpzQ+PHjFRAQoCeffLLW7wUNV+d4q1btTteu47lGhwIAAKppw4YNysjIUIsWLdzb7Ha7fv/732vOnDk6fPiwYmNjlZGR4fG+iooKZWVlKTY29qzntVgsslgsPo39XFJSUtSxUycVF9Fm+mIExrRV7ITntT6lRP96+k6Vpuz06fUKCqrXMvBYdrGO5hTLbKpso97YJDYJ0YncEqVmF6tzPIlxAAAAoKZKK+w6nlss6ccEdW1rGRUiScopKldOUZkiQgINiQNA42Z4Ytzf3/+sDxtzc3P1xhtvaMmSJRo0aJAkacGCBerUqZM2b96svn37auXKldq9e7dWr16tmJgY9ejRQ0888YQefvhhPfbYYwoM5BcrvMP1II5W6gAA1D/jxo3TkCFDPLYNGzZM48aN01133SVJSk5OVk5OjrZv365evXpJktasWSOHw6E+ffrUesznk5mZqeKiIo19+G+KadHW6HDqtf9lOfVDgdR+3JMaElcus/eaCrjt+WqdPnnrBZWUVK9l++ZDpyRVdi8KDwrwfmB1XEKTYH11WDqaXSSn0+nVjg8AAABAY5KaVSSnUwqz+Csq1Ji8SUigv2KsFqXnlerIqSIS4wAMYXhifP/+/YqPj1dQUJCSk5M1e/ZstWjRQtu3b1d5ebnHQ8yOHTuqRYsW2rRpk/r27atNmzapa9euHq3Vhw0bpvvuu0+7du1Sz549jbglNECd462SpP0ZBSoptyuoEbWxBACgPigoKNCBAwfcPx86dEg7duxQZGSkWrRooagoz1EoAQEBio2NVYcOHSRJnTp10jXXXKO7775b8+fPV3l5ue6//36NGTNG8fHxtXov1RHToq0S2nc2Oox6rVm5XW9tOqL8crvSA+N0WatIr18jPeVgtd9zNLtIR7OL5Wcy+SSm+iDOFiQ/s0mFpXblFJWriUEP8AAAAID67nBmZbexllEhhn7htGVUqNLzSnX4VKG6N8KuWACMZzby4n369NHChQu1YsUKzZs3T4cOHdKAAQOUn5+vtLQ0BQYGKiIiwuM9MTExSktLkySlpaV5JMVd+137zqW0tFR5eXkeL+DnxNmC1CQkQHaHU9+n5xsdDgAA+Ilt27apZ8+e7i9GTp06VT179tTMmTMv+ByLFy9Wx44dNXjwYI0YMUL9+/fXa6+95quQUUdYAvx0RfumkqSvDmUpr7jc4Igkp9OpzT9kSar8gqa1EVaLS5K/n1lx1iBJUmo2YwMAAACAmjpcNdfbqDbqLq2jKq/vStQDQG0ztGJ8+PDh7n9369ZNffr0UcuWLfWvf/1LwcHBPrvu7NmzNWvWLJ+dHw2PyWRSUrxVXx44pV3H89QtIcLokAAAwGkGDhwop9N5wccfPnz4jG2RkZFasmSJF6NCfdEhNlzfHc/TsZxirfv+pEZ1N7ZLwJGsIh3LqawW792qiaGxGC2hSbCO5hTraHYxa3AAAACghtyJ8ao530Zp2bTy+keq4gGA2mZoxfhPRURE6JJLLtGBAwcUGxursrIy5eTkeByTnp7unkkeGxur9PT0M/a79p3L9OnTlZub636lpqZ690bQILnmjO86nmtwJAAAAPAmk8mkqzo0k9kk/ZBZqIMnCwyLxeFw6ov9mZKk7om2Rjlb/HQJTSofnB3NLq7Wl18AAAAA/OjIKVcrdWMrxltVXf8QiXEABqlTifGCggIdPHhQcXFx6tWrlwICAvTZZ5+59+/bt08pKSlKTk6WJCUnJ2vnzp3KyMhwH7Nq1SpZrVYlJSWd8zoWi0VWq9XjBZyPa874ruO03gcAAGhoosIsurRFZXX2mr0ZKim3GxLH7hN5OlVYpiB/c6OdLX66GJtFfmaTisvtyqkDbe4BAACA+uhQZmUiurXBrdRbRrkqxmmlDsAYhibGH3roIa1bt06HDx/Wxo0bdeONN8rPz0+33XabbDabJk6cqKlTp2rt2rXavn277rrrLiUnJ6tv376SpKFDhyopKUnjxo3TN998o08//VQzZszQ5MmTZbFYjLw1NECuxPjeE/myO6hWAQAAaGj6tI5Uk5AAFZXZte77k7V+/bIKhzb9cEqSdHnrSAUF+NV6DHWNv9msGGvl33bHcooNjgYAAACof0or7DpetZZuaXArdVfFeFZhmXL54isAAxiaGD969Khuu+02dejQQbfccouioqK0efNmNWvWTJL0/PPP69prr9Xo0aN1xRVXKDY2VsuWLXO/38/PT8uXL5efn5+Sk5N1xx13aPz48Xr88ceNuiU0YK2bhik4wE/F5XYdyjSuvSYAAAB8w9/PrKuTYmSStDctXz/Uckv1LYdOqajMLltwAPO0T9M8IliS3A/zAAAAAFy41KxiOZxSaKCfmoUZW1AYavFXs/DKGJgzDsAI/kZe/N133/3Z/UFBQZo7d67mzp17zmNatmypjz/+2NuhAWfwM5vUMS5c/0vJ0a7jeWoXHW50SAAAAPCyOFuwLm3RRNtTsrV6T4bGWoMUavH9n00Z+SX6X2qOJGngJc3kZzb5/Jr1RbwtWFK2jueUGB0KAAAAUO+4EtAto0JlMhn/d0arqBCdzC/V4VNFfCEYQK2rUzPGgbrO1U599wnmjAMAADRUfdtGqmlYoIrL7Vq5O11Op2/H6DicTn22J0NOp9Q+OkytDJ77V9fERQRJknKLy1VYWmFwNAAAAED94pov3qqpsW3UXVzt1I9kUjEOoPaRGAeqoUNsZWJ8X1q+wZEAAADAV/zNZg3vEid/s0kpWUXafiTbp9f7X0qOMvJLFehn1pWXNPPpteoji7+fmoYFSqKdOgAAAFBdR04VSfoxIW001xeBD1fFBQC1icQ4UA0dYyvbp5MYBwAAaNgiQwPdSeqNB0/5bP5del6JNh7MlCQNaN+0Vtq210euOePHSIwDAAAA1XK46m+ZupIYbxlVWbl+mBnjAAxAYhyohktiKhPjJ3JLlFtUbnA0AAAA8KXO8VYlxVnllPTJd2nKKSrz6vnLKhz65Ls0OZxS22ah7rE9OFN8VWKcOeMAAABA9Rx2zxivW63UD9NKHYABSIwD1WALDlC8rXLG4b50qsYBAAAaMpPJpKs6NlOsNUilFQ59+M1xFZV5Z8a10+nU6j3pyi0uV5jFX0M6xchkMnnl3A2RKzGeWVCq0gq7wdEAAAAA9UOF3aETVV8ubVFHEuOuOE4Vlqmw1Dt/XwHAhSIxDlRTB3c79TyDIwEAAICv+ZvNGtktTmEWf2UXlev/dhz3SmL2iwOZ2p9RILNJuqZLrIIC/LwQbcMVZvGXLThATlV2bwIAAABwfun5papwOBXgZ1J0eJDR4UiSrEEBsgUHSJKOZjMqCUDtIjEOVFOH2MoWl3uZMw4AANAohFn8dVPP5goO8FNGfqn+b8dxlZTXPDn+dUq2vk7JkSRdnRTjnp+NnxcfUfkg7zhzxgEAAIALkppVJElqHhEsP3Pd6VDVIrKyajylKj4AqC0kxoFq6lhVMf49rdQBAAAajSahgbqxZ3MF+pt1IrdE/9qWWu2Z406n9OWBTG3YnylJ+kXbKHWMZa74hYq3MWccAAAAqA5XRXZCk7rRRt0lMbJybZ9KYhxALSMxDlSTq5X63rR8OZ1Og6MBAABAbWkWbtEveyW426q/ty1Ve9PyLmhNaA62ak9ZE207ki1J6tsmUr1bNvF1yA2Kq7I+La9EFQ6HwdEAAAAAdZ8r8ZzQpG51qUpsQsU4AGOQGAeqqW2zMPmbTcovqWC+IQAAQCPTNMyiWy9LVHS4RSXlDn26K13/981xHcsuPmuCvNzuUJoiFP/reTppD5bJJA3pFK0+raNkMtWdVob1QURIgIID/GR3OJWRV2p0OAAAAECd56oYT4ysaxXjlfEczSYxDqB2+RsdAFDfBPqb1aZZqL5PL9C+tHzFMxMSAACgUQmz+OuW3onafiRbXx3K0pFTRTpyqkhNQgIUZwuWLThA5XaHcovLdfhUocoVJ78QKdRUrpG9WivOxvqxJkwmk+IjgnTwZKGO5xSzDgcAAADOw5V4rnMV41WJ8dSsYoMjAdDYUDEO1MAlMT+2UwcAAEDj42c26fLWkbq9Twt1jrfK32xSdlG5dp/I06YfTmnbkWztzyhQud2pIJUpa80bujToJEnxi+RKhh/L4QEaAMD75s2bp27duslqtcpqtSo5OVmffPKJe39JSYkmT56sqKgohYWFafTo0UpPT/c4R0pKikaOHKmQkBBFR0dr2rRpqqioqO1bAQBJp88Yr1t/hyRWxZOSVcS4UgC1isQ4UAMdq+aM70vLMzgSAAAAGCkyNFBDOsXo1wNaa0SXWPVtHalOceHqkRChfm2j9MteCeqlg8rf+r7MdE6/aK7E+IncEh6gAQC8LiEhQU899ZS2b9+ubdu2adCgQbr++uu1a9cuSdKUKVP00UcfaenSpVq3bp2OHz+um266yf1+u92ukSNHqqysTBs3btRbb72lhQsXaubMmUbdEoBGrNzu0IncqlbqTepWK/XmTSrHTBWX23WqsMzocAA0IrRSB2qgQ6xVEhXjAAAAqGTx91P7qq5CP3WilmNpyKLDLArwM6m0wqFThWVqGmYxOiQAQAMyatQoj5//+te/at68edq8ebMSEhL0xhtvaMmSJRo0aJAkacGCBerUqZM2b96svn37auXKldq9e7dWr16tmJgY9ejRQ0888YQefvhhPfbYYwoMDDTitgA0UidySuRwVo4GrWvrZou/n2KtQTqRW6KUrKI6Fx+AhouKcaAGXBXjB08WqNzuMDgaAAAAoHEwm02KsQZJqnzQBwCAr9jtdr377rsqLCxUcnKytm/frvLycg0ZMsR9TMeOHdWiRQtt2rRJkrRp0yZ17dpVMTEx7mOGDRumvLw8d9U5ANSW0+eLm+tg+6of54wXGRwJgMaExDhQA80jghUa6Kdyu1OHMguNDgcAAABoNOKr5rSfyGPOOADA+3bu3KmwsDBZLBbde++9ev/995WUlKS0tDQFBgYqIiLC4/iYmBilpaVJktLS0jyS4q79rn3nUlpaqry8PI8XAFysH+eL16026i6u9u4kxgHUJhLjQA2YzSZdUlU1Tjt1AAAAoPbE2agYBwD4TocOHbRjxw5t2bJF9913nyZMmKDdu3f79JqzZ8+WzWZzvxITE316PQCNQ+ppFeN1UWJkZVypWXzhFUDtITEO1JCrnfq+NL7FCwAAANSW2KrEeE5xuYrKKgyOBgDQ0AQGBqpdu3bq1auXZs+ere7du+uFF15QbGysysrKlJOT43F8enq6YmNjJUmxsbFKT08/Y79r37lMnz5dubm57ldqaqp3bwpAo+SqGE+soxXjLVyt1LOpGAdQe0iMAzXUIcaVGKdiHAAAAKgtQQF+igwJlCSl5VI1DgDwLYfDodLSUvXq1UsBAQH67LPP3Pv27dunlJQUJScnS5KSk5O1c+dOZWRkuI9ZtWqVrFarkpKSznkNi8Uiq9Xq8QKAi+VqUV53K8YrE+MptFIHUIv8jQ4AqK86xFb+kUIrdQAAAKB2xUUEKauoTCdyS9SmWZjR4QAAGojp06dr+PDhatGihfLz87VkyRJ9/vnn+vTTT2Wz2TRx4kRNnTpVkZGRslqteuCBB5ScnKy+fftKkoYOHaqkpCSNGzdOzzzzjNLS0jRjxgxNnjxZFovF4LsD0Ni4K8Yj63bF+IncEpXbHQrwo44TgO+RGAdqyNVK/Wh2sQpKKxRm4f9OAAAAQG2IswVp1/E8naBiHADgRRkZGRo/frxOnDghm82mbt266dNPP9XVV18tSXr++edlNps1evRolZaWatiwYXrllVfc7/fz89Py5ct13333KTk5WaGhoZowYYIef/xxo24JQCNVWmFXen7lWrmuVow3C7Mo0N+ssgqHTuSUqEVU3UzgA2hYyOQBNdQkNFDNwi06mV+qAxkF6pEYYXRIAAAAQKMQZ6t8uJeWVyK7wyk/s8ngiAAADcEbb7zxs/uDgoI0d+5czZ0795zHtGzZUh9//LG3QwOAajmeUyKnUwoO8FNUaKDR4ZyV2WxSQpNg/XCyUKnZRSTGAdQKelMAF6F9dGXbxv3ptFMHAAAAakuTkABZ/M2yO5w6WVBqdDgAAABAnXI0+8f54iZT3f0SqaudeipzxgHUEhLjwEVwJcYPZBQYHAkAAADQeJhMJsXZgiRJabRTBwAAADy45ovX1TbqLolNKhPjKSTGAdQSEuPARWgXUzlnfD+JcQAAAKBWudqpn8gpNjgSAAAAoG5xVWAnRtbt9uSJkZVr+tRs1vQAageJceAiuFupZ9BKHQAAAKhNrorx41SMAwAAAB7qS8W4q5U6FeMAaguJceAiXFJVMX40u1hFZRUGRwMAAAA0HjHWIJkkFZRWKL+k3OhwAAAAgDoj1T1jvG5XjLviO0piHEAtITEOXITI0EBFhQbK6ZQOZhQaHQ4AAI3W+vXrNWrUKMXHx8tkMumDDz5w7ysvL9fDDz+srl27KjQ0VPHx8Ro/fryOHz/ucY6srCyNHTtWVqtVERERmjhxogoKGJcC1FWB/mY1DbdIYs44AAAAcDpXxXhiHU+Mt4iqjO9UYZkKSyk8A+B7JMaBi9SOduoAABiusLBQ3bt319y5c8/YV1RUpK+//lqPPPKIvv76ay1btkz79u3Tdddd53Hc2LFjtWvXLq1atUrLly/X+vXrNWnSpNq6BQA1QDt1AAAAwFNJuV0n80sl1f1W6tagANmCAyT9WOUOAL7kb3QAQH3XPiZMWw5laX8GFWUAABhl+PDhGj58+Fn32Ww2rVq1ymPbyy+/rMsvv1wpKSlq0aKF9uzZoxUrVmjr1q3q3bu3JOmll17SiBEj9Oyzzyo+Pt7n9wCg+uJsQfr2aK5O5BYbHQoAAABQJ7iqxUMD/RQREmBwNOeXGBms3GPlSs0qVsdYq9HhAGjgqBgHLlL76Mo54/vTSYwDAFBf5ObmymQyKSIiQpK0adMmRUREuJPikjRkyBCZzWZt2bLFoCgBnE+crbIC5mR+qSrsDoOjAQAAAIx3tKryOjEyRCaTyeBozq9FZGU79RTmjAOoBVSMAxepfVUr9QO0UgcAoF4oKSnRww8/rNtuu01Wa+W30dPS0hQdHe1xnL+/vyIjI5WWlnbW85SWlqq0tNT9c15enu+CBnBW1iB/hQT6qajMrvT8UjWPqNutIgEAAABfS62qGK/rbdRdXHPQU0mMA6gFVIwDF6ldTGViPCWrSCXldoOjAQAAP6e8vFy33HKLnE6n5s2bd1Hnmj17tmw2m/uVmJjopSgBXCiTyeSeM047dQAAAODHivGEqoRzXZcQSWIcQO0hMQ5cpGZhFkWEBMjhlA6epJ06AAB1lSspfuTIEa1atcpdLS5JsbGxysjI8Di+oqJCWVlZio2NPev5pk+frtzcXPcrNTXVp/EDOLv4qnbqJ3JKDI4EAAAAMN7RelYx7mqlnppNYhyA75EYBy6SyWQ6rZ06iXEAAOoiV1J8//79Wr16taKiojz2JycnKycnR9u3b3dvW7NmjRwOh/r06XPWc1osFlmtVo8XgNoXF+GqGC+R0+k0OBoAAADAWEez6lfFeGJVAj81q5j1PACfY8Y44AXtosO19XC29qeTGAcAwAgFBQU6cOCA++dDhw5px44dioyMVFxcnG6++WZ9/fXXWr58uex2u3tueGRkpAIDA9WpUyddc801uvvuuzV//nyVl5fr/vvv15gxYxQfH2/UbQG4AM3CLfIzmVRcblducbkiQgKNDgkAAAAwjKtiPDGyflSMN28SLJNJKi63K7OgTM3CLUaHBKABo2Ic8AJXxfj+jHyDIwEAoHHatm2bevbsqZ49e0qSpk6dqp49e2rmzJk6duyYPvzwQx09elQ9evRQXFyc+7Vx40b3ORYvXqyOHTtq8ODBGjFihPr376/XXnvNqFsCcIH8zWZFWysfnp3IpZ06AAAAGq+isgqdKiyTVH8qxi3+foq1VnaBSmHOOAAfo2Ic8IL2Ma7EOBXjAAAYYeDAgT/bcu1C2rFFRkZqyZIl3gwLQC2JswXpRG6JTuSWqFMcYw0AAADQOLmqxa1B/rIFBxgczYVLbBKiE7klOpZTrF4tmxgdDoAGjIpxwAvaR4dLko6cKlJphd3gaAAAAIDGJc5W2SbyRG6xwZEAAAAAxjmaXb/mi7skVM0Zd8UPAL5CYhzwghirReEWf9kdTh3O5D/eAAAAQG2Ks1W2XjxVUMYXVQEAANBopWZVflHUlWiuL35MjPNFVwC+RWIc8AKTyeRup/59OnPGAQAAgNoUavGXNchfTknpeaVGhwMAAAAYwlVxnRhZ3yrGK+MlMQ7A10iMA17iaqfOnHEAAACg9rnbqefwMA0AAACNkyuxXH8rxunGCsC3SIwDXuKqGD+QQcU4AAAAUNtc7dRP5JYYHAkAAABgjFRXxXi9mzFeGe+x7GI5nU6DowHQkJEYB7ykXXRlYnx/OhXjAAAAQG1zJ8bzSniYBgAAgEbJXTEeWb8qxmNtQTKZpNIKh04WMBoJgO+QGAe8pH1MZSv1Q5mFKrc7DI4GAAAAaFyahlnkbzaprMKhrMIyo8MBAAAAalV+Sblyisol/ViBXV8E+psVa638oitzxgH4EolxwEvibUEKDfRThcOpI6cKjQ4HAAAAaFTMZpNiaacOAACARsqVUG4SEqAwi7/B0VTfj3PGSYwD8B0S44CXmEwmdzv172mnDgAAANQ6Vzv147k8TAMAAEDj4m6jXs+qxV1ccR+tmpMOAL5AYhzwIlc7deaMAwAAALUvzlZZZZJGxTgAAAAamdSsyoSyq/K6vqFiHEBtIDEOeFH7qorx/Rn5BkcCAAAAND6uVurZReUqLrMbHA0AAABQe1wJ5cTI+loxTmIcgO/VmcT4U089JZPJpAcffNC9raSkRJMnT1ZUVJTCwsI0evRopaene7wvJSVFI0eOVEhIiKKjozVt2jRVVFTUcvRApfYxlYnxAxlUjAMAAAC1LTjAT01CAiRJJ/J4oAYAAIDGIzW7vleM00odgO/VicT41q1b9eqrr6pbt24e26dMmaKPPvpIS5cu1bp163T8+HHddNNN7v12u10jR45UWVmZNm7cqLfeeksLFy7UzJkza/sWAElS++jKVuo/nCxUhd1hcDQAAABA4+Nqp34ih3bqAAAAaDzcFeP1dsZ45Tr+WHaxnE6nwdEAaKgMT4wXFBRo7Nixev3119WkSRP39tzcXL3xxht67rnnNGjQIPXq1UsLFizQxo0btXnzZknSypUrtXv3br3zzjvq0aOHhg8frieeeEJz585VWVmZUbeERqx5RLCCAswqszuUksU32wAAAIDaFhdR2U79BHPGAQAA0IgcrecV43G2YJlMUmmFQ5kF5HcA+IbhifHJkydr5MiRGjJkiMf27du3q7y83GN7x44d1aJFC23atEmStGnTJnXt2lUxMTHuY4YNG6a8vDzt2rWrdm4AOI3ZbFK7qjnj36fTTh0AAACobXHWysR4el6J7A4qTQAAANDw5RaVK7+kcsRs83qaGA/0Nyu2ai1PO3UAvuJv5MXfffddff3119q6desZ+9LS0hQYGKiIiAiP7TExMUpLS3Mfc3pS3LXfte9cSktLVVpa6v45Ly+vprcAnKF9dLi+O5anAxn5kmKNDgcAAABoVCJDA2XxN6u0wqGTBaXuh2sAAABAQ+WaL940LFAhgYamfS5KQpNgncgt0dHsYvVs0eT8bwCAajKsYjw1NVW/+93vtHjxYgUF1e6DitmzZ8tms7lfiYmJtXp9NGyuivEDGVSMAwAAALXNZDIpzlbVTj2n2OBoAAAAAN9zzRdvXk/ni7skVMXvuh8A8DbDEuPbt29XRkaGLr30Uvn7+8vf31/r1q3Tiy++KH9/f8XExKisrEw5OTke70tPT1dsbGUVbmxsrNLT08/Y79p3LtOnT1dubq77lZqa6t2bQ6PmSozvJzEOAAAAGCIuorJ9JHPGAQAA0Bi4Wo8n1tM26i6u+ei0UgfgK4YlxgcPHqydO3dqx44d7lfv3r01duxY978DAgL02Wefud+zb98+paSkKDk5WZKUnJysnTt3KiMjw33MqlWrZLValZSUdM5rWywWWa1WjxfgLe2rEuMHTxbIwUxDAAAAoNbFV1WMH88tltPJmhwAAAANm6vCOqHeV4y7EuNUjAPwDcOGTYSHh6tLly4e20JDQxUVFeXePnHiRE2dOlWRkZGyWq164IEHlJycrL59+0qShg4dqqSkJI0bN07PPPOM0tLSNGPGDE2ePFkWi6XW7wmQpBaRIQr0M6uk3KFjOcVKjKzfixEAAACgvomxBslskgpL7covqZA1OMDokAAAAACfSc2qrLBOqPcV465W6lSMA/ANwyrGL8Tzzz+va6+9VqNHj9YVV1yh2NhYLVu2zL3fz89Py5cvl5+fn5KTk3XHHXdo/Pjxevzxxw2MGo2dv59ZrZuGSmLOOAAAAGCEAD+zmoVXfln6eC7VJgCACzN79mxddtllCg8PV3R0tG644Qbt27fP45iBAwfKZDJ5vO69916PY1JSUjRy5EiFhIQoOjpa06ZNU0VFRW3eCoBGxlVhXd+LtE6vGKfzEwBfMKxi/Gw+//xzj5+DgoI0d+5czZ0795zvadmypT7++GMfRwZUT7voMO1Lz9f+jHxd1THa6HAAAACARifOFqz0vFKdyClRx1jGZwEAzm/dunWaPHmyLrvsMlVUVOhPf/qThg4dqt27dys0NNR93N133+1RmBMS8mMiym63a+TIkYqNjdXGjRt14sQJjR8/XgEBAXryySdr9X4ANA5Op9NdYV3fK8bjbMEymaTSCocyC8rcX3YFAG+pU4lxoKFoVzVnnIpxAAAAwBjxtiDtSKViHABw4VasWOHx88KFCxUdHa3t27friiuucG8PCQlRbGzsWc+xcuVK7d69W6tXr1ZMTIx69OihJ554Qg8//LAee+wxBQYG+vQeADQ+2UXlKiyzS5KaR9TvxHigv1kx4UFKyyvR0ewiEuMAvK5Ot1IH6isS4wAAAICx4qseCp4qKFNphd3gaAAA9VFubq4kKTIy0mP74sWL1bRpU3Xp0kXTp09XUdGPs3A3bdqkrl27KiYmxr1t2LBhysvL065du856ndLSUuXl5Xm8AOBCuarFo8MtCgrwMziai3d6O3UA8DYqxgEfaB9TmRjfn1Egp9Mpk8lkcEQAAABA4xJq8Zc1yF95JRVKyy1Ry6jQ878JAIAqDodDDz74oPr166cuXbq4t99+++1q2bKl4uPj9e233+rhhx/Wvn37tGzZMklSWlqaR1JckvvntLS0s15r9uzZmjVrlo/uBEBDl5pVmUCu723UXRKaBGvbkWwS4wB8gsQ44AOtm4bKbJLySyp0Mr9U0dYgo0MCAAAAGp24iGDlpeXrBIlxAEA1TZ48Wd99952++OILj+2TJk1y/7tr166Ki4vT4MGDdfDgQbVt27ZG15o+fbqmTp3q/jkvL0+JiYk1CxxAnZGSkqLMzEyfX2fL3squpaEq0ddff+3z6/maf2m+JGnH/hR9bc2tlWs2bdpULVq0qJVrATAWiXHAByz+fmoRGaLDp4q0P6OAxDgAAABggHhbkPal5TNnHABQLffff7+WL1+u9evXKyEh4WeP7dOnjyTpwIEDatu2rWJjY/XVV195HJOeni5J55xLbrFYZLEwRxdoSFJSUtSxUycVnzZqwVcir75X4Zdeq+XvvqV3Ji/y+fV8LazbUEUN/60+WLler016rFauGRwSor179pAcBxoBEuOAj7SLDtfhU0U6kFGgfu2aGh0OAAAA0OjE2SrbSabllsjhcMpsZsQRAODcnE6nHnjgAb3//vv6/PPP1bp16/O+Z8eOHZKkuLg4SVJycrL++te/KiMjQ9HR0ZKkVatWyWq1KikpyWexA6hbMjMzVVxUpLEP/00xLWrWTeJCfZHhr/QS6aprR6v1mBt9eq3akF5i0hcZUnSHXrpj7jLfXy/loBY/PU2ZmZkkxoFGgMQ44CPtosO0ek+69mfkGx0KAAAA0ChFhQUq0M+sMrtDpwrL1CycajwAwLlNnjxZS5Ys0f/93/8pPDzcPRPcZrMpODhYBw8e1JIlSzRixAhFRUXp22+/1ZQpU3TFFVeoW7dukqShQ4cqKSlJ48aN0zPPPKO0tDTNmDFDkydPpiocaIRiWrRVQvvOPr1GeeYRSWVq2bKlEiJDfHqt2hBWVKYvMo6o2GFW83ZJMpn4cisA7zEbHQDQULWPDpMkHcgoMDgSAAAAoHEym0yKtVWONTqeQzt1AMDPmzdvnnJzczVw4EDFxcW5X++9954kKTAwUKtXr9bQoUPVsWNH/f73v9fo0aP10Ucfuc/h5+en5cuXy8/PT8nJybrjjjs0fvx4Pf7440bdFoAGzOl0Kq+kXJJkDWoYdZBhVfdR4XCquNxucDQAGpqG8ZsSqIPakRgHAAAADBdvC1JKVpGO5xare2KE0eEAAOowp9P5s/sTExO1bt26856nZcuW+vjjj70VFgCcU1GZXRWOyt9d4UEBBkfjHf5ms8Is/ioorVBecYVCAkljAfAeKsYBH2lblRjPLChTdmGZwdEAAAAAjVNcROWc8RO5JQZHAgAAAHhXfkmFJCnM4i8/c8NpOR5eVTXuqoYHAG8hMQ74SJjFX/FVbRsPnKRqHAAAADBCrDVIJlU+NMznwRoAAAAakNzihtVG3cUaXFn9TmIcgLeRGAd8qF1MuCTaqQMA4Gvr16/XqFGjFB8fL5PJpA8++MBjv9Pp1MyZMxUXF6fg4GANGTJE+/fv9zgmKytLY8eOldVqVUREhCZOnKiCAv4bDtR3gf5mNQ23SKJqHAAAAA2Le754cMNoo+7iSvTnFVcYHAmAhobEOOBD7ZoxZxwAgNpQWFio7t27a+7cuWfd/8wzz+jFF1/U/PnztWXLFoWGhmrYsGEqKfkxSTZ27Fjt2rVLq1at0vLly7V+/XpNmjSptm4BgA+5OjmdyCExDgAAgIbDnRhvIPPFXVz3Q8U4AG9rWP01gDqmfUxlYnw/iXEAAHxq+PDhGj58+Fn3OZ1OzZkzRzNmzND1118vSXr77bcVExOjDz74QGPGjNGePXu0YsUKbd26Vb1795YkvfTSSxoxYoSeffZZxcfH19q9APC+OFuwvjmaq+O5xUaHAgAAAHiNq6LaGtywUj2uCvh8KsYBeBkV44APtYuuTIwfJDEOAIBhDh06pLS0NA0ZMsS9zWazqU+fPtq0aZMkadOmTYqIiHAnxSVpyJAhMpvN2rJly1nPW1paqry8PI8XgLopLqKyYvxkQanK7Q6DowEAAAC8o+FWjFe1Ui8pl9PpNDgaAA0JiXHAh1yt1I/lFKuwlG+3AQBghLS0NElSTEyMx/aYmBj3vrS0NEVHR3vs9/f3V2RkpPuYn5o9e7ZsNpv7lZiY6IPoAXiDNShAYRZ/OZ1SGnPGAQAA0AA4nU53RXVDmzEeVpUYr3A4VVxuNzgaAA0JiXHAh5qEBqppWKAk6eBJqsYBAGhIpk+frtzcXPcrNTXV6JAA/Az3nHES4wAAAGgACsvssjudMpmkcEvDaqXubzYrrOqe8minDsCLSIwDPta2qmp8fzqJcQAAjBAbGytJSk9P99ienp7u3hcbG6uMjAyP/RUVFcrKynIf81MWi0VWq9XjBaDuiosIliTmjAMAAKBByCuubKMeZvGX2WwyOBrvCz+tnToAeAuJccDH2sdUJsYPUDEOAIAhWrdurdjYWH322WfubXl5edqyZYuSk5MlScnJycrJydH27dvdx6xZs0YOh0N9+vSp9ZgBeF9cVcV4Wm4JcwoBAABQ77kSxrYGNl/cxTU3ncQ4AG9qWP01gDqoHRXjAAD4XEFBgQ4cOOD++dChQ9qxY4ciIyPVokULPfjgg/rLX/6i9u3bq3Xr1nrkkUcUHx+vG264QZLUqVMnXXPNNbr77rs1f/58lZeX6/7779eYMWMUHx9v0F0B8KZmYRYF+JlUWuHQqcIyNQ2zGB0SAAAAUGOuFuPhwQ0zzWOtuq98WqkD8KKG+RsTqEPax4RLYsY4AAC+tG3bNl111VXun6dOnSpJmjBhghYuXKg//OEPKiws1KRJk5STk6P+/ftrxYoVCgoKcr9n8eLFuv/++zV48GCZzWaNHj1aL774Yq3fCwDfMJtNirEG6Wh2sY7nFJMYBwAAQL3mqqS2UjEOABeMxDjgY+2iKyvGj5wqVEm5XUEBfgZHBABAwzNw4MCfbY1sMpn0+OOP6/HHHz/nMZGRkVqyZIkvwgNQRzSPCNbR7GIdyylWt4QIo8MBAAAAasw1Y9wW3DAT4z/OGKdiHID3MGMc8LHocIvCg/zlcEqHTxUaHQ4AAADQaDWPCJYkHcspZs44AAAA6jVXwrjBVoxXJfzzistZuwPwmholxtu0aaNTp06dsT0nJ0dt2rS56KCAhsRkMrmrxg9k0E4dAAAX1pQAalucLUhmk1RYalduMS0ZAaChYF0JoLFxOJ3Kr2ox3lBnjLsqxiscThWX2w2OBkBDUaPE+OHDh2W3n/mLqLS0VMeOHbvooICGpn1VYnx/OolxAABcWFMCqG3+fmbFWIMkVVaNAwAaBtaVABqbwtIKOZyS2SSFWRpmYtzfbFaopXIsKe3UAXhLtX5jfvjhh+5/f/rpp7LZbO6f7Xa7PvvsM7Vq1cprwQENhbti/CSJcQAAWFMCMFLziGCdyC3RsZxidY63nf8NAIA6i3UlgMYqr7gyURweFCCzyWRwNL5jDQpQYald+cXliq36gisAXIxqJcZvuOEGSZWtoSdMmOCxLyAgQK1atdLf//53rwUHNBTto8MlSQeoGAcAgDUlAEMlNAnWtiPZOpZNxTgA1HesKwE0VnlVbdStQQ2zWtzFGhSgE7klVIwD8Jpq/dZ0OBySpNatW2vr1q1q2rSpT4ICGhpXxfihzEJV2B3y96vRFAMAABoE1pQAjBRnC5ZJle0Y80vKFR4UYHRIAIAaYl0JoLHKK65KjAc37LWstWp+uut+AeBi1Sg7d+jQIRaaQDU0jwhWUIBZZXaHUrKKjA4HAIA6gTUlACME+pvVLNwiiTnjANBQsK4E0NjkuivGG3hivOr+XBXyAHCxatxn47PPPtNnn32mjIwM97czXd58882LDgxoSMxmk9o2C9Ou43k6kFGgNs3CjA4JAIA6gTUlACMkNAlWRn6pjmUXq2Os1ehwAABewLoSQGOSXzVj3FVR3VCFV7WKp5U6AG+pUcX4rFmzNHToUH322WfKzMxUdna2xwvAmdpXtVPfn8GccQAAJNaUAIzTPCJYEhXjANBQsK4E0NjkNZaK8apW8XnF5XI6nQZHA6AhqNHXiebPn6+FCxdq3Lhx3o4HaLBcc8YPkhgHAEASa0oAxomvSoxnF5WrqKxCIYENu9IGABo61pUAGhOHw6n8UlfFeMNOjLsqxiscThWX21m3A7hoNaoYLysr0y9+8QtvxwI0aO2oGAcAwANrSgBGCQrwU1RYoCTpWDZV4wBQ37GuBNCYFJRWyOmU/EwmhQb6GR2OT/mbzQq1VN4j7dQBeEONEuO//vWvtWTJEm/HAjRo7aLDJUkHTxbI4aDtCwAArCkBGCmBduoA0GCwrgTQmOQWV7ZRDw/yl8lkMjga33O1i8+vum8AuBg16jtRUlKi1157TatXr1a3bt0UEODZruO5557zSnBAQ9IyKkT+ZpOKyuw6kVfinmsIAEBjxZoSgJGaRwTrm6O5JMYBoAFgXQmgMXHPF2/gbdRdwoP8dSKXinEA3lGjxPi3336rHj16SJK+++47j32N4RtKQE0E+JnVummo9mcUaH96PolxAECjx5oSgJFcc8YzC8pUUm5XUEDDbkMJAA0Z60oAjYkrQWwNahzztl0V464vBADAxajRb861a9d6Ow6gUWgXHab9GQU6kFGggR2ijQ4HAABDsaYEYKRQi7+ahAQou6hcx3OK1aZZmNEhAQBqiHUlgMYkr7hxVYy77jOPVuoAvKBGM8YB1Ez76MqHbQcyCgyOBAAAAEBz5owDAACgnnG3Ug9qJInxqsr4fFqpA/CCGlWMX3XVVT/bhmjNmjU1DghoyNqSGAcAwI01JQCjNW8SrO+O5+loNolxAKjPWFcCaEzyiqtaqQc3klbqwT+2Unc6nYzIAHBRavSb0zWzx6W8vFw7duzQd999pwkTJngjLqBBah8dLknan1HAf8QBAI0ea0oARktsEiJJysgvVUm53eBoAAA1xboSQGNhdzhVUOqaMd44KsbDLZVprHK7UyXlDgUH+hkcEYD6rEaJ8eeff/6s2x977DEVFFAJC5xLm2ahMpmk3OJyZRaUqVm4xeiQAAAwDGtKAEYLtfgrMjRQWYVlSs0uUrDRAQEAaoR1JYDGIr+qjbq/2aSQRpIg9vczKzTQT4VlduWVlJMYB3BRvDpj/I477tCbb77pzVMCDUpQgJ9aRFZWpezPyDc4GgAA6ibWlABqU2KTynR4ahbt1AGgoWFdCaChySv5sVq8MXUjdbdTLy43OBIA9Z1XE+ObNm1SUFCQN08JNDjtmlXOGT/InHEAAM6KNSWA2pRY9cXV1OwigyMBAHgb60oADY0rMRzeSOaLu4QHVd6v64sBAFBTNfrtedNNN3n87HQ6deLECW3btk2PPPKIVwIDGqp2MWH6bG+GDpAYBwA0cqwpAdQFCRHBMknKKSpXEc/ZAKBeYl0JoLHIq2ql3ljmi7u47td1/wBQUzWqGLfZbB6vyMhIDRw4UB9//LEeffRRb8cINCiuivH9JMYBAI0ca0oAdYElwE/RVoskKaPEq03VAAC1xFvrytmzZ+uyyy5TeHi4oqOjdcMNN2jfvn0ex5SUlGjy5MmKiopSWFiYRo8erfT0dI9jUlJSNHLkSIWEhCg6OlrTpk1TRQXfvgJw8fKKK3+X2IIbWWKcVuoAvKRGFeMLFizwdhxAo9EuujIxTsU4AKCxY00JoK5oERmi9LxSnSxpPHMaAaAh8da6ct26dZo8ebIuu+wyVVRU6E9/+pOGDh2q3bt3KzQ0VJI0ZcoU/fe//9XSpUtls9l0//3366abbtKXX34pSbLb7Ro5cqRiY2O1ceNGnThxQuPHj1dAQICefPJJr8QJoPH6sWK8cbVSd91vPq3UAVyki/rtuX37du3Zs0eS1LlzZ/Xs2dMrQQENmSsxnpFfqtzi8kb37T4AAH6KNSUAoyU2CdHWw9nKKKViHADqs4tdV65YscLj54ULFyo6Olrbt2/XFVdcodzcXL3xxhtasmSJBg0aJKkyKd+pUydt3rxZffv21cqVK7V7926tXr1aMTEx6tGjh5544gk9/PDDeuyxxxQYGOidmwXQKP04Y7xxPVN2V4yXlMvpdMpk4gutAGqmRonxjIwMjRkzRp9//rkiIiIkSTk5Obrqqqv07rvvqlmzZt6MEWhQwoMCFGsNUlpeiQ5kFKhXyyZGhwQAgCFYUwKoK+JsQfIzm1Ril/yjEowOBwBQTb5aV+bm5kqSIiMjJVUm3svLyzVkyBD3MR07dlSLFi20adMm9e3bV5s2bVLXrl0VExPjPmbYsGG67777tGvXrrMm60tLS1VaWur+OS8vr0bxAmjYyu0OFZbZJUkRjSwxHm6pTGWV250qKXcoONDP4IgA1Fc1+jr8Aw88oPz8fO3atUtZWVnKysrSd999p7y8PP32t7/1doxAg9M+xtVOPd/gSAAAMA5rSgB1hb+fWfG2IElScMsexgYDAKg2X6wrHQ6HHnzwQfXr109dunSRJKWlpSkwMNCdfHeJiYlRWlqa+5jTk+Ku/a59ZzN79myPGemJiYk1ihlAw+aqFg/0N8vi37g6Hfn7mRValQx3tZMHgJqo0W/PFStW6JVXXlGnTp3c25KSkjR37lx98sknF3yeefPmqVu3brJarbJarUpOTvZ4f0lJiSZPnqyoqCiFhYVp9OjRSk9P9zhHSkqKRo4cqZCQEEVHR2vatGmqqGDOBOq2ts2YMw4AgLfWlADgDYmRIZKkoJbdDY4EAFBdvlhXTp48Wd99953effddb4V5TtOnT1dubq77lZqa6vNrAqh/cqsSwrbggEbZSvz0duoAUFM1Sow7HA4FBJzZqiMgIEAOh+OCz5OQkKCnnnpK27dv17Zt2zRo0CBdf/312rVrlyRpypQp+uijj7R06VKtW7dOx48f10033eR+v91u18iRI1VWVqaNGzfqrbfe0sKFCzVz5sya3BZQa1wV4/tJjAMAGjFvrSkBwBsSm1Qmxi0tusrucBocDQCgOry9rrz//vu1fPlyrV27VgkJP47YiI2NVVlZmXJycjyOT09PV2xsrPuYnxb2uH52HfNTFovFXTjkegHAT+UVVxYE2oIaVxt1l/Cgynbq+cUURgKouRolxgcNGqTf/e53On78uHvbsWPHNGXKFA0ePPiCzzNq1CiNGDFC7du31yWXXKK//vWvCgsL0+bNm5Wbm6s33nhDzz33nAYNGqRevXppwYIF2rhxozZv3ixJWrlypXbv3q133nlHPXr00PDhw/XEE09o7ty5Kisrq8mtAbWiHRXjAAB4bU0JAN4QbbUowOSUX1CYfsihCgUA6hNvrSudTqfuv/9+vf/++1qzZo1at27tsb9Xr14KCAjQZ5995t62b98+paSkKDk5WZKUnJysnTt3KiMjw33MqlWrZLValZSUVNNbBADlVrVStwb7GxyJMaxBVIwDuHg1+g368ssv67rrrlOrVq3cM29SU1PVpUsXvfPOOzUKxG63a+nSpSosLFRycrK2b9+u8vJyDRkyxH1Mx44d1aJFC23atEl9+/bVpk2b1LVrV4+5PcOGDdN9992nXbt2qWfPnme9VmlpqUpLS90/5+Xl1SjmmkpJSVFmZmatXhN1S3Fp5beVj2YXa+NX2xRUT2fCNG3aVC1atDA6DABAPeWLNSUA1JTZZFLTIKdOFJu0M71MtxodEADggnlrXTl58mQtWbJE//d//6fw8HD3THCbzabg4GDZbDZNnDhRU6dOVWRkpKxWqx544AElJyerb9++kqShQ4cqKSlJ48aN0zPPPKO0tDTNmDFDkydPlsVi8f7NA2g0XIlxW3DjrBj/MTFOxTiAmqtRYjwxMVFff/21Vq9erb1790qSOnXq5JHEvlA7d+5UcnKySkpKFBYWpvfff19JSUnasWOHAgMDFRER4XF8TEyMe1GalpbmkRR37XftO5fZs2dr1qxZ1Y7VG1JSUtSxUycVFxUZcn3UHQkPLJZfiE1XXTdGZekHjQ6nRoJDQrR3zx6S4wCAGvHmmhIAvCE6yKETxWZ9m1F6/oMBAHWGt9aV8+bNkyQNHDjQY/uCBQt05513SpKef/55mc1mjR49WqWlpRo2bJheeeUV97F+fn5avny57rvvPiUnJys0NFQTJkzQ448/XvMbBABJeY09MV5VKe/6HACgJqqVGF+zZo3uv/9+bd68WVarVVdffbWuvvpqSVJubq46d+6s+fPna8CAARd8zg4dOmjHjh3Kzc3Vv//9b02YMEHr1q2r3l1U0/Tp0zV16lT3z3l5ee5vk/paZmamiouKNPbhvymmRdtauSbqpnXp/sosla77/d/VIrT+zVFNTzmoxU9PU2ZmJolxAEC1+GJNeT52u12PPfaY3nnnHaWlpSk+Pl533nmnZsyYIZPJJKmydeajjz6q119/XTk5OerXr5/mzZun9u3bey0OAHVbdFDlunxvZpmKy+wKDvQzOCIAwM/x9rrS6XSe95igoCDNnTtXc+fOPecxLVu21Mcff3xhNwEAF8DpdJ7WSr2RJsZPa6XudDrdf8sDQHVUKzE+Z84c3X333bJarWfss9lsuueee/Tcc89V6yFmYGCg2rVrJ6lyTs/WrVv1wgsv6NZbb1VZWZlycnI8qsbT09MVGxsrSYqNjdVXX33lcb709HT3vnOxWCyGty6KadFWCe07GxoDjBVrT1fmsTwpvJkS2jY1OhwAAGqNL9aU5/P0009r3rx5euutt9S5c2dt27ZNd911l2w2m377299Kkp555hm9+OKLeuutt9S6dWs98sgjGjZsmHbv3q2goCCvxQKg7gr3lypyMyRbtDb/cEpXdYw2OiQAwM8wYl0JAEYoKrOrwlH55R1XgrixCQ+qTGeV250qqXAoOIAvsQKovmoNNv7mm290zTXXnHP/0KFDtX379osKyOFwqLS09P/Zu+/wtuqzjePfI8mWvPdM7Oy9FxmEHQhhQxgpYTYllCZQSAtv01IolDYFWpoCAUqhjLICLWUECIQwAtl7OnvYifeUZVuyLOn9w7EhZWXYPpJ9f67rXIklWbpl2fLxec7z/BgxYgRhYWEsXry4+bodO3aQm5vL2LFjARg7diybN2+muLi4+TaLFi0iNjaW/v37n1AOkdaWFNV4ckZ5Tb3JSURERNpWW+xT/q9ly5Zx8cUXc/7559O1a1cuv/xyzjnnnOaTLAOBAHPnzuXuu+/m4osvZvDgwbz44ovk5+fz1ltvtWgWEQlehgF1e9cA8NmO4h+4tYiImM2M/UoRETM43Y3d4jEOG1ZLx+yUtlktRB6e6KRx6iJyvI6pMF5UVERY2HefjWSz2SgpKTnq+5s9ezZLlixh//79bN68mdmzZ/PZZ58xdepU4uLimDZtGrNmzeLTTz9l7dq13HjjjYwdO5YxY8YAjTu3/fv359prr2Xjxo18+OGH3H333cyYMcP0jnCRH5IQ2fizpMK4iIh0NC29T3k0xo0bx+LFi9m5cyfQeBD1yy+/ZNKkSQDs27ePwsLCI9ahjIuLY/To0SxfvrxFs4hIcKvb01gY/3RHyVGN1BUREfOYsV8pImKGpjHqcR20W7zJ18epi4gcj2Mapd6pUye2bNnSPPr8f23atImMjIyjvr/i4mKuu+46CgoKiIuLY/DgwXz44YfNawH99a9/xWKxMHnyZDweDxMnTuSJJ55o/nyr1cqCBQu45ZZbGDt2LFFRUVx//fXcf//9x/K0REyRGBUOQGWdF58/0GHP9BMRkY6npfcpj8avfvUrnE4nffv2xWq14vP5+MMf/sDUqVMBKCwsBCAtLe2Iz0tLS2u+7n95PB48Hk/zx06ns0Uzi4g53LkbsVkgt7yWvaU19EiJNjuSiIh8BzP2K0VEzNDR1xdvEhtho9AJ1XUNZkcRkRB1TIXx8847j9/+9rece+6531hnsa6ujnvvvZcLLrjgqO/v2Wef/d7rHQ4H8+bNY968ed95my5duvD+++8f9WOKBItou41wq4V6n5/K2nqSojXlQEREOoaW3qc8Gq+//jovv/wyr7zyCgMGDGDDhg3cfvvtZGZmcv311x/Xfc6ZM4f77ruvRXOKiPkCXg8DUsLZWFTPp9uLVRgXEQliZuxXioiYobljvKMXxtUxLiIn6JgK43fffTdvvvkmvXv3ZubMmfTp0weA7du3M2/ePHw+H7/5zW9aJahIe2MYBolR4RQ63ZTVqDAuIiIdhxn7lHfeeSe/+tWvmDJlCgCDBg3iwIEDzJkzh+uvv5709HSgcRzn17uKioqKGDp06Lfe5+zZs5k1a1bzx06nk6ysrBbNLSLmGJ7hYGNRPZ/tKOEnp3Q3O46IiHwHHasUkY7CebhDOjbimEo67c5XhXF1jIvI8Tmmd9G0tDSWLVvGLbfcwuzZs5vXWzMMg4kTJzJv3rxvjJ8Uke+WFP1VYVxERKSjMGOfsra2FovFcsRlVqsVv98PQLdu3UhPT2fx4sXNhXCn08nKlSu55ZZbvvU+7XY7drtObBNpj0Zk2HluA6zcV0aNp4Eoe8c+ACkiEqx0rFJEOgp1jDdqOjHAWaeOcRE5Psf8133T6PKKigp2795NIBCgV69eJCQktEY+kXYt6fA642Uuzw/cUkREpH1p633KCy+8kD/84Q9kZ2czYMAA1q9fzyOPPMKPf/xjoPHg6e23384DDzxAr1696NatG7/97W/JzMzkkksuaZVMIhK8MqKtdEmK5EBZLUt3l3LOgHSzI4mIyHfQsUoRae8a/H5cnsYO6Q5fGD/cMV7tbiAQCGAYhsmJRCTUHPdp7wkJCYwaNaols4h0OE3j09UxLiIiHVVb7VM+9thj/Pa3v+VnP/sZxcXFZGZmcvPNN3PPPfc03+auu+6ipqaG6dOnU1lZyfjx41m4cOE31qsUkfbPMAzO6JPK88v28+mOEhXGRURCgI5Vikh7VX14bHiY1SAizGpyGnPFOBpLWvU+P26vn4jwjv31EJFjp3lwIiZq6hivqvXS4PNjs1p+4DNERETkeMTExDB37lzmzp37nbcxDIP777+f+++/v+2CiUjQOr1PCs8v289nO4rVjSIiIiIipmkaox4bEdbh90ltVgtRdis1Hh9VdV4VxkXkmKkKJ2KiyHArjjALAaC8Vl3jIiIiIiLBYkz3JBxhFgqq3OwscpkdR0REREQ6qOb1xR0de4x6k6Zx8pV1Op4uIsdOhXERExmGQVLU4XHqLv0iFxEREREJFo4wK+N6JAPw6Y5ik9OIiIiISEfl/FrHuHxVGG86YUBE5FioMC5isqZx6lpnXEREREQkuJzRJwWAT7erMC4iIiIi5mjuGFdhHID4iMPLk6owLiLHQYVxEZMlRR8ujLs8JicREREREZGvO71PKgBrDlTgdOvAm4iIiIi0PRXGj9TcMV6r/XMROXYqjIuYrHmUujrGRURERESCSlZiJD1SovD5A3y+o8TsOCIiIiLSwQQCAZx1DYAK4000Sl1EToQK4yIma+oYr3Y34GnwmZxGRERERES+7uz+6QB8tK3I5CQiIiIi0tG4G/zU+/wAxDpsJqcJDnGRjYXxmnof3sNfGxGRo6XCuIjJHGFWouxWAMrVNS4iIiIiElTOGZAGNK4zrhNZRURERKQtNXVFR9mt2Kwq5wA4bBbCbY1fC3WNi8ix0jupSBBoHqfuUmFcRERERCSYDO0cT2qMHZengWV7ysyOIyIiIiIdiPNw4TfWoTHqTQzDIF7j1EXkOKkwLhIEmsapa51xEREREZHgYrEYnN2/sWv8o60apy4iIiIibaep8Kv1xY+kdcZF5HipMC4SBJKiDhfGXR6Tk4iIiIiIyP+aOKBxnfFF24rw+QMmpxERERGRjkKF8W/XXBivVWFcRI6NCuMiQSAp+vAodXWMi4iIiIgEnTHdk4hx2Ch1eVifW2F2HBERERHpIFQY/3ZxkeoYF5Hjo8K4SBBo6hivrfdRW99gchoREREREfm6cJuFM/umAvDBlkKT04iIiIhIR9G8xrgK40doWmO8UoVxETlGKoyLBIEwq6X5rL9ydY2LiIiIiASd8wZlAPDB5gL8GqcuIiIiIq3M5w9Q7W5solLH+JGavh7Vbq/2zUXkmKgwLhIkvlpnXIVxEREREZFgc1rvFKLCreRXuVmfV2l2HBERERFp56rdXgKA1WIQFW41O05QibbbsFoM/AGo9mgCq4gcPRXGRYJEUnRjYby0xmNyEhERERER+V+OMCtn908D4L1NBSanEREREZH27uvrixuGYXKa4GIYBrEOG6B1xkXk2KgwLhIkkqLsgDrGRURERESC1fmDMwF4X+PURURERKSVVdY2FnzjNUb9WzWNU6+qVWFcRI6eCuMiQaKpY7zMVU8goINsIiIiIiLB5pReycTYbRQ63azLrTA7joiIiIi0Y5WHO6HjI1UY/zbxEY3H09UxLiLHQoVxkSCREBmOxYB6n59qt9ZFEREREREJNl8fp/7uxnyT04iIiIhIe1ZZ2zhZtKkALEeKO3zCQGWdJrCKyNFTYVwkSFgtBolRjTs5JS6tMy4iIiIiEowuHNo4Tn3BpgK8Pr/JaURERESkvWrqGI9Tx/i3ah6lro5xETkGKoyLBJGU6MZ1xktVGBcRERERCUqn9EwmKSqcspp6vtxVanYcEREREWmH/P4AzjqtMf59vl4Y19KkInK0VBgXCSLJTYXxao1/EREREREJRjarhQuHNHaN/3f9IZPTiIiIiEh7VO1pwB9onDIa47CZHScoxUY0fl28vgB1Xp/JaUQkVKgwLhJEkmMaC+MapS4iIiIiErwuHdYJgI+2FeLyNJicRkRERETam6b1xeMcYRiGYXKa4GSzWIi2NxbHNU5dRI6WCuMiQSQ5unGN8ao6L/UNWq9QRERERCQYDe4cR/eUKNxePx9uKTQ7joiIiIi0M03ri8drffHv1TRmvqpWhXEROToqjIsEkchwG5HhVgDKatQ1LiIiIiISjAzD4NKhjV3jb64/aHIaEREREWlvKg8XeuNUGP9eTV+fSnWMi8hRUmFcJMikNK0z7tI64yIiIiIiwerS4Z0wDFi6u4y88lqz44iIiIhIO9I0GrypI1q+XVxTx7gK4yJylFQYFwkyyU2F8Wp1jIuIiIiIBKvOCZGM75kMwBtr8kxOIyIiLWXJkiVceOGFZGZmYhgGb7311hHX33DDDRiGccR27rnnHnGb8vJypk6dSmxsLPHx8UybNg2Xy9WGz0JEQl3TGuPxkeEmJwluKoyLyLFSYVwkyCTHNO7slLhUGBcRERERCWZXjswC4I21B/H5AyanERGRllBTU8OQIUOYN2/ed97m3HPPpaCgoHl79dVXj7h+6tSpbN26lUWLFrFgwQKWLFnC9OnTWzu6iLQT/kBAHeNHqakwXqk1xkXkKNnMDiAiR2rqGC9z1RMIBDAMw+REIiIiIiLybc4ZkEZ8ZBgFVW6W7CrhjD6pZkcSEZETNGnSJCZNmvS9t7Hb7aSnp3/rdTk5OSxcuJDVq1czcuRIAB577DHOO+88/vznP5OZmdnimUWkfXG5G/AHwGoYRDtUwvk+TScO1Hl91Df4CbepF1REvp/eJUSCTEJkOFbDoN7nx+luMDuOiIiIiIh8B7vNyqXDOgEwf5XGqYuIdBSfffYZqamp9OnTh1tuuYWysrLm65YvX058fHxzURxgwoQJWCwWVq5c+a335/F4cDqdR2wi0nFVHB6jHhthw6Kmqe9lD7PiOFwM1zh1ETkaKoyLBBmrxSAxqnGceqnGqYuIiIiIBLWrRjWOU/84p4jCKrfJaUREpLWde+65vPjiiyxevJgHH3yQzz//nEmTJuHz+QAoLCwkNfXICSI2m43ExEQKCwu/9T7nzJlDXFxc85aVldXqz0NEglfTWPAErS9+VOIitc64iBw9FcZFglBy9OHCeLUK4yIiIiIiwaxveiyjuibQ4A/wyqpcs+OIiEgrmzJlChdddBGDBg3ikksuYcGCBaxevZrPPvvsuO9z9uzZVFVVNW95eZpCItKRNXWMqzB+dOIjGr9OlYe/biIi30eFcZEglBzTuM54iTrGRURERESC3nVjuwLw6qpc6hv85oYREZE21b17d5KTk9m9ezcA6enpFBcXH3GbhoYGysvLv3NdcrvdTmxs7BGbiHRcFYc7xuOjwkxOEhriD3eMN33dRES+jwrjIkEoObqxMF7q0lluIiIiLeXQoUNcc801JCUlERERwaBBg1izZk3z9YFAgHvuuYeMjAwiIiKYMGECu3btMjGxiISKiQPSSY2xU1LtYeHWbx+TKyIi7dPBgwcpKysjIyMDgLFjx1JZWcnatWubb/PJJ5/g9/sZPXq0WTFFJISoY/zYNH2d1DEuIkdDhXGRINQ0Sr2qzquOExERkRZQUVHBySefTFhYGB988AHbtm3jL3/5CwkJCc23eeihh3j00Ud56qmnWLlyJVFRUUycOBG3W2sGi8j3C7dZ+NFJ2QC8uGy/uWFEROSEuFwuNmzYwIYNGwDYt28fGzZsIDc3F5fLxZ133smKFSvYv38/ixcv5uKLL6Znz55MnDgRgH79+nHuuedy0003sWrVKpYuXcrMmTOZMmUKmZmZJj4zEQkFDT4/1e4GABIi1TF+NBLUMS4ix0CFcZEgFBluIyrcCkBZjcapi4iInKgHH3yQrKwsnnvuOU466SS6devGOeecQ48ePYDGbvG5c+dy9913c/HFFzN48GBefPFF8vPzeeutt8wNLyIh4erR2dgsBmsOVLAxr9LsOCIicpzWrFnDsGHDGDZsGACzZs1i2LBh3HPPPVitVjZt2sRFF11E7969mTZtGiNGjOCLL77Abrc338fLL79M3759OeusszjvvPMYP348Tz/9tFlPSURCSFNx126zEBFmNTlNaIg/3DFe5/Xh8fpMTiMiwc5mdgAR+XbJMXZqymopqfaQERdhdhwREZGQ9s477zBx4kSuuOIKPv/8czp16sTPfvYzbrrpJqCxE6iwsJAJEyY0f05cXByjR49m+fLlTJkyxazoIhIi0mIdXDQkkzfXH+LpJXuZN3W42ZFEROQ4nH766QQCge+8/sMPP/zB+0hMTOSVV15pyVgi0kFUfm2MumEYJqcJDeE2C1HhVmrqfVTUekmP0wkFIvLd1DEuEqSa1hkvcaljXERE5ETt3buXJ598kl69evHhhx9yyy23cNttt/HCCy8AUFjYuCZwWlraEZ+XlpbWfN3/8ng8OJ3OIzYR6dhuOrU7AB9sKSC3rNbkNCIiIiISapo6xhOiNEb9WMRrnXEROUoqjIsEqbSYw4XxahXGRURETpTf72f48OH88Y9/ZNiwYUyfPp2bbrqJp5566rjvc86cOcTFxTVvWVlZLZhYREJRv4xYTuudgj8Az3y51+w4IiIiIhJiKr7WMS5HT+uMi8jRUmFcJEilHC6Ml7rq8fm/e4SXiIiI/LCMjAz69+9/xGX9+vUjNzcXgPT0dACKioqOuE1RUVHzdf9r9uzZVFVVNW95eXmtkFxEQs3Nh7vGX1+TR5mmP4mIiIjIMVBh/PgkqGNcRI6SCuMiQSouIoxwmwWfP0B5jX6hi4iInIiTTz6ZHTt2HHHZzp076dKlCwDdunUjPT2dxYsXN1/vdDpZuXIlY8eO/db7tNvtxMbGHrGJiIztkcTgznG4vX6e+XKf2XFEREREJEQEAgEqaho7nuMjNUr9WDR9vSrq1DEuIt9PhXGRIGUYBqmH1xkvrnabnEZERCS03XHHHaxYsYI//vGP7N69m1deeYWnn36aGTNmAI2/d2+//XYeeOAB3nnnHTZv3sx1111HZmYml1xyibnhRSSkGIbBbWf2AuCFZft1kquIiIiIHJXaeh/1Pj8A8REqjB+Lr3eMBwKavioi302FcZEglhKrdcZFRERawqhRo/jvf//Lq6++ysCBA/n973/P3LlzmTp1avNt7rrrLm699VamT5/OqFGjcLlcLFy4EIfDYWJyEQlFZ/VLZWCnWGrrffzjC601LiIiIiI/rGmMeqzDhs2q0s2xiI0IwzDA6wtQ4/GZHUdEgpjeXUWCWGpMU8e4CuMiIiIn6oILLmDz5s243W5ycnK46aabjrjeMAzuv/9+CgsLcbvdfPzxx/Tu3duktCISygzD4PazGt8/Xli2X2uNi4iIiMgPqqhtHAOeEKX1xY+V1WIQ6zg8Tl3rjIvI9zC1MD5nzhxGjRpFTEwMqampXHLJJd9Y+9HtdjNjxgySkpKIjo5m8uTJFBUVHXGb3Nxczj//fCIjI0lNTeXOO++koaGhLZ+KSKtIjWnsUCup9uDXCBgRERERkZBxVr9UBnWKo7bex7xP95gdR0RERESCXMXhJXiaxoLLsUk4vM54Za3WGReR72ZqYfzzzz9nxowZrFixgkWLFuH1ejnnnHOoqalpvs0dd9zBu+++yxtvvMHnn39Ofn4+l112WfP1Pp+P888/n/r6epYtW8YLL7zA888/zz333GPGUxJpUfGRYYRZDRr8geYdIxERERERCX6GYXDnxD4A/GvFfg6U1fzAZ4iIiIhIR1Z++PhvkjrGj0vTCQXl6hgXke9hamF84cKF3HDDDQwYMIAhQ4bw/PPPk5uby9q1awGoqqri2Wef5ZFHHuHMM89kxIgRPPfccyxbtowVK1YA8NFHH7Ft2zZeeuklhg4dyqRJk/j973/PvHnzqK/XG6CENothkBytdcZFRERERELRqb1TOKVXMl5fgIc+3PHDnyAiIiIiHVbZ4cJ4ogrjx6VpBL0azETk+wTVGuNVVVUAJCYmArB27Vq8Xi8TJkxovk3fvn3Jzs5m+fLlACxfvpxBgwaRlpbWfJuJEyfidDrZunVrG6YXaR1ph8epa51xEREREZHQ8+vz+mEY8N6mAtbnVpgdR0RERESCkKfBh8vTuDysCuPHp+nrpo5xEfk+QVMY9/v93H777Zx88skMHDgQgMLCQsLDw4mPjz/itmlpaRQWFjbf5utF8abrm677Nh6PB6fTecQmEqxSYhs7xlUYFxEREREJPf0yYpk8vDMAv3tnKz5/wOREIiIiIhJsKmoa18WOCrfiCLOanCY0NRXGq90N1Df4TU4jIsEqaArjM2bMYMuWLbz22mut/lhz5swhLi6uecvKymr1xxQ5XqkxX41SDwR0EE1EREREJNTcNbEPMXYbGw9W8drqXLPjiIiIiEiQKatpbIpSt/jxiwizEnH4pIIKdY2LyHcIisL4zJkzWbBgAZ9++imdO3duvjw9PZ36+noqKyuPuH1RURHp6enNtykqKvrG9U3XfZvZs2dTVVXVvOXl5bXgsxFpWYmR4VgtBvU+P1V1XrPjiIiIiIjIMUqNdTDrnN4APLRwB2UuTYMSERERka+Ua33xFpGodcZF5AeYWhgPBALMnDmT//73v3zyySd069btiOtHjBhBWFgYixcvbr5sx44d5ObmMnbsWADGjh3L5s2bKS4ubr7NokWLiI2NpX///t/6uHa7ndjY2CM2kWBlsRgkRzf+Qtc4dRERERGR0HTtmC70z4ilqs7LH97PMTuOiIiIiAQRFcZbRkJUGKB1xkXku5laGJ8xYwYvvfQSr7zyCjExMRQWFlJYWEhdXR0AcXFxTJs2jVmzZvHpp5+ydu1abrzxRsaOHcuYMWMAOOecc+jfvz/XXnstGzdu5MMPP+Tuu+9mxowZ2O12M5+eSItJjXEAKoyLiIiIiIQqm9XCA5cOxDDgzXWHWJxT9MOfJCIiIiIdQlNhPClKNY0TkRjZeGJBuTrGReQ7mFoYf/LJJ6mqquL0008nIyOjeZs/f37zbf76179ywQUXMHnyZE499VTS09N58803m6+3Wq0sWLAAq9XK2LFjueaaa7juuuu4//77zXhKIq2iaZ3x4mq3yUlEREREROR4Dc9O4CfjGyelzX5zM5XqZBERERHp8Lw+P053A6CO8RPV9PVTYVxEvovNzAcPBAI/eBuHw8G8efOYN2/ed96mS5cuvP/++y0ZTSSoNBXGS5weAoEAhmGYnEhERERERI7HL87pw+LtxewtqeHed7bytynDzI4kIiIiIiZqKuJGhFmJCLeanCa0NRXGK+u8+PwBrBYdRxeRI5naMS4iRycxOhyLAe6Gr84eFBERERGR0OMIs/LnK4ZgMeDtDfm8sSbP7EgiIiIiYiKtL95you02wq0WAgE0nUlEvpUK4yIhwGaxkHK4a7ywSuPURURERERC2fDsBGad3RuAe97eyq6iapMTiYiIiIhZVBhvOYZhkBAVBkC5CuMi8i1UGBcJEemxDgAKnSqMi4iIiIiEup+d3pNTeiVT5/Ux45V1uDyaDCUiIiLSEZUdLownqTDeIhIjG7+OFTVek5OISDBSYVwkRDQXxtUxLiIiIiIS8iwWg0euHEpKjJ2dRS7umL8Bvz9gdiwRERERaWOlLg8AydF2k5O0DwmHTzBo6sQXEfk6FcZFQkRaXGNhvMTlwacDZiIiIiIiIS8lxs7frx1BuM3Com1FPLJop9mRRERERKQNebw+qt2Nk4OSo9Ux3hKaOu/LajwmJxGRYKTCuEiIiI8Iw2Gz4PMHKHHpl7qIiIiISHswPDuBP102CIDHP93Na6tyTU4kIiIiIm2l1NXY1RzjsGEPs5qcpn1o6rwvr6lXg5mIfIMK4yIhwjCM5q7xIo1TFxERERFpNy4b3pmfnd4DgF//dzMfbi00OZGIiIiItAWNUW95MQ4bYVYDfwAqazVOXUSOpMK4SAhpXmfcqcK4iIiIiEh7cufEPlw5sjP+ANz66nq+3FVqdiQRERERaWVfFcY1Rr2lGIZBUlTjiQZlWmdcRP6HCuMiIaS5MK6OcRERERGRdsUwDP546SDO6Z9GfYOfaS+sZsnOErNjiYiIiEgrahqlro7xlpV0+ESDUi1JKiL/Q4VxkRDSNEq9ss6L2+szOY2IiIiIiLQkm9XCY1cPY0K/VDwNfn7y4ho+2V5kdiwRERERaQWBQICyGo1Sbw1NX88ylzrGReRIKoyLhJCIMCtxEWGAxqmLiIiIiLRHdpuVJ6aO4OzDneM3vbiW11fnmR1LRERERFpYVZ0Xry+A1WIQf/iYr7SMpKjGjnGNUheR/6XCuEiISY/TOHURERERkfYs3GbhianDmTy8Mz5/gLv+s4lHPtqB3x8wO5qIiIiItJCmMepJUeFYLIbJadqXplHqVXVe6hv8JqcRkWCiwrhIiGleZ1wd4yIiIiIi7VaY1cKfrxjMLaf3AODRT3bzkxfXUFXnNTmZiIiIiLSEpvWvm4q40nIiw21EhlsBKFfXuIh8jQrjIiGmqTBe5HQTCKhjRERERESkvTIMg/87ty9/vmIIdpuFT7YXc/HjX7KjsNrsaCIiIiJygpoK41pfvHU0nXBQengddxERUGFcJOQkx4RjNQzcXr+6RUREREREOoDLR3TmP7eMo1N8BPvLarlk3lLe2ZhvdiwREREROQEl1SqMt6akqMava5lLHeMi8hUVxkVCjM1iISWm8Ze6xqmLiIiIiHQMAzvF8e6t4xnfM5k6r4/bXl3P7a+t18myIiIiIiHI7fXhdDcAkBqjwnhrSD7cMV7mUse4iHxFhXGRENS8zniVCuMiIiIiIh1FYlQ4L/z4JG47sycWA97akM+5c5fw5a5Ss6OJiIiIyDEoPtwtHhcRhiPManKa9inpcCd+qateS5KKSDMVxkVCUHpcY2G8QIVxEREREZEOxWoxmHVOH/59yzi6JUdRUOXmmmdXcu/bW6jxNJgdT0Qk5C1ZsoQLL7yQzMxMDMPgrbfeOuL6QCDAPffcQ0ZGBhEREUyYMIFdu3YdcZvy8nKmTp1KbGws8fHxTJs2DZfL1YbPQkSCXfHhSaDqFm89yVHhGAbUeX24tJ8sIoepMC4SgjLjGwvjJdUe6hv8JqcREREREZG2Njw7gfduG891Y7sA8MLyA5zz1yV8sr3I5GQiIqGtpqaGIUOGMG/evG+9/qGHHuLRRx/lqaeeYuXKlURFRTFx4kTc7q+aF6ZOncrWrVtZtGgRCxYsYMmSJUyfPr2tnoKIhICmjnEVxluPzWohMbJxnHrTeu4iIjazA4jIsYtxhBHrsOF0N1BQVUeXpCizI4mIiIiISBuLDLdx/8UDmdAvjV//dzMHK+r48fNrOG9QOr+7cACph5dgEpET0+Dzk1dRR255LVV1Xmo9DYTbLESG20iNtTM8O8HsiNKCJk2axKRJk771ukAgwNy5c7n77ru5+OKLAXjxxRdJS0vjrbfeYsqUKeTk5LBw4UJWr17NyJEjAXjsscc477zz+POf/0xmZmabPRcRCV7NhXHtr7WqlBg7ZTX1lFR76J4SbXYcEQkCKoyLhKjM+AichdXkV7pVGBcRERER6cBO7Z3CR3ecyt8+3sUzX+7j/c2FfLGzlLsm9WXqSdlYLIbZEUVCSiAQYF1uJZ/tKGbp7lK25Du/c1rbqK4JvPHTcW2cUMyyb98+CgsLmTBhQvNlcXFxjB49muXLlzNlyhSWL19OfHx8c1EcYMKECVgsFlauXMmll176jfv1eDx4PF91MzqdztZ9IiJiKrfXR1WdF1DHeGtLibGzvbC6+UQEEREVxkVCVKf4CLYXVnOoss7sKCIiIiIiYrLIcBuzz+vHRUMz+fWbm9l4sIrfvrWFN9cdZM5lg+ibHmt2RJGgV+R08/KKA7y5/hAHK478W9sRZqFrUhTxkWFEhduo9/mprffpZ6uDKSwsBCAtLe2Iy9PS0pqvKywsJDU19YjrbTYbiYmJzbf5X3PmzOG+++5rhcQiEoyairSxDhuOMKvJadq3phMPSlwqjItIIxXGRUJUZnwEAIVONw1+PzaLxeREIiIioeNPf/oTs2fP5uc//zlz584FwO1284tf/ILXXnsNj8fDxIkTeeKJJ75x4FNEJJgNyIzjzZ+dzL+W7+fhD3ewPreSCx79kptO7c5tZ/YiIlwHX0X+177SGh77ZBfvbszH6wsAEBVu5cx+aZzSM5mTuiWSnRip6QvSambPns2sWbOaP3Y6nWRlZZmYSERaU3G1G9AY9baQcrgwXu1uoM7rI0InIoh0eCqMi4SohMgwIsKs1Hl9FDs9zYVyERER+X6rV6/m73//O4MHDz7i8jvuuIP33nuPN954g7i4OGbOnMlll13G0qVLTUoqInJ8rBaDG07uxsSB6dz79lY+2lbEk5/tYcGmfB64ZBCn9U4xO6JIUCh2uvnrxzt5fc1BfP7GgviorglcO7YrZ/dL04kk8g3p6ekAFBUVkZGR0Xx5UVERQ4cObb5NcXHxEZ/X0NBAeXl58+f/L7vdjt2uccoiHUWx8/D64hqj3ursNitxEWFU1XkpqfaQnRhpdiQRMZlaTEVClGEYZMY3nlWoceoiIiJHx+VyMXXqVP7xj3+QkJDQfHlVVRXPPvssjzzyCGeeeSYjRozgueeeY9myZaxYscLExCIixy8jLoKnrxvJ09eOICPOQV55Hdf/cxW3vbqeEq2zKB1Yg8/PM1/s5cy/fM6rq/Lw+QOc2TeVt2eczBs/HcdFQzJVFJdv1a1bN9LT01m8eHHzZU6nk5UrVzJ27FgAxo4dS2VlJWvXrm2+zSeffILf72f06NFtnllEgk/TKHUVxttGSvThcera/xUR1DEuEtIy4yPYU1JDvgrjIiIiR2XGjBmcf/75TJgwgQceeKD58rVr1+L1epkwYULzZX379iU7O5vly5czZsyYb9yXx+PB4/nqD2un09m64UVEjtM5A9IZ1zOZRz7ayfPL9vHOxnw+21HM7PP6cdXILI2HljaRm5tLaWmp2TE4UOnlsdWV7K1oAKBXYhg3Do2lb7IVX8le1pWYHDAIJCcnk52dbXYM07hcLnbv3t388b59+9iwYQOJiYlkZ2dz++2388ADD9CrVy+6devGb3/7WzIzM7nkkksA6NevH+eeey433XQTTz31FF6vl5kzZzJlyhQyMzNNelYiEixq6xuoqvMCkKZR6m0iJcbO7hKXCuMiAqgwLhLSOh0en55f5cYfCGAxdEBLRETku7z22musW7eO1atXf+O6wsJCwsPDiY+PP+LytLQ0CgsLv/X+5syZw3333dcaUUVEWly03cY9F/bn0mGdmP3fTWw55GT2m5tZsCmfBycPpnOCxkpK68nNzaVvv37U1daamMIgdvRlxJ9yDYY1DF9dNZWfPceBTYv4mICJuYJPRGQk23NyOmxxfM2aNZxxxhnNHzet/X399dfz/PPPc9ddd1FTU8P06dOprKxk/PjxLFy4EIfjqwLXyy+/zMyZMznrrLOwWCxMnjyZRx99tM2fi4gEn8KqxvXFEyPDcWi96zbRtM5409ruItKxqTAuEsJSou2EWQ3qG/yUueqbf8mLiIjIkfLy8vj5z3/OokWLjjhoeSJmz57dfKAUGjvGs7KyWuS+RURay6DOcbz1s5N5YfkBHv5wO0t3l3Hu3C/4zfn9mDIqC0Mn20orKC0tpa62lqn/9zBp2T3a/PE9PlhdZqPI3biiYEaEn2Gd7ET0+Snw0zbPE8yKcvfw8oN3Ulpa2mEL46effjqBwHefLGEYBvfffz/333//d94mMTGRV155pTXiiUiIKzhcGE+PU7d4W2kaWV9R66W+wU+4TSsMi3RkKoyLhDCLxSAjLoLc8lryK+tUGBcREfkOa9eupbi4mOHDhzdf5vP5WLJkCY8//jgffvgh9fX1VFZWHtE1XlRURHp6+rfep91ux27X714RCT02q4Vp47txZt9U7nxjI2sOVDD7zc18sKWQP102iMzDk6lEWlpadg869xrQpo95qLKOz7YU4vI0YLUYnN4nhQEZsToJRERETNFUGM9QYbzNRNltRNttuDwNFFe7NSlJpIPTqTEiIS4zvnEn6pDWGRcREflOZ511Fps3b2bDhg3N28iRI5k6dWrz/8PCwli8eHHz5+zYsYPc3FzGjh1rYnIRkdbTLTmK+TeP5e7z+xFus7BkZwkT/7qE19fkfW+3pEgoCAQCrNlfzn/WHcTlaSAhMowpo7IYmBmnoriISBAJBALU1fs6xL6Hzx+gyKnCuBnSD6/nXujUOHWRjk4d4yIhrnmd8co6AoGA/sAXERH5FjExMQwcOPCIy6KiokhKSmq+fNq0acyaNYvExERiY2O59dZbGTt2LGPGjDEjsohIm7BaDH5ySndO75PKL9/YyIa8Su769yY+2lrEw5cPJiEq3OyIIsfM5w+weHsROQXVAPRNj+GMPqkanSoiEgTcXh+fbC/mw62FrNhbRnlNPV5fgLiIMHqmRnNyz2SuHNm5XXb1lro8NPgD2G0WErWP1abS4xzsLnE1r/EuIh2XCuMiIS491oHFgJp6H1V1XuIjtVMlIiJyPP76179isViYPHkyHo+HiRMn8sQTT5gdS0SkTfRMjebfPx3LM1/u45GPdvJxThHnPfoFf5syjJO6JZodT+Soebw+Fmwu4GBFHYYBp/dOYVAndYmLiJjN5w/wn3UH+euinc3jxL+uqs7L2gMVrD1QwWOf7GJi/3TuvqBfuyqQF35tfXH9XmpbabGNy6AVOT0mJxERs6kwLhLibFYLabEOCqrcHKyoU2FcRETkKH322WdHfOxwOJg3bx7z5s0zJ5CIiMlsVgs/Pa0H43smc+ur69lXWsOUp5dz+4TezDijJ1aLDuBKcHPWeXlnYz5lNfWEWQ3OG5hB1+Qos2OJiHR4BytqmfHKejbmVQKNY8QvGpLJmX1TyUqMJNph41BFHVsOVfHf9YdYtqeMhVsL+XxnCXec3YufjO+OpR3sh+RXNS6FmRGrMeptLTXGgQG4PA24PA1E21UaE+mo9NMv0g5kJ0ZSUOUmt7yWgZ3izI4jIiIiIiIhbGCnON69dTz3vLWFN9cf4pFFO1m+p4y5U4aSpgO5EqSKnG7e2ZhPbb2PKLuVi4d0IiXGbnYsEZEO79Mdxdz+2gaq6rzEOGzcdmYvrh3bBUeY9YjbxWaE0S8jlitGZrGzqJq739rCqn3l/PH97aw7UMkjVw0hMjy0yxlNHeMZh5fGlLYTbrOQFB1Oqauewio3PVOjzY4kIibR4koi7UB2YuNIobyKWgKBgMlpREREREQk1EXbbTxy1VD+csUQIsOtLN9bxqS/fcGn24vNjibyDXtLXfx77UFq630kR4dz1cgsFcVFRILAW+sPMe351VTVeRnSOY4Pfn4KN53a/RtF8f/VOy2G+dPH8MdLBxFutbBwayGTn1xOsTN014d2eRpwuhuAr8Z6S9tqOsGzMIS/j0TkxKkwLtIOpMU6CLdacHv9FFdrnRQREREREWkZk0d0ZsGt4+mfEUt5TT03Pr+av3y0A59fJ+RKcNh4sJIFGwto8AfITozk8hGdiXGEmR1LRKTD+/fag9zx+gb8AZg8vDOv/3TsMa0XbhgGV4/O5tXpo0mODienwMmP/rGCkhA99nmwohaA1Bg7dtv3nxggrSP9cGG8SIVxkQ5NhXGRdsBqMeiU0DiCJ6+81uQ0IiIiIiLSnnRPiebNn43j+rFdAHjsk93c+PxqKmvrTU4mHVkgEOCLXSV8tqOEADAgM5aLhmSq2CAiEgQWbingzn9vJBCAq0dn8/Dlg4/7/XlEl0TevOVkMuIc7Cmp4ep/rKDMFXrF8bzyxvXFs47h5ABpWelxXxXG/Zq6KtJhqTAu0k40jVPPVWFcRERERERamCPMyn0XD2TuVUNxhFlYsrOECx//ki2HqsyOJh1Qg8/P+5sLWZdbCcC4Hkmc1TcVq8UwN5iIiLAxr5Lb529oLor/4ZKBWE7w/Tk7KZJXbxpDeqyDXcUufvLiGtxeXwslbhtNHeOdE7W+uFkSo8IJsxp4fQHKa3SCp0hHZTM7gIi0jKbCeH6VmwafH5tV572IiIiIiByPnJwcsyMErWzgD2ck8tDSCvLK67jsiS+5eUQcZ3Q1p/spOTmZ7OxsUx5bzFFb38C7GwsodLqxGgZn90+jT3qM2bFERATIr6xj2gtrcHv9nN4nhfsvGoBhtMxJS12To3jpJ6O57ImlrM+t5JdvbOTRKcNOuOjeFqrqvDjdDVgMyIxTYdwsFsMgPc5BXnkdhyrrSI7WWu8iHZEK4yLtREJkGNF2Gy5PA4cq6+iSFGV2JBERERGRkOIsLwHgmmuuMTlJ8LPYo0i68JfQYxSPrarij0+9TPniZ8Df0KY5IiIj2Z6To+J4B1FRU8/bG/OpqvNit1m4cHBm87JiIiJiLq/Pz62vrqfU5aFvegyPXz28xRt3eqZG89S1I7ju2VUs2FRAr9QYfj6hV4s+Rmto6hZPi3UQblMzk5k6xUeQV15HfkUdQzrHmx1HREygwrhIO2EYBtmJkWwrcJJbXqvCuIiIiIjIMapzOQE4/+bf0GfwCJPTBL9AAHKqfOQ4rcQMv4AuY85jTHIDEW10pKEodw8vP3gnpaWlKox3AIcq6liwKR93g5+4iDAuHpJJQlS42bFEROSwP3+0g7UHKohx2Hj62pFE21tnh2Bcj2T+eOkg7vrPJuYu3smw7HhO7Z3SKo/VUvIqtL54sOgU33hC3aHKOgKBQItNNBCR0KHCuEg78vXCuIiIiIiIHJ+kzC507jXA7BghIQvoWeriw61FlNfDZ6URnDcwQ1280qJ2FFazaFsRvkCA9FgHFw7JIDJch7RERILFpzuK+fvnewF4+PLBZCe1bgH4ylFZrM+r5NVVudw+fwPv3TaejCAdUR4IwMHDx2o7a//IdOmxDqyGQU29j6o6L/GROslOpKPR3A6RdiQrsXHnqtRVT42nbUcYioiIiIhIx9Q9OZofjcoiKTqc2nof/1l/kPW5FQQCAbOjSYgLBAKs3l/Owq2F+AIBeqREMXl4JxXFRUSCSGVtPXf9exMAN4zryrkDM9rkce+9sD8DMmMpr6nn569uwOcPzv2O6gaoqfdhtRhkxDnMjtPh2awWUmMb1xY/VFlnchoRMYMK4yLtSGS4jZToxl/seRXqGhcRERERkbYRHxnOVSOz6J0WTSAAS3aVsnBrIV6f3+xoEqIa/H4W5RSxbE8ZAMOz4zl/UEaLr1crIiIn5t53tlJS7aFHShS/mtS3zR7XEWblianDiQq3smp/Of/4Ym+bPfaxKKxr/L2VGe/Q77Ag8fVx6iLS8eidWKSdyU5sHFWkceoiIiIiItKWwqwWzh2Qzmm9U7AYsLPIxfzVeVTU1psdTUJMXb2P/64/RE5BNYYBp/dO4ZReKVoHVEQkyCzcUsDbG/KxGPCXK4fiCLO26eN3SYri3gsbl7955KOd5BQ42/Txj0ZTYbx7crTJSaRJ05I/+ZVuk5OIiBlUGBdpZ5rGqeeW12p0oYiIiIiItCnDMBiaFc9lwzsTGW6lrKae11blsbfEZXY0CRFlLg/z1+SRX+km3Grh4iGZDMmKNzuWiIj8j6o6L799eysAt5zeg6EmvVdfMbIzE/qlUe/zc8f8DXgafKbk+DYWexSlnsaTurolR5mcRppkxDkwaPwedrm1HKlIR6PCuEg70yk+ApvFoMbjo8TlMTuOiIiIiIh0QJ3iI7j6pGwy4hzU+/y8u6mAZXtK8evkXfke+0preH3NQarqvMRFhHHlyM50SVIhQUSOzSfbizh37hKufXYls+Zv4Jkv9rK72KUGkhb20MLtlFR76J4SxW1n9TIth2EY/GnyIJKiwtleWM0jH+00Lcv/cnQfQQCDxKhw4iLCzI4jh9ltVlJiGpcjPVipqasiHY0K4yLtjM1qaR6nvq+0xuQ0IiIiIiLSUUXZbUwe3pmhneMBWL2/grc35FPnDZ5OLgkO/kCA5XvKeGdjPvU+P5nxDq4amUVStN3saCISgvLK69heWM0Xu0p5c/0hHngvhwmPfM7EuUt4c91BvD6/2RFD3toD5by8MheAP146CLutbUeo/6/kaDtzLhsEwNNf7GXl3jJT8zSJ7HkSoG7xYJTVtBxpmQrjIh2NCuMi7VDTzpYK4yIiIiIiYiarxeC0PilMHJCGzWKQW17Lq6tyKazSmo7SqLa+gbc2HGLV/nIAhnSO47JhnYkIN7fIIiKh69yB6bz445P4yxVDuHNiH07plUy41cLOIhezXt/IWX/5nC92lZgdM2Q1+Pz85r9bALhyZGfGdE8yOVGjcwakc8WIzgQC8Is3NuLymDsiu8EfwNF9JADdVRgPOl0OF8YPlNeiYRIiHYuphfElS5Zw4YUXkpmZiWEYvPXWW0dcHwgEuOeee8jIyCAiIoIJEyawa9euI25TXl7O1KlTiY2NJT4+nmnTpuFyae0y6di6Ht7ZKnJ6qDF5J1BERERERKRveixXjswiLiKMancDb6zNY82Bco217eDyK+t4dVUeeeV12CwG5w5I5/Q+qVgthtnRRCSEpcU6OLV3CpNHdGbGGT3517TRrPntBO46tw/J0eHkltdy7bOruOvfG3Xc7Di8ujqP7YXVxEWEMXtSP7PjHOGeC/vTKT6CgxV1/PH9HFOzbC+tx+qIJtwSID3OYWoW+aaMeAc2i0FtvY8qr/Y7RDoSUwvjNTU1DBkyhHnz5n3r9Q899BCPPvooTz31FCtXriQqKoqJEyfidn91ZvnUqVPZunUrixYtYsGCBSxZsoTp06e31VMQCUrRdhuph9dJ2V+mrnERERERETFfSoydH43KomdqNP4ALN1dxlsb8lWU6IAa/H6W7Snl32sP4vI0kBAZxpRRWfRJjzE7moi0U7GOMH52ek8+v/MMbhjXFcOA19ccZPKTy8gr1yjlo1VV5+WRj3YAcMeEXiREhZuc6EgxjjAevnwwAK+szGXJTvMmAyzNa6xhZET4sRgqvAYbm8VC54QIAIrcen1EOhJTC+OTJk3igQce4NJLL/3GdYFAgLlz53L33Xdz8cUXM3jwYF588UXy8/ObO8tzcnJYuHAhzzzzDKNHj2b8+PE89thjvPbaa+Tn57fxsxEJLhqnLiIiIiIiwcYeZuW8gemc1Te1ebT6yytz9XdLB1JS7WH+6jxW768gAPRNj2HKqGytJy4ibSLKbuN3Fw3gtZvGkBJjZ3thNRc9/iVrD5SbHS0kPLp4FxW1XnqmRjN1TBez43yrcT2TuW5sY7Zf/WcTTre3zTPUN/hZmlcHQFak1rQPVl2SDk9drdOKwyIdSdD+xO/bt4/CwkImTJjQfFlcXByjR49m+fLlACxfvpz4+HhGjhzZfJsJEyZgsVhYuXJlm2cWCSY9UqIBOFBWi9enHTAREREREQkOhmEwsFMcU0ZlkRQdTp3Xxzsb81m0rQiP12d2PGktVhs5VRZeW51LqaueiDAr5w/KYOKAdMJtQXt4SkTaqdHdk3hn5skM6hRHRa2Xa59dxbI9pWbHCmp7Sly8sGw/AL+9oD9h1uB97/6/c/uSnRhJfpWbPyxo+5Hqn+8swVUfoMFVTqpDy8YEq6Z1xss8BkaYTtAT6SiC9rdXYWEhAGlpaUdcnpaW1nxdYWEhqampR1xvs9lITExsvs238Xg8OJ3OIzaR9iY5OpxYh40Gf4ADZRoJJSIiIiIiwSUp2s6UkVkMzYoHYFuBk3+tPKDu8XYmEAiw6pCbzGlPsK3Khj8APVKiuGZMNj1To82OJyIdWEZcBK/fPJZTeiVTW+/jxudW88Uu80ZvB7s/vJdDgz/AmX1TOa13itlxvleU3cafrxiCYcD8NXl8uqO4TR//rfWHAKjd9jmaoh684iPDiHHY8GNgzxpkdhwRaSM2swOYYc6cOdx3331mxxBpVYZh0CM1mvW5lewucemAQ5CrrW9gY14VOwqd7C+rpcTlaV5r0W6zkBRtJyshkt5p0QzNiteYQRERERFpF2xWC6f1TqFXajSLthVRWeflnY359E2PYXzPZKLsHfKwRbuxo7Ca3y/Yxpe7KwhLyMRhCXBav3T6pMVgqFIgIkEgItzKP64bycxX1vFxTjHTX1zLKzeNZlh2gtnRgsrnO0v4ZHsxNovBb87vZ3aco3JSt0RuHNeNfy7dx6/+s4mPbj+NuMiwVn9cp9vLopwiAFxbP4XLz2/1x5TjYxgGXZIi2XLISWSPUWbHEZE2ErR/YaanpwNQVFRERkZG8+VFRUUMHTq0+TbFxUee7dXQ0EB5eXnz53+b2bNnM2vWrOaPnU4nWVlZLZheJDj0TGksjO8rrcHnD2C16MBDMCmoquP9zYV8uKWQ9XkVeH1HP1qpT1oMZ/dP4/zBGfTLiG3FlCIiIiIirS8zPoKpo7NZvreMdbmVbC+sZm9JDaO6JTA0Kx6bJWgH3sm32FviYt6ne3hrwyF8/gA2C5QtfZ2LrriEbun6+0VEgosjzMoTU0cw7YXVfLGrlBufX80bN4+lV1qM2dGCgtfn5/cLtgFw/biuzcs3hoI7J/bh0x3F7Cut4f4F2/jLlUNa/TEXbi6kvsFPVqyNA8V7W/3x5MT0SI5myyEnEb3G4A9o7L1IRxC0hfFu3bqRnp7O4sWLmwvhTqeTlStXcssttwAwduxYKisrWbt2LSNGjADgk08+we/3M3r06O+8b7vdjt2ubktp/zLiHESGW6mt95FXUUvXpCizI3V4gUCApbvLeH7ZPj7ZXoz/a/tbGXEOBnaKo3tKFGkxDmIcNgzDoK6+gRJXPftLa8gpcLKr2MWOomp2FFXz+Ke7GZIVz3VjunDR0MygXt9JREREROT72KwWTumVQq/UGD7bWUyR08PS3WVsOeTk1F7JdEuOUpdxEAsEAqzaV87zy/bz4dbC5r91Jg5I4+Iufs6f8yJhV11iakYRke8SbrPw1DUjmPrMSjbkVXLDc6t5e+bJJGtiHy+vOMDuYhcJkWHcdmYvs+Mck4hwK3++YjCXP7Wc/6w7yKSB6Uzon/bDn3icAoEAL67YD8BpXSL4stUeSVpKVmIkNiMAMUnsLPMy0uxAItLqTC2Mu1wudu/e3fzxvn372LBhA4mJiWRnZ3P77bfzwAMP0KtXL7p168Zvf/tbMjMzueSSSwDo168f5557LjfddBNPPfUUXq+XmTNnMmXKFDIzM016ViLBwzAMeqREs/lQFbuLXSqMm2zJzhL+smgnG/Mqmy8b1TWB8wdlcGbfNLISI47qQF95TT1Ldpbw/uYCPt1RzMa8Sn6RV8kji3Zy65k9uWJklqYDiIiIiEjISo9zcNXILHIKq1m6u5SqOi/vbiogPdbBSd0S6ZoUqQJ5EClyunl7wyH+vfYgO4tczZdP6JfKzDN7MTQrnnXr1pmYUETk6ETZbTx3wygue3IZ+0pruPlfjWPV7Tar2dFMU1lbz18/3gXArHP6tMko8pY2oksiN53SnaeX7GX2fzczsmsC8ZHhrfJYq/aVs+WQE7vNwoTukfyhVR5FWpLVYpAR4Sev1sqKg26uNjuQiLQ6Uwvja9as4Ywzzmj+uGm8+fXXX8/zzz/PXXfdRU1NDdOnT6eyspLx48ezcOFCHA5H8+e8/PLLzJw5k7POOguLxcLkyZN59NFH2/y5iASr3mlfFcbP6JOqgqkJ9pS4+N07W/liVykAjjALV43M4tqxXY9r7ffEqHAuGdaJS4Z1otTlYf7qPJ5bup9DlXX86s3N/GvFAe67aAAjuya29FMREREREWkThmHQPyOWninRrNpfzoa8Sgqdbt7ZmE9KtJ1RXRNwaNqlKXz+AFvzq/hydykfbytiXW5l83WOMAuXDuvMDeO60iddI4hFJPQkRIXzzPUjuWTeUtYeqODXb27hz1cM7rAnZM39eBdVdV76pMXwo1GhuxTprLN7sziniD0lNfzmv1t4/OphrfKaPvvlPgAmj+hMrN3b4vcvraNTZGNhfOUhN4FAoMP+vIt0FKYWxk8//XQC37Nug2EY3H///dx///3feZvExEReeeWV1ogn0i5kxkcQFW6lpt7HgbIauofQOkChzuvz8/SSvfxt8S7qG/yEWQ2uG9uVW07v0WKjuJKj7cw4oyfTxnfjpRUH+NviXWzNd3L5U8u5aEgmv72gPykxGvslIiIiIqEp3GZhfM9khmXFsz63kk2HKilxeXh/SyGR1jDixl9NkavB7Jg/yNPg42BFHQWVbkpcbkqqPZRUeyhz1VPtaaDG04DL04DL3YDX78fnC+ALBPD5wWI0rn9rt1mO+NcRZiHabiPGEUaMo/Hf2IivPo51HHldVLj1mA70+vwBKmrrya+sI6fASU5BNdvyneQUOKn2HPk1H9ElgcnDO3P+4AziIkKvm1BE5Ot6pETzxNTh3PDcav6z7iAjuiRw9ehss2O1uV1F1fxrxQEA7rmwP7YQXr7PEWblkSuHMvnJZby3uYDxq5P50Ukt+5ruL61hUU4RAD8+uRvOgztb9P6l9aQ5Avi9bopqHGzNdzKwU5zZkUSkFQXtGuMi0jIshkGvtBg25FWys8ilwngb2XKoirv+vYltBU4ATuudwu8vHkh2UmSrPJ4jzMpPTunOJcM68ZePdvDa6jze2ZjPsj2lPHT5YM7s23rrJ4mIiIiItLYou43xvZIZ0TWBDXmVbMyrpLbBT/zJV3PL+yWMzlnOpcM6cWrvFDLjI0zJWFvfQG55LftLazlQVsOB8sZ/95fWUlBV17zmtlmsFuNwIf3I4rlhGHh9fhp8Aep9fmo8DY1F+5p6fN8ROsZuY3T3RE7rncLZ/dNJj3N86+1ERELVKb1SuHNiH/70wXZ+9+5WBneO61DFskAgwO/fy8HnD3B2/zRO7plsdqQTNiQrnjsn9mHOB9v53TtbGdElgd5pLTfd5Nkv9xEIwBl9UuiZGs26gy1219LKbBZw711HZJ9xLNxS2KF+1kU6IhXGRTqA3mnRbMirZG+pC6/PT1gIn+EZ7AKBAM8v288f38/B6wsQHxnGPRf059JhndpkDE9ytJ05lw3m6pO6cOe/N7K9sJofP7+Ga8d04dfn9SMivOOuiyUiIiIioS8izMrY7kmM6pLA6s07+HzNJiK7DWflvnJW7isHoEdKFKf0SuHknsn0z4wlM87RIvvigUCAEpeHvPI6DlbUkldey4Gyxm1/WQ3F1Z7v/fzIcCud4iNIjbWTEm0nJcZOUrSdGIetuWAdFW4j3GbBajGwGAZWi4E/EMDt9eNp8OHx+nF7fXga/NR5fbjcDVS7vTjdDTjdXqoPf9z471f/b/AH8PkDVNV5qarzAnVH9ZwNA5Ki7PROi6Z/Riz9M2PplxFLr9TokO4cFBE5GtNP6c7qfeUs3l7MjFfW8e6t44l1mDsVIzc3l9LS0lZ/nDX5bpbsrMBmgUu6+Fm3bl2rP2ZbGBEdYGi6nQ2FHm58Zil/OiuZqPAT/312yNnAKytLADg9w8e6devIyck54fuVtlOzYymRfcbx3/WHmHV2byxajlSk3VJhXKQDSI91EOuw4XQ3sLekRmu9tZJqt5df/Wcz720uAOCc/mn84dJBpowyH9Q5jrdmnMxDC3fwz6X7+NeKA6zYW8bT142kW3JUm+cREREREWlJNquFrCg/xa/fw8Ilq9jljWfx9mI25lWyp6SGPSU1PL9sPwBR4VZ6psXQOzWa9DgH8ZHhxEeEkRAVhsNmxR8AfyCAPxDA62scH15V66Witp6K2noOVbo5WFHLoYo6PA3+780VFxFG16RIuiRF0eXwv12TIslOiiQl2m7KmpWBw4X1pgL61/+tdjeORLdZDMKsFsKsFiLDraTENBbuE6PCdWK1iHRYFovBX64cwvmPfsmBslruemMTT14z3LT1h3Nzc+nbrx91tbWt+0AWG5k/fpywpM6ULf8PF8x5rnUfr41ZIuPIuH4uh0hh8p/fpeTNByDw/b/ff0jK5HuI7HkStbtXccODRy4L63K5Tui+pW3U7VpOZJjBoco6lu8tC7kpCT5/gB2F1aw9UM6OompKq+txur1EhFmJjQijZ2o0AzJjGdk1kWi7yoLSseknQKQDMAyDvumxrNpfTk6hU4XxVrCjsJqfvrSWfaU12CwGvz6vHzee3NW0P5agcbz6PRf25/Q+KfzyjY3sKnZx8eNf8tjVwzmtd4ppuUREREREWlJKlJWJw3sx88xeVNV6WbanlC92l7Jmfzn7Smuoqfex8fD49RNlMSAjLoJOCRF0Toig6+ECeNO/8ZHhJ/6EWphhGESEW4kIt5Iaa3YakdD3u9/9jvvuu++Iy/r06cP27dsBcLvd/OIXv+C1117D4/EwceJEnnjiCdLStMRZKIqPDGfe1OFc8dQyFm4t5J9L9zNtfDdTspSWllJXW8vU/3uYtOwerfY4u5wWNlXasFsCXDv5QsKuuLDVHsssFR6Dz4oDRPY8iXMe+C8D433HfV+FdQZLS8IwCHDJKUOJOfNNAHJWfc4HL/wNt9vdUrGlFQUa6hmfFcFHe2t5Y01eyBTGt+U7+ffag7y7KZ+SH5heBBBus3BGnxQmD+/MhH5p6oyXDkmFcZEOom9GDKv2l5NbVovL06Azw1rQpzuKufWV9bg8DWTGOXh86nCGZyeYHavZqb1TWHDbeH76r7Wsy63kxudW8atJfbnplO6mFu5FRERERFpaXGQYkwZlMGlQBgBen5/9pTXsLHKxu9hFWY2HilovlbX1VNZ6qW/wYxhgMQwsFrBaLI3d5JFhjZ3lkWFkxjUWwTsnRJIR71AHtYgwYMAAPv744+aPbbavjrHccccdvPfee7zxxhvExcUxc+ZMLrvsMpYuXWpGVGkBQ7Piufv8/tz7zlbmvJ/D8Ox4hpl43Cctuwedew1olfuuq/fx7vL9gJ/xvdPo1k7XWu4MhBU6+XBrETucVlLT0o7rWJ6nwcfiVXmAl6FZCfT7WiNKUe6elgssbeKsbo2F8Q+2FHJfnZe4CHOXTvg+a/aX89gnu/l8Z0nzZdF2G8Oy4xncOY60WAexjjDcXh/ltfVsL6hmfV4FeeV1fLi1iA+3FtEzNZqZZ/TkoiGZKpBLh6LKmEgHkRAZTkacg4IqN9sLnYzskmh2pHbhxeX7+d07W/EHYEz3RJ6cOoKEqODrEkmNcfDq9DHc89ZW5q/J44/vb2dnkYs5lw3SgT1pMTWeBjbkVZJT4GRPSQ2FVXWU1dRTV+/D3eDjqWtGMCCzff5RLcFvzpw5vPnmm2zfvp2IiAjGjRvHgw8+SJ8+fZpvo+4eEZH2J8xqoVdaDL3SNDVLRFqOzWYjPT39G5dXVVXx7LPP8sorr3DmmWcC8Nxzz9GvXz9WrFjBmDFj2jqqtJDrxnZh1b5y3ttcwG2vref9204hxuT1xlvD8r1l1Df4SY4Op39m+x4z0jc9FmddA8v3lvHFrlLCrRYGHsOJAIFAgEXbiqis8xJttzG6m461hrqeiWH0TotmZ5GLBZvymTq6i9mRviGvvJY/vp/DB1sKgcZpRucOTGfy8M6c2jvle4/zBgIBcgqqeXvDIV5ZmcvuYhe3z9/Av1Yc4P6LB+iYnXQYqoaIdCD9Mxp3aHMKqgkEAianCW0+f4DfvbOVe95uLIpfMaIzL/54dFAWxZvYbVb+NHkQ9100AKvF4N9rDzLthTXUeBrMjiYhLK+8ln8s2ctlTyxl8H0fMfWZlTzwXg6vrsrl0x0lbDpYxa5iF3nldbjc+l4T83z++efMmDGDFStWsGjRIrxeL+eccw41NTXNt7njjjt49913eeONN/j888/Jz8/nsssuMzG1iIiIiASjXbt2kZmZSffu3Zk6dSq5ubkArF27Fq/Xy4QJE5pv27dvX7Kzs1m+fPl33p/H48HpdB6xSXAxDIM/XjaITvER5JXXcfdbW9rdsbVSl4cth6oAOK13CpYOMGVwVNcERhzuFF+8vZhV+8qP+nVdc6CCPSU1WA2D8wdlYA+ztmZUaQOGYXDFiCwAXlmZG1Q/4z5/gGe+2MuERz7ngy2FWAyYMiqLT395Ok9MHcFZ/dJ+sPnJMAz6Z8Yy+7x+LJ19Jr88pzeR4VbWHqjgwse+5G8f76LB52+jZyRiHnWMi3QgvdKi+XxnCeU19RQ63WTERZgdKSQ1+Pzc+e9N/Hf9IQDuOrcPt5zWIyTGkhuGwfXjupKVGMGMl9ezZGcJU55ewT9vGEVKjN3seBIi3F4f/1l3kPmr89h0sOqI6zrFRzCoUxy90qLpnBBBUpSdyHAr9jArvdOiTUosAgsXLjzi4+eff57U1FTWrl3Lqaeequ4eEZEQlpOTY3YE+QF6jaQ9GT16NM8//zx9+vShoKCA++67j1NOOYUtW7ZQWFhIeHg48fHxR3xOWloahYWF33mfc+bM+ca65RJ84iLCePRHQ7ny7yt4e0M+p/ZKYfKIzmbHahGBQIDPd5QQAHqmRNM5IdLsSG3CMAxO7plEgADrcitZvreM8tp6zuid8p2F7kAgwPK9ZazeXwHAaX1SSI9ztGVsaUWTR3TmL4t2sDXfybI9ZUGx1nheeS2zXt/Q/D03ulsiv7toAP0yjn+qQ6wjjJln9mLyiM48sCCH9zYX8NePd/LFrhIev3q4vqelXVNhXKQDsdus9EqLJqegms0Hq1QYPw71DX5un7+e9zcXYrUYPHLlEC4e2snsWMfszL5pvDp9DD9+fjWbD1Ux+cllvDRtNNlJHeMPHzk+xdVuXlp+gH+tOEBFrRdoHNl0UrdEzhuUwVn90ugUr/cVCQ1VVY0ndSQmNo67+6HuHhXGRUSCj7O8cU3Fa665xuQkcrRcLpfZEURO2KRJk5r/P3jwYEaPHk2XLl14/fXXiYg4vr+HZs+ezaxZs5o/djqdZGVlnXBWaXkjuiRyx4Re/Pmjnfz27S0My46ne0ronwS+s8jFwco6rBaD8b3MLwS2JcMwOKVXCnERYXy2s4QdhdXkltUyrmcSfdJijujCLan2sGxPKfvLaoHGjvOB7XzkfEeTGBXOVSOzeGH5AZ76fI/phfGFWwq489+bqHY3EBVu5e4L+jNlVFaLNWhlxEUwb+pwzl5/iLvf2sKaAxVc+PiXPH3tCIYdnqYg0t6oMC7SwQzqFEdOQTU7i12c2tuHQ2N+jprb62PmK+v4OKeYcKuFx68exjkDvrmmWKgYmhXPm7eM47p/riK3vJYr/76cl34ymp6pof8HnbQsp9vLk5/t4Z9f7sPT0DhSqXNCBDeM68rFQztp2oCEHL/fz+23387JJ5/MwIEDAY6ru8fj8eDxeJo/1shLEZG2VedqfN89/+bf0GfwCJPTyPfJWfU5H7zwN9xut9lRRFpcfHw8vXv3Zvfu3Zx99tnU19dTWVl5xH5lUVHRt65J3sRut2O36++qUHHL6T35cncpK/aW8/PXNvCfW8YRbgvdFUs9DT6+2NV4stlJXROJi2h/a6cfjcGd40mMCueT7cVU1HpZnFPMZztKyIxzYLUY1Hh8lLga//6zGgZn9Us9oY5dCV4/OaU7L63M5YtdpWw5VHVMa8+3lAafnz++v51/Lt0HwPDseP42ZRhZia3T1HTJsE4Mz05g+r/WsL2wmqv+voKHrxgckg1hIj9EhXGRDiY91kFydDilrnpyCpw68+so1dX7mP6vNXyxqxS7zcLfrx3B6X1SzY51wromR/Hvn45l6jMr2VXsYsrTy/nXtNHasRegcULCKysP8OgnuymvqQcaT6iYfmp3zumfhu0H1i4SCVYzZsxgy5YtfPnllyd0Pxp5KSISHJIyu9C51wCzY8j3KMrdY3YEkVbjcrnYs2cP1157LSNGjCAsLIzFixczefJkAHbs2EFubi5jx441Oam0FKvF4K9XDWXS375g86Eq/vzRDn59Xj+zYx23lXvLqan3ERcRxvDseLPjmKpzQiRTR3dhQ14lGw9WUu1uIK+irvl6i9E4an5k10Q1CbRjWYmRnD8og3c25vP3JXt57EfD2vTxK2rqmfnqOpbuLgPg5tO688tz+vzgGuInKjspkv/cMo475m/go21F/Py1DZS56vnx+G6t+rgibU2FcZEOxjAMBnWK49MdJWw6VMXQrPiQWBvbTC5PAz9+fjWr9pUTGW7lmetHMq5H+xkrlRrrYP7NY7n22ZVszXcy5ekV/GvaSQzuHG92NDHR2gPl/N9/NrO7uHHcZY+UKGZP6sdZ/VL1niEhbebMmSxYsIAlS5bQufNX6wGmp6cfc3ePRl6KiIiIdDy//OUvufDCC+nSpQv5+fnce++9WK1WfvSjHxEXF8e0adOYNWsWiYmJxMbGcuuttzJ27NigXponNzeX0tJSs2OEnJ8Oi+ZPSyt4esle0qhkWHrrFkpzcnJa/D5LXR42HKwE4PQ+KToBnsYTH0Z0SWB4djzlNfUUVLkxDAi3WsiMjyDKrpJKR3Dzad15Z2M+Czbl89PTujMgs226xrcXOrnpxTXkldcRGW7lkSuHcO7AjDZ5bIAou42nrhnB/Qu28fyy/dy/YBsVtfXMOru3jgdKu6F3cZEOqG96LEt3l1FZ62V/WS3dkqPMjhS0quq8XP/PVWzIqyTGbuP5H49iRJdEs2O1uMSocF65aQw3PLeK9bmVXP2PlTx34yhGdW1/z1W+X7Xby0MLd/DSygMEApAUFc4dZ/dmyqgs/YEsIS0QCHDrrbfy3//+l88++4xu3Y484/l4uns08lJERESk4zl48CA/+tGPKCsrIyUlhfHjx7NixQpSUlIA+Otf/4rFYmHy5Ml4PB4mTpzIE088YXLq75abm0vffv2oq601O0pISjz7p8QMv4DffbCH/H/eir+2stUf0+Vytcj9BAIBPt1RTCDQeDJ81yQdH/w6wzBIiraTFK2/+TqiAZlxXDgkk3c35nPfO9uYf/OYVi8ML9xSwKzXN1Jb7yMrMYJ/XDeSvultP9XTYjG498L+pMTYefjDHTz2yW4Mw2DW2b3bPItIa1BhXKQDCrdZGNAplvW5lazPq1Bh/DuU19Q3d1HHRYS1+y7qxuc4mmnPr2blvnKue3YVz1w/kpN7tp/uePl+S3aWcNe/N1HobFz78cqRnfn1ef2Ijww3OZnIiZsxYwavvPIKb7/9NjExMc3rhsfFxRERERGy3T0iIiIi0rZee+21773e4XAwb9485s2b10aJTkxpaSl1tbVM/b+HScvuYXackOPzwydFfpxRCYy880VOTmmgtWpnOas+54MX/obb7W6R+9teWE1+pRubxeDU3iktcp8i7cmvJvVl0bZCVu0v573NBVwwOLNVHsfvD/C3xbv42+JdAJzcM4nHfzSchCjzjscZhsGMM3pit1l44L0cHl28C6th8PMJvUzLJNJSVBgX6aCGdo5nQ24leeV1lFR7tC7O/yiudnPtM6vYUVRNUlQ4L/2kY6y7HW238fyNJzWvp/7j51fz9HUjOU1/ILVrbq+Phxbu4J9L9wHQJSmSOZcOYpxOipB25MknnwTg9NNPP+Ly5557jhtuuAEIve4eEREREZGWkpbdg869BpgdIyRd1MnDq6vzKHJbKHFkMjw7oVUepyh3T4vdV53Xxxe7Gsfnn9QtkVhHWIvdt0h70Sk+gp+e1oO5H+/ij+/lcFrvFGJa+GfF6fbyy9c38tG2IgB+fHI3fn1e36CZ2viTU7rjDwT44/vb+evHO7FaYOaZKo5LaAuOny4RaXOxEWH0TI0GYH1ehclpgktBVR1T/r6CHUXVpMXamX/z2A5RFG8ScXgd9Qn9UvE0+LnphTV8ur3Y7FjSSnYUVnPJvKXNRfHrxnZh4c9PVVFc2p1AIPCtW1NRHL7q7ikvL6empoY333zzO9cXFxERERERAUiKtnNar8aGgqW7SylytkxHd2tasrOEOq+PxKjwVivki7QHN5/ag07xEeRXuZn95mYCgUCL3feWQ1Vc+NiXfLStiHCbhT9fMYR7LuwfNEXxJtNP7cH/ndsXgD9/tJMnP2u5k3REzBBcP2Ei0qaadnx3FFbjrPOanCY45JXXcuXfl7O3tIZO8RG8fvPY5hMIOhK7zcoTU0cwcUAa9T4/0/+1hkWHz1yU9uO/6w9y8bwv2V7YOBnh2etHcv/FA4kIt5odTURERERERCRkDOwUS4+UKPwB+GBLIR6vz+xI32lfaQ3bC6sxgLP7pWG1tO66ySKhLCLcyqM/GobNYrBgUwEvrThwwvcZCAR4eeUBLntyGQfKaukUH8EbN4/l8hGdWyBx67jl9B7cObEPAA8u3M7LK0/86yBiFhXGRTqw9DgH2YmR+AOw5oC6xveWuLjy78vJK6+jS1Ikr/90LF2SOu766+E2C49fPZzzB2Xg9QW45aW1fLC5wOxY0gK8Pj+/e2crd8zfiNvr59TeKSy8/VTO6pdmdjQRERERERGRkGMYBhP6pRHjsFFV52Xh1sIW7SxtKW6vj08OTwUclh1PepzD5EQiwW9ElwR+NamxY/r3C3L4YlfJcd9XtdvL7fM38Jv/bqG+wc+Efqm8d9t4hmTFt1Da1jPjjJ7cemZPAH771hYWbtFxYglNKoyLdHAndU0EYFu+E5enweQ05tlZVM2Vf19BQZWbHilRvH7zWDrFR5gdy3RhVgt/mzKUi4Zk0uAPMPPV9by7Md/sWHICiqvdTP3HSp5fth+AW8/syXM3jCIlxm5uMBEREREREZEQ5gizcsGgDKwWg/1ltazYW252pCMEAgE+2V6My9NAfEQYY7onmR1JJGRMG9+NSQPTqff5mfb8Gj4+jsmai7YVcfYjS3h7Qz5Wi8Gvz+vLP64bSXxkeCskbh2zzu7Nj07Kwh+A217bwIq9ZWZHEjlmKoyLdHCdEiLIjHfgCwRYvT+4dtjbypZDVUx5egWlLg9902OYf/NY0mJ1xmwTm9XCX68aymXDOuHzB/j5a+t5a/0hs2PJcViXW8GFj33Jqv3lRNttPH3tCH5xTh+NTRMRERERERFpAamxDs7qmwrAqv3l7ClxmZzoK9sLq9lV7MJiwMSB6YQF2TrGIsHMMAzmThnavOzkT19ay7xPd1Pf4P/Bz918sIobn1vFTS+uodDpJjsxktemj2H6qT0wjNA6JmcYBr+/eCDn9E+jvsHPTS+sYVu+0+xYIsdEv/1EhDHdGs8Q3XKoiqoOttb4+twKrv7HCspr6hncOY7Xpo8hOVqds//LajF4+IohXDGiM/4A3PH6Bv699qDZseQoNa1ddNXfl1Pk9NAzNZq3Z57MOQPSzY4mIiIiIiIi0q70y4hl6OGxyB9tLaK8pt7cQEBlbT2f7mgcoT66exLpaggROWZ2m5V5Vw/n0mGdaPAHePjDHZz/6Be8viaPytojf84raur599qDXPPMSi58/Es+3VGC1WLw09N68OHtpzLq8BTXUGSzWnj0R8M4qWsi1Z4Grn9uFXnltWbHEjlqNrMDiIj5shIj6ZIYyYHyWpbvKePcgR2jWLZybxk/fn41NfU+RnZJ4J83jiLWEWZ2rKBltRg8OHkwNquFV1flcue/N+Lz+7lqVLbZ0eR7uL0+7n17K/PX5AEwaWA6D18xhGi7dgFEREREREREWsP4nsmUVns4WFnHgk35XDUyC3uY1ZQsXp+fBZsK8PoCZMY7GNklwZQcIsEuJyfnqG53Tc8A2eHxPLfBya5iF3f9exO/MiAxwkpUmEGVx0+l+6tOcgM4tUsEV/aPJiOmlpwtG1vpGbStW4eGcXeFjQNVHq58Ygl/ODOJeEfbvM8lJyeTna1j0nJ8dFRcRAAY1zOJA6tq2VFUzbDs+HY/SnzJzhKm/2sNbq+fcT2S+Md1I4lSofAHWSwGf7hkIDaLwb9WHOD//rMZry/ANWO6mB1NvkV+ZR23vLSWjQersBjwy4l9uOW00BvTJCIiIiIiIhJKrBaDSYPSeXVVHhW1Xt7dVMAlQzOxtfH48kAgwOKcYspq6okMtzJpYAYWHRMQOYKzvASAa6655pg+z+KIJmb4BUT2OZnw1G6U1voo/dr19aUHqN22hJptn/FiVREvtmDmYGGNTiT9mocpII2pf19K0Wu/JlBf1+qPGxEZyfacHBXH5bioCiQiAKTGOOiTHsOOwmo+31nCFSM6t9vi2XubCrh9/nq8vgCn90nhqWtG4DDprN1QZLEY3H/xAGxWg+eW7ufut7bg8we4flxXs6PJ1yzfU8bMV9ZRVlNPfGQYj04Zxqm9U8yOJSIiIiIiItIhRIbbuGhIJv9ee5BDlXV8uK2ISQPT27QwvTa3gh1F1RgGnDcwQ9PjRL5Fnatxjezzb/4NfQaPOK77qG2ox+0z8PohzAKxYQFs2Rkw/CrgqhZMG3yqvfBZUQAyejFy9nzGpTRgbcW3uaLcPbz84J2UlpaqMC7HRb8JRaTZ+B7J7C1xUVDlZnthNf0yYn/wc452xEyw+GhPLX9fW0UAODnLwS0DrWzb3D7G17S1CzIDlPeJ4u0dNdz7zlb2H8jlwj7RZsc6Lu1p/E4gEODZL/cx54Pt+PwB+mfE8vdrR5CVGGl2NBEREREREZEOJSXGzgWDM3hrwyF2F7tYnFPMhH6pbdKMsqOwmqW7ywA4tVcKnRIiWv0xRUJZUmYXOvcaYHaMkJTQ2c2b6w5S7LawxZPY5icBiRwLFcZFpFm0w8ZJXRNZuqeML3eX0i056js7qY93xIyZYkdfTsLpNwBQvf4DXnnoSV4J+L//k+QHxZ96HXFjr+S5jdU8MvdRnKv+Y3akY9Zexu/U1jfwf//ZzLsb8wG4dFgn/njpICLCNRFBRERERERExAxZiZFMHJDOwi2FbCtwYhhwVt/WLY7nltfy0bZCAIZmxTM0K77VHktEJD3WwQWDM3n78ElAn24v5sxWfp8TOV4qjIvIEYZmx7OtwElFrZcvdpVydv+0b71dS4yYaSuBAGyutLKrurE42DfWR/+LzsK4+CyTk7UPgQDkVPnIcVpJOONGxlx8HQPifITKfk97Gb9zoKyGm/+1lu2F1dgsBnef34/rx3XVDqiIiIiIiIiIyXqnxeAPBPhoaxFb8534/AEm9EvDamn5v9kPlNXw7qYC/AHomRrNqb2SW/wxRET+V3ZiJOcOSOf9LYVsyXcSEW5lXA+9/0jwUWFcRI5gs1iY0C+NN9YeZFuBk95p0XRJivrO2wf7iBmfP8Di7UXsqq4G4JReyQzPTjA5VfuTBcTvL2f5njJ2OK1YouI5q2/r/IEn3/Tp9mJ+/tp6nO4GkqPtPDF1OCd1SzQ7loiIiIiIiIgc1jc9FgLwUU4R2wurqalv4PxBGdhtLTflbU+Jiw82F+ILBOiWHMXE/mk6YV5E2kyvtBjObPDzyfZiVu+vwBFm1bF4CToWswOISPDJjI9oHrH0cU4xdfU+cwMdJ7fXx1vrD5FTUI0BnN0vTb+IW9FJXRMbR4EBOQXVLNiUj9enUfWtyecP8MhHO7jx+dU43Q0My45nwa3jVRQXERERERERCUJ9M2K5aHAmYVaDvPI6XludR0m154TvNxAIsGpfOQs2FeALBOiZEs35gzKwWXX4X0Ta1qBOcYzrkQTAF7tK2VbgNDmRyJHUMS4i32pcjyQOlNVQUevlo22FXDQkM6TOMK2sreftjflU1noJt1qYNCidrt/T+S4tY2CnOCLDrXywpZD9ZbW8ue4QFw3JDIk1rnNycsyOcEycHj9zV1SwoagegEk9I7lhiIP8PdvINzmbmCc5OTmklwQQERERERFp77omR3H58M68u6mAylov89fkMa5HEkM7x2M5jsl7LncDn+woZl9pDQCDO8Vxau8UTfETEdOM7JJAndfH+txKPs4pwmGz0D0l2uxYIoAK4yLyHcKsFiYNzGD+mjz2l9WyLreSEV1Co9s6r7yW97cU4Pb6iXHYuGhIJsnRdrNjdRjdU6K5bHgn3tmQT6HTzetr87hkaCfiIsLMjvatnOUlAFxzzTUmJzl64em9SLlkNra4VPxeN+ULH+epbZ/xlNnBxHQRkZFsz8lRcVxERERERCSIpcY6uHp0Nou2FbGvtKaxqzLfySm9kslOjDyq5pQGn58t+U6W7ymj3ufHYsAZfVIZ2CmuDZ6BiMh3MwyDU3om4/b6yCmo5v0thVwwKIOuyWpcE/OpMC4i3yklxs6pvZL5dEcJS3eXkhgVTrcg/uUVCARYc6CC5XvKCABpsXYuHJxJlF1vdW0tIy6CK0Zm8daGQ41nP6/O4/xBGXRKiDA72jfUuRrH+Zx/82/oM3iEyWm+XyAAe10WNlVY8WMQbQswJt1K3IzbgNvMjicmK8rdw8sP3klpaakK4yIiIiIiIkEuIszKhYMz2JLvZNmeUspq6nlrQz6JUeEM6hRHl6RI4iPCjiySGxacvjCW7SllyyEndd7G5Q/TYx2c1S9VjSEiEjQMw2BC3zTqG/zsKalhwaYCzhucTvdkdY6LuVQtEpHvNahTHMXVHrbmO1m4pZArRnYOyp1sT4OPj7YWsffw2Kh+GTGc2SdVaymZKDEqnCtHZPHupnyKqz28uf5gUJ+5nJTZhc69Bpgd4zvV1fv4OKeIvRWN3+M9UqI4u38adlvwj6kXERERERERkW8yDINBneLolRrNyn3lbM2vorymns93Nk63iwizEmW3YrdZqaAbWT9/lfWeKNhfAUCMw8bILgkM7BSHJYSWQBSRjsFiMZg0MIOFWwrZXeLivU0FnD8oQ2PVxVQqjIvI9zIMgzP6pFJZ6+VQZR3/XX+Iy0d0NjvWEfIr6/hoWxFVdV6shsHpfVIYkBkbUmuit1fRDhuXj+jMom1F7Cp2sXh7MaUuD6f00lpXxyK3vJaPthZSU+/DahiM65nEsKx4fY+LiIiIiIiItAOOMCun9U5hTLdEthU42VtSQ0GVmzqvr7krHBxY7GDFT9eUGHqnxdAzJfq41iUXEWkrVovBuQPT+XBrIbuKXby3uYBJAzPomariuJhDhXER+UFWi8EFgzP4z7qDlLrqeXPdIfpg/nrRDX4/K/eWs/ZABQEaz5I9b1AG6bEOs6PJ1zSuV59O8v4Klu8tY+PBKoqrPUwamE6Mw/zvo2Dm8wdYvqeMtbmNZ4InRoZz7sB0UmKCb2qDiIiIiIiIiJwYe5iVYdkJDMtOoMHnp6ymnjqvj/oGP3lbVvLRsw8yZebdDBvcx+yoIiJHzWoxOHdAOoZRyM4iFx9sKWBCvzT6ZcSaHU06IBXGReSoOMKsXDqsE/9ee5CKWi+b6EpYanfT8hQ53XycU0Spqx6AfukxnNYnRWOlg5RhGJzULZGk6HA+2lZEQZWbV1bmcs6A9KBet95MpS4Pi7YVUVztARqXNTilVzJhWh5AREREREREpN2zWS2kfa35o3pLLd7SXDQ8TkRCkcViMLF/OhajiO2F1c0TYEd3S9RUTGlTKoyLyFGLDLcxeXhn3t6QT4kL0q/+EyUN7jbNUFvfwPI9ZWzJdwKNay2d2TdVo1dCRI+UaK4+yc77mwsorvbwzsZ8hmfHM7Z7ktaDP8znD7B6fzmr95fjD4DDZmFC/zR6aO0dERERERERERERCVEWi8E5/dOItttYc6CClfvKcdZ5OatfmpbdlDajwriIHJMou43JIzrx6uebqbJHsa0+kvAdJYzrmdSqnawNPj+bD1WxYl859Q1+AHqnRXNqrxSi7HorCyVxEWFcMbIzX+4qZePBKtblVrK/rJZz+qcdcSZ0R1RY5ebj7UWUHZ6E0D05ijP6phKt73EREREREREREREJcYZhcHLPZGIjwvh0RzE5hdVUexq4YFAG9jBNg5XWpyPtInLM7DYrA8nl/ZXbiBs9mQ0HK9lXVsMZfVLoktSyY7E9DT42H6pifW4ltfU+AFKi7ZzWJ4VO8REt+ljSdmwWC6f3SSU7MZLF24spr6ln/po8RnVJZFS3BGyWjtU9XlvfwLI9ZWz92iSE0/uk0Cs1WqOEREREREREREREpF0Z1CmOGIeN9zcXcLCijldX53H+oAxSYuxmR5N2ToVxETkuBlD52XOcfOrp7CeNqjovb23IJysxglFdEumcEHHcBb1AIEBxtYcdhdVsK3DiOdwhHuOwMaprIgMyY7GoWNgudE+JJiM+gs+2F7Oz2MWq/eXsLKrmtD4pdG3hkyyCkc8fYPOhKpbvLWuehNAvPYZTeqUQEa4zJEVERERERERERKR96poUxRUjsnh3Uz5VdV7mr8njtN4pDMyMVbOQtBoVxkXkhCRZPYwflc3KveVsOlhFXnkdeeWHSIoKp3daDN1TokiKCv/BX2Q+f4Aip5sDZbXsLKqmss7bfF1CZBgjuybSJy1Ga420QxFhViYNyqBnUTWf7Syhss7L2xvy6ZESxam9UoiNCDM7YosLBALsLHKxfG8ZVYe/11Ni7JzeO4VMTUIQERERERERERGRDiAlxs7VJ2Xz4dZC9pfV8sn2YvaV1nBW31QtoSqtQt9VInLC7DYrp/ZOYUhWPGsPVJBT4KSspp7le8tYvrcMh81Ccoyd+IgwHGFWwqwW/IEA9Q1+XJ4GKmu9lNfU4wsEmu/TZjHonhxFn/QYuiVH6QyxDqBXWgzZSZGs3FvOhoOV7CmpYX9pLYM6xTGya0K72BEKBALsK61h+d4ySg+vIx4RZmVM90QGdorTJAQRERERERERERHpUBxhVi4aksm63EqW7yljX2kNL604wPheyfTPUPe4tKzQrzKISNCIiwjjzL6pjOuRxO4SF7uLXByqrMPd4OdgRR0HK+q+9/Mjwqx0SoigR0oU3ZOjCbd1rHWm5auTLAZkxvLZzhIOVtSx4WAlW/KrGJIVz/DseCLDQ+9Xl88fYEdRNesOVFBW01gQD7daGN4lnmFZCfpeFxERERERERERkQ7LMAxGdEmgS1IkH20tosTl4eOcYrbmOzm1VwrpcQ6zI0o7EXrVBREJeo4wKwMz4xiYGYfPH6DE5aGipp6qOi8erx+v34/FMAizGkTbbcRGhJEcbSfWYdPZXwJAUrSdy4Z1Iq+ijuV7yih0ull7oIINeZX0SYthaFY8KTF2s2P+IJe7gW0FTjYfqsLlaQAaC+KDOscxoksCEWFaR1xEREREREREREQEIDnazpRRWWzIq2T53jIKqtzMX5NHz9RoTuqaaHY8aQdUGBeRVmW1GKTHOkiP1RldcmwMwyA7MZKshAj2l9Wycl8ZRU4P2wqcbCtw0ik+gv4ZsfRIjcJuC54Cc4PPz4HyWrbmO9lfWkPTAgGR4VaGZcUzqFMcdhXERURERERERERERL7BYjEY3iWBXmnRLN9bRk5BNbuLXewudpHusOHoOhT/15ZlDUWBQACvL4DPH8Dr9+PzBXCEWYkI13Hj1qbCuIiIBDXDMOiWHEW35CgKqurYkFvJrpLGMf2HKuv4ZEfjevS9UqPJTow0pehc3+DnQFkNu4td7Curwev7ascsM97BwMw4eqVFY7NoZLqIiIiIiIiIiIjID4lxhHFO/3SGZSWwen85u4pdFLotpF31ADM/KGFKxU4uGJxBz9QYs6PS4PNTXO2hoMpNQVUdhVVuCqrcVNTW46zzUvU/m9vr/8Z9/Pq8vkw/tYcJ6TsWFcZFRCRkZMRFkDEogvFuLzmF1WwvcFJR62VXsYtdxS4MAzJiHXRJiiIjzkFqrL1VusndXh/F1R4OVtSSV15HUbWbr5+kGG230TstmoGZcSREhbf444uIiIiIiIiIiIh0BCkxds4blEFFbT1LN+9lV5mbQqKY+/Eu5n68i27JUZzSK5mx3ZMYmh1PRlxEiz6+3x+g1OUhv8pNweFmraYCeEGVm4JKN8XVbvwn2MT+9WYraT0qjIuISMiJcYRxUtdERnVJoKTaw46iavaX1lJeW09+lZv8KnfzbROjwkmODic+Mpz4iDDiIsKIDLcSEWYl3PbtHdx+fwCPz4/b68NZ56Xa3YDT7aXMVU+Jy0O1u+EbnxMXEUbPlGh6pkaTFmvHMIxWe/4iIiIiIiIiIiIiHUlCZDhDE318ev91PPzax2x12vliVwn7SmvYV1rDi8sPAJAUFU52UiTZiZF0SYykc0Ik0Q4bkeFWouw2IsKsBAJQ7/Pj9fmpb/BT42mgotZLRW09FTX1XxXCD3d/H03ROsxqkBbrICPOQUZcBOlxDhIiw4k7fEw6LiKM2Ajb4ePTNsKtFmxWA6vFIMxqwWrR8eS2oMK4iIiELMMwSI11kBrr4JRe4KzzcqCslryKWgqdbqrdDZTX1FNeU//tnw9Y6E3n215laW0kq5bsxevz03AUp/fFOmxkxkeQlRBJ54QIYiPCWvjZiYiIiIiIiIiIiMjXBbwe0usOcMbgftzYN5UtJfVsLPSwo6yeA1UNlNXUU1ZTz/rcyhZ7TIsBCQ4LyZFWkiOtpERaSYqwkhRpJTnSQlKElTiHBUtzs1QAqDu8AQ1ANTRUQxmNW0eQnJxMdna22TGO0G4K4/PmzePhhx+msLCQIUOG8Nhjj3HSSSeZHUtERNpQbEQYgzrHMahzHAA1ngaKqt2U19RTVeulsnkNFx9eX4AA4MOKNSKGBqDB6zvi/sKsBjGOMGIdNmIcYcRHhpEaYycl2m7KWuYi0ja0XykiIiIiJ0r7lCIiIi3PWV4CwDXXXPOt1xthdmwJnQhLyMAWl44tIR1bbApGWASWcAdGWONGwE/A5yXgawCfF7/Xjb+uGn+dE19dNf5aJw3VJficJTQ4S/G5ytgX+Oa64PL9IiIj2Z6TE1TF8XZRGJ8/fz6zZs3iqaeeYvTo0cydO5eJEyeyY8cOUlNTzY4nIiImibLb6G6PpnvyN69r8PlxN/hZ/+XHvPuPh7n41vvpO2QkNquFcJuFcI2vEemQtF8pIiIiIidK+5QiIiKto87lBOD8m39Dn8EjTE4j36codw8vP3gnpaWlKoy3tEceeYSbbrqJG2+8EYCnnnqK9957j3/+85/86le/MjmdiIgEI5vVQrTVQiT1NJQfJMrSQFK03exYImIy7VeKiIiIyInSPqWIiEjrSsrsQudeA8yOISEo5Avj9fX1rF27ltmzZzdfZrFYmDBhAsuXL//Wz/F4PHg8nuaPq6qqAHA6na0bFnC5XAAc3LUVT11tqz+eSGspyt0DQOH+neyJijQ5jcjx0/eytBclB/cBjfsarb1P03T/gUCgVR+nrR3rfqX2KeVo6XdN6NBrFVr0eoUOvVahQ/uUJ07HKqW16L00tOj1Ch16rUKLXq/QEbT7lYEQd+jQoQAQWLZs2RGX33nnnYGTTjrpWz/n3nvvDQDatGnTpk2bNm3aTmDLy8tri929NnOs+5Xap9SmTZs2bdq0aTvxraPvUwYC2q/Upk2bNm3atGlrie1o9itDvmP8eMyePZtZs2Y1f+z3+ykvLycpKQnD0Hqyoc7pdJKVlUVeXh6xsbFmxxE5bvpelvZC38vtTyAQoLq6mszMTLOjmEr7lC1P7xehQ69VaNHrFTr0WoUWvV4nRvuUX9F+ZcvTz2fo0GsVWvR6hQ69VqFDr9WJO5b9ypAvjCcnJ2O1WikqKjri8qKiItLT07/1c+x2O3b7kevIxsfHt1ZEMUlsbKzeRKRd0PeytBf6Xm5f4uLizI7Q4o51v1L7lK1H7xehQ69VaNHrFTr0WoUWvV7HT/uUjbRf2Xr08xk69FqFFr1eoUOvVejQa3Vijna/0tLKOVpdeHg4I0aMYPHixc2X+f1+Fi9ezNixY01MJiIiIiKhRPuVIiIiInKitE8pIiIiErxCvmMcYNasWVx//fWMHDmSk046iblz51JTU8ONN95odjQRERERCSHarxQRERGRE6V9ShEREZHg1C4K41dddRUlJSXcc889FBYWMnToUBYuXEhaWprZ0cQEdrude++99xsjqERCjb6Xpb3Q97KEEu1XmkvvF6FDr1Vo0esVOvRahRa9XvJdtE9pPv18hg69VqFFr1fo0GsVOvRatS0jEAgEzA4hIiIiIiIiIiIiIiIiIiLSWkJ+jXEREREREREREREREREREZHvo8K4iIiIiIiIiIiIiIiIiIi0ayqMi4iIiIiIiIiIiIiIiIhIu6bCuIiIiIiIiIiIiIiIiIiItGsqjIuIiIiIiIjI9woEAmZHEBPodW99+hqLtE/19fUA5Ofn4/V6TU7Tsfj9fgB93UXamNvtNjuCyFFRYVxEREREREJW04GvhoYGk5PID9FrFVr+96CyYRhmxpE29PVCrV73lqefLZH26+v7OuHh4RQWFnLttddSXl5ucrKOIxAIYLE0ljzOP/98Fi1aZHIi+TqdDNb++Hw+AF588UWuv/765vdBkWCmwri0K01vxF988QWrV682OY2IiIiItLamA18PPfQQTz/9NHV1dc0HXHTgJbjotQotTa/Xr371Kx588EFqa2v1enUAPp8PwzDYvXs3v/71r9m6dSuADnK2IP1sibRfFouFQCDA5MmT+fjjj7nxxhuJjY0lLS2t+ZiltK7HHnuMjRs38s9//pNVq1Yxfvx4syPJ1+hksPZl9erV3HfffVRUVDBjxgzOPffc5vdBaXtNJ11WVVWZnCT4qTAu7Ybf78dqtVJbW8t1113Ha6+9RnFxsdmxRFqMDkaJiIgcqanz+J133uHJJ58kNTUVq9WKYRgEAoHmAy/6w9x8eq1Cy9dfr/nz59O7d29sNhuGYVBfX6+u/3bMarUCcMMNN1BYWNhcyNGB7Jahny2R9m/z5s3YbDZuuukmPv30U26++Wag8f3V5/M1H9vRMZ6WV1NTw7x58xg9ejS33XYbt912GxEREc3Xaz/TPOvXr+eRRx7R9307s3PnTv7whz/Qv39/0tLSuOGGGwD0t10b+vrPVFhYGG63m9tuu42CggITUwU/Fcal3fnZz35G7969efDBB0lNTaW8vJyHHnqIf/7zn+Tl5ZkdT+QHfX20XkVFBdu2bcPlcjV3FmgnUtqDpoOshYWFvPvuu9x33328/vrrrF+/3uRkIhJKbDYbALfffjszZ87kkksuwe/388YbbzB69Gh+8pOfUFNTo4JOENBrFVqaXq9Zs2Zx2223cemll+LxeHj++efp27cvl112Gbt27TI5pbS0pr8zXnnlFXbt2sUjjzzC4MGDKSsr45ZbbmHSpEm8//77JqcMbfrZEmn/Bg8ezOOPP47FYiElJYVf/vKXzJo1i+LiYqxWa/OxnRdeeIGioiKT07YvUVFR7Nixg7POOou6ujqee+45/va3v3Hw4EH8fn/zfub7779PWVmZyWnbv9LSUnJycgC4/PLLqaura/7+l/Zh6tSprFu3jqKiIvbt28c555zD0qVLmwvihmFQXFzMP//5T5OTtl9NP1N33HEHBw8eZMaMGWzfvp2MjAzVEL6H3omk3bBYLBQWFvLZZ5/x61//GpvNxoIFC7jqqqv485//zC9+8Qsef/xxs2OKfK+vr4X0f//3f4wYMYLLL7+cnj17cu+99wJoJ1JCXiAQaO5Gmjx5Mn/6059YvHgxN9xwAy+99JJGzInIMVm2bBlRUVHMnDkTgIcffph77rmHcePG8eabb3LHHXeYnFCa6LUKLZs3byY2NpbrrrsOgD/96U/MnTuXadOmsXXrVmbPnq3f2e1M098ZH3zwATfeeCPx8fF8+umn/PznP2fZsmXExsZy4YUXsm3bNpOThjb9bIm0fwkJCcyZM4f58+dzxRVXsHTpUiZOnMhTTz0FwNNPP81dd91FWlqayUnbl/r6egAmTZrE0qVLufrqq5k1axaXX3457733HmVlZRw8eJALL7xQJyG1gccff5wBAwZw9tln43K5+M1vfgOo4ac9aWhooFevXvzjH/9g+/bt+Hw+TjvtNG6++WYOHDiAx+Nh+vTpfPrpp2ZHbdc2btzIqlWrOOOMM3j55Zd5+OGHgcZ9+4aGBnXufwub2QFEWpJhGKSmprJ9+3bCwsKYM2cOw4cPZ9GiRTz99NO89tprlJSUkJKSYnZUkW/VtCTAvffeywcffMBvfvMbUlNT2bZtG4899hhvv/028+fPp0+fPmZHFTluTSNzZ8+ejcfj4fPPPycqKorw8HBOP/10rFYrO3bsIDExUe/XIvKDsrOzm8eFWSwWcnJymD17Ntdddx29e/fmk08+oba2lsjISLOjdnh6rUJLRkYGNTU1XHPNNaSnp7Nnzx5mz57NVVddxYABA3jyySdxuVzExcWZHVVaWJ8+fXjqqacYOHAgDz74IGeeeSavvfYaffv2paCggAMHDtC/f3+zY4Ys/WyJtE9fXxrG4XBw5ZVXAo0d5GPGjOGdd97hscce4/7778disTBv3jygsbDUNE1CTkx4eDhA80mYY8aMYcaMGUyfPp3Jkyczbtw4SktLueSSSxgzZgx+v1/NJ63ol7/8JV26dGHatGlERUXxzDPP8JOf/ASLxdL8tW9oaGDXrl3069fP7LhyDJre72w2GzabjWnTpgHwySef8Prrr/PrX/+af/3rX4wZM4YtW7awY8cOAP3MtZIhQ4bw7LPPMnHiROx2O7/4xS+4/vrrmTlz5hG/Xz766CNGjBhBUlKSiWmDgxHQ6QLSzsyePZsHH3yQ6OhoZsyYwa233kpmZibPPvssc+fOZdOmTRrRKEGtpqaGXr168eijj3L55ZcDjWe9btiwgTvuuIMJEyZw3333mZxS5MTU1tZyxhln8POf/5yrr76aqVOnUl5ezgcffIDb7ebee++la9euTJ8+vbm7XETkuzzzzDO89NJLFBQU8MILLzBq1CisVis/+tGP8Pv9zJ8/3+yIcpheq+D39QP7n332GQ899BDl5eU89dRTDB06FOD/2bvLsKjW9u/jXxoREFvsDhS7uxsDFVsx0G2CgYotYit2u+0AFRMVsUVsEGxFRaRUFEyk1/PC/8yWHfezAxzB83Mc93FvZ83Ij7m81qxZ5xX07NmTuLg4Dh48qMGkIr08e/aMCRMmEBgYSN26dVm2bBnZs2fn6dOn1KhRgwsXLmBpaanpmBmO9C0hMrfk5GR0dHTw8vLC19eXe/fuMWzYMFq0aAHA69ev8fPzIzQ0lBw5cqjv94j/TvXeR0ZGcvjwYT59+kTBggWpXbs2RYsWBb4W7LZv307VqlWxtbXF1NRUinTfwfXr13FxcaFatWosXryYwoULs2zZMnW/mDJlCq9evWLTpk0aTir+jQMHDnD69GkqVqyIhYUF1apVI2vWrABs3LiR8PBw2rRpQ61atdT9VKSP+Ph4Vq1aRdGiRTl37hznz58nX758TJgwgZYtW3L06FEGDx5MeHi4DMZCCuMik3r06BFv3ryhXr16AISGhtKoUSPGjRvHiBEjNJxOiL+WlJTE69evsbKywsnJ6Q9flJycnDhz5gxeXl7kyJFDQymF+G9UNwVtbGywsbGhbt26lC1blgsXLlClShUA2rVrR61atZg+fbqG0wohfjTf3sBSFIXIyEjy588PwIcPHzA1NeX9+/ccPXqUESNGcOfOHQoXLqzJyD8taauMRdVeKSkpJCQkEBQUpC5+JiQkoK+vz9u3bzlw4IC6aCrtlfm8f/8eIyMj9PT0iI+PR09PD21tbZ4+fcrIkSMxNjZm3759mo6ZoUjfEiLzU/Xz4OBgKleuTKVKldDT0+P8+fPUr1+fxYsXU6NGjT+87tsBM+K/a9CgATExMURFRVG4cGGKFi1Ku3bt6Nq1K8bGxsBvbSXv/fd369Yt5s+fj4eHB02bNqVJkyZMnTqVGzduULVqVRmokEGoCtyrV69mzpw5mJubExERQaFChWjTpg3t2rWjZs2amo75U/n9+SwiIoKzZ89y+PBhAgMDMTU1JTo6mmHDhuHo6CiDFJA9xkUGp9p3y8/Pj2XLltG6dWvmzp1LSkqKuih+7do1Ro8eTbFixaQoLn5YV69eBUBXV5dcuXKRK1cuGRYMfwAAlqBJREFUli9fzoMHD1I9r2bNmnz48EG9PJQQGVnRokWZPXs2zZs3Z/jw4eqi+PHjx7lw4QKjRo0CkL1whBCpqG6WrF69mpYtW9KlSxcqVqyIr68vpqamAJw8eZK9e/fi5OQkxQUNkrbKWFTtNXfuXFq0aIG1tTV58+Zl37596OnpAV+vWb29vZk6daq0Vyah+k795MkTHB0dadeuHdWqVWPq1Kno6+ujra1NeHg4mzdv5v3792zYsEHDiTMe6VtCZH6qfj5v3jy6devG+fPn8fLy4vLlyxgYGFCnTh2GDh1KREREqtdJYfa/U90vOHHiBGFhYZw9e5bw8HDs7e2Jj49n/fr1jB8/Hk9PT+C3tpL3Pv2o2iQ0NJSTJ08SHh7O58+fqVKlCrt37+b48eMkJydz7Ngxli9fLkXxDEZHRwdFUfj111+ZO3cufn5+PHnyhMaNG7N3716mTZvGqlWrePjwoaajZnqq6/g7d+6wbds2Jk+eTGhoKPnz56dPnz64uLgwefJkGjZsqC6KAz99URxkxrjIBKKjo6lfvz758+enSZMmTJs2jXHjxrFo0SIAnj9/jq+vL7Vr16ZEiRIaTivEH33+/JlChQphZGTExo0badOmDQ8fPqR79+6UKVMGKysratWqRXR0NIMHD6ZNmzbqf99CZGQpKSnY2tpy7NgxWrVqxdixYzly5AgHDx6kW7duTJ8+XUYxCiFSUZ0Tdu/ezdSpUxkyZAhVq1aldevWLFq0iHHjxqEoCjExMTx58kRGqmuQtFXG8m17TZ48malTp9KoUSPKlCnDkiVLGDNmDMnJySiKQnBwMKVKldJ0ZJHGatSoQYkSJWjTpg3Hjx/nxIkTPH/+XL1Klb+/PwYGBpQvX17DSTMW6VtCZH6qfh4VFcW5c+f48OEDgwcPVh9PSEjg8OHDjB07Fi0tLYKDg+U7bhr5dpbkunXrCAkJYd68eerjUVFRbNmyhZMnTxIVFYWbmxsWFhaaivtTUPWHc+fOMXr0aJ49e0ZiYiI9e/ZkwIAB1KxZEyMjIwA+ffpE1qxZ0dLSkhn8GYRqAMOdO3dYunQpEyZMoGzZsurjgYGBLFq0CC8vLyZOnKguxIq0p2qLjx8/Uq5cOUxNTUlISODZs2cMHDiQOXPmkDdv3r983U9PESKDevz4saIoitKzZ0+lQ4cOiqIoSmRkpGJiYqJcvXpVURRFOXv2rBIXF6exjEL8HYmJiYqvr69ia2uraGtrKy1atFBevnypPH78WLGyslLKlCmj5MyZU8mfP7/SuXNnTccV4l9JTk5WFEVRkpKSlC9fvigvX75UFEVRYmNjlfnz5ytVq1ZVjIyMlDp16iiLFy9Wvy4lJUUjeYUQP7bixYsrrq6uiqIoysKFCxVLS0slNjZWSUlJUebNm6fcvXtXwwmFirRVxlK2bFn15/CCBQuU8uXLq9tr0qRJyqVLlzScUKQl1XXW9u3blQIFCihJSUmKoihK0aJFlTVr1iiKoiiXLl1SNm/erCQmJmosZ2YgfUuIzK9WrVqKlpaW0rZtW/Vj336fjYqKUvz8/BRFUdTnW5E2tmzZolhaWiqVKlVSXr169Yfj/v7+yurVqzWQ7OdVoUIFZdSoUcrTp08VT09PpXz58kr+/PkVJycnJSAgQImNjdV0RPEvRUREKBUqVFCMjY2VBQsW/OlzDhw4oISFhSmKIvf10tvIkSOV9u3bK69fv1aio6OVPXv2KKVKlVLMzMwUV1dXJT4+XtMRf0gyNEBkSGvWrKFLly5ER0fz7Nkz7OzsAOjSpQs9e/akVq1afPnyRb2kR0pKioYTC/HXdHV1qVu3Lq6urhw5coSPHz9ibm7Orl27OHLkCIcOHeLEiRN4eHiwY8cOTccV4h9LTk5W7+E1efJkKlasSNeuXWnatClnz55l4sSJ3Lhxg+DgYE6fPs24ceOAr6MYZcSwEOL3wsLCKFiwINbW1sTHxzN37lxmzJhBlixZ+PDhAw8ePODChQuajimQtspoYmJiKFy4MC1atCA5OZl58+Yxa9YssmTJQkJCAuHh4dJemYzqOisiIoKOHTuio6ODk5MTZmZmDBo0CPi65/jhw4d59eqVJqNmaNK3hMj8FEXB1dWVIUOGcPLkSaytrQkPD1efZxVFIVeuXFStWhWQZWzTmomJCfnz5yciIoKRI0dy4sQJkpKS1MerVKnC8OHDAeQecTpSLescHBxMmTJlmDp1KsWLF6ddu3bcvXsXBwcHtm7dSqdOnTh69KiG04p/Q1EU8uXLR8eOHcmdOze//vorK1eu5MmTJ6me17lzZwoUKADItgXpQdXX4uPjadCgAd27dyd37txkz56dHj16cOXKFRwdHZk8eTKVK1cmPj5ew4l/PFIYFxlSpUqVCA8P5/bt2+TMmZPw8HB8fHx48uQJ06ZNA75eZD5//py8efPK8hAiQ8iePTvt2rXj1KlTrF69Gnd3d3LmzElgYCA1atSgdu3aZM2aVdMxhfjbFEXh06dP6i/9w4YN48iRI/Tt25eOHTtSuHBhhg4dytChQ3n//j158uTBwMBA/Xo5dwsh/oypqSnv3r3Dy8uLYcOGUbNmTbp06QJ8Le54eXlRt25dDacUIG2V0RgYGPDhwwfc3NwYOHAgtWrVUrfX8+fPOXHiBK1bt9ZwSpGWVMWBvHnzcubMGW7evMmaNWtYvHgx+vr6ABw6dAhAfXNT/HPSt4TI/LS0tKhbty7z5s3jwIEDPH/+nBIlSqi3B5PCUPrq0qULhw8fZtq0aYSHh6sHY/r7+//huXKfIf3o6OgQHx+Ps7Mzz58/5+bNm8Bve447Ojry4MEDatWq9adLPIsfn5aWFlpaWri4uHDx4kVq167NggULcHR0ZP/+/bx8+VLTEX8KqvusVlZW9O3bN9VAE0VRyJkzJ5MnT+bWrVvMnTsXAwMDGRT0O7LHuMiwBgwYgL6+Pp06dWLBggUEBgbi4ODAjBkzSE5OZv369Tg7O8sJWfyw/Pz8uHz5MsWLF+fVq1fqQRympqakpKTw5MkTDh48iKenJ1WrVuXSpUsYGhpqOrYQf9v8+fN59eoVtra2mJub0759exYuXEjjxo0BCA8Px9PTk5UrVzJ79mw6d+6s2cBCiB+W8n97zsXFxWFoaMju3btZsmQJ9+7dw8PDg3bt2hEeHo6dnR2GhoYcOHBA05F/WtJWGYuqvWJjYzEyMsLX15eJEyfi5+fH6tWrGThwIA8fPsTBwQEjIyNpr0xCtbegqp/GxsbSp08f/Pz8KFu2LEePHkVfXx8vLy86d+7M9evXsbS01HTsDEX6lhCZn/LNnsgfP37ExMREfSwqKopdu3axZMkSXr58yblz56hfv76momY6yu/2o1btaw3w7NkzVq5cia+vL8bGxnTp0oURI0ZoKupPRVEUQkNDady4Mc+fP6d9+/Y4OztTvnx59PT0ZB/xTCQhIUE9iPLcuXPMmjWLsLAwatWqxeLFizE3N9dwwswvJSUFDw8PtmzZwqlTp3B0dMTFxUU9+Of3/U36X2pSGBcZTmJiInp6enh5edG1a1c2b97M2bNn8fT0pE6dOlhaWvL06VMuXbqEi4sLPXv21HRkIf4gOTmZfPny8fbtWwwMDGjUqBE3b94kT548PHv2jDJlyvDkyRPMzc159uwZnTp1kpslIsOZMmUK27Zto3jx4vTp04eTJ0/i4OBAgwYNUj2vffv2aGlpsW/fPhn8IYRQUxVuPn/+TNasWbl06RLDhg3j+vXr6OrqMm/ePFxcXKhRowa6urpER0djamrKkSNHyJkzp6bj/1SkrTIWVXtFRUWRO3duLl68iJWVFaGhoWTNmpWNGzeyZMkSsmXLxqdPn0hKSqJ48eK4ubmRI0cOTccX/9K3N8NUBYRWrVrRq1cv+vfvz+nTp5kwYQIhISG0bduWW7duYWJiQv369Vm0aJGG02cM0reE+HmozqORkZFs2bKFM2fOoCgK06dPp27duujr66MoCkFBQSxbtgwnJycKFSqk6diZjpeXF3v37qVw4cKYm5tjbW1N7ty5Abh48SJz5sxhwIAB9OjRQ8NJfz5ubm6MGjUKAwMDxo8fT9euXSlQoIAU5jIg1fnuxo0bHDp0CH9/fxo2bEjVqlVp3LixeuXHVatWcfbsWbl//R0lJyfz8uVL9u3bx/z589HV1WXRokVSD/sbpDAuMqzExERGjRpFvnz5mDlzJtu3b+fgwYM8f/6cUqVK0b9/f9q1a6fpmEL8qejoaOzs7AgPD6dAgQK0bNmSQYMGER8fT1JSEiEhIeTPn59nz56RP39+8uTJox6JJ0RGEhISwpQpUzh37hyRkZH07t2bhQsXpho9unTpUnbt2sW1a9dkrzUhRCoRERHMmDEDJycn2rRpQ5cuXZg7d676+MOHD1mzZg1mZmYULVqUNm3ayOh0DZG2ylhevnzJ6NGjGTRoEA4ODnTq1Il58+apjz9//pz9+/djYmJCnjx5aNq0KdmyZdNgYvFfqQrjS5YsoWzZsnz8+JFBgwYRFhZG9uzZ1c9bsGABwcHBGBoa0rNnT6pXry7XZ/+A9C0hfi5t27YlJiaGbt26ceDAAS5fvkzbtm2ZNWsW1apVA34bNKP6f/HfJCUloaury5o1a1ixYgXFihXD0NAQPz8/KleuTPfu3enZs6e81z+I8ePHs3TpUmrVqsXIkSOxtraWCREZyLcDoC0sLKhevTrm5uZ4eHhQpEgRmjZtirW1NdWrVwd+u978dhUHkXb+bKArfG2np0+fsnz5crZu3UrhwoU5dOgQpUuX1mTcH5oUxkWGcfToUTZs2ICRkRH379/HzMwMX19fAOzs7Jg8eTJFihQBID4+PtU+tUL8iFJSUjhz5gzr1q0jNDSUWrVq0bt3b2rXrv2H58pyJyKjSU5ORltbW/3v1sfHhzlz5nDjxg26dOlC+/btqVWrFs+ePWPIkCH07t2bSZMmycWzEEJNURSuXLlCs2bNMDIyIikpiRs3blCqVCm0tLTks/EHIm2V8dy6dQtbW1tev37Nhw8fOHLkCPXq1ZMblZmYoigkJyfTqVMnjh8/jrGxMb1792bt2rXq46p+KsWbf0/6lhCZn+ocefjwYYYMGcLDhw/Jnj07VapUoWrVqty9e5egoCAGDBjAuHHjyJ8/v6YjZxqqz6rExETy58/PwoULGTBgAJMmTcLNzY0SJUrw6NEjWrVqhbW1Ne3atZPPtHSmuocTHR3NnTt3CAoKokqVKuTNm5eCBQsCX7fR69u3L3fu3OHVq1fSHhmIqv8MGTKEkJAQTp48SVxcHGZmZrRv355Tp05RvXp1GjVqxODBg+V8l46+HaRw9OhRvL29yZo1K+PGjaNo0aLA14mk169fZ/LkySxdupSqVatqNvQPTArjIsPo27cv+vr65MqVi5w5c5InTx7y5MlDcHAwBw8eJCwsjC5duuDg4KBeNkeIjODLly/s2LEDNzc3kpKSaNy4MXZ2drLMlsjQVF9Y3dzcyJ49O61atQJg48aNuLq68u7dOwDKly9PzZo1U80qFEKI39PW1kZbWxtLS0scHR1p0aKF+novISGBVatWMWbMGAApwGqYtFXGkjt3bnR1dSlYsCBdunShbdu2WFpaoqWlRXx8PM7OzsyePRstLS1pr0xk2LBhrF+/nixZsjB8+HAGDhxIyZIl0dPTA+Dw4cOULFmS8uXLazhpxiV9S4jMz9bWlsKFC+Ps7MyqVatYuXIlAQEB3Lt3j8aNGxMbG4ubmxs2NjaajprprFq1Cnd3d3x8fAgJCaFq1ap4enpSsmRJGjRowKdPnxgwYACzZ8/WdNRM7dtBdS1btiQiIoL379+TnJyMtbW1ekKEamWaly9fki9fPvWsf5ExREZG0qZNGxYsWECrVq1o06YN+fLlY8uWLcyfP5958+ZhYWHB8ePHU61CJNKWqjA+ePBgLl++TP369Tl37hzR0dH069ePcePGqQejxMXFYWhoKAPU/wcpjItM4fr165w4cYIDBw6QNWtWLly4oP5SL0RG8fLlS5YvX46Pjw8mJia0adOGUaNGyQeYyND69+/PkSNHOHz4MA0bNgQgNjaWhQsXsnbtWgoUKICXlxd58uSRkdxCiFRUsxu1tbXZv38/bdu2ZcCAAXh4eNCuXTsmTpyIhYUFLi4ueHt7c/fuXU1H/mlJW2Us337enj9/npo1azJp0iQOHDhAuXLl6NevHzVq1GD9+vXs3buX8PBwDScWaeHbWz8XL14ke/bs+Pn5MWbMGMzMzNTbIGhra1OqVCk8PDxo27atBhNnPNK3hPh5pKSksGvXLrJly0b79u1p2LAhXbp0YcyYMXz+/Jnx48czatQoLCwsNB01U1EVeY4fP86tW7eYMmUKEyZM4OnTp+zevRsDAwNGjRqFmZkZ48aNw8zMTO4zpCPVbHEXFxfc3Nzw9PSkaNGi6OnpkSdPHpKTk/nll19o0qQJderUkS0iM6jo6Gh27dpFq1at1IMe3NzcqFSpEqdPn2bv3r0MGDCAOnXqSH9LJ6r39cqVK7Ru3Zpr165RtmxZmjZtSkpKCkFBQerZ471798bY2FjTkX94UhgXGYrqAkh1Mvh21EtsbCze3t6YmprStGlTDScV4t+7ffs2U6dOpVSpUixZskTTcYT4Tz5//oytrS2GhoZs3bo11TLpDx484MiRI0ycOFGDCYUQPyLVNV50dDTnzp2jfv365M2bF4Br167xyy+/8PjxY6pWrcq9e/c4d+4clSpV0nDqn5O0Vcaiaq83b96wZcsWOnfuTMmSJQEIDAxk+vTp3L59m+zZs/Py5UtOnjyJpaWlhlOLtKD6Dn3q1CkKFy5MmTJlgK//JkaNGsX69espW7Ys2tra5M+fnxMnTmg4ccYifUuIzE1RFBRFQVtbm7i4OIKDgylXrhzv378nW7ZstGnThqZNm+Lo6MjTp0+pW7cu3t7ecs2TjmJiYsiePTujRo0iLCwMDw8PtLW1admyJV27dmXIkCEyW/I7+Pz5M1WqVGHevHl06dKF4cOH8/TpU06ePEnnzp05ffo05cqV4+jRo+rvCOLHp7pufPHiBYULF+bt27dkz54df39/evXqxYoVK2jdujVubm64urpy/fp1TUf+KQwcOJCsWbOycuVK9u3bx+jRo7l79y7379+nUaNGAPz6668MGDBAw0l/fFIYF5mCXOiIzCY5OZn4+HiMjIw0HUWIf001evjKlSt07NiRhg0b8uuvv5ItW7Y/7CUuo0qFEH/GxcWF5cuX06NHD1q3bk3Dhg0xMTEBwN3dnefPn1O7dm31l0ChOdJWGcvGjRuZP38+VapUoUWLFnTr1o0cOXIA4OXlxZs3byhXrhzVqlXTcFKRlt68eUONGjUoVaoUnTt3pnnz5pQqVQqA58+fs2rVKsqVK0enTp3ImTOnhtNmTNK3hMj8bGxsKF26NC4uLsDX77JDhgxh165dWFtbExgYSLFixTh69Kjcr0wj0dHR5MiRAzc3N2bOnMmdO3fUK4Vu376d+fPn07RpUz58+ICnpyeRkZEYGBjI+/8dPHjwgNWrVzN27Fj09fWpX78+mzdvpmnTpmzdupVDhw7RokULRowYoemo4v9D1V++fPlClixZgK9bw+zYsYPWrVsDEBUVRceOHSlUqBAGBgacOHGCWbNmMXz48D/c5xNpKyEhgfXr15M/f366dOlC06ZNadq0KVOnTuXt27dMmjQJOzs7atasqemoGYIUxkWmIRc7Qgjx4/j9OfnatWs4ODjQv39/fvnlFwC5aBZC/C1r167l119/RUdHhzZt2tC2bVv5sveDkrbKWA4cOMDu3bsJCwujbNmydOnSBSsrK03HEunM19eX5cuXc+fOHWrUqIGVlRVNmzZVF8Lle/V/J31LiMxnyZIl7Nq1izFjxtC/f38iIyPJmzdvqgHeCxcu5OjRozRr1gx7e3uyZ88u33nTQFBQEPPnz8fW1pZevXphb2/P+PHj1ftUv3r1igULFnDz5k1MTU2xs7OjY8eOso91OlL9u05MTERPTw9/f38sLCw4f/48Tk5O7Ny5k/Lly3P27Fk2btzI9u3b0dPTkwkRGYS1tTWtW7fmzp07nDt3Tr0Nlqr9Tp8+zcKFCzE2NqZKlSpMmzZNw4kzr2/7zKtXr8iWLRvR0dHkzZuXdu3a0a5dO0aNGkVMTAzVq1dn165d1K5dW67n/wYpjAshhBAiTaguvK5fv87GjRupVKkSlStXRkdHhzp16jBx4kT1l6L27dtrOq4QIgN5+/YtCxYsYN++feTJk4f+/fvTuHFj2bfxByRtlbF8+PCBrVu3snfvXt68eUOnTp1o37499evX13Q0kc727t3LihUrCAsLo2vXrrRs2ZImTZqoZ+CJ/0b6lhCZh6IoHDlyhI0bN6q3QfDz81MXHeLj4zEwMFA/V/W4FCbSxsmTJ7GzsyMhIYHExEROnz6NpaXlH4resbGxsurid9a9e3fGjRunHgj7+PFjWrVqxZgxY8ifPz/Ozs40bdqUZcuWSX/IAFRbRtjb27Nu3TqSk5NxdnZm4sSJ6Orq/s/2k0EP6cvR0ZEsWbLg7OwMfB2c0rVrV65fv87o0aM5ceIEX7584dq1axpOmnFIYVwIIYQQaWrq1Kncvn2be/fuoa+vj6IoJCYm0qFDB5YvX07x4sU5cOAAFStWlItnIUQqqtkH4eHhGBsbky1btlTHAwMDadeuHQkJCQwaNIh58+ZpKKmQtspYVO316NEjjI2NKVCgQKrjz58/p127drx584auXbuyevVqDSUVaenbm9ChoaEUKlQo1fGUlBSGDRuGm5sbJUqUYMeOHZQvX14TUTMs6VtC/Dz27t1L//79KVOmDBERETg6OuLo6Kg+fuzYMYKCgnBwcNBcyExG9Tn27t07qlWrxsePHylfvjw2Nja0aNGCkiVLAl+XWt+xYwf29vYySz+drV+/nh49enDgwAEcHR0JDQ0lS5YspKSkoCgKTk5OrFq1ioIFC1K0aFG8vb0BGSiS0fTo0YPLly8TFhZGt27dcHBwoHLlyuol1qdOnYqVlRW1atXScNLMa9u2bZw6dYoJEyZQuXJlbt68SdWqVdXHP336hL29PSdOnKBly5ZMnTqVkiVLyjnwb5LCuBBCCCHSXFxcHIaGhvj7+2NoaMjly5cJDg5GURR27NhBgQIFOH78uHrPRSGEUElMTKRBgwY0atQIGxsbKlWqlGpGyODBg9HT02Po0KFUrlxZc0GFtFUGk5SURIsWLTA3N6d79+60bNlSfXMLwMnJiQ8fPmBvb0/p0qU1mFSktY0bN7J3715GjBhB/fr1yZUrl/rY5cuXmTlzJvXq1WPGjBkaTJlxSd8SIvP6tpi3ePFiatWqRc6cOdm5cyfbt2/HzMyMuXPnUr16dcqUKcPq1avp16+fFAHTiKrAM27cOPT09LC3t2fcuHFcvHiROnXq0Lt3b6pVq4aTkxOBgYHcuXNH05EztZiYGCpVqsT79+9JSUnBxcUFe3v7PzwvODgYLS0tcuTIgampqRTqMghVO12/fp3Jkydz/Phxrl27xuDBg4mIiMDBwQFra2tCQkKwtrYmIiKCfPnyaTp2pvXrr7+ybNkygoODKV++fKrZ4AkJCejr6wNfVy3R19dHS0tLPnv+AZmiJYQQQoj/5NsxdklJSQAYGhoCULVqVSwsLBg8eDBz5sxh7ty5PHjwgMTERDZs2KCRvEKIH5eiKOjq6lK/fn08PDywt7dn/fr1BAUFqZ+jra1NzZo1pdCqYdJWGY+uri5WVlbqvTinT5+Or6+v+vibN28oUqSIFO4yoeLFixMTE8OECROYPXs2Fy9eJC4uDgBzc3MMDAwYPXq0hlNmXNK3hMi8VAWG6dOn8+uvv1K/fn0sLCxwcnJix44dVK9enS5dulCzZk2aNGlCv379Ur1O/HuKoqCjo8PDhw/ZtGkTnTt3xtzcnN27d7Nt2zZevXrFuHHjsLa25ty5cxw/fhz4WtwT6SN79uy8ePGCChUq8PnzZ9asWYO7uzsJCQnAb/eDIiIiMDExwdTUFECK4hmEqp0cHR2pV68eOjo6NGjQgEePHjF37lxWr16NlZUVjo6OzJgxg3z58qnbXKS9QYMGMWnSJGJjYwkNDaVChQocPXoUQF0U9/PzY+/everPHPns+ftkxrgQQggh/hPVcui7d+/m5MmT+Pj4YG1tjY2NDRUqVEi1z5dqVKOTkxOXLl3i9OnT6v3YhBDiWyEhIUyZMoXz589Tq1YtSpcuTWJiImvWrCEgIEAKDD8QaauMJSIigpUrV3L69GnMzMzIlSsXWbJkYe/evfj5+VGmTBlNRxTpZMWKFaxatQpjY2PatWuHvr4+Pj4+aGtr4+Xlpel4GZ70LSEyF9XsyeTkZDZv3kx8fDwjR45M9ZyYmBjCwsKIioqiYsWK5MqVS2bHprFDhw7h5eXF2rVr1fu5q4o/7u7uxMfHY2FhQfXq1eW9T0eq+z5RUVHY2Njg4ODAqVOnWLduHU2aNGHevHlUq1aNkJAQKleujI+PD5aWlpqOLf4mVd95+vQps2bNYtiwYdSpU0fd5+DrwIfdu3dTokQJ6tWrB8gS+elt586dGBsbkzdvXtasWcPRo0epW7cuS5cupVSpUhQtWpSxY8fKFh7/ghTGhRBCCPGvqS6eb9y4gZWVFR06dKBhw4b069ePQoUK0a9fP/r27UuxYsXQ09NTv65nz57o6emxfft2DaYXQvxoPn36RHh4OEZGRuq9cM+cOcOqVauIiIjAyMgIGxsbhg0bpuGkQtoqY4mKiuLx48fkyZOHUqVKAXD9+nX27NnD06dPAejWrRt9+/bVZEyRRlTXZwkJCSQkJBASEqLeO/z9+/fMnj2bK1eu8PHjR0qUKMGGDRvInTu3hlNnTNK3hMj8bG1tOXbsGJUqVeLQoUMYGxtrOtJP4+rVq4wfP57Pnz/j7++vXio4MTFRPWNSfB+qAmjXrl0pU6YMzs7O6OjocPPmTRwdHbl8+TJNmjTh1atXFC9eHA8PD3UxXWQcv/zyC97e3tjb26uXyU9JSSEpKekPfU6K4ulD9b66urqyYsUKHj58iKGhIa9eveLChQusX7+ec+fOUbZsWYyMjLh586amI2dIUhgXQgghxH9Wt25d6tevz8KFC7lw4QI9evRgwIABuLq6UqdOHbp27YqtrS1Zs2YlOTmZu3fvUrFiRbmIFkKQlJSErq4uZ8+excnJibdv35IjRw4aNmzIjBkzMDExAb7uVVe0aFE5b2iQtFXGomqvkydPMnbsWD59+kR8fDxNmzZlzZo1mJmZAV+Xef52z2mReYwcOZKLFy+ip6dH/vz5GTduHI0bNwYgPDwcXV1dsmfPLsWFf0j6lhA/F3d3d1xdXblx4wZTp05lzJgxZM+eXX1cikPpZ9OmTWzZsoVbt27Rrl07pk2bRsWKFYHflkyXGeLpT1XgjoiIoHfv3ri6ulKlSpVU//Y9PT1Zv349tWrVwsHBAWNjYymMZzAREREMGzaMmzdvoq+vz4QJE7CxsSFnzpzAb9c/Iv1822eWLVuGoiiMGTNGfVxRFEJDQ7l9+zaRkZE0adKEkiVLStv8C1IYF0IIIcR/4ufnx8iRI9m+fTulSpWiXLlyDBw4EEdHR8aPH8/SpUspVKgQz58/13RUIcQPLH/+/PTs2ZMSJUrw5s0bDh48SGxsLKNHj2bEiBGajie+IW2VsRQoUABbW1tq1qzJu3fvWLRoEU+ePGHy5MlMnz5d0/FEGlPdpN68eTNTpkxh4sSJJCYmcvnyZW7cuEHTpk2ZM2eOeqUH8e9J3xLi5xEXF4erqyvz5s2jSJEiuLi40L59eylEfAd3797F3d2dU6dOkSVLFtq2bcvAgQPVxTrx/WzZsoXdu3czbtw4WrduDfCH4reqQCcDRjKuo0ePsm7dOl69ekX16tXp1KkTzZs3l/Pdd+Ts7MyxY8coUKAAe/bskS0o04EUxoUQQgjxt6m+9ISFhfHx40fKlSvHmzdvcHNzo1evXly+fJmpU6fi6elJwYIFOXbsGC9evKB3796YmprKKEYhRCqqc4qqkLBnzx50dHSIjY3l+vXreHh44O3tjYGBAZs3b6Z69eqajvzTkrbKWFRLaUdFRTFhwgTWrl2LoaEhKSkphISEsGvXLlatWsWnT584fvw4DRs21HRkkQa+vQk9Z84ccuTIod7O4PHjx3h7e7Nnzx4iIyPp3r078+bN02TcDEn6lhCZ37eFvpSUFLS0tNTn1vDwcCZOnMi+ffuoXbs2a9euxcLCQpNxM5X/VUw9e/Ysu3fv5v79++TKlYuuXbvSr1+/75zw53X37l3q1KnD58+f6dChA7NmzaJSpUrq44mJiam2zxMZz6dPn9RbRcTFxbF27Vr279+Pvr4+FSpUwNHRkcKFC2s45c9h9uzZrFy5ko8fP7J69Wp69+6dqjguqzH8d/LuCSGEEOJvU1142djYMHDgQFavXo2Ojg7Dhw8nR44cGBgYkJiYyMePHwE4d+4cHh4emJqaAkhRXAgBfL3ppSgK2traxMbG4uLiQkREBK9fvwbAyMiIxo0bM336dObOnUvBggVlxoGGSFtlTDo6Onz69In+/ftz+/Ztnjx5oj5WrFgxHB0dOX78OFZWVrKMdiaRkpKi/u/du3dz48YNXr58qX6sdOnSDB06lGXLlmFlZUVERIQmYmZ40reEyNxUxYaUlBTWrl1LrVq1sLKywtbWFi8vLwoUKMDOnTs5d+4cb968ISwsTNORMyUvLy8mT55My5YtmTRpEg8fPqRp06YsW7aMoUOH8vHjR0JDQzUd86dSoUIFnjx5gr29PVeuXFEPlI2MjASQongGpNqO4OnTp8yaNYtevXpRs2ZN1q9fj6GhIWPGjGHHjh2UL1+eW7dukSdPHg0n/nlMmzYNf39/unfvjp2dHV27duXWrVvq41IU/+9kxrgQQggh/pF79+5RrVo1ChcuTNmyZTExMaFLly5YWVnx9u1bLC0tKVSoEAULFuTMmTNcuHCB6tWrq2fYCCHEt06ePImjoyPBwcEMHz4cFxeXP9xYef36tXwR/wFIW/3Yfj/L6ubNmwwfPpx79+7RtWtXNm7c+IdCXVxcHIaGht87qkhH8fHxDB48mDNnzmBqasrBgwcpV65cque8f/8eHR0d9awg8b9J3xLi56H6zjpq1CjOnj1L48aN0dLSIiwsjNDQUDp16sTEiRNl4Es6UL33ly5dokePHhQrVoyKFSvi6enJ+/fvmTlzJg4ODgCEhoaSJ08eDAwMZObkd/LtZ6Gvry8zZswgKCiItm3b0q5dO5o1a0aWLFk0nFL8G9WqVcPU1JSiRYtiYGDA7t27KVasGO7u7pQtWxaAyMhIzM3N5b5eOvlfq2VcunSJ8ePHc+fOHfr378+0adMwNzf/zgkzHymMCyGEEOIfSUxMxNnZmbVr19KqVSuio6OJiYmhRo0a2NvbY2RkxMyZM0lOTqZNmzZ07dpVvqwKIdR69+5N//79admyJQBfvnzh0qVLHDt2DE9PT/Lnz4+9vT1dunTRcFIhbZWxdOjQgb59+9KtWzfg6x6Pjx49wtvbmxUrVpCQkMCMGTMYMmSIhpOKtPT06VNmzJjBtm3bgK8zmm/fvs2lS5fYtm0bMTExWFtbM3HiRLJnz67htBmT9C0hfi6hoaGUK1cOb29v6tatC3wdHL5t2zYOHTqEm5sbVatW1XDKzKtatWq0bt2aOXPmqB9btGgRTk5OzJs3j/Hjx8vqRN+BqgAaGxuLn58fQUFBvHnzhn79+pEvXz4Atm3bxoIFC0hISODatWuy73sGoirEbtq0CWdnZx4+fIiRkRHw9dpyxIgRvH37lgMHDlCoUCENp83cvi2KHz9+nN27d5MjRw5MTU3p3bu3eoDr9u3bsbOzY8eOHdjY2GgycqYghXEhhBBC/G3fXrDNnDmT+Ph4hg0bxr59+/Dw8EBPT4+OHTsycOBAzMzM/vR1Qoif18ePH5k5cyaOjo7ky5ePgIAAKleuDMCbN284c+YMR48exc/Pj0qVKuHg4EDt2rU1G/onJW2VsSQmJrJixQp69+5Nvnz5uHDhAo0aNQIgNjaWu3fvsmfPHnbt2kWJEiVwdnamRYsWGk4t0oKnpyfXrl1j9uzZhIWFUbBgQeDrtdfVq1c5ceIEXl5eaGlp0b9/f4YPH67hxBmL9C0hfj4nTpzA0dGRY8eOUaRIkVTHqlWrRp06dVi1apWG0mVuL168oG3btsybNw8rK6tU+1aPGjWKx48fc/LkSQ2n/Dmo7uEMGDCAa9euERsbi6mpKUFBQYwZM4a5c+cCXz8nz5w5Q+vWrWVCRAY0depUHj16xL59+4DfBkRcuXKFDh06sGfPHpo3b67hlJmb6j2fP38+mzZtokiRIhgaGvL582fi4uKwtbXFzs5OPVBFNYBB/DdSGBdCCCHEP5KQkIC+vj7+/v707NmTmjVrsnXrVgICAli/fj23b99GR0eH9evXU6FCBU3HFUL8YFTLy169epW6devStWtXlixZoh6J/vjxY86ePcvu3bvR1tbm/Pnzmg38E5O2ypj8/f2pXr06DRs2ZPny5VSqVAn4OqDBz8+PZcuW8fz5cx48eKDhpCItJCUloa2tjba2NlZWVly+fJl169apZzd/+PCBCxcucOLECfbv38+GDRvo1KmTZkNnUNK3hPg5hIeHU69ePcaOHcuoUaMA1IO8J0+ezP379zl48KAM/E4HiYmJ1K5dm9q1a7N69Wrgt33fPT09mTRpEsePH6dw4cIaTpq5qd7zEydO0KNHD86dO0fhwoV5//49J06cYMGCBVhZWbFo0SKyZs2qfp1MiMh4Nm7cyMiRIwkMDFQvm67SqFEjunbtqj4PivTz8eNH8ufPz9atW9WrsV28eJHt27dz69YtDhw48IeBWuK/kcK4EEIIIf6WR48eUaZMmVSPRUZG4uDgQPPmzbGzswNg7969XLp0iRUrVmgiphAig3j58iWenp5s3bqVe/fuMWzYMPXMA/i6l1bOnDn/sDeu+P6krTKW+Ph4fH19WbhwId7e3gwcOJAlS5aQLVs2AIKDg9HW1pabK5lMUlIS58+fZ+/evezfv59KlSqxdOlS9UoPISEh+Pv707lzZ80GzcCkbwmR+aWkpJCQkMCECRPYvXs3s2bNomvXrhgZGfHhwwfq16/P6NGjGTNmjMyOTSc7d+7EwcGB3r17M3r0aEqUKMGXL1+YMGEC/v7++Pr6ajriT2Pw4MGkpKSwefNm9WOJiYls3bqVGTNmcPbs2T8UU0XGkpycTIcOHYiLi2PgwIHY2Nigp6fHmTNnaNu2LXfv3qVUqVIy6CGdHT9+nEmTJnH69Gny5Mmjfjw2NpYKFSrQvn17uceaxqQwLoQQQoi/pLr4PXv2LD179sTExISOHTvy+fNnSpYsSYMGDVixYgWXL19mxYoVWFlZAb8tBSQ3C4QQ/0tCQgJBQUEcPnyYTZs2oSgKs2fPpk+fPpqOJn5H2ipjURSFjx8/cvjwYZydnXn16hXOzs44ODhoOppIZy9fvuTKlSusW7eOK1eu0L17dxYvXqwu3or/RvqWEJnPXxV8XFxccHFxoVixYpiYmKhn9J05c0YDKX8uixcv5siRI8TExFC4cGFiY2N5/PgxJ06coGLFiur7DSJ9zZw5kz179nD37l31kvYAb9++pUWLFkyYMIEePXpoMKFIC9euXWP+/PlERESQnJxMYmIiSUlJtGzZkqVLl0p/+w6ePn1KvXr1cHFxUQ9IUd1LnTZtGo8ePWL37t3o6upqOGnmIYVxIYQQQvx/9e7dm4MHD1KyZElKlChBw4YN2blzJ3nz5lXvKeXq6oqDg4MUw4UQf0p1bkhOTubNmzd8+PCBUqVKAfDlyxcCAgLYvn07bm5uFCtWDF9fX7JkyaLh1D8naauMRdVeSUlJPH36VD2zQHUDMzIykg0bNqiLow8ePMDExETDqUVaULV9fHw8ISEhlC5dWn0sODiYEydOsHHjRgIDA9m/fz/W1tYaTJvxSN8SIvP7tp/7+Phw9epVtLS06NmzJ0WKFCEqKooVK1ZgaGhI2bJlqVevHvny5ZNCURpRDUoICQnBz88PY2NjjI2NqVu3Ln5+fpw8eZKAgADKlClD27ZtqVOnjtxv+I7u3btH165d6dy5M/3791evIBgSEkLlypU5cuQIDRo0kNnEGURSUhK6urpERUXh5+fH8+fPyZs3LzVr1iRXrlx4eHjw/PlzIiIi6Nq1Kw0bNkRbW1v63Hfw5csXhg0bxrVr11iyZAmNGjUia9asxMXFUadOHdq0acPcuXOlr6UhKYwLIYQQ4v/r7du3rFmzBj8/P5KSkujQoQN2dna8ffsWRVG4c+cOjRs3lotlIcRfUn2JGzt2LBcvXuTu3bvUrFmTadOm0aJFCwCio6M5c+YMkZGRjB49WsOJf17SVhmLqr2GDRuGj48P9+/fx8LCAgcHBzp06KBeju/WrVv4+/szaNAgDScWaUFVlHnx4gV2dnY8evSIhIQE7O3tGTp0KGZmZiQmJnLv3j127drF8OHDKVasmKZjZyjSt4TI/FQFn5EjR3Lo0CFy5cpFdHQ0UVFRDBs2DFdXV0D2Tk4Pqs+xM2fOMHr0aEJCQsiTJw+mpqZUrFiRadOmqQdmfkvaIv2p3uPExEQWL17Mtm3bsLS0pHz58iiKwsWLF9HT08Pb21vaIwOqXbs20dHRREdHkyNHDgoXLoyNjQ2DBg36w4Afad/v58uXLwwaNAg3NzdatGiBsbExkZGRvH//nnv37gHSHmlJCuNCCCGE+NsePHjA4sWLCQwMpGjRovTv31+9fDogI0mFEP/T5cuXadOmDQsXLqRgwYJs3LiRo0eP0q1bN2bNmqWehSBf+DRP2ipjuX79Oi1btmTz5s2UKVOGFStWsHHjRho2bIiTkxP16tXD2NhY0zFFOmjVqhXa2tr06dOHkJAQFi9eTM6cOXF2dqZHjx5oaWkRHx+PgYGBpqNmSNK3hMi8VNcwT548oXz58pw/f54yZcqQI0cOdu7cyYgRI6hRowb79+8nW7Zscr2TTipUqECLFi1wcnLi48ePeHl5cejQIQwNDdm+fTvZs2fXdMSfwrfb4b17947Y2FiyZcuGiYkJV69exdXVlTdv3vD8+XN69+7NqFGjyJMnj6yekEGozndLly5l3bp1HDx4EAsLC86dO8eePXu4ePEizs7O2NjYaDpqpvft9+enT59y48YNjIyMaN++Pdra2ly9epUlS5ZgYmJC2bJlad++PRYWFuoZ/yJtSGFcCCGEEP9ISkoKZ8+eZcWKFbx+/ZoqVarQv39/ateureloQogf3K5duwgMDGThwoXqx7y9vZkwYQLPnz+nX79+LFy4EENDQw2mFCBtldGcOHECb29vli5dqn7s8ePHDBkyhKtXr9K6dWs2btxI7ty5NZhSpLX3798zYMAAFi5cSMmSJYGve4xPnz6d7du3U61aNVasWEG1atU0nDTjkr4lRObn4+PDjh07WLVqlXqrBC0tLW7duoWVlRVbtmxRr5gj0oaqmPrkyRNGjx7NunXrKFy4sPr4xYsX6dChA2PGjGHGjBkaTPrzcXBwwMfHh4CAAMqXL4+VlRV2dnYULVqUmJgYsmbNir6+PiADZDMK1QQWRVFYunQpOjo62Nvbp3rOyJEj2bNnD3fu3CF//vwaSvpzUJ3/FixYwNq1a1EUhdevX5MrVy4mTZrEiBEjAEhISFD3NZH2ZEqXEEIIIf4RbW1tmjdvjru7OwMHDuTJkycMHDgQf39/TUcTQvyAUlJS1P9dqlQpPn78yPv379WPtWzZEj8/P6ZPn861a9ek0KpB0lYZS3Jysvr/8+bNy4cPH4iKilIfL126NOfPn2fXrl3ExMRI4S4TypYtG2XLllUvrwiQL18+NmzYwOXLl/n06RMBAQGaC5hBSd8S4ufh6+tL37598fT05N27d2hpaZGSkkJKSgply5alSJEinD17VtMxMx0dHR3i4+NxdnbmxYsXXLt2LdXxhg0bYmdnx71794iPj9dQyp+Hat6ku7s727ZtY8CAAfj7+9O6dWuOHz/OoEGDeP78OdmzZ09VqJOieMagWtVx4sSJbNq0iRMnTvD582fgt7YfOXIkOXPmJCQkRGM5fxY6OjpERUUxefJk5s6dy6lTp4iIiKBPnz6MGjUKW1tbUlJS1AO1RPqQGeNCCCGE+E8iIyPZt2+f7DErhPgD1SwCRVEYPXo0Fy9e5N69eyxevJhevXqp92dVSUxMlC+AGiJtlbF82169e/fG19eX0NBQRo4cyaBBg7C0tJStTTIp1TKKhw4d4uDBg+zYsYNWrVoxd+5cypcvLzNL/iPpW0L8XI4fP87WrVs5deoUZcqUYfny5dSqVQuAz58/U6xYMRYvXky/fv1kdmwaUhSF0NBQmjRpQnBwMPXq1WPRokVUrFgRIyMjAGxsbIiNjcXT01PDaTO3b/9djxs3jrx58zJhwgT18Xv37tGnTx+yZs3KqVOnMDQ0lH6QQS1btozly5fz4sULFi9ezKBBgzA1NQW+rtLQokULnj9/jrm5uYaTZl6q/nb9+nXWrVvH5s2bUx339vbG1taWPXv20KhRIw2l/DlIYVwIIYQQaUb2GBdCfEv1xW/UqFEcOnSIoUOHcv/+fdzc3GjdujXjx4+nZs2asj/rD0DaKmNRtZe9vT3Hjh1j2rRpBAYGsnfvXsqWLUvPnj1p3rw5RYoU0XRUkYZU7R4bG0uOHDno3LkzhQsXZuvWrejr6+Po6Ii1tTUFChSQm9b/kvQtIX4+T58+5fTp07i7u/P06VNq166Nubk5Hz584P3793h4eGg6Yqbm5ubG6NGj0dHRoV+/fuTPn5+YmBj27NnDsWPHKFmypOxjnY5U93AOHjzI+fPn0dbWZunSperVU3R0dPDy8mL06NGcOnVKPv8yuKioKFxcXFizZg3Vq1fH2tqayMhIHj58iKWlJQsWLJC9rNPZvXv3GDBgANHR0Vy7do2cOXOSkJCAnp4e7969o0WLFnTs2JFp06ZpOmqmJneuhRBCCJFmpCguhFBRFRc+fPhAcHAwbm5uTJ06ld27d+Pn58ebN29o164djo6OBAYGajruT03aKmNJSUlBS0uLT58+8f79e9avX0///v1xdXXF29sbMzMzZs2axcSJEzl48GCqJfJFxqYqdu/fv5/OnTuzZ88eFixYwKtXr7CxsWHMmDH06NGDvXv3qpfIFH+f9C0hMr9v+63qv0uUKMHQoUNZuHAhgwYN4ubNm2zevJmUlBT1bL7k5GRkbln66NGjB69fv6ZPnz4sWbKEMWPG8OzZMzZs2EDJkiUBpCiejrS1tUlOTmbTpk2sXLmSw4cP8+jRI3R0dNTvu7m5OZGRkcTGxmo4rfgnVOe4b89duXPnZvny5dy4cYNs2bIxceJEVq5cyZgxY1iwYAEg/S29PXz4ECMjIyIiIhgxYgQvX75EX18fLS0tsmfPzvv379Uz+eVzJ/3I3WshhBBCCCFEmlMVcE6dOoWOjg6vX79WH6tSpQrXr19n69atrF+/XmbiaJi0VcaiGoS2b98+goODefbsmfqYhYUF+/fvZ/369dy4cYP79+/LoLVMQnVj7NWrV4SEhGBoaJjq+JIlS3jx4gVGRkb07NlT9mT9F6RvCfHz2LBhA3Z2djRo0ID169cDUL16dRwdHVm3bh22trbcuXOHLl26cOTIEXR0dGQljv8oKSkJ+DpbcsqUKYwePZqtW7eqB10uWrSIsLAwunfvzq5du1i9ejVXr17l06dPmoz9U9DR0WHz5s3s2bMHQ0NDatSowYIFC3j06BGenp64uLhQv359ypUrJ4PCMghFUdTXKStWrKBt27ZMnTqV06dP8/btWypXroyXlxeenp6UKlWKXr16sWjRIt6+fSvnunTWpUsXFi9ezKRJk7h//z6NGzdm1qxZrFu3Dnt7e4yNjbG3t9d0zExPllIXQgghhBBCpIvQ0FCqVKlCdHQ0VlZWzJ49G0tLyz982Zbl2jRP2ipjefXqFR06dOD+/fuUKlWK+fPn06xZsz/M8JClRzOfiRMnsmjRIoyMjFi7di0dOnQgW7ZsqZ4THBxMsWLFNJQwY5O+JUTmpVoy+urVqzRr1gwrKyuMjIzw8PAgb968uLq60r59ewAiIyM5f/48R48e5cSJE2zcuJGuXbtq+DfIHEqUKEGhQoWIiopCW1ubkiVL0qpVK9q1a0ehQoUAOHv2LPb29ty7dw9XV1ccHBw0GzoT+nZv8W8fi4iIYP369axcuZIvX75gZmbGunXraNu2Lfr6+vJdIINQne8mT57Mjh07qFu3Ln5+fmhpadGxY0c6d+5MtWrVMDQ0JDExkaVLlzJnzhxMTEy4ffs2OXLk0PSvkGn8WV8DiI2NxcfHh0OHDrF7927i4+Pp168fixcvxtTUVL28ugxUSB9SGBdCCCGEEEKkm+joaJYsWcLmzZupXLkyvXr1okmTJhQsWFD9nL/6sii+L2mrjOXDhw9s376dbdu2kTVrVpo0aULnzp2pWLGi+jnSXpnToUOHcHZ25tOnT/Tq1Yv27dtTuXJluVGdRqRvCZG5jR07lixZsjBnzhzi4uJ4/PgxixcvZteuXbRq1YrFixdjYWEBwKNHj/Dx8WHw4MEaTp05HD58mPnz5+Pj44Ouri4nT55k3bp1vHjxgqpVq6rPt1myZAHA1dWVatWq0ahRIw0nz7wCAwO5du0aNWvWpGTJkhgbG6sf37hxIxs3bqRNmzYsX75c9hfPYL58+ULz5s2ZPn06rVq1Ar6uMLRmzRpy5sxJ9+7dadmyJZaWlgC8ePGC48eP88svv2gydqajGkzp5eWFn58fjx8/ZsiQIdSrVw+A169fc+bMGTw9Pbl79y6VKlVi4sSJlC9fXsPJMzcpjAshhBBCCCHSxbcz6gICApg6dSq3b9+mZcuWWFlZ0axZM/XNF6FZ0lYZy7ft9fjxY5YvX86VK1coUqQIDRs2pHfv3uTJk0fDKUVaU83+ga+rN7i4uLBlyxYKFy5M7969adKkCWXKlNFwyoxN+pYQmdO3g1mOHz/OnTt3mDhxovp4bGwsly9fxtHRkY8fP/LkyRNNRc10vn3vg4ODmTNnDhs3blQ/lpKSwq+//srOnTuJiYnh6NGjUoBNZ6rPuh07duDk5ERKSgovX76kadOmODo6Ur9+fbJmzUpcXBznz5/H2dkZf39/+vXrx7p162QrkQxk/vz51KlTJ9Xgkjdv3jBr1izWrl3LokWLGDNmjAYTZm6qa/dnz55RuXJlKlSogL6+Pj4+PjRv3pyVK1dSunRpAO7fv8+pU6c4ceIEN2/eZOPGjXTu3FnDv0HmJYVxIYQQQgghRLpJSUlBS0tLffNr//79zJ07l8jISC5fvizL/f5ApK0yFtVXeVV7nT59mrVr1xIYGIinpydly5bVZDyRjr4t3oaEhDBz5kzc3NxwcHBg3rx5Gk6X8UnfEiJz+bYw6+bmxu7duwkPD2fPnj3qgoTKmzdv+Pz5M0WKFCEpKUn2Fk8D3y5hf/XqVdzc3Fi8eDH169dP9bzIyEguXbpEt27dZFWO78TCwoIhQ4bQr18/Xr58ydChQ7ly5Qr9+/dn1KhRlC9fHj09Pd6+fcvOnTs5c+YMR44c0XRs8T+olroPCwvDy8uLNWvWUK1aNVxcXMibN2+q5966dYtSpUphbGycavClSHsODg58+fKFdevW8f79e65du8bs2bO5evUqo0ePZs6cOWTJkgVFUbhy5Qre3t6MHz9eBqanIymMCyF+Gi9fvqRv375cvnwZPT093r17h5aWFgcPHqRTp06ajpfuHj58iK2tLQEBAZQtW5aAgIC/9brz58/TpEkTYmJiMDMzS9eMQgghMr6/+lL9+/1YDxw4gLW19feMJv4maasfk6pv/f5m8e/73NmzZ2natKkmIorvSFEUFEVRt/3p06cpWLCgFG3TkPQtITIHVV8eP348W7ZsoWrVqgQGBmJkZMTs2bPp2rWreulukbZU7/3Nmzdp164denp6xMXFkS9fPmxsbBg4cGCqLXtUpDCevlJSUkhKSmLSpEkMGzaMUqVKqY8dPHiQsWPHEhISwo4dO+jduzfwtU0SExPR19fXVGzxD1SvXp3ExESioqIAaNmyJR06dKB169YYGRlpON3P4dvz2LFjx3j+/DkjRoxQH3/79i0HDx7EyckJExMTHj16hJ6eHvDbAAeRfmQYiBAiQ7K1tf3HxeylS5cSGRlJQEAAjx8/Tp9gP7AZM2aQNWtWHj16xJkzZ/70OY0bN8bBwSHVY3Xr1iUyMpJs2bJ9h5RCCCEyom/H2v6+KK46piq0JicnA0ihVQNSUlKAr/uY/S/SVj8mVd/S0tJSF0W/fVzVXlK4y9y+nc2sra2t7tfNmzeXovjfpHrPQkND/+fzpG8JkTloa2sTHR3N0aNHOXDgAAcOHOD+/ft06NCBgQMH0qZNG3x8fJC5Y2lPdR51cXGhe/fuBAUFcfToURo3boyXlxd2dnZs3ryZL1++pHqdFMXTh+rzLykpibCwMCIiIrhw4UKq53Tu3Jng4GCmTZtGpUqVgN8KfFIU/7GpzmHnz5/n48ePeHt7ExYWhouLCyEhISxatIiZM2f+oc1F+lCdx65cuYKHhwf79+8nMjJSfTxnzpwMGjSIK1eu4Obmhp6eHomJiQBSFP8OpDAuhPhpPH36lGrVqlGqVKmfcl+4p0+fUr9+fYoUKULOnDn/9uv09fXJly+ffDERQgjxB6ov30lJSdy7d4+FCxeyb98+AgICiImJAX4r4ql8OxNZfD+qmaXR0dH079+f8PBw9ePw242yb0lbaY6qXeLj4/H19WXMmDEsX76cQ4cOERERoV7yXvpW5qPqiy9fvsTb25sNGzZw69YtQkJCgD8WC2TZy39GdS58+/Ytbdu25dmzZ8Bv77uqT0nfEiJzUPXlFy9e0LBhQ4oUKYKJiQm5cuVixYoV+Pv7Y2JiQqNGjdi1a5eG02YuqkFFT58+pXr16jRv3pwsWbJQp04dXF1dGTt2LLly5cLV1RVHR0cNp/05qK4hRo8eTadOndi7dy/z5s1j06ZNvHjxItVzZ82aRYUKFWT2fgbxbTvdvXuXli1bkidPHrS1tRk4cCB79+6lZcuWXLhwgXHjxvH06VMNJ87cVOe/pUuXYmVlxa1bt/D19aVbt274+vqmGuhasmRJatasCaCeMS7Sn3yDEkJkCo0bN2b06NFMmDCBHDlykC9fPmbOnKk+XrRoUTw8PNi+fTtaWlrY2tr+4e84f/48WlpavHv3Tv1YQEAAWlpaPH/+XP3YpUuXaNCgAVmyZKFQoUKMHj2az58/p/pZc+fOZeDAgZiYmFC4cGE2bNiQ6meFhYXRs2dPcuTIQdasWalevTrXrl1THz98+DBVq1bF0NCQ4sWLM2vWLJKSkv7y909JScHZ2ZmCBQtiYGBA5cqV8fLyUh/X0tLCz88PZ2dntLS0Ur03Kra2tly4cIHly5erb7Y+f/78D+/L1q1bMTMzw9PTkzJlymBkZETXrl2JjY1l27ZtFC1alOzZszN69Gj1hQB8vbE7fvx4ChQoQNasWalVqxbnz5//y99JCCHEj0/1hW7cuHF07tyZTZs2YWtrS58+fZg6dSpeXl4kJSXJzZQfgKqt+vbti6IoFChQAPh6jZCQkCDFtR+Mqr1GjRrFwIEDuXDhAosWLcLFxYVffvmFX3/9lbi4OOlbmYyqaBseHk67du345ZdfmD59Ok2bNsXe3p41a9YQFham6ZgZmqpvDRgwgIIFC1K8eHHg67kwNjaWpKQkUlJSpG8JkUloaWkREBBA1apV+fXXXzly5AgJCQnq45aWlhw9ehRPT09ZISeNqQYVjR49mgULFqS6/6Ovr0/Xrl1ZsmQJffv2pUePHsCfD9QUaUNVOL169Srbtm1j+vTp+Pr6UqlSJZydnZk8eTKenp5ER0enep18HmYMqr6za9cuFi9ejKenJ8HBwerjuXPnZtasWaxevZrevXtTokQJTUX9Kejo6JCQkMCqVatwdXXl8OHD3LhxA2NjYxo1aoSdnZ16cKbQEEUIITKg/v37Kx07dlT/uVGjRoqpqakyc+ZM5fHjx8q2bdsULS0txdvbW1EURXn9+rXSunVrxcbGRomMjFTevXunKIqiAMrBgwcVRVGUc+fOKYASExOj/ntv3bqlAEpwcLCiKIry5MkTJWvWrMrSpUuVx48fK76+vkqVKlUUW1tb9WuKFCmi5MiRQ1m9erUSFBSkzJs3T9HW1lYePnyoKIqifPz4USlevLjSoEEDxcfHRwkKClLc3d2Vy5cvK4qiKBcvXlRMTU2VrVu3Kk+fPlW8vb2VokWLKjNnzvzL98PV1VUxNTVV9uzZozx8+FCZMGGCoqenpzx+/FhRFEWJjIxUypcvr4wbN06JjIxUPn78+Ie/4927d0qdOnUUOzs7JTIyUomMjFSSkpL+8L5s2bJF0dPTU1q0aKH4+/srFy5cUHLmzKm0bNlSsbGxUe7du6ccPXpU0dfXV9zc3NR//+DBg5W6desqFy9eVJ48eaIsWrRIMTAwUGcUQgiRsaSkpCiKoig3b95UDA0NlXPnzikfP35U4uLilAULFig1a9ZU6tatq2zevFn9XKEZqvf/8uXLioGBgfLkyRNFURTl0KFDSr9+/ZTSpUsrPXr0UC5cuKDJmOJ3/P39lSxZsqivERVFUbZt26Z06dJFqVWrljJ16lTl7du3Gkwo0ovqe8u9e/cURVGUEydOKB06dFAsLS2VX375Rd2Hk5OTNRkzw1G9X78/F27fvl2xsrJSsmfPrjRr1kzZunXrn35fEkL8+FTXPHFxccqXL1/Uj+/atUspVaqUYmpqqixcuFB5/vz5n55D5Zo1bb1580ZxdXVVrKysFAMDA8XOzk4JCQnRdKyf2vr16xUnJ6dUjx05ckSpUaOGUrZsWWXIkCFKRESEhtKJf0J1DktMTFQ/dvbsWWX48OFKiRIllOrVqyvr169XYmNj/+frRdpSva8PHz5UBg0apLx8+TLV8UOHDinly5dXtLS0lAMHDmgiolC+7ksmhBAZzp8VxuvXr5/qOTVq1FAmTpyo/nPHjh2V/v37p3rOPy2MDxo0SBkyZEiqv8PHx0fR1tZWf+kqUqSI0qdPH/XxlJQUJU+ePMratWsVRfl6EWpiYvKXNzKbNWumzJ07N9VjO3bsUMzNzf/8zVAUJX/+/MqcOXP+8PsPHz5c/edKlSopM2bM+Mu/Q1G+vo/29vapHvuzwjigvpGkKIoydOhQxcjIKNUNpFatWilDhw5VFEVRQkJCFB0dHSU8PPwPv+vvL8iFEEJkLHPnzlWaNWv2h8dfvHih2NraKkZGRsrWrVs1kEz8XtWqVdXXKCdPnlQsLS2VFi1aKIsWLVJq1qypGBgYKLt371YURW4M/wjWrl2rNGjQ4A83rV6/fq3MmDFDyZUrlzJ//nwNpRPpJTw8XLGwsFBOnjz5h2O//vqrUqBAAaVly5ZKQkKCBtJlDlWrVlW6dOmiKIqieHt7K+XKlVN69uyp7N27V+nQoYNiZGSkuLq6ajilEOK/GDt2rDJz5kzlzp07qa5pJk+erOjq6ipVqlRR9u3bp0RFRWkwZebk7u6uDBo0SImPj1c/FhgYqMybN0+pX7++YmlpqSxcuDBVMU98HydPnlRatmypNG3a9E+v9efMmaM0b95cA8nEv5WQkKA0a9ZM2bRpk/qxxMRExcPDQ+nVq5dSq1YtpXv37srx48c1mPLn8+TJEyV79uyKoaGhsnnz5j8cV00mCAsL00A6oSiKIuvlCSEyjYoVK6b6s7m5Oa9fv07TnxEYGMjWrVsxNjZW/69Vq1akpKSkWqLm2yxaWlrky5dPnSUgIIAqVaqQI0eOv/wZzs7OqX6GnZ0dkZGRxMbG/uH5Hz58ICIignr16qV6vF69ejx48CAtfu0/MDIySrXsTt68eSlatCjGxsapHlP9znfu3CE5OZnSpUun+r0uXLgg+9oIIUQGV7lyZe7fv8+9e/eAr1tnJCUlUahQIbZs2YK9vT1z587l06dPGk76c/Pz8+Phw4ckJibi7u7OiBEj6N27N4cOHWL8+PFcu3YNW1tbnJ2diY+Pl2UTfwCVKlXi7t27nDp1Cvi6V11KSgq5c+dm5syZTJ8+ncWLF/Py5UsNJxVpKX/+/Jibm3Po0CHga7vHx8cDMHDgQHx9fQkICGDTpk0aTJlxPXjwgA8fPvD27VsWLlzIsGHDGDRoEFu2bKFbt24cPnyYiRMnMnfuXN6/f6/puEKIf0hRFJKSkoiJiWHTpk04Ojqyfft29f2aOXPmEB4eTtGiRbGxsaF79+6pttMT/110dDReXl6ULl2adevWAV/vkTk4ODBjxgyaNWuGu7s7FStWxN/fX8NpM7+HDx9y5swZAEJCQggODubq1avY29tz+/btVM+dPHkyJ06cAEi1NaL4cQUFBZEtWzZWrFhBu3btOHfuHLq6ulhbW7NkyRJ69epFbGwskydPZvz48eotZUTaioyM5P79+8DXZe1LlCjBoEGD0NHRwcXFBXd3d96+fat+voGBARMmTKBAgQLSJhoihXEhRKahp6eX6s9aWlr/aH8i1d6a334gJSYmpnrOp0+fGDp0KAEBAer/BQYGEhQUlKpQ/L+yZMmS5X/m+PTpE7NmzUr1M+7cuUNQUBCGhoZ/+/dJT3/2+/2v3/nTp0/o6Ojg5+eX6vd68OABy5cv/265hRBCpL2yZctiZmaGvb09MTExGBgYoKurqy7ktG/fHkVRCAoK0nDSn1u1atXYsmULnz9/ZsKECeTMmZO+fftiZGSk/rxu0KABhoaGaT6wUPw7pUuXpkaNGkydOpXAwEB0dHTQ1tZWt1fr1q3JmTOn9K1MRPU9pGnTpuzevZt9+/aho6ODgYEBCQkJJCcnU7hwYRo3bsy9e/fkRtq/UK5cOdavX0+FChXYtm0bOXLkoEuXLhgYGKiLAHXq1MHc3FwGnQiRAWlpaaGrq8vmzZs5evQoOjo6TJs2DWdnZzw9PXnz5g158uThwIEDnD59mnLlymFmZqbp2JlK//79OXToEJ07d2bGjBlUr16dc+fOYWhoSPPmzXFycmLs2LHUqlWLUqVKaTpupufq6sqYMWOYNWsWNjY2XL16lVGjRnHu3DmmTp3K+vXrU33e6erqAr/tES9+bBYWFixfvhwHBwd0dXUZNmwYQ4YM4dmzZ+TLl4/Ro0czZ84cGjRoQIMGDdDS0pLrx3TQs2dPfHx8ANT3QRYtWkRwcDAVK1akZ8+e2NnZ4evry+fPn1O9Vgaka4YUxoUQ4v/kzp0b+DrKSyUgICDVc6pWrcr9+/cpWbLkH/6nr6//t35OxYoVCQgIIDo6+k+PV61alUePHv3pz1AV779lampK/vz58fX1TfW4r68vFhYWfyuTir6+frqMCq1SpQrJycm8fv36D79Tvnz50vznCSGE+H6KFSuGp6cnb9++pVixYuoBTwYGBgDq83/hwoU1GVMANjY27N27l/Hjx9O2bVuMjIyA376MZ8uWjcTERLJly6bJmD8t1U0qVeE7Z86cuLu7kz17dmrWrMnkyZN58+aNur3CwsIICwujbNmyGsss0paqbSdPnswvv/xC7969sba2Jjw8HH19fXR0dNDS0iI6Olr93+Lv+3bgweLFi5k5cyZ9+/ZVF8W+HSgdFxdH3rx5NRVVCPEfpKSkoCgKlStXxtPTE1dXVwIDAxk/fjyurq5cvnyZL1++0LRpU1atWgXI7Ni0lCVLFqpXr86MGTPYtm0bRYsWpWPHjnTt2pXQ0FDy5MlDr169WLp0KSYmJv9oQov45+bMmUO3bt3w8vLC2toaT09P5s6dy9atWzEwMGDdunU4Ojri4eGh6ajiXypYsCADBgxgzpw5DBgwgAcPHtCxY0fmzJlDQkIClpaWrFixgo4dOwJSiE0PK1euxM7ODoCZM2dy8OBB3rx5Q+7cuTl48CAXL17k8ePHtG7dmjFjxvDhwwcNJxZSGBdCiP9TsmRJChUqxMyZMwkKCuLYsWMsWbIk1XMmTpzI5cuXGTlyJAEBAQQFBXH48GFGjhz5t39Oz549yZcvH506dcLX15dnz57h4eHBlStXAJg+fTrbt29n1qxZ3Lt3jwcPHuDm5sbUqVP/8u90dHRkwYIFuLu78+jRIyZNmkRAQAD29vb/6D0oWrQo165d4/nz57x58ybNvqCULl2a3r17069fPw4cOEBwcDDXr19n3rx5HDt2LE1+hhBCiO/ry5cvxMXF8eHDB4oXL467uztDhgxh1qxZFCxYkAkTJtC5c2fs7Oz45ZdfyJkzp6Yj/1RUBaC4uDgiIiLUj2fJkoVRo0Yxbtw4dTFIS0uLuLg4Zs6cSbt27TA1NdVE5J+aoijqgueuXbsIDw8nMTERMzMzDh8+zIIFC9iyZQulS5emf//+1K5dmxEjRmBvb68e3CkyJlUx5ty5c7x48UI9y0T1neD58+cUL16cHj16MGXKFDp06MCdO3dwdnbWZOwMSTVLKjk5GQMDA7p168bgwYNTnQs/f/6Mk5MTnTp1klmkQmRQ2traaGlpqc+vXbt2xd/fH1tbW/bs2cPEiRNZunQpr169Ur9GZsemPTMzM1q3bs3y5ctZtWoV4eHhVKtWDQcHB/Vx4E8ngIi0kzt3bqZNm8bWrVspWrQoK1aswMbGhtjYWPbt28f06dPx9/cnNDRU01HFv6T63lehQgXGjRuHi4sLLVu2ZP/+/TRt2pStW7cCyCCUdKIoCpaWlmhpafH48WN27tzJtGnT1AOx4uLiqF+/Pnfv3mX27Nk8e/ZMvm//AOSTRwgh/o+enh579uzh4cOHVKxYkQULFuDi4pLqORUrVuTChQs8fvyYBg0aUKVKFaZPn07+/Pn/9s/R19fH29ubPHny0LZtWywtLZk/f776i1irVq3w9PTE29ubGjVqULt2bZYuXUqRIkX+8u8cPXo0Y8eOZdy4cVhaWuLl5cWRI0f+8bJU48ePR0dHBwsLC3Lnzs2LFy/+0ev/ly1bttCvXz/GjRtHmTJl6NSpEzdu3JAZhEIIkYGovnRv27YNa2trKlSowLJly4Cvg6CmTp3K2bNnGTBgAJcuXcLExIRx48Yxf/58Dab+uf3yyy/Y2dnh5ubGx48f1Y9/uz3Lw4cPsbOz48OHDyxYsEATMcX/GTBgAPv27QN+27rGwMAABwcHnjx5wuzZs0lISKBevXrMnj2bOXPmaDKu+I8URUFHR4fHjx/TvXt3Ll26pJ7FY2RkRI8ePfD29mbjxo28fPkSHx8fSpUqhZubm6zs8DepPrdev35NcnIyWlpa6Ojo/Ok2V3fu3KFPnz58+fKFhQsXaiSvECLtqO6xqArkkyZN4vLlyxQpUoTdu3eTK1cuTcbL9FTn3wIFCtC7d282b97MmDFj2Lp1K+fOndNwup9PmTJl2LhxI/PnzychIYExY8bg4OBApUqVuHnzJqNHjwaQZbYzINW1o6Io6Orq0qhRI6ZNm8b06dPJkSMHfn5+gAxCSS+q919LS4vSpUsTHh5Oz5492bNnD+PGjWPjxo3cu3cPAAcHB06fPg1AUlKSxjIL0FLkbCeEEEIIIYT4/0hJSUFbW5tz587Rq1cv9VJhLi4unDt3jjp16hAXFyejn38g0dHR1KhRA2NjY8zMzKhUqRJWVla0aNGCJ0+eULRoUXR1dXnx4gX79u2jWrVqNG7cWNOxfzqq2eIXL16kffv2BAYGUqxYMS5fvszBgwf5/PkzRYsWZfz48XJDK5Nq0qQJxYoVY/PmzcTGxuLj48PDhw/R09OjdevWFC9eHIAPHz7IOfYfUH1uXblyBScnJ0aPHk3jxo3JkSPHnz4/Li6OHTt2YGFhQb169b5zWiFEWlJ9tn7755SUFHWx/PXr1+TJk4fk5GSZLf4dff78mRcvXlCuXDlNR/mpffnyhR07duDu7k5oaCgeHh5YWlpqOpZIB8+fPydXrlwYGxurr4tE+klMTFQPbg4LC2Pq1KmcOnWK2rVr065dOzp16vSX16Hi+5LCuBBCCCGEEOJvs7S0VC/pC19HPWtpaXHs2DEKFChAyZIlmTp1KkWKFJGbjRqmKApTp04lNDSUKlWqsHv3bkxMTGjRogVTpkxhxYoV/2g7GJG+xo8fT2RkJLt27WLnzp24uroCX2f4BAQEYGJiwqZNm6hYsaL0rUzk3r17dOrUiYMHD1KhQgWsra0JDg4mKiqKwoULk5iYiIODA7179/5DoUf8PXXq1CEwMJDk5GSsrKwYM2YMVatWTTVbXAiRsakKPlevXsXS0pKsWbP+6fPk8zPtqd7Tz58/q7eBkQJcxhAZGcm+ffvUs8VFxhIaGkqhQoX+9JhcM34fqvNfaGgoe/bs4fXr1+TNm5cOHTpQpkwZAHx8fJg8eTIREREEBgZibGys4dQCZCl1IYQQQgghxN909OhRFEVhwIAB6mX2Tp06RUBAACNGjKBJkyZcuHCBAwcOALJfo6ZpaWnRp08fnj17hq2tLVu3bqVq1aqsXLmSbNmykZiYmGr/caFZJUuW5NOnTwAsXboUW1tbbt68yebNm1m7di1ZsmRh7969gPStzCRfvnyYmZmp95O/f/8+O3fuJCQkhPnz52NpacmGDRuIiYmRG5z/wtWrV0lKSuLixYucOnWKBw8e0KpVK2bOnMnDhw/VSyzfu3ePxYsXk5iYqOHEQoh/Q1tbm8TERBwdHVm5cqX68d/PB5PPz7Snek8HDBjAiBEjAFmyOaMwNzdXF8Vl/+mM5cqVKxQpUuQvtyWQa8bvQ3X+69GjB3v27OHUqVMcPXqUAQMGMG/ePD58+ECDBg3w8fHhwIEDGBsbq689hWbJp5QQQgghhBDib0lMTGTgwIEYGxujpaXF7t27efbsGdu2bcPe3p7p06dTrVo1fH19NR1V/J9y5cpRoUIFtm3bRvny5XFxceHNmzeUKlUKd3d3hg8fzq1btzQdU/C1MO7v78+qVavIlSsXtWvXRltbmyxZstC4cWOaNWuGr69vqr3iRcZnYGCAlpYW69ev5/Lly3Tp0oXy5cujo6NDw4YNGT9+PI8ePeL27duajpohmZiY0LlzZ4yMjGjYsKG6AL5+/Xpat27Nxo0bef78OXZ2djx48EC9/KUQIuNJSUmhYcOGLFiwgMOHDwNSHPqeBg8ezPXr11m+fDnwdVCCLFSbcchghoylevXq9OvXj9WrVxMTEwPI/vDfm+r99vHx4fXr11y8eBE/Pz+mTZtGlSpVOHjwID169GDLli0AVKpUCZABWj8KOeMJIYQQQggh/hZra2tsbGzUe9xWrFgRLy8v9XK/ADVq1CA+Pp6kpCRNRhX8NvOjdevWrFixAoBevXqpC6y2trZ8+fJFvcyb0KzmzZtjZWWFu7s7/v7+XLx4MdXxChUqEBMTg76+voYSivRgbGzM6NGj8fDw4OrVq1y6dInPnz+rj5ctW5bixYsTFhamwZQZV/ny5Rk0aBAWFhbqGTq//PILb9++pUOHDowaNYrGjRvj5+fH4sWLNZxWCPFfGBgYMGfOHH755RecnZ25du0agMzO+w5SUlJo0qQJNjY2LF++HB8fH7S0tGRgghDpRE9Pj2HDhnHjxg0GDBjAp0+fpL99R98uVf/o0SNat26NkZERurq6tGjRgjlz5mBvb4+ZmRkzZ87kxo0bGk4sfk/2GBdCCCGEEEKkiaSkJKpXr07fvn0ZN26cpuOIbwwZMgRtbW22bdvGhQsXqFmzJgCxsbEYGRlpOJ1QefXqFY6OjuzcuRNTU1PGjBlDy5YtiY2NZdiwYfTu3ZsZM2ZoOqZIB4sWLWLWrFnExsYybtw4bGxsyJcvH8eOHcPJyYlXr17JoIg0kpSUhK6uLgB+fn7UqFGDZcuWyR6rQmRQv99L9+nTpwwbNozPnz9z8uRJ2c/1Oxs0aBBXrlxhw4YN1K9fX/Z1FyId3bt3j759+9KtWzecnJwA2V/8e9qxYwfTpk1DR0eH8+fP/2HP96CgIAIDA+natauGEoq/IoVxIYQQQgghxL+m+uL95s0bNm3axLp163j+/LmmY4nfOXToEN27d2fEiBG4urqql7eUZRN/TBcvXmTKlCm8fPmSt2/fkj17dpo0acKmTZs0HU2ksW9vXj548ICZM2fi4eGBhYUFQUFBVK5cmaFDh2Jra6vZoJmM6lbYjBkzWLFiBe/evdNsICHEPxYfH4+BgQFBQUGYmpry/v17SpcuDUBMTAx9+vQha9asrFmzhly5cpGSkiLXPWlE9dmVnJxMQEAA1apVUxfAExISsLa2JkeOHGzfvl3TUYXIFFTnr3v37qGlpYWFhQVxcXEYGhqyfft2xowZw9q1a7GxsdF01Exv9+7deHl5sWHDBkJDQ3F1deXo0aPkz5+fYcOG0adPnz/dmkcGLPxYpDAuhBBCCCGE+E9SUlKYO3cuBw4cYP78+bRs2VLTkcSfuHbtGqVLlyZ79uyajiL+puvXr2NsbIy+vj5FihSR/Y8zsW9vlt2/fx9/f3/MzMyoUKECRYsW1Wy4TCo+Ph4nJycaNmxIp06dNB1HCPE3vX37lpw5c6r/XL16dR49ekSFChWIjo6mZcuWmJqaEhUVxenTpxk/fjzDhw/XYOLMa9myZaxfv57Pnz/TvHlzdHV1ad26Na9evWLEiBHY2tqyZMkSsmfPLkUhIf6FxMRE9fX/06dPadiwIVmzZkVRFJo3b46WlhZdu3Zl0aJF+Pv7s2fPHpo2bSoDgdLRxo0bmTNnDoqiMG/ePHr16oWvry/Lli0jODiYsmXLMmDAAJo1a6bpqOJ/kMK4EEIIIYQQ4j9LTEzE39+fWrVqaTqKEEJkSLKSw/f3+fNnsmbNqukYQoh/oEGDBpQrV46ZM2eSP39+3r9/T2BgIK9evSIsLIzLly9jaGiIj48P0dHRAMyfP5/hw4dLcTYNqGaGP336FBcXFzp27EhUVBRXrlwB4Pjx41SpUoVbt24RExPD2rVrGThwoIZTC5Hx3LhxgyFDhrBs2TIaNGiAtrY2x48fJ1euXJw/f57Q0FAiIyO5evUqhQoV4saNG1SuXJmTJ0+mGjwk0lZcXBz3799n165dbN++nRIlSrBq1SqqVq3Kli1b2LdvH69fv6Zly5bMmzdPPnN+UFIYF0IIIYQQQgghhPjO/qpAI4UbIYT4cy9fvmTp0qVcuXKFDx8+MHDgQEaOHPmHAUUJCQno6+sTGBjIvn37OH36NB4eHhQoUEBDyTOfRo0a0axZM6ZMmfKHPcQDAgIwMzNjy5YtLFq0iN27d8vKHEL8Q8HBwfTr14+bN2/SrVs3Zs6cSfHixdXHv93S4OnTpwAMHDgQc3Nzdu7ciYGBgaaiZ1rfXqO/f/+ea9eusXHjRk6ePEn//v1ZsGABoaGhLF++nKZNm9K1a1e5rv9BSWFcCCGEEEIIIYQQIp3JjTEhhPjv4uPj8fX15fDhw5w7d47s2bPj4OBA586d1c/5dvnhd+/e0ahRI2xsbJgyZYqmYmcKquWZQ0JCGDlyJHPnzsXS0lL9fv/Z8s0DBgzAxMSEFStWaCi1EBnb0aNHmTRpEqGhoUycOJFffvlFPSNctYKDysmTJ3FwcMDd3Z2KFStqKnKm9vv3PDIykmPHjrF27VoaN27MkiVLNJhO/F2yPpcQQgghhBBCCCFEOlMVxU+fPs3EiRPZsGED9+7d48uXLxpOJoQQGYOiKBgYGNC0aVOmTp3K5MmTMTc3Z9KkSfTo0YPAwEAA9PT0SEpKIjk5GTMzM/T09EhOTtZw+oxPVfTevn07r1694tGjR8DX9/v3W4GkpKQAYGxszOnTp79/WCEyuISEBADatGmDv78/M2bMYPHixdStW5e9e/eSkJDwh9Ua6taty6NHj4iPj9dE5ExHdR57/vw5AQEBAOjo6KAoivozxdzcnEGDBjFo0CDWrl3LgwcPgK+fV+LHJYVxIYQQQgghhBBCiHSkunm2Z88eevTowenTpxk7diwdOnRgxYoVPHz4UIo2Qgjx/6GlpaUuNuTOnZsePXqwfPlyHBwciI6OpkePHjg5OREVFYWuri46OjpERUVRvnx5pk+fruH0mcOjR4/YsGEDN2/eZM2aNVy4cIGEhAT14C9V+2hra6sHJixevFiTkYXIMFT9JykpCX19fSIjI7GxseHLly+MGzeOBw8e0LhxY3r16oWVlRXXrl1L9fq7d+/i5OREjRo1NBE/01EN9pkwYQJjx45l48aNREZGoqWlhY6ODikpKSQnJ6OlpUWXLl2oXr06b968AZBVon5wspS6EEIIIYQQQgghxHdQrVo1+vfvz+jRowGYNGkS69ato0KFCgwbNoyGDRtSqFAhDacUQogfj2r52tDQUHx9fbl27RqVK1emWrVqVKhQgRs3bnD8+HHc3NwoXbo0hw8f1nTkTG3p0qWsWLGCvHnz0rt3b1q1akXp0qX/8Ly4uDgMDQ01kFCIjElRFEaNGsXgwYOZNGkSurq6eHp6kpSUhK6uLgA3b97EycmJM2fOsGPHDnr37g18neGsKMofZpKL/yYsLAxnZ2f8/PywtLSkY8eOtG7dmixZsqifc+PGDdq3b8+1a9coWrSo5sKKv0UK40IIIYQQQgghhBDp5Ntizvz58xkxYgQWFhbq4y9evGD8+PHs37+fqVOn4uzsrMG0Qgjx41EURT37rnr16hgbG2NsbIy3tzfDhw9n2bJlwNf9x729vSlatCiWlpbqmXy/3/da/Hvv3r3DzMwM+Lq37tSpU/Hy8qJ27dq0b98ea2trsmXLptmQQmRgFy9exMnJiY8fPxIUFIS3tzcNGjQAfluBSFX4PnjwIM2bN8fExISUlBQ516Uz1YCET58+UbduXVq1akXLli0JCgpi+PDhFC9enPXr10tbZABSGBdCCCGEEEIIIYRIR+/evaNs2bK8e/eO2bNn4+joCKQu9pw6dYpChQpRtmxZTUYVQogfjqrIMGbMGK5du4aPjw86OjoYGBhw5MgRWrVqxe3btylcuLC6aCvShmpw14sXL9izZw8XLlzg7du3jBo1ij59+gBw+fJlJk6cSEREBIGBgRgbG2s4tRAZ24MHD2jRogUpKSlUrFiRli1bMmDAALJnz65+zvHjx2nevDn6+vqpridF+kpOTmbfvn2sXLmSuLg43rx5g5mZGblz5+b48ePo6+tLYTwDkMK4EEIIIYQQQgghRDpR3aycP38+rq6uAMydOxcrKyvy5s2r4XRCCJExfPr0iebNm+Pg4ECPHj2wtrYmJSWFQ4cO8eXLF6ZNm0bBggUZNWqULCOcDpo2bYqOjg6dO3dmx44dhISEcPv2bXLlyqV+zu3bt6lYsaK6mC6E+Hc+fPjApk2bKFGiBIcPH+b+/fvky5ePvn370qVLF9atW8e0adOIiorSdNSf1ufPnzl+/DiRkZEUKVKE+vXrkzNnTjn/ZRBSGBdCCCGEEEIIIYT4DuLi4hg+fDhbt26ladOmTJo0iVq1amFiYqLpaEII8cNSDTCysbGhW7du1KxZk4oVK+Lr60uFChUAaNWqFQ0bNmTKlCkaTpt5qN733bt3M3bsWEJCQjAwMKBcuXLY2dkxduxYfH19iYqKolOnTpqOK0SG9lezvqOjo9m/fz9eXl6EhYWRmJjIy5cvWbp0KT169JBCrBD/gq6mAwghhBBCCCGEEEL8DAwNDdm8eTNjx45lyJAhWFlZ0b59e1avXk2ePHk0HU8IIX4oqoJPUlISenp6lClThilTppCYmIi9vb26KH7w4EGuXLmCh4cH8NcFJvH3JSYmoqenh6Io3Lt3jx49emBgYMDMmTPR1dVl+PDhwNd9xnft2kWNGjUoUKCAhlMLkTEpikJKSgo6OjpcuHCBgIAAgoOD6dWrFzVr1mTIkCE0adIEb29v3r9/j7m5OT169ACQorgQ/4IUxoUQQgghhBBCCCHSkKqYc+fOHby9vTl58iRt2rShRo0aVKxYkQoVKnD58mV2797NqlWrpCguhBB/QlXwWb16NQMHDsTZ2ZmYmBg8PDy4ffs2p0+f5vjx43h5eTF9+nSMjY1JSkpCV1duef9X3bp1Y/z48dSvXx9zc3M2bNhAcHAwK1asYMeOHRgaGgJw8eJFFEWRorgQ/4GWlhY6Ojo8ffqUbt26kSdPHrJly8aaNWto27YtGzZsoFSpUpQqVSrV62QvayH+HVlKXQghhBBCCCGEECKNfDtTsWzZshQoUAALCws2b95MxYoV6dSpE23atKFChQpyM1MIIf6Cu7s73bt3Z+nSpbi6uvLkyRMMDAx48eIFHh4eHD58mICAAKpWrUq3bt0YNmyYpiNnGp8/f6ZNmzYAbN68mbx589KnTx+ePHlCzpw5uXjxIgA+Pj60atWKixcvUr16dVnSWYh/6OnTp+zZs4epU6cC0Lt3b7JkycLKlSuJjo7m0qVLzJ8/n7t37zJp0iRmz56t4cRCZA5SGBdCCCGEEEIIIYRII6rZO46Ojly9ehUfHx8ATExMaNiwISdPnqRFixa0b9+ezp07kz9/fg0nFkKIH8vDhw9p27Yt5ubm3L59G3d3d9q2bas+vyYnJxMfH09KSgrGxsbq18nsybRz4cIFbG1tadiwIdu2bWPPnj04OzuTNWtWKleuTHh4OG/fvqVGjRqsXr1a3nsh/oWdO3diZ2dHyZIlcXZ25uPHjxgaGmJjYwN8PaeFhoayf/9+Zs6cibm5OQ8fPpS+JsR/JIVxIYQQQgghhBBCiDT07t07mjVrxuTJk+nSpQvdu3cnKSkJDw8PVq1ahYODA3ny5MHPzw9zc3NNxxVCiB/Ku3fvuHbtGnZ2drx8+ZJOnToxbtw4atWqBfxWAA8ODiZnzpyYmppqOHHmdObMGbp3786QIUOYO3cuDx8+ZMmSJcTFxfHhwwdGjhxJo0aN0NfXl8K4EP/Cx48fuXXrFlu3buXw4cMkJyfTpUsXfv3111TPS0hI4M6dO3z58oX69evL6gxC/EdSGBdCCCGEEEIIIYRIQ1FRUezZs4fWrVujr69Pq1at2Lp1K3Xq1MHHx4d9+/bRq1cvateuremoQgjxQ0pMTOSXX36hUKFC+Pn5ERQUROvWrZk8eTJ58uTh/v379OzZk3PnzpEjRw5Nx81UFEVBURS0tbVZsGABq1evZvny5XTu3BlA9nEXIo29fPkSHx8fdu/ezeHDh7Gzs2Pp0qUYGRlpOpoQmZJ8ggkhhBBCCCGEEEKkody5c9OpUyf1kpf6+vq8f/8egE+fPnHmzBlcXV01nFIIIX5MycnJ6OnpsXLlSoyMjLh+/TonT57kxIkTtGrVisaNG3Pjxg0sLS3JkSOHzFZOY1paWmhpaQEwceJEnj17xsCBA1EUBWtraw2nEyJz+Pa8lS9fPrp06ULlypVp2rQpa9eupUSJEkyePJlRo0ZpOKkQmY/MGBdCCCGEEEIIIYRIJ5GRkbRs2ZKSJUtSuHBh3N3dsbe3x8nJSdPRhBDih/LtHuLJycmEhYVRvHhxAGJjY/Hx8eHs2bP4+PhQpEgRdu7ciY6OjhTG00BQUBBBQUE0atSI9+/fkz9//lTHra2tSUpKYvfu3an2dRdC/DfTp0+naNGiDBw4EIAvX75w//599u7dy549e0hOTub48eNUqlRJw0mFyDykMC6EEEIIIYQQQgjxLymKQkpKCjo6OgQGBhIYGMjDhw+xtramevXqAPj4+DBu3DhMTU2pWbMmc+fO1XBqIYT4sSiKop6lPHPmTI4dO4aRkRFmZmbMmDGDqlWrAvD+/XuyZs1KSkoK+vr6stduGrG2tub48eNkzZqVMmXKANC8eXOMjY1p2rQpL1++pHPnzrRu3ZqtW7eSM2dODScWIuNSDeaJj49nyJAh7Nixg2bNmjF37lxq1KgBQHR0NDdv3mTz5s0sXryYggULaji1EJmHFMaFEEIIIYQQQggh/qO4uDgsLCzQ0dHBzMyMO3fu0KpVK9atW4e5uTkAb9++lWKCEEL8CVWBe86cObi5uTFw4EBMTEwYMmQIhoaGdOvWDVdXVzmHppM3b97w7t07rl+/zqNHj3j9+jWXLl1CX1+fgIAAKlWqRHBwMO/fvyc8PFz9uSaE+PdGjRrFp0+fePDgAV++fOHOnTv07duXJUuWkCtXLgBiYmLInj27rIwhRBqSwrgQQgghhBBCCCHEP/Tp0ydWr17NxIkTAXBycuLmzZvs37+f9+/fc/36debPn09AQADjx49n/vz5Gk4shBA/JtVs8Y8fP1KiRAk2btxIx44dGTFiBAEBAVhbWzN9+nSMjIwYOnQoLi4umo7803jx4gWGhoacPHmS5ORkDA0N6dGjh8zUF+JfUhW49+/fz/Dhw7l06RKFChUiJiaGM2fOMHnyZGJjY5k5c6bsLy5EOpHCuBBCCCGEEEIIIcQ/dPz4caytrSlevDjOzs7o6+vz6tUr7OzsgK83PsPCwvDw8GDu3LkkJycTGhpK1qxZNZxcCCF+TDt27GDXrl14eXnx6NEjGjRowIkTJ6hWrRpdu3YlKCiI1q1bs2DBAk1HzfT+f7NTv136Xgjxzw0ePJiPHz/i7u6ufiwlJQUPDw+6d++Ovr4+ZcuWxd3dXb29gRAibcjaC0IIIYQQQgghhBD/UMOGDfH29qZevXrY2dkxePBgjh07pj6upaVF4cKFGTlyJCdPnmTLli1SFBdCiN9JSUkBvi6l3r59e9q1a0dCQgIHDhygdu3alCtXDoAmTZpgZWWlni2uep1IH98Wxf9sXp0UxYX4b0qVKsX58+d59+6d+jFtbW1atmzJgAED2LdvH0ZGRixevFhzIYXIpKQwLoQQQgghhBBCCPEPGRsb07BhQ5YuXcrWrVtp2LAhR44cYdCgQXz8+FFdNNDT06Nq1ap07NhRw4mFEOLHoyrAOjo68vLlS0aNGoW+vj5Zs2bl3r17JCYmoigKW7ZswdjYGD09PRRFkb12vyMpggvx32zatImgoKBUjw0cOJAiRYowaNAgTp06pX48MjISLy8vypQpQ7t27fDz8+Pt27ffO7IQmZpcQQghhBBCCCGEEEL8A9/Onjt48CAdO3ZkwYIFrFy5kmvXrlGyZEmWLl2qwYRCCPHjU51LDx8+zL59+8iRI4f6WIsWLTAxMcHS0pJq1aoRExPDpEmTNBVVCCH+lYSEBNavX09UVBQA79+/ByB37tyMHTuWd+/eMXfuXLp160b//v3p1q0bVapUoXTp0lhYWJCcnIyOjo4mfwUhMh3ZY1wIIYQQQgghhBDiH7h48SINGzZkypQprFmzhpiYGODrzc/79+/j7u7O7t27SUlJYe/evdSpU0fDiYUQ4sfy7R7Vy5Yt4/Xr18ydO5fk5GS0tLTQ0tLi7NmzXLlyBW1tbdq1a0elSpVISkpCV1dXw+mFEOKfu3PnDg0bNmTBggUMHDgQXV1dHjx4gJubGyEhITx69Iju3bszaNAgTExMqFWrFjVr1mTlypWaji5EpiKFcSGEEEIIIYQQQoi/6fz581hbW9OzZ082b97M/v37adeuXarnfPjwgZs3b+Lq6sr06dOpWbOmhtIKIcSPbcuWLWzatAltbW2OHTuGqamppiMJIUSaiIqKIjExkfz58wPw+fNnxo4dy65duyhfvjxz5syhefPmf3hdWFgYy5cv59ixY9y9e1e2jhAijUmPEkIIIYQQQgghhPibGjduzMKFC9mzZw96eno8efKEO3fuqJcEVhQFU1NTmjRpgqenpxTFhRDif/j06RMRERFcu3aNGTNmcPv27VTHk5OTNZRMCCH+m3bt2mFlZcWpU6f48OEDWbNmZf369dy8eZO8efPSqlUrevTowePHj1O9Ln/+/DRo0IAtW7ZIUVyIdCAzxoUQQgghhBBCCCH+geTkZGrXrk358uU5c+YMFhYW9OzZk+bNm1OwYEFu3LhBu3btCAkJIUuWLJqOK4QQP7T3798za9Ys3N3dsbS0pFevXjRt2pSCBQtqOpoQQvxrd+7cYeTIkfj6+tK/f39GjBiBhYUFhoaGAJw4cYIJEybw4sULhgwZwty5c9HT09NwaiEyPymMCyGEEEIIIYQQQvxNKSkpaGtr8+nTJ4yNjQkICGD69OkEBATQrFkzypYty549e6hduzbr1q3TdFwhhPihqM6hAPHx8YSFhVGiRAkAbt++zdSpU7l9+zZ16tShf//+tG7dWpNxhRDiX/n2XHfgwAHs7e358uULY8eOpWfPnhQuXBgdHR1SUlKYP38+165d4/Dhw8DX1Ye0tLQ0GV+ITE0K40IIIYQQQgghhBD/wLfLpqtueh48eJClS5cCYG5ujru7u8byCSHEj27+/PmcPn2a58+fkzVrVlavXk39+vUB8PDwwMHBAWdnZwYMGKDhpEII8fepitpv3rzh06dPFC5cWH2t6OLiwuzZsylVqhSTJ0+mRYsW5M6dG/itkJ6cnIyOjo4mfwUhMj0pjAshhBBCCCGEEEL8S7+/gRkREUGOHDnUy2QKIYT4SnW+XLduHcuWLWPYsGHUrFmTevXqsXnzZmxtbTUdUQgh/jVVUTw5ORlbW1vKlCnDoEGDyJs3r7o4/u7dO4YMGcL+/ftp3749w4cPp0mTJhgYGGg4vRA/D21NBxBCCCGEEEIIIYTIaFTzDFRF8eTkZADy588vRXEhhPgTOjo6KIrCnDlzmDBhAvb29nh5eVG9enX69OlDQkICU6dOJSAgAPg6g1IIITIK1bXh2LFjCQ4OpmbNmpibm6uL4l++fMHMzIy9e/dy5coVnjx5Qs+ePTUZWYifkq6mAwghhBBCCCGEEEJkNFpaWqn2gJRlL4UQ4v8vNDSUEiVK0K5dO2JiYli6dCn79u1DV1eXDx8+8PDhQ65fv07lypXVxSQhhPjRqbbXefr0KRs2bOD8+fPUqlULgPj4eA4dOsTZs2f59OkTs2fPplatWty/f5+HDx9iYGAgS6gL8R3JUupCCCGEEEIIIYQQf0FV/L5//z5Hjx5FT08PgCFDhmBsbKzhdEIIkTGo9s/9+PEjlpaWTJo0ibNnz5KSksL+/fsB8Pf3p3Xr1ly+fJmSJUumGnwkhBAZwcSJEwkJCcHNzQ34unT64sWLWb16NZaWlnz8+JH4+Hjc3NyoWLGihtMK8XOSYXdCCCGEEEIIIYQQfyI5ORktLS18fX3p0aMHHh4e+Pv7M2nSJPUNTyGEEH8uKCiIUaNG8eXLF/XsbxMTExYvXsz27ds5fvw4/fv3Vz93zJgxtG3blpIlS5KSkiJFcSFEhmNqasr79++Ji4sDYNq0aVy6dImFCxdy8eJFVqxYQVRUFOHh4RpOKsTPSwrjQgghhBBCCCGEEH9CtaTl0KFDadWqFdevX6d58+bkzZuXjh07AnDq1CliYmI0GVMIIX5IT58+ZfPmzZQoUYINGzaoH2/SpAlNmjQhW7ZsLF68mMqVK9O1a1e0tbVZu3atBhMLIcR/U7BgQS5fvsy8efMYPHgw69evZ9SoUfTu3RuAqlWrUrlyZV68eKHhpEL8vGQpdSGEEEIIIYQQQoi/cPPmTWxtbbl06RJmZmYUKVIER0dHRo4cyYsXL1i4cCGdOnWiefPmmo4qhBA/lJSUFEJDQ1m7di1r166lYsWKLFiwgLp16wJw8eJFTpw4QZYsWbCwsKBx48bkypVL9toVQmRoCxcuZNGiRdSqVYv+/fvTrVs39TF/f3+aN2/O9evXZcsIITRECuNCCCGEEEIIIYQQfyEsLIzmzZvj5eXFli1bOHr0KFevXkVfX58nT57Qtm1btmzZQr169TQdVQghfiiqgk9AQAD79u1j3rx5AHTu3Jlly5ZRqFAhDScUQoj0oSgKX758wcjISP1YVFQUNjY2lChRgk2bNpGSkqLeZkII8f1IYVwIIYQQQgghhBDiG6rZiiEhIWTPnp2hQ4eiKApeXl4cPXqUBg0aAF+XWL937x6XLl3ScGIhhPixqAo+X758wdLSkt69e2Nubk5iYiK//vorDx8+ZMqUKTg5OaGrq6vpuEIIka7Onz/P2rVrCQ4OxsfHBwMDAymMC6EhUhgXQgghhBBCCCGE+D+qGY5BQUG0bNmSS5cuER0dja2tLbdu3WLJkiVkz56dK1eu4OnpiZeXF5aWlpqOLYQQP6Rx48bh4+PD9evXga8F8xcvXjBnzhx+/fVXsmbNyrFjx2jYsKGGkwohRPq5ePEihw8fpkuXLtStW1e2jBBCg2Q4nhBCCCGEEEIIIcT/Ue3z6O7uTvXq1SlQoAAFChTg2LFjrFixgjlz5pDn/7V371FZVfkfxz8PiCUgcRXUVEyuCipmmShGadyS8BalKAI1ambEmBPj/NDsMmStMrWa0bRAHRhI0y4yMuIFvCZaASZayChqYllesTBuvz9cPInircEB4f1a6/njnLPZ57sf13rWcX/Pd+927eTj46OFCxeSFAeAqzA3N5ejo6Px2GAwyNnZWZMmTdKXX36pPn36qFu3bo0YIQDcfIMGDarzAhBJcaDxsE4DAAAAAACALlQySlJRUZHat28vFxcX1S605+TkpMTERP3444/KzMxUSkqKhg4d2pjhAkCT16tXL2VkZGjJkiWqrKw0vnzk5eWldu3aKSYmRh07djT+/gIAANxMLKUOAAAAAABwkZEjR2rVqlW66667tGnTJnXo0EGSVFFRITMzM2O72mXXAQBX9uyzz+rzzz/XkCFDFBoaqq5du+r999/XW2+9pe+//549dgEAwP8MiXEAAAAAAICLlJSUaPXq1XrllVfUunVrzZ07V8OHD5d0oaqcJA4AXL9Tp05p3rx5ysrK0nfffafDhw+re/fueu655zR+/HhVVlaqVSt2/AQAADcfiXEAAAAAAIB6fPPNN5o9e7aWLVsmf39/zZs3Tz169GjssACgSaqqqpKpqal27typjIwMbdmyRV5eXvL399cjjzyiAwcO6Pjx4zp58qS8vLzUqVOnxg4ZAAC0MCTGAQAAAABAi1ZbBf7LL78oPz9fNjY2On/+vHr27ClJys7OVmJiotatW6cFCxZowoQJjRwxADQttb+jJ06ckLe3t7y9vWVjY6MjR46ourpavXv31qxZs+Tg4NDYoQIAgBaMxDgAAAAAAGixaisci4qK9Mwzz2jHjh2qrKxU79691a9fPz355JPy8PDQTz/9pNWrVysgIEDt27dv7LABoEmpqamRwWBQZGSkTp06pQ8//FC33367Tpw4oWXLlumtt95SRESE/vrXvzZ2qAAAoAUjMQ4AAAAAAFq8++67T507d9bzzz+vNm3aKCUlRTk5OXJ2dtayZcvYVxwAruHs2bMKCwtTSEiIpk2bZqwil6RFixYpISFBBQUFcnR0bORIAQBAS8X/6gAAAAAAQIuWm5urI0eO6O2331bfvn3Vo0cPJSYm6oUXXtCqVas0e/bsxg4RAJq0qqoqtW3bVt27d9eaNWtUUVEhExMTVVVVSZIGDhyoO+64QwcPHmzcQAEAQItGYhwAAAAAALRI1dXVkiRTU1MZDAZ9+eWXkqSKigpJUkBAgGJiYrR//36x4B4A/Kb2N/Hbb7+VdOF3VJIeeughbd26VU899ZROnjwpU1NTVVRUaPPmzSorK1O/fv0aLWYAAAAS4wAAAAAAoEWqXeLX1dVVXbp00YoVK/Trr7/KzMysTrujR4/KYDA0RogA0OTU7ie+bds2hYSEaMaMGdq9e7ckKSwsTJ988omys7PVpUsXjRkzRv3799fs2bP1xhtvSJIqKysbM3wAANCCscc4AAAAAABoEaqqqmRqaqqcnBzl5eVpzJgxcnBwkCT961//0mOPPSYXFxfNnDlTdnZ2Kiws1PPPP69PPvlEDzzwQCNHDwBNy+TJk7VgwQIFBgbK3Nxcfn5+evzxx+Xk5KQzZ84oJSVFGzZskKenp/r376/g4ODGDhkAALRwJMYBAAAAAECL0rlzZ1VXV2vw4MEKCgrSqFGjZGZmpuLiYs2cOVPp6enq0KGD7OzsNHLkSCUkJDR2yADQ5Kxbt05jx45Vp06d1LVrV5WUlKhbt24aNWqUHnnkEbVq1eqyv6mtNgcAAGgMJMYBAAAAAECLcfjwYYWGhuo///mPAgICdOrUKXl4eOjxxx/XwIEDJUknTpzQvn371LNnT5mbmxuXXAcA1JWdna3Fixdr/PjxKisr04IFC3T69Gn17dtX4eHhGjRoUGOHCAAAYERiHAAAAAAAtCiFhYWaPHmy3Nzc5ODgoI0bN6p169YaPHiwwsPD5e7ubmxLdSMAXK6yslImJiYqKyvT9OnTtXbtWmVkZMjGxkbvvPOOcnJyVFFRodDQUMXHx/M7CgAAmgQS4wAAAAAAoEWoqalRdXW1TE1N9Y9//ENpaWmaPXu2LC0t9frrr+uLL75Qx44d9cADD2j8+PGysrJq7JABoEmofUmovLxcFRUVatu2raqqqmRqaipJio+P17Fjx/Tuu+/K0tJSubm5mjNnjoYPH67HHnuMl4wAAECTQGIcAAAAAAA0W1dLxkydOlUfffSRPvroI/Xt21fLly/Xhx9+qPz8fKWmpqpv377/42gBoGmbPHmyNmzYoCFDhqhLly6qrq5WeHi4cnNz9dZbb+m+++7T3LlzGztMAACAepEYBwAAAAAAzd6SJUtkb2+vPn366MSJE+rRo4ckacaMGTp79qwxkXPmzBlt2LBBw4YNa7xgAaAJKigoUO/eveXo6CgbGxsFBwdr37592rNnj3x9fZWWliYTExP98MMPsrGxoUIcAAA0Oa0aOwAAAAAAAICbobZafMmSJYqOjpYkDRo0SHfccYf27dunsWPHqqCgQJ999pkqKio0b948WVlZkRQHgHo4OTnppZde0ldffaWamhpVVlYqOTlZknT06FHFxMTo/PnzsrW1VXV1NYlxAADQ5JAYBwAAAAAAzVJtUubgwYPq3r27OnfuLGtra0VFRen48ePKzc2Vu7u78vPz5efnp1atWqm6ulomJiaNHDkAND3t2rVTQkKCPv/8c6Wnp2vnzp16/PHHNXr0aIWHh6tXr16SxO8oAABoslhKHQAAAAAANHurV6/WihUrdOjQIdna2iouLk4DBw5s7LAA4Ja1evVqLV++XPv27dOdd96piIgIjRgxorHDAgAAuCIS4wAAAAAAoEU4efKkPvzwQ2VkZKi0tFR9+/bVuHHj5Ovr29ihAcAt6dSpU1q+fLnWrFmj4uJiDR48WHPmzGnssAAAAOpFYhwAAAAAALQo+/fv1z//+U9t3LhRNTU1uvfeexUXF6f27ds3dmgAcEsqLi7WwoUL5e/vr5CQENXU1LDHOAAAaHJIjAMAAAAAgBZp27ZtSktL0/r167V06VLdfffdjR0SAAAAAOAmITEOAAAAAABarIqKCuXm5mrAgAGNHQoAAAAA4CYiMQ4AAAAAAAAAAAAAaNZMGjsAAAAAAAAAAAAAAABuJhLjAAAAAAAAAAAAAIBmjcQ4AAAAAAAAAAAAAKBZIzEOAAAAAAAAAAAAAGjWSIwDAAAAAAAAAAAAAJo1EuMAAAAAAAAAAAAtmLOzs+bOnWs8NhgM+vjjjxstnhs1a9Ys9e7du7HDANDEkRgHAAAAAKABXDqZ2NI05PijoqI0bNiwBukLAACgITWl5xSDwWD8WFhYyNXVVVFRUfriiy/+675LS0sVHBzcAFE2vPqS9tOmTdP69esbJyAAtwwS4wAAAACAZicqKkoGg0GTJk267NrTTz8tg8GgqKioBr3nzp07NWHChAbt81Zy6fivp8ro4MGDMhgMysvLq3N+3rx5Sk5ObvggAQAAmpmkpCSVlpZqz549evfdd1VWVqZ+/fpp6dKl/1W/Tk5Ouu222xooystVVVWpurq6wfqztLSUnZ1dg/UHoHkiMQ4AAAAAaJY6deqktLQ0/fLLL8Zz5eXlSk1NVefOnRv8fg4ODjI3N2/wfm8VDTn+O+64Q9bW1g3SFwAAwP/S119/reDgYFlaWsrR0VHjxo3Tjz/+aLy+YsUKeXt7q02bNrKzs9OQIUN07tw5SVJ2drbuvfdeWVhYyNraWgMGDFBJSclV72dtbS0nJyc5OzsrICBAK1asUEREhKZMmaKTJ08a223ZskV+fn5q06aNOnXqpNjYWON963PxS46+vr6Kj4+vc/348eMyMzPTpk2bJEnnz5/XtGnT1LFjR1lYWKhfv37Kzs42tk9OTpa1tbU+/fRTde/eXbfddpu2bNkiMzMzHTt2rE7fcXFx8vPzqzcuZ2dnSdLw4cNlMBiMx5cupV5b2Z+YmChHR0dZW1vrpZdeUmVlpf70pz/J1tZWd955p5KSkur0f/jwYYWHh8va2lq2trYKCwvTwYMHr/g9Abi1kBgHAAAAADRLffr0UadOnbRy5UrjuZUrV6pz587y8fGp0zYzM1MDBw6UtbW17OzsNHToUBUXFxuvL126VJaWlioqKjKemzx5sjw8PPTzzz9Lqn9fxoULF2ro0KEyNzeXp6entm/frv3798vf318WFhby9fWtc5/6luaMi4uTv7+/8djf31/PPPOM4uLiZGNjI0dHRy1atEjnzp1TdHS02rZtKxcXF61Zs+aK380777wjLy8v4/HHH38sg8GgBQsWGM8NGTJECQkJkqTi4mKFhYXJ0dFRlpaWuueee7Ru3bo6fV48/itNWF6qa9eukiQfHx8ZDAbjOC/9Hn7vmK81MQ0AANCQTp06pQcffFA+Pj7atWuXMjMz9f333ys8PFzSheXJR48erZiYGO3du1fZ2dkaMWKEampqVFlZqWHDhun+++9XQUGBtm/frgkTJshgMNxwHH/84x919uxZZWVlSbrwLBcUFKSRI0eqoKBA6enp2rJli6ZMmXJd/UVERCgtLU01NTXGc+np6erQoYMxgT1lyhRt375daWlpKigo0KOPPqqgoKA6z88///yzXnvtNS1evFh79uxR3759ddddd2nZsmXGNhUVFUpJSVFMTEy9sezcuVPSb5Xytcf12bBhg44ePapNmzZpzpw5euGFFzR06FDZ2Nhox44dmjRpkiZOnKgjR44Y7x0YGKi2bdtq8+bN2rp1qywtLRUUFKRff/31ur4rAE0biXEAAAAAQLMVExNTpwrkgw8+UHR09GXtzp07p6lTp2rXrl1av369TExMNHz4cOPyjpGRkQoJCVFERIQqKyuVkZGhxYsXKyUl5apV0i+//LIiIyOVl5cnDw8PjRkzRhMnTtT06dO1a9cu1dTUXPeE5MWWLFkie3t75ebm6plnntFTTz2lRx99VL6+vvryyy8VEBCgcePGGZP2l7r//vtVWFio48ePS5JycnJkb29vrOqpqKjQ9u3bjYnqsrIyhYSEaP369frqq68UFBSk0NBQHTp0qN7+r3fCMjc3V5K0bt06lZaW1nmJ4b8d87UmpgEAABraO++8Ix8fHyUmJsrDw0M+Pj764IMPtHHjRn377bcqLS1VZWWlRowYIWdnZ3l7e2vy5MmytLTUmTNndPr0aQ0dOlTdunWTp6enxo8f/7tWOvLw8JAkY6Xzq6++qoiICMXFxcnV1VW+vr6aP3++li5dqvLy8mv2Fx4erqNHj2rLli3Gc6mpqRo9erQMBoMOHTqkpKQkLV++XH5+furWrZumTZumgQMH1nkWr6io0N/+9jf5+vrK3d1d5ubmeuKJJ+q0+eyzz1ReXn7FZzYHBwdJv1XK1x7Xx9bWVvPnz5e7u7tiYmLk7u6un3/+WX/5y1/k6uqq6dOnq3Xr1sZxpaenq7q6WosXL5a3t7c8PT2VlJSkQ4cO1al+B3DrIjEOAAAAAGi2xo4dqy1btqikpEQlJSXaunWrxo4de1m7kSNHasSIEXJxcVHv3r31wQcfaPfu3SosLDS2WbhwoUpLSxUbG6snnnhCs2bN0t13333V+0dHRys8PFxubm6Kj4/XwYMHFRERocDAQHl6eurZZ5/9XZNsvXr1UkJCgnFC7/bbb5e9vb3+8Ic/yNXVVTNnztRPP/2kgoKCev/ey8tLtra2ysnJkXRh2c7nnnvOeJybm6uKigr5+voa7zdx4kR5eXnJ1dVVL7/8srp166ZPP/203v6vd8Ky9rydnZ2cnJxka2vbYGO+1sQ0AABAQ8vPz9fGjRtlaWlp/NQmqYuLi9WrVy8NHjxY3t7eevTRR7Vo0SLjcue2traKiopSYGCgQkNDNW/ePJWWlv6uOGoru2urzfPz85WcnFwnrsDAQFVXV+vAgQPX7M/BwUEBAQFKSUmRJB04cEDbt29XRESEJGn37t2qqqqSm5tbnXvk5OTUWR2pdevW6tmzZ52+o6KitH//fn3++eeSLiy5Hh4eLgsLi9819ov16NFDJia/pcEcHR3l7e1tPDY1NZWdnZ1++OEHSRe+p/3796tt27bGMdja2qq8vLzOOADculo1dgAAAAAAANwsDg4Oevjhh5WcnKyamho9/PDDsre3v6xdUVGRZs6cqR07dujHH380VoofOnTIuOS4jY2N3n//fQUGBsrX11d//vOfr3n/iyf+HB0dJanOZJyjo6PKy8t15swZWVlZXfe4Lu63dkLv0n4lGSf5LmUwGDRo0CBlZ2dryJAhKiws1OTJk/X6669r3759ysnJ0T333GOshi8rK9OsWbOUkZFhrHT65ZdfrlgxfjPc6Jgvnpi+VHFxsdzc3G5yxAAAoKUpKytTaGioXnvttcuutW/fXqampsrKytK2bdu0du1avf322/q///s/7dixQ127dlVSUpJiY2OVmZmp9PR0JSQkKCsrS/fdd98NxbF3715Jv21bU1ZWpokTJyo2NvayttdbkR4REaHY2Fi9/fbbSk1Nlbe3t/FZrKysTKampvriiy9kampa5+8ufhZr06bNZUvDt2vXTqGhoUpKSlLXrl21Zs2aBqvONjMzq3NsMBjqPVf77F9WVqa7777b+ALAxa5WmQ7g1kFiHAAAAADQrMXExBiXK3/33XfrbRMaGqouXbpo0aJF6tChg6qrq+Xl5XXZXoKbNm2SqampSktLde7cObVt2/aq97544q12ErC+c7WTcSYmJnX2bpQuLDl5tX5r+7lav/Xx9/fXe++9p82bN8vHx0dWVlbGZHlOTo7uv/9+Y9tp06YpKytLb7zxhlxcXNSmTRuNGjXqf7rX4o2O+VoT0wAAAA2tT58++uijj+Ts7KxWrepPvxgMBg0YMEADBgzQzJkz1aVLF61atUpTp06VJPn4+MjHx0fTp09X//79lZqaesOJ8blz58rKykpDhgwxxlVYWCgXF5ffPbawsDBNmDBBmZmZSk1NVWRkpPGaj4+Pqqqq9MMPPxj3HL8RTz75pEaPHq0777xT3bp104ABA67a3szMTFVVVTd8n2vp06eP0tPT1a5duxt6aRXArYOl1AEAAAAAzVpQUJB+/fVXVVRUKDAw8LLrP/30k7755hslJCRo8ODB8vT0NC5pebFt27bptdde02effSZLS8vftTf4tTg4OFy2ZGZeXl6D30f6bZ/x5cuXG/cS9/f317p167R161bjOUnaunWroqKiNHz4cHl7e8vJycm4Z+WVXM+EZevWrSXppk1s7tmzR87OznJxcanzaYilOQEAQMt1+vRp5eXl1fkcPnxYTz/9tE6cOKHRo0dr586dKi4u1r///W9FR0erqqpKO3bsUGJionbt2qVDhw5p5cqVOn78uDw9PXXgwAFNnz5d27dvV0lJidauXauioiJ5enpeNZZTp07p2LFjKikpUVZWlkaNGqXU1FT9/e9/l7W1tSQpPj5e27Zt05QpU5SXl6eioiJ98sknN/Q8a2FhoWHDhmnGjBnau3evRo8ebbzm5uamiIgIRUZGauXKlTpw4IByc3P16quvKiMj45p9BwYGysrKSq+88oqio6Ov2d7Z2Vnr16/XsWPH6n1u/70iIiJkb2+vsLAwbd68WQcOHFB2drZiY2N15MiRBrsPgMZDYhwAAAAA0KyZmppq7969KiwsvGxpR+nCEul2dnZ67733tH//fm3YsMFYsVPr7NmzGjdunGJjYxUcHKyUlBSlp6drxYoVDRrrgw8+qF27dmnp0qUqKirSCy+8oK+//rpB71GrZ8+esrGxUWpqap3E+Mcff6zz58/XqdRxdXXVypUrlZeXp/z8fI0ZM+aq1ejS9U1YtmvXTm3atFFmZqa+//57nT59usHGd62JaQAAgN8rOzvbWNld+3nxxRfVoUMHbd26VVVVVQoICJC3t7fi4uJkbW0tExMTWVlZadOmTQoJCZGbm5sSEhL05ptvKjg4WObm5tq3b59GjhwpNzc3TZgwQU8//bQmTpx41Viio6PVvn17eXh46KmnnpKlpaVyc3M1ZswYY5uePXsqJydH3377rfz8/OTj46OZM2eqQ4cONzTuiIgI5efny8/P77Il2JOSkhQZGannnntO7u7uGjZsmHbu3HldS7WbmJgoKipKVVVVdSrRr+TNN99UVlaWOnXqJB8fnxsaw9WYm5tr06ZN6ty5s0aMGCFPT0898cQTKi8vp4IcaCZYSh0AAAAA0OxdbSLLxMREaWlpio2NlZeXl9zd3TV//vw6FdPPPvusLCwslJiYKOnCPuGJiYmaOHGi+vfvr44dOzZInIGBgZoxY4aef/55lZeXKyYmRpGRkdq9e3eD9H8xg8EgPz8/ZWRkaODAgZIuTJpaWVnJ3d29TlX1nDlzFBMTI19fX9nb2ys+Pl5nzpy5av9vvvmmpk6dqkWLFqljx471Vpi3atVK8+fP10svvaSZM2fKz8+vwfaUrJ2Yjo+PV0BAgM6fP68uXbooKChIJibUCQAAgN8nOTlZycnJV7xe+0JhfTw9PZWZmVnvNUdHR61ateqGYrl0C56rueeee7R27dorXr/0Wa2+voODg694TzMzM7344ot68cUX670eFRWlqKioK97/u+++U0hIyHVteRMaGqrQ0NA652bNmqVZs2YZj+v7N6rvOfPScTs5OWnJkiXXjAHArclQcyO/nAAAAAAAAAAAAEADOH36tHbv3q2HHnpIn376qR566KHGDglAM0bFOAAAAAAAAAAAAP7nwsLClJubq0mTJpEUB3DTUTEOAAAAAAAAAAAAAGjW2FQLAAAAAAAAAAAAANCskRgHAAAAAAAAAAAAADRrJMYBAAAAAAAAAAAAAM0aiXEAAAAAAAAAAAAAQLNGYhwAAAAAAAAAAAAA0KyRGAcAAAAAAAAAAAAANGskxgEAAAAAAAAAAAAAzRqJcQAAAAAAAAAAAABAs0ZiHAAAAAAAAAAAAADQrJEYBwAAAAAAAAAAAAA0a/8PlpxoOXzX80gAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "

Training And Testing Models 🤖

" + ], + "metadata": { + "id": "2Hhk6gmmCmc2" + } + }, + { + "cell_type": "markdown", + "source": [ + "

Problem 1 : Predict User Behavior

\n", + "\n", + "* Model 1: Convolutional Neural Networks (CNN)\n", + "\n", + "* Model 2: Recurrent Neural Networks (RNN)\n", + "* Model 3: RNN+LSTM Hybrid Model" + ], + "metadata": { + "id": "XFZWiWcqCxcS" + } + }, + { + "cell_type": "code", + "source": [ + "# Define features and target\n", + "X = data[['Age', 'Family size', 'Monthly Income', 'Occupation']]\n", + "y = data['Output']\n", + "\n", + "# Split data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "\n", + "# Scale the feature data\n", + "scaler = StandardScaler()\n", + "X_train = scaler.fit_transform(X_train)\n", + "X_test = scaler.transform(X_test)" + ], + "metadata": { + "id": "_4h8WUuxcTE7" + }, + "execution_count": 21, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "**Model 1: Convolutional Neural Networks (CNN)**" + ], + "metadata": { + "id": "s1QEt4sqG-Ng" + } + }, + { + "cell_type": "code", + "source": [ + "# Define a CNN model\n", + "model_cnn = tf.keras.Sequential([\n", + " tf.keras.layers.InputLayer(input_shape=(X_train.shape[1], 1)),\n", + " tf.keras.layers.Conv1D(64, kernel_size=3, activation='relu', padding='same'),\n", + " tf.keras.layers.MaxPooling1D(pool_size=2),\n", + " tf.keras.layers.Conv1D(32, kernel_size=3, activation='relu', padding='same'),\n", + " tf.keras.layers.MaxPooling1D(pool_size=2),\n", + " tf.keras.layers.Flatten(),\n", + " tf.keras.layers.Dense(64, activation='relu'),\n", + " tf.keras.layers.Dropout(0.5), # Increased dropout rate\n", + " tf.keras.layers.Dense(1, activation='sigmoid')\n", + "])\n", + "\n", + "# Compile the model\n", + "model_cnn.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])\n", + "\n", + "# Reshape data for CNN input\n", + "X_train_cnn = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)\n", + "X_test_cnn = X_test.reshape(X_test.shape[0], X_test.shape[1], 1)\n", + "\n", + "# Train the model\n", + "history_cnn = model_cnn.fit(X_train_cnn, y_train, epochs=50, validation_data=(X_test_cnn, y_test), batch_size=16)\n", + "\n", + "# Evaluate the model\n", + "loss, accuracy_cnn = model_cnn.evaluate(X_test_cnn, y_test)\n", + "print(f'CNN Accuracy: {accuracy_cnn*100:.2f}%')\n", + "\n", + "# Predict on test data\n", + "y_pred = (model_cnn.predict(X_test) > 0.5).astype(\"int32\") # Threshold at 0.5\n", + "\n", + "# Accuracy and Loss curves\n", + "result=pd.DataFrame(history_cnn.history)\n", + "fig, ax=plt.subplots(nrows=1, ncols=2,figsize=(18,6))\n", + "ax=ax.flatten()\n", + "ax[0].plot(result[['accuracy','val_accuracy']])\n", + "ax[0].set_title(\"Accuracy\")\n", + "ax[1].plot(result[['loss','val_loss']])\n", + "ax[1].set_title(\"Loss\")\n", + "\n", + "plt.show()\n", + "\n", + "# Classification Report\n", + "print(\"\\nClassification Report:\\n\", classification_report(y_test, y_pred))" + ], + "metadata": { + "id": "mtULLuggc9w8", + "collapsed": true, + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "outputId": "93d199a1-507b-468d-ee11-f5bd479bcc72" + }, + "execution_count": 22, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/input_layer.py:26: UserWarning: Argument `input_shape` is deprecated. Use `shape` instead.\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 33ms/step - accuracy: 0.6526 - loss: 0.6567 - val_accuracy: 0.8462 - val_loss: 0.5009\n", + "Epoch 2/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.7430 - loss: 0.5632 - val_accuracy: 0.8462 - val_loss: 0.4108\n", + "Epoch 3/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.7755 - loss: 0.5158 - val_accuracy: 0.8462 - val_loss: 0.3987\n", + "Epoch 4/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.7514 - loss: 0.5168 - val_accuracy: 0.8462 - val_loss: 0.3985\n", + "Epoch 5/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.7422 - loss: 0.5333 - val_accuracy: 0.8462 - val_loss: 0.3916\n", + "Epoch 6/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.7731 - loss: 0.5095 - val_accuracy: 0.8462 - val_loss: 0.3846\n", + "Epoch 7/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.7387 - loss: 0.5478 - val_accuracy: 0.8462 - val_loss: 0.3798\n", + "Epoch 8/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.7973 - loss: 0.4611 - val_accuracy: 0.8462 - val_loss: 0.3645\n", + "Epoch 9/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.7466 - loss: 0.5656 - val_accuracy: 0.8333 - val_loss: 0.3817\n", + "Epoch 10/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.7336 - loss: 0.5065 - val_accuracy: 0.8333 - val_loss: 0.3607\n", + "Epoch 11/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.7811 - loss: 0.4789 - val_accuracy: 0.8462 - val_loss: 0.3552\n", + "Epoch 12/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.7745 - loss: 0.5053 - val_accuracy: 0.8462 - val_loss: 0.3554\n", + "Epoch 13/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.7839 - loss: 0.5041 - val_accuracy: 0.8462 - val_loss: 0.3572\n", + "Epoch 14/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.7564 - loss: 0.4766 - val_accuracy: 0.8333 - val_loss: 0.3409\n", + "Epoch 15/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.7938 - loss: 0.5138 - val_accuracy: 0.8462 - val_loss: 0.3471\n", + "Epoch 16/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8052 - loss: 0.4634 - val_accuracy: 0.8590 - val_loss: 0.3468\n", + "Epoch 17/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.7878 - loss: 0.5051 - val_accuracy: 0.8462 - val_loss: 0.3431\n", + "Epoch 18/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.7840 - loss: 0.4787 - val_accuracy: 0.8462 - val_loss: 0.3459\n", + "Epoch 19/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.7962 - loss: 0.4754 - val_accuracy: 0.8590 - val_loss: 0.3405\n", + "Epoch 20/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8070 - loss: 0.4673 - val_accuracy: 0.8590 - val_loss: 0.3351\n", + "Epoch 21/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8227 - loss: 0.4631 - val_accuracy: 0.8590 - val_loss: 0.3231\n", + "Epoch 22/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.7769 - loss: 0.5043 - val_accuracy: 0.8590 - val_loss: 0.3171\n", + "Epoch 23/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.7985 - loss: 0.4428 - val_accuracy: 0.8462 - val_loss: 0.3285\n", + "Epoch 24/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8038 - loss: 0.4464 - val_accuracy: 0.8590 - val_loss: 0.3336\n", + "Epoch 25/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8251 - loss: 0.4122 - val_accuracy: 0.8462 - val_loss: 0.3318\n", + "Epoch 26/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8008 - loss: 0.4557 - val_accuracy: 0.8718 - val_loss: 0.3113\n", + "Epoch 27/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8063 - loss: 0.4224 - val_accuracy: 0.8846 - val_loss: 0.3220\n", + "Epoch 28/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.7919 - loss: 0.4749 - val_accuracy: 0.8846 - val_loss: 0.3070\n", + "Epoch 29/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.7927 - loss: 0.4344 - val_accuracy: 0.8590 - val_loss: 0.3049\n", + "Epoch 30/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.7771 - loss: 0.4715 - val_accuracy: 0.8974 - val_loss: 0.3110\n", + "Epoch 31/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8305 - loss: 0.4193 - val_accuracy: 0.8974 - val_loss: 0.3194\n", + "Epoch 32/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8258 - loss: 0.4356 - val_accuracy: 0.9103 - val_loss: 0.2905\n", + "Epoch 33/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8259 - loss: 0.4501 - val_accuracy: 0.8846 - val_loss: 0.2903\n", + "Epoch 34/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8147 - loss: 0.4200 - val_accuracy: 0.8974 - val_loss: 0.2926\n", + "Epoch 35/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8203 - loss: 0.4041 - val_accuracy: 0.8974 - val_loss: 0.2970\n", + "Epoch 36/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8080 - loss: 0.4526 - val_accuracy: 0.8974 - val_loss: 0.2744\n", + "Epoch 37/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8130 - loss: 0.4173 - val_accuracy: 0.9103 - val_loss: 0.3102\n", + "Epoch 38/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8310 - loss: 0.4019 - val_accuracy: 0.8718 - val_loss: 0.3018\n", + "Epoch 39/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.8043 - loss: 0.4624 - val_accuracy: 0.8974 - val_loss: 0.3084\n", + "Epoch 40/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8160 - loss: 0.4123 - val_accuracy: 0.8846 - val_loss: 0.2947\n", + "Epoch 41/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8589 - loss: 0.3899 - val_accuracy: 0.9103 - val_loss: 0.3341\n", + "Epoch 42/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8201 - loss: 0.3989 - val_accuracy: 0.8718 - val_loss: 0.2710\n", + "Epoch 43/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8064 - loss: 0.4329 - val_accuracy: 0.8974 - val_loss: 0.2788\n", + "Epoch 44/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.7901 - loss: 0.4564 - val_accuracy: 0.8718 - val_loss: 0.2791\n", + "Epoch 45/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8381 - loss: 0.3954 - val_accuracy: 0.9103 - val_loss: 0.2716\n", + "Epoch 46/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8547 - loss: 0.3767 - val_accuracy: 0.8974 - val_loss: 0.2675\n", + "Epoch 47/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8238 - loss: 0.4119 - val_accuracy: 0.9103 - val_loss: 0.2781\n", + "Epoch 48/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8530 - loss: 0.3858 - val_accuracy: 0.9103 - val_loss: 0.2934\n", + "Epoch 49/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8392 - loss: 0.3818 - val_accuracy: 0.9103 - val_loss: 0.2667\n", + "Epoch 50/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8265 - loss: 0.4103 - val_accuracy: 0.8974 - val_loss: 0.2601\n", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.9018 - loss: 0.2444 \n", + "CNN Accuracy: 89.74%\n", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABbgAAAIQCAYAAABDtAgvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUdfbH8ffMpEMSElIhgdB7DUUQxYJSXNaCihVBxdUV15V1V3GxrO7Kb9eVdddVsaGisFasIIpRsNBD750QSAIhpJCezPz+uJlJAgFmkklmknxezzPP3Ny593vPJFEmZ86cY7LZbDZERERERERERERERBoZs6cDEBERERERERERERGpDSW4RURERERERERERKRRUoJbRERERERERERERBolJbhFREREREREREREpFFSgltEREREREREREREGiUluEVERERERERERESkUVKCW0REREREREREREQaJSW4RURERERERERERKRRUoJbRERERERERERERBolJbhFREREREREREREpFFSgltExM1efvllTCYTQ4cO9XQoIiIiIiLiJd5++21MJhPr1q3zdCgiIk2KEtwiIm42f/58EhISWLNmDXv37vV0OCIiIiIiIiIiTZYS3CIibnTgwAFWrFjB7NmziYyMZP78+Z4OqUb5+fmeDkFEREREREREpM6U4BYRcaP58+cTFhbGVVddxfXXX19jgjs7O5uHHnqIhIQE/P39iYuLY9KkSWRmZjqOKSoq4qmnnqJr164EBAQQGxvLddddx759+wBYtmwZJpOJZcuWVVv74MGDmEwm3n77bce+yZMn07JlS/bt28e4ceMIDg7m1ltvBeCnn37ihhtuoF27dvj7+xMfH89DDz1EYWHhGXHv3LmTG2+8kcjISAIDA+nWrRt//vOfAfjhhx8wmUx8+umnZ5y3YMECTCYTK1eudPn7KSIiIiLSnGzYsIGxY8cSEhJCy5Ytufzyy1m1alW1Y0pLS/nLX/5Cly5dCAgIoHXr1owYMYKlS5c6jklPT2fKlCnExcXh7+9PbGwsV199NQcPHmzgZyQiUv98PB2AiEhTMn/+fK677jr8/Py4+eabeeWVV1i7di2DBw8G4NSpU1x00UXs2LGDO++8k4EDB5KZmckXX3xBamoqERERlJeX86tf/YqkpCRuuukmHnzwQfLy8li6dClbt26lU6dOLsdVVlbG6NGjGTFiBP/85z8JCgoC4KOPPqKgoID77ruP1q1bs2bNGl588UVSU1P56KOPHOdv3ryZiy66CF9fX+655x4SEhLYt28fX375JX/729+45JJLiI+PZ/78+Vx77bVnfE86derEsGHD6vCdFRERERFp2rZt28ZFF11ESEgIf/rTn/D19eXVV1/lkksuYfny5Y4ZP0899RSzZs3i7rvvZsiQIeTm5rJu3TrWr1/PFVdcAcCECRPYtm0bDzzwAAkJCRw7doylS5eSkpJCQkKCB5+liIj7KcEtIuImycnJ7Ny5kxdffBGAESNGEBcXx/z58x0J7ueee46tW7eycOHCaongmTNnYrPZAJg3bx5JSUnMnj2bhx56yHHMo48+6jjGVcXFxdxwww3MmjWr2v6///3vBAYGOr6+55576Ny5M4899hgpKSm0a9cOgAceeACbzcb69esd+wD+7//+DwCTycRtt93G7NmzycnJITQ0FIDjx4/z7bffOiq9RURERESkZjNnzqS0tJSff/6Zjh07AjBp0iS6devGn/70J5YvXw7AokWLGDduHK+99lqN62RnZ7NixQqee+45Hn74Ycf+GTNm1P+TEBHxALUoERFxk/nz5xMdHc2ll14KGEnfiRMn8v7771NeXg7AJ598Qr9+/c6ocrYfbz8mIiKCBx544KzH1MZ99913xr6qye38/HwyMzMZPnw4NpuNDRs2AEaS+scff+TOO++sltw+PZ5JkyZRXFzMxx9/7Nj3wQcfUFZWxm233VbruEVEREREmrry8nK+/fZbrrnmGkdyGyA2NpZbbrmFn3/+mdzcXABatWrFtm3b2LNnT41rBQYG4ufnx7Jlyzh58mSDxC8i4klKcIuIuEF5eTnvv/8+l156KQcOHGDv3r3s3buXoUOHkpGRQVJSEgD79u2jd+/e51xr3759dOvWDR8f933IxsfHh7i4uDP2p6SkMHnyZMLDw2nZsiWRkZGMHDkSgJycHAD2798PcN64u3fvzuDBg6v1HZ8/fz4XXHABnTt3dtdTERERERFpco4fP05BQQHdunU747EePXpgtVo5fPgwAE8//TTZ2dl07dqVPn368Mc//pHNmzc7jvf39+fvf/87X3/9NdHR0Vx88cX84x//ID09vcGej4hIQ1KCW0TEDb7//nvS0tJ4//336dKli+N24403AtQ4bLIuzlbJba8UP52/vz9ms/mMY6+44goWLVrEI488wmeffcbSpUsdAyqtVqvLcU2aNInly5eTmprKvn37WLVqlaq3RURERETc6OKLL2bfvn3MnTuX3r1788YbbzBw4EDeeOMNxzG///3v2b17N7NmzSIgIIDHH3+cHj16OD6lKSLSlKgHt4iIG8yfP5+oqCheeumlMx5buHAhn376KXPmzKFTp05s3br1nGt16tSJ1atXU1paiq+vb43HhIWFAUZ/vaoOHTrkdMxbtmxh9+7dvPPOO0yaNMmxv+r0dcDxEcnzxQ1w0003MX36dP73v/9RWFiIr68vEydOdDomEREREZHmKDIykqCgIHbt2nXGYzt37sRsNhMfH+/YFx4ezpQpU5gyZQqnTp3i4osv5qmnnuLuu+92HNOpUyf+8Ic/8Ic//IE9e/bQv39/nn/+ed57770GeU4iIg1FFdwiInVUWFjIwoUL+dWvfsX1119/xm3atGnk5eXxxRdfMGHCBDZt2sSnn356xjr2AZITJkwgMzOT//73v2c9pn379lgsFn788cdqj7/88stOx22xWKqtad/+97//Xe24yMhILr74YubOnUtKSkqN8dhFREQwduxY3nvvPebPn8+YMWOIiIhwOiYRERERkebIYrFw5ZVX8vnnn3Pw4EHH/oyMDBYsWMCIESMICQkB4MSJE9XObdmyJZ07d6a4uBiAgoICioqKqh3TqVMngoODHceIiDQlquAWEamjL774gry8PH7961/X+PgFF1xAZGQk8+fPZ8GCBXz88cfccMMN3HnnnSQmJpKVlcUXX3zBnDlz6NevH5MmTWLevHlMnz6dNWvWcNFFF5Gfn893333Hb3/7W66++mpCQ0O54YYbePHFFzGZTHTq1ImvvvqKY8eOOR139+7d6dSpEw8//DBHjhwhJCSETz75pMZBNP/5z38YMWIEAwcO5J577qFDhw4cPHiQRYsWsXHjxmrHTpo0ieuvvx6AZ555xvlvpIiIiIhIMzB37lyWLFlyxv6nnnqKpUuXMmLECH7729/i4+PDq6++SnFxMf/4xz8cx/Xs2ZNLLrmExMREwsPDWbduHR9//DHTpk0DYPfu3Vx++eXceOON9OzZEx8fHz799FMyMjK46aabGux5iog0FCW4RUTqaP78+QQEBHDFFVfU+LjZbOaqq65i/vz5FBcX89NPP/Hkk0/y6aef8s477xAVFcXll1/uGAJpsVhYvHgxf/vb31iwYAGffPIJrVu3ZsSIEfTp08ex7osvvkhpaSlz5szB39+fG2+8keeee+68wyDtfH19+fLLL/nd737n6M137bXXMm3aNPr161ft2H79+rFq1Soef/xxXnnlFYqKimjfvr2jx3hV48ePJywsDKvVetakv4iIiIhIc/XKK6/UuH/y5Mn89NNPzJgxg1mzZmG1Whk6dCjvvfceQ4cOdRz3u9/9ji+++IJvv/2W4uJi2rdvz1//+lf++Mc/AhAfH8/NN99MUlIS7777Lj4+PnTv3p0PP/yQCRMmNMhzFBFpSCbb6Z8vFxERqYOysjLatGnD+PHjefPNNz0djoiIiIiIiIg0YerBLSIibvXZZ59x/PjxaoMrRURERERERETqgyq4RUTELVavXs3mzZt55plniIiIYP369Z4OSURERERERESaOFVwi4iIW7zyyivcd999REVFMW/ePE+HIyIiIiIiIiLNgCq4RURERERERERERKRRUgW3iIiIiIiIiIiIiDRKSnCLiIiIiIiIiIiISKPk4+kAGorVauXo0aMEBwdjMpk8HY6IiIiIuInNZiMvL482bdpgNqt+oznRa3wRERGRpsmV1/jNJsF99OhR4uPjPR2GiIiIiNSTw4cPExcX5+kwpAHpNb6IiIhI0+bMa/xmk+AODg4GjG9KSEiIh6MREREREXfJzc0lPj7e8XpPmg+9xhcRERFpmlx5jd9sEtz2jyyGhIToxa+IiIhIE6QWFc2PXuOLiIiING3OvMZXk0IRERERERERERERaZSU4BYRERERERERERGRRkkJbhERERERERERERFplJTgFhEREREREREREZFGSQluEREREREREREREWmUlOAWERERERERERERkUZJCW4RERERERERERERaZSU4BYRERERERERERGRRkkJbhERERERERERERFplJTgFhEREREREREREZFGSQluEREREREREREREWmUlOAWERERERERERERkUZJCW4RERERERERERERaZSU4BYRERERERERERGRRkkJbhERERERERERERFplJTgFhEREREREREREZFGSQluEREREREREREREWmUfDwdgIiIiMcV5cCSGdD9V9B9nKejqV8nD0LS03Dh7yG2r6ejcU3OEVjyKAy9FxIu9HQ0rinMhsUPQ/9bodOl7l9//TzYuABsNvevDWAyw5Cp0Pu6+llfpJE4ml3Iowu3UFBcxsf3Dfd0OCIiIiKCEtwiIiKw+lXYOB9S1zb9BPfSJ2H7Z2D2gete83Q0rtnwLuz4AqxljS/BvfVj2PIRpKyCBzeB2eK+tQtPwuI/QVmh+9asSeYu6H4V+PjX73VEvFiQn4Ufdx8HoKi0nABfN/63LCIiIiK1ogS3iIg0b+VlkPy2sZ25B4pyISDEoyHVm7x02PmVsZ2137Ox1MaR9cZ9Y4z9REXMOYdhz1LoNsZ9a29630huR3SDy2a6b92qvn4E8o7C9s+h7431cw2RRiA00JeW/j6cKi4j9WQBnaOCPR2SiIiISLOnBLeIiDRve76B3CMVX9ggbRN0uMijIdWb9e8a1c8AWQc8G4urbDY4usHYPnkQrFYwN6JRIierfL/Xvem+BLfNBuvmGttDpkLPX7tn3dMd2wHLnoW1byrBLc2ayWQiLiyQnel5HD5ZqAS3iIiIiBdoRH8ZioiI1IO1b1ZsmIy7o+s9Fkq9spZXVqoDFGRCcZ7HwnFZ7hHIP2ZslxXBqXTPxuOqqm8o7FlqJOnd4eBPkLkbfFtA34nuWbMmAyeByQKHV0HGtvq7jkgjEB8eBEBqVoGHIxERERERUIJbRESas6z9sC/J2E68w7i3Vwk3Nbu/gdxUCAyHgFbGvsZUxX36z6UxxW6zVSa0wzsBtupvNtSF/Q2avjfWb2udkFij/3bVa4o0U3FhgQCknqznvvciIiIi4hQluEVEpPmyJxk7XQ69rjO2jzTRCu51FUnJAbdC607G9slGlCQ+/efSmGLPSzd6ZJvMcNmfjX3r34Wy4rqva++pPviuuq3lDPs1Nn/QuKr/RdwsPsyo4D58UhXcIiIiIt5ACW4REWmeyophw3vG9uC7ILafsZ19CAqyPBdXfcg6AHvtlepTIKxD5f7Gwl7B7dvCuG9MsduT8aFx0ONqCI41WsTs+LJu69p7qscNgZg+dY/zfDqMhNadoeQUbP6w/q8n4qXsLUoOZ6mCW0RERMQbKMEtIiLN0/bPoeAEhLSFLqMhsJWRvIOm14c7+S3ABp0uM6q3wysS3I2lCrrqgMluY437xhI7VCbjwzqAxQcGVrTDqUurj6o91RuiehvAZIJBdxrb6+YaPxeRZqiyRYkquEVERES8gRLcIiLSPNmTi4mTjaQjQJsBxn1T6sNdtVJ9UEUitLFVcJ88AEXZYPGH7uOMfY0ldqhMxtvfWEi8wxjYmLICMrbXbs2qPdV7XuOWMJ3S72bwCYCMrXB4TcNdV8SL2BPcJwtKOVVc5uFoREREREQJbhERaX4ytsHhVWD2gYGTKve3GWjcH2lCCe6qlepdxxj7GlsFt73/dkwfiOhqbDeW2KF6BTdASJvKSvR1c2u3ZtWe6r4BdYvPFUHh0HtCRQy1jF2kkQsO8KVVkC8Ah7NUxS0iIiLiaUpwi4hI82Ov3u5+FQTHVO5vihXc9uc68I7KSnV7ojUnFcpKPBOXK+w/jzYDICzB2C48CYXZnorINadXcENlW5FN70PxKdfWO72nekOzfxJg26dNr1+9iJPsgyZTT6oPt4iIiIinKcEtIiLNS3EebP7A2B50Wu/i2L5gMkPeUchLb/jY3M1eqW6yVK9UD44Bn0CwWSHnsOfic1bVBLd/MLSINL5uLFXcp1dwA3S4BMI7QkkebP3YtfWS36ZaT/WG1nagMZS1vEr7G5FmJj7caFOiCm4RERERz1OCW0REmpfNH0LJKWjdBTpcXP0xvxYQ2d3YbgpV3FUr1UNiK/ebTJWV0N7ey9paDmmbjO22FS1kGlMP8aIcKKyocq5awW02Vw5sXPum8wMby4phw7vG9ulv0DQUk6ny2uvmgtXqmThEPChOFdwiIiIiXkMJbhERaT5stsq+wYPuNBJ1p3P04V7fcHHVh6qV6oNrSIQ2lj7cmXuMNyR8W1T2324ssUNlEj4owqg+r6r/rcbgzPTNcCTZufW2f3FmT3VP6HM9+IcaP4P9P3guDhEPia8YNHn4pCq4RURERDxNCW4REWk+Dq+BjK1Ge47+N9d8TJv+xn1jr+B2VKp3hg4jz3y8sVRB238Osf3AbDG2G0vsUHP/bbugcOh9nbFtr7Y/n3U19FT3BL8W0O+mipg0bFKaH3sFt1qUiIiIiHieEtwiItJ82JODvSdAYFjNx9gruI+ud75thLdxplK9sVRBH62opLcPAIUqsR9s8HBcVlP/7aocAxsXnn9gY8Y2SFl5Zk91TxlUMeBy12LIOeLZWEQamL0H95GThdga678VIiIiIk2EEtwiItI85J+AbZ8a24PvPPtxMb3B7Gu0gWgMAxhrkrq2olI9APqdpVK9sVRB2yu47f23ofHEDueu4AaIGwQxfaCsCDYuOPda9jctTu+p7ilRPaD9hcaw0vXveDoakQZlr+DOKy4jp7DUw9GIiIiING9KcIuISPOw8T0oL4HY/tA28ezH+fhDdE9ju7H24V5bpVI9KLzmY6pWQXtr9WF5KaRvMbZrquDOPWIMXfRm56vgdnZgY/Ep2HSOnuqeYh+UmfyO8fMSaSYCfC1EtPQHNGhSRERExNOU4BYRkabPaoV1bxnbziQHHW1KGmEf7oKsykr1Qed4rqHxYDJDWSHkpTdMbK46tsOobPYPhfCOlftbRBpDJ7HByUMeC88p9jYqZ6vgBuhzA/gFQ9Y+OLC85mO2fAgleWfvqe4pPX5t/DxOpRutSkSaEXubEvXhFhEREfGsWiW4X3rpJRISEggICGDo0KGsWbPmrMeWlpby9NNP06lTJwICAujXrx9Llixxec2ioiLuv/9+WrduTcuWLZkwYQIZGRm1CV9ERJqb/d8brSL8Q42q5vOxVwsfbYQV3Bveg/JiYyhj1bYep/Pxg9A4Y9tb+3A7+m/3r95H3GRqHD3Ey4ohJ9XYPlsFN4B/yyoDG2sYNmmzwdrz9FT3FB8/GHC7se3soEyRJiLePmjypBLcIiIiIp7kcoL7gw8+YPr06Tz55JOsX7+efv36MXr0aI4dO1bj8TNnzuTVV1/lxRdfZPv27dx7771ce+21bNiwwaU1H3roIb788ks++ugjli9fztGjR7nuuutq8ZRFRKTZsScH+90Efi3Of7w9MXx009lbRngjq7XKcMm7zp8I9fZe1jX137YLSzDuvTV2gOwUwGZUm7eMOvex9k8W7FwMuUerP5a6FjK2nLunuiclTgZMRvV55l5PRyPSYOLCjAputSgRERER8SyXE9yzZ89m6tSpTJkyhZ49ezJnzhyCgoKYO3dujce/++67PPbYY4wbN46OHTty3333MW7cOJ5//nmn18zJyeHNN99k9uzZXHbZZSQmJvLWW2+xYsUKVq1aVcunLiIizUJOKuz+2tgedI7hklVFdjeSicU5kLW//mJzt/0/VFaq97n+/MdX7cPtjew90Kv237bz9tihMrawhPO/2RDVA9oNB1s5rJ9X/TFneqp7Ulh76HKlsb2u5teDIk1RfHhFBbdalIiIiIh4lEsJ7pKSEpKTkxk1alTlAmYzo0aNYuXKlTWeU1xcTEBAQLV9gYGB/Pzzz06vmZycTGlpabVjunfvTrt27c553dzc3Go3ERFphpLfAZsV2o+AqO7OnWPxhZi+xnZj6sO9zsVK9TAvbvNRWgTHthvbbWqq4Pbi2O3s1eXn6r9dlb2KO/kdKC8ztqv1VHfyDRpPsMe+cT6UqppVmgd7BfdhVXCLiIiIeJRLCe7MzEzKy8uJjo6utj86Opr09JoHVI0ePZrZs2ezZ88erFYrS5cuZeHChaSlpTm9Znp6On5+frRq1crp686aNYvQ0FDHLT4+3pWnKiIiTUF5aWU17GAXk4ONrQ93zpHKIX/OJkLDvbhFScZWsJZBUERlr/CqvDl2O3vy3d5O5Xx6jDeeb97Ryk8d2Huqx/SFton1EqZbdB4Foe2gKBu2LvR0NCINwt6DO/VkATabzcPRiIiIiDRftRoy6Yp///vfdOnShe7du+Pn58e0adOYMmUKZnP9XnrGjBnk5OQ4bocPH67X64mIiBfatRhOpUOLKOg+3rVzHX24G0kF9/paVKp7cxV01f7bNbX3CKvSosRb+6S7WsHt4w8DbjO2175Zvaf6YCd6qnuS2QKDJhvbNQ3KFGmC2rQKxGSColIrmadKPB2OiIiISLPlUpY5IiICi8VCRkZGtf0ZGRnExMTUeE5kZCSfffYZ+fn5HDp0iJ07d9KyZUs6duzo9JoxMTGUlJSQnZ3t9HX9/f0JCQmpdhMRkWbG3rt44O3g4+faufYK7rRNle0ivFV5qdHWAlyrVLcnXgtOQJGXtfI6V/9tgNB4MPsY1c15aQ0XlyscFdxOJrgBBk0BTEY/9XVvVvRUD4E+N9RLiG41YBKYfeFIMhzd6OloROqdn4+ZmBCjFWPqSfXhFhEREfEUlxLcfn5+JCYmkpSU5NhntVpJSkpi2LBh5zw3ICCAtm3bUlZWxieffMLVV1/t9JqJiYn4+vpWO2bXrl2kpKSc97oiItJMZe6FA8sBEyROdv381l3AryWUFkDmbndH5161rVT3DzZaYoD3VXHbK7jPluC2+BhJbvC+2MGovrYPmXS2ghuMdiadK2aOLHnUuHe2p7qntYyEnr82tlXFLc2EvU2J+nCLiIiIeI7LfUKmT5/O66+/zjvvvMOOHTu47777yM/PZ8qUKQBMmjSJGTNmOI5fvXo1CxcuZP/+/fz000+MGTMGq9XKn/70J6fXDA0N5a677mL69On88MMPJCcnM2XKFIYNG8YFF1xQ1++BiIg0FoUnjaF7ztzWvGqc03U0tGrn+rXMZojtb2y7o02JK7G7elv7hnGN2lSq10cv67r2oi0+BZm7jO2zJbjBu/twn0qHsiIwWSoT8c6yD2y0VnxywJuHS55uUEXsWz6GohzPxiL14qWXXiIhIYGAgACGDh3KmjVrznl8dnY2999/P7Gxsfj7+9O1a1cWL15cpzW9iWPQZJYquEVEREQ8xcfVEyZOnMjx48d54oknSE9Pp3///ixZssQxJDIlJaVaf+2ioiJmzpzJ/v37admyJePGjePdd9+tNjDyfGsC/Otf/8JsNjNhwgSKi4sZPXo0L7/8ch2euoiINCqfT4MN77p+nj3hVhttB8Chn41BkwNurf06Xz1U2Uu53tSyUj2sA6SudV8V9LvXwslDcM8PEBBauzXSNxv9xIPbQHDNrcgA9/cQ//hOo73GPcshsFXd1rIn3VvFg8XXtXO7XGkkxXMOQ/sLIapH3WJpSO2HQ2QPOL4DNr0PQ3/j6YjEjT744AOmT5/OnDlzGDp0KC+88AKjR49m165dREVFnXF8SUkJV1xxBVFRUXz88ce0bduWQ4cOVfs7wNU1vU1cuH3QpCq4RURERDzF5QQ3wLRp05g2bVqNjy1btqza1yNHjmT79u11WhOMFicvvfQSL730kkuxiohIE7FzkevntL8QOl9e+2vaq4frUsGdm1bZH7s+DbqzdpXq7qyCzsuAfd8b23VJblYdMHku7oy9+BRs+9RIrB/8GXr8qm7r1ab/tp3ZApfNhG8eg0serVscDc1kMn4XlzwK2SmejkbcbPbs2UydOtXxKcs5c+awaNEi5s6dy6OPnvm7OnfuXLKyslixYgW+vsYbPQkJCXVa09vEV1Rwqwe3iIiIiOfUKsEtIiLSoIpyoDDL2H7kkNE72hlmS92u26YiwZq+BcpKXG//AbB+HtjKod0wmFyLJL2zavtc3VkFXfWNgLVvwpB7jISnqxwDJvuf+zh3xm6vGgfjedQ1wW1PurvSf7uqfjcZt8ao/y3Q/SoIbevpSMSNSkpKSE5OrtaK0Gw2M2rUKFauXFnjOV988QXDhg3j/vvv5/PPPycyMpJbbrmFRx55BIvFUqs1i4uLKS4udnydm+vZAblxYargFhEREfE0l3twi4iINDj7sL6gCKN1hNni3K2uwhIgMAzKS+DY+T+NdIbyMkh+29gedJfzcdfmVluOKuiDtV/D7uj6yu3MXXDol1quYx8w2YAV3EeqxF71edRWXSq4Gzv/lkpuN0GZmZmUl5dXayEIEB0dTXp6eo3n7N+/n48//pjy8nIWL17M448/zvPPP89f//rXWq85a9YsQkNDHbf4eBd73LtZfLhRwX3kZCFWax3nD4iIiIhIrSjBLSIi3q+u1bC1ZTJVaVNSi6Tn7iWQd9RIzPf8tXtjcxd7AjY31ahSrwt7Ytree3vtm66vUZgNWfuM7XMNmATjDQiAomxjiGddVK0+P7qh7oMyPfU7K+JFrFYrUVFRvPbaayQmJjJx4kT+/Oc/M2fOnFqvOWPGDHJychy3w4cPuzFi18WEBOBjNlFSbiUjr8ijsYiIiIg0V0pwi4iI9/NkNWxd+nCvq0jwDrgNfPzdF5M7tYwC3xZGe4669Ey22SqroEc9Zdzv+BJOHXNtnbSNxn1YAgSFn/tYvxbQsqLys65V3FXfwCg8WfmpgdpqzhXc0iRFRERgsVjIyMiotj8jI4OYmJqHwcbGxtK1a1cslspPmfTo0YP09HRKSkpqtaa/vz8hISHVbp7kYzET2yoAUJsSEREREU9RgltERLyfJ6th7W0yjriY4D6xr2LgogkGTXF7WG5jMlVWQtell3VOKhRkgtkH+t0McYPBWmr0IHeFo//2eaq37dzRh7vwJGTtr75eXQaLFmZXVpTbv7cijZyfnx+JiYkkJSU59lmtVpKSkhg2bFiN51x44YXs3bsXq9Xq2Ld7925iY2Px8/Or1ZreKL6iD/fhLA2aFBEREfEEJbhFRMT7eUMF97HtUOpCdV7yW8Z951Hen+R0Ry9re0I4qgf4Bho9x8HoQW4td32d8/XftnNL7BuN+7AE6HRZxb469OG2/762iDL6UYs0EdOnT+f111/nnXfeYceOHdx3333k5+czZYrxJt6kSZOqDYy87777yMrK4sEHH2T37t0sWrSIZ599lvvvv9/pNRuDuDCjD7cquEVEREQ8w8fTAYiIiJyXfQCiJyq4Q9oYbTBOZUD6Fogfcv5zSotgw3xje/Bd9RufO7ijgtueELYnpntdC9/MgJzDsGcpdBvj5Dr2BHcDVnBXvaajJc3G2q+n/tvSRE2cOJHjx4/zxBNPkJ6eTv/+/VmyZIljSGRKSgpmc2X9THx8PN988w0PPfQQffv2pW3btjz44IM88sgjTq/ZGKiCW0RERMSzlOAWERHvVlZiDEAEz1Rw2wdN7l5iJEKdSXBv/wwKsyA0HrpcWe8h1pk7K7jtCWLfAOh/K6z8r9GL3JkE96njRkIcE8T2c+66jtgPuhpxparJ+bYVCfqjG8FqBXMtPuym/tvShE2bNo1p06bV+NiyZcvO2Dds2DBWrVpV6zUbg/jwigT3SSW4RURERDxBLUpERMS7ZacYAxB9WxgDET3B0YfbybYVayuGSybeAWbLuY/1BnWtgrbZKhPcbau0Fhl0p3G/Z6lzQxvta0R0gQAnB8e5pYJ7o3HfZgBEdAOfQCjJgxN7a7eeKrhFmhW1KBERERHxLCW4RUTEuzmqYROMampPcLStcGLwYPoWSF1jDFscMKl+43IXeyL25EGjatlVWfuhKAcs/hDVs3J/607Q8VLAZvTiPh9X+29DZey5R43WMK46vWrc4lNZPV7bPtz2ZL4quEWaBXsFd1pOEWXltfh/qIiIiIjUiRLcIiLi3byhGtae4M7cDcV55z7WXr3dYzwEN5IesqHxYLJAWRGcSnf9fHtiOqYPWHyrP2bvQb7+XSgrPs869lYhTvbfBghqDX7BgA2yDzl/nuOaNVSNu/KGRk284XdWRBpMZEt//HzMlFttpOXU4o02EREREakTJbhFRMS7Va3g9pSWkUYSGBukbTr7cUW5sPlDY3tQIxguaWfxhVbxxnZt+nCfazBk17EQ3AYKMmHHl2df42xtTs7HZILwBGO7VrGfNhyz6vWdbUlTVVkx5B4xtlXBLdIsmM0m4loZbUrUh1tERESk4SnBLSIi3s1bqmHtydtzJT03fwCl+UYf54QRDROXu9Sll7X9e1JTYtriY/Qih8rq9prkHoVTGUYleXRv165fl9hrSs7bt9M3Q3mZa+udPATYwK8ltIhwPR4RaZTiKtqUpGapD7eIiIhIQ1OCW0REvJujgttLEtxna1ths8G6ucb2oDs91y+8tuxvILhaBW0tr6xqP1trkYGTjMR1ygrI2F7zMfbva1QP8AtyLYbaxm6z1ZycD+8E/iFGy5bjO1xbs+rva2P7HRCRWqscNKkKbhEREZGGpgS3iIh4L6u1cmCfpyu47QnQsw0eTFkFx7aDTyD0u6nh4nKX2lZBZ+42qtZ9W0BE15qPCWkD3ccZ2/Y3AU5Xm/7bdrWNPfco5B87s2rcbK4yaNLFPtyOTxwkuHaeiDRq8WHGG3OHT6qCW0RERKShKcEtIiLe61S6UUVrslT0wPag2P7G/cmDUJB15uPrKtpv9JkAga0aKCg3qm0VtD0BHNsPzJazH2fvSb7pfSg+dfZ1apPgrnXsFUn1qJ5nVo3Xtg+3t3ziQEQalL2C+3CWKrhFREREGpoS3CIi4r3sCctW8cYgRE8KbGW0roAzq3rzM2H758Z2YxouWVVtq6DP1X+7qg4jje9fSR5s+aj6Y7UdMGlnjz37kNEyxVmOpHr/Mx87X0uas/GWnvEi0qDi7T24VcEtIiIi0uCU4BYREe/lbdWwZ0t6bngXykuMx2uToPUGYQnGfeFJKMx2/jxnK6/NZqM3ORjV7jZb5WMnDxrXtfhBVC/nr20XGgdmX+NnkHvU+fPOlVRvU7EvYxuUFTu/prf9zopIg4ivqODOyCuiuMyFN9pEREREpM6U4BYREe/lbdWwjj7cVRLcViuse8vYbqzV2wD+LaFFlLHtbBV3WQmkbzG2nWkt0v8W8AkwzkldV7nf3iokujf4+Dkfs53ZAq3aGdvOxl61arym2Fu1g8BwsJZCxlbn1rRa4eQhY9tbfmdFpEGEt/Aj0Ndi/K8lu8jT4YiIiIg0K0pwi4iI9/K2atiaKrj3JRmtMQJCofcEz8TlLq72sj6+A8qLjece3vH8xweFQ6/rjG17z3KoW/9tO1djP1/VuMlU8xsa55J31Ph+mH0gJM65c0SkSTCZTMSHqw+3iIiIiCcowS0iIt7L2yq4Y/qCyQy5RyAvw9i3tiJR2++WMwcVNjau9uG2999uM8BICDtjcEWV+9aFlcM6j9Sh/7adq7E7UzVuT7gfcTLB7egZ3w4sPs6dIyJNRnyY8W/A4ZNKcIuIiIg0JCW4RUTEe3lbBbd/S4joZmwf3QDZh2HPN8bX9v7SjZmrVdC1qbxum2i8UVBeDBvnG2090ja6vs7p6iP2Ni5WcHvb76uINKi4ij7cGjQpIiIi0rCU4BYREe9UmG20kIDKAYjewNG2Yj0kvw02KyRcBJFdPRqWWziqoA86d7wjSexC5bXJVFnFvW4uZO6GklPgG1T55kFtuFx97kTVuD35fXwHlOSff01v+8SBiDSo+PCKCm61KBERERFpUEpwi4iId7InKltEGZXT3sKe9Dy8GtbPM7YHN+LhklW5UgVdWgTHthvbrlZe97kB/EMgaz/8/C9jX0zfurX1cMR+0BggeS7OVo2HxEJwrPEmhn2Y5rmoglukWVMFt4iIiIhnKMEtIiLeyVurYe3VyvuXQf4xaBkN3X/l0ZDcxp6YzT0CZcXnPjZjK1jLoEUkhLo4UNGvBfS7ydje/L5xX5f+21BZ5V+cU1n5fzYn9jhfNe7ow73+/DF46++siDSIuIoe3KnqwS0iIiLSoJTgFhER7+St1bDRvcBcpdJ44CSw+HouHndqEQF+LQEbnDx07mNrM2CyqtN7ltel/zaAb6BRbQ3nr0C3t1ZxpmrclT7c3vo7KyINwt6iJPNUCQUlZR6ORkRERKT5qMNngUVEpMk7vAaO73L+eLMPdLkSWrSu+7W9tRrWNwCiekL6ZjCZIXGypyNyH5PJSM5mbDGStefqK16b/ttVRfWA9hfCoV/qtk5VYR0gL82IPS7x7MfZk/POVI3bE+9Hz1PBXZAFRTkVcSScf10RaXJCA30JDvAhr6iMIycL6RId7OmQRERERJoFJbhFRKRmmXtg7hiwlbt2Xs+r4cZ5db++fdChN1bDtk00Etxdx7jensPbhScYCe7zVkFXqeCurUF3Gglu/1AI71j7dezCO0DKCucruJ2J3X7Mib1GAjsgtObj7NXbLWPAL8i5eEWkyYkPC2J7Wi6HTxYowS0iIiLSQJTgFhGRmq1900hut2oPkd3Pf3xpARz8CQ7+Ygz5q03biqq8tYIbYMTvjcGDF033dCTuZ39D4eQ5ksTFpyor++uS4O55DRzfCdG9weyGrmnOxF5earw5Ac5VjbdoDa3aQXYKHN0IHUfWfJw3/76KSIOJCws0EtxZGjQpIiIi0lCU4BYRkTOVFMCmBcb2Vc9DlyvOf05pEcxqCwWZkJMKreJrf/2yYmPQIXhnBXdYAvz6P56Oon7YE7TnqoJO2wTYIKQtBEfX/loWH7hsZu3PP50zsR/fCWVF4B/ifNV4m4EVCe4NZ09wq/+2iFDZh1uDJkVEREQajoZMiojImbYtNNoxtGoPnS537hx7b2o4f7/i8zl5CLAZAw9bRNRtLXGNM1XQrrT4aEjOxO4Yjtnf+apxZ/pwZx007lXBLdKsxYcFAqiCW0RERKQBKcEtIiJnWvumcT9oimutIxyJwA11u37Vati6tjoR19gTtCcPgdVa8zHu6L9dH+yx56VB6VmSS7VJztuHUZ7r91oV3CICxIVVVHBnq4JbREREpKEowS0iItUd3WAkMC1+MOB21861JwKP1LGC29HPOKFu64jrQuLA7APlxZB3tOZjvLWCOzDMGFgJlUNKT+dIzjvRf9sutp9xn50C+Zk1H6Me3CJCZYsSVXCLiIiINBwluEVEpDp79XbPq11vD+Ko4N5oDJqsLVXDeo7FxxiqCDX3si48CVn7jW1vS3CbTJVvitQUe2kRZGw3tl2JPSAUWncxto9urGHdwso3A/Q7K9KsxVW0KMkpLCW3qNTD0YiIiIg0D0pwi4hIpcJs2PKxsT3oTtfPj+oJFn8ozqlMgtaGqmE961y9rO0J3rAECApvqIicd67YM7aBtRSCWlcm8Z11rj7cJw8Z9/4h3vk9EZEG08Lfh/AWfgCkqopbREREpEEowS0iIpU2vQ9lhRDZA9oNc/18iy/E9DG269KHWxXcnmV/Y6GmKujatPhoSE7FPsD13u7n6sPt+H1NUM94EakcNHlSfbhFREREGoIS3CIiYrDZYN1cY3vwXbVP1NkrXWvbh9tqrayIVQW3Z5yzgttL+2/bORV7LZLz5/q91icORKQKx6DJk6rgFhEREWkISnCLiIjh4M+QuQt8W0DfibVf51yVrs7IO2oMODT7GAMPpeGdswp6o3HftjFWcNchOR/TF0xmOJUOuWnVH9MnDkSkirjwigruLFVwi4iIiDQEJbhFRMSwrmK4ZN8bICCk9uvYk4dpm8Ba7vr59sRkq3bGwENpeGergj51HHIOAyaI7dfgYTklLMG4z06p/vtXkg/HdxrbtUlw+wUZrXvgzD7cquAWkSriHRXcSnCLiIiINAQluEVEBPIyYMeXxvagu+q2VkRXowq8NB8yd7t+vqphPc+eJC7KgYKsyv32CuiIruAf3OBhOSWkLZh9jWGSOamV+9M2g80KwbEQElu7tdvaB02e9ukE/c6KSBVxFT241aJEREREpGEowS0iIrBhHljLIG4wxPat21pmS2V1b236cKsa1vP8gqBltLFdtYq76pBGb2W2QFh7Y7vG2OvQWqWmPtzW8sqe8fY3BkSkWYsPNyq4D2cVYLPZPByNiIiISNOnBLeISHNnLYfkd4ztulZv29WlD7eqYb1DWA29rO0/T2/tv213rtjrkpxvU+X32p60yj1iVIubfSFUPeNFBNq2Miq480vKOVlQ6uFoRERERJo+JbhFRJq7Pd8afZUDw6DXte5Z055EPL1XsTNUwe0dwk/rw22zVVYue3MFN5wZO7gn9uheRiK7MAuyK6q2q/aMN1tqv7aINBkBvhaigv0B9eEWERERaQhKcIuINHdrK4ZL9r8VfAPcs6Y9iZi+FcpKXDtXFdzewVEFfdC4zz0K+cfAZIGYPh4LyymnV3AXZkPWPmO7LgluH3+I6W1s2yvCT+oNGRE5U2WbEvXhFhEREalvSnCLiDRnJw/C3u+M7UF3um/d8I4QEArlxXBsu/PnFWQZgw1B/Yw97fQqaHs1flRP8A30TEzOOj32tI3Gfat20KJ13dY+vQ93lt6QEZEzVQ6aVAW3iIiISH2rVYL7pZdeIiEhgYCAAIYOHcqaNWvOefwLL7xAt27dCAwMJD4+noceeoiioiLH4wkJCZhMpjNu999/v+OYSy655IzH77333tqELyIiduveAmzQ8VJo3cl965pMVdqUuNCH256QbBljDDoUzzm9CtrRf9vL25NA9epzm61K/2039A5vc1p/eVVwi0gN4sMqKriV4BYRERGpdz6unvDBBx8wffp05syZw9ChQ3nhhRcYPXo0u3btIioq6ozjFyxYwKOPPsrcuXMZPnw4u3fvZvLkyZhMJmbPng3A2rVrKS8vd5yzdetWrrjiCm644YZqa02dOpWnn37a8XVQkJIfIiK1VlYMG941tge7abhkVW0GwP5lFZW/U5w7R/23vYf9Z5B3FEoLG0//bYCw9sZ9SR4UnHBv7PY10jaB1aoKbhGpkb2CWy1KREREROqfyxXcs2fPZurUqUyZMoWePXsyZ84cgoKCmDt3bo3Hr1ixggsvvJBbbrmFhIQErrzySm6++eZqVd+RkZHExMQ4bl999RWdOnVi5MiR1dYKCgqqdlxISIir4YuIiN2OL43kX3Ab6DrW/eufXunqDPXf9h5BrcEv2Ng+edC9VdD1zTfQ+L0GIwF9dKOx3dYNsUd2B59AKM6FE3uN7w3oTRkRqcbeg1stSkRERETqn0sJ7pKSEpKTkxk1alTlAmYzo0aNYuXKlTWeM3z4cJKTkx0J7f3797N48WLGjRt31mu899573HnnnZhMpmqPzZ8/n4iICHr37s2MGTMoKDj7C8bi4mJyc3Or3UREpAr7cMnEO8Di8gd6zs9e6Zqx3agAdoZ9oKGShZ5nMkF4grG9fxkUZYPFz+jB3RjYf4dS10JOirEd26/u61p8ILavsb0vyUh0g3rGi0g19hYlqScLsdlsHo5GREREpGlzKaORmZlJeXk50dHR1fZHR0ezc+fOGs+55ZZbyMzMZMSIEdhsNsrKyrj33nt57LHHajz+s88+Izs7m8mTJ5+xTvv27WnTpg2bN2/mkUceYdeuXSxcuLDGdWbNmsVf/vIXV56eiEjzkbEdUlaAyQIDJ9XPNULjoEUk5B+H9K0QP/j856iC27uEdYD0LbD1E+PrmD7g4+fZmJwV1gEO/QLbKl4ntO5iDD51hzYD4fDqyu9LcKz3D94UkQYV2yoAswmKy6wcP1VMVHCAp0MSERERabJqNWTSFcuWLePZZ5/l5ZdfZv369SxcuJBFixbxzDPP1Hj8m2++ydixY2nTpk21/ffccw+jR4+mT58+3HrrrcybN49PP/2Uffv21bjOjBkzyMnJcdwOHz7s9ucmItJoratoK9V9HIS0OfextVVt0OR6585RD27vUrUKGhpH/207e/V5fcRuX8u+tt6QEZHT+FrMxIaqD7eIiIhIQ3CpgjsiIgKLxUJGRka1/RkZGcTExNR4zuOPP87tt9/O3XffDUCfPn3Iz8/nnnvu4c9//jNmc2WO/dChQ3z33XdnrcquaujQoQDs3buXTp06nfG4v78//v7+Tj83EZFmo/gUbHrf2B5UD8Mlq2ozEPZ861wf7tJCY6AhKGHoLU7/OTSG/tt2p8fujv7bZ1tLb8iISA3iwgI5kl1I6skCEtuHeTocERERkSbLpQpuPz8/EhMTSUpKcuyzWq0kJSUxbNiwGs8pKCiolsQGsFgsAGf0o3vrrbeIioriqquuOm8sGzduBCA2NtaVpyAiIls+gpI8CO8EHUae//i6sFe6HnGigvvkIePePwSCwusvJnHe6YnbRlXBXY+xh3cyfk/t9IaMiNQgrkofbhERERGpPy5PFZs+fTp33HEHgwYNYsiQIbzwwgvk5+czZcoUACZNmkTbtm2ZNWsWAOPHj2f27NkMGDCAoUOHsnfvXh5//HHGjx/vSHSDkSh/6623uOOOO/DxqR7Wvn37WLBgAePGjaN169Zs3ryZhx56iIsvvpi+ffvW5fmLiDQvNhusqxguOehOMNdzpyp7UjFzNxTngX/w2Y919N9OMNqbiOdVTdz6BkFkN8/F4qqqsZvMEOPG1wtmszGw8uBPxteq4BaRGsSH21uUFHg4EhEREZGmzeXMxsSJE/nnP//JE088Qf/+/dm4cSNLlixxDJ5MSUkhLS3NcfzMmTP5wx/+wMyZM+nZsyd33XUXo0eP5tVXX6227nfffUdKSgp33nnnGdf08/Pju+++48orr6R79+784Q9/YMKECXz55Zeuhi8i0rylrjOGBvoEQP9b6v96wdEQ0hawQdqmcx+r/tveJzQOzL7Gdmw/MFvOfbw3CQqvHCoZ2QP8gty7ftWKcFVwSzPy0ksvkZCQQEBAAEOHDmXNmjVnPfbtt9/GZDJVuwUEVB+2OHny5DOOGTNmTH0/jQahCm4RERGRhuFyBTfAtGnTmDZtWo2PLVu2rPoFfHx48sknefLJJ8+55pVXXnlGyxK7+Ph4li9fXptQRUSkKnv1dq/rGq4NSJsBkHvE6MOdMOLsxzkquJUs9BpmC7RqB1n7Glf/bbuwDpC2EdrWQ2uVqn249aaMNBMffPAB06dPZ86cOQwdOpQXXniB0aNHs2vXLqKiomo8JyQkhF27djm+NtXwCZ0xY8bw1ltvOb5uKnN04sMqKrhPqoJbREREpD7V82fTRUTEa1itsHORsZ14R8Nd19k+3Krg9k4xfYz79sM9G0dtxFa0JWl/ofvXjhsCZh/jEwqBGh4nzcPs2bOZOnUqU6ZMoWfPnsyZM4egoCDmzp171nNMJhMxMTGOm/1Tn1X5+/tXOyYsrGn8NxUfblRwH80upNxacyGPiIiIiNSdEtwiIs1F1j4ozjXak7Qd1HDXtVe6Ht1w7uNUwe2drnoebvkQup9/ALTXueJpuPkD6HOj+9cObQtTvoZJn6tnvDQLJSUlJCcnM2rUKMc+s9nMqFGjWLly5VnPO3XqFO3btyc+Pp6rr76abdu2nXHMsmXLiIqKolu3btx3332cOHHirOsVFxeTm5tb7eatokMC8LWYKC23kZFb5OlwRERERJosJbhFRJoLewV1TF+w1KpDVe3E9jfuTx6Agqyaj7GWw8lDxrYquL1LiwjoOrpxJnEDw6DbmPr7fY8fAhFd6mdtES+TmZlJeXn5GRXY0dHRpKen13hOt27dmDt3Lp9//jnvvfceVquV4cOHk5qa6jhmzJgxzJs3j6SkJP7+97+zfPlyxo4dS3l5eY1rzpo1i9DQUMctPj7efU/SzSxmE21aadCkiIiISH1TgltEpLmwV1C3beBeykHhlVXZaRtrPib3CFhLjYGGIW0bLDQREak/w4YNY9KkSfTv35+RI0eycOFCIiMjqw2bv+mmm/j1r39Nnz59uOaaa/jqq69Yu3btGXN97GbMmEFOTo7jdvjw4QZ6NrUT5+jDrUGTIiIiIvVFCW4RkebiaEUFd5t6GLh3Pufrw23vvx3W3hhsKCIiXiUiIgKLxUJGRka1/RkZGcTExDi1hq+vLwMGDGDv3r1nPaZjx45ERESc9Rh/f39CQkKq3bxZfJjRhztVgyZFRERE6o0S3CIizUF5GaRtNrbbNHAFN5y/D7f6b4uIeDU/Pz8SExNJSkpy7LNarSQlJTFs2DCn1igvL2fLli3Exsae9ZjU1FROnDhxzmMaE/ugycNZquAWERERqS9KcIuINAfHd0JZIfi1hNadG/769gruoxtrftxewa3+2yIiXmv69Om8/vrrvPPOO+zYsYP77ruP/Px8pkyZAsCkSZOYMWOG4/inn36ab7/9lv3797N+/Xpuu+02Dh06xN133w0YAyj/+Mc/smrVKg4ePEhSUhJXX301nTt3ZvTo0R55ju7WriLBvWJfJjkFpR6ORkRERKRpasApYyIi4jH2yunY/mD2wHubsf0AE+Smwqlj0DKq+uOq4BYR8XoTJ07k+PHjPPHEE6Snp9O/f3+WLFniGDyZkpKCucq/MSdPnmTq1Kmkp6cTFhZGYmIiK1asoGfPngBYLBY2b97MO++8Q3Z2Nm3atOHKK6/kmWeewd/f3yPP0d0u7R5Fu/AgUrIKePjjTbx2eyKmxji0V0RERMSLmWw2m83TQTSE3NxcQkNDycnJ8fpefSIibvfVQ7BuLgx/AK78q2di+O8QyNwFt3wIXU+rzJtzEaRvhpvfh25jPROfiDRaep3XfDWGn/3WIzlc9/IKSsqtzLyqB3df1NHTIYmIiIh4PVde56lFiYhIc2Cv4PbEgEk7ex/u0wdN2mxw8qCxrQpuERFpYnq3DeXxX/UA4P++3smGlJMejkhERESkaVGCW0SkqSsrhvStxrYnBkzaOfpwnzZosiALinON7bD2DRuTiIhIA7jtgvZc1SeWMquNaQs2kF1Q4umQRERERJoMJbhFRJq6jG1gLYXAMAhL8Fwc9uT60fVG1badvf92cBvwDWz4uEREROqZyWTi/yb0IaF1EEeyC3n4o000k06RIiIiIvVOCW4RkaauansSTw62iukNZh/IPw65Ryr3Z1UkuMPVnkRERJqu4ABf/nvLQPx8zHy34xhv/HTA0yGJiIiINAlKcIuINHVHK3pee7L/NhjV2VFGD9JqfbjtFdzqvy0iIk1c77ahPPGrngD8fclOkg+pH7eIiIhIXSnBLSLS1B3daNx7sv+2XU19uB0V3AkNHo6IiEhDu3VoO8b3a0OZ1cYDC9ZzMl/9uEVERETqQgluEZGmrKQAju0wtj1dwQ3V+3DbqYJbRESaEZPJxLPX9qZDRAuO5hTxh482YbWqH7eIiIhIbSnBLSLSlKVvAVs5tIyGkDaejqZ6Bbd9uJZ6cIuISDMTHODLS7cMxN/HzPc7j/HaT/s9HZKIiIhIo+Xj6QBERKQeVe2/7ckBk3ZRPcHiD0U5kLUfgmPhVLrxmCq4RUSkGenZJoSnft2LGQu38Nw3uxjUPoxBCeFOn38sr4il2zPYfjSXygJwY8Nmq3wf2VZlH8DQjq25PjHOTc9CRERExPOU4BYRacrsva69of82gI8fxPSGI8lGbFHFxv6AUAhy/o96ERGRpuCmwfGs2n+CzzceZdqCDSx+8CLCW/id9fgj2YUs2ZrOkq1prDt00pG0dsVHyamUllu5eUi7OkQuIiIi4j2U4BYRacqOVKng9hZtBlYmuH0DjX2q3hYRkWbI6Mfdhy1Hcth/PJ+HPtjIW5MHYzZXfupq//FTLNmWzpKt6WxOzal2fr/4Vozo3Bp/Hwsmx5qVa1NlnwkT+46f4uPkVJ78fBs9YkPoH9+qnp+hiIiISP1TgltEpKkqyoUTe4xtr0pwV+nDHRxrbKv/toiINFMt/H14+daBXP3fX1i++zivLN/HZd2j+HprOt9sTWdXRp7jWJMJBieEM7Z3DKN7xdCmVaBL17LZbOQVlfLNtgzuey+ZLx8YQURLf3c/JREREZEGpQS3iEhTlbbRuA+Nh5aRHg2lGkeCeyNEdjO2VcEtIiLNWPeYEJ6+uhePfGL0437um12Ox3zMJoZ3jmBMrxiu6BlNZHDtE9Imk4l/3tCPPcd+Yf/xfB5YsIF37xqCj8XsjqchIiIi4hFKcIuINFWO/tteVL0NRlLbNwhK82HPUmOfKrhFRKSZu3FQPGsOnOST9an4+ZgZ2TWSMb1iGNUjmtAgX7ddJzjAl1dvS+Tql35h5f4T/OObXTw2rofb1hcRERFpaEpwi4g0Vd7YfxvAbIHYfpCyEnIOG/tUwS0iIs2cyWTiH9f35Zah7egeE0wL//r7U61LdDD/vKEfv52/ntd+3E+/uFZc1Te23q4nIiIiUp/0WTQRkabKXsHddqBn46hJm9NiUgW3iIgIFrOJxPZh9ZrcthvXJ5bfXNwRgD9+vIk9VXp9i4iIiDQmSnCLiDRF+Scg+5CxHdvfo6HUqGpVucUfgtt4LhYREZFm6o+juzG8U2sKSsr5zbvJ5BaVejokEREREZcpwS0i0hSlVVRvh3eCwFYeDaVGVavKw9qDWf8ciYiINDQfi5kXbx5Am9AA9mfm8/CHm7BabZ4OS0RERMQlyiiIiDRFR7x0wKRdWAfwD63cFhEREY9o3dKfV25LxM9i5tvtGbyyfJ+nQxIRERFxiYZMikjNdn8Dn98P4/8D3cd5NpbcNHhjFOSmejaOqiJ7wN1LwT/YveseSYb3b4WRf4JBd9Z+HW/uvw1GxXab/nBgufpvi4iIeFi/+FY8fXUvHl24hee/3UWftqFc3DXS02GJiIiIOEUV3CJyJpsNvn8G8o/D9381vvaktW94V3Ib4PgO2Pyh+9dd/hzkpcEPz0JZSe3XObreuPfWCm6AXteCxQ86Xe7pSERERJq9m4a046bB8Vht8Lv3N3A4q+C859hsNnak5fLKsn3c9NpKej/5Dc99s5NytTkRERGRBqQKbhE5U+o6SN9ibB/bBodXQ7sLPBNLWQmsn2dsXzMHulzhmTiqWj8Pkv4C6+YaVdYmk3vWzT4Me74xtvOPw44voM/1rq+Tm2YkyU1miOnrntjqw6ApMOA2sPh6OhIREREBnvp1L3ak5bIpNYf75ifz8b3DCfC1VDsmp7CUX/ZmsmzXMZbvPk5GbnG1x1/6YR+bU3P4900DCG/h15Dhi4iISDOlBLeInGndm8a9yQK2clj7pucS3Du/gvxj0DLGSPZ6QzJ00BRY/g/I2AqH10C7oe5ZN/ltsFkrv+/r5tYuwW1vTxLRDfxbuie2+uINP08REREBIMDXwiu3JfKrF39m65FcZn62lX9M6Mv2tFxHQnt9Sna1Cu0AXzPDO0Uwsmsk/j5m/vLldn7ak8n4F3/mldsG0jeuleeekIiIiDQLSnCLSHUFWbB1obE99u+w+GHY/hmMmQUtIho+nnVzjfuBk7wnGRoYBr0nwMb3jDcD3JHgrlqpPvpv8M2f4dAvcGwHRPVwbS1v778tIiIiXqtNq0D+e/MAbntzNR8np/LdjgyyC0qrHdMpsgWXdItiZNdIhnQIr1blPaBdGPe+l8yBzHyun7OSZ67uxcTB7Rr6aYiIiEgzoh7cIlLdxvlQXmy0thh8t9HDubwENrzX8LEc3wUHfzJabSTe0fDXP5fBFQMgt30K+Sfqvl7VSvXBd0O3scZ+e4LfFY2h/7aIiIh4reGdI3hkTHcAsgtKaeFn4Yqe0fz1mt789KdLSfrDJTz+q55c3DXyjBYm3WKC+XzahVzRM5qSMiuPfLKFGQs3U1Ra7omnIiIiIs2AEtwiUslqrUyoDr7L6C096C7j6+S3jMcbkj2WrmMhNK5hr30+bRMhtr+R/N/ohuT/6ZXqgyu+75veh+JTzq9js1VWcLdRBbeIiIjUzj0Xd+SNSYNYcPdQNjxxJa9PGsRtF7QnPjzovOeGBPjy6m2J/HF0N0wm+N+aw9z46kqOZBc2QOQiIiLS3CjBLSKVDiyDrP3gHwJ9bjD29Z4AAaFw8iDs+77hYinJh43/M7bt1dLexp6EXlfH5H9NleodLoHwjlCcC1s/dn6t7BQoOAFmH4juVfuYREREpFkzmUyM6hnN8M4R+Pm4/mej2Wzi/ks7886UIbQK8mVzag7jX/yZX/Zm1kO0IiIi0pwpwS0ildZWDJfsdxP4tTC2/YKg3y3Gtn34ZEPY+gkU50BYB+h4WcNd1xW9J4B/KJw8APvrkPyvqVLdbIZBFYn9tW8aldnOsFdvR/cC34DaxyQiIiLiBhd3jeTLaSPo0zaUrPwSbn9zNS8v24vN2dc2IiIiIuehBLeIGHKPwq6vje1Bp1VM27/evQSyDzdMPPZk+6ApRrLXG/m1gP43G9tra9ErG85dqd7/VrD4Q/pmOJLs3Hrqvy0iIiJeJj48iI/uHcaNg+Kw2uAfS3Zx73vJ5BWVnv9kERERkfPw8XQAIuIlkt8BWzm0Gw5RPao/FtkVEi4y2misfwcum1m/sRxJhrSNRnK3/231e626GnQnrJ4Du7+GnFTXe4U7KtUTzqxUDwqHXtfC5veNhH/coPOvp/7bIiIi4oUCfC38fUJfBrQL48nPt/HNtgy2HvmJHrHBhAT6EhLgS2jgabegyu2QAF8CfM2YTCZPPxURERHxMkpwiwiUlxqJa6jsK326QXdWJLjnwchHjEGI9cVeDd3rGmjRuv6u4w6R3SqT/8nvwGV/du18e6V64lkq1QffZSS4ty2E0X8zkt5nY7XC0Y3Gtiq4RURExMuYTCZuHtKOHrEh3PdeMkeyC10aPNkxogV/vaY3wztH1GOUIiIi0tgowS0iRmuSvDQIioAe42s+pvuvoEUUnMqAnV8ZlcX1ofCkUdUMMOgsyXZvUy35/yfnk/+OSnU/GHCWSvW4wRDdBzK2wMYFMHza2dfL2m8MpfQJOLMKX0RERMRL9I9vxTcPXcyKvSfILighp7D0jFuu/b6ojJzCUsqtNvZn5nPLG6u5ZWg7ZoztTnBAPRZciIiISKOhBLeIVA6PHHg7+PjXfIyPHwycBD/906g6rq8E98b/QVkhRPeG+CH1cw13cyT/02HnIqPy3Bn2SvWe10CLs1QimUxGb+6vHjKGUV7w27P3JLf3347pU78V9iIiIiJ1FBLgy5jeMU4da7PZyC4oZfbS3by76hALVqewfNdx/m9CHy7qElnPkYqIiIi389LJbSLSYE7sg/3LAJPRJuNcEieDyWxUKx/f7f5YbDYjiQvGcMnG0mPRx894cwAq4z+fqpXqZ2sLY9fnRvALhqx9cGD52Y9T/20RERFpgkwmE2Et/Hjmmt4smDqU+PBAjmQXcvuba3j0k83kaliliIhIs6YEt0hzZ0/IdrkCwtqf+9hW8dBldPXz3OnAj3BiD/i1hL4T3b9+fUqcDJiMBHTm3vMfb69Uj+oF8UPPfax/S+hX8f2wV9vX5EhFBbf6b4uIiEgTNbxTBN/8/mImD08A4P21hxn9rx9ZtuuYZwMTERERj1GCW6Q5Ky2EDe8Z2872u7ZXG29aACUF7o3HnrzteyP4B7t37frWqh10dTL5X7VSffCdzlWq238+OxdD7tEzHy8vg/TNxnZbVXCLiIhI0xXk58NTv+7FB/dcQPvWQaTlFDH5rbX88aNN5BSqmltERKS5qVWC+6WXXiIhIYGAgACGDh3KmjVrznn8Cy+8QLdu3QgMDCQ+Pp6HHnqIoqIix+NPPfUUJpOp2q179+7V1igqKuL++++ndevWtGzZkgkTJpCRkVGb8EXEbtunUJQNoe2MCm5ndLocWrWHohzYttB9seRV9K+GxjNc8nT2uDfON948OJvaVKpH94R2w8BWbgyzPF3mLigtMNZs3dn12EVEREQamaEdW7PkwYu588IOmEzwUXIqV/5rOd/v1N+JIiIizYnLCe4PPviA6dOn8+STT7J+/Xr69evH6NGjOXas5o+ELViwgEcffZQnn3ySHTt28Oabb/LBBx/w2GOPVTuuV69epKWlOW4///xztccfeughvvzySz766COWL1/O0aNHue6661wNX0SqWltRMZ14B5gtzp1jNhv9saue7w7r54G1zGjXEdPbfes2pM6XG5XcRdmw9RzJ/9pWqtsT6MnvGBXbVdn7b8f2d/5nKSIiItLIBfpZeGJ8Tz76zTA6RLQgI7eYO99ex/QPN5JToGpuERGR5sDlBPfs2bOZOnUqU6ZMoWfPnsyZM4egoCDmzq35I/krVqzgwgsv5JZbbiEhIYErr7ySm2+++Yyqbx8fH2JiYhy3iIgIx2M5OTm8+eabzJ49m8suu4zExETeeustVqxYwapVq1x9CiICkLYJjqwDsy8MnOTauQNuB4sfHF1fmViti/IySH7b2G6s1dtgJJbtgzrP1iu7LpXqPX8NQRGQdxR2f139MUf/7f6urSkiIiLSBAxKCOfrBy/inos7YjbBwvVHuPn1VZSVWz0dmoiIiNQzlxLcJSUlJCcnM2rUqMoFzGZGjRrFypUrazxn+PDhJCcnOxLa+/fvZ/HixYwbN67acXv27KFNmzZ07NiRW2+9lZSUFMdjycnJlJaWVrtu9+7dadeu3VmvW1xcTG5ubrWbiFRhr77uMR5aRrl2bosI6Hl19XXqYs83kHsEAsMr122sBtxuvGlwJBmObjzz8bpUqvv4w4DbjO3Tv+/2NxrUf1tERESaqQBfC4+N68HH9w2nVZAv29Nymb865fwnioiISKPmUoI7MzOT8vJyoqOjq+2Pjo4mPT29xnNuueUWnn76aUaMGIGvry+dOnXikksuqdaiZOjQobz99tssWbKEV155hQMHDnDRRReRl5cHQHp6On5+frRq1crp686aNYvQ0FDHLT4+3pWnKtK0FeXAlo+M7cG1rJi2Vx9v+RgKs+sWjz1ZO+A28A2o21qe1jKyMkl/ehW3OyrVB00BTLD/Bzixz9hXVgIZW43tNgNqt66IiIhIEzGwXRh/uLIbALOX7uZkfolH4sgpLOXV5fsYNiuJC//ve7VMERERqSe1GjLpimXLlvHss8/y8ssvs379ehYuXMiiRYt45plnHMeMHTuWG264gb59+zJ69GgWL15MdnY2H374Ya2vO2PGDHJychy3w4cPu+PpiDQNmz80BhJGdof2F9ZujXYXQFRPKCuETe/XPpas/bAvydi29/Zu7AZXSf4X5VTud0elelgCdK74NMu6itZQx7ZBeQkEtIKwDrWNWkRERKTJuGVIO3rEhpBTWMrzS3c16LUPZxXwly+3MXxWErO+3klaThFHsgv5boeGX4qIiNQHlxLcERERWCwWMjKq/8OckZFBTExMjec8/vjj3H777dx999306dOHa6+9lmeffZZZs2ZhtdbcD61Vq1Z07dqVvXv3AhATE0NJSQnZ2dlOX9ff35+QkJBqNxEBbLbKiulBd4LJVLt1TCbjfDASrTZb7dZZ95Zx3+lyCO9YuzW8TbthENnDeBOhavLfXZXq9gT6xvlQWlil//aA2v88RURERJoQi9nEU+N7ArBgdQrbj9Z/y8rkQyf57fxkRj73A2/9cpD8knK6RQdzcddIAL7fdazeYxAREWmOXEpw+/n5kZiYSFJSkmOf1WolKSmJYcOG1XhOQUEBZnP1y1gsFgBsZ0mInTp1in379hEbGwtAYmIivr6+1a67a9cuUlJSznpdETmLlJVwfAf4BkG/m+q2Vt+J4NsCMnfBwZ9dP7+0CDa8Z2zXtlWKNzKZKp/P2jeN5L87K9W7XAmh8VB4ErZ/rv7bIiIiIjUY2rE1V/WNxWqDp77cdta/P+ui3Gpj8ZY0rnv5Fya8soLFW9Kx2uCiLhHMu3MIS35/Eb8f1QWAH3cdp1RDL0VERNzOx9UTpk+fzh133MGgQYMYMmQIL7zwAvn5+UyZYiRsJk2aRNu2bZk1axYA48ePZ/bs2QwYMIChQ4eyd+9eHn/8ccaPH+9IdD/88MOMHz+e9u3bc/ToUZ588kksFgs333wzAKGhodx1111Mnz6d8PBwQkJCeOCBBxg2bBgXXHCBu74XIs2DvYq4z/UQEFq3tQJCoO+NkPyW0W+6w0Wunb/9cyjMgpC20GV03WLxNn0nwtInjeT/oV9g9zfGfndUqpstkHgHfP9X4+dZWmjsV/9tERERkWoeG9eDpB0ZrDmQxaItafyqbxu3rHuquIyP1h1m7i8HOJxlvBbzs5i5ZkAb7hrRkW4xwY5j+8W1IryFH1n5Jaw7eJJhnVq7JQYRERExuJzgnjhxIsePH+eJJ54gPT2d/v37s2TJEsfgyZSUlGoV2zNnzsRkMjFz5kyOHDlCZGQk48eP529/+5vjmNTUVG6++WZOnDhBZGQkI0aMYNWqVURGRjqO+de//oXZbGbChAkUFxczevRoXn755bo8d5Hm59RxI6kMtR9yeLrBdxkJ7h1fQl4GBEef/xw7+xDGxMlgcfl/R94tIAT63mAMlVz1ChxaYex3V6X6gEmw7P8gdQ1Q0ZakjSq4RURERKpq2yqQe0d24oXv9vDsoh1c3j2aQD9LndZcuD6VJ7/YRl5RGQBhQb7cfkF7bhvWnqjgM9vQWcwmLukaycINR/hh1zEluEVERNzMZKuPz2l5odzcXEJDQ8nJyVE/bmm+fpoNSX+Btokw9Xv3rfvGFUai9bKZcPEfnTsnfSvMuRDMPvDQNgiuuZ9+o5a2GV6tUtUe0hYe3Oy+ZP5Hk2Hbp8Z2iyh4eLd6cItIs6TXeQ3npZde4rnnniM9PZ1+/frx4osvMmTIkBqPffvttx2f8rTz9/enqKjI8bXNZuPJJ5/k9ddfJzs7mwsvvJBXXnmFLl26OBWPfvbijKLSci5/fjlHsgv53eVdmH5F11qv9fWWNO5fsB6rDTpGtODOER2YMDDuvEnzLzcd5YH/baBzVEu+mz6y1tcXERFpLlx5ndfESia9zM5Fno6g6fAPhvYjwOxS23j3s9kgZZXRVqO+BMfWTy9la7lRaQ3uq962G3yXkeBe9zZE9XTuHPvwxe5XNc3kNkBsX4gbDKlrja/dXak+6K7KBHfbgUpui4hIvfrggw+YPn06c+bMYejQobzwwguMHj2aXbt2ERUVVeM5ISEh7Nq1y/G16bR/q/7xj3/wn//8h3feeYcOHTrw+OOPM3r0aLZv305AQB0GMotUEeBr4c9X9eC389fz6vJ93DgojriwIJfXWbE3kwff34jVBjcPacffrumN2ezc66+Lu0ZiMZvYe+wUh7MKiA93/foiIiJSMyW469P7t3g6gqblV/+CQXd6NoYdX8CHk+r/Ond+A+3c3F9+bxJkp0BAK+h9nXvX7nkNLJkBuamu/967O9nubQbdZSS4zT4w0M2/OwkjIKKb0edb/bdFRKSezZ49m6lTpzqqsufMmcOiRYuYO3cujz76aI3nmEwmYmJqfiPbZrPxwgsvMHPmTK6++moA5s2bR3R0NJ999hk33VTHYdj1oSgXdn0NxbkwZKqnoxEXjO0dwwUdw1m1P4tnF+/g5VsTXTp/c2o2U+eto6Tcyrg+MfzVheQ2QGigL4ntw1hzIIvvdx7jjuEJLj4DERERORsluOtTXM0f1xQXFeUYCbxVcyBximerVFfNMe7DO0FQPfTOy0uHnBRY/ar7E9z2ftf9bwXfQPeu7RsA456DtW8YleLOajsQOlzs3li8Te8JcHg1RPdyf6W6yQTjX4DVFf9tiIh4gaLScrYdzSWxfZinQxE3KikpITk5mRkzZjj2mc1mRo0axcqVK8963qlTp2jfvj1Wq5WBAwfy7LPP0qtXLwAOHDhAeno6o0aNchwfGhrK0KFDWblypXcmuItz4dN7wOxrFF6Y69bLWRqOyWTiyfG9uOo/P7F4Szor9mUyvFOEU+fuPXaKyW+tJb+knAs7t+ZfE/tjcSG5bXdZ9yi3J7i3Hsnh9jdXc8vQdvxxdHe3rCkiItLYKMFdn+5e6ukImoaiHHi+u5HkPvSLUbXqCRnbIWUFmCww+SsIcc8E9mrSNsGrFxsDG08dg5Y1f9zXZdkpsPsbY7u+quD7XG/cpDofPyMJXV/aDzduIiJe4t2Vh/jb4h3cdkE7/npNH0+HI26SmZlJeXm5Y7C8XXR0NDt37qzxnG7dujF37lz69u1LTk4O//znPxk+fDjbtm0jLi6O9PR0xxqnr2l/7HTFxcUUFxc7vs7Nza3L03JdyxgwmcFaarxWC4lt2OtLnfSIDeG2C9ozb+Uh/vLFdhb9bgQ+lnO3QDyaXcikN1eTlV9C37hQXr19EP4+tXtj47LuUfzf1ztZuf8EBSVlBPnV/c/xN37az8mCUl76YR8xoYHcfkH7Oq8pIiLS2Hi4obGIEwJCoc8NxvbaNz0Xx7q5xn23sfWT3AaI7QdtBxl/NK2f5751k98GbNBhJER0dt+6IiIiVeQUlPLfH/YC0DeulWeDEY8bNmwYkyZNon///owcOZKFCxcSGRnJq6++Wus1Z82aRWhoqOMWHx/vxoidYPEx5qUA5B5p2GuLW0y/oiutgnzZlZHHgjUp5zz2ZH4Jk+au4WhOER0jW/D2lCG09K99UrpLVEvatgqkpMzKir0nar2OXW5RKV9vrXwz6KkvtvHTnuN1XldERKSxUYJbGofBFX2a7ZXNDa34VOVQxMH13DPavn7y2661+zibspLKZHl9xy4iIs3ay8v3klNYSrfoYCYMjPN0OOJGERERWCwWMjIyqu3PyMg4a4/t0/n6+jJgwAD27jXeBLGf58qaM2bMICcnx3E7fPiwq0+l7kLaGvc5qQ1/bamzVkF+/OGKrgA8/+1uTuaX1HhcfnEZk99ey95jp4gNDeDdu4YS3sKvTtc2mUxc1t34hOb3u+r+N81Xm9IoLrPSNbol1w1oS7nVxm/nr2fvsVN1XltERKQxUYJbGof6qmx21paPoCQPwjtCh0vq91q9rjUGQeYchj1uaHOz80vIP258pLbbuLqvJyIiUoOj2YW89ctBAB4Z261W/WnFe/n5+ZGYmEhSUpJjn9VqJSkpiWHDhjm1Rnl5OVu2bCE21qiA7tChAzExMdXWzM3NZfXq1Wdd09/fn5CQkGq3Bhda8eaNKrgbrZuHtKN7TDA5haU8v3TXGY8Xl5Vz73vJbDqcTViQL+/eNYS2rdwzw8ae4P5h5zFsNlud1voo2XiD54bEeGZN6MOg9mHkFZVx1ztrz5q4FxERaYqU4JbGw92Vzc6y2SoHNA66E8z1/J+NbyAMuM3YXueGlixrK1qrJN4BFt+6ryciIlKD2Ut3U1JmZWiHcC7t5qYZEuJVpk+fzuuvv84777zDjh07uO+++8jPz2fKFGPQ8aRJk6oNoXz66af59ttv2b9/P+vXr+e2227j0KFD3H333YBRzfr73/+ev/71r3zxxRds2bKFSZMm0aZNG6655hpPPEXnhNoruJXgbqx8LGaeHG8MO12wOoXtRyt7uZdbbUz/cBM/7ckkyM/CW1OG0Dkq2G3XHtapNQG+ZtJyitiZnlfrdfYey2NDSjYWs4lrBrTF38fCq7cnEhcWyKETBfzmvWRKyqxui1tERMSbKcEtjYe7K5udlboO0reAxR/639ow17QPgtyzFE4erP06x3bCoZ+NwZgD73BLaCIiIqfbmZ7LJ+uNdg0zxvXAZFL1dlM0ceJE/vnPf/LEE0/Qv39/Nm7cyJIlSxxDIlNSUkhLS3Mcf/LkSaZOnUqPHj0YN24cubm5rFixgp49ezqO+dOf/sQDDzzAPffcw+DBgzl16hRLliwhICCgwZ+f00IqKrhzPNAeRdxmWKfWXNUnFqsN/vLlNmw2GzabjSc+38qizWn4Wky8ensi/eNbufW6Ab4WLuwUAcD3O2vfpuSjZOP/uZd2iyIy2B+A1i39mTt5MC39fVhzIIs/f7qlTlXi5VYbC1an8M9vdlFc1oAFRiIiIi5SglsaD3dXNjvLfq3e10FQeMNcs3Un6HgJYKsYEFlLVQdj2quNRERE3Oz/vt6JzQZX9Yl1ezJIvMu0adM4dOgQxcXFrF69mqFDhzoeW7ZsGW+//bbj63/961+OY9PT01m0aBEDBgyotp7JZOLpp58mPT2doqIivvvuO7p27dpQT6d27K+p1KKk0Zsxrjv+PmZWH8hi8ZZ0/rV0N/NXp2Aywb8m9ueiLpH1ct1Lq7QpqY2ycisL1xu/fzcMqj7voGt0MP+9ZQBmk5EEf+3H/bW6xp6MPG6Ys4LHPt3Cf3/Yy7+W7qnVOiIiIg1BCW5pXNxV2eysgizYurDi2g08oNF+vfXvQlmx6+eX5MOm/1Wsdaf74hIREalixb5Mlu06jo/ZxB9Hd/N0OCL1L0QtSpqKuLAg7h3ZCYBHPtnMf743BqA+c3VvftW3Tb1d157gXp9ysla9sn/cc5zjecW0buHn6Old1SXdonjiV8YnJf5vyU6+3Zbu9Nql5VZeTNrDVf/5mfUp2QT6WgB47cd9JB/KcjlWERGRhqAEtzQu1Sqb36n/622cD+XFENMH4gbV//Wq6jYOgmOhIBN2fOn6+Vs+huJcCOsAHS91f3wiItLsWa02/u/rnQDcOrQdCREtPByRSAMIjTfuT2VAmQb5NXb3juxEm9AAThWXATD9iq7cdkH7er1m21aBdI8JxmqD5buPu3z+R+uM9iTXDGiLr6XmP+nvGJ7AbRe0w2aDB9/fyLajOeddd0tqDuNf/Jnnl+6mpNzKZd2j+P7hkVw3sC1WG0z/cBMFJWUuxysiIlLflOCWxsde2bzh3fr9o8JqrWzxMeguaOh+ohafyr7Za11sydLQgzFFRKRZWrQljc2pObTws/DA5V08HY5Iw2gRYcxmwQZ5aec9XLxboJ+FZ67pja/FxG8u7sgDl3VukOvaq7hd7cOdlV/CdzsygDPbk1RlMpl4cnwvRnSOoLC0nLvfWcex3KIajy0qLWfW1zu4+qWf2ZmeR1iQL/++qT9v3jGI2NBAnhzfi9jQAA6dKHC8qSkiIuJNlPWSxsde2Zx/HHZ8UX/XObAMsvaDXzD0uaH+rnMuiXcYAyJTVkDGdufPO7Ie0jYZf3zZ+5aLiIi4UUmZlee+2QXAb0Z2IqKlv4cjEmkgJhOEVLSvyEn1bCziFpf3iGbnM2MbdEiuvbXI8t3HKSu3On3e5xuPUFpuo0/bULrHhJzzWF+LmZduHUinyBak5RQxdd46ikqrD4tcvf8EY//9E68u34/VBuP7teG76SO5un9bx/ciNNCXf1zfF4B5Kw/x855MV56qiIhIvVOCWxqfqpXN9grr+mCvmu53E/i3rL/rnEtIG2NAJLj2XO3V272ubbjBmCIi0qwsWH2IlKwCIoP9ufuiDp4OR6RhhVZUzmrQZJNhMTfspzUHxLciNNCXnMJSNhzOdvo8e3uSc1VvVxUa6MubdwymVZAvm1Jz+MNHm7BabeQVlTLzsy1MfG0VBzLziQ7x5/VJg3jx5gG0ruENy4u6RHJ7ReuWP368idyiUqdjFhERqW9KcEvjZK9sPvQLHNvh/vVzj8Kur43twQ08XPJ09utveh+KT53/+IIs2PpJ9XNFRETcKK+o1DGM7fejuhDk5+PhiEQamGPQpCq4pXZ8LGZGdo0EnG9Tsu1oDtvTcvGzmPl1P+eHYCZEtGDObYn4Wkws2pzGHz7axJX/+pH3VqUAcPOQeJZOH8kVPaPPuc6Mcd1p3zqItJwi/vKFC58uFRERqWdKcEvjVNvKZmclvwO2cmg3HKJ6uH99V3S4BMI7QkkebPno/Mdv+h+UFUF0H4gbXN/RiYhIM/Taj/vJyi+hY2QLJg6K93Q4Ig1PFdziBvY2JT84meC2V29f0TOaVkF+Ll3rgo6t+du1fQD4dMMR0nKKaBcexIK7hzLrur6EBPied40gPx+ev6EfJhN8sj6Vb7eluxSDiIhIfVGCWxovVyubnVVeCuvfqX4NTzKbjUGRYLQesdnOfqzNVpnwH3xnww/GFBGRJu9YbhFv/HQAgD+N7o6PRS8npRkKtVdwK8EttTeyayRmE+xMz+NIduE5jy0ps/L5RuP37Xon25Oc7sZB8Tx4eRcCfM3cPaID3/z+YoZ3jnBpjUEJ4dxzcUcAHvt0CydOFdcqFhEREXfSXyTSeHW4xKhsLs6FrR+7b91dX0NeGgRFQI/x7lu3LvrfagyMTN8CR5LPftyBH+HE3orBmDc2XHwiItJs/Ou7PRSWlpPYPozRvc79cXaRJiukIsGoFiVSB2Et/BjQLgw4fxV30o4MThaUEh3iz8VdImt9zYeu6Mr2v4xh5q96Euhnqd0ao7rSNbolmadKmPnZVmznKsARERFpAEpwS+NVtbJ57Xkqm11hH9A48HbwOXPAikcEhUPv64xt+/DLmthj7zfRc4MxRUSkydp77BQfrjsMwIyx3THpk0LSXNkruHOV4Ja6cbZNyUfJxu/adQPj6jwQ01zH8wN8Lcy+sT8+ZhNfb03ni01H67SeiIhIXSnBLY2bo7J587krm511Yh/sXwaYIHFK3ddzp0EV7VK2LTQGSZ4uLx12Lqp+rIiIiBv9Y8lOyq02rugZzaCEcE+HI+I59iGThSehpMCzsUijdmk3I8H9y75MikrLazzmWG4Ry3YZCfAbEmvXnsTdercN5XeXdwHg8c+2kp5T5OGIRESkOVOCWxo3ZyubnWXvX93lCghrX/f13CluEMT0MQZIblxw5uPr54G1DNoNg+ieDR+fiIg0aesOZvHt9gzMJnhkTDdPhyPiWQGhRks40KBJqZMescHEhgZQVGpl5f4TNR6zcMMRrDZIbB9Gx0jv+ZTmfZd0om9cKLlFZTzyyWa1KhEREY9Rglsav/NVNjurtBA2vFd9TW9iMlXGtW4uWK2Vj5WXQfLbxrY3xi4iIo2azWbj2cU7AJg4OJ7OUcEejkjEw0ymKoMm1aZEas9kMnHpOdqU2Gw2PqpoDeUt1dt2vhYzs2/sh5+PmeW7j/O/NYfr5TpFpeUs3Z7B9A83MvbfP5F8qA5/84mISJOkBLc0fuerbHbWts+gKBtC2xkV3N6ozw1GtVDWPjiwvHL/nm+M6qGgCOj5a8/FJyIiTdI32zJYn5JNgK+Z34/q6ulwRLxDiBLc4h6XVbQp+X7nsTOqoDcczmbf8XwCfM1c1TfWE+GdU+eoYP402vhUz18XbSflhHta9uQXl7FocxrTFqwn8ZmlTJ23joXrj7AjLZenv9yuanEREalGCW5p/M5V2ewK+4DGxDvAXLuJ4vXOvyX0u8nYXlelJYu9PcuA27xnMKaIiDQJZeVW/vHNTgDuHtGR6JAAD0ck4iUcgybVokTqZnjn1vj5mEk9WcjeY6eqPfbROuMNlHG9YwkO8PVEeOd154UdGNIhnIKSch7+aBPl1toln3MKS1m4PpWp89Yx8Jml3L9gPV9tTiO/pJw2oQFMHp5AgK+ZTak5/LK35nYuIiLSPPl4OgARt+hzA3z7eGVlc6dLXTs/bTOkrgWzLwycVD8xusvgu2Dt67BzMeQeNSrX9yVhDMac7OnoRESkiflmWwb7j+cT3sKP34zs6OlwRLxHSEW7CFVwSx0F+fkwrGNrlu8+zvc7j9El2mgDVVhSzlebjgJw/SDvak9Sldls4vkb+jH6hR9ZczCLJz7fSr+4Vvj5mPH3MePva8bPYqm4N77297Hg52PGZrPx855Mvt6azop9mZSWVybH27cOYkzvGMb2jqVfXCgmkwmTCd765SAv/bCXEV0iPPisRUTEmyjBLU2DvbJ57etGFberCW57NXSP8dAyyv3xuVNUD2g3HFJWGIMlS/KN/Z0vh/AOno1NRESanMVb0gC4cVC811YPinhEaEXCURXc4gaXdY9i+e7jJO08xm9GdgLgm23p5BWXERcWyAUdWns4wnOLDw9i5lU9eezTLcxfncL81Sm1WqdLVEvG9o5hTO9YesQGYzKZqj0+9aKOvLfqECv3nyD50EkS24e5I3wREWnklOCWpmPQnRWVzYsgNw1CnOxRV5QLmz+qXKMxGHSnkeBOfhvKiiv2abikiIi4V2FJOT/sMoaeje0d4+FoRLyMY8ikEtxSd5d1j+LJL7aRfOgkOQWlhAb58lGyMbTx+sQ4zGbTeVbwvJuHxJOVX8y2o7kUl1kpKbNSXFZecW+tts/+dWm5lZ6xIY6kdueolue8RptWgVw3II4P1h3m5R/28ubkwQ307ERExJspwS1NR3RPaDcMUlYalc2XPOLceZs/gNJ8iOgGCSPqN0Z36flrWBIBeUZVHSFx0HW0Z2MSEZEmZ/nu4xSUlNO2VSB940I9HY6Id6naosRmM+bCiNRSfHgQnaNasvfYKX7cc5wB7VqxYp/RZ3rCQO9tT1KVyWRi2mVdXDrHZrOdUaV9Pvde0omPkg+TtPMY24/m0rNNiEvni4hI06MEtzQtg+4yEtxrXoNsJz8Wt/+HinPvbDx/mPj4GwMlf3nB+DpxsvcOxhQRkUZryVbjjdQxvWNcTkCINHkhbYz70nwoyoZAtUqQurmsexR7j53ih53H2H88H5sNhndqTXx4kKdDqze1+belQ0QLxvWJ5avNabyyfB8v3jygHiITEZHGRAluaVp6/hq+iYL8Y7DxPefP821h9PBuTAZNgRUvGoltbx+MKSIijU5xWTlJO4z2JOP6qD2JyBn8giAwHAqzjDYlSnBLHV3aLYrXftzPst3HaeGfBcANXjxc0pN+e0lnvtqcxqLNR5l+RVc6RLTwdEgiIuJBSnBL0+LjD7cvhL1JgO28hzu0HwGBreorqvoRlgCTvwKzDwRHezoaERFpYn7Zm0lecRnRIf4MiFfiTqRGoXFGgjv3CMT09nQ00sgNSggjOMCHrPwSsvIh2N+HMb2cnCvUzPRsE8Jl3aP4fucxXl2+j/+b0NfTIYmIiAcpwS1NT0wf49YctB/u6QhERKSJ+npLOgBjesU0iuFmIh4RGgfpm40+3CJ15Gsxc3GXSBZtMdpD/apfLIF+akN4Nvdf2onvdx7jk/WpPDiqC7GhgZ4OSUREPMTs6QBERERExLuUllv5dnsGAGN6q3pQ5KxC2hr3SnCLm1zaPcqxfX1ivAcj8X6J7cMZ2iGc0nIbr/94wNPhiIiIBynBLSIiIiLVrNp/gpzCUlq38GNIh3BPhyPivUIrEty5RzwbhzQZo3pEERXsz5AO4Qxs18rT4Xi9+y/tDMD/1qRw4lSxh6MRERFPUYJbRERERKpZXNGe5MpeMVjUnkTk7EIqBgDmKMEt7tEqyI9fHr2MBXcPxWTS/3/P56IuEfRpG0phaTlvrzjo6XBERMRDlOAWEREREYdyq41vtxkJ7rG9YzwcjYiXC61IcOeqRYm4j6/FjI9Ff6o7w2Qycf+lnQB4e8VB8opKPRyRiIh4gv7VFBERERGHNQeyOJFfQmigL8M6tfZ0OCLezd6iJOcIWK2ejUWkmbqyZwydIluQV1TGe6tSPB2OWyTtyOCpL7ap7YqIiJOU4BYRERERhyVb0wC4omc0vqogFDm34FjABNZSyD/u6WhEmiWz2cRvLzF6cb/5836KSss9HFHt2Ww2XvtxH3e9s463Vxxk8ltrVZUuIuIE/dUiIiIi4qKCkjLGv/gzU95a06j/kD6d1WpjSUV7knF91J5E5LwsvhBc8d+K2pSIeMyv+7chLiyQzFMlfLjusKfDqZVyq42/fLmdZxfvBMDfx8yWIznc9c66JvVaQ0SkPijBLSIiIuKipB3H2HIkhx92HWfmZ1ux2WyeDsktNhw+SUZuMcH+PlzYOcLT4Yg0DiFV2pSIiEf4Wsz8ZqTRi/vV5fspLW9cLYOKSsv57fxkx6DMmVf14JP7hhPs78OaA1ncP399o3tOIiINSQluERERERd9XdHGA+Dj5FTe+uWg54Jxo6+3GNXbl/WIwt/H4uFoRBoJx6BJJbhFPOmGxDgiWvpzJLuQzzY0nv8es/JLuOX1VXyzLQM/i5n/3jKAuy/qSO+2obxxxyD8fcwk7TzGwx9twmptGm+oi4i4mxLcIiIiIi4oLCnnh51Gr90JA43E1t8W7+DnPZmeDKvObDYbX281Etxje8d6OBqRRsSe4M5RixIRTwrwtTD1og4AvLJ8H+WNIBmccqKACa+sYH1KNqGBvrx391B+1beN4/GhHVvzym0D8TGb+HzjUZ76cluT+dSY3Q+7jvHeqkOeDkNEGjkluEVERERcsHz3MQpLy2nbKpB/3tCX6wa2pdxq4/4F6zl0It/T4dXaliM5HMkuJNDXwsiukZ4OR6TxcLQoUYJbxNNuvaA9IQE+7D+ezzcVMyW81abD2Vz3yi8cyMynbatAPrlvGEM6hJ9x3GXdo3n+xn6YTDBv5SFmL93tgWjrR35xGfe9l8zMz7ayPuWkp8MRkUZMCW4RERERF1RWOcdgMpl49to+9ItvRU5hKVPnreNUcZmHI6ydxfb2JN2jCPRTexIRp4VWJLjVokTE41r6+zD5QqOK+6Uf9npttXPSjgxuem0VmadK6NUmhE9/O5zOUcFnPf7q/m15+ureALz4/V7e+Gl/Q4Var77feYyiUqO3+HfbMzwcjYg0ZrVKcL/00kskJCQQEBDA0KFDWbNmzTmPf+GFF+jWrRuBgYHEx8fz0EMPUVRU5Hh81qxZDB48mODgYKKiorjmmmvYtWtXtTUuueQSTCZTtdu9995bm/BFREREaqW4rJykHccAGNvHaOMR4GvhtdsTiQr2Z3fGKR76YGOj65Fps9lYUtFXfEzvGA9HI9LIhNhblCjBLeINpgxPIMjPwrajuSzffdzT4Zxh/upDTJ23jsLSci7uGskHvxlGVEjAec+7/YL2/HF0NwD+umgHH649XN+h1ruqM03sr69ERGrD5QT3Bx98wPTp03nyySdZv349/fr1Y/To0Rw7VvP/jBYsWMCjjz7Kk08+yY4dO3jzzTf54IMPeOyxxxzHLF++nPvvv59Vq1axdOlSSktLufLKK8nPr/4x36lTp5KWlua4/eMf/3A1fBERkTrbdjSHqfPWsTM919OhSAP7eU8mp4rLiA7xZ0B8K8f+6JAAXr09ET+LmaXbM3ghaU+DxVRQUsbspbuZ/sFGcgpKa7XGjrQ8Dp4owM/HzKXdo9wcoUgTZ+/BfSodymv336CIuE9YCz9uGdIOgJd/2OfhaCrZbDae+2Ynf/50K1abMRTzzTsG0dLfx+k1fntJJ+65uCMAjy7c7HhzujEqKCnj+52VeaRdGXkczirwYEQi0pi5nOCePXs2U6dOZcqUKfTs2ZM5c+YQFBTE3Llzazx+xYoVXHjhhdxyyy0kJCRw5ZVXcvPNN1er+l6yZAmTJ0+mV69e9OvXj7fffpuUlBSSk5OrrRUUFERMTIzjFhIS4mr4IiIidWK12nj4o80s3Z7Bs4t3ejocaWD29iRjesVgNpuqPTagXRjPXtcHgP8k7eHrLfX/R+fS7RlcMftH/pO0h4UbjvDA+xtqNVTL/gfyyK6RLv2hLSJAi0gw+4LNCnmNN9kk0pTcfVFH/Cxm1hzMYtbiHZSWWz0aT1Z+CX/4cBMvVSTcfz+qC/+4vi++FtdSMiaTiRljuzNxUDxWG/zufxsb7ZDrZbuOU1RqJS4s0NF7PGmH2pSISO249H/TkpISkpOTGTVqVOUCZjOjRo1i5cqVNZ4zfPhwkpOTHQnt/fv3s3jxYsaNG3fW6+Tk5AAQHl59wML8+fOJiIigd+/ezJgxg4KCs7+7V1xcTG5ubrWbiIhIXX228Qg70ox/U37cfZyUE6o0aS5Ky60sregPaW9PcrrrE+O4a4TR+3P6h5scvyvulnqygLvfWcfUees4kl1I21aBBPia+XH3cf6+xPU3Xqr2FRcRF5nNENLG2FabEhGvEBMawO8u7wzAqz/u56bXVnEku7DBrl9WbmXtwSye/3YXv/7vzyT+dSkLNxzBYjbxjwl9+f2orphMpvMvVAOTycSz1/VhXJ8YSsqt3PPuukY5oHFxRSHAVX1iGdXD+PRY0k61KRGR2nEpwZ2ZmUl5eTnR0dHV9kdHR5OeXvOE4ltuuYWnn36aESNG4OvrS6dOnbjkkkuqtSipymq18vvf/54LL7yQ3r17V1vnvffe44cffmDGjBm8++673HbbbWeNddasWYSGhjpu8fHxrjxVERGRMxSVlvP8t8bk+gBf45/QBWtSPBmSNKCV+06QU1hKREs/BieEn/W4GWO7c1GXCApLy5k6bx1Z+SVui6G03Mory/Zxxewf+W5HBj5mE/eO7MTS6Rfzzxv6AfDaj/tZuD7V6TX3Hstjz7FT+FpMXN4j+vwniMiZ7G1KNGhSxGtMu6wLL986kGB/H5IPneSq//xUr4MMU08WsGB1Cr95dx0Dnl7KDXNW8uL3e9mcmoPNBj1iQ3hr8mBuHFz33ITFbOJfE/tzUZcICkrKmfLW2kbVOq+otNzRnmRsn1jH649V+0802mHdIuJZ9f4Z1GXLlvHss8/y8ssvM3ToUPbu3cuDDz7IM888w+OPP37G8ffffz9bt27l559/rrb/nnvucWz36dOH2NhYLr/8cvbt20enTp3OWGfGjBlMnz7d8XVubq6S3CIiUifvrjzEkexCYkICmDGuOw++v5EP1x3moSu64O9j8XR4Us/sg5Cu7BWDxXz2qisfi5kXbx7A1S/9wqETBfx2fjLv3jXU5Y8hn271/hPM/Gwre46dAmBIh3D+ek1vukYHA/Crvm3YmZbHf3/Yy6MLt9ApsiX9qvQJP+vz2mIUKVzYOYLQQN86xSjSbIW0Ne5znH9zSUTq37g+sfRuE8q0/61nc2oOd89bx90jOvCnMd3x86nbv8uFJeWsOnCCH3cfZ/nu4+w/Xn2GWFiQLyO6RDKyayQXd4lwapCkK/x9LLx6eyK3vbGa9SnZTHpzDd/9YSQhAd7/b/myXccpKCmnbatA+sWFYjKZ6BDRggOZ+fy0+/hZPyknInI2Lv0fPSIiAovFQkZG9Xc9MzIyiImp+SOtjz/+OLfffjt33303ffr04dprr+XZZ59l1qxZWK3V+2BNmzaNr776ih9++IG4uLhzxjJ06FAA9u7dW+Pj/v7+hISEVLuJiIjUVk5BKf/9wfg356ErunBVn1iiQ/zJyi9hydaaP8UkTUe51ca32yrakzjRxqNVkB9vTDIGR63an8UzX22v9bVPnCrm4Y82MfG1Vew5dorwFn7884Z+fHDPBY7ktt30K7oyqkcUJWXGR5aP5Radd/3FFb+/43rrj0mRWlMFt4jXatc6iI/uHcaUCxMAeOPnA9z46spaDTS02WysO5jFwx9tYuAzS5ny1lre+uUg+4/nYzbBoPZhTL+iK5/dfyHrZl7BizcP4PrEOLcnt+2C/Hx4a/IQOkS04FheMa8u956hmudib08ytneMo1XL5RVDrr/boTYlIuI6lxLcfn5+JCYmkpSU5NhntVpJSkpi2LBhNZ5TUFCA2Vz9MhaLUeVms9kc99OmTePTTz/l+++/p0OHDueNZePGjQDExuqPMRERqX8vL99LTmEpXaNbMmFgHD4WMzcNbgfA/NVqU9LUrTmQxYn8EloF+XJBx9ZOndMlOpgXJvbHZIJ5Kw/xPxfb2VitNv63JoXLnl/Ox8lGVejNQ9rx/R9Gcn1iXI29O80VH1nuEtWSjNxifvNeMkWl5We9xsHMfHak5WIxm7iip9qTiNRaqCq4RbyZv4+FJ8f34tXbEwkJ8GHj4Wyu+s9PfLPNuSKFE6eKef3H/YyavZzr56zk4+RUCkvLaRMawE2D43nl1oFseOJKPr5vOL+7vAv941ud89Ne7hQa5MujY7sD8ObPB5x6c9uTikrLHcMkx/WtzOfY25T8sOtYrQZmi0jz5nKLkunTp3PHHXcwaNAghgwZwgsvvEB+fj5TpkwBYNKkSbRt25ZZs2YBMH78eGbPns2AAQMcLUoef/xxxo8f70h033///SxYsIDPP/+c4OBgRz/v0NBQAgMD2bdvHwsWLGDcuHG0bt2azZs389BDD3HxxRfTt29fd30vREREanQ0u5C3fjkIwCNjuuNT0Wri5iHt+O8Pe1lzIIvdGXlnVNM2hHKrjQVrUujdJoQB7cIa/PrNhb09yRU9ol1qNTKqZzR/uKIr//x2N098vpWdabmO35/zWZ9ykg0p2YDRt/Ov1/Qmsf35f8bBAb68PmkQv/7vz2xIyWbmZ1t57vq+NSbE7cMlL+gYTlgLP6efl4icJqSiglsJbhGvNrpXDD1jQ3jgfxvYeDib37ybzJQLE5gxtscZLUusVhs/783kg7WH+XZ7OqXlRtI10NfCr/rGctOQeAa2C6v1sEh3urJnNAPbtWJ9Sjb/TtrD367t4+mQzuqnPZnkl5QTGxpA/7hWjv2DEsIIDvAhK7+EjYdPktj+7PNORERO53KCe+LEiRw/fpwnnniC9PR0+vfvz5IlSxyDJ1NSUqpVbM+cOROTycTMmTM5cuQIkZGRjB8/nr/97W+OY1555RUALrnkkmrXeuutt5g8eTJ+fn589913jmR6fHw8EyZMYObMmbV5ziIiIi6ZvXQ3JWVWhnQI57KKj08CxIQGcHn3KL7dnsGC1Sk89eteDR7b/9ak8PhnW2kV5MvyP16qHsr1wGq1OdrQjO1z/vYkp7v/0s7sSMtj0ZY03ll5yKVzW/hZeOiKrkwenuB0YhwgIaIF/71lIJPfWsPHyan0jA3hzhFnfkJuyVb7R4T1iTiROrFXcKtFiYjXiw8P4sPfDOO5b3by+k8HeOuXgyQfOsl/bx5Iu9ZBHM0u5KN1qXy47jBHsgsd5/WNC2Xi4Hh+3a8NwV7W59pkMvHImO5MfG0V7689zN0XdaRDRAtPh1WjyvYksZirVLn7Wsxc0i2KLzcdJWnHMSW4RcQlJpu9T0gTl5ubS2hoKDk5OerHLSIiTtuZnsvYf/+EzQaf/nb4GVXSy3cf5465awgO8GH1Y5cT5Ffv85sd8ovLGPncMjJPFQNw3yWdeGRM9wa7fnOx7mAW189ZSbC/D+seH1WrgaJFpeV8sPYw6S58bDjI18L1g+KIDQ10+Xp2b/y0n78u2oHFbOKdKUMY0SXC8VjqyQJG/P0HTCZY/djlRAXXT3/QhqDXec2X1/zsC7LgHxVvIv05HXxr/9+tiDSc77Zn8PDHm8guKCU4wIf+8a34eW8m9ixJSIAP1w5oy42D4+nVJtSzwTrhzrfX8v3OY1zVN5aXbhno6XDOUFxWzqBnviOvuIyP7x3GoITqSezPNx7hwfc30i06mG8euthDUYqIt3DldV7D/RUuIiLSCP39653YbDCuT0yNLUAu6hxBu/AgUrIK+HLTUSZW9OVuCG/8dIDMU8UE+/uQV1zG3J8PMGlY+zolROVM9jYel/eIqlVyGyDA18IdwxPcGJVz7hrRgR1peXyyPpX7F6zni2kX0r61UdFlr0ofnBDeqJPb0rBeeuklnnvuOdLT0+nXrx8vvvgiQ4YMOe9577//PjfffDNXX301n332mWP/5MmTeeedd6odO3r0aJYsWeLu0OtXYBj4toDSfMg9Cq07eToiEXHCqJ7RLPrdRfzufxtIPnSSn/ZkAkbrrpsGt2NM7xgCfGv3b78n/GlMN37YdYxFm9P4zcXZ9K3SAsQb/Lwnk7ziMqJD/BlYw+vqS7pGYTGb2JWRx+GsAuLDgzwQpYg0Ri4NmRQREWlOVu47wQ+7juNjNvHH0TVXRpvNJm4Z2vDDJjNPFfPaj/sAePa6PgxJCKe4zMq/lu5usBiaA5utanuSxtfGw2Qy8bdre9M/vhU5haVMnbeOU8VlQGWCe2xv19uuSPP0wQcfMH36dJ588knWr19Pv379GD16NMeOHTvneQcPHuThhx/moosuqvHxMWPGkJaW5rj973//q4/w65fJVGXQ5GHPxiIiLmnbKpD377mAR8Z054HLOvPDw5fw/j3DuGZA20aV3AboHhPCtf2N/xf9fclOD0dzpsVb7K89qrcnsQsN8mVQxbwR+yBKERFnKMEtIiJSA5vNxv99vQMwhkmeq4/hDYlx+FpMbE7NYXNqdoPE95+kPeSXlNM3LpSr+sTy6DgjAf9xciq7M/IaJIbmYHNqDkeyCwnyszCya6Snw6mVAF8Lr96eSFSwP7szTvHQBxtJyylk3aGTAIxRglucNHv2bKZOncqUKVPo2bMnc+bMISgoiLlz5571nPLycm699Vb+8pe/0LFjxxqP8ff3JyYmxnELC2ukA3ND7Alu9eEWaWx8LWbuu6QTf7iym9f2rnbWQ1d0xc9i5pe9J/hpz3FPh+NQUmZl6fbzv7l+eQ9j3k3SznO/eSoiUpUS3CIiIjVYtCWNTak5tPCz8LvLu5zz2NYt/R1D+hY0QBX3gcx8x3UeHdsds9nEwHZhjO0dg9VmtFUR97C3J7m0e1Sjq+KqKjokgNcmDcLPx8zS7RlMeWstAAPatVJLG3FKSUkJycnJjBo1yrHPbDYzatQoVq5cedbznn76aaKiorjrrrvOesyyZcuIioqiW7du3HfffZw4ccKtsTcYDZoUES8QHx7ErRcYny78+5KdWK3eMXbtl32Z5BaVERnsf0bv7aou7xENwKr9J8grKm2o8ESkkVMPbhERkdOUlFl57ptdAEy9uCORwf7nPee2C9rzxaajfL7xKI9d1YOQAN96i++f3+yizGrjkm6RDO9UOTTwj6O78e32DJJ2HmP1/hMM7di63mLwBKvVxk97M136YyeipT9DO4RjMp35MdjzsdlsfL01DWgabTz6x7di1rV9+MNHm9iZblT5N4XnJQ0jMzOT8vJyoqOjq+2Pjo5m586a31T7+eefefPNN9m4ceNZ1x0zZgzXXXcdHTp0YN++fTz22GOMHTuWlStXYrGc+aZScXExxcXFjq9zc3Nr94TqQ0iccZ+T6tk4RKTZm3ZpZz5al8rWI7ks2pLG+H5tPB0SX28xXlON6RWDpYb2JHadIlvSIaIFBzLz+XlPZqNsESciDU8JbhERkdP8b00Kh04UENHSn6kX1fyR+tMNTgijS1RL9hw7xafrj9TbQMGNh7NZtCUNkwkeGVO9L3jHyJbcPCSe91alMOvrnXz62+G1Sux6qw/XHebRhVtcPu/uER2Y+aueLp+3Iy2PQycK8Pcxc2m3KJfP90YTEuPYkZbLGz8fAHB88kDE3fLy8rj99tt5/fXXiYiIOOtxN910k2O7T58+9O3bl06dOrFs2TIuv/zyM46fNWsWf/nLX+ol5joLrUhwq4JbRDysdUt/7rm4I7OX7ub5b3cxpncMvpbafYDfarWx59gpOke1PGdi+lxKy618u93oqT3OiYT15d2jeOPnA3y345gS3CLiFLUoERERqSKvqJT/JO0B4MFRXWjh79x7wSaTiVsdwyYPYbO5/+OgNpuNWYuNvuDXDYijR2zIGcc8eHlXgvwsbDyc7Wiv0VR8ttFIGnWJasnQDuHnvQ1OMPr4vvHzAT5Jdr2i0l69PbJrpNO/B43Bo2O7c8/FHfnTmG7Ehwd5OhxpJCIiIrBYLGRkVB/6lZGRQUzMmZ8E2LdvHwcPHmT8+PH4+Pjg4+PDvHnz+OKLL/Dx8WHfvn01Xqdjx45ERESwd+/eGh+fMWMGOTk5jtvhw1400NExZFIV3CLieXeN6EBES38Onijg/bW1+39lUWk59y9Yz+gXfuSB/62v9evblftOkF1QSkRLP4Z0OHt7Ejt7m5Ifdh2j3EtarIiId2s6f62JiIi4wes/7udEfgkdI1pw0+B4l869LjGOvy/Zxe6MU6w9eNKpF/Cu+GHXMVYfyMLPx8z0K7vWeExksFF1/u+kPTz3zS6u6Bld64odb5J5qpg1B7IAmDt5sNOJ2dnf7uI/3+9lxqdb6BjZggHtnB9eZ3+DYGyfptXGw8di5rFxPTwdhjQyfn5+JCYmkpSUxDXXXAOA1WolKSmJadOmnXF89+7d2bKl+icuZs6cSV5eHv/+97+Jj6/5/6+pqamcOHGC2NiaK/b8/f3x9z9/2yiPcLQoUQW3iHheC38ffnd5Z574fBv//m4P1w1o69Ib9pmnipk6bx0bUrIBWLwlnf+tOcwtFQUdrrAXDYw+T3sSu0EJYQQH+JCVX8L/s3ff8U3W2wPHP0nadA+6obQUOiijUChQ9pAyHeAEAVFUnLjw6pXruteroj8VcV4UQUVFEAdOQKjsvcos0DK7J907ye+PpylUWtq0adPS83698srT5Hm+OWlLSU7Oc05MwkUiOpn3NbUQ4trT+t/xCiGEEGaSnlfC4q1K64Znx3c1OTHsbGvNTZU9Dr/Zfd6ssen0Bt6oHB45a3AAvq61DwacPbwLHo5azmYWsmJP0w+9bA5/HktDb4AwXxeTqo6fjAphTHdvyir0PPjVftLySup1XFxaPvHpBVhrVFVVREK0dXPnzmXx4sV8+eWXxMbG8vDDD1NYWMisWbMAmDlzJvPmzQPA1taWnj17Vru4urri5OREz5490Wq1FBQU8Mwzz7Br1y7OnTtHdHQ0kyZNIigoiHHjxlnyqTaMsYK7LB9Kci0bixBCAFP7++PvZk9mQSlLK9uT1Ud8egE3f7ydgxdycLGzZko/5UPJV347RlxavkkxVOj0rDtW//YkANYaNSMr28NtiE036fGEEG2TJLiFEEKISguj4ygu19HX35VxPRpWtWucWr/mSCpZBaV17F1/P+xP5FRaAS521jwyMuiq+zraWPHE6GAAFm6Io6C0wmxxWErVsEcTq6nVahXvTgknxNuR9PxSHvxqPyXluno8nlK9PTTIo0kHhgrRmkyZMoW3336bl156ifDwcGJiYli7dm3V4MkLFy6QkpJS7/U0Gg2HDx/mpptuIiQkhPvuu4+IiAi2bt3acqu0r0brALauyrZUcQshWgCtlZp/jOsKwCdbzpBdWFbnMbvOZHHr/3aQkF2Mv5s9Pz4ymPm3hDEs2IOScj2Pr4ip12spo91ns8kuLMPNQUukCWc3RnVTEtx/SYJbCFEPkuAWQgghgNMZBays7E84b2K3Bg9n7NXRlTBfF8p0elY1oO9zTYrLdCxYfwqAOaOCcLGvO+E6dYA/nT0cyCos49MtZ8wSh6XkFJWx83QW0LChiI42Viye2Q8XO2tiEnJ4/qejdfaQvNSeRAYbCXG5OXPmcP78eUpLS9m9ezeRkZFV923atIkvvvii1mO/+OILVq9eXfW1nZ0d69atIz09nbKyMs6dO8enn35alTBvlVwqW6/IoEkhRAtxQ1h7enRwpqC0go821jzfwOing4nctWQ3ucXl9PF35adHBhPo6YhareKdO3rj7qAlNiWPN9eeqPfj/37E2J7EGysTzo4cGeKFRq3iZFo+CdlF9T5OCNE2SYJbCNHmGQwG0vJKSMoprvfFlKoF0Tr839oT6PQGorp50z+gcX3+ZlRWcS/ffQG9GQbjfL7jLKl5Jfi62nHXoE71OsZao+aZyoqdz7aeIT2/fq05WqL1x9Oo0BsI9XGis4dDg9bo5O7AR9P6olGr+OFAIkuucpruucxCYlPy0KhVjJH2JEIIU1QNmmxBwy+FEG2aWq3in+NDAfhq53kSL16ZLDYYDLwfHcdTKw9RrjMwMcyHb2cPxN3x0tk0Xk62vHV7LwA+336OjSfqrqzW6Q2sMxYNmFik4GJvTb9OyuyU6Ni0OvYWTalCp+e+L/Zyz+d7KC6T98GiZZIhk0KINu/NtSdZtPm0Scd4Otmw8R8jcTRhUItomQpLK3gvOo51x9JQq+Cf47s2es0be3fg1d9iuZBdxLb4TIaHeDZ4rYuFZfxvk/L7+fTYEGytNfU+dkJPH8L9XIlJyOG9DXG8dnNYg+OwpLUNfGP0d0ODPXh+Yjde+e04r/8RS1cfJ4YFX/mzMVZvD+riTjsHbaMeUwjRxjgbE9xSwS2EaDmGBXswONCdHaezeHd9HO/c0bvqvrIKPf/66QjfV555+OCILvxzXCjqGoZBXhfqzT2DA/hixzme+f4Qa54YjqdT7S2l9pzNJquwDFd7awYFupscd1Q3b3afzSb6RDr3DOls8vHCPH48kER05Qca8348zLtTwht8tqsQTUUquIUQbd66Y0oyy1qjQmulrvMCkJFfyrEkGSDVmhkMBtYeTWXMgs1VLTweHBFIsLdTo9e211pxS18lydHYYZMfbownv6SCbu2dmRzua9KxKpWKeROUip0VexM4nVHQqFgsIb+knK1xmYDp/bdrMmtIALdFdERvgDnLD3Ius/CKfRra71sIIaoquKVFiRCiBVGpLlVx/3gwkROpeQDkFpdzz+d7+H5/Ihq1itdu7sm8Cd1qTG4bPTchlFAfJzILynh61aGrnq34R2V7krHdvU0e3g5wXWUf7l1nssgvKTf5eNF4ZRV63ouOq/p6dUwyn28/Z7mAhKiFJLiFEG1abnE5ZysTXHv+FcWpVyfUeRnVVan4jG+FyUKhSMgu4r4v9/HQ1/tJzi3Bz82Oz+/pX/XC3xymD1RaiWyITSc1t2HtQRKyi/hqp5Igf25CzZU0dYns4s7oUC90egNvrT3ZoDgs6a8T6ZTp9AR6OhDs5djo9VQq5c1bH39XcovLuX/ZvmpvmBIvFnE4MReVCsZ2lwS3EMJEzh2V61zzzGAQQghz6e3nyvVh7TEY4K21J0nILuLW/+1gx+ksHLQaPru7H9Mj626FZ2ut4YM7+2BjpWbLqQyWbq+57ZtOb2BtZSHRxAbONAn0dKSzhwPlOkNVwYNoXt/tSyAppxhPJ5uq9oev/RFbNR9HiJZCEtxCiDbtaGUVtp+bXb1bEQRVJtni0iTB3dqUVej5aGM8Y97dzF8n0rHWqHh0VCB/PjmCUaFeZn2sEG8nBgS4odMbWLH3QoPWeOfPk5Tp9AwJcmd4sEeDY/nnhFDUKlh7LJX95y82eB1LMFb+TOjZ3mynQtpYafhkRgTezjbEpxfw1MqYquojYzuUAQFuVz3lVgghauRSmeCWCm4hRAv09NgQNGoV0SfSueGDbcSnF+DjbMuqhwYzqmv9XwsHezvx4g3dAXhz7Ymq91SX23cum4z8UpxtrRgc2PDXsaMrX6NHx9bd81uYV0m5jg//UgaTPjoykEdGBjI5vAM6vYE5yw+QnFNs4QiFuEQS3EKINu1wovJirJeva72PCfZSWljEp0uCuzXZeTqLCe9t4a11Jykp1zOoiztrnhjGM+NCsdPWv6+1KaZXDptcsSeBCp3epGOPJuWyOiYZgOfGd2tUcjfE24nbIpSkyxtrYjEYGj/4sjkUlVWw+VQGYP52IV7Otnx6Vz+0Vmo2xKbz7oZTwKX+2xN6SvW2EKIBXC7rwd1K/tYKIdqOLp6OTOnvByhnsnZr78xPjw6mewdnk9eaHunP2O7elOsMPL7iIEVlFdXuN76mGtvDp6rNY0OMrhz4vfFkOjozDG8X9bd89wVS80ro4GLLnZH+qFQq5t/Si+7tnckqLOOhr/dTUi5DJ0XLIAluIUSbdiQpB4BeHV3qfUyQt1LBLQnu1iGzoJS5K2O4c/EuTmcU4uGoZeGUcJbPjiTIq/H9tq9mfE8f3By0pOaVVA1mqa83154A4KbeHQgz4fezNk+NCcHGSs3ecxfZ0EoqYDadzKCkXI+/mz3d25v+xqsuvf1ceeMWZfDmB3/Fs3Tb2aoK9/GNHGgphGijnDoAKtCVQqGcTi+EaHmejAqmV0cXbuzdgVUPDaK9i12D1lGpVLx5ay+8nW04k1HIf387XnWfXm+ommkysZFFCv0C2uFsa0V2YRkxCa3rTMTWrLhMx8eVg+7nXBeMjZVSEGSn1fDJXRG42ltzODGXF1cfbXTxTGxKHm+sOUFaXsPaOgoBkuAWQrRxxgpuUxKIxhYlqXkl5MmwkxZLrzfw9a7zXPf2Jn48mIRKBTMG+hM9dyST+/g2y+RvGysNt/dTKqe/2V3/NiVb4zLYGpeJtUZV1euusdq72HHvUGX6/JtrT5hcUW4Jl9qT+DTZz+uWvh2ZPUz5vrxS+casr78rPi62TfJ4QohrnJUWHCtP88+TPtxCiJbHy8mWX+YM5YM7++BoY9Wotdo5aHn3jnBUKvh2T0LVa7cDFy6SlleKk60VQ4Ia3p4EwFqjZkRl+5TWUqRxLVi28xyZBaX4udlVvZ8x8nOz54M7+6BWwar9iXxtwvucyxkMBpZuO8ukD7ezaPNpXvn1eN0HCVGLxv01E0KIViy7sIzEi0rfsJ6+9U9wO9ta4+1sQ1peKfHpBfT1b9dUIYoG0usN3L9sH39VVk339HXm1clhhPu5Nnss0wb488nmM2w5lcGA1zbU65j8EuUUzxkDO+HnZm+2WB4aEci3ey4Qn15A5OvRaOo5tLK9iy1v3NqLbk1QRV2bknIdGyt/fhMaOJiovp6b0I0TqflVw4smSPW2EKIxnH2hIE1pU9Khj6WjEUKIJjU4yIOHRgTyv02nee6Hw4T7ufLHEaU9yZhu3lWVv40R1c2LXw8lEx2bZtah8KJmBaUVLNqsVG8/MToEa82VtbHDgj355/hQ5q85wX9+OUaojxP9A9zq/RiZBaU8s+oQG09mVN22ITaN/JJynGytG/8kRJsjFdxCiDbrSOUwlC4eDjib+J9oVR9uGTTZIp3PLuKvE+lYqVX8+8bu/PzoUIsktwE6uTswrofSOzA9v7Rel+JyHe4OWh67LtissbjYWfP0mBAAsgrL6h3PocRc7v9yH1kFpWaN52q2nMqgsExHBxdbepuhRcvVaNQqPryzL0FejjhoNdzQWxLcQohGkEGTQog2Zu6YEHp3dCGvpIInV8Zc1p7EPK+pRoZ4oVGrOJVWQEJ2kVnWFLX7fNtZLhaV08XDgcnhHWrd74HhXbi+V3sq9AYe/voAqbn1azGy5VQG4xduZePJDLRWal6Z1INATwdKK/T8eSzNXE9DtDFSwS2EaLMOJ+QAprUnMQrycmRbfCbxGZLgboni0vIB6OrjxD1DOls4GvhwWl/i0wvQm9CfrqOrPS725q9emDGwE0ODPa8YBFSbCp2BJ1Yc5FxWEY98c4Cv74+ssYrD3NZWDiYa37N9s7STcbG35rfHhlJSrsPVXtvkjyeEuIYZE9y5CZaNQwghmom1Rs37d/Zh4ntb2XM2GwBHGyuGBjeuPYmRi701/Tq1Y/fZbKJj0+r1+v5Yci6r9iWyJS6DMF8XHhjehR4dmrZo4lqQW1zO4q1nAHgiKhirq7zuV6lU/N+tvYhPK+BkWj4Pf7OfFQ8MrLVqv6xCz1vrTrB461kAQrwdef/OPoT6OJNTVM6C9af4+VAyt0Z0rPF4Ia5GEtxCiDbrcGUFd5gJ7UmMjH24jYlU0bLEVQ4ADa78OVmatUbdrO09rkalUtHZw8GkYxbP7MfNH+9g99lsXvn1OP+d3LOJolOUVehZH6tUb0xo5GAiU9haa7C1bvxptEKINs7ZV7nOlQpuIUTb0cndgf9O7snc7w4BMLqbl1lfV0V181YS3CfSa01w5xaV8/OhJL7bl8DRpLyq289kFPJzTDLDgj14eEQggwLdm6WAojVasvUMeSUVhHg7cmOv2qu3jRxsrPjkrghu+nAbBy/k8J9fj/P6zWFX7Hc6o4AnVhys+rncNbATz1/frep35KbeHViw/hTb4zPJyC/F08nGvE9MXPOkRYkQos06UjlgsldHV5OPNSZOjYlU0bLEGxPc3k4WjuTaEOztxMIpygChr3adZ3kDB8nU1/bTmeSXVODlZEOE9LgXQrQ2LpUJbmlRIoRoY27u48uUfn6oVHDnAH+zrn1dN2XQ5K4zWeSXlFfdrtcb2B6fyePfHqT/6xt46edjHE3Kw1qj4vqw9rw3NZwbe3dArYKtcZlM+2w3N324nd8OJ6PT1//syrYgu7CMJduU6uq5Y0JQ13NeT4CHA+/d2QeVCpbvvsC3ey69VzAYDHy3N4Eb3t/G0aQ8XO2t+fSuCP47uWe1D0ACPBzo7eeKTm+oGlYqhCmkglsI0Sal55WQmleCWgU9OpheWWtMnCblFFNUVoG9Vv6ctiTGBHegZ8uo4L4WRHX35ukxIbz95yle+vkoQV6ODOhc/0EyplhbOZhoXA+fer+wFkKIFsPZ2KJEEtxCiLZFpVLxxq1hvHBDN7MPCgz0dKSzhwNnMwvZGpdJbz9Xvt+XyKr9CSReLK7aL9THiTv6+TG5jy9uDkrbuUnhvjwztiufbTvDd/sSOJKUy5zlB/F3O8ns4V24PaKjnMUHfLLlNIVlOnp0cGZcD9POohzV1avqvcLLPx+jq48TgZ6O/OunI/x+WElYD+rizrtTwvFxsa1xjUm9O3AoIYefY5K4e3BAY5+OaGMkIyOEaJOMAyaDvBxxsDH9T6GbgxY3By3ZhWWcySikZwPanIimodcbLqvglgS3OT06KojYlHx+P5LCw1/v55fHhuLramfWx6jQ6fnzuJLgntCz+dqTCCGE2Rh7cOengK4CNPKWSwjRdqhUKrMnt41Gh3rx2bazvLj6KNlFZRjH2zjZWjEpvAN39PMjzNelxvYj/u72vDKpJ0+MDmbZzvN8ufMcF7KLeHH1URauP8XdgwO4a2An2jm0zVksGfmlLNtxHlCqtxvSwuWRkUEcScpl3bE0HvpqP9YaNUk5xVipVcwdG8KDwwPRXKV45YZe7Xn19+McuJDDhawi/N3tG/x8RNsjr7aEEG3S4URj/23XBq8R5OXInrPZxKXnS4Ibpefd63/EklNcVu9jHG2s+ce4ENq7mC9JmpRTTHG5DmuNik5u8qLInFQqFW/d3ouzmYUcT8njgWX7+P6hwdhpzVfxsvtsNheLynFz0DZZhbgQQjQpRy9QW4G+AgpSLyW8hRBCNMrobt58tu0sWYXK+41BXdyZ0t+PcT186v161N3RhqfGhPDgiC58tzeBxVvPkpRTzIL1p/jfptNM6e/HnQP86erTtlod/m/TaYrLdYT7uXJdqFeD1lCrVbxzRzinP9peVXDk72bP+3f2IdzPtc7jvZxtGRzowbb4TH45lMSc64IbFIdomyTBLYRokw4n5gDQq2PDE9PBxgR3mvThBnjrzxOs3Jdg8nHezjY8Oz7UbHHEZyg/jy4ejled+i0axl5rxaczI5j04XaOJefxzPeH+ODOPmYb1GPsuTe2u7f8/IQQrZNaA04dIPeC0qZEEtxCCGEWA7u48ez4rpRV6LmlT8dGVfjaa624Z0hnZgzsxO9HUvhk8xmOp+TxxY5zfLHjHN3aOzM5vAM3hXcwazFOS5SSW8zXu5Xq7afHNqx628jRxopP74rgiRUx9OjgzPPXm9auZlJ4B7bFZ7I6JplHRwXJMFBRb5LgFkK0OQaDoapFSVgjE9xwqd9zW3Ymo4Bv9yjJ7bljQqr63V3NgQsX+fFAErEpeXXua4r4yg8cgrykPUlT6djOno+n92X6Z7v57XAK3do78+iooEavq9MbWHcsDYAJYe0bvZ4QQliMi6+S4M5LBCItHY0QQlwTVCoVj4xs/GvOy1lp1EwK9+Wm3kpi9aud59l4Mp3YlDxiU/J4Y+0JBnVxZ3IfXyb09Gmy9iuW9NHGeMoq9AwIcGNokEej1+vi6civjw1t0LHjevrw/OqjxKcXEJuST/cGzMsSbZMkuIUQbU5KbgmZBWVo1Cq6t2/4f5hBXsppa5LghrfWnUSnN3BdqBePj67fqWShPk78eCCJE6n5Zo0lLl1ZTxLcTSuyizv/vqkHL6w+ytt/niTUx4nR3bwbteb+8xfJLCjF2daKQV3czRSpEEJYgLOvci2DJoUQolVQqVQMC/ZkWLAnOUVl/HEkldUHk9hzLpsdp7PYcTqLF1cfJaq7NzeH+zI8xBOtVes/2zAhu4iVeysLlRpZvW0OzrbWjA71Ys3RVH4+lCQJblFvrf9foxBCmMjYfzvE26lR07KNAwzPZRVSWqEzS2yt0YELF1lzNBW1Cv5pQqsRY1+7lNwScorq37e7LnEyYLLZzBjYiemR/hgM8MSKGOLTG/dhhbE9SVR372viDYMQog0ztiXJkwS3EEK0Nq72WqZF+vPdQ4PY+uwonhnXlUBPB0or9Px+OIX7l+0j8vUNvLj6KJtPZXA8OY/knGKKyiowGCdfthIf/BVHuc7A0CAPBraQApNJ4R0A+DUmGb2+dX0/heVIBbcQos05kpQDQO9GtCcB8HKywcnWivySCs5lFrW5QSSgtHt5448TANzat6NJ3wMnW2v83OxIyC4mNiWfQYGNf0FlMBiqKuqDvdrez8MSXr6xB3HpBew5m83sZftZ/cgQXOxNP3VTrzew7lgqABN7SnsSIUQrZ0xw5yZaNg4hhBCN4udmz6OjgnhkZCDHkvP46WASvxxKJiO/lK92neerXeer7a/VqHG1t1Yudlpc7K1pZ2+Nq70WFztr+vq3M8v7HnM4l1nIDweUD2Lnjg2xcDSXjOzqhZONFcm5Jew7f1EGz4t6kQS3EKLNMVZwN6b/NiinsQV5OXLwQg5x6fltMsEdHZvOnnPZ2FipG/SiKNTHmYTsYk6k5pnlhV56fin5JRWoVRDg0fChM6L+tFZqPp7el0kfbudsZiGPrTjI5/f0R6M27fTGmMQcUnJLcNBqGBrc+N5/QghhUVUtSiTBLYQQ1wKVSkVPXxd6+rowb0IoO05nsTomiSOJueQUl5NTVEa5zkCZTk96finp+aW1rjU8xJPnJ3az+PvH96Lj0OkNjOrqSV//dhaN5XK21hrG9/Rh1f5Efo5JkgS3qBdJcAsh2pTLB0z28nVt9HrBxgR3Wuvow30yNZ8L2UVEdfNqdH+1Cp2eN9cq1duzhnRu0HTxbj5OrD+eZrZBk8afQ4C7AzZWDW8/I0zj4WjDpzMjuPV/O9hyKoPXfo/lheu7oTYhyb32qFK9Pbqbd6NaBwkhRIvgUpnglhYlQghxzbHSqBke4snwEM+q2wwGA0VlOnKKy7lYWEZucTk5ReXkFJcp10VlpOaVsvZoCltOZbAtLoMp/f14akwIXk62jYrHYDBw4EIOW+MysNaosbPWYK/VYG9jhb21BnsbDfZaKxy0Guy0Ghy0VqTklrA6prJ6e0zXRj1+U5jcx5dV+xP5/UgKL9/Yo1HtC6Nj0ygs03FT7w5mjFC0NJLgFkK0KQnZxeQUlaPVqAnxaXyP5uBWNGhSpzcwc+lu0vJK+feN3blnSOdGrffDgUTi0gtwtbfm4ZGBDVqjW+WQT3MNmoyXAZMW06ODC2/f3ps5yw+ydPtZDiXm8NrNPQn1qXswjMFgYM1Rpf/2hJ4+TR2qEEI0PefKFiWFGVBRClY2lo1HCCFEk1KpVDjYWOFgY4Wva+2FP+cyQ3hjzQnWHkvl2z0J/BKTzEMjArl/WBfstKYVeeQUlfHTwSS+3XOBUw0suBrXw7vRZzY3hYFd3PF0siEjv5StcRkNHma//3w29y/bh8EATjZWjAr1MnOkoqWQBLcQok05XNl/O7S9k1kqfIMqBxm2hgT33nPZpOUpp8r99/dYQrydGBzUsFYQxWU6Fqw/BcCcUUG42JnecxkgtDLBfTI1H53eYHJbi78zDpiUBLdl3NCrA3nFFbz6+3H2n7/I9e9v494hATwZFYKDTe0vOY4l55GQXYydtYaRXeVFpxDiGmDvBlZ2UFGsVHG7dbF0REIIIVqAAA8HFt0VwZ6z2bz2+3EOJebyzvpTLN9zgX+M7crNfXyvehakwWBgz9lsVuxN4PcjKZRV6AGwtVYT1c0bB60VReU6ikorKCrTUVRmvFa2C8t0VcfYazU8PbblVW8DaNQqbuzVgaXbz/JzTHKDEtxFZRU8/d0hjHM/X1h9lD+fGn7V9yWi9ZKfqhCiTTli7L/ta55PqYM8lUTqmcwCKnR6rDQNP3Wqqa05olTI2llrKC7X8cjyA/zy6FD83U3vVb10+1nS8krp2M6OuwZ1anBM/m72VfGczSxsdGLamOAO9pYEt6VMi/RnVKgnr/x6nDVHU1m89Sy/HU7h5Ru7M66HT42tcYzV2yO7eppcuSKEEC2SSqW0KcmKV/pwS4JbCCHEZQZ0duOnR4bw6+Fk/m/tSZJyinl61SE+33GW5yd2v2I+UVZBKT8eSOLbvRc4k1FYdXuojxPTIv2ZFO5b76KjCp2eonIdWo26RbcGnBSuJLjXH0+jsLTC5MT0m2tOcC6riPYutmjUKhIvFvPOn6d46cbuTRSxsKSWm4kRQogmYBww2ctMp2H5utphZ62hXGfgfHaRWdZsCnq9gbXHlB7HC+7oTa+OLuQUlTN72T4KSytMWiu7sIxFm04D8I+xXRtVCa9Rq6qGq5xIbXwfbmMlvbF1jLCM9i52/G9GBJ/f0x8/NztSckt46OsD3PvFXhL+9u/EYDCw5ojyuzle2pMIIa4lVYMmpQ+3EEKIK6nVKiaF+xL99AieHd8VRxsrjiblcefiXcxeto/49AK2x2fy6PIDDJwfzWt/xHImoxB7rYap/f1Y/egQ1jwxjJmDAkw6o9ZKo8bZ1rpFJ7dBec8e4G5PcbmODbFpJh27PT6TL3eeB+DNW3vx+s1hAHyx4yyHEnLMHapoASTBLYRoM/R6A0eNAyY7upplTbVaVVV13JLblBxMyCEtrxQnGyuu6+bFp3f1w9PJhpNp+cz9Lga93lDvtT74K4780gp6dHA2y6CObu0rE9wpjevDnVVQSnZhGSoVBHpKBXdLMCrUiz+fHMGcUUFYa1RsPJlB1ILNfLQxvurUyFNpBZzJLERrpeY66YknhLiWuFT24c5LtGwcQgghWjRbaw2PjAxi0zMjmTHQH41axfrjaUQt2Mz0z3bz++EUynUGenV04fWbw9jzfBRv3NqLcD/XGs+OvFaoVCpuClc+LP45Jrnex+WVlPPs94cBmDHQv2og6M19fNEb4J8/HKZcp2+SmIXlSIJbCNFmnMsqJL+0AhsrNcFm7NHcGhLcxvYko7t5YWOlwcfFlkUzItBq1Kw7lsb7f8XVa50LWUV8vUv5JPy5CaFX7Q9XX8YhhLEpjavgNn7/fV3tpM1FC2Kn1fCPcV1Z88RwBnVxp7RCz1vrTjLhvS3sOJ3JH5W/m8ODPXCybVgvdyGEaJGkglsIIYQJPBxteHVyGGufGFZV+OFoY8WMgf789thQfpkzlGmR/ji2oR7Sk8KVgqotpzLILiyr1zH//fU4STnF+LvZM29Ct6rbX7i+G+3srTmRms/irWeaJF5hOZLgFkK0Gcb2JD06OJu1V7YxwR2X1rgK5KZiMBhYc9TYAqJ91e0Rndrx6s09AVi4IY61lX2Qr+btP09SrjMwLNiDYcGeZomvW+WgyROpjfv+VfXflgGTLVKQlyPLZ0eycEo4Ho5aTmcUMm3xbj7dory4nHDZ76YQQlwTqiq4JcEthBCi/oK9nVh6T392/2s0e54fzauTw+hpphlSrU2gpyNhvi5U6A38fqTu96sbjqexan8iKhW8fXvvan273R1teOF6pf/2exviOJdZWNsyohWSBLcQos241H/b1azrGhOqcS20gvtIUi5JOcXYazWM7Fo9KX1HPz9mDQkAYO53h67aB/tIYi6/HFJODfvn+FCzxWfswZ2UU0xucXmD16nqv+0t/bdbKpVKxeQ+vkTPVU6/VKmguFyHlVpFVAMmowshRIvmYqzglhYlQgghTOftbIu9tu1Ua9fGWMX9S8zVPzC+WFjGcz8eAeD+oZ0Z0Nntin1u6evLsGAPSiv0/OunIxgM9W/VKVo2SXALIdqMI0k5AISZ+dNvY0L1dEaBSb2sm4uxentUV68aB4k8P7EbQ4LcKSrTMXvZvhpP/TIYDLyxNhaAyeEdzFpB4GJnja+rHQAnGtGmxJjgDpL+2y2ei701r04O46dHhjCmuzf/HB+Ki720JxFCXGOcKyu4pUWJEEII0WA39OqASgV7z10k8WJRrfu9+PNRMgtKCfJy5OmxXWvcR6VS8drkMGyt1ew4ncX3++VD6GuFJLiFEG2CTm/gaJKSPO3V0bwJbr92dmg1akrK9STlFJt17cYyGAxV/bcnhPnUuI+VRs2Hd/bF382ehOxiHv3mwBVDN7bEZbI9PgutRl3ri4XGqBo02Yg2JXHpyrFB3pLgbi3C/VxZPLMfs4d3sXQoQghhfsYK7tJcKG2ZbcyEEEKIls7HxZaBnd0B+PVQzW1Kfj2UzG+HU9CoVbxze+8aC7uM/N3teSoqBIDX/ogls6DU/EGLZicJbiFEm3A6o4Dich32Wg1dzFzha6VR08XTAbiUZG0pTqTmcy6rCBsrNaO6etW6XzsHLZ/d3Q8HrYadZ7J47ffYqvv0egNvrDkBwF2DOuHnZm/2OI2DJq/WIuVq8krKSctTXpgESQ9uIYQQLYGNE9hUfqguVdxCCCFEgxnblPxcQ5uS9PwSXvz5KACPjgykt59rnevdN7QzPTo4k1NUziu/HjdrrMIyGpTg/uijjwgICMDW1pbIyEj27Nlz1f0XLlxI165dsbOzw8/Pj6eeeoqSkhKT1iwpKeHRRx/F3d0dR0dHbr31VtLS0hoSvhCiDTL23+7p64JGrTL7+pcGTbasPtzG9iQjQjyrDdioSYi3E+9OCQfgix3nWLn3AgCrY5KITcnDydaKOaOCmiTO0MoK7uMpDfuAwNiexMfZFmdbaXUhhBCihagaNCmnQAshhBANNaFne7QaNSdS8zl52Vm/BoOBeT8cIaeonO7tnZlzXXC91rPSqHnjll6oVfDLoWQ2nkxvqtBFMzE5wb1y5Urmzp3Lyy+/zIEDB+jduzfjxo0jPb3mX4bly5fz3HPP8fLLLxMbG8uSJUtYuXIl//rXv0xa86mnnuLXX39l1apVbN68meTkZG655ZYGPGUhRFt0JDEHgF5NNH3amOCOb2GDJutqT/J3Y3v4MHeMcrrWC6uPsiM+k3f+PAXAwyMDaeegbZI4u7VXKrhPpeaja0Af8/jKDxakelsIIUSLIoMmhRBCiEZzsbdmZFdPAH45dKmK+/v9iUSfSMdao2LBlN5oreqf5gzr6MJ9QzsD8MJPRyksrTBv0KJZmZzgXrBgAbNnz2bWrFl0796dRYsWYW9vz9KlS2vcf8eOHQwZMoRp06YREBDA2LFjufPOO6tVaNe1Zm5uLkuWLGHBggVcd911RERE8Pnnn7Njxw527drVwKcuhGhLDlVWcIeZuf+2UbCXUoEc14IS3PHp+cSlF2CtUXFdqHe9j5szKogJPX0o1xm4a+keknKK8XG25d4hnZss1gB3B2ys1BSX67iQXfvgkNpU9d+WBLcQQoiWxNmY4JYWJUIIIURjTApX/k/9OSYZg8FAUk5xVXuRp8aEVLW9NMVTY0Lo2M6OpJziqsIu0TqZlOAuKytj//79REVFXVpArSYqKoqdO3fWeMzgwYPZv39/VUL7zJkz/PHHH0ycOLHea+7fv5/y8vJq+4SGhuLv71/r45aWlpKXl1ftIoRom8p1eo6nGAdMujbJYwR7X6rgNhhMr0BuCmuOKO1JhgZ54GJX/7YdarWKt2/vTaiPU1U19dwxIVcd1NFYGrWKrj7KhwSxKab/vTZWzgfLgEkhhBAtibGCO08S3EIIIURjjO7mhYNWQ+LFYvadv8g/vz9MfmkFffxdeXB4YIPWtNda8drNYQB8seMshxJyzBixaE4mJbgzMzPR6XR4e1evBPT29iY1NbXGY6ZNm8Yrr7zC0KFDsba2JjAwkJEjR1a1KKnPmqmpqWi1WlxdXev9uPPnz8fFxaXq4ufnZ8pTFUJcQ06l5VNWocfJ1opOTTAgEZQKZI1aRUFpRdWwQ0sz9t+e0LO9ycc62FixeGY/fF3t6NepHbdGdDR3eFfoZhw02YAEt7FyPsjMA0SFEEKIRnGpfA+SsBvKCi0bixBCCNGK2VprGNdTab0597sYtsVnYmut5p3bezdqztaIEE8mh3dAb4DnfjxCuU5vrpBFM2rQkElTbNq0iddff52PP/6YAwcO8OOPP/L777/z3//+t0kfd968eeTm5lZdEhISmvTxhBAt1xFjexJfF9RNMGASQGulppO7kjw3tsuwpPNZhRxPyUOjVjGme/3bk1zOz82erc+OYtVDg5pkMOffGQdNxqaa9v0rKqsg8WIxAMHeTmaPSwghhGiwwNFg7w5Z8fDjA6CXN81CCCFEQxnblCRkK+//nhsfShczFDm9eEN32tlbE5uSx2dbzzZ6PdH8rEzZ2cPDA41GQ1paWrXb09LS8PGpeYDZiy++yF133cX9998PQFhYGIWFhTzwwAM8//zz9VrTx8eHsrIycnJyqlVxX+1xbWxssLGxMeXpCSGuUYeTlAR3U7UnMQr2cuRMRiFxaQUMC/Zs0seqi7F6e1AX90YNhmyqDwRqYuyZZmqLktPpSkWcu4MWtyYagimEEEI0iKMnTF0OX94IJ36D6P/AmP9YOiohhBCiVRoS6I67g5aswjIGdXFn5qAAs6zr7mjDC9d35+lVh1i44RSDA91xsNGQX1Jx2aVcuS69bLukHL0B7h3SmUGB7maJRTSMSQlurVZLREQE0dHRTJ48GQC9Xk90dDRz5syp8ZiioiLU6uqF4hqN0sfVYDDUa82IiAisra2Jjo7m1ltvBeDkyZNcuHCBQYMGmfIUhBBtkLGCu1cTDZg0CvZyYt2xtBYxaHLNkRQAJoTV/CFgS9StsoI78WIxeSXlONvWr294fIYMmBRCCNGC+Q+ESR/Bj7Nh+0LwCIY+MywdlRBCCNHqWGnU/GtiN345lMzrt4SZtSDrlr6+rI5JYmtcJpM+2m7SsZtPZfDJXRGM6upltniEaUxKcAPMnTuXu+++m379+jFgwAAWLlxIYWEhs2bNAmDmzJn4+voyf/58AG688UYWLFhAnz59iIyMJD4+nhdffJEbb7yxKtFd15ouLi7cd999zJ07Fzc3N5ydnXnssccYNGgQAwcONNf3QghxDSqt0HEiVakIDvNt2gS3McF62sIJ7qScYg4l5qJSwdjurSfB7Wqvpb2LLSm5JZxMzad/gFu9jotLq+y/LQluIYQQLVWvOyAzDrb8H/z6JLQLgIChlo5KCCGEaHVujejYJDOiVCoVr00O47ZFO8gsKMXJ1honWyscbaxwNm7bWuFka1V1n5ONFZtPZbAhNp0Hl+1n0V19uS60YS1CReOYnOCeMmUKGRkZvPTSS6SmphIeHs7atWurhkReuHChWsX2Cy+8gEql4oUXXiApKQlPT09uvPFGXnvttXqvCfDuu++iVqu59dZbKS0tZdy4cXz88ceNee5CiDbgREo+5ToD7eyt6djOrkkfy5hgPZWej8FgQKVqvvYel1tb2Z5kQIAbnk6tq1VTt/bOpOSWcCIlr/4J7soPFIIlwS2EEKIlGzkPsuLg2E+wcgbcHw3ugZaOSgghhBCV/N3t2f2v0QD1fj8/dYA/j397kDVHU3nwq/38b3oEUQ2cgyUaTmUwGAyWDqI55OXl4eLiQm5uLs7OzpYORwjRTL7adZ4XVx9leIgny+4d0KSPVVymo/vLazEYYN8LUXg4mp5cTsgu4oXVR5ke6c/YHg2rvr7tfzvYd/4i/76xO/cM6dygNSzl/9ae4ONNp5kW6c/rN4fV65jr3t7EmcxCvrk/kiFBHk0coRCiJZLXeW1Xq/vZlxfDF9dD0n5wD4L7N4BdO0tHJYQQQohGKNfpeXJFDL8fScFao+KjaX0b/H5eXGLK6zz1Ve8VQohW7khiDgC9mrg9CYCdVoNfO3sA4hvYpuSDv+LYfCqDOd8eJCYhx+Tj0/JK2H/hIgDje7ZvUAyWFNretEGTpRU6zmUpQyalRYkQQogWz9oOpn4Lzh0hKx6+mwm6cktHJYQQQohGsNaoeW9qODf0ak+5zsAj3xyoOrNaNA9JcAshrmmHKwdMhjXxgEkjY5K1IYMmc4vL+eVQMgBlFXoe/Gof6XklJq2x7lgqBgP09XfFx8XW5BgsrXvloMmTqfno9XWfYHQ2sxC9AZxsrfBqZe1YhBBCtFFO3jBtJWgd4ewW+OMf0DZOqhVCCCGuWVYaNQunhHNj7w5U6A3MWX6AtUdTLB1WmyEJbiHENau4TFeVaO7d0bVZHtPYBzo+Ld/kY386kEhJuZ4gL0eCvRxJyyvlga/2U1Kuq/caa44onxJPaIXV2wAB7g5ordQUlelIuFhU5/7GAZPBXo4W63kuhBBtyUcffURAQAC2trZERkayZ8+eeh23YsUKVCoVkydPrna7wWDgpZdeon379tjZ2REVFUVcXFwTRN7C+PSEW5cAKtj/Bez8yNIRCSGEEKKRrDRq3r2jN5PClST3o8sP8scRSXI3B0lwCyGuWcdT8tDpDXg62eDt3DzVvQ2t4DYYDHy9+wIAdw/qxOKZ/XCxsyYmIYfnfzpKfcYlZBWUsvtsFgDje7bOfl9WGjUh3sr3sD5tSuKrBkw6NWlcQgghYOXKlcydO5eXX36ZAwcO0Lt3b8aNG0d6evpVjzt37hz/+Mc/GDZs2BX3/d///R/vv/8+ixYtYvfu3Tg4ODBu3DhKSkw7g6lV6joexr2mbP/5ApxcY9l4hBBCCNFoVho1C+4I5+Y+vuj0Bh779iC/HU62dFjXPElwCyGuWYcv67/dXNW9xgS3qT2495zNJj69AHuthsl9fAnwcODDaX1Qq+CHA4ks3X6uzjX+PJ6G3gBhvi74udk3JPwWoZuPsQ933VXwxu+z9N8WQoimt2DBAmbPns2sWbPo3r07ixYtwt7enqVLl9Z6jE6nY/r06fznP/+hS5cu1e4zGAwsXLiQF154gUmTJtGrVy+WLVtGcnIyq1evbuJn00IMfAQiZgEG+P4+SD1i6YiEEEII0UgatYq3b+/NLX2VJPcTK2Kq2pGKpmFl6QCEEKKpHGnm/ttwKdGanl9KblE5LvbW9Trum8rq7UnhHXCyVY4ZFuzJ89d357+/Hee134/T1duJocEeta6xpnKIxYSw1lm9bWQcNHkite4K7rh0JQke5C0JbiGEaEplZWXs37+fefPmVd2mVquJiopi586dtR73yiuv4OXlxX333cfWrVur3Xf27FlSU1OJioqqus3FxYXIyEh27tzJ1KlTr1ivtLSU0tLSqq/z8uo3lLjFUqlg4luQfQbOboblU2F2NDi17v/LhRBCiLZOo1bx1m29UatUfL8/kSdXHMRgMDAp3LfWY0rKdSTlFHMhu4jE7CIuZBdRUFqBvdYKB60GO60VDjYa7Kw1ONhYYa/VYK81Xiu36Q0GSsr1FJfpKKnQUVJ5XVymp7hcR8llF4MBJvfxbdUFckaS4BZCtHgGg4Fvdl/A29mWqG5e9a7GPpykJLh7NWOC28nWmvYutqTklhCfkU9EJ7c6j8ksKGVN5fCJ6ZGdqt1375AAjifn8cOBRB5dfoCfHx1CgIfDFWvkFpWzIz4TaL39t426+SjtRuqq4K7Q6TmbWQhc6n0uhBCiaWRmZqLT6fD29q52u7e3NydOnKjxmG3btrFkyRJiYmJqvD81NbVqjb+vabzv7+bPn89//vMfE6Nv4TTWcMeX8NkYyIqDb++EoU+B2grUGuWi0lz2tVXl15Xbjl7KRQghhBAtikat4v9u7YVaBd/tS+SplTEUlekI9HTkQnYRCcbLxSISsotJzWv+Fm1f7jzHigcGtfqzoiXBLYRo8dYfT+OF1UcBGBbswX8n9awxyXu5gtIKTmco7St6+jZfghuUKu6U3BLi0wvqleBetS+Rcp2B3n6uV8SqUql47eaenM4oICYhh9nL9vHjI4OrqryN1semUaE3EOrjROc6vjctnbGC2/hptaNNzf9Vnc8uolxnwM5aQwcXu+YMUQghRB3y8/O56667WLx4MR4etZ99ZKp58+Yxd+7cqq/z8vLw8/Mz2/oWY9cOpq2Ez0ZD8gH47i4TDlbB4Dkw6gWwtm2yEIUQQghhOrVaxRu39EKtUrFibwLzfrx6OzIHrQY/N3vl0s4eFztrist1FJVVUFR22XWpjqLyCuW6TEdh5e1qFdhaayovauyqtpWLnbW68lrDgQsXOZVWwLTFu1j54KBWnUuQBLcQosW7fOrw1rhMxi7cwiMjA3loRCC21poajzmWlIvBAO1dbPFyat43e0FejmyNyyQure4+3Hq9geV7zgMwPdK/xn1srTV8clcEN36wjbj0Ap5aeYhP74pArb5Uyb6m8nvU2qu3AdwctHg725CWV8rJ1HwiOrWrcT/j9zfIy7Ha90IIIYT5eXh4oNFoSEtLq3Z7WloaPj5XttM4ffo0586d48Ybb6y6Ta/XA2BlZcXJkyerjktLS6N9+0v/f6WlpREeHl5jHDY2NtjYNM/g6GbnHggzfoDN/wcluaCvqLzolItBV/1r4/2F6bDjAzi1DiYvgo4Rln4mQgghhLiMWq3i9ZvDcLSxYsXeBNwctPi52eHvZk/Hdvb4Vya0/d3saWdv3WwzxLILy5i2eBcnUvOZtngX3z04qNW2K5EEtxCiRSut0BEdmw7AW7f14pdDyWyNy2Thhjh+jknmlUk9GBbsecVxRyzQnsQo2EtpsRFXj0GTW+MzScguxtnWiht7dah1P29nWz6d2Y87PtnJhtg03t1wiqfHdgUgv6ScrXGV7Ulaef9to1AfZ9LyMohNyas1wR1f2X9b2pMIIUTT02q1REREEB0dzeTJkwElYR0dHc2cOXOu2D80NJQjR6pXKL3wwgvk5+fz3nvv4efnh7W1NT4+PkRHR1cltPPy8ti9ezcPP/xwUz+llsk3QqnkNsWJP+C3JyHzFCyJUtqbjPgnWF2jHwQIIYQQrZBareKFG7rzwg3dLR1KFTcHLV/fH8mUT3ZyOqOQqZ/u4ruHBuHr2vrOkFZbOgAhhLiaHfFZ5JdW4OVkw619O7Ls3gF8cGcfvJxsOJtZyF1L9vDYtwdJ/1uvqkOJxgS3a7PHHFw58DC+Hgnur3cp1du3RnTETltzNbpRuJ8r828OA+CDv+L5/bBStf3XiXTKdHoCPR2umWRvt3oMmjR+f2XApBBCNI+5c+eyePFivvzyS2JjY3n44YcpLCxk1qxZAMycObNqCKWtrS09e/asdnF1dcXJyYmePXui1WpRqVQ8+eSTvPrqq/zyyy8cOXKEmTNn0qFDh6okuqiH0InwyC4Iux0Metj6Dnw6EpJjLB2ZEEIIIVo4D0cbls8eSIC7PUk5xUxbvIvU3ObvBd5YkuAWQrRoxvYk43v6oFarUKlU3Ni7A9FPj+CewQGoVfDroWRGv7OZL7afRac3AHAkMQeAsGbuvw0Q5KkkXJNyiiksrah1v5TcYqJjlVO9a2tP8ne3RnTk/qGdAfjHqkMcS85lzRFlENeEnu2b7VSmptatvVIFf+IqgyaNFfLG77cQQoimNWXKFN5++21eeuklwsPDiYmJYe3atVVDIi9cuEBKSkodq1T37LPP8thjj/HAAw/Qv39/CgoKWLt2Lba20kvaJPZucOtncMcysPeA9ONKP++N86GizNLRCSGEEKIF83a2Zfnsgfi52XE+q4hpn+0iPb91JblVBoPBYOkgmkNeXh4uLi7k5ubi7Oxs6XCEEPVQrtPT/7UN5BSVs3x2JIMDrxxSdTQpl+dXH+VQQg4APX2deXZcKDOX7gHg4ItjaOegbc6wAej36noyC8r4Zc6QWqvI311/ivei4xjYxY0VDwyq99oVOj2zvtjL1rhMfF3tyCospaRcz++PD6VHh+ZP6DeFk6n5jFu4BUcbKw6/PPaKHtt6vYHuL6+lpFzPxn+MbNXDMIQQjSev89ou+dnXoDATfp8Lx39WvvYJU3pz+/S0bFxCCCGEaNESsouY8slOknNLCPF25NvZA3F3tFzLM1Ne50kFtxCiRhU6PVvjMijX6S0Ww64zWeQUlePmoGVAgFuN+/T0deHHhwfz6uSeONtacTQpryq57edmZ5HkNiiDD4FaB02W6/Ss2HsBgOmRnUxa20qj5sM7+1adQlRSrsffzZ7u7a+dN/ZdPB3QatQUlFaQlFN8xf3G5621UuPXrvX1BxNCCCGajIMH3P4l3LYU7NpB6hGlZcmWt0BX+5llQgghhGjb/Nzs+faBgXg723AqrYAZS/aQU9Q6zgSTBLcQokYL1p/iriV7eD86zmIxrDmqtN4Y18MbK03tf640ahUzBnYi+umR3NzHt+r2Xr6uTR1irYyDJuMzak5wR8emk5ZXiruDlnE9TB8M6WJvzeKZ/XC0UWYFT+jpc820JwGw1qirPiSITbmyD3dc5YDJLh4OV/3dEEIIIdoklQp63gqP7IauE0FfDn+9qgyhTD9h6eiEEEII0UJ1cndg+eyBeDjaEJuiFBDmlZRbOqw6SVZACHGFknIdy/co1cU/HUzCEp2MdHoDfx5TEtzje7av1zGeTja8OyWcb2cPZHJ4Bx4eGdiUIV5VXRXc3+xWhkve0d8PrVXD/hQHezux5O5+3NLXl/uHdWlYoC1YaGUf7tga+nAbv69B18hQTSGEEKJJOHnD1OVw8ydg6wLJB+GT4bD9fdDrLB2dEEIIIVqgQE9Hls+OxM1By+HEXO5euoeCq8wXawkkwS2EuMIfR1LIKVI+oUu8WMzRpCsraJva3nPZZBaU4WJnzeBAd5OOHRTozsKpfehpgQGTRsGVidf49CuTs+cyC9kal4lKBdMG1G+4ZG0iu7iz4I5wPJ0s1xerqRhbrpxIramCW0lwGyvlhRBCCFELlQp6T4VHdkHQGNCVwvoX4fOJkHXa0tEJIYQQogUK8Xbi6/sicbGz5uCFHGZ9voeispab5JYEtxDiCt/sVqq3jZXFa46mNHsMayvbk0R188a6FbagCPJWEtwXsosoKa9eIfVtZXX8iBBP/Nzsmz221iLUx5jgvvJDgnhjgttbKriFEEKIenHuANNXwY3vg9YREnbBoqGw9zOwwNl6QgghhGjZundw5uv7InGytWLvuYvc/+W+K/IbLUXryxoJIZpUbEoe+89fxEqt4tlxXQGlF3ZztinR6w1VSfWJYab3p24JPB1tcLa1Qm+As5mFVbeXVuj4bl8CYPpwybbG2KLkXFZhtU+KDQZDVYJbWpQIIYQQJlCpIOJueHgHBAyD8iL4/Wn46mbITbR0dEIIIYRoYcI6uvDlvQNw0GrYcTqLl38+ZumQaiQJbiFENcbe0GN7eDOlsj/02cxCTqZdWUXbVA4m5JCWV4qjjRVDgz2a7XHNSaVSEeytJGiN7TRAqUy/WFROBxdbrgv1slR4rYKHow2eTjYYDHDysiru1LwSCkor0KhVBLg7WDBCIYQQopVq1wlm/gLj3wQrWzizET4eBDHLpZpbCCGEENX09W/HF/cOoFt7Zx6PCrZ0ODWSBLcQokpBaQU/HUgCYEZkJ5xsrRlemWBecyS12eJYc0Sp3h7dzQsbK02zPa65VfXhvuzDga93KR8gTB3gj0atskhcrUmoz5WDJo3V2wHu9g0e0CmEEEK0eWo1DHwIHtoGHftDaR6sfhhWTIP8NEtHJ4QQQogWpH+AG78/NhRfVztLh1IjyQwIIar8EpNMYZmOLh4ODKoc7DihZ3ug+fpwGwwG1lT2357Qs3W2JzEyts+Iz1ASsidT89l77iIatYop/f0sGVqr0a2GQZNxadKeRAghhDAbj2CYtRZGvwxqazj5B3w8EI79ZOnIhBBCCNGCqFtwkZ4kuIUQgJJYNlYXT4v0R6VS/nBFdfPGSq3iVFpBVeVsUzqSlEtSTjF21hpGhLTuFh7GBKwxIbu8sv3LmG7eeDvbWiyu1qRbZR/uE5dVcBtbvgR7OVkkJiGEEOKao7GCYXPhgU3gEwbF2bDqHvj+XijMsnR0QgghhBBXJQluIQQAMQk5HE/JQ2ul5raIjlW3u9hbMyRIaVOythmquI3V26NCPbHTtt72JEBVD+6zmYXkFpfzo7H9y0AZLllfoT5KBXdsal7VoNP4dCXZHewtFdxCCCGEWfn0hPv/guHPgkoDR3+A93rBuuchr3nO5hNCCCGEMJUkuIUQAHyz+wIAN/Rqj6u9ttp9xlYhxuRzUzEYDFX9t8dXtkZpzTq42OKg1VChN/BBdBz5pRUEuNszuLL9i6hboKcj1hoV+SUVJOUUYzAYqiq4pUWJEEII0QSstHDd83D/eqWau6wAdn6oJLp/eRyyTls6QiGEEEKIaiTBLYQgt6icXw8lAzA98srq4jHdvVGr4FhyHheyiposjhOp+ZzLKkJrpea60NbdngRApVIRWJmE/XLnOUBp/9KS+1a1NForNYGeyvfwREo+WYVl5BSVo1JRdbsQQgghmoBvBDy4FaatAv9BoCuDA1/Ch/1g1SxIOWzpCIUQQgghAElwCyGA7w8kUlqhp1t7Z/r6u15xv7ujDQO7KFXHTTls0lghPjzYE0cbqyZ7nOZkrDIu1xkq27/IcElTGQdNxqbkVfUz92tnj611625hI4QQQrR4KhWEjIV71yqDKIPHgUEPx36ET4bB17fCue1Q2Uasyeh1sPIu+HwilDVdsYUQQgghWidJcAvRxhkMBr6pHH44/bLhkn/XHG1KjO1JJob5NNljNLfLByFeH9YeNwftVfYWNQn1qRw0mZpPfIZxwKRUbwshhBDNqtMgmP4dPLQdet4GKjXEb4AvJsLScXBybdMlug9+BbG/wPntcGBZ0zyGEEIIIVotSXAL0YT+PJZK1ILNHLxw0dKh1GrXmWzOZBTioNUwuY9vrfuN6+GDSqUMo0zOKTZ7HPHp+cSlF2CtUTG6m7fZ17eUyxOx0yP9LRhJ61VVwZ2aR3yaMmBS+m8LIYQQFuLTE25bAo/th4hZoNFCwm74dgr8bwikHjHv4xVlw4b/XPp6+0IoLzHvYwghhBCiVZMEtxBNpLC0gn/9dJT49AI+3XLG0uHU6uvK6u3JfXyv2hbEy9mWfp3aAbC2Caq41xxR1hwc6IGLnbXZ17eUvp3a4WJnzaAu7kRUfv+EaULbKxXc5zILOZyUC0iCWwghhLA4ty5w40J48ggMfhy0jpB+DL6bCWWF5nucv16F4mzw6g7OvpCfAjFfm299IYQQQrR6kuAWool8tvUsmQWlAGw6mUFRWYWFI7pSRn4p6yqT1TUNl/y7CT3bA02U4K5c81pqTwLg5qBl979G8+W9A2pt/yKuztPRBncHLXoDHLyQA0Cwt9PVDxJCCCFE83DygbH/hScOKwno7DMQ/Yp51k6OgX1Lle2Jb8GQJ5TtbQuhosw8jyGEEEKIVk8S3EI0gcyCUj7dchoArUZNcbmOzSczLBzVlb7bl0CF3kAff1e6d3Cuc//xlX24957PJj3ffKeGns8q5HhKHhq1ijHdr60EN4CttQatlfy5bSiVSlXVpsRIKriFEEKIFsbBHW56X9nevQjObWvceno9/PEMYFB6fgcMhb4zwdEbchPg0LeNDlkIIYQQ1wbJuAjRBN6PjqOwTEeYrwszBymV0U05nLEhdHoDy3dfAGBGPaq3ATq42tHbzxWDAdYdSzNbLMbvzcAubjKEUdTIOGgSoL2L7VXb6QghhBDCQoKioO/dyvbqR6C0oOFrHV4JiXvA2kGpEAewtlPaoQBsWwC6lneGpBBCCCGanyS4hTCzs5mFVYnjeRNDmdhLaesRHZtGSbnOkqFVs+VUBkk5xbjYWXN9ZYz1MbGyinvNkRSzxWJMcI/vWf84RNsSelkFt1RvCyGEEC3Y2FfBxQ9yzsOGfzdsjZJcWP+Ssj3iWXDucOm+frPA3h0unoMjqxobrRBCCCGuAZLgFsLM3l53kgq9gZFdPRkc6EF4R1d8nG0pLNOxLS7T0uFV+aZyuORtER2xtdbU+zhjH+7dZ7PJLmx878OknGIOJeSgUsG4Ht6NXk9cm7q1v1TBHewl/beFEEKIFsvWGW76QNneuxjObDZ9jU1vQGE6uAfDwEeq36d1gMGPKdtb3wZ9yykgEUIIIYRlSIJbCDOKScjh9yMpqFTwz/GhAKjVqqre1S2lTUlSTjF/nUgHYFqkv0nH+rvb06ODMzq9gfXHG/98jAMr+3dyw8vJttHriWtTkJcjGrWqalsIIYQQLVjgKOh3n7L98xwoza//sWnHYfcnyvaEN8GqhvZ1/e8Hu3aQFQ/Hfmp8vEIIIYRo1STBLYSZGAwG5v8RC8AtfTpWG4o3oTLBvf54KmUVeovEd7kVey6gN8DgQHcCPU1PFhqfzx9HGp/gNrY6mRB27Q2XFOZjY6Whr78rKhX08Xe1dDhCCCGEqMuYV8DVH3IvwJ8v1u8YgwHWPAsGHXS7EYJG17yfjdOlyu4tbykDKYUQQgjRZkmCWwgz2Xgynd1ns9FaqZk7NqTaff0C3PBwtCGvpIKdZ7IsFKGiXKdnxd4EAKbXc7jk300IU9qU7DidSW5ReYNjSc8rYf+FiwBVVe5C1OajaX1Z/ciQah8eCSGEEKKFsnGESR8r2/s/h/jouo859iOc2wpWtjDu9avvO+ABsHGBjBMQ+0vj4xVCCCFEqyUJbiHMQKc38OaakwDMGhyAr6tdtfs1alVVf2lzDmdsiPXH08jIL8XD0YYx3RvW8zrQ05EQb0fKdQY2xKY1OJZ1x1IxGCDcz5X2LnZ1HyDaNC9nW3r7uVo6DCGEEELUV+dhMOBBZfuXx5XhkbUpLYB1Lyjbw55Wqr+vxs4VIivX3vK2Uv0thBBCiDZJEtxCmMEPBxI5mZaPi501j4wMqnGfiZVVz38eT6NCZ7nTKI3DJaf290Nr1fA/AcZhk43pK25scTJR2pMIIYQQQlybol6Gdp0hLxHWPV/7flvegvxkaBcAgx+v39oDHwatI6QdgZNrzBKuEEIIIVofSXAL0Ugl5TreXX8KgEdHBeJib13jfpGd3Whnb012YRl7zmY3Z4hVzmQUsD0+C5UKpg7wa9Raxp7ZW+IyKCitMPn4rIJSdp9V2rUYk+VCCCGEEOIao3WAyR8DKjj4FcStv3KfzDjY+ZGyPf5NsK7n4HF7NxgwW9ne/KZUcQshhBBtlCS4hWikz7efIyW3BF9XO2YOCqh1PyuNmrHdlaRwY6qeG+PbPRcAGNXVi47t7Bu1VldvJzp7OFBWoeevE+kmH//n8TT0Bujp64yfW+NiEUIIIYQQLVinwUq1NcAvj0HxxUv3GQdL6ssheBx0HW/a2oPmgLU9pMRA/AazhSyEEEKI1kMS3EI0wsXCMj7eFA/A3DEh2Fprrrr/+Mqq57XHUtHrm7fCpKRcx6r9iQDMGFhHT8N6UKlUTKgcDLn2qGl9xQ0GA78fVo6R6m0hhBBCiDbguhfBLRDyU2Dtvy7dfuI3OP0XaLQwfr7p6zp4QL97lW2p4hZCCCHaJElwC9EIH26MJ7+kglAfJyb38a1z/yGBHjjZWpGRX8r+Cxfr3N+cNp1MJ6eoHF9XO0aEeJllTWNyeuOJDIrLdPU65mxmIXct2cO2+EwAxveU/ttCCCGEENc8rT1M/h+ggkPLlZ7ZZUWXkt2DHwf3wIatPfgxsLKFxL1wZpO5IhZCCCFEKyEJbiEaKCG7iK92KgMbn5sQikatqvMYrZWaMd28AVhzpHnblGyJUxLKY3t41yvW+ujp60zHdnYUl+vYfOrqbUpKynUsWH+Kce9uYVt8JlorNS/e0J1AT0ezxCKEEEIIIVo4/0gYPEfZ/vUJ2PBvyL0Azh1h2NyGr+vkA33vVra3vNXoMIUQQgjRujQowf3RRx8REBCAra0tkZGR7Nmzp9Z9R44ciUqluuJy/fXXV+1T0/0qlYq33rr04iQgIOCK+994442GhC+EWbzz50nKdHoGB7ozIsSz3seNv6yth6GZTqE0GAxsOZUBwLBgD7Ote3mbkj+ukrDfciqD8Qu38H50HGU6PSNCPFn/1HDuG9rZbLEIIYQQQohWYNTz4BECBWmw5xPltnGvKcMoG2PIE0qbk/Pb4dy2xscphBBCiFbD5AT3ypUrmTt3Li+//DIHDhygd+/ejBs3jvT0mqs3f/zxR1JSUqouR48eRaPRcPvtt1ftc/n9KSkpLF26FJVKxa233lptrVdeeaXafo899pip4QthFkeTclkdkwzAvAndUKnqXxE9PMQTB62G5NwSDiXmNlWI1ZzPKiLxYjHWGhWRnd3NuvaEMKVNyV8n0imtqN6mJDW3hEeXH2Dm0j2cyyrC29mGj6b15YtZ/enk3sg3MUIIIYQQovWxtlNalagq34p2GQndJzV+XRdf6DND2d78f41fTwghhBCthskJ7gULFjB79mxmzZpF9+7dWbRoEfb29ixdurTG/d3c3PDx8am6rF+/Hnt7+2oJ7svv9/Hx4eeff2bUqFF06dKl2lpOTk7V9nNwkASZsIw3154A4KbeHQjr6GLSsbbWGkaFKj2w1xwxbThjQ22t7Hfd178dDjZWZl07vKMrPs62FJRWsK2yDUqFTs/SbWeJWrCZ3w+noFbBvUM6s2HuCK7v1d6kDwSEEEIIIcQ1pmM/GPsatO8N1y8Ac702HPoUqK3g7GZIqP0sYyGEEEJcW0xKcJeVlbF//36ioqIuLaBWExUVxc6dO+u1xpIlS5g6dWqtyem0tDR+//137rvvvivue+ONN3B3d6dPnz689dZbVFRU1Po4paWl5OXlVbsIYQ5b4zLYGpeJtUbFM+O6NmiNiZVVz2uOpjZLm5Ktle1JhpvQSqW+1GpVVduVP46kcvDCRW76cDuv/HacgtIK+vi78utjQ3npxu442Vqb/fGFEEIIIUQrNOgReHBLwwdL1sTVH3pPVbalilsIIYRoM0xKcGdmZqLT6fD29q52u7e3N6mpdQ/M27NnD0ePHuX++++vdZ8vv/wSJycnbrnllmq3P/7446xYsYKNGzfy4IMP8vrrr/Pss8/Wus78+fNxcXGpuvj5+dUZnxB10esNvLFGqd6eMbATfm72DVpnZFdPbK3VXMgu4nhK0374UqHTs/N0FgBDg8zXf/tyxj7cvx5K5pb/7eB4Sh4udta8fnMYPzw0mB4dTKtyF0IIIYQQokGGPQ0qDcSvh6T9lo5GCCGEEM2gQUMmG2rJkiWEhYUxYMCAWvdZunQp06dPx9bWttrtc+fOZeTIkfTq1YuHHnqId955hw8++IDS0tIa15k3bx65ublVl4SEBLM+F9E2bTyZzrHkPJxsrHjsuuAGr2OvtWJkiLFNSd0fDjXGocQc8ksrcLW3pqdv0ySa+wW44eGopUynx2CAW/t2JPrpEUyL9EetlnYkQgghhBCimbh1gbDKdpi/zYXUI5aNRwghhBBNzqQEt4eHBxqNhrS0tGq3p6Wl4ePjc9VjCwsLWbFiRY2tR4y2bt3KyZMnr1rhbRQZGUlFRQXnzp2r8X4bGxucnZ2rXYRorB2VldA3hXfAzUHbqLUmhFW29Tia0qRtSrZW9sUeEuSBpomSzRq1in/f1IOx3b1Z8cBA3rmjNx6ONk3yWEIIIYQQQlzV8GfA2gFSYmDRMPjxAbh43tJRCSGEEKKJmJTg1mq1REREEB0dXXWbXq8nOjqaQYMGXfXYVatWUVpayowZM2rdZ8mSJURERNC7d+86Y4mJiUGtVuPl5VX/JyBEI+07lw3AgM5ujV7rulAvtBo1ZzIKiUsvaPR6tTEmuIc1UXsSoxt6deDTmf0Y2MW9SR9HCCGEEEKIq/IIgoe2Qo9bAAMcXgkf9oO186Awy9LRCSGEEMLMTG5RMnfuXBYvXsyXX35JbGwsDz/8MIWFhcyaNQuAmTNnMm/evCuOW7JkCZMnT8bdvebkV15eHqtWraqxenvnzp0sXLiQQ4cOcebMGb755hueeuopZsyYQbt27Ux9CkI0SFFZBceSlX7ZEZ0a/3vnZGvNsGAl6dxUbUrySsqJScgBYGhw0ya4hRBCCCGEaDHcA+H2z+GBTdB5BOjKYNfH8F5v2PwWlBVaOkIhhBBCmImVqQdMmTKFjIwMXnrpJVJTUwkPD2ft2rVVgycvXLiAWl09b37y5Em2bdvGn3/+Weu6K1aswGAwcOedd15xn42NDStWrODf//43paWldO7cmaeeeoq5c+eaGr4QDRaTkEOF3kB7F1t8Xe3Msub4nj5En0hnzdEUnohqeE/v2uw8nYVOb6CLhwMd2zVsIKYQQgghhBCtVoc+cPcvcPovWP8ypB6Gja/C3sUw4p/QdyZorM33eAYDFKRB+nFIj710besKd3wJNk7meywhhBBCAKAyNGXz3xYkLy8PFxcXcnNzpR+3aJD3o+NYsP4UN/buwAd39jHLmjlFZfR7dQMVegN/PT2CLp6OZlnX6MXVR/lq13nuHtSJ/0zqada1hRBCiJZCXue1XfKzFybR6+HYj/DXf+HiOeU2t0AY/SJ0nwwqE+fVFF+E9BOXJbMrE9rF2TXvH/kwTHijMc9ACCGEaDNMeZ1ncgW3EG3VvvMXAehnhvYkRq72WgYFurM1LpM1R1N5dFSQ2dYG2BqXAcDQYE+zriuEEEIIIUSro1ZD2G3Q7SbY/wVsfhOyT8Oqe6B9OHj3UFqZ6MqVi778b9tloKtQrktyoaCWNoMqNbh1Aa9u4NUdrO1gw79h9yLodTv4RjTfcxZCCCHaAElwC1EPOr2BA8YEd4B5+75PDGvP1rhM1po5wZ2QXcS5rCKs1CoGdmn8UEwhhBBCCCGuCVZaiHwAwu+EnR/Bjg8gJUa5mMrFrzKRXZnM9uoGHiFKUvtyacfhyHfw6xMwexNo5K24EEIIYS7yv6oQ9XAyNZ+C0gocbawI9THv6a9ju3vz/E9HOJKUS0J2EX5u5umVvTUuE4A+/q442Zqxr6AQQgghhBDXAhsnGPkc9LsXjnwPulJQW4NGqySgNdrKr40XLaitlG1rB/AIAluX+j3WuNchfj2kHlGGXQ55vGmfmxBCCNGGqOveRQix77zSR6+PvysatYm9+erg7mhDZGd3ANYereU0xwbYFq+0Jxkm7UmEEEIIYSYfffQRAQEB2NraEhkZyZ49e2rd98cff6Rfv364urri4OBAeHg4X331VbV97rnnHlQqVbXL+PHjm/ppCFGdoxcMegSGPgWD5yjV3f3uhT4zoPcU6HkLdLsRQsZB0GjoPBw6RtQ/uQ3g6Alj/qtsb3z9Ug9wIYQQQjSaJLiFqId955T2JP0DmqbVx4QwHwDWHE0xy3o6vYHt8VkADA32MMuaQgghhGjbVq5cydy5c3n55Zc5cOAAvXv3Zty4caSnp9e4v5ubG88//zw7d+7k8OHDzJo1i1mzZrFu3bpq+40fP56UlJSqy7ffftscT0eI5tdnBgQMg4pi+P1pMBgsHZEQQghxTZAEtxD1sO+cUsFtzgGTlxvXQ0lwH7iQQ0pucaPXO5KUS25xOc62VvTyNaGyRAghhBCiFgsWLGD27NnMmjWL7t27s2jRIuzt7Vm6dGmN+48cOZKbb76Zbt26ERgYyBNPPEGvXr3Ytm1btf1sbGzw8fGpurRr1zSvt4SwOJUKbnhXaXUSvwGO/mDpiIQQQohrgiS4hahDUk4xybklaNQqwv1dm+QxvJ1tq5Ln68zQpmTrKaU9yeBAD6w08s9cCCGEEI1TVlbG/v37iYqKqrpNrVYTFRXFzp076zzeYDAQHR3NyZMnGT58eLX7Nm3ahJeXF127duXhhx8mKyur1nVKS0vJy8urdhGiVfEIhmH/ULbXPgfFFy0bjxBCCHENkMyXEHUwVm/36OCMvbbp5rKO76lUcf9hjgR3vDJgcliItCcRQgghRONlZmai0+nw9vaudru3tzepqbW/dsnNzcXR0RGtVsv111/PBx98wJgxY6ruHz9+PMuWLSM6Opo333yTzZs3M2HCBHQ6XY3rzZ8/HxcXl6qLn5+feZ6gEM1p6JPgEQKFGbD+JUtHI4QQQrR6kuAWog7G/tv9OjVN/22jCWHtAdh7Lpv0vJIGr1NQWsGB80rMw4JkwKQQQgghLMfJyYmYmBj27t3La6+9xty5c9m0aVPV/VOnTuWmm24iLCyMyZMn89tvv7F3795q+1xu3rx55ObmVl0SEhKa54kIYU5WNnDje8r2gWVwfodl4xFCCCFauaYrRxXiGrHvvHHAZNP2g/R1tSOiUzv2n7/Ios1neOnG7g1aZ/eZLCr0Bjq52+Pvbm/mKIUQQgjRFnl4eKDRaEhLS6t2e1paGj4+PrUep1arCQoKAiA8PJzY2Fjmz5/PyJEja9y/S5cueHh4EB8fz+jRo6+438bGBhsbm4Y/ESFaik6Doe/dcOBL+PUJeGibkvg2la4cTm+E8iKwtgMr20vXVrZgbQtWdpeuNZICEEIIce2R/92EuIq8knJOpCq9HSOaOMEN8MToYGYu3cNXu84xa0gAfm6mJ6i3xintSYYGSXsSIYQQQpiHVqslIiKC6OhoJk+eDIBeryc6Opo5c+bUex29Xk9paWmt9ycmJpKVlUX79u0bG7IQLd+Y/8DJNZB5CrYthJH/NO348zvh96ch/Vj9j1Fbga0LhIyHXndAwDBQa0x7XCGEEKKFkRYlQlzFgfMXMRigk7s9Xk62Tf54w0M8GRrkQbnOwNt/nmzQGlvjlAGTw4KlPYkQQgghzGfu3LksXryYL7/8ktjYWB5++GEKCwuZNWsWADNnzmTevHlV+8+fP5/169dz5swZYmNjeeedd/jqq6+YMWMGAAUFBTzzzDPs2rWLc+fOER0dzaRJkwgKCmLcuHEWeY5CNCu7djDhDWV769uQcap+xxVmwupH4PPxSnLbrh34D4YOfcCzG7QLAEcfJZGt+VtVuL4CirIg5htYNgne7QHrnoeUw2AwNOx5lOTBiT/g93/AR5Hw5Y1wdkvD1hJCCCEaQCq4hbiK/ZXtSSI6NX31ttFzE0K54YNt/ByTzOxhXejp61LvY5NzijmdUYhaBYMC3ZswSiGEEEK0NVOmTCEjI4OXXnqJ1NRUwsPDWbt2bdXgyQsXLqBWX6qfKSws5JFHHiExMRE7OztCQ0P5+uuvmTJlCgAajYbDhw/z5ZdfkpOTQ4cOHRg7diz//e9/pQ2JaDt63AIx30L8evjtKbjnN1Cpat5Xr1Nammz4D5TkKLf1vRui/g32V5kXpNdDRYlyKS+Gi+fg6Pdw9EfIT4GdHyoXz25KVXfY7eB6lQGueh0kH4TTfymXxL1K4two44SS4O4yEq57CTpGmPY9EUIIIUykMhga+jFt65KXl4eLiwu5ubk4OztbOhzRSkz9dCe7zmQz/5Yw7hzg32yP+8SKg/wck8zQIA++vj+y3sd9tzeBZ384TF9/V358ZEgTRiiEEEK0HPI6r+2Sn724Jlw8Dx8PVPpo3/Qh9L3ryn2SD8JvcyH5gPK1TxhcvwD8BjT8cStKIX4DHF4JJ9eC7rL2QZ2GQq/bofskpUL84vlLCe2zm6Ekt/pabl0g8DroPBzObYN9n4O+XLmv6/Vw3fPg3aPhsQohhGhzTHmdJxXcQtSiXKcnJiEHgH7NWMEN8I+xXVlzJJVt8ZlsOZXB8JD6tRvZUtmeZKi0JxFCCCGEEKJ1aNcJRs6D9S/Cny8o/bEdK1/PF+fAX6/C3s8AA9g4w6jnof/9jR8YaWUDodcrl+IciP0FDn+nJKjPV17+eAac2kPO+erH2rpA5xFKUjtwlNIWxaj7JBg0Bzb/HxxaDid/h5N/QM9bYdS/wD2wcXELIYQQfyM9uMU1Jzo2jU+3nEavb9zJCceS8ygp1+Nqb02gp6OZoqsfPzd7ZgzsBMAba07U67no9Qa2xysDJocHy4BJIYQQQgghWo2BjyhV2SU5sG6e0g/70Ar4sB/sXQwYlNYhc/bCwIcan9z+OztX6DtTaZHy1FGI+g949QBdmZLcVmnAbyCM/BfctwGeOQNTvoJ+s6ont43adYLJH8Eju6HHzUr8R7+HD/vDL49BbqJ54xdCCNGmSQW3uKZsj8/kga/2o9MbCHB3YGwPnwavte9cNqBUb6vVtfTBa0Jzrgti1b4Ejqfk8fOhJG7u0/Gq+x9LzuNiUTmONlb09nNtniCFEEIIIYQQjaexghvfh89Gw5FVkHESUg8r97kHw/XvQJcRzROLS0cY+qRySTum9Onu2F+p2jaVZwjc/gUMfQr+eg3i1sGBZUryvt99MOzpS9XqQgghRANJBbe4ZlzIKuLR5QfQVVY7f7P7QqPW23fOOGDyKgNbmpCbg5aHRiqn77297hQl5bqr7m9sTzIo0B1rjfzTFkIIIYQQolXx7QsDHlS2Uw+DlR2Mfgke3tF8ye2/8+4BQVENS25frn1vmP4d3LtO6e+tK4Pd/4P3ekP0f6/s6S2EEEKYQLJg4ppQUFrB/cv2klNUTldvJ0BJ+F7IKmrQegaDgX3nlQru/gHN23/7cvcO6YyPsy1JOcV8vev8VffdFqe0Jxkm7UmEEEIIIYRona57XunB3fM2eHS3UuFspbV0VObjP1Bpg3LXT9ChD5QXwta3lUT39vehvNjSEQohhGiFJMEtWj293sDclTGcSivAy8mGZfcNYHiIJwYDLN/TsCru81lFZBaUodWo6enbyGqFRrDTanhqTDAAH26MJ7e4vMb9isoqqhLyw2TApBBCCCGEEK2TjRNMWwm3LVH6WF+LVCplOOXsjTDla/DoCsUXlSGb7/eF/V+CrsLSUQohhGhFJMEtWr2F0XH8eTwNrUbNJ3dF4O1sy/RIfwBW7UugtOLqrT1qsrey/3avji7YWmvMGq+pbu3bkWAvR3KKyvnfptM17rP7bDblOgMd29kR4G7fzBEKIYQQQgghhIlUKuh2IzyyEyZ9DM4dIT8Zfn0cPh4Ix1YrwzaFEEKIOkiCW7Rqa46k8H50HACv3xJGH3+lncjoUC98nG3JKixj3bE0k9fdf17pv90vwDL9ty9npVHzz/GhACzdfpbknCtP29t66lJ7EpWq+QdiCiGEEEIIIUSDqDXQZzo8th/GzQd7d8iKg1V3w+JRcHqjpSMUQgjRwkmCW7RasSl5zP3uEAD3De3MbREdq+6z0qiZOsAPoM7e1TUxVnD362S5/tuXG93NiwEBbpRV6Fmw/tQV92+LVwZMSnsSIYQQQgghRKtkbQuDHoHHY2DEc6B1hOSD8NVk+PImSNpv6QiFEEK0UJLgFq1SdmEZs5fto7hcx7BgD+ZNCL1in6n9/dGoVew5m01cWr5Ja5/OKAQgooUkuFUqFc9NVJ7jDwcSOZGaV3Vfam4Jp9IKUKlgcKC7pUIUQgghhBBCiMazdYZR8+CJQzDwEdBo4exmWHwdrLwL8k0/Q1cIIcS1TRLcotUp1+l55Jv9JF4sppO7PR/c2QcrzZW/yj4utowO9QLgm931HzZpbE8S5OVIO4eWM7G8r387JvT0wWCAN9ecqLp9W7zSnqRXR1dc7VtOvEIIIYQQQgjRYA4eMH6+0rokfDqo1BD7C3xzG5QWWDo6IYS56MrhxO9QVmTpSEQrJglu0er897fj7DqTjYNWw+KZ/a6a1J0xUJk8/sOBRIrK6jeJe19le5L+AS2jevtyz4zrikatYuPJDHaezgJga1xle5IgD0uGJoQQQgghhBDm5+oPkz+GB7eCgyekHoYf7gO9ztKR1U95MexaBEsnKBXoG+fDsZ8g/YSS2BOirdu2EFZMg+0LLR2JaMWsLB2AEKb4ds8Flu1UemovnNqHEG+nq+4/NMgDfzd7LmQX8duhFO7o71fnY+wzDpjsZPkBk3/XxdOROwf48fWuC7yxJpYfHxnC9vhLAyaFEEIIIYQQ4prk0xPuXAFfXA+n1sK6f8GENy0dVe3Ki2H/F0ryriD10u2xv1zaVluDexB4hYJnt0vXbl1AI+ka0UacWqNcJ+6zbByiVZO/mKLV2Hsum5d+PgrA02NCGNPdu85j1GoV0yL9eWPNCb7Zfb7OBHdJuY7DiTkA9GuBFdwAT4wO4ccDSRxKzGXB+pNkFpRhr9XQx79lxiuEEEIIIYQQZtGxH9z8Cay6G3YvUhLBkQ9aOqrqyopg/+ew/T0oqOwX7txRGaBp0CuV2xmxkHESygoqt2OBny6todFC+95wxzJw7mCRpyFEsyjOUYbJgvJvQogGkgS3aBWSc4p5+Ov9lOsMXB/WnjnXBdX72NsjOrLgz1McSszlSGIuYR1dat33cGIu5ToDnk42+LvZmyN0s/N0smH2sC68Fx3HRxtPAzCoiztaK+k4JIQQQgghhLjG9ZgMF/8NG/4Na5+DdgEQMs6yMYGS2N63VElsF6Yrt7n4wbCnlR7iVn9rrWkwQG7CpYT35Ynv8iJI3Aub3oCb3m/+5yJEczm/XfngByAvEUrzwebqZ+oLURNJcLcgFwvLSM8vrff+1hoVAe4OqNWqJoyqfvJLyrG11mBdw7DHxiou0/HAV/vILCijW3tn3rq9FypV/Z+zu6MNE8J8+DkmmW92n+eNjr1q3XffeaX/dr9O7Ux6jOY2e3gXvtl9nsyCMgCGSnsSIYQQQgghRFsx5EnIOg0Hv4JVs+DetdC+9vd5Taqs8LLEtjIfCVd/JbHde9qViW0jlUrZz9UfQsZeul2vhzN/wde3Qsw3yjrtOjX98xDCEs5srv515inwjbBMLKJVkwR3C5GUU8yotzdRVqE36biHRgTy3ITQJoqqfpJzirn+/a1o1GpeuL4bk8I7mC05fDgxh3/9dISjSXm4OWhZPDMCe63pv7bTIzvxc0wyP8ck86/ru+Fsa13jfvvOVfbfDmh5/bcv52hjxROjg3nx52MADAv2tHBEQgghhBBCCNFMVCq44V3IuQBnN8PyO2D2X83bzqOsEPZ+BtvfhyJlLhKu/jD8Geh9J2hqfs9ZJ7UagqKgyyg4sxG2viNV3OLadXaLcq22Bn25cgaDJLhFA0hPgxbiwPmLlFXosdao8HDU1nlxd1A+BV6y7QwJ2UUWjX357gtcLCons6CUJ1fGMP2z3ZzOKGjUmrnF5by4+iiTPtrO0aQ8nGytWDQjgo7tGtY2pH9AO0K8HSku1/HTgaQa99HrDeyvGjDZ8vtZTx3gz4SePtzatyOBng6WDkcIIYQQQgghmo/GWulR7RkK+SlKkru0ce9D6y31CLzfB9a/pCS32wXATR/CYweg78yGJ7cvN/I55TrmG7h4vvHrCdHS5KdV9p9XQfdJym3Sh1s0kFRwtxBnMwsBmBzuy1u3967XMTM+2822+Eze/vMk703t05Th1aqsQs+KvQkATAzzITo2nR2ns5iwcCsPjujCo6OCsLXW1Hs9g8HAzzHJvPp7LJkFSruWm/v48q+J3fB0smlwnCqViumRnXj5l2N8s/s8Mwd1uqLKPD6jgNzicuysNXTv4Nzgx2ou1ho1/5shn2wKIYQQQggh2ig7V5i2Ej6LUpLOP9wHU5eDuv7vQU128ZzSPqQgTUlsD38Wet1hnqT25fwHQpeRcGaTVHGLa5Oxert9L+X3/ej3kuAWDSYV3C2EMcHd2YRKXGNrkp9jkjmalNskcdVl/fE0MgtK8XKy4b2pfVj/1AhGdfWkTKfng7/iGfvuFjaeTK/XWqczCpj+2W6eXBlDZkEpXTwdWH5/JO9OCW9Uctvo5r6+2FlrOJVWwL7KSu3LGduT9PF3bZJe4kIIIYQQQgghzKxdANy5Aqxs4dRaWPevpnusggz46mYlue3VAx7YDH2mmz+5bTRCqrjFNezsJuW683Dw7KpsZ5ywWDiidZMsXgtxpjLB3cWj/gnunr4uTApXeoy9scYyfwS+2a38Jzu1vx/WGjX+7vYsvac/i2b0pb2LLReyi5j1+V4e/no/KbnFNa5RUq7jnT9PMmHhVnaczsLGSs0/xoaw5olhDA4y3/BEZ1trbuqtfL++3nXli4N95y4NmBRCCCGEEEII0Up07Ac3f6Js714Euz8x/2OU5sPy2yH7DLj4w4wflAryptRpkFLFra+AbQua9rGEaE4GA5yprODuPFJpNQSQcx7Ka84dCXE1kuBuAQwGA2cre1Z39nA06dh/jO2KVqNmW3wmW05lNEV4tTqdUcCO01moVTBlgH/V7SqVivE927N+7gjuH9oZjVrFmqOpRL2zmc+2nqFCd2mQ5sYT6Yx5dzMf/BVPmU7PqK6erH9qBHOuC8bGyvynlc0YqEyfXnMklazKFihGe89XJrhb+IBJIYQQQgghhBB/02MyRP1b2V77HJxca761K8pg5V2QfBDs3OCuH8G5vfnWvxpjFffBr5WhmkJcCy6ehdwLynDJToPAwRNsXcGgh6x4S0cnWiFJcLcA2YVl5JVUoFJBJ3fThij6udlXJW3fWHMCvd7QFCHWaPlu5T/X60K98HW1u+J+RxsrXrihO789NpS+/q4Ulul49fdYbvxwOxuOp/Hw1/uZ9cVeErKLae9iy6IZfVl6T3/8TfwemCKsowu9OrpQptPz/f7EqtvT8kpIyC5GrVJalAghhBBCCCGEaGWGPKkMeTTo4ft7IeVQ49fU6+HnR+DMRrC2h+nfg0dw49etr8uruLe+03yPK0RTOrNZue7YH7QOoFJdquKWPtyiASTB3QIY+293cLEzaSCj0ZzrgnCyseJ4Sh4/H0oyd3g1KinXVSWIp0d2uuq+3do78/1Dg3njljBc7a2JTcnj/mX7WHM0FY1axf1DO7N+7gjG92x/xeDHpjA9Uqk2X77nQtUHAsb+26E+zjjZNlH/NCGEEEIIIYQQTUelgusXKAnh8kJYPkUZ0thQBgP8+TwcWQVqK7jjK+gYYa5o60+quMW15mxlgrvLiEu3VfXhlgS3MJ0kuFsAY//tzib0376cm4OWh0YGAvD2ulOUlOvMFlttfj+cQm5xOR3b2TE8xLPO/dVqFVMH+BM9dwS3R3QEoK+/K789NpQXbuiOo41VU4dc5cbeHXCyteJ8VhHb4jMB2FfZnqR/gPTfFkIIIYQQQohWS2MNt3+pVIPmp8CySbByBlw8Z/pa29+DXR8r25M+huAos4Zab50GQecR5qni1pXD7k/h/E7zxCaEqfR6OGvsv11TglsGTQrTSYK7BTjbyAQ3wL1DOuPjbEtSTjFf7Wz66cpfVw6XvHOAPxp1/auu3R1teOv23hz+91h+eHgw3do7N1WItbLXWnFrXyXJbhySaazgjpD+20IIIYQQQgjRutm5wr1rYcCDoNJA7K/w4QD461UoK6zfGjHLYcPLyvbY16D3lCYLt15GGqu4v2l4FbdeBz89CGuega8mQ8Yps4UnRL2lH4eiLLB2AN/LzoiQCm7RCJLgbgHOZjQ+wW2n1TB3TAgAH26MJ7eo3Cyx1eRYci4HL+RgrVFxRz+/Bq3hbGvdLO1IajOtsk3Jhth0TmcUcDwlD5AKbiGEEEIIIYS4Jti1g4n/Bw9tg87DQVcKW96CD/vDke+V9iO1ObUOfp6jbA9+HAbPaZ6Yr6bT4Moq7nLYusD04/V6+PVxOPqD8nVFiZLs1lWYN04h6mJsT9JpMFhpL91u7MGdfVo500AIE0iCuwU4l1WZ4PZseIIb4NaIjoR4O5JbXM7Hm5tu6qxxuOS4Hj54Otk02eM0pRBvJwYEuKHTG5j34xF0egO+rna0d7lyWKYQQgghhBBCiFbKuzvM/EXpn+3qD3lJ8MN98PnEmodQJuyF7+4Ggw56TYWo/zR/zLUZ2cBe3AYDrP2ncpxKDRP+D2xdIPkAbGtAstxSdOWwaxHEb7B0JKIxjAMmOw+vfruzL2gdlVY82WeaPy7RqkmC28L0ekNVi5IujajgBtCoVfxzvPKJ1+fbz5GcU9zo+P6uoLSC1QeVQZZ1DZds6aYPVKq495xV+m/3k+ptIYQQQgghhLj2qFTQ/SZ4dA+MegGs7eHCDvhkBPz6BBQqs5nIOAnLb4eKYggaA5M+BHULSps0pIrbYIAN/4Y9nypfT/oYIh+EiW8rX29+E5IPNkm4ZlWUDV/foiTqV86sf6sZ0bLoyuH8dmX78gGToPw79VA6E0gfbmGqFvSXum1KySuhtEKPtUaFr2vjq4evC/ViQGc3yir0LFhv/n5aqw8mUVimo4unAwO7tO5+1eN7+uDmcOl0mH7Sf1sIIYQQQgghrl3WdjDiGZizF3reChhg/xfwQV8lYfzVLVB8UekLfMeXysDKlsbUKu4tb8P2hcr29Qsg/E5lO+x26D5JqZb96SEoL2mScM0i7Th8OvLSYMLyQjjxh0VDEg2UdADKCsDODbzDrrzf2KZE+sMLEzUowf3RRx8REBCAra0tkZGR7Nmzp9Z9R44ciUqluuJy/fXXV+1zzz33XHH/+PHjq62TnZ3N9OnTcXZ2xtXVlfvuu4+CgoKGhN+iGPtv+7vZY6Vp/OcNKpWKeROUPwg/HEjkRGpeo9c0MhgMfFPZnmR6ZCeL9tA2BxsrDbf361j1db9OUsEthBBCCCGEENc8l45w21KYtQZ8wqAkF6L/A3mJ4B4M01aBtnFnWDeZToOV1g71qeLe+RFsfFXZHvsa9L/v0n0qFVz/Ljh4KdWyf/236WJujNjfYMkYyDkPrp0g7A7l9iPfWTYu0TDG/tudh9V8doSnVHCLhjE5o7py5Urmzp3Lyy+/zIEDB+jduzfjxo0jPT29xv1//PFHUlJSqi5Hjx5Fo9Fw++23V9tv/Pjx1fb79ttvq90/ffp0jh07xvr16/ntt9/YsmULDzzwgKnhtzhnM5UkfWcPR7Ot2ce/HRPDfDAY4M015vujcOBCDrEpedhYqbmtb8e6D2gFpg/ohI2Vmg4utoR4O1k6HCGEEEIIIYQQzaXTYHhgM9ywEOzdlR7dd/0IDu6WjuzqRlxexZ1Q8z77Pod1/1K2Rz1f86BMB3e46X1le+dHcG67+WNtKL0eNr0JK6crFb+dh8MDm2DEP5X746MvtZYRrUdV/+0RNd9fVcF9snniEdcMkxPcCxYsYPbs2cyaNYvu3buzaNEi7O3tWbp0aY37u7m54ePjU3VZv3499vb2VyS4bWxsqu3Xrt2latrY2FjWrl3LZ599RmRkJEOHDuWDDz5gxYoVJCcnm/oUWpQzxv7bjRww+XfPjAvFSq1i48kMdp7OMsua3+w+D8CNvTvgYt8CT9VqAH93e35/fCirHh6MRt26K9KFEEIIIYQQQphIrYF+s+DpUzBnv5LkbukChlyq4q5pSOShlfDbU8r2kCdg+DO1r9V1AvSZARhg9UNQmt8kIZuktABW3Q2bXle+jnwIZvwE9m7gEQQd+ihDQI/9ZNk4hWnKiiCxsgNEl5E17+PZVbnOigO9rlnCEtcGkxLcZWVl7N+/n6ioqEsLqNVERUWxc+fOeq2xZMkSpk6dioND9YTupk2b8PLyomvXrjz88MNkZV1Kyu7cuRNXV1f69etXdVtUVBRqtZrdu3eb8hRaHOOAyc6NHDD5d509HLhzgPIf8xtrYjEYDI1aL6eojN8OpwAwPbIV/IdvgiAvJ7P0PxdCCCGEEEII0UpprMBKW/d+LYWxivvAV9WruI//rCSqMcCAByDqP0o7kqsZNx9c/JWe3saqb0u5eB6WjoPYX0BtDTd9CBPeVH4+RsY2JYelTUmrkrALdGXg3BHcutS8j2sn0NhARYnSlkaIejIpwZ2ZmYlOp8Pb27va7d7e3qSmptZ5/J49ezh69Cj3339/tdvHjx/PsmXLiI6O5s0332Tz5s1MmDABnU75tCY1NRUvL69qx1hZWeHm5lbr45aWlpKXl1ft0hI1VYIb4PHRwThoNRxKzOX3IymNWuv7/YmUVejp0cGZcD9X8wQohBBCCCGEEEII09VUxX3qT/j+PjDoIXwGjH+z7uQ2gK0z3Pw/QAUHlsGpdU0aeq3ObYPFoyDtqNIb/J7foe9dV+7X81ZQqZVq4OwzzR+naBhje5IuI2r/vVRrwMPYh1valIj6a/xUQxMsWbKEsLAwBgwYUO32qVOnctNNNxEWFsbkyZP57bff2Lt3L5s2bWrwY82fPx8XF5eqi5+fXyOjN7+yCj0J2UUAdGmCBLenkw2zhyufir217iRlFfoGrWMwGFh+DQ2XFEIIIYQQQgghWr3Lq7hjlsPKGUrCu8ctSm/tmob41SZgKAx8RNn+5TEoyjZ/vFez9zNYNgmKsqB9ODywEfwja97XyftSD+cj3zdbiKKRqgZMDr/6fsY2JZLgFiYwKcHt4eGBRqMhLS2t2u1paWn4+Phc9djCwkJWrFjBfffdd9X9ALp06YKHhwfx8fEA+Pj4XDHEsqKiguzs7Fofd968eeTm5lZdEhJqGbxgQReyi9AbwEGrwdPJpkkeY/awLng42nA+q4hv91xo0Bo7T2dxJrMQRxsrJoV3MHOEQgghhBBCCCGEMFnAEAgYpiS1Vz8MulLoOhFu+VSphDXV6BfBoysUpCk9vBvZ6rReKsrg1yfh96dBXwE9b4N714JLx6sf1+uyNiXNEadonOKLkByjbNc2YNJIEtyiAUxKcGu1WiIiIoiOjq66Ta/XEx0dzaBBg6567KpVqygtLWXGjBl1Pk5iYiJZWVm0b98egEGDBpGTk8P+/fur9vnrr7/Q6/VERtb8iZ6NjQ3Ozs7VLi2NsT1JgIdDk1VFO9hY8URUMADvR8eRXVhm8hrfVFZv39zHFwcbqzr2FkIIIYQQQgghRLMY+dyl7S6j4LbPQWPdsLWs7eDmRaDSwPHVcPQHs4RYq+SD8Pl42P85oIKof8Otnylx1CX0BrCyU4YRpsQ0bZytRYXp+Z5mc24bYFDajzi3v/q+VQnuE00elrh2mNyiZO7cuSxevJgvv/yS2NhYHn74YQoLC5k1axYAM2fOZN68eVcct2TJEiZPnoy7u3u12wsKCnjmmWfYtWsX586dIzo6mkmTJhEUFMS4ceMA6NatG+PHj2f27Nns2bOH7du3M2fOHKZOnUqHDq23ovhsZgHQNP23Lze1vx9dPBzIKixjzILNfL8/sd5DJ9PzSlh3TOlzPu0aGy4phBBCCCGEEEK0agFDYehT0HsaTF0O1raNW8+3L4x4Vtn+/WnIS258jH9XmAW/PA6fjoKk/WDjDNNWKs+jvsV/ts7QdYKyfXiV+WNsbQ4sg9fbw58vgF5n6WiuZOy/XVf1NoBnqHKdeUqq80W9mZzgnjJlCm+//TYvvfQS4eHhxMTEsHbthdZqsgAALGFJREFU2qrBkxcuXCAlpfpAw5MnT7Jt27Ya25NoNBoOHz7MTTfdREhICPfddx8RERFs3boVG5tLbTu++eYbQkNDGT16NBMnTmTo0KF8+umnpobfopzNbLr+25ez1qj5cFpfQrwdySos4x+rDjHl012cSsuv89jv9iVQoTcQ0akd3dq3vCp4IYQQQgghhBCiTYv6tzIkUmtvnvWGPa30wS7JgZ/nmC/JqKuA3Z/CB33gwJeAAcLugEf3QMg409cztik5+kPLTOo2pwPLlBYvOz6Ab25XWoK0JGcvGzBZF7cuoLaCsgLIS2rauMQ1Q2WobylvK5eXl4eLiwu5ubktpl3J1E93sutMNu9O6c3NferoL2UG5To9S7ad5b0NcRSX67BSq7h/WBceHx2EvfbK1iM6vYHh/7eRpJxiFtzRm1v6Nn2MQgghhBCmaomv80TzkJ+9EEI0kYyTsGiY0tf7+gXQv+55ald1bjuseRbSjipfe4fBxLeg09Xb3V5VRRm8E6Ikc+9aDYGjGhdja1WYBW8FAgalbUtFMbgFwp0rwDOk8esn7oN1z4PWAaZ8bfoHKXnJsKAbqNTw7Bmwa1f3MR8OgMyTMOMHCIpqWNyi1TPldZ7JFdzCfIw9uDt7ODbL41lr1Dw0IpD1c4cT1c2bCr2BRZtPM2bBFtYfT7ti/82n0knKKcbV3pqJYXX0SBJCCCGEEEIIIcS1wbOrUhkOStuLk2ugKNv0dfKS4fv74IuJSnLb1hUmvg0Pbm5cchvASgs9bla2j7ThNiWn/wIM4N0T7vsTXPwg+zR8NhpOrWv4uqX58Mez8FkUJOyC09HKhxSmOrtFuW7fu37JbbisD/cp0x9PtEmS4LaQwtIK0vJKAejs3rQtSv6uYzt7Pru7H4tn9sPX1Y6knGJmL9vH/V/uI/FiUdV+X+9ShkveHtERW+sGTGAWQgghhBBCCCFE6xT5EAQMg/Ii+HYq/F9neK83rLoHtr8PZ7dCSV7Nx1aUwtYF8EE/OPo9oIKIWfDYARgwG9RmyjGEVbYpOf4LlBebZ83WJn69ch0UBe17weyN4D8YSvNg+RTl52Bq84aTa+CjSNjzCWCAkPFKBfbBryDmW9PWMia4Ow+v/zEyaFKY6Mq+FKJZGKu33R20uNg3cMJxI43p7s2QIHfej47ns61n2BCbxvb4TB4fHcyEnj5sPJkOwLTIThaJTwghhBBCCCGEEBaiVsOtSyD6FbiwA7LPwMVzyuXYT5U7qcAjGDr0gQ59levii7DuX0oVMUDHAUo7kg7h5o/RLxJc/CH3gpKU7XmL+R+jJdPrIX6Dsh08Vrl29ISZPyvV1vs/h+j/QNoxuOmDutuL5KfCmn/C8dXK1+0C4IZ3IfA62PQmbHodfp+r/Jy9QuuOz2AwbcCkkXHQZMbJ+h8j2jRJcFvIpfYkzVu9/Xf2WiuemxDKLX19eeGno+w5l82ba0/wwV9xGAwwNMjD4jEKIYQQQgghhBDCApy8YfJHynbxRUiOgeSDkHxA2c5NgMxTyuXwyurHOnjBmFeg1xQlWd4U1GoIuw22LVDalLS1BHfyQSjKAhtn8Btw6XYrLdy4EHzClET30e8hKw6mLgeXGuar6fXK4M/1L0NpLqg0MPgxGPHPS0nx4f+ACzvhzEb4biY8sFHpy3012WcgLxE0WvA3oSXN5RXcBgOoVPU/VrRJkuC2kJaS4DYK8XZi5YMD+eFAEq//EUt2YRkA0yP9LRyZEEIIIYQQQgghLM6unTLI8fJhjgUZlQnvyqR30gGlNUb/+5XkqG0zDADudYeS4I5br/QJt3dr+sdsKeL+VK4DR4Gmhu4A/e9TksXfzYSUQ/DpSGVQpP/AS/tknIJfn1Cq9EGpzr7xfaXdyeXUGrhlMXwyTBkA+dtcuHnR1ZPPZzYp1x0HmDac0j0IUEFJDhRmgKNX/Y8VbZL04LaQqgS3Z8tIcAOoVCpui+jIX0+P4P6hnblncABjuntbOiwhhBBCCNFCfPTRRwQEBGBra0tkZCR79uypdd8ff/yRfv364erqioODA+Hh4Xz11VfV9jEYDLz00ku0b98eOzs7oqKiiIuLa+qnIYQQwlwcPSFkLIz8J0xbCf84Bf9KgXGvNU9yG8Crm1KprC+/1Fqjrajqvz2m9n0Chip9ub3DlGTxFzfA/i+VPumb3oBFQ5TktrUDjJsP90dfmdw2cvRU2tao1HB4hdKT+2rOVrYn6WJCexIAazulPQpIH25RL5LgtpAzlQnuLi2kgvtyrvZaXrihO/++qQdWGvkVEUIIIYQQsHLlSubOncvLL7/MgQMH6N27N+PGjSM9Pb3G/d3c3Hj++efZuXMnhw8fZtasWcyaNYt169ZV7fN///d/vP/++yxatIjdu3fj4ODAuHHjKCkpaa6nJYQQwpxUqqZrR3I1xmGTh1c1/2NbSmGmUjEPyoDJq2nXCe5bB90nKx8E/Po4LAyDTfNBV6b07350Fwx6pO4BoAFD4LoXle0/noHUozXvp9crg0jBtP7bRtKHW5hAspcWYDAYOJtRAEBnD0cLRyOEEEIIIUTdFixYwOzZs5k1axbdu3dn0aJF2Nvbs3Tp0hr3HzlyJDfffDPdunUjMDCQJ554gl69erFt2zZAeU28cOFCXnjhBSZNmkSvXr1YtmwZycnJrF69uhmfmRBCiFYv7DZApVQi51ywdDTNIz4aMCjV687t695f6wC3fwGjXlC+LkhT+qTf9jlM+w5cTWhRO+RJJSleUQKr7obS/Cv3STsCxdmgdQTfvvVf28gzRLmWBLeoB0lwW0B2YRl5JRWoVNDJ3YQeREIIIYQQQlhAWVkZ+/fvJyrqUoWYWq0mKiqKnTt31nm8wWAgOjqakydPMnz4cADOnj1LampqtTVdXFyIjIys15pCCCFEFecOSisOgCPfWzaW5mLsv3219iR/p1LBiGfgrp+URPecPcpgTlOHOKrVMHkROPtCVrzSw9tgqL7Pmcr2JJ2G1NwfvC5VFdzSokTUTRLcFmDsv93BxQ5b6zpO/RBCCCGEEMLCMjMz0el0eHtXn8/i7e1Nampqrcfl5ubi6OiIVqvl+uuv54MPPmDMGOWNuPE4U9YsLS0lLy+v2kUIIYQAlGGTAIe/uzLZeq3R6+B0tLIdPNb04wOvUxLddu0aHoODu1L9rbaCoz/Avr+d0XV2i3LdeXjD1vfsqlxnnmp4jKLNkAS3BVQNmGyB/beFEEIIIYQwFycnJ2JiYti7dy+vvfYac+fOZdOmTQ1eb/78+bi4uFRd/Pz8zBesEEKI1q3bTaDRQkYspNXSF/pakbQfii+CrQt07G+5OPwjIerfyvba5yA5RtmuKIPzO5RtUwdMGnlUtigpSIOi7MZEKdoASXBbgCS4hRBCCCFEa+Lh4YFGoyEtLa3a7Wlpafj4+NR6nFqtJigoiPDwcJ5++mluu+025s+fD1B1nClrzps3j9zc3KpLQkJCY56WEEKIa4mdK4SMU7YPf2fRUJpc3HrlOvA60FhZNpZBc6DrRGVY5aq7oSRXScCXF4K9O3j1aNi6Nk7g3FHZlipuUQdJcFuAJLiFEEIIIURrotVqiYiIIDo6uuo2vV5PdHQ0gwYNqvc6er2e0tJSADp37oyPj0+1NfPy8ti9e3eta9rY2ODs7FztIoQQQlQJq2xTcvQH0OstG4tRYRZseRveC4flU8wTV0P6bzcVlQomf6wMqbx4Dn6eA2cr+293Hq70624oY5sSGTQp6mDhj3napqoEt6ckuIUQQgghROswd+5c7r77bvr168eAAQNYuHAhhYWFzJo1C4CZM2fi6+tbVaE9f/58+vXrR2BgIKWlpfzxxx989dVX/O9//wNApVLx5JNP8uqrrxIcHEznzp158cUX6dChA5MnT7bU0xRCCNGaBY8FGxfIS4Lz26HzMMvFknYcdv9PqSavKFFuu3gW4jdASAP6ZhsVpENKjLIdFHXVXZuNXTu4/QtYMg5if4HTfym3d25gexIjz65Kr3FJcIs6SIK7men1hqoEdxep4BZCCCGEEK3ElClTyMjI4KWXXiI1NZXw8HDWrl1bNSTywoULqC+r0iosLOSRRx4hMTEROzs7QkND+frrr5kyZUrVPs8++yyFhYU88MAD5OTkMHToUNauXYutrW2zPz8hhBDXAGtb6DEJDiyDI981f4Jbr4e4dbDrf5eqmAF8eoGjl5Lc3vF+4xLc8RuU6/a9wcn76vs2J98IGPsqrP0nlBUotzW0/7ZRVQX3icatI655KoPhWh8tq8jLy8PFxYXc3FyLnsqYlFPMkDf+wlqjIvaV8VhppEuMEEIIIURjtJTXeaL5yc9eCCHEFc5uhS9vUAYw/iMOrGya/jFL8vj/9u49rKo67/v4Z28QUATkoCAqgod0UkHFRHJMU8ZDTWmHSX0yzenpngxN5Z7GnBlFa+5Hp+bpaWoc7aBNTVM4dquZlWmOOjWiJmSloyaFQQoopoAo53X/sWQbjyiisA+L9+u61rXXXmvttb67n3R9ry8/vj/te1PavcKcpS1JNrvU+6fSkBlSVKI5q/yPcVJNlfTwNqnTwGt71prp0oG10i2PSyN/23TfoSkYhvT3qeYs7qAoac4XZguTa5WzS1o1RgrqIs21+MKhuERj8jxmcDtZ9klz9nZUSBuK2wAAAAAAAE2p61ApsJNZUD6yWfrRHc33rO+/kXa/JH32hlRRYh7zC5IGTpUG/4fZl7pWUGep7z3SF6ul9D9J965q/POqq8yWHZJ79N/+/9ls0vhlUkBHs33K9RS3JSnsBvO1KFcqLzEXnkT9ys9KG2ZJ4X2kW37p6micjgK3k2UXmn+mERPW1sWRAAAAAAAAWIzdbhaSdz5v9r9uygJ30THpu08vbrl7JF1ojBDaUxryiBQ7SfK9TM3n5llmgfvAemlUqhTctXHPP7ZXKisye153HnQ936T5+AVKtz3dNPdqEyL5d5BKT0iFX5ltUFC/jxaZM/v/vV6KmywFdXJ1RE5FgdvJvqntv80CkwAAAAAAAE0v9j6zwP3VJun8Gal1u8bfo+KcuZijo6C9VyrJu/S6HklSwgyp+0izuH4lEf2kbrdK32wz+3SPW9q4mI5sNl+7j5TsXo37rKdq38sscJ+kwH1Z2f+UPn3Z3DdqpM/fNFvYtCAUuJ2sdoHJGBaYBAAAAAAAaHrhfaX2P5JOHpTeS5HCekle3pK9dmtlFoi9Wv3gmLdUeV46nmkWtPP3S0Z13fvavMwWEJ1vMreuiVJwdONiu3mWWeDOfF0aMc+cjX21jmwxX3texyKVnqZ9L+noxyw0eTnlJdI7yeZ+aA/pVJbZMufH/9nwL1wshAK3k1HgBgAAAAAAaEY2mzmLe+tiaf9/X/t9AjqarUBqC9od4ySf66zndB8pdegjnTgg7X1VGpZydZ8ryZfyv7hwj1HXF4Mnad/bfC38yrVxuKstC6UzOWa/9+kfSM8PlE4flb79lxQzzNXROQ0FbieqqKpR7vfnJEndKHADAAAAAAA0j4RHpKpy6fz3UnWlVFMl1VRLNbX7VeaijTU/2Gx2s41IbUG7OfoY22zmLO71j0i7V0iJyZK3b8Ofy/rIfI0cKLVt3/RxuavahSaZwX2pr/8h7b2wWOn4ZVLbDlLfu6XM18xZ3BS40RxyT59TjSH5+3ipfcBV/M8LAAAAAAAAjefTRrp1vqujqF/fe6StT0olx6Uv10gDpjT8mdr+2z1/0ryxuZvaGdynj0qVZVIrP5eG4zbKiqV3Zpn7g/9DirnF3B/wgFng/vc75mKffkGui9GJWk4zFjeQfdJsTxId5i+bzebiaAAAAAAAAOB03j7SkEfM/Z0vSIZx5eurK6Wvt5v7Lan/tmTOSvZrZy6eeCrL1dG4j82/kYq/M3vAJy26eLzzIPOXAlXnr689j4ehwO1E9N8GAAAAAACA4h+UfALM1hu1i0deTu4eqbxIah0iRQ5wSnhuw2YzF5qUaFNS68hH5iKlkjT+z3X7wttsF/8i4LM3nB+bi1DgdqJvLhS46b8NAAAAAADQgvkFSfHTzP2dz1/52qwLBfAeSZLdq3njckeOAvdh18bhDs6fkTZcaE2SMEOKHnrpNbGTJLu3dCxDKvi3U8NzFQrcTpRdeFaSFNOeAjcAAAAAAECLNmSGWYg8+rF0/LPLX1c7w7ul9d+uVduHu5ACtz78jdm7PaSbNGph/de0bS/dMNbcbyGzuClwO9HFFiVtXRwJAAAAAAAAXCqos9TnbnN/5wv1X1N8XCrYL8kmdR/ltNDcShgzuCVJX30o7XtDkk2asNxcSPVyBjxgvn6RJlVVOCU8V6LA7SSl5VUqKC6XJMWEMoMbAAAAAACgxbv5QruJA+ul099eer529naneMk/1GlhuZXaFiWnsswFN1ui86elDY+Z+4nJUtSQK1/fI0lqGyGdOyV99UHzx+diFLidpHb2dqi/j4LatHJxNAAAAAAAAHC5jrFStxGSUS3tXnHp+dr+2z1HOzUstxLUWfJpK9VUSd9nuzoa1/jgCelsvhTaUxr524av9/KW+k8291tAmxIK3E5ysT0Js7cBAAAAAABwQe0s7ozXzJm6taoqpK+3m/s9k5weltuw2aSwnub+yUOujcUVDr1nthqx2c3WJK1aX93n+k8xX7M+MlvdWBgFbiehwA0AAAAAAIBLdB8ldegjVZZKe1+9eDx3t1RRIrUJkzoOcF187qB2ocmW1of73PfSu3PM/ZtnSV1uuvrPhvWQom6WjBpp35vNEp678HZ1AC2Fo8DdngI3AAAAAAAALrDZzOLl+kek3S+aPZa9faUjm83zPZIkewufo1rbh7uwkQXummrpbIFUVSZVlZuvlWV131f94H11hRRzi9Qxrum/w7V4/3Gp9IS50OaIXzf+8wOmSDk7zTYlw/7T/LdmQRS4neSbCwXubszgBgAAAAAAwA/1vUfa+qRUclz6co1ZmMz6yDzX8yeujc0dhF0ocDemRcmxDOntn0unjzbuWTa7NGK+WRC2ezXus03p3xuk/W9LNi/pruVSK7/G36PPBOmDX0mns6Vvd0rRQ5s8THfQwn/94xyGYSj75FlJUkxYWxdHAwAAAAAAALfi7SMNecTc3/mCdCZXOvFvs9jafaRrY3MHjhncR8xZ2VdiGNLul6SVY8zits1uLlLZJlQK7CyFdDdbwkQOlLoONf/79rpN6nPXhQU/a6Rt/yW9Pt51vavzvpA2XOjNPnS21Cn+2u7j4y/1vdvc/+yvTRObG2IGtxOcPlep4rIq2WxS19A2rg4HAAAAAAAA7ib+QWnHM+Ys5U1PmMc63yS1CXFpWG4hOFry8jVbiZzJkUJi6r+uvETa8Jh0YK35vvdPpQl/lvyCrv5Zn6dJG1Okox9Ly2+Wxv9Z6n3bdX+Fq3bioPTXCVLZGanzYGnEE9d3vwEPSJmvSwfWS+OelvwCmyBI98IMbifILjRnb0cGtZZfKxf+aQMAAAAAAADck1+QFD/N3D+00XztQXsSSWarkLCe5v7lFposOCC9NMIsbtu9pTH/R5r4RuOK25IUN0l65GOzD/f501LaZOn9X5m9u5tbYZb02p3SuVNS5ABpyttmP/br0fkms8VL1fmLhX+LocDtBN+cvLDAJP23AQAAAAAAcDlDZpjF2Vr0376o/RX6cH/2N+nlUdKpLCmwk/Tg++Zinde6qGJod+mhLVLiTPP9nhelV5Kkk19d2/2uxvfZ0mt3mItKhveVpqxtfHG+Pjab2dNdkjKt2aaEArcTZBdS4AYAAAAAAEADgjpLfS70TPbvIEXEujYed9K+t/la+IMic8U56Z1k6Z1HzRnK3UdJv/hYikq4/ud5+0pj/kv6X2ukNmFSwZfSS8PNdh+Gcf33/6EzuebM7ZLj5vec+k7TtqaJm2T+4uTYXrMFisVQ4HYCCtwAAAAAAAC4KsPnSaE9zcUF7ZTuHMJuMF9rZ3AXZpmzqj97w1xI8tbfSve/LfmHNu1zbxgtzfiXuQBl5Tlz8ce3fy6VFTXN/YvzzJnbRTnmAphT35H8w5rm3rXadpBuGGvuf/ZG097bDfBT4gSOAnd7CtwAAAAAAAC4grAe0qy90s0zXR2Je6mdwX3yK2n/WrPf9okDkn976YH10vDHm+8XAgER0pR1UtIicyb0gbXSimHSd3uv775nT0qv3ymdzpbadZWmvWs+qznUtin5PE2qqmieZ7gIBe5mVlNjOArc3ZjBDQAAAAAAADReSDezuFxRIr093XztOtRsSdJtePM/326XfjxXmr5JahclnflWWjXGnNF9/LPG3+/c99Lr482WK4GdzeJ2UKemj7tWj59IbcOlc4XSkQ+b7zkuQIG7meUVl6m8qkatvGzq1K61q8MBAAAAAAAAPI+3j1nkrjV0jjR1gxTY0blxdLlJeuQTs1d6TZXZk/ulEdKLw6WMv0jlZxu+x/kz0l8nmDPQ20ZI0zZIwV2bN24vbylusrlvscUmKXA3s+yT5uztqJA28vbiPzcAAAAAAABwTeIflEJ7SJNXSz9ZbBZtXcEvSLp3lTT9A6nfzyQvHylvn/TubOn/9pY2zpXyvqj/s+Ul0hv3SHmfm4tXTtsghXZ3TtwDHjBfs7aYvb8tgoprM8suNH9rExPW1sWRAAAAAAAAAB4sMVmalSH1GuvqSCSbTep6s3TPK1LKIWn078zie0WJtHeV9OIw6eWR5mzpCnMCrCpKpb/dJx3bK7UONheUbN/LeTGH9ZCiEiWjRvr8Lec9t5ldU4F72bJlio6Olp+fnxISErRnz57LXjtixAjZbLZLtttvv12SVFlZqXnz5qlfv37y9/dXZGSkpk6dquPHj9e5T3R09CX3WLp06bWE71Tf1PbfZoFJAAAAAAAAwHr8Q6WbZ0kz95q9tPvcLdlbSccypA0zzVnd7/1SemuSlLNT8g2SHlgnRfR1fqy1i01+9oZkGM5/fjNodIF79erVSklJUWpqqjIzMxUXF6cxY8boxIkT9V6/du1a5eXlObb9+/fLy8tLP/vZzyRJ586dU2ZmphYsWKDMzEytXbtWhw8f1p133nnJvZ588sk695o1a1Zjw3e6oxcK3DEsMAkAAAAAAABYl80mxdwi/exVKeWglLRYCo6RyoulT1+Wsv8p+bSVpvy3FDnANTHeOMGM4fuvpZx018TQxBrdqObZZ5/Vww8/rOnTp0uSVqxYoffee0+rVq3SE088ccn1ISEhdd6npaWpTZs2jgJ3UFCQtmzZUueaP/3pTxo8eLBycnIUFRXlOB4QEKCIiIjGhuxS2RS4AQAAAAAAgJalbXvpx3Okmx+TsndIGa9KJw5KP33OXKjSVXzbSn3ukj77q7ThMWn8n6SoIa6Lpwk0agZ3RUWFMjIylJSUdPEGdruSkpKUnn51Ff+VK1dq0qRJ8ve/fMG3qKhINptN7dq1q3N86dKlCg0N1YABA/TMM8+oqqqqMeE7XUVVjXJPn5ckdaPADQAAAAAAALQsdrvU/VbpvtelmZ9K0UNdHZE0dI7k3146dURaNcZcFLOsyNVRXbNGzeAuLCxUdXW1wsPD6xwPDw/XoUOHGvz8nj17tH//fq1cufKy15SVlWnevHmaPHmyAgMDHccfe+wxDRw4UCEhIdq5c6fmz5+vvLw8Pfvss/Xep7y8XOXl5Y73xcXFDcbX1HJPn1N1jSF/Hy+1D/B1+vMBAAAAAAAAoI6wHlLyHmnLQnMm995V0qH3pdueln50p9lqxYM0ukXJ9Vi5cqX69eunwYMH13u+srJS9913nwzD0PLly+ucS0lJcezHxsbKx8dHv/jFL7RkyRL5+l5aPF6yZIkWL17ctF+gkbJPmu1JosP8ZfOwfxgAAAAAAAAALKpNiNmeJHaitHGOdCpL+vtUqddt0m3PSEGdXR3hVWtUi5KwsDB5eXmpoKCgzvGCgoIGe2OXlpYqLS1NDz30UL3na4vb3377rbZs2VJn9nZ9EhISVFVVpaNHj9Z7fv78+SoqKnJsubm5V7xfc6D/NgAAAAAAAAC3FTNMeuRf0i2/kuytpMPvS8sSpN0vSjXVro7uqjSqwO3j46P4+Hht3brVcaympkZbt25VYmLiFT+7Zs0alZeXa8qUKZecqy1uHzlyRB999JFCQ0MbjGXfvn2y2+3q0KFDved9fX0VGBhYZ3O2by4UuOm/DQAAAAAAAMAttfKTRv5GeuRjqUuCVHFW+uBX0sqfSPn7XR1dgxrdoiQlJUXTpk3ToEGDNHjwYD333HMqLS3V9OnTJUlTp05Vp06dtGTJkjqfW7lypSZMmHBJ8bqyslL33nuvMjMztXHjRlVXVys/P1+SFBISIh8fH6Wnp2v37t269dZbFRAQoPT0dM2dO1dTpkxRcHDwtX73ZpddeFaSFNOeAjcAAAAAAAAAN9bhR9L0TVLGKumjxdKxDOml4dLNs6Th86RWrV0dYb0aXeCeOHGiTp48qYULFyo/P1/9+/fXpk2bHAtP5uTkyG6vOzH88OHD+uSTT7R58+ZL7nfs2DFt2LBBktS/f/8657Zt26YRI0bI19dXaWlpWrRokcrLyxUTE6O5c+fW6cvtji62KGnr4kgAAAAAAAAAoAF2u3TT/5Z63S598Lh08F3pk/8nHVgv3fGc1G2EiwO8lM0wDMPVQThDcXGxgoKCVFRU5JR2JaXlVeqT+qEk6fOFoxXUplWzPxMAAKAlcnaeB/fB2AMAADSzgxul9x+XSo5Lt/5GGv4rpzy2MXleo2dw4+q08rLrrYeHKPf0OYrbAAAAAAAAADzPj34qxdwi7VouDZ3t6mjqRYG7mfh425XYPVSJanjBTAAAAAAAAABwS36B0oh5ro7isuwNXwIAAAAAAAAAgPuhwA0AAAAAAAAA8EgUuAEAAAAAAAAAHokCNwAAAAAAAADAI1HgBgAAAHBVli1bpujoaPn5+SkhIUF79uy57LUvv/yyhg0bpuDgYAUHByspKemS6x988EHZbLY629ixY5v7awAAAMBCKHADAAAAaNDq1auVkpKi1NRUZWZmKi4uTmPGjNGJEyfqvX779u2aPHmytm3bpvT0dHXp0kWjR4/WsWPH6lw3duxY5eXlOba33nrLGV8HAAAAFkGBGwAAAECDnn32WT388MOaPn26brzxRq1YsUJt2rTRqlWr6r3+b3/7mx599FH1799fvXv31iuvvKKamhpt3bq1znW+vr6KiIhwbMHBwc74OgAAALAICtwAAAAArqiiokIZGRlKSkpyHLPb7UpKSlJ6evpV3ePcuXOqrKxUSEhInePbt29Xhw4d1KtXL82YMUOnTp1q0tgBAABgbd6uDgAAAACAeyssLFR1dbXCw8PrHA8PD9ehQ4eu6h7z5s1TZGRknSL52LFjdffddysmJkZff/21fv3rX2vcuHFKT0+Xl5fXJfcoLy9XeXm5431xcfE1fiMAAABYBQVuAAAAAM1q6dKlSktL0/bt2+Xn5+c4PmnSJMd+v379FBsbq+7du2v79u0aNWrUJfdZsmSJFi9e7JSYAQAA4BloUQIAAADgisLCwuTl5aWCgoI6xwsKChQREXHFz/7hD3/Q0qVLtXnzZsXGxl7x2m7duiksLExZWVn1np8/f76KioocW25ubuO+CAAAACyHAjcAAACAK/Lx8VF8fHydBSJrF4xMTEy87OeefvppPfXUU9q0aZMGDRrU4HO+++47nTp1Sh07dqz3vK+vrwIDA+tsAAAAaNkocAMAAABoUEpKil5++WW99tprOnjwoGbMmKHS0lJNnz5dkjR16lTNnz/fcf3vf/97LViwQKtWrVJ0dLTy8/OVn5+vs2fPSpLOnj2rxx9/XLt27dLRo0e1detWjR8/Xj169NCYMWNc8h0BAADgeejBDQAAAKBBEydO1MmTJ7Vw4ULl5+erf//+2rRpk2PhyZycHNntF+fPLF++XBUVFbr33nvr3Cc1NVWLFi2Sl5eXvvjiC7322ms6c+aMIiMjNXr0aD311FPy9fV16ncDAACA57IZhmG4OghnKC4uVlBQkIqKivhTRgAAAAshz2u5GHsAAABrakyeR4sSAAAAAAAAAIBHosANAAAAAAAAAPBILaYHd20nluLiYhdHAgAAgKZUm9+1kM57+AFyfAAAAGtqTI7fYgrcJSUlkqQuXbq4OBIAAAA0h5KSEgUFBbk6DDgROT4AAIC1XU2O32IWmaypqdHx48cVEBAgm83mlGcWFxerS5cuys3NZdEbC2FcrYcxtSbG1ZoYV+tpijE1DEMlJSWKjIyU3U4HvpaEHB9NhXG1HsbUmhhXa2JcrcfZOX6LmcFtt9vVuXNnlzw7MDCQH1ALYlythzG1JsbVmhhX67neMWXmdstEjo+mxrhaD2NqTYyrNTGu1uOsHJ8pLgAAAAAAAAAAj0SBGwAAAAAAAADgkShwNyNfX1+lpqbK19fX1aGgCTGu1sOYWhPjak2Mq/UwpvA0/Ju1JsbVehhTa2JcrYlxtR5nj2mLWWQSAAAAAAAAAGAtzOAGAAAAAAAAAHgkCtwAAAAAAAAAAI9EgRsAAAAAAAAA4JEocAMAAAAAAAAAPBIF7ma0bNkyRUdHy8/PTwkJCdqzZ4+rQ8JV+uc//6k77rhDkZGRstlsWr9+fZ3zhmFo4cKF6tixo1q3bq2kpCQdOXLENcHiqi1ZskQ33XSTAgIC1KFDB02YMEGHDx+uc01ZWZmSk5MVGhqqtm3b6p577lFBQYGLIkZDli9frtjYWAUGBiowMFCJiYn64IMPHOcZT2tYunSpbDab5syZ4zjG2HqeRYsWyWaz1dl69+7tOM+YwhOQ33s2cnzrIb+3JnJ86yO/twZ3yu8pcDeT1atXKyUlRampqcrMzFRcXJzGjBmjEydOuDo0XIXS0lLFxcVp2bJl9Z5/+umn9fzzz2vFihXavXu3/P39NWbMGJWVlTk5UjTGjh07lJycrF27dmnLli2qrKzU6NGjVVpa6rhm7ty5evfdd7VmzRrt2LFDx48f19133+3CqHElnTt31tKlS5WRkaG9e/dq5MiRGj9+vA4cOCCJ8bSCTz/9VC+++KJiY2PrHGdsPVOfPn2Ul5fn2D755BPHOcYU7o783vOR41sP+b01keNbG/m9tbhNfm+gWQwePNhITk52vK+urjYiIyONJUuWuDAqXAtJxrp16xzva2pqjIiICOOZZ55xHDtz5ozh6+trvPXWWy6IENfqxIkThiRjx44dhmGY49iqVStjzZo1jmsOHjxoSDLS09NdFSYaKTg42HjllVcYTwsoKSkxevbsaWzZssUYPny4MXv2bMMw+Fn1VKmpqUZcXFy95xhTeALye2shx7cm8nvrIse3BvJ7a3Gn/J4Z3M2goqJCGRkZSkpKchyz2+1KSkpSenq6CyNDU8jOzlZ+fn6d8Q0KClJCQgLj62GKiookSSEhIZKkjIwMVVZW1hnb3r17KyoqirH1ANXV1UpLS1NpaakSExMZTwtITk7W7bffXmcMJX5WPdmRI0cUGRmpbt266f7771dOTo4kxhTuj/ze+sjxrYH83nrI8a2F/N563CW/927yO0KFhYWqrq5WeHh4nePh4eE6dOiQi6JCU8nPz5ekese39hzcX01NjebMmaOhQ4eqb9++ksyx9fHxUbt27epcy9i6ty+//FKJiYkqKytT27ZttW7dOt14443at28f4+nB0tLSlJmZqU8//fSSc/yseqaEhAT95S9/Ua9evZSXl6fFixdr2LBh2r9/P2MKt0d+b33k+J6P/N5ayPGth/zeetwpv6fADaBFSk5O1v79++v0h4Jn6tWrl/bt26eioiK9/fbbmjZtmnbs2OHqsHAdcnNzNXv2bG3ZskV+fn6uDgdNZNy4cY792NhYJSQkqGvXrvr73/+u1q1buzAyAIAVkN9bCzm+tZDfW5M75fe0KGkGYWFh8vLyumRl0IKCAkVERLgoKjSV2jFkfD3XzJkztXHjRm3btk2dO3d2HI+IiFBFRYXOnDlT53rG1r35+PioR48eio+P15IlSxQXF6c//vGPjKcHy8jI0IkTJzRw4EB5e3vL29tbO3bs0PPPPy9vb2+Fh4czthbQrl073XDDDcrKyuLnFW6P/N76yPE9G/m99ZDjWwv5fcvgyvyeAncz8PHxUXx8vLZu3eo4VlNTo61btyoxMdGFkaEpxMTEKCIios74FhcXa/fu3YyvmzMMQzNnztS6dev0j3/8QzExMXXOx8fHq1WrVnXG9vDhw8rJyWFsPUhNTY3Ky8sZTw82atQoffnll9q3b59jGzRokO6//37HPmPr+c6ePauvv/5aHTt25OcVbo/83vrI8T0T+X3LQY7v2cjvWwZX5ve0KGkmKSkpmjZtmgYNGqTBgwfrueeeU2lpqaZPn+7q0HAVzp49q6ysLMf77Oxs7du3TyEhIYqKitKcOXP0u9/9Tj179lRMTIwWLFigyMhITZgwwXVBo0HJycl688039c477yggIMDR9ykoKEitW7dWUFCQHnroIaWkpCgkJESBgYGaNWuWEhMTNWTIEBdHj/rMnz9f48aNU1RUlEpKSvTmm29q+/bt+vDDDxlPDxYQEODonVnL399foaGhjuOMref55S9/qTvuuENdu3bV8ePHlZqaKi8vL02ePJmfV3gE8nvPR45vPeT31kSObz3k99bkVvm9gWbzwgsvGFFRUYaPj48xePBgY9euXa4OCVdp27ZthqRLtmnTphmGYRg1NTXGggULjPDwcMPX19cYNWqUcfjwYdcGjQbVN6aSjFdffdVxzfnz541HH33UCA4ONtq0aWPcddddRl5enuuCxhX9/Oc/N7p27Wr4+PgY7du3N0aNGmVs3rzZcZ7xtI7hw4cbs2fPdrxnbD3PxIkTjY4dOxo+Pj5Gp06djIkTJxpZWVmO84wpPAH5vWcjx7ce8ntrIsdvGcjvPZ875fc2wzCMpi+bAwAAAAAAAADQvOjBDQAAAAAAAADwSBS4AQAAAAAAAAAeiQI3AAAAAAAAAMAjUeAGAAAAAAAAAHgkCtwAAAAAAAAAAI9EgRsAAAAAAAAA4JEocAMAAAAAAAAAPBIFbgAAAAAAAACAR6LADQAAAAAAAADwSBS4AQAAAAAAAAAeiQI3AAAAAAAAAMAjUeAGAAAAAAAAAHik/wG98sBKC4GkdgAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "Classification Report:\n", + " precision recall f1-score support\n", + "\n", + " 0 0.83 0.42 0.56 12\n", + " 1 0.90 0.98 0.94 66\n", + "\n", + " accuracy 0.90 78\n", + " macro avg 0.87 0.70 0.75 78\n", + "weighted avg 0.89 0.90 0.88 78\n", + "\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Display sample predictions\n", + "print(\"First 5 Predictions:\", y_pred[:5].flatten())\n", + "print(\"First 5 Actual Values:\", y_test[:5].values)" + ], + "metadata": { + "id": "gWZD_qtA0pA3", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "63aaeade-c06a-421b-8d95-d11639488c1c" + }, + "execution_count": 23, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "First 5 Predictions: [1 1 1 1 0]\n", + "First 5 Actual Values: [0 1 1 1 0]\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "**Model 2: Recurrent Neural Networks (RNN)**" + ], + "metadata": { + "id": "VYwITQLlHz0a" + } + }, + { + "cell_type": "code", + "source": [ + "# Define the RNN model\n", + "model = Sequential([\n", + " tf.keras.layers.Reshape((X_train.shape[1], 1), input_shape=(X_train.shape[1],)),\n", + " # More layers and more units:\n", + " SimpleRNN(128, activation='relu', return_sequences=True), # Increased units\n", + " SimpleRNN(64, activation='relu', return_sequences=True), # Added another layer\n", + " SimpleRNN(32, activation='relu'),\n", + " Dense(1, activation='sigmoid')\n", + "])\n", + "\n", + "# Compile the model\n", + "model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])\n", + "\n", + "# Train the model\n", + "history_rnn=model.fit(X_train, y_train, epochs=50, batch_size=16, validation_data=(X_test, y_test))\n", + "\n", + "# Evaluate the model\n", + "loss, accuracy = model.evaluate(X_test, y_test)\n", + "print(f'RNN Test Accuracy: {accuracy:.2f}')\n", + "\n", + "# Predict on test data\n", + "y_pred = (model.predict(X_test) > 0.5).astype(\"int32\") # Threshold at 0.5\n", + "\n", + "# Accuracy and Loss curves\n", + "result=pd.DataFrame(history_rnn.history)\n", + "fig, ax=plt.subplots(nrows=1, ncols=2,figsize=(18,6))\n", + "ax=ax.flatten()\n", + "ax[0].plot(result[['accuracy','val_accuracy']])\n", + "ax[0].set_title(\"Accuracy\")\n", + "ax[1].plot(result[['loss','val_loss']])\n", + "ax[1].set_title(\"Loss\")\n", + "\n", + "plt.show()\n", + "\n", + "# Classification Report\n", + "print(\"\\nClassification Report:\\n\", classification_report(y_test, y_pred))" + ], + "metadata": { + "id": "PRoBtbBicnaJ", + "collapsed": true, + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "outputId": "471951e1-c08c-4639-efb0-a118a94cea7a" + }, + "execution_count": 24, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/50\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/keras/src/layers/reshaping/reshape.py:39: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", + " super().__init__(**kwargs)\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 34ms/step - accuracy: 0.7256 - loss: 0.6209 - val_accuracy: 0.8462 - val_loss: 0.3693\n", + "Epoch 2/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - accuracy: 0.7593 - loss: 0.5072 - val_accuracy: 0.8462 - val_loss: 0.3711\n", + "Epoch 3/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.7802 - loss: 0.4625 - val_accuracy: 0.8462 - val_loss: 0.3458\n", + "Epoch 4/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.7866 - loss: 0.4435 - val_accuracy: 0.8846 - val_loss: 0.3450\n", + "Epoch 5/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - accuracy: 0.8001 - loss: 0.4527 - val_accuracy: 0.8846 - val_loss: 0.3199\n", + "Epoch 6/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.7869 - loss: 0.4457 - val_accuracy: 0.8846 - val_loss: 0.3026\n", + "Epoch 7/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.8154 - loss: 0.4319 - val_accuracy: 0.8718 - val_loss: 0.3366\n", + "Epoch 8/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.8092 - loss: 0.4390 - val_accuracy: 0.8846 - val_loss: 0.2973\n", + "Epoch 9/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.7733 - loss: 0.4623 - val_accuracy: 0.8718 - val_loss: 0.2996\n", + "Epoch 10/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.8083 - loss: 0.4231 - val_accuracy: 0.8718 - val_loss: 0.3026\n", + "Epoch 11/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.7775 - loss: 0.4610 - val_accuracy: 0.8718 - val_loss: 0.3013\n", + "Epoch 12/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - accuracy: 0.8396 - loss: 0.3874 - val_accuracy: 0.8846 - val_loss: 0.3357\n", + "Epoch 13/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - accuracy: 0.7463 - loss: 0.4509 - val_accuracy: 0.8718 - val_loss: 0.3069\n", + "Epoch 14/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.8333 - loss: 0.3956 - val_accuracy: 0.8718 - val_loss: 0.3383\n", + "Epoch 15/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.8160 - loss: 0.4096 - val_accuracy: 0.8718 - val_loss: 0.3070\n", + "Epoch 16/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.8235 - loss: 0.3685 - val_accuracy: 0.8846 - val_loss: 0.3227\n", + "Epoch 17/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.8069 - loss: 0.3997 - val_accuracy: 0.8590 - val_loss: 0.3137\n", + "Epoch 18/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - accuracy: 0.8106 - loss: 0.3913 - val_accuracy: 0.8718 - val_loss: 0.3021\n", + "Epoch 19/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.8413 - loss: 0.3471 - val_accuracy: 0.8846 - val_loss: 0.3203\n", + "Epoch 20/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.8520 - loss: 0.3613 - val_accuracy: 0.8974 - val_loss: 0.2949\n", + "Epoch 21/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - accuracy: 0.8301 - loss: 0.3858 - val_accuracy: 0.8846 - val_loss: 0.3041\n", + "Epoch 22/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.8403 - loss: 0.3456 - val_accuracy: 0.8718 - val_loss: 0.3191\n", + "Epoch 23/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.7914 - loss: 0.4020 - val_accuracy: 0.8846 - val_loss: 0.2830\n", + "Epoch 24/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.8237 - loss: 0.3597 - val_accuracy: 0.9231 - val_loss: 0.3214\n", + "Epoch 25/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - accuracy: 0.8377 - loss: 0.3866 - val_accuracy: 0.8846 - val_loss: 0.3109\n", + "Epoch 26/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.8184 - loss: 0.3675 - val_accuracy: 0.9103 - val_loss: 0.2856\n", + "Epoch 27/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.8242 - loss: 0.3660 - val_accuracy: 0.8846 - val_loss: 0.3100\n", + "Epoch 28/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.8124 - loss: 0.3637 - val_accuracy: 0.9103 - val_loss: 0.2953\n", + "Epoch 29/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - accuracy: 0.8629 - loss: 0.3192 - val_accuracy: 0.9103 - val_loss: 0.3370\n", + "Epoch 30/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.8681 - loss: 0.3263 - val_accuracy: 0.9103 - val_loss: 0.2997\n", + "Epoch 31/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.8559 - loss: 0.3186 - val_accuracy: 0.8974 - val_loss: 0.3280\n", + "Epoch 32/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.8149 - loss: 0.3722 - val_accuracy: 0.8718 - val_loss: 0.3262\n", + "Epoch 33/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - accuracy: 0.8428 - loss: 0.3375 - val_accuracy: 0.9103 - val_loss: 0.3119\n", + "Epoch 34/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step - accuracy: 0.8566 - loss: 0.3182 - val_accuracy: 0.9103 - val_loss: 0.3220\n", + "Epoch 35/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 21ms/step - accuracy: 0.8561 - loss: 0.3379 - val_accuracy: 0.8718 - val_loss: 0.3273\n", + "Epoch 36/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - accuracy: 0.8685 - loss: 0.3177 - val_accuracy: 0.9103 - val_loss: 0.3067\n", + "Epoch 37/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 22ms/step - accuracy: 0.8304 - loss: 0.3369 - val_accuracy: 0.9231 - val_loss: 0.2962\n", + "Epoch 38/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 21ms/step - accuracy: 0.8459 - loss: 0.3523 - val_accuracy: 0.9103 - val_loss: 0.3155\n", + "Epoch 39/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - accuracy: 0.8308 - loss: 0.3328 - val_accuracy: 0.9231 - val_loss: 0.3121\n", + "Epoch 40/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - accuracy: 0.8599 - loss: 0.3109 - val_accuracy: 0.9103 - val_loss: 0.3079\n", + "Epoch 41/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 9ms/step - accuracy: 0.8492 - loss: 0.3157 - val_accuracy: 0.9231 - val_loss: 0.3222\n", + "Epoch 42/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - accuracy: 0.8342 - loss: 0.3305 - val_accuracy: 0.8974 - val_loss: 0.3523\n", + "Epoch 43/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.8431 - loss: 0.3156 - val_accuracy: 0.8718 - val_loss: 0.3166\n", + "Epoch 44/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.8743 - loss: 0.2834 - val_accuracy: 0.8974 - val_loss: 0.3397\n", + "Epoch 45/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - accuracy: 0.8426 - loss: 0.3276 - val_accuracy: 0.9231 - val_loss: 0.2976\n", + "Epoch 46/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - accuracy: 0.8586 - loss: 0.3180 - val_accuracy: 0.8974 - val_loss: 0.3463\n", + "Epoch 47/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.8481 - loss: 0.3506 - val_accuracy: 0.9231 - val_loss: 0.3290\n", + "Epoch 48/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.8745 - loss: 0.2903 - val_accuracy: 0.9231 - val_loss: 0.3062\n", + "Epoch 49/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - accuracy: 0.8930 - loss: 0.2640 - val_accuracy: 0.9231 - val_loss: 0.3455\n", + "Epoch 50/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - accuracy: 0.8752 - loss: 0.2945 - val_accuracy: 0.9231 - val_loss: 0.3174\n", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.9381 - loss: 0.2624 \n", + "RNN Test Accuracy: 0.92\n", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 201ms/step\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABbgAAAIQCAYAAABDtAgvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3yV9fn/8dc5J5vsQQYEAmGvMFRAwYniXrgHFatWK7aVtrb0Z9Xqt+Xb8UVb62qrdYBb3BYHCmpFUPbeEEYmZO/knN8fd+6TBDLOOTkj4/18PPI4d865z+d8QgbJda7zviwOh8OBiIiIiIiIiIiIiEg3Yw30BkREREREREREREREPKECt4iIiIiIiIiIiIh0Sypwi4iIiIiIiIiIiEi3pAK3iIiIiIiIiIiIiHRLKnCLiIiIiIiIiIiISLekAreIiIiIiIiIiIiIdEsqcIuIiIiIiIiIiIhIt6QCt4iIiIiIiIiIiIh0Sypwi4iIiIiIiIiIiEi3pAK3iIiIiIiIiIiIiHRLKnCLiHjZk08+icViYfLkyYHeioiIiIiIdBHPP/88FouF77//PtBbERHpUVTgFhHxssWLF5ORkcHq1avZvXt3oLcjIiIiIiIiItJjqcAtIuJF+/bt45tvvmHhwoUkJSWxePHiQG+pVRUVFYHegoiIiIiIiIhIp6nALSLiRYsXLyYuLo6LLrqIq666qtUCd3FxMffeey8ZGRmEhobSv39/Zs+eTWFhofOc6upqHnroIYYNG0ZYWBipqalceeWV7NmzB4Dly5djsVhYvnx5i7X379+PxWLh+eefd153yy23EBkZyZ49e7jwwguJiorixhtvBOCrr77i6quvZsCAAYSGhpKens69995LVVXVCfvevn0711xzDUlJSYSHhzN8+HD+3//7fwB88cUXWCwW3n777RPu9/LLL2OxWFi5cqXb/54iIiIiIr3JunXruOCCC4iOjiYyMpJzzjmHb7/9tsU5dXV1/O53v2Po0KGEhYWRkJDAtGnT+PTTT53n5ObmMmfOHPr3709oaCipqalcdtll7N+/388fkYiI7wUFegMiIj3J4sWLufLKKwkJCeH666/nqaee4rvvvuPkk08GoLy8nOnTp7Nt2zZuvfVWJk6cSGFhIe+99x6HDh0iMTGRhoYGLr74YpYtW8Z1113HT3/6U8rKyvj000/ZvHkzmZmZbu+rvr6emTNnMm3aNP7yl78QEREBwBtvvEFlZSV33XUXCQkJrF69mscff5xDhw7xxhtvOO+/ceNGpk+fTnBwMHfccQcZGRns2bOH999/n9///veceeaZpKens3jxYq644ooT/k0yMzOZOnVqJ/5lRURERER6ti1btjB9+nSio6O57777CA4O5plnnuHMM89kxYoVzhk/Dz30EAsWLOC2227jlFNOobS0lO+//561a9dy7rnnAjBr1iy2bNnCPffcQ0ZGBvn5+Xz66adkZ2eTkZERwI9SRMT7VOAWEfGSNWvWsH37dh5//HEApk2bRv/+/Vm8eLGzwP3nP/+ZzZs3s2TJkhaF4Pvvvx+HwwHAiy++yLJly1i4cCH33nuv85xf//rXznPcVVNTw9VXX82CBQtaXP/HP/6R8PBw5/t33HEHQ4YM4Te/+Q3Z2dkMGDAAgHvuuQeHw8HatWud1wH87//+LwAWi4WbbrqJhQsXUlJSQkxMDAAFBQV88sknzk5vERERERFp3f33309dXR1ff/01gwcPBmD27NkMHz6c++67jxUrVgDw4YcfcuGFF/KPf/yj1XWKi4v55ptv+POf/8wvfvEL5/Xz58/3/QchIhIAiigREfGSxYsXk5yczFlnnQUYRd9rr72WV199lYaGBgDeeustsrKyTuhyNs83z0lMTOSee+5p8xxP3HXXXSdc17y4XVFRQWFhIaeeeioOh4N169YBRpH6yy+/5NZbb21R3D5+P7Nnz6ampoY333zTed1rr71GfX09N910k8f7FhERERHp6RoaGvjkk0+4/PLLncVtgNTUVG644Qa+/vprSktLAYiNjWXLli3s2rWr1bXCw8MJCQlh+fLlFBUV+WX/IiKBpAK3iIgXNDQ08Oqrr3LWWWexb98+du/eze7du5k8eTJ5eXksW7YMgD179jBmzJh219qzZw/Dhw8nKMh7L7IJCgqif//+J1yfnZ3NLbfcQnx8PJGRkSQlJXHGGWcAUFJSAsDevXsBOtz3iBEjOPnkk1vkji9evJgpU6YwZMgQb30oIiIiIiI9TkFBAZWVlQwfPvyE20aOHIndbufgwYMAPPzwwxQXFzNs2DDGjh3LL3/5SzZu3Og8PzQ0lD/+8Y/85z//ITk5mdNPP50//elP5Obm+u3jERHxJxW4RUS84PPPPycnJ4dXX32VoUOHOt+uueYagFaHTXZGW53cZqf48UJDQ7FarSece+655/Lhhx/yq1/9infeeYdPP/3UOaDSbre7va/Zs2ezYsUKDh06xJ49e/j222/VvS0iIiIi4kWnn346e/bs4bnnnmPMmDH861//YuLEifzrX/9ynvOzn/2MnTt3smDBAsLCwvjtb3/LyJEjna/SFBHpSZTBLSLiBYsXL6Zv37488cQTJ9y2ZMkS3n77bZ5++mkyMzPZvHlzu2tlZmayatUq6urqCA4ObvWcuLg4wMjXa+7AgQMu73nTpk3s3LmTF154gdmzZzuvbz59HXC+RLKjfQNcd911zJs3j1deeYWqqiqCg4O59tprXd6TiIiIiEhvlJSUREREBDt27Djhtu3bt2O1WklPT3deFx8fz5w5c5gzZw7l5eWcfvrpPPTQQ9x2223OczIzM/n5z3/Oz3/+c3bt2sX48eP5v//7PxYtWuSXj0lExF/UwS0i0klVVVUsWbKEiy++mKuuuuqEt7lz51JWVsZ7773HrFmz2LBhA2+//fYJ65gDJGfNmkVhYSF///vf2zxn4MCB2Gw2vvzyyxa3P/nkky7v22aztVjTPP7rX//a4rykpCROP/10nnvuObKzs1vdjykxMZELLriARYsWsXjxYs4//3wSExNd3pOIiIiISG9ks9k477zzePfdd9m/f7/z+ry8PF5++WWmTZtGdHQ0AEePHm1x38jISIYMGUJNTQ0AlZWVVFdXtzgnMzOTqKgo5zkiIj2JOrhFRDrpvffeo6ysjEsvvbTV26dMmUJSUhKLFy/m5Zdf5s033+Tqq6/m1ltvZdKkSRw7doz33nuPp59+mqysLGbPns2LL77IvHnzWL16NdOnT6eiooLPPvuMH//4x1x22WXExMRw9dVX8/jjj2OxWMjMzOSDDz4gPz/f5X2PGDGCzMxMfvGLX3D48GGio6N56623Wh1E87e//Y1p06YxceJE7rjjDgYNGsT+/fv58MMPWb9+fYtzZ8+ezVVXXQXAI4884vo/pIiIiIhIL/Dcc8+xdOnSE65/6KGH+PTTT5k2bRo//vGPCQoK4plnnqGmpoY//elPzvNGjRrFmWeeyaRJk4iPj+f777/nzTffZO7cuQDs3LmTc845h2uuuYZRo0YRFBTE22+/TV5eHtddd53fPk4REX9RgVtEpJMWL15MWFgY5557bqu3W61WLrroIhYvXkxNTQ1fffUVDz74IG+//TYvvPACffv25ZxzznEOgbTZbHz00Uf8/ve/5+WXX+att94iISGBadOmMXbsWOe6jz/+OHV1dTz99NOEhoZyzTXX8Oc//7nDYZCm4OBg3n//fX7yk584s/muuOIK5s6dS1ZWVotzs7Ky+Pbbb/ntb3/LU089RXV1NQMHDnRmjDd3ySWXEBcXh91ub7PoLyIiIiLSWz311FOtXn/LLbfw1VdfMX/+fBYsWIDdbmfy5MksWrSIyZMnO8/7yU9+wnvvvccnn3xCTU0NAwcO5H/+53/45S9/CUB6ejrXX389y5Yt46WXXiIoKIgRI0bw+uuvM2vWLL98jCIi/mRxHP/6chERkU6or68nLS2NSy65hGeffTbQ2xERERERERGRHkwZ3CIi4lXvvPMOBQUFLQZXioiIiIiIiIj4gjq4RUTEK1atWsXGjRt55JFHSExMZO3atYHekoiIiIiIiIj0cOrgFhERr3jqqae466676Nu3Ly+++GKgtyMiIiIiIiIivYA6uEVERERERERERESkW1IHt4iIiIiIiIiIiIh0Sypwi4iIiIiIiIiIiEi3FBToDfiL3W7nyJEjREVFYbFYAr0dEREREfESh8NBWVkZaWlpWK3q3+hN9Du+iIiISM/kzu/4vabAfeTIEdLT0wO9DRERERHxkYMHD9K/f/9Ab0P8SL/ji4iIiPRsrvyO32sK3FFRUYDxjxIdHR3g3YiIiIiIt5SWlpKenu78fU96D/2OLyIiItIzufM7fq8pcJsvWYyOjtYvvyIiIiI9kCIqeh/9ji8iIiLSs7nyO75CCkVERERERERERESkW1KBW0RERERERERERES6JRW4RURERERERERERKRbUoFbRERERERERERERLolFbhFREREREREREREpFtSgVtEREREREREREREuiUVuEVERERERERERESkW1KBW0RERERERERERES6JRW4RURERERERERERKRb8qjA/cQTT5CRkUFYWBiTJ09m9erVbZ5bV1fHww8/TGZmJmFhYWRlZbF06dIW5yxYsICTTz6ZqKgo+vbty+WXX86OHTtanHPmmWdisVhavN15552ebF9EREREREREREREegC3C9yvvfYa8+bN48EHH2Tt2rVkZWUxc+ZM8vPzWz3//vvv55lnnuHxxx9n69at3HnnnVxxxRWsW7fOec6KFSu4++67+fbbb/n000+pq6vjvPPOo6KiosVat99+Ozk5Oc63P/3pT+5uX0RERERERERERER6CIvD4XC4c4fJkydz8skn8/e//x0Au91Oeno699xzD7/+9a9POD8tLY3/9//+H3fffbfzulmzZhEeHs6iRYtafYyCggL69u3LihUrOP300wGjg3v8+PE89thj7mzXqbS0lJiYGEpKSoiOjvZoDRERERHpevR7Xu+lz72IiIhIz+TO73ludXDX1tayZs0aZsyY0bSA1cqMGTNYuXJlq/epqakhLCysxXXh4eF8/fXXbT5OSUkJAPHx8S2uX7x4MYmJiYwZM4b58+dTWVnpzvZFREREREREREREpAcJcufkwsJCGhoaSE5ObnF9cnIy27dvb/U+M2fOZOHChZx++ulkZmaybNkylixZQkNDQ6vn2+12fvazn3HaaacxZswY5/U33HADAwcOJC0tjY0bN/KrX/2KHTt2sGTJklbXqampoaamxvl+aWmpOx+qiIiIiIiIiIiIiHRxbhW4PfHXv/6V22+/nREjRmCxWMjMzGTOnDk899xzrZ5/9913s3nz5hM6vO+44w7n8dixY0lNTeWcc85hz549ZGZmnrDOggUL+N3vfufdD0ZEREREREREREREugy3IkoSExOx2Wzk5eW1uD4vL4+UlJRW75OUlMQ777xDRUUFBw4cYPv27URGRjJ48OATzp07dy4ffPABX3zxBf379293L5MnTwZg9+7drd4+f/58SkpKnG8HDx505UMUERERERERERERkW7CrQJ3SEgIkyZNYtmyZc7r7HY7y5YtY+rUqe3eNywsjH79+lFfX89bb73FZZdd5rzN4XAwd+5c3n77bT7//HMGDRrU4V7Wr18PQGpqaqu3h4aGEh0d3eJNRERERERERERERHoOtyNK5s2bxw9+8ANOOukkTjnlFB577DEqKiqYM2cOALNnz6Zfv34sWLAAgFWrVnH48GHGjx/P4cOHeeihh7Db7dx3333ONe+++25efvll3n33XaKiosjNzQUgJiaG8PBw9uzZw8svv8yFF15IQkICGzdu5N577+X0009n3Lhx3vh3EBHpGkqPwNJfwyk/gozTAr0b6YmO7YPPHoRp90LaBO+vv/IJ4+v43IfBavPu2qU58Mn9MPlHkH6Kd9f2teoS+M+vYPyNMGi699df/wqsfQEcDu+v7alxV8PJtwV6FyJedaS4ivlLNlFRU8+bd50a6O2IiIiICB4UuK+99loKCgp44IEHyM3NZfz48SxdutQ5eDI7OxurtakxvLq6mvvvv5+9e/cSGRnJhRdeyEsvvURsbKzznKeeegqAM888s8Vj/fvf/+aWW24hJCSEzz77zFlMT09PZ9asWdx///0efMgiIl3Ypjdh67tQX6MCt/jG5/9jfI1VFMKcj7y7dtF++Pg3xvHgM2Houd5d/8s/weY3oboYbnrLu2v72vqXYcMrcGwv/PAT76//6QNQke/9dTtjwJRA70DE6yJCbKzYWQBAVW0D4SFefiJPRERERNzm0ZDJuXPnMnfu3FZvW758eYv3zzjjDLZu3drueo4Ouo3S09NZsWKFW3sUEemWivY3Xh4I6Dakh6oqgm3vG8cH/gtH90DCiYOaPbb+labjdYu8W+Cuq4JNjUXtnI3eW9dfzD3nbgZ7g3e728tyjeK2xQpXPQeWLlJwSxgS6B2IeF1MeDBRYUGUVddzqKiSoclRgd6SiIiISK/nUYFbRER8pLixsF2cbUQNWCyB3Y/0LJvfgoaapvfXvwzn/NY7a9vtsH5x0/vbP4SKo9AnwTvrb/sAakqM44p8o6gb1fqA6y4pt7HAXVdhdHEnDvXe2mbxPHEYjL7Ce+uKyAksFgsD4iPYcqSUA0dV4BYRERHpCtwaMikiIj5WnG1c1lVA5dHA7kV6nnWLjMsBjbmx6182uom9Yd8KKDkIoTHQdzTY62DTG95ZG2DdSy3f705d3PU1ULC96f2cDd5dP7dxvRTNJRHxhwHxEQBkH6sM8E5EREREBFTgFhHpOhyOpgI3KKZEvCtvCxxZB9YgmPUvCI+DsiOw5wvvrG92b4+dBZNuabxukXfWLjpgFNCxQHpjrnOul4vEvpS/Fez1Te/nerk4bxb7U8Z6d10RaZUK3CIiIiJdiwrcIiJdRXk+1Fc3vV+sArd40brGAvTwCyCmH4y9xnjfG0XoqiLY+p5xPOEmGHsV2EIgd5N3upU3NGZ7DzodRlxkHHenDu7j9+rtvZsF81R1cIv4w4AEo8B9UAVuERERkS5BBW4Rka7i+IK2CtziLfW1sPFV43jCzY2XNxmX2z+EymOdW9/M9u47CtImQkQ8jLjYuG1dJwvodntTcX7CzU1dyrmbOreuP5l7zZje+P5G4xUb3lBd0jScVhElIn6hDm4RERGRrkUFbhGRrqJ5PElr74t4atfHRqZ7ZApknmNclzrOKIg21HY+K9tZgL6paTDqhBuNy42vQ1116/dzxf4voSTbyPYeeTGkZhnXF+0zirvdgdlhPe4asNiMz0VZjpfW3mxcxqQbTyyIiM81L3Db7V56skpEREREPKYCt4hIV2F2YdpCGt9XB7d4idlFnXUd2IKarje7uDvTZZ23BY6sNbK9x13bdP3gsyC6H1QXw46PPF9/XbNs7+Bwo4gb3d+4zizudmX2hqZ9pk+GxGHGsbdiSsziubq3RfwmLTYcqwVq6u0UlNcEejsiIiIivZ4K3CIiXYUZSdL/5Mb31cEtXlCWC7s+MY7NgrZp7NWNWdkbPc/KNgvQw86HPolN11ttMP6GxnM8LKBXFcO2ZtneJjNr2tvDGn3h2F6oq4DgCEgY4v295yh/W8Tfgm1W0mLDAcWUiIiIiHQFKnCLiHQVZkHbzOktzjbyh0U6Y8Or4LBD+hRIHNrytoj4pqGNZqHaHa1lezdnFrj3fA4lh9xff/NbxuBVM9vbZHYrd4dBk+YTB8mjjaK/c+9eGL4JzTq4x3pnPRFxycDGQZPZR1XgFhEREQk0FbhFRLoKM5Jk4FSwWI2hfRX5gd2TdG8OR1P3tJmJfTyzM3rT61Dv5kvtndneyTBkxom3xw+GgdMAB2x4xb21odnem2V7Q/fq4D4+QsSbe6+vgYLtLdcXEb/QoEkRERGRrkMFbhGRrsDe0NThGp9pZBeDcrilcw6uhqO7jHiM0Ve0fo6ZlV1V5H5WdlvZ3s01z/l25xUJeVtbz/aGpmJuwXb3i/L+dnyEiNlpXZxt/Jt3Rv5WsNdDeBzE9O/cWiLilnQVuEVERES6DBW4RUS6grIcsNeBNRii0yB2oHF9sQrc0gnrXjIuR18BoVGtn2O1Qdb1jee7kZXdPNt7/E1tnzfqUgiJMoaoZn/j+vrr28j2BqOYGxZrFHfzt7m+pr85HJC7yTg2C9vhcRA7wDg2b/NUTrPu8OYd7iLic+rgFhEREek6VOAWEekKzPztmP5GwTFOBW7ppNoK2PK2cTy+jXgSk5mVvXuZ61nZzmzvyZA0rO3zQvrAmMbucVdzvutrjfWh9Wxvi6V7xJSU5UBlIVhs0Hd00/VmB3pnC9zm/TVgUsTvVOAWERER6TpU4BYR6QrMKBKzs9O8VESJeGrru1Bb3piDfWr75yZkwsDTcDkru3m2d0fFc2gqUm99B6pLOz5/18dGYbitbG/oHoMmzb0lDYfgsKbrvbV3Z753VufWERG3DYzvA0BBWQ1VtQ0B3o2IiIhI76YCt4hIV2B2apud286IkuzA7Ee6v+YFaFfiK5xZ2YuNAnZ7XMn2bq7/yZA4DOoqm7rK22N2ereX7Z3aWNTtyh3cxw+YNHmj+9zeALmbW64nIn4TExFMdJjx8+lgkbq4RURERAJJBW4Rka7ALGQf38GtiBLxxNE9cOC/YLE25Wt3ZNRlEBIJRfvgQAdZ2esbi+ejLoew6I7XtliaOr3XdxBT4mq2tzPmY7NR7O2KcjYYl8cXoJ1DMndAXZVnax/bC3UVEBQOCUM836OIeGxAghFTcuCoCtwiIiIigaQCt4hIV+CMKMkwLs1O7pJDXbd4J13X+peNy8yzIaafa/cJ6QNjrjSO2xs2WVsBm5cYxxPaKUAfL+s6I4v64Coo2Nn2eRteBUdDx9neiUON4m5dBRzb5/o+/KmtDu7oNIhIMD7O/K2erW0Wz5NHG7n9IuJ3yuEWERER6RpU4BYR6QqO7+COSgVrMNjrofRI4PYl3Y+9oanA7U4BGpo6pre+AzVlrZ9jZnvHDeo427u5qBQYep5xvL6NArrD0dTh3VG2t9VmFHcBcje4vg9/qSpq+r5OGdPyNoul8zncZvFc8SQiAZPeWOA+qAK3iIiISECpwC0iEmgNdVB6yDg2O7etNojpbxwrpkTcsfcLKDsC4XEw/EL37pt+CiQMbT8r28zHnuBitndzExqL1htehYb6E28/9B0U7nQ92ztlrHHZFQdN5m4yLmMHGJ+L43U2hzunje5wEfEbc9CkOrhFREREAksFbhGRQCs9DA47BIVBZHLT9XEaNCkeMONFxl4DQaHu3ddiaTZsspUu66N74MDXgAWybnB/b0NnQkQilOfB7s9OvH3dS8alq9ne3hjW6CtmgbutArQzQ3yT+2s7HE33Uwe3SMAookRERESka1CBW0Qk0Mz87Zj0lh2xZlxJkTq4xUWVx2D7h8axu/Ekpvayss3okyHnuJ7t3VxQiLE+NBWzTZ5ke6dkGZc5G42ib1didlinZrV+u1ngztvifs5+WQ5UFhqfp76jPd+jiHRK8wK33d7FfgaJiIiI9CIqcIuIBJoZQWJ2bJti1cEtbtr0JjTUGsVTTzt7o1Jg6LnGsZmHDS2zvTvKx26Ped+dS6G8oOn6re+5n+2dPMoo8lYWGkXfrqStAZOmhEwjiqWuEo7udm9ts3ieNByCwzzfo4h0SmpsGDarhdp6O/llNYHejoiIiEivpQK3iEigHT9g0uQscKuDW1xkdkVPuLlz65gd1BteacrKbp7tPeIiz9dOHgVpE40Bqpteb7rejERxJ9s7OBwShxnHXSmHu64KCnYYx2090WC1QXLj8El39+4sno/1bH8i4hXBNitpscaTTIopEREREQkcFbhFRALNjCCJPa6DWxnc4o6cjUbh0xYCY6/q3FqtZWV3Jtv7eGYBfe1LRrTIsb2eZ3undiLL2lfyt4KjASISICq17fOce9/g3vo5jedrwKQEwBNPPEFGRgZhYWFMnjyZ1atXt3nu888/j8ViafEWFtbyVQe33HLLCeecf/75vv4wvEaDJkVEREQCTwVuEZFAa7ODu/H90sPQUOffPUn3Y8aJjLgIIuI7t1ZQCIy7tnHdRcdle3cinsQ0ZpYxVLVgGxxZ2xR9knm2+9neKR4WiX0pp1k8SXvd6ObePe3g1oBJ8bPXXnuNefPm8eCDD7J27VqysrKYOXMm+fn5bd4nOjqanJwc59uBAye+Kun8889vcc4rr7ziyw/Dq9I1aFJEREQk4FTgFhEJtLYyuCOTjSKgww4lh/y/L+k+6mtg42vGsafDJY9nrrPjP7Dq6cZs77FtD010R3gsjLzEOF77YlOB25O9mzEdXSmixNUCtLOD240hmVVFTU+KKaJE/GzhwoXcfvvtzJkzh1GjRvH0008TERHBc8891+Z9LBYLKSkpzrfk5OQTzgkNDW1xTlxcnC8/DK9yDpo8WhHgnYiIiIj0Xipwi4gEUn1N03C82IyWt1ksTV3cyuGW9uz4yCh8RveDwWd5Z83mWdlf/tm4rrPZ3s05Y0peNF6l4Gm2t1nkLT4AVcVe216nmHEpHUWIJI00hmRWFRn/Bi6tvdm4jB1g/JuJ+EltbS1r1qxhxowZzuusViszZsxg5cqVbd6vvLycgQMHkp6ezmWXXcaWLVtOOGf58uX07duX4cOHc9ddd3H06FGffAy+MEAd3CIiIiIBpwK3iEggFR80LoP7tB4rYRa4i1Tglnasa4wnybreGF7oLWYR2mFvzPa+2ntrZ5wOMQOMtcHzbO+IeGMd6Bo53PYGyGss4HXU7R4cBkkjjGNXO9Bzm8WfiPhRYWEhDQ0NJ3RgJycnk5ub2+p9hg8fznPPPce7777LokWLsNvtnHrqqRw61PSqpPPPP58XX3yRZcuW8cc//pEVK1ZwwQUX0NDQ0OqaNTU1lJaWtngLpKYCd1VA9yEiIiLSmwUFegMiIr1a83iS1rJ6Y708aPKz38HhNXD9qxAS4Z01Tcf2wktXQqUPO+9i+sPs9yAyyXeP4Yq9y+HtO6HWjZekR6XADz6AqBNfnt8ppTmwZ5lxPN7NAY0dGTMLPv4N1FfD8As7n+3dnNVq7HfF/xrvdybbO3UclGQbxd9B072zP08d3Q11lcaTVvGZHZ+fOg7ytxh7H3Fhx+fnqMAt3cfUqVOZOnWq8/1TTz2VkSNH8swzz/DII48AcN111zlvHzt2LOPGjSMzM5Ply5dzzjnnnLDmggUL+N3vfuf7zbtoQILxf2lheQ2VtfVEhOjPKxERERF/Uwe3iEggmQXu4wdMmrwZUdJQByv/DvtWwIH/dn694219D4r2QU2p797yt8K6F72/d3dtfsuIlnFn74U7Ye8X3t/L4TVGF3TKWEhwoaDqjvBYmDQHrMEw5cfeXRtg4s1GzMbgMzuX7e0cNNkFOridBegxRhG/I+4OmtSASQmQxMREbDYbeXl5La7Py8sjJSXFpTWCg4OZMGECu3fvbvOcwYMHk5iY2OY58+fPp6SkxPl28OBB1z8IH4gJDyYmPBiAg+riFhEREQkItRiIiASSGT0SO7D12+O82MFdsN0YFAiQswGGntv5NZszC2+n/gQm3eLdtcEYdvjJ/4N1i2DavNY73v3F/Lyd+zCMuLjj8z9/BLa87ZuoGfPJD1e6hT0x8w9w9v0QGun9tWP6w7xtYO3kryOpbhaJfSl3g3Hp6gDI5oMmO1JXBQU7GtdXgVv8KyQkhEmTJrFs2TIuv/xyAOx2O8uWLWPu3LkurdHQ0MCmTZu48MK2X61w6NAhjh49Smpqaqu3h4aGEhrqQZyRDw2Ij2DT4RIOHK1geEpUoLcjIiIi0uuowC0iEkhm4bqjDm5vFEabF/9cKaZ5uv6gM7zfSQxG0fyLPxhRKNnfwsCpHd7FZ8zPW79Jrn2sfUcbBW5vRc20tpe4Np4k6Syr1TfFbVNweOfXMIu9BduhrtrItg4UdyNEzEJ4yUGoPNZ+DEz+VnA0QEQCRKd1bp8iHpg3bx4/+MEPOOmkkzjllFN47LHHqKioYM6cOQDMnj2bfv36sWDBAgAefvhhpkyZwpAhQyguLubPf/4zBw4c4LbbbgOMAZS/+93vmDVrFikpKezZs4f77ruPIUOGMHPmzIB9nO4yC9waNCkiIiISGCpwi4gEUvMM7tbEZhiX5bmdL9w1j2/wdqdrTbmRPQy+i04IjYQxVxgd3OsWBa7AbW+AksYBaW113h/P2Ynvgw7ujl4F0BtEp0F4PFQdM4rA/SYGZh8Oh/sRImExEJcBRfuN+w4+s+1zmxfPA/kKBum1rr32WgoKCnjggQfIzc1l/PjxLF261Dl4Mjs7G2uzaJ6ioiJuv/12cnNziYuLY9KkSXzzzTeMGjUKAJvNxsaNG3nhhRcoLi4mLS2N8847j0ceeaTLdWm3J71x0ORBFbhFREREAkIFbhGRQOqogzsi3hhWV1dhdHgmDvX8sZp3bRftg+pSCIv2fL3m8rcCDohMgci+3lmzNeNvMorbW96GC/7o287itpTlgL3OiNVwtYs21ocFbufXUC8ucFssRkF573Lj6zxQBe7Sw1BVZHxt9B3l+v1SxjYWuDe1X+A2n6RS/rYE0Ny5c9uMJFm+fHmL9x999FEeffTRNtcKDw/n448/9ub2AmJg46BJdXCLiIiIBIaGTIqIBEptBVQUGMdtFSctFu90/9rtTcUxM+84b7Pn6x0vpzF32NeFtwFTjKzpugrY+o5vH6stZsd0TH+w2ly7j/kERslhaKj33l4cjo5fBdBbuDus0RfMx04aAUFudJ+mZLW8f1ty3Yw/ERG/GBCvAreIiIhIIKnALSISKMUHjcuwGAiPbfs8s/jdmRzu4v1QUwq2UBh8lnGdNwuB/iq8WSww4SbjeN0i3z5WW4o9iASJTDb+7R0NRpevt1QVQW25cRyT7r11u6PUxiJx8ygef/P0+8CVQZP2Bsjb4tn6IuJTZoH7YFEVdrsjwLsRERER6X1U4BYRCRRnobSNeBKTeXtnOrjNYnbfkU3xDd4cNJnjZu5wZ2RdDxYrZK+Ewt2+f7zjdRQr0xqrFWIbC9DejCkp2m9cRqYEdrBiV2AWffM2G8XgQHBmZI91737m3gt3Qm0bHaBHd0NdJQRH+GaIq4h4LDUmDJvVQm29nbyy6kBvR0RERKTXUYFbRCRQXB0O6Iwoyfb8sZoPvvN2lENDXWMGN+4X9jwRnQpDZhjH6wPQxV3kYSSINzrxj+fqkyS9QUKmUfytq4SjewKzB3cHTJqiUqBPEjjsTd9LxzO/X5PHuB6NIyJ+EWSz0i82HIDso4opEREREfE3FbhFRALF1agLs3jZmcJoTrPoBLP4VrAN6ms8X9NUsAMaaiE0GmIzOr+eK8yYkg2vejfT2hWeDnV0duJ34omKtvbS2/O3wSj6Jo8xjr356gRXVR4zBsGC+0/0WCzNnnja0Po5uX7KuRcRj2jQpIiIiEjgqMAtIhIorg4HjPVGB3djLnHKOCOrOSwW7PWQv83zNZ1rN4tlsPrpv5VhF0BEApTlwJ7P/fOYJk8yuME7w0KP5+qrAHqL1A6KxL5kfh/EZRi5+u7qKIc7x0859yLikXQzh1sFbhERERG/U4FbRCRQXM1yNm+vLISacvcfpzwfynMBCySPbuwWbeww9cZAvubFc38JCoGx1xjH617y3+M21DUNiXQ3FsSXHdyKKDE4v64D0MHd2e+D9r4nHY6m69XBLdIlmYMm1cEtIiIi4n8qcIuIBIqr3bfhsU0doWYEgjvMzs+EIRAaaRynZhmX3igE+nPAZHMTbjQud/wHKo765zFLDhk5ybZQiEx2775mfIsvMrgVUWJoni/vcPj3sTv7fZDS+D2Zt+XE2J3Sw1B1DCw2SBrp+R5FxGfMAvcBFbhFRERE/E4FbhGRQKgugepi49iV7tvODChsLbvXW4Mmm3eW+js6IWUspI4Hex1set0/j9m8Y9rdOBazCF2W453sc4dDHdzH6zvKKAJXHYPSI/597NxORojED4aQSKivhqO7Wt5mfp8mjYDgMM/3KCI+M0ARJSIiIiIBowK3iEggmIXJiISmrur2dCbeorXsXrPYnbcZ7Hb31zQV7YeaErCFQNJwz9fxlDlscu1L/unYdeZve1BQjkiA4AjAYXSCd1Z5vlEMtVghun/n1+sJgsOMIjD4N6akthIKdxrHnha4rdamIZnHP/GUG6BXSYiIywY0DpksLK+losbPw49FREREejkVuEVEAsHd4YBxGcalJwMKWyuOJQyFoDCoLYdje91f8/i1+44EW7Dn63hqzCwjLiR/C+Ss9/3jFXUiEsRiadaJv7/zezG/FqLSjExyMaR66dUJ7sjfakTX9EmCqBTP12lr0KQGTIp0edFhwcRGGP8PHixSF7eIiIiIP6nALSISCO5GS5jnuVsYrS5tKmA3L47ZgoyBk9AUYeKJQBfeIuJh5MXG8brFvn+8zkaCeHPQpLmG8rdbSmmjSOxLORuaHtti8XwdZ3TQcd+T6uAW6RacgyaPqsAtIiIi4k8qcIuIBIK7wwHNzl93C6N5W4zLqDTok9jyNm/kcDsLb1mer9FZZkzJptehrtq3j1XsZuf98czPtyed+Mczn+xQ/nZLgejg9lYBunkHtxm5U3msabhsytjOrS8iPpVuFriVwy0iIiLiVypwi4gEgqcd3O4WRtsrvJnFMnNIpCcCNWCyuUFnGBnU1SWw/QPfPpbz8+ZhgdsXHdye7qWnMnOsS7KN4rA/eOv7IGkEWIOMr2WzqG2uHZcBYTGdW19EfGqACtwiIiIiAaECt4hIIDgzuDNcO98sjFaXQFWx64/TXoSI2XXdvFvUHeUFUJYDWJriTgLBaoPxNxjH630YU1JX3fjx4nksiDOD2wsd3O6+CqC3CI9t+nfO2+z7x2uob3qlRGcL3EGhkDTSODa/d80nqdS9LdLlDVSBW0RERCQgPCpwP/HEE2RkZBAWFsbkyZNZvXp1m+fW1dXx8MMPk5mZSVhYGFlZWSxdutTtNaurq7n77rtJSEggMjKSWbNmkZeX58n2RUQCy+FwPz85NBIiGiNG3On+NfO1W+vg7jsKLFaoKICyXNfXPH7thCHG/gLJLHDv+QKKD/rmMUoOGZfBfSAiwbM14jyMmmlNZ/PAezJ/xpQc3QX11RASCfGDO7/e8YMmnU9SBTAGSERcog5uERERkcBwu8D92muvMW/ePB588EHWrl1LVlYWM2fOJD8/v9Xz77//fp555hkef/xxtm7dyp133skVV1zBunXr3Frz3nvv5f333+eNN95gxYoVHDlyhCuvvNKDD1lEJMCqiqC2zDiOSXf9fu7GW9TXQv5247i1ztKQCEgcZhx7MpAvpwt1lsYPgozpgAM2vOKbxyjeb1zGDvB8kKD5OazIh9pOFEDsDU2FfEWUnCil2asTfM38PkgeA1YvvDDu+Gx8DZgU6TbMDO5Dx6qw2z14ZZSIiIiIeMTtv8QWLlzI7bffzpw5cxg1ahRPP/00ERERPPfcc62e/9JLL/Gb3/yGCy+8kMGDB3PXXXdx4YUX8n//938ur1lSUsKzzz7LwoULOfvss5k0aRL//ve/+eabb/j22289/NBFRALEHA4YmQLBYa7fz90BhQXbwF5n5Pa21eXbmUGTXa3wZg6bXLcI7Hbvr1/khUiQ8DgIbcxR7kwXd1mO8bm1BkF0mufr9FT+7OD29vdB8w7u2koo3Gm8H8icexFxSWpMGEFWC7UNdnJLfTz0WERERESc3Cpw19bWsmbNGmbMmNG0gNXKjBkzWLlyZav3qampISysZQEnPDycr7/+2uU116xZQ11dXYtzRowYwYABA9p8XBGRLsvTaAnzfFfzm5vnb7fVcewspm1wby/Hr98VjLwUQqKMJwAO/Nf763srEsQbgybN+8b0NzLIpSXza7JwJ9RV+faxcja0fMzOModklh6G/V+Bww59kiAqxTvri4jPBNms9IsLBxRTIiIiIuJPbhW4CwsLaWhoIDk5ucX1ycnJ5Oa2nt86c+ZMFi5cyK5du7Db7Xz66acsWbKEnJwcl9fMzc0lJCSE2NhYlx+3pqaG0tLSFm8iIl2Cp8MBY93Mb87dZFy2V3jztIO7pgyO7TGOU7tINnBIBIydZRyvW+T99c3PW2cjQdztxG+Nc0ip8rdbFZViFIUdDZC31XeP43B4v4M7LLopy9v8Om7vSSoR6VKUwy0iIiLif14Ii2zfX//6V4YOHcqIESMICQlh7ty5zJkzB6s3cirbsWDBAmJiYpxv6elu5NyKiPiSxx3cbhZGXSm8mfnZxQegqtj1veRtMS6j0qBPouv387XxjTElW9+F6hLvru31Du5OFLide1H+dqsslqavbV/mcJccNL7OrMGQNNJ765p73/Gflu+LSJdnFrgPqsAtIiIi4jduVZkTExOx2Wzk5eW1uD4vL4+UlNZfOpuUlMQ777xDRUUFBw4cYPv27URGRjJ48GCX10xJSaG2tpbi4mKXH3f+/PmUlJQ43w4ePOjOhyoi4jtFHnYCxzXr4HZ0MLzKbnetgzsivmnQZd5m1/eS08Xyt039T4LE4VBfBVve9u7a3sjghqbPu6tRM63x9FUAvUlKsyxrXzG/D5JGQFCI99Y1926vMy672veZiLRJHdwiIiIi/udWgTskJIRJkyaxbNky53V2u51ly5YxderUdu8bFhZGv379qK+v56233uKyyy5zec1JkyYRHBzc4pwdO3aQnZ3d5uOGhoYSHR3d4k1EpEswu2/dLU6ahejacqg81v65RfuM84LCIHFY++d6ElNiZnZ3tc5Si6XlsElvqa2AykLj2GsRJV7I4FYHd9v8MWjSV4NWj4/9SekiMUAi0iGzwH3gqArcIiIiIv7idk7IvHnz+Oc//8kLL7zAtm3buOuuu6ioqGDOnDkAzJ49m/nz5zvPX7VqFUuWLGHv3r189dVXnH/++djtdu677z6X14yJieGHP/wh8+bN44svvmDNmjXMmTOHqVOnMmXKlM7+G4iI+I/D4XnURXAYRDa+aqWjeAtz8F3fUWALav/cVA86XbvagMnmxl0LFhsc+g7yt3tnTfNzFhoD4bGdW8sbESWevgqgNzGLwnlbwN7gm8fw1fdB8/VCIpsyuUWky0tXRImIiIiI33VQ9TjRtddeS0FBAQ888AC5ubmMHz+epUuXOodEZmdnt8jXrq6u5v7772fv3r1ERkZy4YUX8tJLL7UYGNnRmgCPPvooVquVWbNmUVNTw8yZM3nyySc78aGLSI9WXwNBoYHexYnK8434DIsVovu7f/+4gVCeaxRH+01s+zyzWO1Kh7W7Hdz1tZC/zTjuitEJUckwbCbs+AjWL4Lz/qfzazrjSbww1NEscFcVQXWpMVTQHQ11UHqo5VpyovjBRnG4thwKd0HfEd5/DF91cEclQ2QylOdB8hjw8dwSEfGeAQlGgftoRS3lNfVEhrr955aIiIiIuMmjv5jmzp3LgQMHqKmpYdWqVUyePNl52/Lly3n++eed759xxhls3bqV6upqCgsLefHFF0lLS3NrTTAiTp544gmOHTtGRUUFS5YsaTN/W0R6ue0fwv8kw7dPB3onJzI7gaPSPMvsdXb/dhBv4U5GtnlOwXaoq+74/ILtRjZwWEzX7SA2Y0o2vGbkkXeWNyNBQqMgPL7luu4oPQwOO9hCjSKotM5qNYrD4Jsc7oqjxucCmh7Hm8wnnrrik0gi0qbosGDiIoIBdXGLiIiI+ItagkSk5/n6McAB//2r76IJPNXZ4YCuDih0Dph0Ibs3up9RcHU0QP7Wjs/PbRbLYLF0fH4gDD3PKABX5Bt55J1V7OVIEGcOtwcxJc54knR19nbEmcO9wftrmzn0cYPc78J3xck/NLrQx9/o/bVFxKc0aFJERETEv/SXsYj0LAU74NBq47jsCOz5IrD7OZ6zUOphtIQr+c1luUZh12KF5NEdr2mxNEWZmIXx9jiL5124s9QWDMmjjGNXPqaOdPbzdjxXO/Fb3YsGTLrMna9rd5lr+qrDevgF8JN1kDbeN+uLiM+YOdzZGjQpIiIi4hcqcItIz7J+ceNBY2fx+kUB20qrOjsc0Nn5205h1IwnSRgKIRGurevOoEl34k8CKcWD4ZltKepk5/3xXO3Eb423i+09WfOvAYfDu2t35UGrIhJQ6uAWERER8S8VuEWk52iog/WvGMdn3Gdcbv8QKo8Fbk/Hc3bfdraDO7vtgp0ZneBOAdqMMulo0KTd3qyD24UBloHkjKfwQoHb213TrjxR0dFevFVs78n6jgRrkDHQs+SQd9d2Dph0IQZIRHqVgQkqcIuIiIj4kwrcItJz7P7MiOaISITpvzA6KxtqYdMbgd5Zk85mcMekG9Ej9dVQnt/6Oc7OUjcK0GYxOG9z+7nlRfugtszIt04c5vr6gWAW7TvbwV1dAtXFxrHXIkq8kcGtAneHgkIhaaRx7M1Bk7UVULjLOFYHt4gcx4wo0ZBJEREREf9QgVtEeo51jXEkWddBUAhMuKnl9YFmb4Dig8axp8VJW7AxFBLaLo7mehCdkDAEgiOgrhKO7mn7PHPt5FHGXrqy5FGABcrzoCzP83XMgnJEAoRGemVrTQXudjrx26IMbvd4s5PflLcFcEBkMkQle29dEekRzIiSQ0VVNNi9HI8kIiIiIidQgVtEeobyAti51Dgef6NxOfZqsIUYRdmcDYHbm6ksF+x1RmRCdJrn67Q3oLC6BIr2G8fuRCdYbU0DKdvrdO1OucMhfSBxqHHcme7dzsbKtCY23bisKTXiM1xVXwNlOcaxIkpc480sdpP586Q7fB+IiN+lxoQTZLVQ22Ant7Q60NsRERER6fFU4BaRnmHja2Cvh7SJjZ27QEQ8jLjIOF63uO37+ovZcR3T3ygoe8o5oHD/ibflbjYuo/sbH787zGJde08GOHOHu0lhzxvFzWIfRIIEhxvdv83Xd2kvBwGH0W0fkeC9/fRkZlSPNzu4u9v3gYj4lc1qoX9cOADZRxVTIiIiIuJrKnCLSPfncDTFkJixJCbz/U2vG92vgeStTuD2Org7U3gzC4HmEMnWOAdMdpPBet6Ip/BFB3fz9dwZNNm82G6xeHc/PZX5dV16yHsDZ7vLoFURCZgBCX0A5XCLiIiI+IMK3CLS/R1ZCwXbICgMxsxqedvgs4zM6qoi2PFRYPZn8tZwwLh2BhR2JkIktVm3c2u50GV5Rp61xdoUZ9LVeaODu6iTg0Hb4uzEd6eD2/wa8nKxvScLi4a4QcaxN2JKGuogb6txrIgSEWnDgPjGDm4VuEVERER8TgVuEen+zO7tkZdAeGzL26w2yLq+5XmB4q3hgGZxs7XCaGc6uPuOBosNKo9C6ZG2104YAiER7q8fCGYO+bG9UF3q2RrOz1uGV7bkFNds0KS7e1H+tnu8OWiycCc01EBIVFPhXETkOOagSRW4RURERHxPBW4R6d7qqmDTW8bx8fEkpvE3GJe7l0HJYf/sqzXFXuoENgvkJYfA3tB0fX0NFGw3jj2JTggOg6ThxnFrna7dcbBeRLyRRw6Qt9n9+zscvuuadkaUuNHB7a1XAfQ23hw06XyVxFiw6tcoEWmdWeA+oAK3iIiIiM/pLzMR6d62fQA1JRAzADJOb/2chEwYeBrggA2v+HV7LXirOBmdBtYgsNdBWU7T9flbjUGbYbEQk+7Z2intdLp218F6nRkyWHkMasuN41gP/03bEtuJDm5FlLjH7OT3Rgd3d/0+EBG/Sm8scCuDW0RERMT3VOAWke5t3UvG5fgb2u+mNLu71y1qPV/a1xrqobSxe7yzxUmrDWIau5KbF0fNwXep4zwfQJjaTqdrZ/K9A6m9j6kjZnd1ZDIEh3tvT9ByyKSrX5PeehVAb2N+zR7dBbWdLDZ11+8DEfErs4P7WEUtZdV1Ad6NiIiISM+mAreIdF9FB2DfCuPYjCFpy6jLICQSivbBgW98v7fjlR4CRwPYQo1iaWe1NqDQG4W3tjq4q0uMfzto6obtLjoTT1Hsw0iQmHTAAnWVUFHQ8fm1FU3nqYPbPVHJ0KcvOOyQt8XzdRyOlk8kiYi0ISosmPg+IQAcPFYV4N2IiIiI9GwqcItI92XGjQw6o+OO1pA+MPoK43j9Yt/uqzXOaIl07+T2Nu/+NTmjEzpRgE4ZY1yWZENVUdP1ZlEwur+Ra92dmIXI/O1QX+vefX0ZCRIUYsTNNH+cdvdy0LgMjYHwOO/vp6frTCe/qfiAEYlkDYbE4d7Zl4j0WOkaNCkiIiLiFypwi0j3ZLfDusZC9YSbXbuPed6Wt6GmzDf7aou3hwOaBX2zw9jeALmNQxQ708EdHtdUzDU7VaHlYL3uJibdyCW310HBNvfuW+TjSBBnJ/7+js/11bDL3sIbgybN74O+I40nKERE2jHAWeCuCPBORERERHo2FbhFpHva/6XRZRwaAyMvdu0+6adAwlAjEmLL277d3/G83Ql8/IDCY3uhrgKCwiBhSOfWbi2mpDsP1rNYmvbt7pBB5+fNRwXuODcGTZrnKH/bM55+DTTXnb8PRMTvBsQbsxvUwS0iIiLiWypwi0j3ZHZvj53l+vA/iwUm3Njy/v7i7eGAx2dw52wwLpNHgy2oc2ubESfNO127+2A9T7t3fd017YyaOdD+edDU5a0Obs+YXwP5W42hr55wfh90sxx6EQmIgfF9AMhWBreIiIiIT6nALSLdT1UxbHvPOJ5wk3v3zboeLDY4+C0U7vL61trkq4iS0kPQUNdUuPVGAfr4Du76mqZoj+7audrW8Mz2OBy+75o+vhO/Pb7uJu/p4gZBSBTUV0PhTs/WUAe3iLjBzOA+qA5uEREREZ9SgVtEup/NbxlFqqSRkDbRvftGpcDQc43jdYu8v7e2eLs42acv2ELBYYfSw0152d4ovJlrFO6EuirI3wb2eiPHOia98+sHgvkx5W028ttdUZ5vfJ1hMYZr+oLZjV3kQge3t18F0NtYrU1DVD3J4S4vgLIcwALJY7y6NRHpmQYkGAXuQ0WVNNgdAd6NiIiISM+lAreIdD/rzeGSNxmxI+4a3xhTsuFVz6MK3FFf01gYw3vFSau1ZXHUm9EJUakQkQiOBsjb2rJr1ZN/764gYaiRT15bDkX7XLuPWVCO7ue7gYLm10PJwY4L70UaMtlpnnTym3IbY4ASMiE00nt7EpEeKyU6jGCbhboGBzkliikRERER8RUVuEWke8nbCofXgDUIxl3r2RrDzoeIBCjPhT3LvLu/1pQcAhwQHGE8rreYhc6Dq6CyECxWSB7V+XUtFkgZaxznbmzqDu+u+dtg5JInjzaOzbzyjnh7MGhrotKMyJyGWuPrsS3VJVBd7Pv99HSpHmaxQ7Pvg7He24+I9Gg2q4X+cUYXtwZNioiIiPiOCtwi0r2Y3dvDzofIJM/WCAqBcdcZx+te8s6+2uMcDjjQux3QZvfvtveNy8Rhrg/c7EjzQmB3HzBpcnfQpPl582UkiC0IYhrjT9qLKTGL7eHxEBrlu/30dM2/BhxuxgX0lO8DEfGrAcrhFhEREfE5FbhFpPtoqDNiRcD94ZLHM++/YylUFHZurY74qhPYXM+bAyZN5lpH1hu51dD9B+uluhlP4a+hjnEuDJr09bDL3iJpBFiDjY54VwZ7NqcBkyLiAbPArQ5uEREREd9RgVtEuo+dHxtRHJHJMOTczq2VPArSJoC9Dja+7p39tcVXwwGPL7x6s/CW2pjlfWStkVsdFGbkWHdn7nbvFvsp89pcv7idDm7lb3tHUAj0HWkcuxNTUlMOR/cYx97IuReRXqOpwK0MbhERERFfUYFbRLqPdYuMy6zrjGiHzjK7uNctcj+uwB2+Kk4eX+D2Zgd3fCYE92l6P3m0d/7NA6nvKCOnvKIAytrJuzYV+eiJiePFZhiX7RW4/dVN3ht4MmgybzPgMAawehqNJCK90uAk4//StQeKcPjydw0RERGRXkwFbhHpHsryYNcnxvH4TsaTmMZcZXQm52+BnPXeWbM1vipOHl949ebwO6sVUsY0W7sHxDKERBg55dBx9669oXE4KP7r4G43g9tPxfbewJNBk8rfFhEPnTYkkT4hNg4XV7E2uyjQ2xERERHpkVTgFpHuYeOr4GiA/qdA0jDvrBkeCyMuNo7N7nBf8FVxMiKhqcs6ZgBExHt3/ebFvJ6SO+zqoMmyHCO+xhoEUWm+3ZM7Gdzq4O48Tzq4czcYlz3l+0BE/CYs2MbM0SkAvLv+SIB3IyIiItIzdfPXm4vLaisheyXY6333GGkTILKv99etr4GC7U2ZwN1JQ71RSEubABZLoHfjHofD2HvfLhBN4XA0FaA7O1zyeBNugs1vwqY34LzfQ3CYd9evrTQiMcD7ncAWi7FmwTbvdm+bmq/ZUzpXU8fBptc7Lm6aBeXofr7/+je/LkoOGT8zjn88h6NZzI0K3J2WMgawQNkRY8Bsn8SO75O7qfG+Pvg+E5Ee79LxaSxZd5gPN+bwwMWjCLKpx0hERETEm1Tg7i2W/grWvujbx4jPhLnfG9EG3rR0Pnz/LFz+FIy/wbtr+9rnj8B/H4Pz/whT7gz0btzz9aOw7Hcw8w8w9e7A7uXQ91C4E4IjYPQV3l170BkQkw4lB2H7BzD2Ku+uX7jTuAyNgfA4764NEJdhFLh90VlqPqlksRr51T2Bqx3c/srfBohMAVsoNNRA6eETH7OqCGrLjOPYdN/vp6cLjYL4wXBsj/F1kHl2++c31EH+NuO4pzzRIyJ+ddqQRBL6hHC0opb/7jnKGcOU5S8iIiLiTSpw9xaH1xmXCUMhNNL76+dvM4oF+1ZA5lneW7e6FDa8Yhyv/kf3KnDXVcOa543j1f+AyT/qPl3c9gb47l/G8Z4vAl/gXveScTnqMgiL9u7aVqvxdbXij0aXuLcL3JveMC4zpnl3XdOUu4zL8Td6f+3ULJg61+hiDonw/vqBYHbgFu2H6hIIi2n9PH9GglitRuH66G7jcY8vcJsRN5HJEBzu+/30BqnjjP+zclwocBdsh4Za40mquAy/bE9EepZgm5WLxqXy4soDvLv+sArcIiIiIl6mAndvYRZrrl0EfUd4f/0P5hld1usWebfAveVtqKs0jo+sg9zNLQffdWU7PoLqYuP42B7I/hYGTg3olly29wujkxTcG8TmC7UVsHmJcezteBKTWeDeu9z4XvFWlEhDHWx8zTj21d4Hn2G8+YLFAjN/75u1AyUivqljP3dT2088FPs5EiR2QGOB+wAwveVtzngSHw+77E1Sxhn/v7jy8805YHJs93mSUkS6nEuz0nhx5QE+2ZJHdV0DYcG2QG9JREREpMdQAFxvUFUENSXGsa8KJGbxbtv7xuN5i5m7HNTYtbh+sffW9rXj9+7LIYbe1nyv5XlQlhe4vWx9z4hniBsEA0/zzWPEZcCg0wEHrH/Fe+vu+sTI3+7TF4ae6711pXNcGTLoz4gSaCqktzZoUgMmvc+dQZNmEVwDJkWkEyYOiKNfbDjlNfV8vj0/0NsRERER6VFU4O4NzOJInyTfxQykTTCGETbUwOa3vLNmwU44tBosNrjwT8Z1G1+D+lrvrO9LJYdgz+fG8UX/Z1xueRtqygO3J1dVHoPtHxrHIVHGZSC7uM0nNSbc6NvuyQk3Nz2e3e6dNc0nCrKuA1uwd9aUzkt1IYfbWVT2U9e0+ThmYb3FXtTB7XXm18DR3R3/XHZ2cKvALSKes1otXDo+DYB31x8O8G5EREREehYVuHuDIj+81N5iaeri9lan8vrGdYaeB1k3GIPYKo/CzqXeWd+XNrwCOGDgNCP+In4w1FXA1ncCvbOObXrTyJtNGQvDzjOuC1SB+9he2P8VYIGs6337WCMuhtBoo5h44OvOr1eWBzs/No59FU8innEOmtzU+u0NdVB6yDj2V9d0nAsd3P7qJu8NIvsa/6fggLwtbZ9ntzd9naiDW0Q66dIso8D9xfYCSqrqArwbERERkZ5DBe7ewF/FkXHXgDXIyMpur2Dgioa6pqiICTeBLQjGNxY4u3rUh8MB68yu45t8U/z3JXOg44Sb3XsZvy+sf9m4zDwbYvr79rFCImDMLOPYG5+nja+BowH6nwxJwzu/nniPWags2A71NSfeXnoYHHawhRqDHf3BGVHSSge3P56k7I1c6uTfb0Qk2UIhcZhftiUiPdeIlCiGJUdS22Dn4y25gd6OiIiISI+hAndv4K+Xt/dJhOEXGMfrOpmVvfszqMiHiEQYNtO4bnxjkXj3p1Ca07n1fenAN1C0z4j3GHWpcV3W9WCxQvZKKNwd2P21J2ejUeyxhcDYq10rAPmKvaHlkxz+YMaUbH0Xqks8X8fhaCqSq3u764nuB+HxYK+H/K0n3u4sKKeD1U//TZrF69IjLYvuDof/41J6ixQXfr6ZT+71HamYIZFGTzzxBBkZGYSFhTF58mRWr17d5rnPP/88FoulxVtYWFiLcxwOBw888ACpqamEh4czY8YMdu3a5esPIyAsFguXje8HwHvrjwR4NyIiIiI9hwrcvYE/u//MAuHGVzuXld1adnHiEEifYnRWbny1c/v0JXPvY66AkD7GcXQaZJ5jHHflQZnm3oZfCBHxkJJlvH9sL1SX+ncve5cbMRFhscZ+/KHfREgaAfXVsHmJ5+sc+h4KdxgDRkdf6b39iXdYLEYED7T+6oRADHXskwjBEYDDyPA3VRRAfRVggZh0/+2nN0h14RUqGjAp0sJrr73GvHnzePDBB1m7di1ZWVnMnDmT/Py2hyZGR0eTk5PjfDtwoOUrVf70pz/xt7/9jaeffppVq1bRp08fZs6cSXV1ta8/nIAwY0q+2VNIfmnP/BhFRERE/E0F7t7An91/med0Piu7vKDpvuNvbHlb86gPh8PzffpKdWlTzrZZ7DeZe9/wCjTU+3VbLqmvMWI1oGnvfRKMbleAvM3+3Y/5RMG4ayA4rP1zvcVbcTJmfvyoyyAsuvP7Eu9r79UJgRjqaLE0PV7zmBLzCcroNAgK8d9+egPzSY78rUYsVms0YFKkhYULF3L77bczZ84cRo0axdNPP01ERATPPfdcm/exWCykpKQ435KTm6KfHA4Hjz32GPfffz+XXXYZ48aN48UXX+TIkSO88847fviI/C89PoIJA2KxO+CDjV34FYkiIiIi3YgK3D2dw9FULInL8P3j2YKMrmvwvFN542tGdEC/SZA8quVtoy83uhyP7oaDqzq1VZ/Y8jbUVULCUCN7ubnhFxixCGU5sOfzwOyvPTs+gqoiiEqDzLOarg9EDnflMdj+gXHs74iPcdcaWfKHv4f87e7fv7YSNr1lHCuepOsyX53Q2te1WVT291DH2FYGTRYrf9tnYjOMwbINtVCwo/VznB3cWX7blkhXVVtby5o1a5gxY4bzOqvVyowZM1i5cmWb9ysvL2fgwIGkp6dz2WWXsWVL05yWffv2kZub22LNmJgYJk+e3OaaNTU1lJaWtnjrbi5r7OJ+b4NiSkRERES8QQXunq7yqFFwxeL7IX0ms6i36xP3s7KbZxcf370NEBoFo68wjrviwMb1xw2XbC4o1OhGhqYO367EzE0ffz1YbU3XByKHe/NbRtEpZaz/C0uRfWHY+caxJ5+nbe8ZQ+niMmDgaV7dmniR+XWdt8XIe28uUJnX5uMVNevgDkQ3eW9htTZ1cbf2860sD8rzAAskj/br1kS6osLCQhoaGlp0YAMkJyeTm9v6wMThw4fz3HPP8e6777Jo0SLsdjunnnoqhw4ZUUzm/dxZc8GCBcTExDjf0tO7X3zTRePSsFpg/cFiDhytCPR2RERERLo9Fbh7OrNQEpVqFFj9IXEopE/2LCv7yFoo2AZBYTBmVuvnmAX0LW9DTXnn9upNBTuNrnKLramL/Xjm3rd/BBVH/be3jpQchj3LjOPjn1horwDkK+teatxLgDqgzX+DDa+2HV3QluZP0PhrQKG4L2GI8WqQugojY745Z1E5w797imutgzu75W3iXe29QsX8mZc4tGmegoi4ZerUqcyePZvx48dzxhlnsGTJEpKSknjmmWc8XnP+/PmUlJQ43w4ePOjFHftHUlQopw1JBDRsUkRERMQbVH3p6YoD9FJ7Z47xYveyss3i4MhLITy29XMGTIX4wVBbDlvf7dQ2vcrs9h16LkSltH6O2ZFsr4NNr/tvbx3Z8IrxhMTA0yAhs+VtZgEof3vnBoe6KncT5GwAW0hTx7u/DT0X+vQ1Bvzt+sT1+x3bB/u/AiyQdb3PtideYLU1deXmbGi6vr7GiBGCwHVwt5bBrQ5u33C+QmXTibeZBW7zST6RXi4xMRGbzUZeXl6L6/Py8khJaeP3nuMEBwczYcIEdu/eDeC8nztrhoaGEh0d3eKtOzKHTb674QiOrjhXRkRERKQbUYG7pwvUy9tHX9GYlb0LDq527T51Va5lF1ssTR22nuZ8e1tDvdHtCx3nLpsDHLvKoEyHo2W0yvFiB0BYrFGUL9jm+/2YUSnDL4SIeN8/XmtswU1d+O5E4ax/2bjMPAtiu99Lpnud1l6dUNzYCRgcAX0S/bsfM2e71YgSdXD7REqzAvfxP481YFKkhZCQECZNmsSyZcuc19ntdpYtW8bUqVNdWqOhoYFNmzaRmpoKwKBBg0hJSWmxZmlpKatWrXJ5ze5q5pgUQoKs7M4vZ1tOWaC3IyIiItKtqcDd0zmzZP1cHGmRlf2Sa/fZ9gHUlBgF1Yzp7Z+bdT1YrHDgv3B0T+f26g27PzOyWiMSYejM9s8dM8voTs7b3LJzNFCyVxoRDSGRMOqyE2+3WJoKgb4eNFlfYwwZhcAPaDQff+fHRhZvR+wNTQXu1vLjpetpLZ6i+ZOCx+fo+5r5RGRFvvGEn93eVHBXRIlvJA03fh7XlEDR/pa3OQdMqsAtYpo3bx7//Oc/eeGFF9i2bRt33XUXFRUVzJkzB4DZs2czf/585/kPP/wwn3zyCXv37mXt2rXcdNNNHDhwgNtuuw0Ai8XCz372M/7nf/6H9957j02bNjF79mzS0tK4/PLLA/Eh+k10WDDnjOgLwLsbDgd4NyIiIiLdmwrcPV0gX95uFvm2vA21LgzQceYuu5BdHNMPMs8xjrtCF7e596zrICik/XMj4mHExY336wLDJs09jL6i7ZxZc9Cjr3O4d/wHqo5BVBpknu3bx+pI0nDofzI4GpqK7u3ZtwJKD0FYTNPnV7q25gNUze7dQHZMh8dBaONL7YuzjagUe52R6x+V5v/99Aa2YOg70jhu/vOturQpmz3Fz4NuRbqwa6+9lr/85S888MADjB8/nvXr17N06VLnkMjs7GxycpoGjBcVFXH77bczcuRILrzwQkpLS/nmm28YNWqU85z77ruPe+65hzvuuIOTTz6Z8vJyli5dSlhYmN8/Pn8zY0reX38Eu70LvKpPREREpJtSgbunC1QGN8DAU13Pyi46YBQIscD4G1xbf4IZU/KK0T0bKBWFsHOpcexq567ZHbzpDair9s2+XFFTBlveMY7N6JTWtDeIzZucAxqvNzKSA82ZJe9CnIy597HXQHDP/6O8R+g72igeVx6F0sYhX0UB/JlpsTQV1ouzm16BE9MfbEH+309v0drPt7zNxmV0P+iT4P89iXRhc+fO5cCBA9TU1LBq1SomT57svG358uU8//zzzvcfffRR57m5ubl8+OGHTJgwocV6FouFhx9+mNzcXKqrq/nss88YNmyYvz6cgDprRF+iQoM4UlLNmuyiQG9HREREpNtSgbsna/7y9kB0cDfPyu6oU9mMdhh0uut7HX6h0fFYdgT2fOH5Pjtr42tgr4e0iZA8quPzAQafaRROqothx4e+3F37trwDdRWQMBTST2n7PLPTNW+z8XXlC6VHYE9jBmdXifgYfSUEhUPhDjj0fdvnVRUZETsQ+GgVcV1wmNGpD01DBp2xTgEa6mg+btH+wM1Q6G1ae4WK8rdFxA/Cgm3MHGMM03x3vWJKRERERDzlUYH7iSeeICMjg7CwMCZPnszq1e0PEXzssccYPnw44eHhpKenc++991Jd3dS1mpGRgcViOeHt7rvvdp5z5plnnnD7nXfe6cn2e4/yPGioMToUo/sHZg+uZGXb7U0F7va6iI8XFArjrjWOXc359jaHA9Y2PrY7hU2rralTPZAxJeZjT7ix/bzhhKEQFGZ04xft881eNrwCDjsMOBUSMn3zGO4Ki27KJV/fzudp05vG91rymKZimXQPKc1iSiDwQx3jWungVv62b7XWwa38bRHxk8vGGzElH27Moa7BR00EIiIiIj2c2wXu1157jXnz5vHggw+ydu1asrKymDlzJvn5+a2e//LLL/PrX/+aBx98kG3btvHss8/y2muv8Zvf/MZ5znfffUdOTo7z7dNPPwXg6quvbrHW7bff3uK8P/3pT+5uv3cxiyPR/QL38vaYfk1ZymYR+3j7v4SSbAiNgZFuZhebnb47PoLKY57v01NH1kLBNqP4O2aWe/c1C9x7vmjqtPenwl1w8FvjCZCs69s/1xYEfRu7030xGNPhaFZs72Id0M44mbegtrL1c5rv3d+DCaVzzAKm+XXdVTq4iw80m6GgArdPJY8GLFCeC+WNv8uYBW5zwK6IiI9MHZxAYmQIRZV1fL2rMNDbEREREemW3C5wL1y4kNtvv505c+YwatQonn76aSIiInjuuedaPf+bb77htNNO44YbbiAjI4PzzjuP66+/vkXXd1JSEikpKc63Dz74gMzMTM4444wWa0VERLQ4Lzo62t3t9y6BzN9uziwQrn+59axsZ3bxVRAc7t7aqeOM7ruGWiPP2t/WNQ64HHkJhMe6d9/4wZAxHXDAhle9vbOOmcM5h54LUSkdn596XKerN2V/awx0C4ls6pjuKgaeBnEZUFsG29478fbcTZCzHqzBRv62dC9mATN3ozEMt6LAeD9QPzfNYnbRgcB3k/cWoZGQMMQ4zt0I9bWQv914XxElIuJjQTYrF48zurjf23AkwLsRERER6Z7cKnDX1tayZs0aZsyY0bSA1cqMGTNYuXJlq/c59dRTWbNmjbOgvXfvXj766CMuvPDCNh9j0aJF3HrrrViO64RcvHgxiYmJjBkzhvnz51NZ2UY3pRi6SnGkvazsqmLY9r5xPMHD3GUz1sTfMSV1VUY0BXjedWx2oK9f5Lts69Y01BvDOZvvoSO+HDRpPskx+nKj2NSVWK3tZ8mbT3IMv0DD6Lojs8BdnN2Uwx0aDWGxgdmPs4M7u+s8SdkbmF8HORuNV+XY64yvAeWfi4gfXNoYU/LxllyqagM4OF1ERESkm3KrwF1YWEhDQwPJycktrk9OTiY3N7fV+9xwww08/PDDTJs2jeDgYDIzMznzzDNbRJQ0984771BcXMwtt9xywjqLFi3iiy++YP78+bz00kvcdFPbRcWamhpKS0tbvPU6RV1kQFlQaFNn6/E5xpvfgvpqI/4ibaJn64+9CmwhjZ20PojPaMu2D6CmBGIGQMbpnq0x6lIIiTIGyh34r1e31649y4yX40ckwLDzXbtP80FsDof39lJTBlveNo7dyWD3p6zrAQvs/wqONcsgr681hoxC1927tC88ruln5PbGQaGxAwMXNWMWs6uOQcmhxv2oyOpzzV+hktMsnkSRQyLiBxPSY0mPD6eytoHPtuUFejsiIiIi3Y5HQybdsXz5cv7whz/w5JNPsnbtWpYsWcKHH37II4880ur5zz77LBdccAFpaWktrr/jjjuYOXMmY8eO5cYbb+TFF1/k7bffZs+e1gcXLliwgJiYGOdbenq61z+2Lq8rdf+ZHc7bP2yZle2N7OKIeBhxUeN6iz3fo7vMYv34G4wuX0+E9IExVzau58e9m//u466DoBDX7tN3lDEwtKLAGGDqLVvegboKIyIgfbL31vWm2HTIPMs4bp4lv/M/RiEyKrUpa166H/PVCearSQL5MzM0CsLjjWOH3XjyLtKFCCHpnOavUHEOmNTAWBHxD4vFwqVZxt8+765XTImIiIiIu9yqyiUmJmKz2cjLa1ncysvLIyWl9T/Af/vb33LzzTdz2223MXbsWK644gr+8Ic/sGDBAuzHRTIcOHCAzz77jNtuu63DvUyebBTCdu/e3ert8+fPp6SkxPl28GAAhvgFWqCHpTXXWlZ23lZjSKM1CMZd27n1zQL6xtegrrpza7mi6ADsXWEcm8MiPWXufcs7UO2HVxpUFMKO/7R8bFeEREDiMOPYmzElZmG/qw9obC1L3nyiIOv6wA1ylc4zC5lF+43LQP/MbP74MemeP4EmrjO/Bo7tgQPfGMfK3xYRP7psfD8AVuzMp6SyLsC7EREREele3PqrOSQkhEmTJrFs2TLndXa7nWXLljF16tRW71NZWYn1uD/ObTYbAI7jYg7+/e9/07dvXy666KIO97J+/XoAUlNTW709NDSU6OjoFm+9ir2h2cvbu0AHNzQVCM2ioFnYHHY+9Ens3NqDz4LoflBdDDs+6txartjwCuCAQad3vtuz/8lG4bi+CrYs8cr22rXxdSNfNm0CJI9y775mwSfXS1Ewhbshe6XRGT7uOu+s6SvDL4KwGCg9BPtWQGkO7P7MuM3VHHPpmo4vZAb6Z2bznyld4RU4vUGfRIhqfOVY3mbjMlUFbhHxn2HJUYxIiaKuwcF/NucEejsiIiIi3YrbbWHz5s3jn//8Jy+88ALbtm3jrrvuoqKigjlz5gAwe/Zs5s+f7zz/kksu4amnnuLVV19l3759fPrpp/z2t7/lkksucRa6wSiU//vf/+YHP/gBQUEtOyH37NnDI488wpo1a9i/fz/vvfces2fP5vTTT2fcOP0B2qrSI2CvB2swRHWRl7ePvboxK3sjHFoDG141rvdGdrHV1piTjO+jPuz2Zl3HXti7xdKs+O/jvTscLWNh3NV8EJs3mDEvQ86F6NafrOoygsOasuTXLTKe5HDYYcBUSBwS2L1J5xxfyOxKHdyB3ktv0vzrICgMEoYGbi8i0iuZXdyKKRERERFxj9sF7muvvZa//OUvPPDAA4wfP57169ezdOlS5+DJ7OxscnKaug7uv/9+fv7zn3P//fczatQofvjDHzJz5kyeeeaZFut+9tlnZGdnc+utt57wmCEhIXz22Wecd955jBgxgp///OfMmjWL999/393t9x5m/nZsulH87QqaZ2W/cydUFkJkMgyZ4Z31zaiQ3cuautd9Yf9XRvxLaAyMvMQ7a467Diw2OLQaCnZ4Z83W5KyH/C1G8WbMVe7fv/kgts5qqIf1rxjHnhTbA8Hc57YPYM2/W14n3VdUqjFw1RTorunmHeSB7ibvTcwn8MCYOaDYIRHxs0uyjCf7v913lLxSP0TuiYiIiPQQHv31NnfuXObOndvqbcuXL2/5AEFBPPjggzz44IPtrnneeeedEFliSk9PZ8WKFZ5stfdy5m93seLI+Jtgy9tQuNN4P+s67xUREjJh4Glw4L9Gd+3pv/TOusczO6DHXAnB4d5ZMyoZhp5nDC1ctwjOa30Ia6eZex9xMYTHun9/M8qhaD9UlxiRHZ7a8zmU5xqFxWHne76OP6VmQfIYI8KgOBuC+8CoywO9K+ksi8X42t77hfF+oLumWxS41cHtN82jahRPIiIB0D8ugpMGxvH9gSLeXX+YO07PDPSWRERERLoFtSf1VEVmB3cXK45knmXknJY1vvRyvJe7XyfcZBS4v3/e6Ij2Ogdse6/xsbwQT9LchJuMAvf6lyE8zrtrm8wBn552HUfEG0PvSg5C7ibImOb5Xta9ZFyOuxaCQjxfx5/MOJmlvzbeH30FhEYGdk/iHamNBe7weAiNCuxeWmRwZwRsG71O86K2BkyKSIBcObE/3x8o4uVV2dw2bTBWaxcewC0iIiLSRajA3VOZESWBfqn98aw2I0rkq79A/1MgaZh31x91GXx0nzEIcNnvvLt2c0kjoN9E7645bCb0SYKKAt/uPSYdBp3h+f1TxnW+wF1xFHb8xzjubgMax14Dn/zWGNQ5oZvtXdqWNsG4TOgC3XKxA8AaZAwLjhsU6N30HrEDjVeUVB5t+noQEfGzyyekseA/29h/tJIvdxVw5vC+gd6SiIiISJenAndP1VUjSgCm3QsWqzF00ttC+sBVzzV2WbceedNpFhtM+oHRzetNtmCY9Wxjl7Wv9m6FrBvA6nb8fpPUcbDjw84Nmtz0ulEgTpsAKWM8XycQ+iTANS8a8SoDpgZ6N+ItIy6GM35lDDwNtOBwuPxpqK8yvt7EPywW42fwsb3efwKzl8ktqeb3H23jwUtGkRgZGujtiHQrESFBXD0pnef+u48XVx5QgVtERETEBSpw91TOiJIuWOAOjYSz/5/v1h92nvHWHQ0+w3jrylI6OWjS4YC1jfEk3a172zTiwkDvQLzNFgxn/SbQu2gyzgdPAErHMs8y3sRj9Q127nllLd/tL6Ksuo7n55wS6C2JdDs3Tx3Ic//dxxc78sk+WsmAhIhAb0lERESkS+tEG6d0WfW1TRnXXS2DW7q/lLHGZcF2qK9x//456yF/C9hCYexVXt2aiIgE1l8+2cl3+4uIDA3iwUtGB3o7It3SoMQ+nDEsCYcDFq06EOjtiIiIiHR5KnD3RKWHwGGHoHCI1Msaxcti+htDMO31kL/V/fuvW2RcjrzEd8M0RUTE75Zty+PpFXsA+NNV4xiU2CfAOxLpvmZPNV6F+dp3B6mqbQjwbkRERES6NhW4eyJn/vYA7+dEi1gsTTEl7uZw11U3ZoyjAY0iIj3IoaJK5r2+AYBbTs3gwrGpAd6RSPd25vC+pMeHU1JVx3sbDgd6OyIiIiJdmgrcPZEzf1vxJOIjqWYO9yb37rf9A6gugZh0GNTFs8ZFRMQltfV27n55HSVVdWSlx/KbC0cGeksi3Z7NauHmKUYX9wvfHMDh8NEAchEREZEeQAXunqi4scAd1wUHTErPkJJlXLo7aNKMJxl/A1ht3t2TiIgExB8+2saGg8XEhAfz9+snEBKkXy9FvOGak9IJDbKyNaeUtdlFgd6OiIiISJelv0B6ouYRJSK+4Ozg3gx2F3Mhiw/C3uXG8fgbfLItERHxr4825fD8N/sBWHhNFunxEYHdkEgPEhsRwmXj0wCji1tEREREWqcCd0/kjChRB7f4SMIQY4hpXQUc2+vafTa8AjggYzrEZfhydyIi0g6Hw8Hflu1i4Sc7qKip93id/YUV3Pem8UqeH50xmHNGJntriyLSaPbUDMB4Mim/tDqwmxERERHpolTg7onUwS2+ZrVB8mjjOGdDx+fb7U3xJBNu9t2+RESkQ8u25bPw05387fPdzHzsS/67u9DtNarrGvjx4rWU19RzckYcvzhvuA92KiJj+sUwaWAc9XYHr6w+GOjtiIiIiHRJKnD3NHVVUJ5rHKtLVnzJGVPiQg73ga+NbPjQaBh5iW/3JSIibXI4HDz62U4AQmxWDhVVceO/VjF/ySbKqutcXud3729la04pCX1CePz6iQTb9CuliK/Mnmq8KvPl1Qeoa7AHeDciIiIiXY/+GulpSg4ZlyFREB4X2L1Iz5bSWODOcaHAvW6xcTnmSghRPquISKB8sjWPLUdK6RNiY9nPz+DmKUbh7JXV2Zz36Jcs35Hf4RpvrzvEK6uzsVjgsevGkxIT5utti/RqF4xJJTEylLzSGj7Zkhfo7YiIiIh0OSpw9zTO/O0BYLEEdi/Sszk7uDeBw9H2edUlsPVd41jxJCIiAWO3O3jss10A3HJaBunxETxy+RheuX0KA+IjyCmp5pZ/f8cv3thASWXr3dy78sr4zZLNAPzk7KFMH5rkt/2L9FYhQVZuOCUdgBdW7g/sZkRERES6IBW4e5ri/cZlnAZMio/1HQ0WG1QWQllO2+dtXgL1VZA4HPpN8t/+RESkhY+35LItp5TI0CBunz7Yef3UzASW/mw6t542CIsF3lxziHMfXcFnW1t2ilbW1nPX4rVU1TVw2pAEfnLOUH9/CCK91g2TB2KzWli97xjbc0sDvR0RERGRLkUF7p5GAybFX4LDIKlxqFh7MSXrG+NJJtykVxWIiARI8+7tW0/LIDYipMXtESFBPHDJKN740VQGJ/Yhv6yG2178np++uo6iilocDgf3v72Z3fnl9I0K5bFrJ2Cz6me6iL+kxIQxc3QyAC+uPODxOg6HA0d7r7wTERER6YZU4O5pnBEl6uAWP0jpYNBk/nY49J3R6Z11nf/2JSIiLXy0OYcdeWVEhQXxw2mD2zzvpIx4PvrpdH50xmCsFnh3/RHOfXQFv313M0vWHcZmtfD49RNIigr14+5FBGD21AwA3l57mJIq14fCmnbllXHuo19y8eNfU69hlSIiItKDqMDd06iDW/wpZaxxmbOh9dvXLzIuh82EyL7+2ZOIiLTQYHfw18bu7R9OG0RMRHC754cF25h/wUiW/Pg0hiVHUlhey6Jvjd8vfnHecCYPTvD5nkXkRJMHxTM8OYqqugbeXHPIrfsu35HPlU9+w+78crYcKWXLEcWciIiISM+hAndPU9zYwa0MbvGH1HY6uBvqYMOrxvGEm/y3JxERaeHDTTnsyi8nOiyIW6cNcvl+49Njef+eadxz9hCCbRYuGpvKj05vu/tbRHzLYrFw81Tjd/xF3x7Abu84asThcPD8f/dx6/PfUVZTj5kstGrfUV9uVURERMSvVODuSWrKobLxl1V1cIs/mB3cxdlQVdzytl2fQkUB9EmCoef5fWsiImJ2b+8E4Pbpg4kOa797+3ihQTZ+ft5wNj00k7/fMAGrcrdFAuqKCf2ICg1iX2EFX+0ubPfcugY7v313Mw+9vxW7A66a1J9fzDTmp3y795g/tisiIiLiFypw9yRmPElYLITFBHQr0kuExzU9mZK7qeVt6xrjSbKuA5t7BRUREfGO9zccYU9BBbERwdxyWobH64QF27BoULBIwPUJDeKqk/oD8OI3+9s8r6Syjjn//o5F32ZjscD8C0bw56vGcfrQJAC+23eMBhc6wEVERES6AxW4exKzwK14EvGn1gZNlufDzqXG8XjFk4iIBEJ9g52/LjOyt2+fPpgoN7u3RaRrunmK8bv+5zvyOXis8oTb9xVWcMVT/+Xr3YVEhNj4x80n8aMzMrFYLIxMjSYqLIiymnq2KodbREREeggVuHsSM39b8STiT6lZxmVOswL3xtfA0QD9ToK+IwKzLxGRXu7d9UfYV1hBXEQwPzg1I9DbEREvGZwUyfShiTgcRhZ3c9/sKeTyJ/7L3oIK0mLCePPOUzl3VLLzdpvVwuRB8QB8u1c53CIiItIzqMDdkxSZBW51cIsfHd/B7XA0xZNouKSISEDUN9j52+dG9/Ydp2cSGRoU4B2JiDf9YGoGAK9+d5Cq2gYAXlmdzexnV1NSVcf49FjemXsao9KiT7jv5EEJgAZNioiISM+hv3Z6kmIVuCUAzEGTBTugrgrytkDBdggKhzFXBnZvIiK91JJ1hzlwtJKEPiHMnqrfC0R6mrNG9KVfbDiHi6t4Z/1hdueX8+zX+wC4NCuNP101jrBgW6v3nTLYLHAbOdw2DY8VERGRbk4d3D2JWeBWBrf4U3QaRCQYkST522DdS8b1oy7VsFMRkQCoa7DzeGP39o/OGEwfdW+L9Dg2q4WbG5+8+u07m53F7XnnDuOv141vs7gNMCotmqjQIMqq69mWoxxuERER6f5U4O5JzCGT6uAWf7JYmmJKDq6GzUuMY8WTiIgExFtrDnHwWBWJkaHcPCUj0NsRER+59qR0QoOs1NsdhAZZ+fsNE/jJOUOxWNrvyLZZLZysHG4RERHpQVTg7imqiqG6xDiOTQ/oVqQXSm0scH/9KNSUGoNOB04L7J5ERHqh2no7j3++G4A7zxhMeEjbXZwi0r3F9Qnh3nOHMa5/DK//aCoXj0tz+b5NgyaP+Wp7IiIiIn6j16z2FGb3dp8kCOkT2L1I72N2cJfnGpfjbwKrnj8TEfG3N9cc4nBxFUlRodw0Ra/oEunp7jwjkzvPyHT7fmYO93f7j2G3O7Aqh1tERES6MVWgegrngMkBgd2H9E6pWc3escD46wO2FRGR3qqmvoG/N2Zv//jMzHYzeEWkdxudFk1kaBAlVXVsy1UOt4iIiHRvKnD3FEVmgVvdWhIA8YMhuPGVA4PP0BMtIiIB8Pr3hzhSUk1ydCjXn6KfwyLStiCblZMy4gDFlIiIiEj3pwJ3T+EcMKk/aCUArDZIP8U4nnRLQLciItIbVdc18ERj9vbdZw1R97aIdMiMKVmlQZMiIiLSzSmDu6cwI0ri1MEtAXLZE5C3GYaeF+idiIj0Oq99d5Dc0mpSY8K49mQNmxaRjpmDJlcrh1tERES6OXVw9xTODm4VuCVAYvrBsJlg0R9HIiL+dKiokoWf7gTgx2cNITRI3dsi0rEx/WLoE2KjuLKOHXllgd6OiIiIiMdU4O4JHA5lcIuIiPRCtfV27n55HSVVdWT1j+Hak9S9LSKuCbZZmZRhdHF/q5gSERER6cZU4O4JKo9BXYVxHKs/bEVERHqLBf/ZxoaDxcSEB/P3GyYSEqRf7UTEdVMGq8AtIiIi3Z/+CuoJivcbl1GpEBQa0K2IiIiIf/xnUw7//u9+ABZek0V6fERgNyQi3Y45aHL1PiOHW0RERKQ7UoG7J1A8iYiISK+yv7CC+97cCMCPzhjMOSOTA7wjEemOxvaLISLERlFlHTvzlcMtIiIi3ZMK3D2Bc8DkgMDuQ0RERHyuuq6BHy9eS1lNPSdnxPGL84YHeksi0k0F26xMGhgHwKq9xwK8GxERERHPqMDdExQ3dnDHqYNbRESkp/vd+1vZmlNKfJ8QHr9+IsE2/TonIp4zY0qUwy0iIiLdlf4i6gmcHdwqcIuIiHRFJZV1PPDuZt5dfxiHw/Oc27fXHeKV1dlYLPDX68aTEhPmxV2KSG9kDppcte9Yp34+iYiIiASKCtw9gTODWxElIiIiXdFfPtnBiysP8NNX1/PDF74nt6Ta7TV25ZXxmyWbAfjJ2UOZPjTJ29sUkV5obL9YwoNtHKuoZVd+eaC3IyIiIuI2Fbi7O4cDSg4ax4ooERER6XIOF1fx6nfGq62CrBY+357PuQtX8Np32S53S1bW1vPjxWupqmvgtCEJ/OScob7csoj0IiFBTTnciikRERGR7kgF7u6uPA/qq8Fiheh+gd6NiIiIHOeJL3ZT1+Bg6uAEPvrpdLLSYymrqedXb21i9nOrOVxc1e79HQ4H97+9mV355fSNCuWxaydgs1r8tHsR6Q2cMSUaNCkiIiLdkArc3Z0ZTxLdH2zBgd2LiIiItHDwWCVvfG+80urec4cxLDmKt+6cym8uHEFokJWvdhVy3sIVLPr2AHZ7693cr313kCXrDmO1wOPXTyApKtSfH4KI9AKTGwdNrtp3VDncIiIi0u2owN3dOQdMKn9bRESkqzG7t6cNSeSUQUaHZJDNyh2nZ/Kfn07npIFxVNQ2cP87m7nxX6vIPlrZ4v5bjpTwwHtbAPjFzOHOIpSIiDeN6x9DWLCVwvJa9hQoh1tERES6FxW4u7vi/cal8rdFRES6lOyjlby55hAA9557Ymb24KRIXvvRVB64eBRhwVZW7j3KzMe+5Pn/7sNud1BWXcfdi9dSW2/nrOFJ3Hl6pr8/BBHpJUKDbEwcYORwr1RMiYiIiHQzKnB3d84ObhW4RUREupLHP99Fvd3B6cOSmDQwvtVzbFYLt04bxMc/O50pg+Opqmvgofe3cu0/VvKzV9ez/2glaTFhLLxmPFblbouID01pfIWIBk2KiIhId6MCd3dnZnArokRERHzg5VXZnP/Ylxw8VtnxyW4qr6nnkse/5rYXvu9w0GJ3s7+wgiXrDgNw74wTu7ePNzChDy/fNoVHLh9DnxAb3+0vYtn2fIKsFv5+40Ti+oT4essi0suZBe5Ve48ph1tERES6FY8K3E888QQZGRmEhYUxefJkVq9e3e75jz32GMOHDyc8PJz09HTuvfdeqqurnbc/9NBDWCyWFm8jRoxosUZ1dTV33303CQkJREZGMmvWLPLy8jzZfs9idnArokRERLzM4XDwt2W72J5b5oza8KYVOwrYdLiEz7bldThosbt5/PPdNNgdnDk8iQmNL/vviNVq4eYpA/n43tOZPjQRiwUevGSUMzZApCtw9+8A06uvvorFYuHyyy9vcf0tt9xywt8B559/vg92Lh3JSo8hNMhKYXkNewoqPFojp6Sqx/wcFxERke7D7QL3a6+9xrx583jwwQdZu3YtWVlZzJw5k/z8/FbPf/nll/n1r3/Ngw8+yLZt23j22Wd57bXX+M1vftPivNGjR5OTk+N8+/rrr1vcfu+99/L+++/zxhtvsGLFCo4cOcKVV17p7vZ7FnsDlDQWHNTBLSIiXrblSCm5pcYT0r54ybq5Zniwrd1Bi93N3oJy3l7XmL09Y5jb9+8fF8FLP5zMpodmcvPUDC/vTsRz7v4dYNq/fz+/+MUvmD59equ3n3/++S3+DnjllVd8sX3pQPMc7lX73P+Zv+A/25i64HOe+XKvt7cmIiIi0i63C9wLFy7k9ttvZ86cOYwaNYqnn36aiIgInnvuuVbP/+abbzjttNO44YYbyMjI4LzzzuP6668/odsjKCiIlJQU51tiYqLztpKSEp599lkWLlzI2WefzaRJk/j3v//NN998w7fffuvuh9BzlB4Bex1YgyEqNdC7ERGRHubTrU2vlFqXXUx1XYNX11/ZWOBeeE3WCYMW/904aLE7evzz3dgdcM6IvmSlx3q8TmRokPc2JeIF7v4dANDQ0MCNN97I7373OwYPHtzqOaGhoS3+DoiL06sWAmXyYGNewLduDpp8ceV+nllhFLZ70qtxREREpHtwq8BdW1vLmjVrmDFjRtMCViszZsxg5cqVrd7n1FNPZc2aNc6C9t69e/noo4+48MILW5y3a9cu0tLSGDx4MDfeeCPZ2dnO29asWUNdXV2Lxx0xYgQDBgxo83FramooLS1t8dbjmPEkMf3BagvsXkREpMf5bFtTgbu2wc7aA0VeWzu/rJrd+eVYLDA1M8E5aHHyIGPQ4u8aBy3uLSj32mP6w+78ct5d35i9fa773dsiXZUnfwcAPPzww/Tt25cf/vCHbZ6zfPly+vbty/Dhw7nrrrs4erTt7uFe8Tt+ADUfNOlqDvdnW/N46L0tAFgtcLi4ilX73CuQi4iIiHSGWwXuwsJCGhoaSE5ObnF9cnIyubm5rd7nhhtu4OGHH2batGkEBweTmZnJmWee2SKiZPLkyTz//PMsXbqUp556in379jF9+nTKysoAyM3NJSQkhNjYWJcfd8GCBcTExDjf0tPT3flQu4fixgGTyt8WEREvyympYsuRUiwWmD7UeFWVN2NKVjV2B45MiSY2whigODChD6/cPoVHLhtNROOgxQv++hX/+HIPDd2kG/Bvy3Zhd8C5o5IZ0y8m0NsR8RpP/g74+uuvefbZZ/nnP//Z5rrnn38+L774IsuWLeOPf/wjK1as4IILLqChofVXjPSK3/EDaHx6LCFBVgrKathX2HEO98ZDxdzzyjrsDrju5HSuPdn4fCxZ6/25DSIiIiJt8WjIpDuWL1/OH/7wB5588knWrl3LkiVL+PDDD3nkkUec51xwwQVcffXVjBs3jpkzZ/LRRx9RXFzM66+/7vHjzp8/n5KSEufbwYMHvfHhdC1mB7fyt0VExMs+22Zk6k4cEMdFY40YrJVeLHCba5ndgiar1cLNUzP4+GfGoMWaejt/+Gg7s576hl15ZV57fF/YmVfG+xuPAPCzGUMDvBuRwCorK+Pmm2/mn//8Z4voweNdd911XHrppYwdO5bLL7+cDz74gO+++47ly5e3en6v+B0/gMKCbUxojFbqKKbkUFEltz7/PVV1DUwfmsgjl4/hyon9AfjP5lyqar0bayUiIiLSFrcK3ImJidhsNvLy8lpcn5eXR0pKSqv3+e1vf8vNN9/MbbfdxtixY7niiiv4wx/+wIIFC7Db7a3eJzY2lmHDhrF7924AUlJSqK2tpbi42OXHDQ0NJTo6usVbj1PU2MEdqw5uERF/cjgc5JdVB3obPvVZY/72jJHJTM00itDrDxZ7rWDx7R6jwG2ufbz0+AhevPUU/vfKsUSFBrH+YDEX/e1rnvhiN/UNrf/+EGh/XbYLhwPOH53C6DR1b0vP4u7fAXv27GH//v1ccsklBAUFERQUxIsvvsh7771HUFAQe/bsafVxBg8eTGJiovPvgOP1it/xA8x84rG9QZMlVXXM+fd3FJbXMCIliidvnEiwzcpJA+NIjw+nvKaeT7a23tkvIiIi4m1uFbhDQkKYNGkSy5Ytc15nt9tZtmwZU6dObfU+lZWVWK0tH8ZmM/Ki28p1Ky8vZ8+ePaSmGh1jkyZNIjg4uMXj7tixg+zs7DYft1cwO7jjMgK6DRGR3ubV7w5yyu+X8ZePdwR6Kz5RUVPPysYC9IyRfRkQH0FaTBh1DQ6+P9D5XNW80mr2FlZgtcApg+LbPM9isXDdKQP4ZN7pnDU8idoGO3/+eAf/9+nOTu/B27bnlvLRphwAfqrubemB3P07YMSIEWzatIn169c73y699FLOOuss1q9f32a0yKFDhzh69Kjz7wDxv6ZBk63ncNfW27nzpTXsyi8nJTqMf885maiwYMD4uX3FBKOLe8naw/7btIiIiPRqbkeUzJs3j3/+85+88MILbNu2jbvuuouKigrmzJkDwOzZs5k/f77z/EsuuYSnnnqKV199lX379vHpp5/y29/+lksuucRZ6P7FL37BihUr2L9/P9988w1XXHEFNpuN66+/HoCYmBh++MMfMm/ePL744gvWrFnDnDlzmDp1KlOmTPHGv0P3ZGZwK6JERMSvvtpVAMDfv9jNp1vzOji7+/lqVwG1DXYGJkQwpG8kFoulxeCxzjLXGJ0WQ0x4cIfnp8aE89wtJ3P/RSMBI9vV1eFn/vLXz4zu7YvGpjIyVR2l0jO583dAWFgYY8aMafEWGxtLVFQUY8aMISQkhPLycn75y1/y7bffsn//fpYtW8Zll13GkCFDmDlzZiA/1F5t4oA4QmxW8kpr2H+0ssVtDoeDX7+1kZV7jxIZGsRzt5xMakx4i3OunNAPMP4v6emvdhIREZGuIcjdO1x77bUUFBTwwAMPkJuby/jx41m6dKlz4Ex2dnaLju37778fi8XC/fffz+HDh0lKSuKSSy7h97//vfOcQ4cOcf3113P06FGSkpKYNm0a3377LUlJSc5zHn30UaxWK7NmzaKmpoaZM2fy5JNPduZj794a6qC0sStCESUiIn61M6/cefzz19fz4U+mkx4fEcAdedenW4387Rkjk7FYLABMyUxgybrDzs7uzjDXmDK47e7t41ksFm6eOpBHP91JXmkNmw+XMrZ/14gB2XqklP9szsViUfe29Gzu/h3QEZvNxsaNG3nhhRcoLi4mLS2N8847j0ceeYTQ0FBffRjSgbBgG+PTY1m9/xir9h5lUGIf522PfraLJesOY7NaeOLGiYxKO/EJvYzEPkwcEMva7GLeW3+E26YP9uf2RUREpBeyOLpaC5SPlJaWEhMTQ0lJSc/I6ju2D/42HoLC4P/lQmMBQkREfKumvoFRD3xMg93BkL6R7M4vJ6t/DK/fOZXQIFugt9dpDXYHJ//+M45V1PLy7ZM5NdMYDnfwWCXT//QFQVYLGx48jz6hbj9H7nTGn7/gwNFKnrvlJM4ekezWfe98aQ1Lt+Tyk3OGMu/cYR7vwZvuePF7Ptmax8XjUvn7DRMDvZ1eqcf9nicu0+feNxZ+soO/fb6by8en8dh1EwB4/fuD3PfmRgD+98qxXHdK268iXfTtAe5/ZzOjUqP56KfT/bJnERER6Vnc+T3P7YgS6SKax5OouC0i4jf7CitosDuICg3i+TknExsRzIZDJSz4aHugt+YV67KLOFZRS3RYECdnNHVYp8dH0C82nHq7g+8PFHm8/pHiKg4crcRqocX6rpoxyiiIL9vWNaJhNh8u4ZOteVgs8DN1b4tID9E0aPIYDoeDr3cV8pslmwC4+6zMdovbABePSyXEZmVrTinbckp9vl8RERHp3Txvv5KOPXmq79auLjEulb8tIuJXZjzJsJQo+sdFsPCaLG59/nue/2Y/J2fEc9G47j0Y7bNtRjzJWSP6Emxr+Tz41MwE3lxziJV7jnLGsKTW7t4hM397bL8Y51Ayd5w1PAmrBbYcKeVIcRVpseEd38mHHvtsFwCXZqUxpG9UQPciIuItEwbEEWyzkFNSzSdb8/jF6xuotzu4bHwavzhveIf3j40I4ewRfVm6JZe31x3WbAIRERHxKRW4fSl/i+8fo98k3z+GiIg47corA2BYciQAZ49I5q4zM3lq+R5+9dZGRqVFt8gr7W4+a+yMPmfkidEhUwc3Frg7MWjSmb+dmeDR/RMiQ5k4II7vDxSxbFseN0/N8HgvnbXxUDGfbcvDaoGfnKPubRHpOcJDjBzu7/YX8ePFa2mwO5g8KJ4/XTXOOZuhI1dO7MfSLbm8s+4wvzp/BDarXnUqIiIivqECty/Nfte36weFQb+TfPsYIiLSws7GAvfQZt26Pz93GGv2F7F6/zHuWrSGd+4+jbDg7pfHvb+wgt355QRZLa12aJtF6c2HSyirrvOoA9ssjk8d7FmBG4yYku8PFPHZtnyvFrh35Jbx392FLp//4aYcAC4f34/MpEiv7UNEpCuYPCiB7/YX0WB3kJnUh3/cfJJbsybOHN6XuIhg8stq+O/uQk738JU/IiIiIh1RgduXBp8Z6B2IiIiX7TIjSpKbCtxBNiuP3zCBi/72Fdtzy3jovS3876xxgdqix8zu7cmD44kJP7F43S82nAHxEWQfq+T7/UWcNaKvW+sfPFbJoaIqbFaLR/nbphkjk/nf/2xn5Z6jlNfUE9mJgZemugY7Nz27ioKyGrfuZ7NauEfd2yLSA50xPIm/f7GbxMgQnp9zCjER7j2pGRJk5ZKsNF5ceYAlaw+pwC0iIiI+owK3iIiIi6rrGth/tAJoiigxJUeH8dfrJnDTs6t49buDnJwRz6xJ/QOxTY8540lGnBhPYpo6OIHsY5Ws3HvU7QK3mb89rn8MfTpRlM5M6kNGQgT7j1by1c4CLhjb+dzzz7fnU1BWQ0x4sFv54mcMS+rWkTQiIm05OSOe5+eczLDkKI/nHVwxoR8vrjzAx1vyvPaEpIiIiMjx9BuGiIiIi/YUlGN3QEx4MElRoSfcftqQRH52zjAe/Wwn97+zmbH9Y1p0endlJZV1fLe/CDA6pNsyNTOB174/6MzSdoc34kkALBYLM0Ym86+v9/HptjyvFLjf+P4gANedks78C0Z2ej0RkZ7gzOHuPZF5vPHpsQxO7MPewgqWbs7lqm72xK+IiIh0D9ZAb0BERKS7aIoniWxzyNbcs4cwfWgiVXUN/HjxWipq6v25RY8t35lPg93B8OQoBiREtHnelMbi9JYjJZRU1bm8vsPhYNXeY4BRJO+sGaOMIvwX2419d0Z+WTVf7CgA4OpJ6Z3em4iIGCwWC1dO7AfA2+sOBXg3IiIi0lOpwC0iIuIic8Bke13ZNquFR68dT3J0KLvzy/l/b2/C4ehcAdYfPt3aGE8ysv1uvZSYMAYl9sHugO/2HXN5/YPHqjhcXEWwzcKkgXGd2ivASQPjiAkPpqiyjrXZRZ1a6511h2mwO5gwIJYhfTUsUkTEmy4bbxS4v9lzlCPFVQHejYiIiPREKnCLiIi4aGcrAyZbkxgZyuPXT8RmtfDO+iO8svqgP7bnsdp6OysaO5jNzuj2mF3cZuSIK1buLQQgq38sESGdT0gLslk5a7iRlf1ZY3HeEw6Hgze+N7oK1b0tIuJ96fERTB4Uj8MB76w/HOjtiIiISA+kAreIiIiLduUbHdxDkzvu8j1lUDy/nDkcgIfe38LmwyU+3VtnfLf/GGU19SRGhjC+f2yH508ZHA/gVg63ea434klMZjHeHI7piQ2HStiVX05YsJWLszqf5S0iIidyxpSsPdwtXtUkIiIi3YsK3CIiIi6oqm0g+1gl0HEHt+mO6YOZMbIvtfV27n55LaXVrmdW+5MZT3L2iL5Yra1nizdnDonclltKcWVth+c7HA6+NfO3OzlgsrnThyURZLWwp6CCvQXlHq1hDpc8f3QK0WHBXtubiIg0uWBsKqFBVnbll7P5cGmgtyMiIiI9jArcIiIiLtidX47DAfF9QkiMDHXpPlarhb9cnUW/2HAOHK3kV29u7HKdaw6Hw9kBPWNkx/EkAH2jw8hM6oPDAatcyOHef7SS3NJqQmxWJnohf9sUHRbsjEtZti3f7ftX1zXw3oYjAFx9kuJJRER8JTosmHMbX3WzRMMmRURExMtU4BYREXGBOWByqJtDCGMjQnjixokE2yz8Z3Muz3+z3we789zOvHIOFVURGmRl2tBEl+9nRo24ElNinjN+QCxhwTbPNtoGcyimJzElH2/Jpay6nn6x4V7tLBcRkRPNmtgfgPfWH6GuwR7g3YiIiEhPogK3iIiIC3Y25m+7Gk/S3Pj0WP7fhSMB+MNH21iXXeTVvXWGWRg+bUiiW8Mfzc7pb10YNGkOo/RFEdnsOv/+QBFFFR3HpTT35hqji3DWpP4uRbOIiIjnpg9NJDEyhKMVtXy5syDQ2xEREZEeRAVuERERF+zKMzKeh6W4X+AG+MGpGVw0NpW6BgdzX17ndjHWV8z8bVfjSUxmgXt7bhnH2vlYjPxt7w+YNKXHRzAiJYoGu4PlO12PKTlcXMXXuwsBuHpSf6/vS0REWgqyWbk0yxg2uWTd4QDvRkRERHoSFbhFRERcYEaUDHMzosRksVj431ljyUiI4HBxFfNeX4/dHtg87vyyajYcKgaaoj5clRgZyrBk499iVTtd3HsKKigoqyEkyMr49FhPt9quppgS1wvcS9YcwuGAKYPjSY+P8Mm+RESkpSsnGgXuT7fmUVLVNQcvi4iISPejAreIiEgHKmrqOVRUBXgWUWKKCgvmyRsnERJk5YsdBTzz5V5vbdEjX2zPx+GAcf1jSI4Oc/v+Zhf3ynYK3OZtkwbEeT1/22R2n6/YUUBtfce5rg6HgzfXGvEkV0/ScEkREX8ZnRbNsORIauvtfLQpJ9Db8auuNmRaRESkJ1GBW0REpAO78414ksTIUOL6hHRqrVFp0Tx86WgA/vLJjna7n33t061Gx7O78SSmqS7kcPsynsSU1T+WxMhQymvqWbWv43/P1fuOceBoJZGhQVwwNsVn+xIRkZYsFgtXNg6bfHttz48pqa238/r3Bznn/5Zz6v9+zpYjJYHekoiISI+kAreIiHQLf1u2i2ueXhmQlzTvMONJkj2LJznetSenc+WEfjTYHdzzyjoKy2s8Xmv5jnzOf+xLfvaqe+tU1zXw9W5jyJenBe7JjQXunXnlrT62w+FwFvCn+GDApMlqtXDOCCOmZJkLMSVvNA6XvGhsqluDNUVEpPMuH98PiwVW7z/GwWOVgd6OT1TVNvD8f/dx5p+/4L43N7KnoIKckmpu+OcqNh1SkVtERMTbVOAWEZEu71hFLY9/vovV+4/xyZZcvz/+LmeB2/N4kuYsFgv/c8UYhvaNJL+shp++uo4GN/O4Syrr+MUbG7jl39+xPbeMd9Yf4bxHv+S9DUdcehn0f3cXUl1nJy0mjJGpnn1c8X1CGNE4dLO1Lu5d+eUUltcSFmwlKz3Go8dw1YxRRpH+06157X785TX1fLjReFn8NSdruKSIiL+lxIRxWmYiAG/3sGGTpdV1PPHFbqb98XMeen8rR0qqSYoKZf4FI5g4IJaSqjpu+Ne3rMsuCvRWRUREehQVuEVEpMt7Z91h6hqMomV7ec++sjPPiCjxVoEbICIkiCdvnEh4sI3/7j7K35btcvm+n23N49xHV/DmmkNYLHDj5AGMSIniWEUtP3llHT96aQ35pdXtr7EtDzAKwxaLxeOPw5nDvefEz4t53UkD4wkN8k3+tmnakERCg6wcLq5ie25Zm+d9tDGHqroGBif1YeKAOJ/uSUREWmcOm1yy9lCPyKY+Wl7DXz7ewWn/+zl//ngHRytq6R8Xzv9cPoav7juLH52RyYs/nMzJGXGUVddz87Or+W7/sUBvW0REpMdQgVtERLo8M1IC4Ns9R/3+x/AuL0eUmIYmR/GHK8cA8LfPd/HVroJ2zy+qqOWnr67jthe/J7+shsGJfXjjR1P5/RVjeW/uNO6dMYxgm4VPtuZx7qNf8taa1gsHdrvDGeXhaTyJyczWbq2D2x/526bwEBvThhgdgcsai/eteWPNQQCumtS/U4V9ERHx3MzRKYQH29h/tJIZC1dw98treXzZLj7eksuBoxXY3XxVU6AcKa7id+9v4bQ/fs7fv9hNWXU9Q/tG8ui1WSz/xZncNGWgc8ByZGgQL9x6ClMHJ1BeU88Pnlvd6pPDIiIi4j4FT4qISJe2+XAJ23JKCbFZceDgSEk1B49VMSAhwi+PX1Zdx5ESoxt6qBc7uE1XTOjP6n1FvLI6m5+9up4PfzKdlJiwE877z6YcfvvuZgrLa7Fa4PbTB3PvjGHOP5xDgqz8dMZQZo5J5pdvbGTT4RJ+/sYGPth4hD9cOZbUmHDnWpsOl5BfVkOfEBuTB8d3av+TB8VjscCeggryS6vpG23s3W53OAvcUzr5GK6aMSqZZdvz+XRbPnPPHnrC7fsKK/hufxFWC8yaqHgSEZFA6RMaxM1TB/KPL/eyp6CCPQUVfEiO8/aIEBtDk6MYnhzJ8JRoRqREMTwlisTI0ADuukl+aTX/98lOlqw75HyF2dh+Mdx91hDOG5WM1dr6E6gRIUE8d8vJ3PHS93y1q5A5z6/mX7NPZtrQRH9uX0REpMdRgVtERLq0Nxu7t88dnUx+aTXf7S9i5d5CBiQM8Mvj78o34kmSo0OJCQ/2yWM8eMkoNhwsZmtOKfe8spZXbp9CkM14kVVheQ0PvLuZjzYZ2ePDkiP501VZjE+PbXWtESnRvP3jU/nHV3t57NNdfLGjgPMWfsn9F4/kmpPSsVgszniSM4YndTo6JDYihJEp0WzNKWXl3qNcNt542fmOvDKKKuuICLExrn/re/U2c9DkhoPFLYrtpjcbu7dPH5ZEcvSJTyKIiIj//ObCkcw5LYMduWXOt+25ZewuKKeytoENB4vZcLC4xX1Gp0Xzz9knkRYb3vqiflBZW89Nz65yxpdNGRzP3WcNYdqQRJdeGRQeYuOfs0/irkVr+GJHAbe+8B3/uHkSZw7v6+uti4iI9FiKKBERkS6rpr6Bd9YbA6iuntS/3bxnX/H2gMnWhAXbePLGiUSGBvHd/iL+8slOHA4H764/zLkLV/DRplxsVgv3nD2E9++Z1mZx2xRks/LjM4fw0U+nMWFALGU19fzqrU3Mfm41h4oq+cxL8SSmppiSpjxRs3v7pIx4gm3++XWjb3QYWf2NYZafb89vcVuD3cFba8yvpXS/7EdERNqXGhPOmcP78qMzMll47Xg++ul0tv5uJp/NO4MnbpjIT84ewszRyWQkRGCxwJYjpVz7j5UcKqoMyH4dDgf3v72ZnXnlJEWF8uadU3n1jqlMH5rkVuxVWLCNp2+exLmjkqmtt3PHi2v4bGvb8VoiIiLSPhW4RUSky1q2LZ/iyjpSosOYPjSJqYObCqn+yuHekWt0aA3t67sCN0BGYh/+dNU4AJ5esYdrn/mWn766nqLKOkamRvPu3afx8/OGu9VxPaRvFG/eeSr3XzSS0CArX+0q5LxHv2RbTilWC5zlpW6xps9L0xMP5pMQ5m3+YhbtPzsuh/vr3YXkllYTGxHMjFHqkhMR6aqCbFaG9I3konGpzDtvOM/cfBLLf3kWX//qbAYmRHDwWBXXPvMt2Uf9X+R+ZfVBlqw7jM1q4e/XT+CkDM8juEKDjCe3LxybQm2DnTsXrWHp5pyO7ygiIiInUIFbRES6rDe+NyIlrpzYD5vVwsSBcYTYrOSWVrPfT3/Y7sr3zYDJ1lw4NpVbTs0AYPX+YwTbLMw7dxjvzT2NMf1iPFrTZrVw2/TBLP3Z6ZySEU9lbQMAJw2MJ65PiFf2ffKgeKwWI+M6t6Qau93Bqn1GN7e/8rdN5zQWuL/aVUhV48cKTV9Ll2WldTqWRURE/K9fbDiv3TGVQYl9OFxcxXX/WMn+wgq/Pf6mQyU89N4WAH45cziTvfAEbrDNyt+um8ClWWnU2x3c/fI63t9wpNPrioiI9DYqcIuISJeUV1rNip0FAFw1yRgIGBZsY/yAWMB/MSU7zYiSFN92cJt+c+FILhqbyrQhibx/zzR+cs5Qr0R8DErsw6t3TOGhS0Yxpl80PznnxCGMnooJD2Z0mlGAX7m3kK05pZRU1REZGsRYDwvznhqZGkW/2HBq6u18vbsQgJLKOj5pfOn31ScpnkREpLtKiQnjtTumkJnUhyMl1Vz3j2/ZW1Du88ctrqzlrsVrqG2wc+6oZH50+mCvrR1ks/LoteO5cmI/GuwOfvrqOt5ed8hr64uIiPQGKnCLiEiXtGTtYewOOGlgHIOTmrqnzciLlXt9X+Auqaojr7QGgKF9fd/BDRASZOWJGyey6LbJjEiJ9uraVquFW04bxAf3TGfa0ESvru3M4d5zzBlVcnJGnHNYpr9YLBZmjDQiSJY1xpS8t+EwtfV2RqREMTrNu/+mIiLiX32jw3jljikM7RtJbqlR5N6d77sit93u4Oevb+BQURUD4iP4y9VZbuVtu8JmtfCXq7K47uR07A6Y9/oG3lqjIreIiIirVOAWEZEux+FwOCMlrjmu47ZpoOFRn+dwmwMm02LCiAoL9uljdXfNn3gwC9xT/Jy/bTrHmcOdj93u4I3GIsHVJ6V7vSghIiL+1zfKKHIPT44iv6yG6/7xrfP/bG97asUelm3PJyTIypM3TiQm3De/D1itFv5wxVhumjIAhwPuf2cz5TX1PnksERGRnkYFbhER6XLWZhext7CC8GAbF45LbXHb+PRYQoOsFJTVsKfAt9mbO/MaB0wm+yeepDs7KSMOm9VC9rFKvtplRIOYT0b42+TB8USGBlFYXsMbaw6y8VAJQVYLl49PC8h+RETE+xIjQ3nljimMTI2msNwocu/I9W6R+5s9hfzfJzsAeOSy/8/efcc3XW9/HH8l6d57F0pbKHsVRPYWRXHinjiv4oJ7vYpX5V4XXvWnuL1X5bpwobhAUUCmbMqmzNJSugfdM+P3xzdJW+hI0rTpOM/Ho4+E5Ds+odBxcr7vM8DmeRiWUqtVPHfFQGKDPKms1fHrARk6KYQQQlhCCtxCCCE6nGW7lI7bmYPC8XJ1avCcm7OG4T38gbaPKTHnb7fDgMnOztvN2fyLf7VWj7ebkzmXu725OmmY2CcYgOdWJAMwtV8IgV6uDlmPEEKIthHg6cIXd49iQIQPBeU13PjBNg5nltjl2DklVTz85R70BmUWyLlXlLUVlUrFNcbZI98lSUyJEEIIYQkpcAshhOhQKmq0rNivdCxdOyKq0W3q8p7bp8AtHdyWGV0vkmRUrwA0asfFgUw15nCbLu++NlGGSwohRFfk7+nCF3dfyOAoXwrLa7jpw20czChu1TFrdXoe/CKJ/LIa+oZ589wVA9s14uqqYZGoVLAtpZD0wop2O68QQgjRWUmBWwjR7Z0tr+GPIzltnufcEZzKL2fT8bwO/VpXHcymrFpLjwAPRvUKaHSb9srhNkWU9JECt0UujA2od98x8SQmkxNCMNXXg7xcmZQQ7ND1CCGEaDu+Hs58dtcohkb7UVRRy00fbGP/mSKbj/fKb0fZmXoWb1cn3rslEXcXjf0Wa4EIP3fGGH/WWZ6U0a7nFkIIITojKXALIbq9R7/ey50f72JlF885TC+s4Iq3N3PrRzu4bckOzpztmB1BpniS2YlRTXZLDY7yxc1ZTUF5Dcdzy9pkHWfLa8gvqwagd4hElFhiZEwAzhrlc+ao/G0Tf08XRsQoBferh0fipJEfeYQQoivzdXfms7suILGnPyVVWm7+cDtrk3Oo0eqtOs6qg9n8d2MKAK9cO5heQZ5tsdwWXTNcuYpt+Z4zHboxQQghhOgI5Lc9IUS3ll5YwYZjeQCsO5Ln4NW0nWqtjgeWJlFSpcQ1bDqez4zXN/LZtjT0+o7zS1N6YQVbUwpQqTDnTzbG1UnDiJ5K8XJrG8WUmOJJovzd8TwnB1w0ztPVideuG8rTl/V3WP52ff+cNYA7x/Zi7uR4Ry9FCCFEO/B2c+aTOy9gZIw/pVVa7vpkF8Oe/Z17Pt3FZ9vSWoz7SM0v57Fl+wC4e1wvLh4Y3uz2benigWF4umhIK6hgV9pZh61DCCGE6AykwC2E6NbqD+/Z1sYDCx3phZXJHMgoxs/DmS/uHsXIGH/Ka3Q8/cNBbvpwG6cLOkY397e7lc/H2LggIv3cm922fkxJWziWK/Ektpg1JIK7xvVy9DIA6B/hwzOz+uPr7uzopQghhGgnXq5OfDznAm68oAcBni6U1+hYfTiHp384yPiX1zH51fX886dDrDuSS0WN1rxfVa2O+5cmUVqtZWSMP49f0teBrwI8XJyYOUgpsH+3W4ZNCiGEEM2RljQhRLel1xvMBVWAjKJK0gsriA7wcOCq7O/nfZl8ujUNgNevH8qY+CAujA3k062p/HvVUbalFDJj8UYem5HAHWNiUDtoMGD9z0dTwyXrM2U8b0spQK832H3dx80DJiWeRAghhOhMPF2dWHT1IF64ciCHMkvYcCyXjcfy2X36LKfyyzmVX87HW1Jx0ai5oFcAE/oEcSizhOSsEoK8XHj7puE4d4Boq2sSo1i2+wwr92excNaAds8CF0IIIToLKXALIbqtbacKOHO2Em9XJ3oEenAos4StJwu6VIE7Ja+MJ77bD8DcyXFMTggBQK1WccfYXkzpG8rj3+1na0oBz644zC8Hsnh59mBig9u/qLstpYCMokq83ZyYMSCsxe0HR/ni4aLhbEUtR3NK6RfuY9f1mCJK+oRIB7cQQgjRGanVKgZF+TIoypcHp/SmpKqWLScK2HAsj43H8sgoqmTziXw2n8hXtlfBmzcMI9THzcErV1wQE0CUvztnzlby++Fsrhga6eglCSGEEB2S49+WFkIIBzENM5w1NIJJCcEAbO1CMSWVNUrudnmNjlG9Apg3rc952/QI9GDp3aN4/sqBeLpo2JV2lkve2MR/NpxE187Z3MuM3duzhkTg5txyh5KzRm0eItgWOdzHciSiRAghhOhKfNycuXhgGIuuHsTmxyezZv5EnrmsP5MSgvH3cOapS/szJj7I0cs0U6tVXG0cNvmtxJQIIYQQTZICtxCiWyqpquXXg1kAXJsYxehY5ZeZbSkFXWZS/cKfDnIku5QgL1feunEYTk1caqtWq7jlwp78Pn8i43sHUa3Vs+jXI1z93hZzTEdbO/fzYanRsW2Tw51fVk1heQ0qFcSHSESJEEII0dWoVCriQ7y4c1wvPp5zAXueuYg7O8gMifquGa50bf95Ip/s4ioHr0YIIYTomKTALYTollbuz6KqVk98iBdDo/1I7OmPs0ZFVnEVaQ4cuJhXWs3zKw6z4Vheq46zbFc63+w6o1xqe+NQQiy41DbSz51P77yAl68ZjLebE/vSi7j0zc18siW1VWuxxLmfD0uZBk1uP1WI3o4d56Z4kh4BHpJ3KYQQQgiH6RnoyQUxAegN8P2eDEcvRwghhOiQpMAthOiWlu1KB5RuYZVKhbuLxlxYdVRMiVan54Glu/lw8yluX7KD+d/spbii1urjHM0u5ekfDwIwb1ofxsRZfqmtSqXiupHRrJ43kSl9Q6jR6fnXz4c4mVdm9Tqs8c05nw9LDYzwwcvVieLKWg5nldhtPceN8SS9JX9bCCGEEA52TaLSxf1d0pkuc6WhEEIIYU9S4BZCdDsncstIOl2ERq3iquF1w3raKu7CUq/+foydqWdxdVKjUsHypAymvb6B3w9lW3yM8mot9y/dTVWtngl9gpk7Od6mtYT5uvHR7SOY1i8EvQHeXHvcpuNY4kRuKXsa+XxYwkmjZmSMP2Dfz5t5wGSoxJMIIYQQwrFmDgrHzVnNidwy9p0pdvRyhBBCiA5HCtxCiG7HNKRnUp9gQrzrojsuNMZdbD3Z/jnca5NzeH/DSQBev34o3/5lNLHBnuSVVnPvZ7t5+Ms9FJbXNHsMg8HAk98fICWvnDAfN16/bghqteXd0OdSqVQ8ahxM+dO+TE7ktk0et2m45OSEhp8PS5liSuxZ4D4uAyaFEEII0UF4uzkzY0AYAN/JsEkhhBDiPFLgFkJ0K1qdnuVJyi8G145oOMxweA9/XDRqckurSckvb7c1nTlbwfxv9gFwx5gYZg4KJ7FnAL88PJ77JsaiVikF5ote38AvB7KaPM7S7af5cW8mGrWKt28aRqCXa6vXNjDSlxkDQjEYYPEa+3dxK58PJU9ydmK0Tce4MLYuh1tnhxxug8HAMWMxv7d0cAshhBCiA7hmuPJz60/7MqnW6hy8GiGEEKJjkQK3EKJb2XQ8n9zSagI8XZjSN7TBc27OGob18AOULu72UKPVM/eLPRRX1jIk2o8nZ/ZrsJ4Fl/Tj+wfG0ifUi/yyGh5YmsT9n+8mr7S6wXEOZhTz7M+HAXj84gRGxATYbY2mLu6VB7I4mm3fLu6Nx/PIM38+Qmw6xoAIX7zdnCit0nIos/WX7eaVVlNUUYtaBXHBUuAWQgghhOONjQ8izMeN4spa/kjOdfRyhBBCiA5FCtxCiG5l2W5lmOEVQyNwcTr/S2BbxF0058VfktmXXoSvuzNv3zis0TUNifbj54fG8dCUeDRqFb8ezOai1zfw494MDAYDxZW1PLA0iRqdnun9Q7lnfKxd19gv3IeZg8IwGOCNtcfseuxlu5Ru+iuHRjb62i2hUasY1Usp6Nvj83bMGE/SM9ATN2dNq48nhBBCCNFa9WeVfJckMSVCCCFEfTZVE9555x1iYmJwc3Nj1KhR7Nixo9ntFy9eTEJCAu7u7kRHRzNv3jyqqqrMzy9atIiRI0fi7e1NSEgIV155JUePHm1wjEmTJqFSqRp8/OUvf7Fl+UKIbupseQ1rDisdL9c2EYdRN2iysM1zuH85kMXHW1IBeO26IUQHeDS5rauThr9elMCPc8fSL9yHsxW1PPLVXu75dDfzv97L6cIKovzdeXX2EFQq23O3m/LI1D6oVPDLgWySs0rscszC8hrWJOcA58fFWMsUU2KPznsZMCmEEEKIjsgUU7LuaN55V/MJIYQQ3ZnVBe6vv/6a+fPns3DhQpKSkhgyZAgzZswgN7fxy6S++OILnnjiCRYuXEhycjIfffQRX3/9NU8++aR5mw0bNjB37ly2bdvG6tWrqa2t5aKLLqK8vGEG7j333ENWVpb54+WXX7Z2+UKIbuzHvRnU6PQMiPChf4RPo9sM7eGHq5Oa/LJqTuSWtdlaUvPL+fu3+wG4b2IsU/uFtrCHYmCkLz89OJb50/vgrFGxJjmHtUdycdGoeffm4fh6OLfJehPCvLl0UDgAi9fYp4v7293p1OoMDIz0oV94458PS5kK3DtTz6LV6Vt1rOO5pgK3DJgUQgghRMcRH+LFkGg/dHoDP+7NcPRyhBBCiA7D6gL3a6+9xj333MOcOXPo378/77//Ph4eHixZsqTR7bds2cLYsWO56aabiImJ4aKLLuLGG29s0PW9atUq7rjjDgYMGMCQIUP4+OOPOX36NLt3725wLA8PD8LCwswfPj6tK4gIIbqXZcap89cmNt0t7OqkIbGnPwBb2yimpKpWxwNLkyir1jIyxp+/XZRg1f7OGjUPT+3Nzw+NY3CULyoVPDOrP4Oj/NpkvSaPTO2NSgW/HcppddZ1clYJ//e7Uii/6YKerV5b/3AffN2dKavWciCjdWszRZT0lgK3EEIIITqY2eaYEilwCyGEECZWFbhramrYvXs306ZNqzuAWs20adPYunVro/uMGTOG3bt3mwvaKSkp/PLLL8ycObPJ8xQXK8WJgICGQ9KWLl1KUFAQAwcOZMGCBVRUVDR5jOrqakpKShp8CCG6r0OZxRzKLMFFo+aKoZHNblsXU9I2Be5//XyYw1klBHq68NaNw3HW2JY93TfMhx8eGMvOf0zjlgtbXyRuSe9Qb2YNjgBg8ZrjNh+nrFrL3KVJVGv1TOwTzA0jG4+LsYa6QQ53oc3HMRgMElEihBBCiA5r1pAIXDRqkrNKOJwpv+MKIYQQYGWBOz8/H51OR2how0vpQ0NDyc7ObnSfm266iWeffZZx48bh7OxMXFwckyZNahBRUp9er+fRRx9l7NixDBw4sMFxPv/8c9atW8eCBQv47LPPuOWWW5pc66JFi/D19TV/REe3voAihOi8TMMMp/UPwd/Tpdlt6wZNFqLX2zeH+/s9Z/hyx2lUKlh8w1DCfN1adTy1WkWQl6udVteyh6f2Rq2C1YdzOHDG+k5pg8HAguUHSMkvJ9zXjdevH4pabZ/McHMOdyvemMgpqaa0SotGraJXkKdd1iWEEEIIYS9+Hi5M6x8CyLBJIYQQwsS2tkErrF+/nhdffJF3332XpKQkli9fzsqVK3nuueca3X7u3LkcPHiQr776qsHj9957LzNmzGDQoEHcfPPNfPrpp3z//fecPHmy0eMsWLCA4uJi80d6errdX5sQonOo0erNOYVNDZesb3CUH+7OGgrLazhmzGO2h+M5pTy5/CAAD0/pzfjewXY7dnuJD/Eyd8DbksX9+bY0ft6XiZNaxds3DSeghTcbrGF6Y2JXaiG1NuZwHzV2b8cEeuDqpLHb2oQQQggh7MU0bPKHPRk2/8wjhBBCdCVWFbiDgoLQaDTk5OQ0eDwnJ4ewsLBG93n66ae59dZbufvuuxk0aBBXXXUVL774IosWLUKvb/jN+MEHH2TFihWsW7eOqKimM3IBRo0aBcCJEycafd7V1RUfH58GH0KI7mltcg5nK2oJ9XFlfO+gFrd3cVIzIkbJ4d520j4xJRU1Wu5fmkRlrY6x8YE8PLW3XY7rCA9P7Y1GrWLtkVz2phdZvN/+M0U8tyIZgCcu6WvOOreXhFBv/D2cqajRsf+M5euq73iODJgUQgghRMc2oU8wQV4uFJTXsOFonqOXI4QQQjicVQVuFxcXEhMTWbt2rfkxvV7P2rVrGT16dKP7VFRUoFY3PI1Go3TFGQwG8+2DDz7I999/zx9//EGvXr1aXMvevXsBCA8Pt+YlCCG6IdNwyauHR+FkYd61PeIuTAwGA099f5ATuWWEeLuy+PphaOwUy+EIvYI8udLKLu7iiloeWJpEjU7PRf1DuWtcy1/nraVWq8yfN1tzuI9JgVsIIYQQHZxzvZkynTmmRK83sGJ/JhlFlY5eihBCiE7O6oiS+fPn88EHH/DJJ5+QnJzM/fffT3l5OXPmzAHgtttuY8GCBebtZ82axXvvvcdXX33FqVOnWL16NU8//TSzZs0yF7rnzp3L559/zhdffIG3tzfZ2dlkZ2dTWal8ozt58iTPPfccu3fvJjU1lZ9++onbbruNCRMmMHjwYHv8PQghuqjckirWH80F4NrE5q8Mqc9UKN1+qvU53F/vTGf5ngzUKnjrxmEEe7dfZnZbeXhqPBq1ivVH89iddrbZbQ0GA3/7dh9nzlYSHeDOK9cOQaVqmwK/+Y0JGzvvj+WUAVLgFkIIIUTHNtv4c+3a5FyKKmocvBrbLN2exoNf7OGuj3eam9+EEEIIWzhZu8P1119PXl4ezzzzDNnZ2QwdOpRVq1aZB0+ePn26Qcf2U089hUql4qmnniIjI4Pg4GBmzZrFCy+8YN7mvffeA2DSpEkNzvW///2PO+64AxcXF9asWcPixYspLy8nOjqaa665hqeeesqW1yyE6EaW78lAb4DEnv7EBntZvN/gKF88XDQUVdSSnF3CgAhfm85/uqCChT8dAuBvMxIYZSzAdnY9Az25Zngk3+w6w+I1x/jsrlFNbvvR5lOsPpyDi0bNuzcl4uvu3GbrMudwpxVSrdVZlaNtMBg4kWsqcFv+b0UIIYQQor31C/ehf7gPh7NK+HlfJreOjnH0kqxSVavj7XVK3OiR7FL+OJLL1H6hDl6VEEKIzsrqAjcoWdkPPvhgo8+tX7++4QmcnFi4cCELFy5s8ngtvVsbHR3Nhg0brF6nEKJ7MxgMLNulDJi1pnsblEs/R8YEsOFYHttSCm0ucL/5x3GqtXpGxwbylwlxNh2jo3poSm+WJ2Ww6Xg+u1ILGRETcN42u9MKeenXIwA8Pas/g6Js+3u0VO8QL4K8XMgvq2H/mWJGNrKmpmQWV1FWrcVZoyImyLMNVymEEEII0XrXJEZxeMVhvk3K6HQF7i93nCanpNr853fWnWBK35A2u8pPCCFE12Z1RIkQQnQWe9KLOJlXjpuzmksHW5/Xb+oGtjXu4lR+Od/vyQDgsYsTUHfi3O3GRAd4cO0I5Y2D1xvJ4i4oq2bu0j1o9QYuHxLBLaN6tPmaVCqVuUve2s+bKX+7V5AnzhZmtQshhBBCOMoVQyNwUqvYl17EidxSux8/v6yaz7am8uGmFHStjOyrr7JGx7vrTwIwb1ofXJzUJJ0uYvsp22aoCCGEEPIbvBCiy1q2Sxm6M3NgON5u1sdi1OVwF9j0Q/1ba4+j0xuYlBDM8B7+Vu/fGcydHI+zRsWfJwrYXm8gp15vYN43+8guqSI22JMXrx7Ubh05tuZwH8tWfjHsLfnbQgghhOgEgrxcmZQQDMD8b/bxyZZU0gsrWnXMsmoty5POcPuSHYx6cS1P/3iI51cm8+nWVDusWLF0exp5pdVE+btz/6Q4rjM2TJiK3kIIIYS1pMAthOiSKmt0rNiXCcDsEdbFk5gMjPDBy9WJ0iothzNLrNr3ZF4ZP+xVurfnTetj0/k7gyh/D64bEQ007OJ+d/0JNh7Lw81Zzbs3D8fL1aZELJuMNha4d58+S1WtzuL9zAMmQ6TALYQQTXnnnXeIiYnBzc2NUaNGsWPHDov2++qrr1CpVFx55ZUNHjcYDDzzzDOEh4fj7u7OtGnTOH78eBusXIiu6c5xvXDWqNh/ppiFPx1i/MvrmP7aBhb9ksy2lAJqdfoWj1Gt1fH7oWzmfpFE4nOrmf/NPjYcy0OnN9Az0AOA//v9GLklVa1eb0WNlveMheyHp/TGxUnNfRPi0KhVbDyWx4Ezxa0+hxBCiO5HCtxCiC5p1aEsSqu1RPm7c2Ev2wY7OmnUXNBLyXDelmJdN/Bba4+jN8DUviEMifaz6fydxdzJ8bho1GxLKWTLyXy2nMzntdVKsfu5KwbSN8ynXdcTF+xJsLcrNVo9e9OLLN7vuPHS3oQwGTAphBCN+frrr5k/fz4LFy4kKSmJIUOGMGPGDHJzc5vdLzU1lb/97W+MHz/+vOdefvll3nzzTd5//322b9+Op6cnM2bMoKqq9YU0IbqDMXFB/D5vIk/O7MuFsQFo1CqO55bxn40p3PDfbSQ+t5oHv0ji+z1nKCyvMe+n0xvYcjKfJ77bz8jn13DvZ7tZuT+Laq2e2CBP5k3rw7q/TWLdXycxJNqPsmotz69MbvV6P92aRkF5DT0DPbhqeCSgxN7NMsYJvrfhRKvPIYQQovtpv5Y6IYRoR6Z4ktmJUa3Kvr4wNoA/juSyNaWAeybEWrTPidxSfjR2j8+b3nW7t00i/Ny54YJoPt2axku/HiGzqAq9QRnsea2xu7s9qVQqLowN5Od9mWw9WWCOLGmOXm/guLGDWyJKhBCica+99hr33HMPc+bMAeD9999n5cqVLFmyhCeeeKLRfXQ6HTfffDP/+te/2LRpE0VFRebnDAYDixcv5qmnnuKKK64A4NNPPyU0NJQffviBG264oc1fkxBdQa8gT+6dEMe9E+Iorqxl0/E8/kjOZf2xPArLa1ixP4sV+7NQqWBYtB8JYT78cSSnwZDHUB9XZg2O4IqhkQyM9GkQLff8FQO54p3N/LQvk+tHRjM2PsimdZZVa/nPBqV7+6EpvRvMPLl/Ujw/7M3k14PZnMgtIz5EGg6EEEJYTgrcQohGlVbVsiv1LON6B3W6gXvphRVsMeYvXzPctngSk9Gxyg/wO04VotXpcbLg7+KNtScwGGB6/1AGRvq26vydxQOT4vlqZzr7jZeV9g3z5tkrBjpsPaONBe7fDmUT7uvW4valVVoqa3W4aNT0DPBohxUKIUTnUlNTw+7du1mwYIH5MbVazbRp09i6dWuT+z377LOEhIRw1113sWnTpgbPnTp1iuzsbKZNm2Z+zNfXl1GjRrF169ZGC9zV1dVUV9cV5UpKrIsQE6Kr83V35rLBEVw2OAKd3sDe9CLWHcll7ZFckrNKSDpdRNLpIgB83JyYOSicy4dGMKpXIJommkIGRfly64U9+WRrGk//eJBVj0zAxcn63w8+2ZLK2YpaegV5cuXQiAbPJYR5M61fKGuSc/jPhpO8cu0Qq48vhBCi+5ICtxDiPOuP5vLk8gNkFldxy4U9eP7KQY5eklW+S1K6t8fEBRLdymJl/wgffNycKKnSciizpMW4kWM5pazYr3RvPzqtd6vO3ZmE+bpx0wU9+HhLKp4uGt65eTjuLhqHrWd0nNK1fSS7lCeWH7B4v7gQL4vexBBCiO4mPz8fnU5HaGhog8dDQ0M5cuRIo/ts3ryZjz76iL179zb6fHZ2tvkY5x7T9Ny5Fi1axL/+9S8rVy9E96RRq0js6U9iT3/+NiOBzKJK1h3N5XhOGWPiApmYEIyrk2U/r82/KIGVB7JJySvng00pzJ0cb9VaSqtq+e/GFAAemdq70Z+3Hpgcx5rkHL7fk8Gj0/sQ6edu1TmEEEJ0X1LgFkKYFVfU8tzKw3y7+4z5sa92pHPfhLhWF4rbi15vMK//WhuHS9anUau4oFcga5Jz2JpS0GKB+401xzEY4OIBYQyI6B7d2ybzpvWhWqtn1uBw4oIde1lpryBPHpuRwJ7TZy3eR61SccuFPdtwVUII0X2UlpZy66238sEHHxAUZFucQWMWLFjA/PnzzX8uKSkhOrr947CE6Iwi/Ny5eZRtP+v4ujvzj0v7Mu/rfbz1x3EuHxJh1e8H//szleLKWuKCPZk1JKLRbYb38Gd0bCBbUwr4YGMK/7x8gE1rFUII0f1IgVsIAcCawzk8+f0BckurUangjjExHMkqZWtKAW//cYJ/zx7s6CVaZNupAs6crcTb1YmLB4Tb5ZgXxgYoBe6TBfxlYlyT2x3JLmHlgSwAHp3efbq3TXw9nFl0dcfp9re2s0gIIUTTgoKC0Gg05OTkNHg8JyeHsLCw87Y/efIkqampzJo1y/yYXq8HwMnJiaNHj5r3y8nJITy87nt2Tk4OQ4cObXQdrq6uuLq6tvblCCFscOXQSL7akc72U4X86+fDfHj7CIv2K66s5YNNSvf2o9P6NBmFAsrPb1tTCvhq52kemhJPoJf8fxdCCNEyuQ5biG7ubHkNj361h7s/3UVuaTWxQZ4su280C2cN4G8zEgD4NukMaQXlDl6pZb41Dpe8bEiE3SIyTHEXO1MLqdXpm9xu8erjAFw6KJy+YT52ObcQQgjREbi4uJCYmMjatWvNj+n1etauXcvo0aPP275v374cOHCAvXv3mj8uv/xyJk+ezN69e4mOjqZXr16EhYU1OGZJSQnbt29v9JhCCMdSqVQ8f+VAnNQq1iTnsOZwTss7AR9tPkVplZY+oV5cOqj5BpSx8YEMjvKlqlbP//5MtcOqhRBCdAdS4BaiG1t1MIvpr2/kh72ZqFVw34RYfnlkPCNiAgBI7OnPxD7B6PQG3vrjhINX27LSqlp+Oah0UNsjnsSkX5gPfh7OVNToOJBR3Og2hzKLWXUoG5UKHulG2dtCCCG6j/nz5/PBBx/wySefkJyczP333095eTlz5swB4LbbbjMPoXRzc2PgwIENPvz8/PD29mbgwIG4uLigUql49NFHef755/npp584cOAAt912GxEREVx55ZUOfKVCiKb0DvXm7vGxAPzz50NU1uia3b6oooYlm08BSve2upnubVCK6A9MUq7C+2RrKqVVtXZYtRBCiK5OCtxCdEMFZdXM/SKJv3yeRH5ZNb1DvPju/jEsmNkPN+eGXc/zpvcB4Ps9GaTmd+wu7pX7s6iq1RMX7MmwFrKyraFWqxjVSyn6bz1Z0Og2i9co3duXDY6gT6i33c4thBBCdBTXX389r776Ks888wxDhw5l7969rFq1yjwk8vTp02RlZVl1zL///e889NBD3HvvvYwcOZKysjJWrVqFm5tbW7wEIYQdPDw1nghfN86creSddc03wXy46RRl1Vr6hnlz8YDz44wac1H/UOJDvCit0vL5ttP2WLIQQoguTgrcQnQjBoOBn/dlMv31jazcn4VGrWLu5DhWPDyOYT38G91naLQfkxOULu43/zjeziu2zjLzcMloVKrmu0OsdWGsElOyLeX8AvfBjGJWH85RurenSu6zEEKIruvBBx8kLS2N6upqtm/fzqhRo8zPrV+/no8//rjJfT/++GN++OGHBo+pVCqeffZZsrOzqaqqYs2aNfTp06eNVi+EsAcPFyeemaUMgPzPxpOczCtrdLvC8hr+96fSvT1vesvd2yZqtco89+ajzaeoqm2+S1wIIYSQArcQ3URuaRV/+Xw3D325h8LyGvqGefPj3LE8NqMvrk7NZ1Wburh/2JPR5A+w1vp652k+25pql2MBnMwrY3faWTRqFVcPi7TbcU1MOdy7Us9So22Yw714zTEArhgSQXyIdG8LIYQQQoiubcaAUCYnBFOrM/DMjwcxGAznbfPfjSmU1+gYEOHDRf1DrTr+FUMjiPRzJ7+smmW70u21bCGEEF2UFLiF6OIMBgPLk84w/bWN/HYoBye1iken9eanB8cxMNLXomMMjvJjWr8Q9AZ4a23ru7h/3JvB498d4OkfDzUZ+WGtb43d2xP7BBPiY//LmvuEeBPg6UJlrY79Z4rMj+9LL2JNci5qFTw8VbK3hRBCCCFE16dSqfjX5QNxdVLz54kCVuxvGE+UX1bNJ1tSAZg/vY/VV1c6a9TcO0HJ+v7PxhS0zQx6F0IIIaTALUQXll1cxV2f7GL+N/sorqxlYKQPPz80jken9cHFybr//o9OU7q4f9yXyYncUpvXdCK3jAXLD5j//PqaY412fFhDq9PznSmeJNF+wyXrayqH29S9feWwSGKDvdrk3EIIIYQQQnQ0PQI9mDtZied7bsXhBgMh/7PhJJW1OoZE+TKlb4hNx79+ZDRBXi6cOVvJz/sz7bJmIYQQXZMUuIXoggwGA1/vPM301zbwx5FcXDRqHpuRwA8PjKVfuI9NxxwY6ctF/UMxGOCNtc0Pk2lKZY2OuUuTqKjRMTTaDxeNmh2nClvdxb3peD65pdX4ezgztZ91lz9awxRTstWYw510+izrjuahUat4eIp0bwshhBBCiO7l3gmxxAR6kFtazeurlSs9c0ur+GxbGqBEHdo6G8fNWcOcsb0AeHfdSfT61jXFCCGE6LqkwC1EF3PmbAW3LdnB498doLRay9BoP1Y+PI65k+Nx0rTuv7ypi3vF/kyO5Vjfxf3Mjwc5mlNKkJcr/701kZtG9QDgtdWt6+JetlvJ5btiaKTVnenWGG0cNLk77SzVWh2L1yg/xF89LJKYIM82O68QQgghhBAdkZuzhmevGAjAx1tOcSizmPfXp1BVq2dYDz8m9glu1fFvHd0Tb1cnjueWsSY5xx5LFkII0QVJgVuILkKvN/DZtjRmvL6RTcfzcXVS8+TMvnx3/xh6h9pn8GH/CB8uGRimdHGvsS6L+5td6SzbfQa1Ct68cSghPm7cPykOVyc1u9LOsvlEvk1rOltew5rDuQBcO6Jt4klM4kO8CPJyoVqrZ8nmVDYey8NJreIh6d4WQgghhBDd1IQ+wVw6KBy9AR5btp/Ptyvd27Zkb5/Lx82ZW0f3BOCd9SdbHW0ohBCia5ICtxBdwOmCCm76cBtP/3CQ8hodI2P8+fWR8dw7IQ6NunU/VJ7r0Wl9UKlg5YEskrNKLNonOauEp384CCg/6I6JCwIg1MeNm0cpP7Da2sX9494ManR6BkT4MCDCsqGZtlKpVIwydnG/+vtRAGYnRtEj0KNNzyuEEEIIIURH9vRl/fF00XA4q4QarZ6RMf6Miw+yy7HvHNcLVyc1+9KL7DagXgghRNciBW4hOjG93sCSzaeYsXgj21IKcXfWsHBWf76+d3SbDTxMCPNm5qBwwLIu7rJqLXOXJlGt1TOhTzAPTIpv8PxfJsXi5qxmz+kiNhzLs3o9y9p4uOS5TDElOr0BJ7XKPFhHCCGEEEKI7irM14150/uY/9ya7O1zBXm5csPIaADeWW/bLCAhhBBdmxS4Rbd2JLuEuz7eyYu/JDt6KVYzGAz85fPdPLviMJW1Oi6MDWDVo+OZM7YXajt3bZ/r0am9Ualg1aFsDmUWN7vGBcsPkJJfTpiPG4uvH3re2kK83bj1QqWL+3Uru7gPZ5ZwKLMEF42aK4ZG2vZirGQaNAlw3choogOke1sIIYQQQojbx8Rw3Ygo7psQa75i017umRCLk1rFnycK2J121q7HFkII0flJgVt0S7U6PW+sOc6stzaz9kgu/92YwnEbhiY6Uk5JNb8fzkGtgueuHMgXd19Iz8D2GXTYO9SbWYMjAMyDFhvz+fbT/LwvEye1induHkaAp0uj2903MQ53Zw37zhSz7miuxeswDZec1j8E/yaObW+xQZ70C/fB191ZureFEEIIIYQwctaoeXn2EBbM7Gf3Y0f5e3DlMKWhZe7SJNILK+x+DiGEEJ2XFLhFt3Mwo5jL3/6T19cco1ZnwNvVCaiLuugssoorAQj3defWC3u2edf2uR6e2hu1ClYfzuHAmfO7uA+cKea5nw8D8PjFfUnsGdDksYK8XLltjKmL+7hFXdw1Wj0/7s0E4NrEaFtegk1UKhXf3T+aDY9NItLPvd3OK4QQQgghRHf2j5n96B3iRXZJFbd+tJ3c0ipHL0kIIUQHIQVu0W1Ua3W8+ttRrnjnT5KzSvD3cOaNG4byf9cNAWB5Uga1Or2DV2m57GLlB7pQH1eHnD8+xMscC7J4zbEGzxVX1PLAF7up0emZ3j+Uu8f3avF4902Iw8NFw4GMYtYkt9zF/ceRHArLawjxdmV8b/teAtkSDxcn/Dzap2NcCCGEEEIIAf6eLnx21yii/N1JLajgto92UFxR6+hlCSGE6ACkwC26hX3pRcx6azNvrzuBTm9g5qAwfp83kSuGRjK5bwhBXi7kl1Wz4aj1Qw4dJbtEKXCH+zqui/ihKfGoVbD2SC770osAJXf7b9/uI72wkugAd16dPcSiATMBni7cPiYGsCyLe9kupeP+6uFROGnkS5kQQgghhBBdXZivG0vvHkWwtytHsku54+MdlFdrHb0sIYQQDiZVIdGlVdXqWPRrMle9+yfHcsoI8nLh3ZuH8+7NiQR7K53Pzho1Vxo7kU2Zzp2BqYM7zNfNYWuIDfbiqmFRALxu7OL+aPMpVh/OwUWj5p2bhuPr4Wzx8e4dH4uni4bDWSX8diinye1yS6tYf0x5M+LaEVGteAVCCCGEEEKIzqRnoCef3zUKX3dn9pwu4r7PdlOt1Tl6WUIIIRxICtyiy9qdVsjMNzfxnw0p6A1wxdAIfp83kZmDws/b9toRSobz2uRcCsqq23upNskqNnVwO67ADfDw1Hg0ahXrj+bx4aYUXvr1CABPX9aPwVF+Vh3L39OFOWOVOJPFa46h1zfexf19UgY6vYHhPfyIC/Zq1fqFEEIIIYQQnUtCmDcfzxmJh4uGzSfyefjLPWg7UdykEEII+5ICt7CLaq2uw/xAUVmj49mfDzP7/a2k5JUT4u3KB7eN4I0bhhHg2XhuckKYN4OjfNHqDfxgHFxoL1W1bdNNUJfB7dgCd89AT642TjR/fmUyWr2BywaHc8uFPW063t3je+Ht6sSR7FJWHco+73mDwWAeCGp6Y0IIIYQQQgjRvQzr4c8Ht43ARaPmt0M5PLH8QJMNMs3R6Q38tC+TmW9sYuQLa7juP1tZsPwAH25KYd2RXNIKytHZcFwhhBDtx8nRCxCdX25JFTMWb6RHgAdf3TsadxeNw9ZiMBi4fckOdqQWAjA7MYqnL+1vUUzGtYlR7D9TzLJd6dw5Nsai3OiWfLT5FM+vPMxHt49gSt/QVh+vvroMbscWuAEemtKb7/dkoNUbiA3y5KVrBtv89+fn4cKccb14c+1xFq85xsUDwlCr6461J72IE7lluDmruWzw+d34QgghhBBCiO5hbHwQb900jAeWJvHt7jN4uznxzGX9LfpdRKc3sPJAFm+uPc6J3DLz43ml1ew4VdhgWxcnNTGBHsQFexEb7ElcsBdxwV4MiPCReUBCCNEBSIFbtNqy3Wc4W1HL2YpiFv50kJdnD3HYWtYk57IjtRAPFw3v3DycyQkhFu97+ZBInluZzJHsUg5lljAw0rdVaymqqDEOS4RNx/PtWuA2GAwdIoPbpEegBw9N6c2P+zJ49+bheLm27kvLXeN68b8/T3Esp4yVB7KYNSTC/JxpuOTMgeF4u1me7y2EEEIIIYToemYMCOPlawbz12X7+N+fqfi6O/PotD5Nbt9YYdvHzYm7x8cyvncQaQUVnMwrIyWvXLnNL6dGq+dYThnHcsoaHGtK3xCW3DGyTV+fEEKIlkmBW7SKwWDgW2NcBMA3u84wMibAIdERBoOB11crgw7vGBNjVXEbwNfDmYv6h7JifxbLdqW3usD9waYUyowTvTOLKlt1rHMVltdQo9OjUkGIt+ML3ACPTOvNI9N62+VYvu7O3D0ultfXHOONtceZOSgcjVpFZY2OFfuUCJnZMlxSCCGEEEIIAVyTGEVpVS3//Pkwi9ccx8fNmTvH9WqwTXOF7TvGxuBjbJ4Z1sP/vP0yiyo5Ub/onVfGztSz/HEkl91phST2DGifFyqEEKJRci2NaJXdaWc5lV+Oh4uGv0yMA+DpHw9yNLu03dfy26EcDmeV4OXqxD3jY206hqkw/8PezFZlZxeW1/Dxn6nmP2cWVdl8rMaYBkwGerri4tQ1/xvPGReDr7szJ3LLWLFfKWr/diib0motUf7uXNgr0MErFEIIIYQQQnQUd4ztxfzpSuf2sysOs2xXOlCXsT1j8UYe/nIPJ3LL8HFzYv70Pmx+YgoPT+1tLm43RqNWER3gweSEEO4a14sXrxrEV/eO5tpEpeHmzbUn7P5aiitq2Z121u7HFUKIrqprVsZEuzHHRQwK5+8zEpjQJ5iqWj33L91NubF7uT3o9QYWr1G6t+eMjcG/iWGSLRkXH0S4rxvFlbWsSc6xeT3/3ZhCeY3OPNTS3h3cOR0of7ut+Lg5c894pevijbXH0ekNLNut/JA6OzGqQS63EEIIIYQQQjw0JZ67jZ3bj3+3n1d/O2pzYbslD0yKR6NWseFYHnvTi+z0CpQrk+/6ZCfXvLeFJZtP2e24QgjRlUmBW9isokZr7qy91lhwfP26IYT5uJGSV86T3x/AYGifadOrDmVzJLsUb1cn7h5nW/c2KO/OXz08Eqgr3lsrv6yaT7emAvCPmf0AKCivaVVH+LmyOlD+dlu6fUwMfh7OpOSV8976E2w5WQDANcMlnkQIIYQQQgjRkEql4h+X9uO6EVHoDfD2uhN2L2yb9Aj04Kphyu+Ob6093urjmazYn8UuY/f2ol+T2WfH4rkQQnRVUuAWNvv1QDblNTp6BnpwQS8lcyzQy5W3bxqGRq3ix72ZfLHjdJuvQ6838MYa5QeKO8f1wtejdT+sXJuoxJRsOp5nHuRojf9uTKGiRsfgKF+uHh6Jp4sGsG8Xt2ldXbmDG8DbzZl7JyhvWLz6uzKwc0xcINEBHg5emRBCCCGEEKIjUqlULLp6MLMTowj2drV7Ybu+uZPjUatg7ZFcDmYUt/p4VbU6/r3qCABBXi7U6gw8+GUSJVW1rT62EEJ0ZVLgFjYzx0UMj0KlqouLGBETwOMXJwDwr58O2+UbfXN+OZjF0ZxSvN2czhskYouYIE8uiAlAb4Dvkqzr4s4rrevenjetDyqVigg/d8C+OdzZxoiSUJ+uXeAGuH10jDnqBeBaGS4phBBCCCGEaIZGreLVa4ew8x/T2qSwbdIryJPLh0QA8KYdurg/3ZrKmbOVhPq4svLh8UT5u5NeWMkT3+1vt6ujhRCiM5ICt7DJ6YIKtqUUolIpE6vPdc/4WKb1C6FGp+eBpUkUV7bNO846vYHFxu7tu8fF4utunx9cZhuLqN/uPmPVDxLvbzhJVa2eodF+TEoIBqhX4JYOblt4ujpxn7GL29vViYsHhDt4RUIIIYQQQgiheHBKPCoV/H44h8OZJTYfp7C8hrf+UAZW/u2iBEJ93Hj7puE4a1T8ciCbz7e3/dXRQgjRWUmBW9jkW2P39rj4IHMBtz6VSsX/XTuUKH93ThdW8Pdv97XJO84r9mdyIrcMX3dn5oyLsdtxLx0UjoeLhlP55RZPr84tqeLzbWkAzJvex9zVHuGnFKEzi+1X4M4yHqurZ3Cb3D4mhjvH9uLfswfjbox8EUIIIYQQQghHiw/x5tJBShPO2+ts7+J+c+1xSqu09Av34WrjzKGh0X48fnFfAJ5bcZhDmW17dbQQQnRWUuAWVtPrDXyXlAHA7Ea6t018PZx556bhuGjU/HYohyV/ptp1HTq9gTeMl4HdM76XXS8783R1YqbxhxRLh02+t+Ek1Vo9w3v4MaF3kPnxCN+27OA+/82FrsjNWcMzs/qbPydCCCGEEEII0VE8NKU3AL8cyOZYTqnV+6fklZmbpZ66tB8adV0E6F3jejG1bwg1Wj0PfbGHsmqtfRYthBBdiBS4hdW2nCwgo6gSHzcnZgwIa3bbIdF+PHVZPwAW/ZJM0mnLuqEt8dO+DFLyyvHzcOaOsa3P3j7Xtcbi/Yr9mVTUNP9DRHZxFUuNl4zNn57QIJPc3hncpVW1lNfoAAjrBhncQgghhBBCCNGRJYR5c8lA5Xfjt40xI9Z46dcjaPUGpvQNYWx8UIPnVColTzzC142U/HKe+v6A5HELIcQ5pMAtrGYaLnn50AjcnFuOi7j1wp5cOjgcrd7Ag0uTOFte0+o1aHV63jBmb987IRYvV6dWH/NcF/QKoGegB+U1On49kN3stu+tP0GNVs/IGH/Gxgc2eM7eGdym7m1fd2eJ6xBCCCGEEEKIDuDBKfEA/GyM0bTUtpQCfj+cg0atYsElfRvdxt/ThTdvHIZGreKHvZkWX2UshBDdhRS4hVWKK2tZdVAp9l6bGG3RPiqVipeuHkSvIE8yi6uY/81e9PrWveP8w95MUgsqCPB04fbRMa06VlNUKhWzjdln3+xKb3K7rOJKvtyhPD9vWp8G3dsAkcYCd0ZRpV3eac/qRgMmhRBCCCGEEKIzGBDhy7R+oRgM8O46y7q49XoDL/6SDMANI6PpHerd5LYjYgL460V9AHjmp4M2RaEIIURXJQVuYZUV+zOp1urpE+rF4Chfi/fzdlPyuF2d1Kw7msf7G0/avIZanZ43jdnb902IxbMNurdNrkmMQqWC7acKOV1Q0eg276w7QY1Oz6heAYyOCzzv+VBfV1QqqNbqKbRD97qpgztU4kmEEEIIIYQQosN4eKrSxf3D3gxS88tb3P6nfZnsP1OMl6sT86b3aXH7v0yIY0KfYKpq9cxdmtRilKYQQnQXUuAWVjFdCnVtYvR5ncot6R/hw7NXDADg1d+Osu5Irk1r+D4pg9OFFQR5uXDr6J42HcNSEX7ujDNmoH27+/wu7oyiSr7eaezenn5+9zaAq5OGYC9XwD453Nkl0sEthBBCCCGEEB3N4Cg/JicEozcojVDNqarV8fKqIwDcPymOIOPvjM1Rq1W8dt0QQrxdOZ5bxj9/OmSXdQshRGcnBW5hsRO5pexNL0KjVnHlsEibjnHdiGiuHh6J3gBzPt7J0z8ctGoKdK1Oz5t/KN3bf5kYh4dL23Vvm8w2Dpv8LinjvGiVt/84Qa3OwJi4QC6MPb972yS8XkxJa5kiSsKkwC2EEEIIIYQQHcpDU3sDsHxPBumFjV8FDLDkz1NkFlcR4evGXeN6WXz8IC9X3rhhGGoVfLPrDN/vsTyPO62gnM+2pfHgF0l8ti3N4v2EEKKjkwK3sJipe3tyQgjB3i2/u9wYlUrFi1cN4qZRPQD4bFsaM17fyKbjeRbt/+3uM5w5W0mQlys3j2rb7m2TGQPC8HZzIqOoki0nC8yPpxdWsGxXXfd2cyL9lGJ0VnHrC9zZxmNIB7cQQgghhBBCdCzDe/gzvncQOr2Bd9c33sWdX1bNu+uU2M7HLk7AzVlj1TlGxwXysLGQ/o/vD3Iyr/GhliVVygytf3x/gAkvr2PiK+t5+oeDrNifxdM/HOSTLalWnVcIIToqKXALi2h1epbvyQDg2hFRrTqWm7OGF68axNK7RxHl705GUSW3frSDJ77bT0lVbZP71Wj1vP2H8gPCA5PicHex7oeA1qz38iERACyrF1PyzroTaPUGxvcOYmRMQLPHiPBVOrgz7djBLRncQgghhBAdWFE6HPgW1vwLMvc6ejVCiHb0iLH4rDRond/FvXjNMcqqtQyK9OWKIbZdHf3QlN6Mjg2kokbH3KVJVNXq0Or0JJ0+yxtrjnPNe1sY9uxq/vL5bpZuP83pwgqc1CpG9QrgssHhACz86RA/GH/PF0KIzqzt8x1El7DhWB55pdUEerowpW+IXY45Nj6I3x6dwCu/HeXjLal8tTOd9UfzWHT1ICY3co5vdqWTUVRJiLeruQO8vVw7Ipql20+z6mA2xZW1FFfUsmy30tH+6LSWh4FE+JkK3K3P4M4xZ3C7t/pYQgghhBDCDnRayDkAp7dDuvGjpF7R6NgqeGCr49YnhGhXI2ICGBMXyJaTBby/4STPXznI/NyJ3FK+3KE0Tv3j0n6o1dbNtjLRqFW8ccNQLnljE0eyS7nynT/JLKqkpKphBGhssCcTegczvncQo2ID8XJ1wmAwEOTlysdbUvnrsn14uzkxtV+o7S9YCCEczKYO7nfeeYeYmBjc3NwYNWoUO3bsaHb7xYsXk5CQgLu7O9HR0cybN4+qqoaFvpaOWVVVxdy5cwkMDMTLy4trrrmGnJwcW5YvbGCKJ7lyWCTOGvs1/nu6OvHPywfwzX2jiQn0ILukijkf72T+N3spqqgxb1et1ZmHdDwwKc7qS7haa0iUL71DvKjW6lmxP5O3/jiOTm9gQp9gEnv6t7h/hJ0yuKtqdZytULrcJYNbCCGEEMJBKovg+Gr443n4+DJ4KRr+OwlWPQ6HlivFbZUGwoeC2glyD0PBSQcvWgjRnh6aonRxf7PzDNnFdfWPRb8cQac3ML1/aLNznCwR4uPG69cPRaWCI9mllFRp8XV35tJB4bx09SA2Pz6ZP/46iX9ePoCp/ULxclV6HFUqFc9c1p+rhkWi0xt4YGkS21MKWjibaK2KGi2VNTpHL0OILsnqSuXXX3/N/PnzWbhwIUlJSQwZMoQZM2aQm5vb6PZffPEFTzzxBAsXLiQ5OZmPPvqIr7/+mieffNKqY86bN4+ff/6ZZcuWsWHDBjIzM7n66qtteMnCWoXlNaw9oryZ0Np4kqZc0CuAXx+ZwN3jeqFSwfKkDKa/vpHfD2UD8PXOdLKKqwjzceOGC9q3exuUHwCuGxENwAcbU8xxLfOm9bZo/0g/+0SUmH4w8nDR4OMmF2AIIYQQQrSr/OPw7mj4dwwsnQ0bX4HUTVBbAa6+ED8dJj8Ft/8MC9Lhvg0QM17ZN/lnhy5dCNG+LowN4IKYAGp0et7foLzBteVEPmuP5OKkVrHgkr52Oc+EPsG8e9NwHpuRwPcPjCHp6em8c/NwbrigB1H+Hk3up1areHn2YKb1C6Faq+fuT3ZxMKPYLmsS5yupqmXiK+u57K1NVNVKkVsIe7O6wP3aa69xzz33MGfOHPr378/777+Ph4cHS5YsaXT7LVu2MHbsWG666SZiYmK46KKLuPHGGxt0aLd0zOLiYj766CNee+01pkyZQmJiIv/73//YsmUL27Zts/GlC0v9sCeDWp2BQZG+9A3zabPzuLtoeOqy/nx3/xjigj3JK63m3s9289CXe8wDOOZObv/ubZMrh0WiUatILahApzcwOSGYYT1a7t4GiDAOmcwtraZaa/s3M1P+dpiPGyqVbZeyCSGEEEIIG3mHQd4RwAABsTDkRrhsMTywDR5PhVu+hYmPQa8J4OKp7NPvMuVWCtxCdCsqlco8CPLLHafJLq7i+ZXJANw8qgexwV52O9clg8KZOzmeYT380VgReeKsUfP2TcO5oFcApdVabl+yg5QmBlaK1ll/VIl9PZlXzv/+THX0coTocqwqcNfU1LB7926mTZtWdwC1mmnTprF1a+OZcmPGjGH37t3mgnZKSgq//PILM2fOtPiYu3fvpra2tsE2ffv2pUePHk2et7q6mpKSkgYfwjamrOm26t4+1/Ae/qx8eDz3T4pDo1bx875MskuqiPB147qR0e2yhsYEe7syOaEuG3ze9Jazt00CPF1wdVL+u+UUV9u8BlP+tsSTCCGEEEI4gKs33LIc/nYcHt4DV70PI+ZASD9QN/GrVd/LABVk7IKSzHZdrhDCscbGBzK8hx/VWj23LdnO4awSvN2ceMSCOU7txc1Zw4e3j2BAhA8F5TXc+tGOVl95LM63NrkuYvfddScoLK9pZmshhLWsKnDn5+ej0+kIDW04fCA0NJTs7OxG97npppt49tlnGTduHM7OzsTFxTFp0iRzRIklx8zOzsbFxQU/Pz+Lz7to0SJ8fX3NH9HRjiuMdmYHM4pJzirBRaPm8iER7XZeN2cNj1/cl+8fGENCqDcAf5uRgKuTY7q3Te4YE4NKBZcODmdwlJ/F+6lUKrvkcJs7uKXALYQQQgjhGHGTwcuKoeveYRA1Url/ZGXbrEkI0SHV7+I+lqN0Rj84OZ4ATxdHLus8Pm7OfHLnBcQGeZJRVMmtH22XAqwdaXV61h/NA8Dfw5nSai1v/XHcwasSomux37TAJqxfv54XX3yRd999l6SkJJYvX87KlSt57rnn2vS8CxYsoLi42PyRnp7epufrqr41dm9PHxCKn0f7fxMeHOXHyofH8ecTU7h6ePt0kDdnXO8gNv19Mq9fN9TqfU0xJVnFthe4s437hkuBWwghhBCi8+g3S7mVmBIhup2JfYIZEuULQJS/O7ePiXHsgpoQ5OXKZ3ePItzXjZN55dzxvx2UVtU6elldwq60sxRX1uLn4czr1w8F4PNtaaQVlDt2YUJ0IVYVuIOCgtBoNOTk5DR4PCcnh7CwsEb3efrpp7n11lu5++67GTRoEFdddRUvvvgiixYtQq/XW3TMsLAwampqKCoqsvi8rq6u+Pj4NPgQ1qnW6vhhrzJM8dpExxWXnTRq85DGjiDK3wMXJ+vfG4rwbf2gyfoZ3EIIIYQQopMw5XCnboaKQseuRQjRrlQqFf+6YiDDevjx8jWDHTZTyhKRfu58dtcoAjxd2H+mmHs/3S0DEe3AFE8yOSGESQkhTOgTTK3OwCu/HXXwyoToOqyq0rm4uJCYmMjatWvNj+n1etauXcvo0aMb3aeiogL1OXl0Go3yBd1gMFh0zMTERJydnRtsc/ToUU6fPt3keUXrrTmcS1FFLWE+bozvHezo5XR6dRElVTYfoy6Du+MU/IUQQgghRAsCYiFkABh0cGyVo1cjhGhnQ6P9+P6BsYyJD3L0UloUH+LFx3NG4umiYWtKAQ99uQetTu/oZXVqa5NzAZjaT4m3euLivqhUsGJ/FnvTixy4MiG6DqvbUOfPn88HH3zAJ598QnJyMvfffz/l5eXMmTMHgNtuu40FCxaYt581axbvvfceX331FadOnWL16tU8/fTTzJo1y1zobumYvr6+3HXXXcyfP59169axe/du5syZw+jRo7nwwgvt8fcgGrFstxLrck1ipFWTmEXjTF3o9ujglogSIYQQQohOxhxTssKx6xBCiBYMjvLjg9tH4OKkZvXhHB7/7gB6vcHRy+qUUvLKSMkvx0mtYkIfpXGwf4QPVw9TrpJ/8ZdkDAb5uxWitZys3eH6668nLy+PZ555huzsbIYOHcqqVavMQyJPnz7doGP7qaeeQqVS8dRTT5GRkUFwcDCzZs3ihRdesPiYAK+//jpqtZprrrmG6upqZsyYwbvvvtua1y6akV1cxcZjyhCE2YkyoNMeIlpZ4K7V6ckrqwZkyKQQQgghRKfT7zLY8BKcXAs15eDi6egVCSFEk8bEBfH2jcO4f2kS3yWdIa+smgWX9KVfuMS/WuOPI0r39qjYAHzcnM2P//WiPqzYn8mOU4WsTc5lWv/Qpg4hhLCAytBN3ioqKSnB19eX4uJiyeO2wLvrT/DyqqOMjPFn2V/GOHo5XUJKXhlT/m8Dni4aDv5rBiqVdV3xGUWVjH3pD5w1Ko4+dwlq6aoXQgghAPk5rzvrVJ97gwHeGAJFaXDdp9D/CkevSAghWrQ86Qx//3Y/Wr0BlQquGhbJ/Ol9iPL3cPTSLHIsp5QeAR4Oyz6/4b9b2ZZSyDOX9efOcb0aPPfvVUd4b/1J4kO8WPXIeJw01s/6EqIrs+bnPPnfIxr1fZJpuKR0b9uLqYO7vEZHSaXW6v2zjfEkoT5uUtwWQgghhOhsVCqJKRFCdDpXD4/i93kTuHRQOAYDLE/KYMqrG3h+xWHOltc4ennN+nLHaS56fSP//OmQQ85fXFHLztSzAEzrd36H9v2T4vD3cOZEbhnf7DrT3ssTokuRArc4T1WtjuO5ZUDdEATRem7OGgI8XQDILLY+piRb8reFEEIIITo3U4H72G+g7diFISGEMIkN9uKdm4fz49yxjI4NpEan58PNp5jw8jreWXeCihrrG7jaWmF5DS/9egSAn/dlUlWra/c1rD+Wi05voHeIFz0Cz+9493Fz5qEpvQF4fc0xyqs73t+jEJ2FFLjFeU4XVgDg7eZkLsgK+4jwU4rTtuRwZxmL4qE+UuAWQgghhOiUoi4Ar1CoLobUjY5ejRBCWGVItB9f3DOKT+68gH7hPpRWa3nlt6NMemU9X2w/jVand/QSzV757SjFlbWAchW1acZYe1qbrORvT22ke9vklgt70iPAg7zSaj7cdKq9liZElyMFbnGetAKlwN0z0MPqnGjRvAhf2wdNSge3EEIIIUQnp1ZDwkzlvsSUCCE6IZVKxcQ+wax8aByLrx9KlL87uaXVPPn9AS5avJFVB7Nw9Ki3/WeK+GrnaQAuiAkA4NeD2e26hlqdnvVHTQXupq+Md3FS8/eLEwD4z8aT5JVWt8v6hOhqpMAtzpNWUA5Az0CZ7G5vphzujKIqq/fNLlH2CTMWyYUQQgghRCfU7zLl9shK0Lf/JfNCCGEParWKK4dFsvavE1k4qz8Bni6k5JXzl8+TuOytzSxYvp831hznm53pbDyWx4ncUsraIYJDrzfwzI+HMBiUgZiPX6IUj9cczqFa235fc3elnqWkSou/hzPDe/g3u+2lg8IZEu1HRY2OxWuOtdMKhehanBy9ANHxmDu4AzrHVOTOJNJPOriFEEIIIbq1mAng6gvluXBmJ/S40NErEkIIm7k6aZgzthezE6P4YGMKH24+xaHMEg5lljS6vberE2G+boT5uhHh606YrxsjYwIY1zvILuv5LukMe9OL8HTRsOCSvgR5uRLm40Z2SRWbj+c3GxdiT38cyQFgckIIGnXzV8arVCqevKQv1/93G1/tTGfO2F7Eh3i1xzKF6DKkwC3Ok1ZYF1Ei7CuiFQXuLGOBWzK4hRBCCCE6MScX6DMDDnwDyT9LgVsI0SV4uzkz/6IEbh0dw7qjuWQVVZFdUklmURXZxVVkFVdSUqWltFpLaW4Zx3PLGuz/8jWDuW5kdKvWUFxZy79XKYMlH53WhxDj784XDwzj4y2p/HIgu90K3Jbkb9c3KjaQaf1CWZOcw8urjvDf20a05fKE6HKkwC3Oc9oYUdIjQCJK7M3WIZN6vYGcEungFkIIIYToEvrNqitwX/Q8yNwbIUQXEeztynUjGi9Ul1dryS6pIqtIKXhnF1exP6OY1YdzePL7A/QI9ODC2ECbz714zTHyy2qID/HijrEx5sdnDgrn4y2prD6cTY12EC5ObZvWm5JXRkp+Oc4aFRP6WN6Z/sQlCfxxJIffD+ewM7WQkcb8cCFEyySDWzSg1ek5c1YpvsYESQe3vZkiSrJLqqyaMF1QXoNWb0CtUn5gEEIIIYQQnVj8VHByg6I0yDno6NUIIUS78HR1Ii7Yi3G9g7h2RDQPTe3Nf25J5NLB4Wj1Bv7y+W5S88ttOvaR7BI+3ZoGwD9nDcBZU1fuSuzpT7C3KyVVWraczLfLa2mOqXt7VK9AvN2cLd4vPsSb60f2AODFX5IdPqxTiM5ECtyigcyiKrR6Ay5OakK9pVPY3oK8XHHWqNAbINeK6cim/O1gb9cG36iFEEIIIUQn5OIJcVOV+8k/O3YtQgjhQGq1iv+7dghDov0oqqjlzk92UlxRa9UxDAYDC388hE5v4JKBYefleWvUKi4eEAbALwey7Lb2pqxJVvK3p/YLsXrfedN74+GiYc/pIn49mG3vpQnRZUmlTDSQVmiKJ/FA3cIgBGE9tVpFmK/1MSVZxcq2YZK/LYQQQgjRNfSbpdwmr3DsOoQQwsHcnDV8cGsi4b5upOSVM/eLJGqtuOL55/1ZbD9ViJuzmn9c2q/RbS4ZpBS4fz+cY9WxrVVcUcuutLMATLMh7zvE2417xscC8PKqI9Ro226tQnQlUuAWDaQWKAMmY2TAZJuJ8FViSjKsKHBnG/O3wyR/WwghhBCia+gzA1QayD0EBScdvRohhHCoEB83Prx9BB4uGjafyGfhT4csiugor9bywsrDAMydFE+Uf+O1jFG9Agn0dKGoopZtKQV2XXt964/lotMb6BPqRXSAbXWVeyfEEuTlSmpBBUu3p9l5hUJ0TVLgFg3IgMm2Z8rhziyqsngfU0RJuLE4LoQQQgghOjmPAOg1Xrl/RLq4hRBiQIQvb9wwDJUKvth+mv/9mdriPm/9cYKckmp6BHhwz4TYJrfTqFXMGGiKKWm76I81xvztKX2t79428XR1Yt703gD8e9URjmSX2GVtQnRlUuAWDaQZO7h7Sgd3m4kwF7it6OAulg5uIYQQQogup+9lyq3ElAghBADT+4ey4JK+ADy/8jDrjuQ2ue3JvDI+2pwCwMJZ/XFz1jR77JkDwwH4/VA22jaIKanV6dlwVFnvNBvyt+u7YWQPxvcOoqpWz/2fJ1FSZV0uuRDdjRS4RQOnC6XA3dZsKXBnmQrcksEthBBCCNF19L1UuT2zA0rafvCZEEJ0BveMj+W6EVHoDfDQl3s4ml163jYGg4F//nSIWp2BKX1DmGpB3vWo2AD8PZwpKK9hR2qh3de9K/UsJVVaAjxdGNbDv1XH0qhVvHHDMCJ83TiVX85jy/ZZFNnSLej1oK129CpEByMFbmFmMBjqdXBLRElbifBTitTWZHDnSAa3EEIIITqAd955h5iYGNzc3Bg1ahQ7duxoctvly5czYsQI/Pz88PT0ZOjQoXz22WcNtrnjjjtQqVQNPi6++OK2fhkdh08ERI1U7h9d6di1CCFEB6FSqXj+ykGM6hVAWbWWOz/eSX5Zw4Lm74dz2HQ8HxeNmmcu62/RcZ01ai7qb4opsf+bimuTcwCYlBCMRq1q9fECPF1495ZEnDUqfjuUwwebUlp9zC7htwWwKBpykx29EtGBSIFbmOWVVlNZq0OtqsuJFvYXaWUHt8FgMHdwh0uBWwghhBAO8vXXXzN//nwWLlxIUlISQ4YMYcaMGeTmNn75eEBAAP/4xz/YunUr+/fvZ86cOcyZM4fffvutwXYXX3wxWVlZ5o8vv/yyPV5OxyExJUIIcR4XJzXv35JITKAHGUWV3PvpLqpqdQBU1ep49mdlsOS9E2KJCbK8QW/mYCWmZNXBHHR6+3ZErz1iiiexPX/7XEOj/Xhm1gAA/r3qKNvbcEBmp6DTwt4vQFct3zdFA1LgFmZpxniSSH93XJzkn0ZbCTcWuEuqtJRVa1vcvqRSS6XxG3moRJQIIYQQwkFee+017rnnHubMmUP//v15//338fDwYMmSJY1uP2nSJK666ir69etHXFwcjzzyCIMHD2bz5s0NtnN1dSUsLMz84e/fusu6O51+s5Tb1E1QedaxaxFCiA7E39OFD28fiY+bE0mni3jiu/0YDAbeW3+SjKJKInzdeGBynFXHHBMXiK+7M/ll1eyyY0zJybwyTuWX46xRMb53kN2OC3DLqB5cNSwSnd7Ag1/uIdd4hXe3lLkHqo1DN9O3O3YtokORKqYwS80vB6BngMSTtCUvVyd83JwAyLKgizurRNnG38O5xaEZQgghhBBtoaamht27dzNt2jTzY2q1mmnTprF169YW9zcYDKxdu5ajR48yYcKEBs+tX7+ekJAQEhISuP/++ykoaLo7rbq6mpKSkgYfnV5gHIT0B70Wjv3W8vZCCNGNxId48e7NiWjUKn7Ym8kzPx7i/Q0nAfjHpf3xcHGy6njOGjXT+ysd1r8ezLbbOk3xJBfGBuLt5my344IS2fLCVQPpE+pFXmk1D36xh9o2GJLZKaSsq7t/ZqeSxy0EUuAW9ZgGTPaQAZNtzjRo0pIc7mzTgElfiY0RQgghhGPk5+ej0+kIDW142XVoaCjZ2U0XCIqLi/Hy8sLFxYVLL72Ut956i+nTp5ufv/jii/n0009Zu3Yt//73v9mwYQOXXHIJOp2u0eMtWrQIX19f80d0dLR9XqCjmWNKfnbsOoQQogMa1zuIf12uxHR8ti2Naq2eMXGBzBwUZtPxTPv9ejALvZ1iStYkK/EkU/uG2OV45/JwceK9WxLxcnViR2ohr/x2tE3O0+GlrK+7X1UEBccdtRLRwUiBW5iZB0wGSIG7rdXlcLd8aVG25G8LIYQQopPy9vZm79697Ny5kxdeeIH58+ezfv168/M33HADl19+OYMGDeLKK69kxYoV7Ny5s8E29S1YsIDi4mLzR3p6evu8kLZmiik5sRZqKhy7FiGE6IBuubAnc8bGAOCkVvGvywegUtk2yHFsfBDerk7klFSTdLr10VBFFTXsTlOOM9WO+dvnigv24pXZgwH478YUVh20/6DMDq26DNKNw639eiq3ElMijKTALczSCowRJYESUdLWIqwYNGkaMCn520IIIYRwlKCgIDQaDTk5OQ0ez8nJISys6Q46tVpNfHw8Q4cO5a9//SuzZ89m0aJFTW4fGxtLUFAQJ06caPR5V1dXfHx8Gnx0CWGDwK8HaCvh5FpHr0YIITqkpy7tz2MzEnjjhmH0DvW2+TiuThqmGWNKfjnQ+piS9Ufz0OkN9An1IrqNGwYvGRTOPeN7AfC3ZftJyStr0/N1KGlbQF+rFLcHXq08Zip4i25PCtzCzDRksqdElLQ5awrc0sEthBBCCEdzcXEhMTGRtWvriq96vZ61a9cyevRoi4+j1+uprq5u8vkzZ85QUFBAeHh4q9bb6ahU0NfYxS0xJUII0SiNWsXcyfFcOrj13yNmDlKOYY+YkrVHjPEkbdi9Xd/fL+7LBTEBlFVruf/zJCpqtO1yXoczxZPEToLoUcp9KXALIylwCwCKK2spqqgFoIdElLS5CD+lWG1RBneJKYNbCtxCCCGEcJz58+fzwQcf8Mknn5CcnMz9999PeXk5c+bMAeC2225jwYIF5u0XLVrE6tWrSUlJITk5mf/7v//js88+45ZbbgGgrKyMxx57jG3btpGamsratWu54ooriI+PZ8aMGQ55jQ5liik5tgp0tY5dixBCdHHjewfh6aIhq7iKfWeKbD5OrU7P+qNKgXtav7bJ3z6Xs0bN2zcNI8jLlaM5pfzj+4MYDPbJEu/QTAMm4yZD1AXK/fyjUFHouDVZq7YKCk46ehVdkhS4BQCnjfnbwd6ueLpaN4VYWM/cwV0sHdxCCCGE6Byuv/56Xn31VZ555hmGDh3K3r17WbVqlXnw5OnTp8nKqssDLS8v54EHHmDAgAGMHTuW7777js8//5y7774bAI1Gw/79+7n88svp06cPd911F4mJiWzatAlXV1eHvEaHir4APIOhqhh+fRx2LYEjK+HMbihKB22No1cohBBdhpuzxtxx/etB22NKdqYWUlqlJcDThaHR/vZaXotCfNx4+6ZhaNQqvt+TwdLtp9vt3A5RmgO5hwEVxEwAz0AIiFOey9jt0KVZ5fen4K3hcOh7R69EUZIJuq5xBYBUMgUAqab8benebhemAnd2cRV6vQG1uunhGFnGIniYZHALIYQQwsEefPBBHnzwwUafO3cw5PPPP8/zzz/f5LHc3d357bff7Lm8zk2tUbq4dy2BXR81vo27P3iFgVcIeBtvQ/rDkBuVmBMhhBAWmzkojJ/2ZbJyfxYLLulr09DKtclK9/bkhBA0zfxe3xYujA3k7zMSWPTrEZ79+TCDIn0ZEu3XrmtoN6c2KLfhg5XiNigxJYUnlUGTvac7bm3WOLVRuV3/b+h3Bagd2Hd8ch18diWMeQguavrntc5COrgFAKeN+ds9JH+7XYR6u6JWQa3OQH5Z0zmUFTVaSqqUd9MkokQIIYQQooub8rTykTgHEmZCZCL4RIHaWXm+8izkJSu/6O//Gra8BT/cr8SaCCGEsMrEPiG4O2vIKKrkQEax1fsbDAbWJivDl9srnuRc906I5aL+odTo9DywNImz5V30ap+TxniS2Ml1j0UbY0rSt7f/emyhrVEK8qB8Lz/+u2PXc/RX5Xbf16DXO3YtdiAd3AKANGMHd0ygp4NX0j04adSE+biRWVxFRlElIU10Z5viSbxcnfB2c27PJQohhBBCiPbmEQAT/nb+4waDUtwuy4HSbOW2LAeO/Q5pm+HQD5BwSbsvVwghOjN3Fw1T+oWwcn8WvxzIZnCUn1X7n8wrJ7WgAheNmvF9gttmkS1QqVS8et0QLn9rM6kFFTy38jCvXTfUIWtpMwZDwwGTJqYCd0aSErOh6eAlzsIU0NeLA9n8OiRc7Lj1ZCYpt+W5kL0PIoY5bi12IB3cAoBUYwZ3T+ngbjfmHO6iqia3MRW4pXtbCCGEEKIbU6mU4ndIP2W41pAbYOwjMOUp5fljv0pGtxBC2GDmwHAAfj2YZfWgRlP39qjYALwcOMvMx82Z168fCsDypAz2nD7rsLW0ifxjUJoJTm7QY3Td48F9wdUHasqM+dwdXF6ycuvfCzQukL4N0rY6Zi26Wsg+UPfn42scsw47kgK3AOqGTPaQDO52U1fgbnrQZJapwC3520IIIYQQ4lzRF4BniDKYMnWTo1cjhBCdzqSEYNyc1aQVVHA4q8Ti/XalFpoHO07t65h4kvqG9fDnmuFRAPzzp0Po9dYV6zs0U/d2jwvB2Y3fDmUz7+u9nK3UQdQI5bkzOxy2PIvlHVVue45VZmcA/LnYQWs5Atp6zZYnVjtmHXYkBW5BVa2O7BLlH7ZElLQfU4E7o5kCt+nzIh3cQgghhBDiPGoN9L1UuZ/8s2PXIoQQnZCnqxOT+igF6l8PZLe4fUpeGfd9tovZ72/ldGEFAZ4uzBwU3tbLtMjjFyfg6aJh35lilu/JcPRy7KdePElZtZa/f7uf7/dksHjNMYgy5XB3hgL3EeU2OEG5CguVMkMjxwHd5xnGeJLAeOX2zE6oKGz/ddiRFLiFecCkt5sTfh6S89xeIv2UonVzHdymiJJwKXALIYQQQojG9L9cuT2yEvQ6x65FCCE6oUsGhQHwy4GmY0oKyqpZ+ONBLnp9I78dykGtghsviGbVI+ObnKnV3kJ83Hhoam8A/r3qCGXV2hb26AR0tXDKeIVS7GS+2J5GcWUtAF/sOE2u3xDluc4waDLXVODuC4Fx0P8K5c9/vtH+a8nco9z2vVRZj0EPKevafx12JAVuQVq9/G2VSuXg1XQf4b7GiJJiCyJKpMAthBBCCCEaEzMe3HyVIVGdoYNNCCE6mKn9QnFxUpOSX87RnNIGz1XV6nh3/QkmvbKeT7amodUbmNI3hFWPTmDR1YM7THHbZM7YGGICPcgrreatP447ejmtl5EENaXgHkBV0AA+2HQKAH8PZ2p1BhYn+wAqOJsKZbkOXWqzdLVQcEK5H9JXuR33qHJ7YBkUnW7f9ZgGTEYMh/hpyv1OnsMtBW5BWkE5AD0DJJ6kPZkiSrKaGzJZohS/JYNbCCGEEEI0SuMMCTOV+8k/OXYtQgjRCXm5OjGxTzAAvxhjSvR6A9/tPsOUV9fz8qqjlFZrGRDhwxd3j2LJHSPpE+rtyCU3ydVJw9OX9QdgyeZTnMovb/UxK2t0PPzlHuZ9vZcarb7Vx7OKqas4diLLkjLJK60mwteND28fCcCXB4qpDuijbGOPN3n1Olj/Ehy3cyZ14SnQ14KzJ/goWelEDIPYSWDQwZa37Xu+5tRW1cWiRAyD3tOV+yfWgL6dP792JAVuYY4o6RkoAybbU6SxwF1QXkNVbeOXk2ZLB7cQQgghhGhJv1nKbfLP0MTl9UIIIZo20xhT8uuBLP48kc+stzfz12X7yCyuItLPndevH8LPD45jTHyQg1fasil9Q5jYJ5hanYHnV7Qu31mnN/Do13v4aV8m3+/J4OVVR+y0SgsZ87e1MRP5z4aTANw7IZbEnv5cMjAMgwG21RpzpO0RU3L4R1i/CH56uPXHqi8vWbkNTgB1vVLsuHnKbdKnUF5g33M2JfeQUmz3CAS/HtBjtFJ4L8+F7P3ts4Y2IAVuQWqBFLgdwcfdCU8XDdB4DneNVk9+WQ1QF2cihBBCCCHEeeKmgLMHFKdD1l5Hr0a0hsEA2/8LR3919EqE6Fam9gvFWaPieG4ZN3+4nUOZJXi7OvH4xX1Z+9eJXDUsCrW6c0S6qlQqnr6sP05qFWuP5LL+qO3RHYt+Sea3Qzk4a5TX/uHmU6w5nGOvpTavulQZfgisrurHmbOVBHm5cMMFPQD460V9UKvg50JjR7Rx21Y5+J1yW5pp38iTvKPKbXDfho/3mgjhQ0FbCTv+Y7/zNcc0YDJiGKhU4OQKsROVx07YuXO9HUmBW3DaGFHSQyJK2pVKpTLHlGQ2ElOSU6I85uKkxl+GfwohhBBCiKY4u9ddYpz8s2PXIlonIwl+fQy+vRO01Y5ejRDdho+bszmmxEmt4o4xMWz4+2TunxSHm7PGwauzXnyIF7ePiQHg2RWHqdVZHz3x2dZUPtysZF6/eu0Q7hzbC4C/LttHRiNNenaX+ifotRj8e/HqDqU+cte4WPPnIz7Em9mJUezWKxElhowk0NbYfr7KIjj+e92fs+zYzZxnGjCZ0PBxlaqui3v7f6C6zH7nbErmXuU2YnjdY6afITpxDrcUuLs5rU7PmbPKF6aYIOngbm91Be7zvzlkGwvcYT5uMvxTCCGEEEI0r9/lyq0jC9yl2Z06v7NDOLVeua2tsE83ohDtLWsfrHoSalqf/dzenrtyII/NSGD1/In88/IBBHi6OHpJrfLw1N4EerqQklfOJ1tSrdp33ZFcFv50CIC/XdSHK4ZG8sQlfRkS5UtxZS0PfZFkU9HcKsZ4knS/CziZV46PmxO3XNijwSaPTOtDhjqCQoMXKl116yI2jqwAXb0CefY+2491rlxjgTuk3/nP9ZsFAXFQVaRElbS1zHod3CbxxgL3mR1Qebbt19AGpMDdzWUWVaHVG3BxUhPqLTnP7c1U4G7s3c8syd8WQgghhBCW6n0RaFwg/1jdpdDtaf838H8JsPPD9j93V3JqU737Gx23DiFs9fvTsO0d2PU/R6/EauG+7sydHE+voK5xdbuvuzOPzVA6ht9Yc5z8MsuuCjmUWcyDXyShN8B1I6KYO1nJuHZxUvP2TcPxdnMi6XQRr/7ext9rjAMmP8+LBeCOMTF4uzW8uj3Sz51bLowhSd8bAENrcrgPLFNuvZQ8drt1cOu0UHBcuX9uBzeAWgNjjZnfW99uXRd6S2rK67rJ6xe4/aKV+BSDHk6ua7vztyEpcHdzaYWmeBKPTpMn1ZVE+inF68Y6uHOMBe5wKXALIYQQQoiWuPlA7CTlfvJP7X/+Q98rt0dWtP+529vJdfDVzVBq5xxabTWc3lb3Zylwi87GYKibAyBXIHQI146IZmCkD6XVWl79reWCdFZxJXd9vIvyGh1j4wN54apBDa4ojw7w4JXZgwH4z4YU1h2xY051fSVZkHcEAyq+zu+Fu7OGO4wRKeeaOzmOAyqlcJx90Mavm6U5dV9zJz2h3Npr4OLZVKUz3NkDfHs0vs2QG5XCeklGXaG9LWQfUIrY3uHgE97wufhpyu3xzpnDLQXubi7NOGAyRgZMOoRpeKSpW7s+cwe3jxS4hRBCCCGEBfrNUm7bO6ZEr4fTW5X7mXu7fkzJuheVQv7OD+x73IzdyqAxZ+PvZmd2dcqYB9GNFZ2GqmLlfsZux65FAKBRq/jnrAEAfL0rnQNnipvctqxay10f7yK7pIreIV68e3Mizprzy4YXDwzn9tE9AZj/zV6yitsgj/vUBgBOOsVTjBc3j+rRZGRMoJcrkYMnAaDJ3InWluiUwz8ohd/IEXWRX4UpUFViw+LPkZes3Ab1AXUTZVgnV7jwfuX+n2+03ffRjEbiSUxMOdwn1nTK7+NS4O7m0mTApEM1n8GtPCYRJUIIIYQQwiIJM0GlVjJwz6a133nzj9VldlYXw9lT7Xfu9lZbCZl7lPsn7DyMy9Q92GcG+EaDvrZhR7cQHV1Wvczi4nQll1843IiYAK4YGoHBAP/6+RAGg+G8bbQ6PQ99kcThrBKCvFxYcsdIfN2dGzmaYsHMfgyI8OFsRS2PfLnXtqJyc4wxGb9V9cNFo+aeCbHNbn7JRZegRU2IoYBf/txl/fkOfKvcDpoNnoHgE6n8Oeeg9cc6l3nAZN/mtxtxJ7j6Qv5ROPZr68/bGNP3r/oDJk16jAZnTyjPtV/3ejuSAnc3Z+rg7ikd3A4RWS+D+9xvMlkSUSKEEEIIIazhGQQ9xyr32zMq5PSWhn82/QLdFWUkKYVnULrVy/Ptd2xTgbvXROg1oeFjQnQG5xbFzthQaBRt4olL+uLurGFX2ll+2pfZ4DmDwcC/fj7MuqN5uDmr+fD2kUQHNF8jcnPW8M5Nw/FydWJHaiGL1xy332INBvOAyc36QcweEUVoC1e2e/v4cdZbiSnZsfFXqmp1lp/vbJoyXFGlhgFXKY+FKTEsdsnhNs3FaCx/uz43Hxh5l3J/8+vK34O9NTZg0sTJFWInKvdPdL6YEilwd3OnC6XA7Uihvq6oVFCt1VNY3nCQQI55yKS7I5YmhBBCCCE6I0fElKQZ40nUTsqt6RLorsgUxQKAwX7DuGoq6jKLe02QArfonEwd3E7G32EzpMDdUSgDNOMAWPTLESpqtObnPtp8is+2paFSweLrhzE02s+iY8YEebLo6kEAvLP+BJuO59lnsXlHoCybSoMLe+nDXybEWbSbf8I4AGKrDvP5NiuuYjr4nXIbMw68jQMmw40Fbnt0MucaO7hD+rW87YX3g8ZV+X6QtqXl7a1RVQwFJ5T7jRW4oV4Ot52vUGoHUuDuxgwGQ70ObokocQRXJw3BXq4AZBbV5XDr9AZySpUJx5LBLYQQQgghLNb3UuX29Db7D0FsiilGY+A1ym1X7uA2vVaPQOXWXjEl6duVIWQ+kRAQCzHjlcez9kJlkX3OIURbM3W7mr4WSAd3h3L3+FiiA9zJLqnivfUnAVh1MJsXflEyop+8pB8XDwyz6pizhkRw06geGAzw6Fd7yS05f76Y1Yzd2zv1CVw8JIYeFjZkOvW8EIDh6mO8u/4kpVW1lp3PVOAeOLvusTA7Fbj1OiXGC1ru4AbwCoFhNyv3N7/eunOfy/QGlF8PJYalMaYc7jM76qLHOgkpcHdjeaXVVNbqUKvqojJE+4uoF1Nikl9WjU5vQKNWEezt6qilCSGEEEKIzsY3CiITAQMcXdn25ys+A8WnQaWBC+5VHsvap/xS39Xo9ZC+Q7k/bp5ye/IP+wzjSt2k3MaMB5UKfCMhMF4ZembvLj4h2kJpDpRlAypIvEN5LHNP1/xa0Em5OWv4x8z+APxnYwor92fx6Nd7MBjglgt7cPf4XjYd95nL+tM3zJuC8hoe+WovOn3rojXKkpU3DjfpB/HAJMu6twGIvgCAgeo0ysvL+HCTBfMgcpOVnG21M/S/vO5xUwd37hHQ1jS+ryXOpoKuGpzcwK+nZfuMeUiJSzmxGrIP2H7uczU3YNLErwcEJSjfe+x1hVI7kQJ3N5ZmjCeJ8HPHxUn+KThKZCODJk352yHermjUKoesSwghhBBCdFLtGVNi6mgOG6T80uzsCbXldR1rXUlesjJE09kTRtxVN4wrxw4FCHP+9oS6xySmRHQmpk7XoD4QOVz5/1FTVpc/LDqEGQNCGRMXSI1Wz9wvkqiq1TMpIZh/zhqASmVb7cHNWcM7Nw/Hw0XD1pQC3vqjFXnculqc0v8EQN9rIr1DvS3f1zcavMJwQsdgVQofbkqhoKy6+X1MwyV7Twd3/4bHcvNTZi7kJVv3GuozDZgM6gNqjWX7BMRC/yuV+3++Yfu5z9XcgMn6TF3c9h6k3MakqtmNmeJJYiSexKEi/JQIkvoF7mxz/rbEkwghhBBCCCv1M3ahndrY9pcYm7qLe45RfnmPGKr8uSvGlJjyt6NHgotHXQH6xNrWHbe6tK6zrtf4uselwC06k6y9ym34YOVrQaSxiGbKlhcdgkqlYuGsAeZGun7hPrx903CcNK0rD8YFe/HCVQMBeGPtcbactG0Ab07yZtz0leQbfLhixkXW7axSmbu4Z/qfprxGx7vGKJZGGQxw0FjgNsXq1D9WmJIv3qpBk6YCd3Bf6/Yb96hye/A7KLSgE90SzQ2YrK9+gdseVyi1Eylwd2NpBeUAFucZibYRbhwiaeraBsguVordkr8thBBCCCGsFhgHIQNAr4Wjq9r2XKYO7h5K9qn5F+euOGjS/FpHK7fxU5Xb1ha407aCQQf+Mcrl4SamHO7cQ1Bmp+FtQrQVUxEwfIhyG5mo3MqgyQ4nIcybJ2f2Y3zvIJbcMQIvVye7HPeqYVFcNyIKgwEe+WoveaUtdE834tCmHwE47jmcwdEB1i8iehQAs/zTAfhsW1qDONgGMpKUCBFnD0i45PznTf+WW5PDbRowaUn+9rnnjpuiRIVsfdv285uUF0DRaeW+6Y3opvQYrVyBUZZjnyuU2olNBe533nmHmJgY3NzcGDVqFDt27Ghy20mTJqFSqc77uPTSS83bNPa8SqXilVdeMW8TExNz3vMvvfSSLcsXRuYBkwFS4HakxjK4s0qkg1sIIYQQQrRCe8SUVJ6F3MPKfVPR11Tg7pId3OcU800F7vRtUFVi+3FPbVBu68eTAHgGQajSEWnO6BaiozINsDMN54saodye2e2Y9Yhm3TWuF5/dNcrccGcv/7p8IH1CvcgrreaKtzfz7voTLceEGOWWVOGbpcSThA6ZYdsCjB3cgWf3MSrGnxqtnjfWNBGZZereTpgJLo0kG5j+Ldujgzukn/X7mmY97PkcKgptXwNAlvF7cmA8uPk2v62TK8ROVO4fX92687YjqwvcX3/9NfPnz2fhwoUkJSUxZMgQZsyYQW5ubqPbL1++nKysLPPHwYMH0Wg0XHvtteZt6j+flZXFkiVLUKlUXHNNw0sEnn322QbbPfTQQ9YuX9RjyuDuKRElDtVYBrcpoiRcCtxCCCGEEMIWpgL3ybVQXdY250jfARggIA68QpTHTAXu7AOgq22b8zpCUToUpyvDNCONhbuAWOVDr21dAdo8YHLC+c+Zit5S4BYdWWURFKUp903D+Uz/T/KS7fs16NAPsGuJ8WuM1n7HFXbh7qLhnZuGE+LtSmZxFS+vOsrol/5g/jd72Zte1Oy+n6w/wBDVCQB6jbrMtgWEDwGNC6qKfJ4eq9Ravt19hhO55/wb1Ovg4HLl/qDZTRzL+G8556BtUR16Xd08CmsjSkC5iid0EGir4ND31u9fX4Ypf7uFeBKT+GnKbVcucL/22mvcc889zJkzh/79+/P+++/j4eHBkiVLGt0+ICCAsLAw88fq1avx8PBoUOCu/3xYWBg//vgjkydPJjY2tsGxvL29G2zn6SmF2dYwRZT0lIgShzJlcOeWVlOtVSZM12Vw2/fdVCGEEEII0U2EDgD/Xsovxm01KMqcvz267rGAWHD1BV11XXd3V5C+XbkNHwyuXnWPx5liSmz8O64orOsOrJ+/bSI53KIzyDbGGPj1qBvU5xMOPlFKxIK9rujI2g/LbocV8+D9cfBSD/j4Mli9EJJXQGmOfc7TFnRa2PslpGxw9EraXO9Qbzb+fTKvXjuEIVG+1Gj1LE/K4Mp3/uTytzezbFc6VbW6BvucLa8hdddvOKn0VHjHoKof12QNJ1dzEXeg/ijT+oWgN8ALKw837CRP+xPKspVBkqav4+cK7A1Obsqw1MIU69dSlKZ8D9a4KhFU1lKpYPB1yv0Dy6zfvz5LB0yamHK4z+xo+1kedmJVgbumpobdu3czbdq0ugOo1UybNo2tW7dadIyPPvqIG264ocnidE5ODitXruSuu+4677mXXnqJwMBAhg0bxiuvvIJW2/S7ddXV1ZSUlDT4EHWKK2spqlA6KnpIRIlDBXi64Oqk/FfMKVa+4GabIkokg1sIIYQQQthCpWr7mBJzZMeYhuftioMmTQMme4xu+Lipy+3EGmVgmbXStgAGCEoA77Dzn+85BlRqKDgBxRnWH1+I9mCKJzFlFptEGXO47TVo8vhvyq1HELj6QG25cnXDn4vh65vh//rA64Ng2RzY+i6k7wSt9TnQdpd9ED6cAj/8BZbOhnLbBjB2Jm7OGmYnRvHjg+P4Ye5Yrh4eiYuTmv1ninns2/2MXrSWRb8mk25MFvjfllRG6JU3+9wTmig4WypqpHKbvp2/zUhApYJ1R/MY+cIarv/PVv735ynKd3+tbNP/cnByafw4GiflzWKA7H3WryPvqHIb1EcZvGqLgdcAKuV7kClD2xaWDpg08euhfF8y6OHkOtvP246sKnDn5+ej0+kIDQ1t8HhoaCjZ2dkt7r9jxw4OHjzI3Xff3eQ2n3zyCd7e3lx99dUNHn/44Yf56quvWLduHffddx8vvvgif//735s8zqJFi/D19TV/REdHt7i+7uS0MX872NsVTzsNFBC2UalU5piSjKJKDAaDeeCkRJQIIYQQQgib9btcuT32m/2LPLVVdb8wmzKpTSKNHWJdqsBt7OA+97XGjAONi1J4KDhp/XFNndmNdW+DkpUaPlS5LzEloqMyDeELO6fAbYopybBTDvdx45USU/4Bj6fBA9vh8rdh+O3KYF1UcZVecQAATIhJREFUUHwaDi2H3xbAR9NgUTTs/sQ+57eWtgbWLYL/Tqx7E0BXA/u+csx6HGRotB+vXTeUbQum8vjFfYn0c+dsRS3/2ZDChFfWcdfHO/n4z1OMVytXAqjiJrfuhMZBk6TvoG+YD2/cMIxBkb7oDbD9VCEv/ryf2gNK5MePutGk5DUTodOaHO48GwdM1ucbqXyfATj4nW3HKMmC0izlzVJT7IolTF3cbXUVmJ21a2Xzo48+YtCgQVxwwQVNbrNkyRJuvvlm3NwaFvbmz59vvj948GBcXFy47777WLRoEa6urucdZ8GCBQ32KSkpkSJ3PWmFxngS6d7uECL83EnJLyezqJKiilpqtEq+U4jP+f+2hRBCCCGEsEhkIniHK7/YpmyAPhfZ79gZu5VCjVeoEktSn6lDLCPJfudzpKpiJYMVIPqcArerl1L0PrVRKQIExVt3bHOBu5H8bZNeE5Q3E05thCE3WHd8IdpDkx3cpkGTu5QrHFQq289ReVaJSwCInw5qNYT0VT6G36o8Xl2qfN05s1M555mdUJEPvz6uXG3hG2n7+a2VuQd+mAu5h5Q/971M+ftZ9wIkfQqj57bu76MTCvB04f5Jcdw7IZY/juTy6dZUNh3PZ+2RXMIoIN4tE4NKjSqmiTf8LGUcNEnuYagq4fIhEVw+JIL0wgp+P5xD/q4f8CsqJ8fgx7zt3ui3b6BPqBcXDwhjxsAw+of7oDJ9bkwF4WwbCty5pgGTNuRv1zdotvIG5/5ldYMnrZG1V7kN7tv4MM2mxE+DrW8r39v0euX/XAdm1eqCgoLQaDTk5DTMNcrJySEsrJHLqeopLy/nq6++ajR6xGTTpk0cPXq02Q5vk1GjRqHVaklNTW30eVdXV3x8fBp8iDppxg7uHpK/3SGYcrgziyrN3duBni64Otl4GYsQQgghhBBqtVJUAUj+yb7HNkd2XHh+kcZU4M49rHR6d3bpOwGDkmnuHXr+86aYkpNrrTtuWa4ygA+g57imt6ufw21LDIoQbammom6Q3rndoeFDlcGsZdlQ0sqInZPrlLiE4L7g10Tzoqs3xE6ECX+Dm76Cx04osULaSvjjudad31K1VbDmX/DBVKW47REIs/8H138Oo/4Czh6Qf9Q4pLd70qhVTO8fymd3jeKPv07kzrG9mB2gXAGjihgO7n6tO4F3mBKxYdA3uHogOsCDu8b14vEo5Q3LszGXMa5PKM4aFcdyynjzjxNc+uZmJryyjjfXHqesWlt3VULWfuu//po7uFtZ4O5/BaidlX9POYes3z/DyngSk55jwNkTynIg54D1521nVhW4XVxcSExMZO3aum/cer2etWvXMnr06Gb2hGXLllFdXc0tt9zS5DYfffQRiYmJDBkypMltTPbu3YtarSYkJMTyFyDMTAMmYwJlUGdHEG4cJplZXEV2SSUAYRJPIoQQQgghWsuUw330F2XImb2YC9xjzn/ON1rJyNVr6zqfO7Om8rdNTAPKTm2yrqBvihwJHQSegU1v1+NCpbhRnA5nT1l+fCHaQ84hpZDoGXJ+jryLR12GcWtzuE0xCfHTmt+uPpUKZryg3N/3ZdtfVZK+E/4zATa/BgYdDLga5u6AgVcra3HzgQFXKdsmfdq2a+kkYoO9eGZWf/4Wl2l8YJJ9DlwvpqSBmnLl+yHQd/ocPr3zAnY9NZ3F1w/l4gFhuDmrSS+s5LXVx5jw8jr+d8Idg0qjXAlQmmX5+fX6ujd+Wlng1rv6QW/jFVgHvrX+AOYBk1YWuJ1c695gPb7a+vO2M6v7y+fPn88HH3zAJ598QnJyMvfffz/l5eXMmTMHgNtuu40FCxact99HH33ElVdeSWBg49+4S0pKWLZsWaPd21u3bmXx4sXs27ePlJQUli5dyrx587jlllvw9/e39iUI6jq4e0oHd4dgyuCu38Et+dtCCCGEEKLVeo4Fd3+oKKgr1LaWXldXNDg3kxqMgyaNv0h3hRxu8zDNRl4rKAU8rzClS9Sav+NTxgJ3c/EkoFxSbhqaZoo0EaKjyG4insSkfkyJrfT6ugK3KRfYUpGJMPh65f5v/2ibqyBqKpRjL7lI6c72DFE6tq/9H3gGNdx2+G3K7aHlUFVi/7V0RgYDpKxX7turwB1ljCk5c06B++ivUFsB/jHKvw3A192ZK4dF8v6tiex5+iIWXz+U2CBPCstr+NeqU6QQAYA2Y6/l5y8+rZxH46Jc/WOD3WlnmfnGJia8so7cGOOb1Qe+Vf4/WMpgqDdgcrj1i+hdb5ByB2d1gfv666/n1Vdf5ZlnnmHo0KHs3buXVatWmQdPnj59mqyshu9qHD16lM2bNzcbT/LVV19hMBi48cYbz3vO1dWVr776iokTJzJgwABeeOEF5s2bx3//+19rly+MzBElksHdIUTUK3DnGAvc0sEthBBCCCFaTeMECZcq95N/ts8xcw5BdQm4eEPowMa36SoFbm0NZBgLc011cKtUdV2l1hQBWhowWV/9mJLWSP5Z6TBN/bN1xxHCxJy/3cTwOnsMmsw5qMQkOHs2/f+wOVOfASd3OL3F/nFNaVvg/bFKVrFBD0NuhLnb666eOVf0KAjqoxQ/Dy2371o6q9zDUJ6rxLdENz2zzyqm46TvbFgQNg1qHDi70Qx0dxcNVw6L5Pd5E3j5msFE+LqxT9sTgE+W/8SPezPQ6y14kyTvqHIb2Fv5PmyFsmotC388yOz3t3A4q4QzZyu5aaM/emdPpXB+btG+OcXpyhvcamcIa+L7dXPijW8ope+AyiLr929HNiWEP/jgg6SlpVFdXc327dsZNWqU+bn169fz8ccfN9g+ISEBg8HA9OlNv9N27733UlFRga+v73nPDR8+nG3btlFUVERlZSWHDx9mwYIFjQ6XFC2rqtWRXaIUUXtKREmHUD+DO9NU4PaRArcQQgghhLADU6El+WfrOr+aYupojh7Z9C/ukcZOsc4+aDJrH2irwD0Agno3vV38FOX2hIU53MUZUHgSVGol57Ql5gL3Jts7UGsrYeXflNf05Y22ZbkKca4s4/C9Jju4jVcfZO4FXa1t5zhhjEfoNUGJTbCWbxSMeUi5v/oZ0Fbbto5z/fEC/O8SKEwB7wi4aRlc9T54BDS9j0pV18UtMSWKY6uU255jbPv8NiZ0oFIwry6uiwqpPFsXtTFodrO7O2nUXDcymnWPTSKqn1LzjKw6wSNf7eWSNzbx+6FsDM19LTbnbydYtey1yTlMf20Dn2xNw2CAq4dH0iPAgxNndaxTG68iOrDM8gOa3mQO7W/b361/TwhKUCJ3UtZZv3876tgjMEWbSC9Uure93Zzw93B28GoE1HVwl9foOJZTCkCYMZdbCCGEEEKIVomdBC5eUJppn47q01uU28byt01MHdz5R6G6rPXndJR0UzzJ6Ea7/cxiJyvF6rxkpXjdElP+dvhQcDu/yes8USOUDtTy3LrOQGvt/EgZ9gdK0efz2ZatVbRe6mZ4Ywjst6Iw1RnoapXuW4CwJjq4A+PB1VeJ8DFta63jpngSK/K3zzX2ESVK6Gwq7LBDGsCez2Hjy8r94bfD3G3Q5yLL9h18g9JRm7EbsrvAnILWqCiEP99U7ve/0n7H1TiZI0hI367cJv8M+loIGQAh/Sw6jKuThgtGTwJgjGcG3m5OHM0p5d7PdnPVu1vYciK/8R1zjQVuC8+TV1rN3C+SuOuTXWQVV9EjwIPP7xrFa9cN5ZM7LyDA04VPSpWrIQyHvrf8zaKMVsSTmJhigY537JgSKXB3Q6n18rdVzf2QJtqNm7OGQE8XAA5nKjlcksEthBBCCCHswtmtbkBVay/PNxjqOrh7NhMV4B2mdDQa9JB9oHXndCRz/vao5rfzCKgrIJy0oIvbHE/SQv62iZNrXQa4LTEl1WXK4DuA6c8pHXmlmbB0tmMvO88/oQx96+r2fqEUVn+cWxfp0RXkHQFdjVLA9o9pfBu1uu6KDlsGTVYW1RUo463M367P1QumPq3c3/AKlDdRmLTEmd2wYp5yf9KTcPmblr1RZeIVDAmXKPf3fGb7OrqCja9CVRGE9FfiXezJHFNijPQwDWgcdI11xwkbBIBPVSabHx7OA5PicHfWsDe9iJs+3M5NH2zj+z1nyCmpN2TYwg5ug8HAN7vSmfbaBlbuz0KtgvsmxPLboxMY11vJb+8V5MmSO0aSpBlCnsEHVUUBhpN/WLZ2WwdM1meO4FrdNhn2diIF7m4orUD5AaJngMSTdCSmLm6tMc9JMriFEEIIIYTdmGNKfmrdL6hnU6E0S+k+NHXHNcWcw91JY0oMhrqhkZbk/pqLAC0UuA0G6wvc9bc9tcHyfUx2/EfJYQ2IhQvvh1u+U7pZcw/DVzfbL7LBGsfXwNsjlKJvV2fKn9ZVwze3dfgsW4vVz99urnnOPGjShhzulPVKPEJQHyUuoTWG3KgUK6uLYf1Lth2jLBe+vkUp7CdcChMes+04w29Xbvd/DbVVzW/bVRWcrOumv+h5q7OqWxRtfGPyzA4oza67cmaglQVud3/w6wGAb3Eyf7+4Lxv+Pok7xsTgrFGx5WQB877ex6gX1zL1/9bz9PcH0OaYCtx9mzxsan45N3+4nb9/u5/iyloGRPjw04PjWDCzH+4umgbbDo32462bR/KLXvledPj3JS2vW69XooGgdQXunmOU/PuyHMjeb/tx2pgUuLuh04V1Hdyi4zi3Y1syuIUQQgghhN30nq5EXBSm2FYgNTF1NEcMA+cWIvU6+6DJghNKUdjJrel84fpMBe6UdaDTNr3d2VRl8Jfaua4r2xKmAnfqZtDrLN+vqrguAmDiE6BxBr9ouOVbZVBo2mb4/i/2yWe3xubXAAMkr1DW6GgHl8PhH+1/3OrSulgZ7/C6Tu4O3AlpsZbyt03MgyZ3WX8O0+DW+FbEk5ioNTDjReX+riV1MRKW0tbAN7crVz8E9VHyttU2ltXiJoNPlJILfWSFbcfo7NYsVCJD4qdD/FT7H9+U/55/TPl8G/TKY01dbdAcUwSP8YqkEG83/nn5ANb9bRJ/mRjH4ChfVCo4mVfOH9t346SroMagYdbSTJ5fcZg/juRQWqXEimh1et7fcJIZizey5WQBbs5qFlzSlx/njmVgZNNXAkzuG0LkeOWNkZi8dSzd2ELkz9lTyps5Tm4WR6U0ysm17vuPKcO8A5ICdzeUViAF7o7I1MENSj66p6ud370UQgghhBDdl6s3DL9Vub95se3HMedvW1CYjezkBW5T93ZkomXDuSKHg5ufUqzNaKZT1dS9HTUCXKy4qjZ8qFKQriqyLvZl23vKPkEJDQerhQ2C6z8DtRMcWg6rn7b8mK2VuQfS/lTu62vh2O/td+7GnNkN386BZXe0LrqiMZl7AQP4RsMNS0HjohQ0t75t3/M4gqmDu6n8bRNTB3f+Meu61w2Guisi7FHgBqVQl3Cp0hVu7b/53/+hfA109YEbvgA3H9vXodbAsFuU+91x2GTqn0omtkoNFz3XNufwCIBA43Bg05t8A5sfLtkk07/xrIYdzFH+HjxxSV9+enAce5++iP/emsj9A5Q3OE8ZwjmQXcGHm09x58e7GPrsaq56908ue2szL/16hGqtnnHxQfz26ATumxiHk6blEu206TMpdovEU1XN9t+WsupgVtMbm773hg1S3thsDVP+/YmOm8MtBe5uyBRR0kMiSjqUyHoFbsnfFkIIIYQQdjf6QVBplA5j02XL1kozFn17NjNg0iTcWOAuONE5IxnM+dsWdlmrNUpXJjSfw226TD5mvHXr0ThBzFjlvqU53BWFsPUd5f6kJ5Q11hc3Ga54V7m/9W2lGN4ethrPqTG+cXDk5/Y5b2MMBqWTFJQOT1tyoptjerMjcrjyZompg3j1wrr/T52RXg85xgGJLXVwewbVdc1aE1mUc0jplnb2gJ5jbVpmoy56Tnlj5/jvLUcKmexZWhencfV/Iah369cx7GZApVxVU3iq9cfrLPR6+O1J5X7iHa3rLm6JKYdbW6kU0wdcZdtxwk0d3E1HdPh6OHPRgDBuiasEoGff4bx14zBuvKAHMYEe6PQG9pwu4kh2Kb7uzrx67RA+u+sCegZaUZtTqfAZqWSVX6H+k4e/2suOU4WNb2uPAZMmpvz79B0d9vu5FLi7Ga1Oz5mzyn+2mCDp4O5I6ndwh/m2cLmnEEIIIYQQ1vLvCQOvVu7/+Yb1+5fnQ8Fx5X50C0MXATwDzbmlnXKwnjX52yZxxsvsm+pyszV/28Scw21hgXvLW1BdAqEDof+VjW8z5HqYaizwrloAh36wfl3WKMlUOsYBLl6k3B5fA7WVbXveppxcW/emA9QNpLMXU0HXlFk/8m6li9SgU7rGy/Lse772UpgCNWVK9JElxV5TTMkZK2JKThjjEGLGK8Ny7SUwDi64V7n/2z+ajxQC5U0K81DJBXUDIlvLrwfETVHu7/ncPsfsDA58A1l7lStSJj3ZtucyFbhB+XfkHWrbcUwd3HlHW/5aZYy+cYsYwKwhESy6ehDrH5vMn09M4dVrh7Dgkr6smT+R2YlRqJrLrm+CavB1AEzU7MdTW8Tdn+zkWE7p+RvaY8CkiX9PJZbHoFPeJO+ApMDdzWQVV6HVG3BxUhPqLV3CHUmEX93nI8zHgksghRBCCCGEsNbYR5Tbwz8oBSprmAq+wf2US78tYeoc62yDJstyjX8/qrocV0uYcmQzkpTu6XPlH1cGdTm5WXdcE1OBO20L6Gqb37Y8H7b/R7k/+cnms4LHzVMKrxhg+b3K8dvKjg9Ar1U6ckfcCT6RUFuuDBNsb3o9rPmnct/X+GaM3Tu4z+miVKlg1htKsag0C5bfbV2mekeRtVe5DRt4/pUBjYmyocB93PhGUe/pVi3NIhP/rgwPzEuGPc1EhJTlwte3KgNCEy6FCX+37zpM0VF7l7ZcaO8Kaipg7bPK/Ql/Ba/gtj1f/TdjB9kYTwLgEwEegUqBN7eF7Os804DJhAYPR/q5MzsxivsmxhHs3YqaT3AChA3GCR33BR+gpErL7Ut2kFVcr/Cu19W9sWyPAjfUdXFbm13fTqTA3c2kmuNJPFCrrX+nSLSdSOngFkIIIYQQbS1skPJLqkGvdPdaw9rIDui8gyZNrzV0ALj7Wb6fTwSEDAAMcPKP8583DfiMvsC2jtSQAeAeoBSEM1p402Dz68p2EcMgYWbz26pUcMnL0PcypZD35Q1tU8SoKYfd/1PuX/iAct6+lyl/TnZATMmh5UqeuauPMjAQlG5dexUay3KVgaKoIGJo3eOuXnDdp0r0Rsp62PBv+5yvPZmiGlrK3zYxvaGTscuyAZtVJZBu/H/YFgMI3f2VoasAf7ygnO9culoll70kQ8lybs1QyaYkzFQKp6VZzUcb2VtNufImXnsPO936jvL36dsDRt3f9ucLSlDeTPIKg36zbD+OStVkDncDBkPdUNngvrafryWDrgXgLp9dxAZ7klVcxR1LdlJcaXzjM/+Y8vXfxcs+cToAYx6Cvx2HyQvsczw7kwJ3N2MaMBkjAyY7nCAvV5w1ypsOksEthBBCCCHazLhHlds9S5UCnKVMXb2W5G+bdPYCtyVRLOeKN0YONJbta4rCsCWeBJTiWi9jdndqMzElJVmw80Pl/uR/KMWZFo+tgWs+hKgLlEGZS2crx7GnfV9C5Vklj9kU89DPWOA++mv7drBqa+AP43C7MQ8rUTSuvlBbAbmH7HMO05sQwQnKoNf6QvrBZYuV+xte7tDD2xpl6g5tKX/bJGyQMmCzogDOpra8/akNSqd/QBwExNq8zGaNvAsC46EiHzb93/nP//YPZRiqi3frh0o2xckVhiiZyu06bPKrm+DNYfDfScr3gvaICCrNVt54A5i20L6xM01Rq+GedTB3u/KmRmtYkMNNSQbUlCoZ7wFxrTtfcwZeA6hwztjO59eEE+ztytGcUu79dBdVtbq677nhQyy7wsISPuHgFWKfY7UBKXB3M6cLlQK3DJjseNRqlTmHO0wK3EIIIYQQoq30HKvk4eqqYfv7lu1TU15X0LImk9rUtVp0WonM6Cxsyd82iZ+m3J5c27A7Uq+HU6YBkzYWuMGyHO7Nr4G2SinQm9ZjCWd3uOlrpehXnK4UuauKbV9rfXp93RDLUffXFV16jFG60isL4XQbRqOcK+kTpdDqGQIX3q8UwqKMOdn2yuE2D5hMbPz5IddD4hzAAN/dA8Vn7HPetmYw1HWxhlvYwe3kqhS5oe7vpTnHjfnbbRFPYqJxhoueV+5ve7dh4X3PUthhjPi5+r8Q3Kft1jHMGFNy9FcozWm785hk7q2LBMraCz8+AK/1h9XPwNm0tjvvH88rXcVRI40F2nbi6mXdlThNsaSD2xRPEhAHTi6tP2dTfCMhZhwAEWd+4eM5I/FydWL7qUIe/24/BnM0kp3iSToBKXB3M6n5SkRJT+ng7pAemdqbWUMiGB0b6OilCCGEEEKIrkqlquvi3vkhVDcynOpcZ3Yq2aM+UeAXbfm53HyVYikoRZXOoEEx34o4FpMeo5XoibIcyDlY93juIaWI6+wJkcNtX1+vicrt6e1QW3X+80XpsPtj5b6l3dv1eQTALd8phd+cg8b84Rbyvi1xYjUUnFC6pIfdXPe4xqmumzt5RevPY4nqsrpYkIl/VwpgoHSvg/1yuM0DJpv5fF/8ktJlWVkIy+YoneUdXfEZZb1qJwjpb/l+5kGTLfz9Ggx1He3xbVjgBuhzsfJ/SldTl8d+7lDJvi1E/LRWSF/lzSiDDvZ90bbnAtj5gXKbcClM+5cSF1JZqAwffmMIfHmjcgWKXm+/c2YfqBukOeNF678udQSmqxVyDjWdm2+Kdgppw3gSE2NMCfuXMSDCl//emoiTWsWPezM5e2K78pwUuEVXZe7glgJ3h3T18CjeunEYbs52uoRECCGEEEKIxiRcqmTKVhXXFUObY4rs6GlDR3Nniyk5s8u2Yr6JkyvEGGNE6seUmLq3e45ROkdtFRgP3uFKB/6ZRjqNN76iFOtixkPsRNvO4R8DN3+jFONPbYCNr9q+XpOtbyu3ibedH9dhyuE+sqJ9MoG3vQflecrrHH573ePRxpxoe3RwGwx1ncoRzRS4nd3g2k+Uwv+ZHbBmYevP3dZMEQ3B/ZR/75aydNBkbrIS9eDkBjFjbVujpVQqmPECoIJD3ytvspiHSs60/1DJppi6uJM+bdv/A5Vn4cC3yv2xDytvdj6yF274EmInAwY4+gt8fjW8MxK2vd/6qzgMBiXuBQMMuEqZQdAZBcQpXxO1lcrA4MaYB0y2Q4G7/+WgdlbePM05xJj4IB6a0htntHieTVa2ac2bqZ2MFLi7EYPBYC5wxwRKRIkQQgghhBDdllqtFDcAtr7bcteoKX/blo5mU3HP1M3a0dkyTPNcpliQ+rnKpkgRU4a2rVSqpmNKCk/B3qXK/cn/aN15IobB5W8q9ze+0nJRsjnZB5S1qjRwwX3nPx83WSkclWS0/b+T8gKlUxVgytMNYwRMHcZnT0FZXuvOc/b/27vz8KbKtH/g35N0hS503wstFMrasrVWcUCpFEQERQd8URAVf4PgC3bGmWFmEH11rMuMg/Ai+CqOOKOgOICKimCBKspaLGspFIGC3SilK9AlOb8/npykpWvSLE3y/VxXr5wmJydP+yTl4T73ue9zIpiodgNChrS/r38McJ+ufMu+t4CTn3XttS1NX3+7k+VJFEqAu/go0FjX9n7K56bPGFE2x9JChwIjdAHmj2c1aSr5tvmbSrZl8H2iIWD5z6Lut6X89KEoXxQy1NBjQKUWWeqztwALDwHJvxF1x6/kA9v+APx9oMhoV5onGuvMdnGiTO0GpD5vrp/E+lQqIFT3WW6rDre+weQAy4/H0w+ImyC2dSctnrqjLyYGX4U7GlCr8oLcq4/lx9FNMMDtRC7X1OFavQYqCYjoZYV/JIiIiIiIqPsaNkNkAlcXAsc+aXs/TYMhuBltRINJhb1lcF80R4B7vLgt2CfKYWgaDUErUxtMNqVkiN8c4M56TTTm6zvetGz7mw19ABjygMho3/SkKN9iCqX29qCprWfFu3oCcbqTApYuU/L930UTuNBhwOD7mz/m2UtkJQNdL1Oi1MANHdq5Wrzxk0WzSwDYsgC4crZrr29J+vrbnWwwqfCLAXoEiCsMio+3vV++rv62pcuTNHXHX8RJFsCyTSXb4u5lqEt9+F+WeQ2t1tB8NumJ1suEBMYBk14FfpsLTP67yERuqAUOvQesSha14o15b2oagO1/Edu3zBdXTdgzfR3uIy0fk+UmGdwDrTOeYboyJcc+BbRauKpV+FOiKF11uKEPNucUWmcc3QAD3E7kwhWRvR3eyxNuLpx6IiIiIiKn5uIuAg6AyGhtq95q8VER4PDoZdpl12HDAEkFVBcBVUUmD9cqNI2G8hSmNJhU+MeKQI62ATj/PVB8BKirEjXJQ43Mem2NEiT/JdtQQ73sDHB0g9juavZ2U5P/BniHA+Vnge1LjX9+dQlwbKPYTlnQ9n7xU8TtKQsGuCsKDPWHU5e1np2rlClprfyLMZQAd1sNJlsz/jlxEqm+GvhkNtBwvWtjsBQluGfse1mSDL+Ptk4g1FUDF3RNXi3ZYPJm3iFA2kuAVwjwwFrLNpVsi1Iu5+QW4HqF+Y9/dqe4ssDd11C/uS3u3sDoJ4Cn9gFzturKCMniZOj/jga+WARU/tLxa2a/D5SdFic2bv+tOX4K21KuWmgtg7u6SPydl9RAQF/rjKf/RJH5X1mg/5sVVnMSAHBUjsWyz0+guLKVXg0OiFFOJ6IEuFmehIiIiIiIAAAj54pgR9lp4PTXre+jBJuibzHtcn23nobAeHfP4i49AdTXiN9JcBcy8CRJZFEDotyCkmnde4woB9BVfr2BXr1FtrZSUmV3BiBrgf6TgEgjgqod8fQDpr0ltg+tBc7sMO75B98VGbuRSYYSFa3pP0HUky07DVw+bfp427Mrw1CfXJmfmymNJi92MYO70IQAt9oVeOA9oGeQaPB5tJ0rK7qiutj0bPyay+KqD0iGcg3GUMrA/NJGyZtz34kTQ34x1gsSKkY9BvzuNNA/zbqvq4gYAQQPFiVElJNC5qSc3En8L/F3uTMkSZRVmvkh8GSWyKqXNSJwvWI4sG1J2+V8rlcAu14W2+OWiBN89k6fwX20Za10JXvbP9a42vRd4eoJDNSdHFTeM7p/Z6v8hqD6RiP+uOkoZGv0NrAxBridSMEV8Q8YG0wSEREREREAcQn+6MfE9p7lrTc3K2gS4DaVvZQpUYLFUaO7HojW1+HONDSYNEd5EoW+DncWUHISOL5JfH/Hn8z3Goq+dwDJumz/zxYA18o797yG6yIoDgApT7W/r4ev4Wc69YVp42xPyUngyHqxnfpC6+UZAEMDvF+yRXkFU2gagcIcsd1eg8nW+IQBybo65bkW+D2U5QNvJgDv3wNoNcY/v1iXvR3Qt2Wz0M7oqNGkcgJF+fw4E0kCRswW24c/MO+xr54HTn8jtkc/YdoxwhOBhz8F5m4Det8mGnHue0u8nzJfbJl1/v3fgOvlQOAAcTLVEQQPBFQuwI0KoPJi88dKdQHuYCs0mGxKycY/sVlcAVEqMrgfmjYNbi4q7M67jI2HLll3TDbAALcTOa/L4O7tzwA3ERERERHpJM8H1O7i8mYlmK2Q5SZNF02ov63QB7i7eaNJcwTzFTG3i0DI1XMiCK3cZy4xY8Xtue+A3S8DkEWNa2Mb/3VW6jIRqKopEeUJOpMRePQT4NoVwDfaUIKkPUomoiUCu5n/A0AGBt7bfoZ7QJwItjdeF1nUpricK57v7gME9DP++crv6lwWcKPStDG05dgnIkO48DCQ85Hxzze1/rZCyWi/ek40/GxKlsUJIcC65Um6k2G/Fs0Yi48aTpKYw6H3AMhA7B1AoAnvyaZ6pwCPfgk8vAkISxQlrL7/G/DmMF2N+1rR8Hb/22L/CS8Bapeu/gTdg4u7ob520U1lSvT1t60c4I4ZK676uHYF+HGluLKnZxD6xPbH7yaIUjv/s/UkfqnopiWPzIQBbidyoVwX4GaJEiIiIiIiUniHiEvWAWDPP5o/diUfuFYGuHiI7D1TKVmshT91LjBqC82C+WZo0OjubTiOthHoEWjexmNKsLzoqC4gLIkyAJbi6gnc/38iaJ/7OXD04/b3l2WR3QmIjOTOBLjiJwOQxPuk0owZhxf2ihI8klrUuW6PSgVE6upwm1qmRKm/HZ5oWlmfoAEi0K6pN74kTEdOfmbY3vVX40uVmFp/W+HZS/xsgMiSb6rstKglrHY3NFJ1Nj38DSd6zJXF3XDD0LgyaZ55jilJopnuk7uBGf8Wf9tuVIoTSW8mABsfFe/f2Dsc72RFW3W4L+eJW2sHuNUuhgalP6wQt+HDAUnC42NiMSK6F2rqGvGHTx27VAkD3E5EKVHSmyVKiIiIiIioqVufFo0gz2wHSk4Y7r/wo7iNGNm1mqIhg0Vg9NqVlpd1dxcVF0STMJWr8WUl2tKvSZ3nPmNMC3a2xTtUZFRDF7AY+kDX6oZ3RngiMO6PYvurZ4GKdubybKbIaHTzAkY80rnjewUDUcli+9SXXRqqniwD3z4vtoc/DATGdfwcpQ63qY0mlcCtMfW3m5IkYOA9Ytuc2eylp8ScqFwB3yjxfldOQnRWcRczuIEmZUpuOoGgBPP73Aa4OXHcQilTcuxToP5a1493YrMoFeIbJZoSmpMkiYD8/B+A+/5PNNetvQwU5QCQRPZ2W+WA7FXoUHHbNINblsWVG4D1A9yAoUxJoy5LW/dvmFol4W8PJsDDVYU9+WX46ECB9cdmJQxwO4nK6w24ek3UD4tmiRIiIiIiImoqoK8o3QAAP7xpuN9cGc2uHiLIDRiyW7ubgv3iNjzRfMG1po0MzVl/++ZjSmpg7B/Nf/zW3PaMCADXVQFb5gNabev77dUFToc/YlxzOXMHdk9vAy7uE1chjOvk7yhKyeA2McCtlOLpyokSJYv3zA5Ry9wclOztvncCqc+L7T1vtt0k8GY3qoDyn8W2OQLcNzeazFfqbztYxq+x+vxKNJGtqxRXS3SV0lxy1FzzNLltjUoNJMwAFh4C7lkOhAwF7vyzaY1Iuzvl6oXiY4b7akpEBrukMq0sUVdFjBSNWRVKWTAAsUFe+H2aCLr/9ctcXCw3w0mTbogBbidRoKu/HeTtjp7uDlL7iIiIiIiIzGfMYnF77FOgQpflVaDL4DZHyY7u3mjSnPW3FaFDAf9YUVO3aTa3uQx9AIAkSoB0ta5uZ6ldgPvWAK49gfPft54BXJorMrgllaFhYmfF6wLcF35sWaPZWFoN8O0LYjv5N4BPeOeeFzEKgCSy+mtKjXvN+muioSVgegY3IILjPhGivvHPu00/TlMnt4jbQVOBwfeLz2R9NZD1SueerwT0fKNEKQ1TRSgB7mzDCZK6GsMVI87YYLIplcpw1cN3r4vGgab65bD4PavdgOGzzTO+9qhdRSB9/h7gV89a/vVsQcngrrpkaLir1N/2ixEndK1NkgxZ3ECzADcAPHprHyT18ce1eg2e/fQItFrHK1XCALeTuFCuK0/C7G0iIiIiImpN+HDRrErWAHtXAVVFwNXzIkgZlWSe4wPdOMBtxvrbCkkC5mwFnswSl+6bW/QtwJJLQNrL5j92ewL6AhN1r5n5giGgq1CC3vGTAf8YGMU/RmR/yhpRN7srjn4iygZ4+BpO4HSGh4+h3IuxWdzFR8XYvUI7H1BvjSQZgv3myGa/fBooPSlKBcXfLYKod70oHjv0T6DsTMfHUMqTmFp/WxEyWGTU36gEys+K+87vETWbe0V3royMoxv1OOAdLvogfP606b0LDr4rbgdNA7yCzDY8p+bhY8iWVmrSl+oC3JYuE9WehJmifn3wYNFbowmVSsLrDw6Dp6sa+34ux7/2XbDRIC2HAW4ncUGXwR3N+ttERERERNQWJQh4+AMgT1cDOWSw+A99V+kbTea0XdbCVq6VG+qnKjWgzcU3AggZZN5jNuXuZZsatyPmiHq+mnpg05NAY524v7YMOKJrQHnLAtOOrS9TstX08TXWAbt0Qfgx6YCnn3HPVxpNGluHWynBEzGi6/Oi/B7yvgI0jV07llKeJHac4XcRc7uYQ1ljqFPeHiWY15XyJIDI8g1LFNuXdGVKmpYncbSazabo4Q/8ep04IXFiM3Dg/4w/xrVy4Ph/xLa5mkuScHOjSSWDO2iAbcYDiBOP838EZm9p9eHeAT3xp7tFqZJXvj6F82VGNpjt5hjgdgIarYyfCioAAL39e9p2MERERERE1H3F3iGyMxuuATueF/dF32qeYwcPFNlldZXA1XPmOaa5KFm6AXFAz0DbjsVeSBJw70qgRwBQcswQTD70HqCpExn7ppZ7UTKXz+4UpStMcfBdoLJAZMEaWyYFMFy1cPFg+/vdTN9g0gyNSqNvBTz9getXgQs/dO1YSoB70LTm96e+IK7SOLUVuLC3/WMoTfXCupjBDTRvNCnLhgaTcU5ef7upqCTRpBEAvvmz8e/Fn/4FNN4Qf9OVEzZkHspVDMpn4nKeuLVFg8mmAvuJZr1tmJXcG7f2DcD1BlGqRONApUoY4HZw+aXVeGDNj/g2twQAMLK3kWetiYiIiIjIeUiSIYu7Xlf31Vw1qdWuhtql3a3RpCXqbzsDr2Bgygqx/cObwNldwAFdQ7uUhaZn4oYMFiVdNHVA/rfGP79gv6H29rg/Aq6exh8jUhfgLvwJ0DR0/nnmaDCpULsAA+4W26e6kM1+5aw4CSGpRdmYpoLjgRG62sw7lrZdCqPhuiFLtasZ3EDzRpNX8kW9c7Ub0Of2rh/bkST/RpyU0DYAGx/tfF16rQY4uFZsJ81jVry5KZ+B4qPiM6NcAWTrAHcHVCoJr04fhp5uahw8fxX//KGbnWzuAga4HVSjRou3dufj7hV78FNBBbzcXZBx/1CMiWM2AhERERERtWPg1Ob1onubKYMbMGS1WrIO9/UK4MgGUSaj6IgIzHXEEvW3ncXAe4DEhwHIwEczgNpS0Rxx0FTTj9m0/rSxgd2yfGD9TBEc7z8JGP6waWMI6Ad49AIarxuaK3bkWjlQ/rPYvqnJm8kGThG3uVtNL+2jNJeMHdt6c8hxS0TT0EsHDZneNys9KUqZ9AgEvMNMG0dTSqPJkhNA7udiOzpFlNwhA+VKiYB+oqnhpidE8Loj+ZnipIFHL2DIAxYfptNRMrjLzoheFdeviish7KB+fJR/D/x5siib9fo3edh46CJ25ZUi+8JV5JdWo6TqBq7XayCbWvfdRlxsPQAyv7ziajz76REcvVQJABg3IAgv3zcU4b1MOGtNRERERKSzatUqvP766yguLkZCQgJWrlyJpKTWmw9u2rQJL7/8MvLz89HQ0IC4uDj89re/xSOPPKLfR5ZlLFu2DO+88w4qKipw2223YfXq1YiL6/7/QXRoahfg1v8GvkwH/PsC3qHmO7alGk1qGoGzmUDOR0De1yK4qSeJgH1QvMhWDdJ9BfYH3HoADTcMWbfM4DbNxAzg/HdARYH4PmmeyNjvioH3Anv/Fzj9DdBYD7i4dfycmsvAh9OB6+Uig/qBtYBKbdrrq1SirEP+DhH47UzJEeV95N+39UCyKWLHAW5eQHWh+NxEjjT+GCe2iNuby5MovEOBW58Gsl4RtbgH3N3y9920/rY5soF9IwGvEKCmBNi3WtzH8iSt8/ABfv0B8M54Ubbnu9fFlQntOai7kmL4w+LvHJmXd4jh/avUOffrY9rVIjbwUFIUvj5ehO/PlOHZT4+2uo+rWoK3hyt8PFzEracLfDxccf+ISNw1KKTV59gSA9wOpEGjxerdZ7Fy5xk0aGT4eLjguSmDMX1EBCRejkJEREREXfDxxx8jPT0da9asQXJyMpYvX460tDTk5eUhOLhlvUd/f3/8+c9/Rnx8PNzc3LB161bMnTsXwcHBSEtLAwC89tprWLFiBdatW4eYmBgsXboUaWlpOHnyJDw8PKz9I1JTI+YA9TVAlJkDvkrZhqIjIgvR1OCjovgYkLMeOPYJUHvZcH/QQNFI73KuyKy7ek58nf66yZMlwK+3qNGsqQd6BgP+sV0bj7Py8AHuext4f7LIBB75aNePGTnaEEA69x0Ql9r+/vW1wPoZIpvSrw/wX58Abl3sQRWVJALcFw90ro73L7oTN+aov61w9RCB3xObRaazsQHu8p9FGQVJbciKb82tT4v66VfPidtbftP8cXPW3wZEkDxilGhmq3x2+zHA3aaQwcCU5cDm/wfsfkV8PvqNb33f8nOGmuajHrPaEJ1O6DDx9+HYRvF9Ny9P0pQkSXjj14n4+/Y8nL9Si6rrjaiuaxC3NxqglYEGjYzy2nqU19Y3e+7oPmY6eWdmDHA7iOO/VOLZT48it6gKAJA6MAR/vW8IQnz4HwMiIiIi6ro33ngD8+bNw9y5cwEAa9aswZdffon33nsPf/xjy0yycePGNft+0aJFWLduHfbs2YO0tDTIsozly5fjL3/5C6ZOFaUMPvjgA4SEhGDLli2YOXOmxX8maofaBbhtkfmPGxgnAqANtUDZadF40ljVJSKgcGQ9UHLccH+PQGDog0DiQyLwIEmiNmrtZVE7uPSUuL18CijNFVm+V8+LL0CUYmFikOl63wo88S3g2kOcXOgqlUpkEmf/Ezj1RfsBbq0G+M8TosGjpx8w6z+AV1DXx6A05rt0oHP76xtMmpBl3Z74e3QB7i+A1OeNe58qJUdibgd6BrS9n7sXcMcSYOszQNar4nPk4Wt4XMngDjVTgBsQdbjzvhTbvlFA0ADzHdsRJcwU/QKy3xfv9998LzLhb3ZoLQAZ6DseCOhr7VE6jzBdgFupTW9n798gb3e8Mr3l51mWZdTWa1B9QwS8q2406LerbzRgFAPcZAl1jRr87858rN59Fo1aGX49XPH8vYNxb0I4s7aJiIiIyCzq6+uRnZ2NJUuW6O9TqVRITU3F3r17O3y+LMvYuXMn8vLy8OqrrwIAzp07h+LiYqSmGoJWvr6+SE5Oxt69e1sNcNfV1aGuzlB6oqqqqis/FtmCSi1KHBT8KMotdDbA3XBdlB45sl7UlpV1NWjVbsCASUDCQ0C/1JZlMSRJNEL0CgZiftX8sZrLhoB3dREw/BFQF5k7sDvwHl2A+ytg8hutZ/zLMvD1H4C8rwC1O/DQBiCwn3leP2IkAEmUXqkuEWUJ2iLLhgC3ORpMNhU3QbzXy8+K96sxJ4aUAHdnaqIPnw3sWwOU5QF7/iGC6YBosllyQmybo8GkQmk0CYjPL2MYHZv4qvjbWXRENJ189Kvm5WQargM//VtsJ82zyRCdxs0ne4JMOGHbDUmSBC93F3i5uyDMt+P9uwsGuLsRrVZGvabzTSNyi6rwh/8cxemSGgDA5KFheP7ewQjydrfUEImIiIjICZWVlUGj0SAkpHlwJyQkBKdOnWrzeZWVlYiIiEBdXR3UajXeeust3HWXuAS9uLhYf4ybj6k8drOMjAy88MILXflRqDuIGCEC3L8cBhL/q+39Ki4CZ7aLS+3PZQEN1wyPRY4WQe3B95le69grSHzF3G7a88ny+vwKcPcVjSsvHWy9RvqPK3X1hiVg+jvmraPu4QMEDwJKT4gsbqXhY2uqfhHjlNTmK+PRdByx48TnIXdr5wPcV8+LYKikAuLbGbtC7QLc9YJo0rlvNTD6CZEhXHZa1LV38wb8YrrykzQXPhyABEAWAW7qmKuHqMf99q/EZ2LHUmDSq4bHj/9HlGXyjRYnRshybv6c21kGt6NhgLubuHT1Gqat+hFlNXUd73yTQC83vDh1CCYNNUMnYyIiIiIiM/H29kZOTg5qamqQmZmJ9PR0xMbGtihf0llLlixBenq6/vuqqipERUWZabRkNW01mtQ0iFrHZ74RQe3Sk80f940Chs0Ql+kHshGpU3BxA/qniRrruV+0DF4f/48I8AFA2l87l6VsrKjRIsB9sYMAt5K9HTLYMo3mBk7RBbg/B8Y+27nnnPxc3Pa+rfMlW/pPFPtf+AHY+VfgvtXN62+rVMaPvS3u3sAt80XJoLbqSVNLfn1Ezfv1M4H9a4CoZGDI/eIqggO65pKjH+t6jwNqX68+gLsPUFcFQBKNi8lmGODuJlZm5hsd3JYkYGpCOJ6bMhj+PTvRUZqIiIiIyASBgYFQq9UoKSlpdn9JSQlCQ0PbfJ5KpUK/fqJUQGJiInJzc5GRkYFx48bpn1dSUoKwMEOiRklJCRITE1s9nru7O9zdebWi3VMC3MXHgKpC4OfdwOlvgLO7gLpKw36SCohMAvpPEJmIIUNYwsAZDbzHEOCe8JLhPXDhR2CzrhFi8nwgZYFlXj8ySdQ8vnSw/f1+OSxuzdlgsqkBdwPSItEw8uoF0SC1Iye3iNvB0zr/OpIETHgReOdOURIo5SnL1N9WTMww/zGdwYBJwJhnRCmZz58Wfx/rqoCiHFGqZ/hsW4/Q8alUQOhQcTLIrzfg1sPWI3JqDHB3Axeu1OLTw5cAAOvn3YKhkZ0rcuOikuDhyjNyRERERGRZbm5uGDlyJDIzMzFt2jQAgFarRWZmJhYuXNjp42i1Wn0N7ZiYGISGhiIzM1Mf0K6qqsL+/fsxf/58c/8I1J34x4qyE3WVwBs3lVroEQD0uwuIuwvoe6fp5UfIcfRLBVw8gIoLoqlo6FDgch6w/iFAUy8aMKb91XKvH5Ukbgt/Ahrrm9c7bspSDSYVPQOB6FuBC3uAU1s7DuhXFOjGJHWuPElTESOBIdNFhvz2peL3DJi3/jZ13R1/AS4dAs5/D3wyGwjSZRAPub/9hqJkPqHDRIA7KN7WI3F6DHB3Ayt35kOjlTG2fxBS+vKPEBERERF1P+np6ZgzZw5GjRqFpKQkLF++HLW1tZg7dy4AYPbs2YiIiEBGhsjGy8jIwKhRo9C3b1/U1dXhq6++wr/+9S+sXr0agGhitHjxYrz00kuIi4tDTEwMli5divDwcH0QnRyUJAF9xgB5X4rvwxJFhnb/NJHdzcvqqSm3nuJkR95Xov50z2DgwweAGxWiFvv0dy37ngnoB3j6ibrGJcdaD2BrtUBhjtg2d4PJpgbeIwLcuZ0IcDctT9Jec8y23LlUHOPnXeJqCsD8tcWpa9QuwPS1oh735VzxBYja6WQdIx4Rn5GRj9p6JE6PAW4bO1dWi80//QIAeOYu1ushIiIiou5pxowZuHz5Mp577jkUFxcjMTER27Zt0zeJLCgogKpJbdba2lo89dRTuHTpEjw9PREfH49///vfmDFjhn6f3//+96itrcWTTz6JiooKjBkzBtu2bYOHh4fVfz6ysilvAsMfFsFCU4Jv5FwGThEB7hObgdPbRHayfyzw0AbL1LtuSpJEIP3MduDiwdYD3FfOAPXVgGsPy2Zyxt8DbPsjULAXqCkFvILb3lcpT2JqXXL/GCDpSWDfKkDWiiz6QDbR63a8Q4AH3gPWTQFkjThhaKmrCKilkMHAgv22HgUBkGRZlm09CGuoqqqCr68vKisr4ePjY+vh6KV/nINNP/2CO+OD8d6jo209HCIiIiK7013XeWR5nHsiJ3GtHHi9nwjgAaKUzeM7gIC+1nn9rNeBXS+Jsh0PvNfy8ZyPgC3zgegU4LFtlh3L22NFneUpb7adNVp5CfjHYAASkJ4L+IS1vl9HrpUDKxKBG5UiM/3JXaYdhyzvwDvAt8+LjO4BE209GiKzMGadZ8b2t2Sss5drsCVHZG8vTmUXcCIiIiIiIqIWevgDfW4T2y6ewEMfWy+4DQBRumS0i200mtQ3mLRC5uxAXT3t3C/a3kcpTxJ9i+nBbUD83sf9SWz3vdP045DlJc0DllxicJucFgPcNrQi8wy0MpA6MATDInvZejhERERERERE3dNti4GQIcCv1xkCztYSMVLUoa4sAKqLWz6ubzBpwfrbCiXA/XOWyKxuzcnPxO2gaV1/vVt+Azy1Hxj7h64fiyxLkmw9AiKbYYDbRvJLq/H5kUIAzN4mIiIiIiIiale/8cD8H0QzUmtz9waCB4ntiweaP9ZYB5QcF9uWbDCpCBoABPYHtA3AmR0tH68qBC7uE9uD7jXPawbHAy5u5jkWEZEFMMBtI8u/PQNZBiYMCsGQCF9bD4eIiIiIiIiI2hKpyxq/dFOAu+Q4oKkHPP0Bvz7WGUv8PeI29/OWjymlS6KSAZ9w64yHiMjGGOC2gdMl1fjyWBEAYHFqfxuPhoiIiIiIiIjaFZUkbm+uw62vvz3CeiUilDIlZ74FGq43f+zEFnFrjvIkRER2ggFuG3hTl709aUgoBoWz2zsRERERERFRtxapC3AX/gQ01hvut2aDSUX4cMAnEmioBc7uMtxfXQwU7BXb5ipPQkRkBxjgtrLcoip8eawIksTsbSIiIiIiIiK7ENBXlCHR1AHFxwz36xtMWjHALUnAQF2ZklNbDffnfgFAFuVUfCOtNx4iIhtjgNvK3vz2DADg7qFhGBDqbePREBEREREREVGHJKllHe4bVUDZabFtjQaTTSl1uPO+AjSNYvvkZ+J20FTrjoWIyMYY4LaiE4WV2HaiWGRvj4+z9XCIiIiIiIiIqLOidAHui7oAd1EOABnwjQa8gqw7lugUoEcAcP0qcOEHoKZU3AIMcBOR02GA24qW67K3pwwLR1wIs7eJiIiIiIiI7IZSh/uSrtGkvjzJcOuPRe0CDJgktnO/EF+yVmSS94q2/niIiGzIpAD3qlWr0KdPH3h4eCA5ORkHDhxoc99x48ZBkqQWX5MnT9bv8+ijj7Z4fOLEic2OU15ejlmzZsHHxwe9evXC448/jpqaGlOGbxPHLlVix8kSqCTgv5m9TURERERERGRfIkYCkgqovAhUFdmmwWRTA3WNJE99CZzYLLYHT7PNWIiIbMjoAPfHH3+M9PR0LFu2DIcPH0ZCQgLS0tJQWlra6v6bNm1CUVGR/uv48eNQq9V48MEHm+03ceLEZvutX7++2eOzZs3CiRMnsGPHDmzduhXfffcdnnzySWOHbzPLvxV1uaYmRqBfsJeNR0NERERERERERnH3AoIHi+1LB2wf4I4ZC7h5AdWFwPnvxX0sT0JETsjoAPcbb7yBefPmYe7cuRg0aBDWrFmDHj164L333mt1f39/f4SGhuq/duzYgR49erQIcLu7uzfbz8/PT/9Ybm4utm3bhnfffRfJyckYM2YMVq5ciQ0bNqCwsNDYH8HqjlysQOapUqgk4Ok7+9l6OERERERERERkCqUO96kvgapLACQgLME2Y3H1AOImGL4PSwT8+thmLERENmRUgLu+vh7Z2dlITU01HEClQmpqKvbu3dupY6xduxYzZ85Ez549m92/e/duBAcHY8CAAZg/fz6uXLmif2zv3r3o1asXRo0apb8vNTUVKpUK+/fvb/V16urqUFVV1ezLVv6hy96+b3gkYoOYvU1ERERERERkl5Q63Mc3idugeMDdhj22Bt5j2GZ5EiJyUkYFuMvKyqDRaBASEtLs/pCQEBQXF3f4/AMHDuD48eN44oknmt0/ceJEfPDBB8jMzMSrr76KrKwsTJo0CRqNBgBQXFyM4ODgZs9xcXGBv79/m6+bkZEBX19f/VdUVJQxP6rZHC64it15l6FWSfjv8czeJiIiIiIiIrJbUboAt7ZB3EaMsN1YAJHB7dpT1AZneRIiclIu1nyxtWvXYujQoUhKSmp2/8yZM/XbQ4cOxbBhw9C3b1/s3r0b48ePN+m1lixZgvT0dP33VVVVNgly/2OHyN6ePiICvQN6drA3EREREREREXVb/rFAjwDgmu6qc1sHuN29gdmfAQ21YmxERE7IqAzuwMBAqNVqlJSUNLu/pKQEoaGh7T63trYWGzZswOOPP97h68TGxiIwMBD5+fkAgNDQ0BZNLBsbG1FeXt7m67q7u8PHx6fZl7UdOl+O78+UwUUl4ek746z++kRERERERERkRpIERI42fG+rBpNNRY0GYsfZehRERDZjVIDbzc0NI0eORGZmpv4+rVaLzMxMpKSktPvcjRs3oq6uDg8//HCHr3Pp0iVcuXIFYWFhAICUlBRUVFQgOztbv8/OnTuh1WqRnJxszI9gVUrt7QdHRSLKv4eNR0NEREREREREXaYEuNVuQPBg246FiIiMC3ADQHp6Ot555x2sW7cOubm5mD9/PmprazF37lwAwOzZs7FkyZIWz1u7di2mTZuGgICAZvfX1NTg2Wefxb59+3D+/HlkZmZi6tSp6NevH9LS0gAAAwcOxMSJEzFv3jwcOHAAP/zwAxYuXIiZM2ciPDzclJ/b4vJLq/FD/hW4qiUsuIO1t4mIiIiIiIgcQr9UUfM6Zizg4mbr0RAROT2ja3DPmDEDly9fxnPPPYfi4mIkJiZi27Zt+saTBQUFUKmax83z8vKwZ88ebN++vcXx1Go1jh49inXr1qGiogLh4eGYMGECXnzxRbi7u+v3+/DDD7Fw4UKMHz8eKpUK06dPx4oVK4wdvtX0C/bG14tuR87FCkT6MXubiIiIiIiIyCGEJwLzfwS82y/VSkRE1iHJsizbehDWUFVVBV9fX1RWVtqkHjcRERERWQbXec6Lc09ERETkmIxZ5xldooSIiIiIiIiIiIiIqDtggJuIiIiIiIiIiIiI7BID3ERERERERERERERklxjgJiIiIiIiIiIiIiK7xAA3EREREREREREREdklBriJiIiIiIiIiIiIyC4xwE1EREREREREREREdokBbiIiIiIiIiIiIiKySwxwExEREREREREREZFdYoCbiIiIiIiIiIiIiOwSA9xEREREREREREREZJcY4CYiIiIiIiIiIiIiu8QANxERERERERERERHZJQa4iYiIiIiIiIiIiMguMcBNRERERERERERERHaJAW4iIiIiIiIiIiIisksMcBMRERERERERERGRXXKx9QCsRZZlAEBVVZWNR0JERERE5qSs75T1HjkPrvGJiIiIHJMxa3ynCXBXV1cDAKKiomw8EiIiIiKyhOrqavj6+tp6GGRFXOMTERERObbOrPEl2UlSXbRaLQoLC+Ht7Q1JkqzymlVVVYiKisLFixfh4+Njldcky+O8Oh7OqWPivDomzqvjMcecyrKM6upqhIeHQ6ViBT5nwjU+mQvn1fFwTh0T59UxcV4dj7XX+E6Twa1SqRAZGWmT1/bx8eEH1AFxXh0P59QxcV4dE+fV8XR1Tpm57Zy4xidz47w6Hs6pY+K8OibOq+Ox1hqfKS5EREREREREREREZJcY4CYiIiIiIiIiIiIiu8QAtwW5u7tj2bJlcHd3t/VQyIw4r46Hc+qYOK+OifPqeDinZG/4nnVMnFfHwzl1TJxXx8R5dTzWnlOnaTJJRERERERERERERI6FGdxEREREREREREREZJcY4CYiIiIiIiIiIiIiu8QANxERERERERERERHZJQa4iYiIiIiIiIiIiMguMcBtQatWrUKfPn3g4eGB5ORkHDhwwNZDok767rvvMGXKFISHh0OSJGzZsqXZ47Is47nnnkNYWBg8PT2RmpqKM2fO2Gaw1GkZGRkYPXo0vL29ERwcjGnTpiEvL6/ZPjdu3MCCBQsQEBAALy8vTJ8+HSUlJTYaMXVk9erVGDZsGHx8fODj44OUlBR8/fXX+sc5n47hlVdegSRJWLx4sf4+zq39ef755yFJUrOv+Ph4/eOcU7IHXN/bN67xHQ/X946Ja3zHx/W9Y+hO63sGuC3k448/Rnp6OpYtW4bDhw8jISEBaWlpKC0ttfXQqBNqa2uRkJCAVatWtfr4a6+9hhUrVmDNmjXYv38/evbsibS0NNy4ccPKIyVjZGVlYcGCBdi3bx927NiBhoYGTJgwAbW1tfp9nnnmGXzxxRfYuHEjsrKyUFhYiPvvv9+Go6b2REZG4pVXXkF2djYOHTqEO++8E1OnTsWJEycAcD4dwcGDB/H2229j2LBhze7n3NqnwYMHo6ioSP+1Z88e/WOcU+ruuL63f1zjOx6u7x0T1/iOjet7x9Jt1vcyWURSUpK8YMEC/fcajUYODw+XMzIybDgqMgUAefPmzfrvtVqtHBoaKr/++uv6+yoqKmR3d3d5/fr1Nhghmaq0tFQGIGdlZcmyLObR1dVV3rhxo36f3NxcGYC8d+9eWw2TjOTn5ye/++67nE8HUF1dLcfFxck7duyQx44dKy9atEiWZX5W7dWyZcvkhISEVh/jnJI94PresXCN75i4vndcXOM7Bq7vHUt3Wt8zg9sC6uvrkZ2djdTUVP19KpUKqamp2Lt3rw1HRuZw7tw5FBcXN5tfX19fJCcnc37tTGVlJQDA398fAJCdnY2GhoZmcxsfH4/o6GjOrR3QaDTYsGEDamtrkZKSwvl0AAsWLMDkyZObzSHAz6o9O3PmDMLDwxEbG4tZs2ahoKAAAOeUuj+u7x0f1/iOget7x8M1vmPh+t7xdJf1vYvZj0goKyuDRqNBSEhIs/tDQkJw6tQpG42KzKW4uBgAWp1f5THq/rRaLRYvXozbbrsNQ4YMASDm1s3NDb169Wq2L+e2ezt27BhSUlJw48YNeHl5YfPmzRg0aBBycnI4n3Zsw4YNOHz4MA4ePNjiMX5W7VNycjLef/99DBgwAEVFRXjhhRdw++234/jx45xT6va4vnd8XOPbP67vHQvX+I6H63vH053W9wxwE5FTWrBgAY4fP96sPhTZpwEDBiAnJweVlZX49NNPMWfOHGRlZdl6WNQFFy9exKJFi7Bjxw54eHjYejhkJpMmTdJvDxs2DMnJyejduzc++eQTeHp62nBkRETkCLi+dyxc4zsWru8dU3da37NEiQUEBgZCrVa36AxaUlKC0NBQG42KzEWZQ86v/Vq4cCG2bt2KXbt2ITIyUn9/aGgo6uvrUVFR0Wx/zm335ubmhn79+mHkyJHIyMhAQkIC3nzzTc6nHcvOzkZpaSlGjBgBFxcXuLi4ICsrCytWrICLiwtCQkI4tw6gV69e6N+/P/Lz8/l5pW6P63vHxzW+feP63vFwje9YuL53DrZc3zPAbQFubm4YOXIkMjMz9fdptVpkZmYiJSXFhiMjc4iJiUFoaGiz+a2qqsL+/fs5v92cLMtYuHAhNm/ejJ07dyImJqbZ4yNHjoSrq2uzuc3Ly0NBQQHn1o5otVrU1dVxPu3Y+PHjcezYMeTk5Oi/Ro0ahVmzZum3Obf2r6amBmfPnkVYWBg/r9TtcX3v+LjGt09c3zsPrvHtG9f3zsGW63uWKLGQ9PR0zJkzB6NGjUJSUhKWL1+O2tpazJ0719ZDo06oqalBfn6+/vtz584hJycH/v7+iI6OxuLFi/HSSy8hLi4OMTExWLp0KcLDwzFt2jTbDZo6tGDBAnz00Uf47LPP4O3tra/75OvrC09PT/j6+uLxxx9Heno6/P394ePjg6effhopKSm45ZZbbDx6as2SJUswadIkREdHo7q6Gh999BF2796Nb775hvNpx7y9vfW1MxU9e/ZEQECA/n7Orf353e9+hylTpqB3794oLCzEsmXLoFar8dBDD/HzSnaB63v7xzW+4+H63jFxje94uL53TN1qfS+TxaxcuVKOjo6W3dzc5KSkJHnfvn22HhJ10q5du2QALb7mzJkjy7Isa7VaeenSpXJISIjs7u4ujx8/Xs7Ly7PtoKlDrc0pAPmf//ynfp/r16/LTz31lOzn5yf36NFDvu++++SioiLbDZra9dhjj8m9e/eW3dzc5KCgIHn8+PHy9u3b9Y9zPh3H2LFj5UWLFum/59zanxkzZshhYWGym5ubHBERIc+YMUPOz8/XP845JXvA9b194xrf8XB975i4xncOXN/bv+60vpdkWZbNHzYnIiIiIiIiIiIiIrIs1uAmIiIiIiIiIiIiIrvEADcRERERERERERER2SUGuImIiIiIiIiIiIjILjHATURERERERERERER2iQFuIiIiIiIiIiIiIrJLDHATERERERERERERkV1igJuIiIiIiIiIiIiI7BID3ERERERERERERERklxjgJiIiIiIiIiIiIiK7xAA3EREREREREREREdklBriJiIiIiIiIiIiIyC4xwE1EREREREREREREdun/AwEIwUd9RjBhAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "Classification Report:\n", + " precision recall f1-score support\n", + "\n", + " 0 0.88 0.58 0.70 12\n", + " 1 0.93 0.98 0.96 66\n", + "\n", + " accuracy 0.92 78\n", + " macro avg 0.90 0.78 0.83 78\n", + "weighted avg 0.92 0.92 0.92 78\n", + "\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Display sample predictions\n", + "print(\"First 5 Predictions:\", y_pred[:5].flatten())\n", + "print(\"First 5 Actual Values:\", y_test[:5].values)" + ], + "metadata": { + "id": "3TX5QPxM0PWz", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "0ac09795-f866-4013-e83e-3ec59e1b2e5f" + }, + "execution_count": 25, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "First 5 Predictions: [1 1 1 1 0]\n", + "First 5 Actual Values: [0 1 1 1 0]\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "**Model 3: RNN+LSTM Hybrid Model**" + ], + "metadata": { + "id": "fOtxhUKiIhNq" + } + }, + { + "cell_type": "code", + "source": [ + "# Reshape the input data -> make it compatible with LSTM\n", + "X_train_rnn = X_train.reshape((X_train.shape[0], X_train.shape[1], 1))\n", + "X_test_rnn = X_test.reshape((X_test.shape[0], X_test.shape[1], 1))\n", + "\n", + "# Define the RNN model with LSTM layers\n", + "model_rnn = tf.keras.Sequential([\n", + " tf.keras.layers.InputLayer(input_shape=(X_train_rnn.shape[1], 1)),\n", + " tf.keras.layers.LSTM(128, return_sequences=True),\n", + " tf.keras.layers.Dropout(0.3),\n", + " tf.keras.layers.LSTM(64, return_sequences=False),\n", + " tf.keras.layers.Dropout(0.3),\n", + " tf.keras.layers.Dense(32, activation='relu'),\n", + " tf.keras.layers.Dense(1, activation='sigmoid') # Binary classification output\n", + "])\n", + "\n", + "# Compile the model\n", + "model_rnn.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])\n", + "\n", + "# Train the RNN model\n", + "history_lstm = model_rnn.fit(X_train_rnn, y_train, epochs=50, validation_data=(X_test_rnn, y_test), batch_size=16)\n", + "\n", + "# Evaluate the model\n", + "loss, accuracy_rnn = model_rnn.evaluate(X_test_rnn, y_test)\n", + "print(f'RNN with LSTM Accuracy: {accuracy_rnn*100:.2f}%')\n", + "\n", + "# Predict on test data\n", + "y_pred = (model_rnn.predict(X_test) > 0.5).astype(\"int32\") # Threshold at 0.5\n", + "\n", + "# Accuracy and Loss curves\n", + "result=pd.DataFrame(history_lstm.history)\n", + "fig, ax=plt.subplots(nrows=1, ncols=2,figsize=(18,6))\n", + "ax=ax.flatten()\n", + "ax[0].plot(result[['accuracy','val_accuracy']])\n", + "ax[0].set_title(\"Accuracy\")\n", + "ax[1].plot(result[['loss','val_loss']])\n", + "ax[1].set_title(\"Loss\")\n", + "\n", + "plt.show()\n", + "\n", + "# Classification Report\n", + "print(\"\\nClassification Report:\\n\", classification_report(y_test, y_pred))" + ], + "metadata": { + "id": "MomPJxVbw94_", + "collapsed": true, + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "outputId": "2a03545c-1e93-483c-b7f9-15d30071f5e3" + }, + "execution_count": 26, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/50\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/input_layer.py:26: UserWarning: Argument `input_shape` is deprecated. Use `shape` instead.\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 35ms/step - accuracy: 0.7152 - loss: 0.6765 - val_accuracy: 0.8462 - val_loss: 0.5642\n", + "Epoch 2/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 15ms/step - accuracy: 0.7323 - loss: 0.5621 - val_accuracy: 0.8462 - val_loss: 0.3956\n", + "Epoch 3/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.7911 - loss: 0.4821 - val_accuracy: 0.8462 - val_loss: 0.3999\n", + "Epoch 4/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - accuracy: 0.7566 - loss: 0.5295 - val_accuracy: 0.8462 - val_loss: 0.3968\n", + "Epoch 5/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 20ms/step - accuracy: 0.7902 - loss: 0.4933 - val_accuracy: 0.8462 - val_loss: 0.3722\n", + "Epoch 6/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - accuracy: 0.7395 - loss: 0.5226 - val_accuracy: 0.8462 - val_loss: 0.3784\n", + "Epoch 7/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 22ms/step - accuracy: 0.7625 - loss: 0.5107 - val_accuracy: 0.8462 - val_loss: 0.3588\n", + "Epoch 8/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 17ms/step - accuracy: 0.7621 - loss: 0.4996 - val_accuracy: 0.8462 - val_loss: 0.3651\n", + "Epoch 9/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - accuracy: 0.7274 - loss: 0.5450 - val_accuracy: 0.8462 - val_loss: 0.3504\n", + "Epoch 10/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - accuracy: 0.7636 - loss: 0.5111 - val_accuracy: 0.8462 - val_loss: 0.3509\n", + "Epoch 11/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - accuracy: 0.7541 - loss: 0.5305 - val_accuracy: 0.8718 - val_loss: 0.3529\n", + "Epoch 12/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - accuracy: 0.7805 - loss: 0.4617 - val_accuracy: 0.8718 - val_loss: 0.3433\n", + "Epoch 13/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - accuracy: 0.8024 - loss: 0.4520 - val_accuracy: 0.8718 - val_loss: 0.3475\n", + "Epoch 14/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - accuracy: 0.8085 - loss: 0.4538 - val_accuracy: 0.9231 - val_loss: 0.3468\n", + "Epoch 15/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - accuracy: 0.7972 - loss: 0.5114 - val_accuracy: 0.8974 - val_loss: 0.3463\n", + "Epoch 16/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - accuracy: 0.7829 - loss: 0.5214 - val_accuracy: 0.9359 - val_loss: 0.3186\n", + "Epoch 17/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - accuracy: 0.7689 - loss: 0.5021 - val_accuracy: 0.9359 - val_loss: 0.3176\n", + "Epoch 18/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - accuracy: 0.8128 - loss: 0.4848 - val_accuracy: 0.9231 - val_loss: 0.3220\n", + "Epoch 19/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - accuracy: 0.8028 - loss: 0.4939 - val_accuracy: 0.9103 - val_loss: 0.3243\n", + "Epoch 20/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - accuracy: 0.8397 - loss: 0.4455 - val_accuracy: 0.9359 - val_loss: 0.3051\n", + "Epoch 21/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - accuracy: 0.7988 - loss: 0.4825 - val_accuracy: 0.8974 - val_loss: 0.3339\n", + "Epoch 22/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - accuracy: 0.8165 - loss: 0.4835 - val_accuracy: 0.9231 - val_loss: 0.2967\n", + "Epoch 23/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - accuracy: 0.8117 - loss: 0.4590 - val_accuracy: 0.9231 - val_loss: 0.3125\n", + "Epoch 24/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - accuracy: 0.8119 - loss: 0.4493 - val_accuracy: 0.9231 - val_loss: 0.3102\n", + "Epoch 25/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - accuracy: 0.7973 - loss: 0.4771 - val_accuracy: 0.9231 - val_loss: 0.3094\n", + "Epoch 26/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - accuracy: 0.8041 - loss: 0.4983 - val_accuracy: 0.9359 - val_loss: 0.3004\n", + "Epoch 27/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - accuracy: 0.8304 - loss: 0.4399 - val_accuracy: 0.9359 - val_loss: 0.2992\n", + "Epoch 28/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - accuracy: 0.8406 - loss: 0.4385 - val_accuracy: 0.8974 - val_loss: 0.3218\n", + "Epoch 29/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - accuracy: 0.8074 - loss: 0.4931 - val_accuracy: 0.9103 - val_loss: 0.3116\n", + "Epoch 30/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - accuracy: 0.8138 - loss: 0.4693 - val_accuracy: 0.9359 - val_loss: 0.2917\n", + "Epoch 31/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - accuracy: 0.8019 - loss: 0.4923 - val_accuracy: 0.9231 - val_loss: 0.2865\n", + "Epoch 32/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - accuracy: 0.8135 - loss: 0.4727 - val_accuracy: 0.9103 - val_loss: 0.3027\n", + "Epoch 33/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - accuracy: 0.8006 - loss: 0.4436 - val_accuracy: 0.9359 - val_loss: 0.2848\n", + "Epoch 34/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - accuracy: 0.8330 - loss: 0.4469 - val_accuracy: 0.9103 - val_loss: 0.3169\n", + "Epoch 35/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - accuracy: 0.8258 - loss: 0.4617 - val_accuracy: 0.9359 - val_loss: 0.2901\n", + "Epoch 36/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - accuracy: 0.8073 - loss: 0.4605 - val_accuracy: 0.9359 - val_loss: 0.2960\n", + "Epoch 37/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - accuracy: 0.8375 - loss: 0.4418 - val_accuracy: 0.9103 - val_loss: 0.3071\n", + "Epoch 38/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - accuracy: 0.8304 - loss: 0.4581 - val_accuracy: 0.9359 - val_loss: 0.2853\n", + "Epoch 39/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - accuracy: 0.8167 - loss: 0.4860 - val_accuracy: 0.9231 - val_loss: 0.2938\n", + "Epoch 40/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - accuracy: 0.8203 - loss: 0.4516 - val_accuracy: 0.9231 - val_loss: 0.2967\n", + "Epoch 41/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - accuracy: 0.7818 - loss: 0.5071 - val_accuracy: 0.9231 - val_loss: 0.2930\n", + "Epoch 42/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - accuracy: 0.8133 - loss: 0.4760 - val_accuracy: 0.9359 - val_loss: 0.2847\n", + "Epoch 43/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - accuracy: 0.8116 - loss: 0.4938 - val_accuracy: 0.9231 - val_loss: 0.3129\n", + "Epoch 44/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 16ms/step - accuracy: 0.8284 - loss: 0.4615 - val_accuracy: 0.9359 - val_loss: 0.2764\n", + "Epoch 45/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - accuracy: 0.8082 - loss: 0.4880 - val_accuracy: 0.9359 - val_loss: 0.2926\n", + "Epoch 46/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 18ms/step - accuracy: 0.7958 - loss: 0.5050 - val_accuracy: 0.9231 - val_loss: 0.2825\n", + "Epoch 47/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - accuracy: 0.8067 - loss: 0.4771 - val_accuracy: 0.9359 - val_loss: 0.2920\n", + "Epoch 48/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 17ms/step - accuracy: 0.8113 - loss: 0.4856 - val_accuracy: 0.9359 - val_loss: 0.2970\n", + "Epoch 49/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - accuracy: 0.8246 - loss: 0.4613 - val_accuracy: 0.9359 - val_loss: 0.2970\n", + "Epoch 50/50\n", + "\u001b[1m20/20\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - accuracy: 0.7822 - loss: 0.5122 - val_accuracy: 0.9231 - val_loss: 0.2947\n", + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9342 - loss: 0.2785 \n", + "RNN with LSTM Accuracy: 92.31%\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "WARNING:tensorflow:5 out of the last 7 calls to .one_step_on_data_distributed at 0x7f0660148ee0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\r\u001b[1m1/3\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 312ms/step" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "WARNING:tensorflow:6 out of the last 9 calls to .one_step_on_data_distributed at 0x7f0660148ee0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m3/3\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 180ms/step\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABbgAAAIQCAYAAABDtAgvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xV9f3H8de92SGLkAkEwt4ECHuIA0Vxi4qrKK5KwVqptcW6Wq38qhWtFkWtiAMrdS9EEQWlTNl7hBHIDpBBQta99/fHyb1JIOve3OQm5P18PO7jntx7zvd+781NCJ/zue+vyWaz2RARERERERERERERaWHMnp6AiIiIiIiIiIiIiIgrVOAWERERERERERERkRZJBW4RERERERERERERaZFU4BYRERERERERERGRFkkFbhERERERERERERFpkVTgFhEREREREREREZEWSQVuEREREREREREREWmRVOAWERERERERERERkRZJBW4RERERERERERERaZFU4BYRERERERERERGRFkkFbhERN3vllVcwmUyMGDHC01MREREREZFmYuHChZhMJn755RdPT0VE5JyiAreIiJstWrSI+Ph41q9fz4EDBzw9HRERERERERGRc5YK3CIibnTo0CFWr17N3LlziYyMZNGiRZ6eUrUKCgo8PQURERERERERkQZTgVtExI0WLVpE27Ztufzyy7n++uurLXDn5OTw4IMPEh8fj5+fHx07dmTq1KlkZ2c79ikqKuLJJ5+kZ8+e+Pv7Exsby3XXXUdSUhIAK1aswGQysWLFiipjHz58GJPJxMKFCx233XHHHQQFBZGUlMSkSZMIDg7m1ltvBeDnn3/mhhtuoFOnTvj5+REXF8eDDz7I6dOnz5r3nj17uPHGG4mMjCQgIIBevXrx5z//GYAff/wRk8nEp59+etZx77//PiaTiTVr1jj9eoqIiIiItCabN2/msssuIyQkhKCgIC666CLWrl1bZZ/S0lL+8pe/0KNHD/z9/WnXrh1jx45l2bJljn3S09OZNm0aHTt2xM/Pj9jYWK6++moOHz7cxM9IRKTxeXt6AiIi55JFixZx3XXX4evry80338yrr77Khg0bGDZsGACnTp1i3Lhx7N69mzvvvJMhQ4aQnZ3NF198wbFjx4iIiMBisXDFFVewfPlybrrpJh544AHy8/NZtmwZO3bsoFu3bk7Pq6ysjIkTJzJ27Fj+8Y9/EBgYCMCHH35IYWEh06dPp127dqxfv56XX36ZY8eO8eGHHzqO37ZtG+PGjcPHx4d7772X+Ph4kpKS+PLLL/nb3/7G+eefT1xcHIsWLeLaa6896zXp1q0bo0aNasArKyIiIiJybtu5cyfjxo0jJCSEhx9+GB8fH1577TXOP/98Vq5c6Vjj58knn2TOnDncfffdDB8+nLy8PH755Rc2bdrExRdfDMDkyZPZuXMn999/P/Hx8WRmZrJs2TKSk5OJj4/34LMUEXE/FbhFRNxk48aN7Nmzh5dffhmAsWPH0rFjRxYtWuQocD/33HPs2LGDTz75pEoh+NFHH8VmswHwzjvvsHz5cubOncuDDz7o2OdPf/qTYx9nFRcXc8MNNzBnzpwqt//9738nICDA8fW9995L9+7deeSRR0hOTqZTp04A3H///dhsNjZt2uS4DeD//u//ADCZTNx2223MnTuX3NxcQkNDAcjKyuK7775zdHqLiIiIiEj1Hn30UUpLS1m1ahVdu3YFYOrUqfTq1YuHH36YlStXAvD1118zadIkXn/99WrHycnJYfXq1Tz33HM89NBDjttnz57d+E9CRMQDFFEiIuImixYtIjo6mgsuuAAwir5Tpkzhgw8+wGKxAPDxxx+TkJBwVpezfX/7PhEREdx///017uOK6dOnn3Vb5eJ2QUEB2dnZjB49GpvNxubNmwGjSP3TTz9x5513VilunzmfqVOnUlxczEcffeS4bfHixZSVlXHbbbe5PG8RERERkXOdxWLhu+++45prrnEUtwFiY2O55ZZbWLVqFXl5eQCEhYWxc+dO9u/fX+1YAQEB+Pr6smLFCk6ePNkk8xcR8SQVuEVE3MBisfDBBx9wwQUXcOjQIQ4cOMCBAwcYMWIEGRkZLF++HICkpCT69+9f61hJSUn06tULb2/3fcjG29ubjh07nnV7cnIyd9xxB+Hh4QQFBREZGcn48eMByM3NBeDgwYMAdc67d+/eDBs2rEru+KJFixg5ciTdu3d311MRERERETnnZGVlUVhYSK9evc66r0+fPlitVo4ePQrAX//6V3JycujZsycDBgzgD3/4A9u2bXPs7+fnx9///ne++eYboqOjOe+883j22WdJT09vsucjItKUVOAWEXGDH374gbS0ND744AN69OjhuNx4440A1S422RA1dXLbO8XP5Ofnh9lsPmvfiy++mK+//po//vGPfPbZZyxbtsyxQKXVanV6XlOnTmXlypUcO3aMpKQk1q5dq+5tERERERE3Ou+880hKSmLBggX079+ff//73wwZMoR///vfjn1+97vfsW/fPubMmYO/vz+PPfYYffr0cXxKU0TkXKIMbhERN1i0aBFRUVHMmzfvrPs++eQTPv30U+bPn0+3bt3YsWNHrWN169aNdevWUVpaio+PT7X7tG3bFjDy9So7cuRIvee8fft29u3bx9tvv83UqVMdt1defR1wfESyrnkD3HTTTcyaNYv//Oc/nD59Gh8fH6ZMmVLvOYmIiIiItEaRkZEEBgayd+/es+7bs2cPZrOZuLg4x23h4eFMmzaNadOmcerUKc477zyefPJJ7r77bsc+3bp14/e//z2///3v2b9/P4MGDeL555/nvffea5LnJCLSVNTBLSLSQKdPn+aTTz7hiiuu4Prrrz/rMnPmTPLz8/niiy+YPHkyW7du5dNPPz1rHPsCkpMnTyY7O5t//etfNe7TuXNnvLy8+Omnn6rc/8orr9R73l5eXlXGtG//85//rLJfZGQk5513HgsWLCA5Obna+dhFRERw2WWX8d5777Fo0SIuvfRSIiIi6j0nEREREZHWyMvLi0suuYTPP/+cw4cPO27PyMjg/fffZ+zYsYSEhABw/PjxKscGBQXRvXt3iouLASgsLKSoqKjKPt26dSM4ONixj4jIuUQd3CIiDfTFF1+Qn5/PVVddVe39I0eOJDIykkWLFvH+++/z0UcfccMNN3DnnXeSmJjIiRMn+OKLL5g/fz4JCQlMnTqVd955h1mzZrF+/XrGjRtHQUEB33//Pb/5zW+4+uqrCQ0N5YYbbuDll1/GZDLRrVs3vvrqKzIzM+s97969e9OtWzceeughUlJSCAkJ4eOPP652IZqXXnqJsWPHMmTIEO699166dOnC4cOH+frrr9myZUuVfadOncr1118PwFNPPVX/F1JEREREpBVYsGABS5cuPev2J598kmXLljF27Fh+85vf4O3tzWuvvUZxcTHPPvusY7++ffty/vnnk5iYSHh4OL/88gsfffQRM2fOBGDfvn1cdNFF3HjjjfTt2xdvb28+/fRTMjIyuOmmm5rseYqINBUVuEVEGmjRokX4+/tz8cUXV3u/2Wzm8ssvZ9GiRRQXF/Pzzz/zxBNP8Omnn/L2228TFRXFRRdd5FgE0svLiyVLlvC3v/2N999/n48//ph27doxduxYBgwY4Bj35ZdfprS0lPnz5+Pn58eNN97Ic889V+dikHY+Pj58+eWX/Pa3v3Vk81177bXMnDmThISEKvsmJCSwdu1aHnvsMV599VWKioro3LmzI2O8siuvvJK2bdtitVprLPqLiIiIiLRWr776arW333HHHfz888/Mnj2bOXPmYLVaGTFiBO+99x4jRoxw7Pfb3/6WL774gu+++47i4mI6d+7M008/zR/+8AcA4uLiuPnmm1m+fDnvvvsu3t7e9O7dm//+979Mnjy5SZ6jiEhTMtnO/Hy5iIhIA5SVldG+fXuuvPJK3nzzTU9PR0RERERERETOYcrgFhERt/rss8/IysqqsnCliIiIiIiIiEhjUAe3iIi4xbp169i2bRtPPfUUERERbNq0ydNTEhEREREREZFznDq4RUTELV599VWmT59OVFQU77zzjqenIyIiIiIiIiKtgDq4RURERERERERERKRFUge3iIiIiIiIiIiIiLRIKnCLiIiIiIiIiIiISIvk7ekJNBWr1UpqairBwcGYTCZPT0dERERE3MRms5Gfn0/79u0xm9W/0Zrob3wRERGRc5Mzf+O3mgJ3amoqcXFxnp6GiIiIiDSSo0eP0rFjR09PQ5qQ/sYXERERObfV52/8VlPgDg4OBowXJSQkxMOzERERERF3ycvLIy4uzvH3nrQe+htfRERE5NzkzN/4rabAbf/IYkhIiP74FRERETkHKaKi9dHf+CIiIiLntvr8ja+QQhERERERERERERFpkVTgFhEREREREREREZEWSQVuEREREREREREREWmRVOAWERERERERERERkRZJBW4RERERERERERERaZFU4BYRERERERERERGRFkkFbhERERERERERERFpkVTgFhEREREREREREZEWSQVuEREREREREREREWmRVOAWERERERERERERkRZJBW4RERERERERERERaZFU4BYRERERERERERGRFkkFbhERERERERERERFpkVTgFhEREREREREREZEWSQVuEREREREREREREWmRVOAWERERERERERERkRZJBW4RERERERERERERaZG8PT0BEWmmMnfDt3+GkoL6HxMUCVe9DAFtG29e9XHiICx7Asb8DjomenYuzc2612HHx84d0/cqGDWjcebjjO0fwaGf4NL/A99Az87leBL88DRc+Ci06+b+8Vf8HyT9WP/9TSZIvAMSbnL/XJJ+gK0fwMQ50Kad+8dvTIdXwYZ/G3MPiXXv2JYyWPKQ8buyvszeMPp+6HWpe+cCsOkd2PI+2GzuHxvAZIbh90D/6xpnfJEWIj23iD98tJXTJRY+mj7a09MREREREVTgFpGa/LIAkpY7f1zMQBj/sPvn44wNb8LuL8DbDzr+27NzaU7yM+Db2WAtc+64lI0w/Nfg5cF/Mmw2+PYROJUB0f1gxK89NxeAVS/Azk/AL8g4qeNOp7JgxRznjztxqHEK3MufgtRNEBQNlzzl/vEbi80GXz0I2fvAPwyufNG94+/7Bja+5fxxOUegx8Vg9nLfXE6fhCUPQ9lp941Zney90Pty43erSCvl623m5/3ZABSXWfDzduPPsoiIiIi4RAVuEaneiYPG9fB7IX5c3funbYWf/wEbF8LYWZ4thqZuNq7tz0EMm98xitsxA+G8P9TvmI/vBksx5B6F8C6NO7/a5KUaxW0wTmAMv9foWvYU+3ssZXPjjR3WCS75W9372yzw0Z1wKt14nULau28uZSWQscPY3vweXPBn8PF33/iN6fDPRnEbYNt/4eK/gn+I+8bf8KZxPXAK9L6iHgfY4MsHjJ+l/cvc28W99QOjuB3Ry/hUQWP45o+Qnwq7PoeBNzbOY4i0AG0DffDxMlFqsZGVX0zHth7+RJGIiIiIqMAtIjU4cci47n0FdB1f9/49JxrdjHkpsP876D2pcedXE6vFKLZDxXMQ43XZ+LaxPWqGETtSHz90NoqEJw95tsCdWqmQnL0XjqyG+DGemUtJYUUsReYuKD0NPgHuG9/+XDuNqv/3aeVzkLnTONadBe7MnWApMbZPnzA+GdFSipu/LKjYLi2A7f+FYXe7Z+zjSXDwR8AEFzwCbePrd9zR9bDmX8bc3FXgttkqnuvwe+r/nnFW5m5Y8YzxWC3lPSDSCEwmE1HB/qTknCZTBW4RERGRZkGLTIrI2awWyEk2tutb1PT2g8G3Gdu/vNk486qP7P1QcsrYPn0CinI9N5fmZP8yo3M0IBz6XlP/49qWf/89fbIgdVP5RnnXtiffY+nbja5pMK7Tt7t3fPtzbT+k/sd0GGxcp2yqfT9npZzxum/w4OvujPwM2P2lsW3/vbRhgfvyqe3RJN0n1L+4DTD0TuN6/3dw8oh75nJ4lXESyqeN0U3eWIZMBZMXJK+BjJ2N9zjS7M2bN4/4+Hj8/f0ZMWIE69evr3X/nJwcZsyYQWxsLH5+fvTs2ZMlS5Y47n/yyScxmUxVLr17927sp9EgUSFGTE9mXrGHZyIiIiIioAK3iFQn9xhYS8HsAyEd6n9c4h3G9YHlniuIpp4RGeHpwmxzYS8ID77VuYgJ+wmOk4fdPiWn2L+vibcb17u+gFOZnp1LTV83hM1WMV77wfU/zr6vO+dSebxBtxrFzaNrW0Zx0x7H03G4EfPiHWB0ox9d1/CxS4tg8yJje9hdzh3brht0PR+wGXFO7mD/2R54o3sjWM4UEmvkb0PV7nhpVRYvXsysWbN44okn2LRpEwkJCUycOJHMzOp/H5eUlHDxxRdz+PBhPvroI/bu3csbb7xBhw5V/7bo168faWlpjsuqVaua4um4LCq4vMCdX+ThmYiIiIgIqMAtItWxFzPbdnZuIbTwrtDtIozijQuLr7nDmQU+Txdmm4OTh40OboDEac4da+/gPunBEwWVi76Jd0CHROMEzOZ3PTMf+1x8g6t+7Q72rHGTF8QMqP9xlQvc7upSto8H0OuyiuJmc+/irhzHM/ROCAiDAZONr90x912fGZ8OCekIPS5x/vih5UXxze8aGecNUblT3d4d3pjsj7F1MRSfavzHk2Zn7ty53HPPPUybNo2+ffsyf/58AgMDWbCg+pMeCxYs4MSJE3z22WeMGTOG+Ph4xo8fT0JCQpX9vL29iYmJcVwiIiKa4um4LCrYOFGsDm4RERGR5kEFbhE5m72Y2daFzGV7R+Pm96DMA//xs8c7+LQxrj1ZmG0uNi4EbND1AqOD1Bn2Du4Th908KSecPAynT4KXL0T1qygQ/rLQKGY2Nft7LOEm49qdsSD2gnJUH/B1Itc1ur/xiYvTJyDHTdEXlbPGOwyp+NnethiK893zGI1h/3flcTxtod+1xm3298yuz6Agu2Hj24vkiXc4dwLQrtckCI6Fgiwj07whHJ3qwyB2YMPGqo8u4yG8G5TkG5nm0qqUlJSwceNGJkyY4LjNbDYzYcIE1qxZU+0xX3zxBaNGjWLGjBlER0fTv39/nnnmGSyWqr+79+/fT/v27enatSu33norycnJNc6juLiYvLy8KpemFh2iDm4RERGR5kQFbhE5mz3Ww5VFBXtMNGJNCo/Drs/dO6+6WEor8pB7XWZct/aIkrJi2FTe6exsnAJU7eB2Z2ewM+xF3+j+4O0L/a8D/zDITYYD3zftXIryjJx3qOhmzd7nvoKvI55kkHPHeftBdL+qYzRUxg4jYzwo2ijIdhkP7bobGffbmnFx016AHlQpjqfDEKPL3VJinHxzVfp2OLYezN5GJrUrvLxhSHnUTkOiPqp0qrvws+0Ks7nife/OTHNpEbKzs7FYLERHR1e5PTo6mvT09GqPOXjwIB999BEWi4UlS5bw2GOP8fzzz/P000879hkxYgQLFy5k6dKlvPrqqxw6dIhx48aRn1/979U5c+YQGhrquMTFxbnvSdaTvYM7Qx3cIiIiIs2CCtwicraGdHB7eVdkcTd1lEHmbigrAr9Q6H6RcVtr7+De/SUUZkNwe+h5mfPHt+0MmIyiZkM7X11l75juUL7ook+AUbyEpn+PpW0FbBAaB9F9jZgKbOW3u4ErC0za2V8fd3WUp1Sai8lkXOzFzV+aaXHz5OGKkx5nRnbYi8Ab3wKr1bXx7e+33ldAcHTt+9Ym8XYjhubI/yq65J1VXad6Uxh0C3j7Q8Z2OLah6R5XWiSr1UpUVBSvv/46iYmJTJkyhT//+c/Mnz/fsc9ll13GDTfcwMCBA5k4cSJLliwhJyeH//63+hNps2fPJjc313E5evRoUz0dh0hHB7cK3CIiIiLNgQrcInK2hnRwg9HZaPZu+gXpHN2vCUYeOHg2WqM5cMQp3G6cfHCWt1/FQqOeOlmQusW4rrzoor14uf87yKn5o+zun8sZC0B2cOPijq4uMGnn7oUmq5tLws3lxc0dcHS9ex7HnX55ixrjePpPBv9Qowie9IPzYxflVXSuu/JpiMpC2ld8ysTVLu7qOtWbQmA49Luu6hykVYiIiMDLy4uMjIwqt2dkZBATE1PtMbGxsfTs2RMvr4o4nz59+pCenk5JSfUZ9GFhYfTs2ZMDBw5Ue7+fnx8hISFVLk0turyDO0sRJSIiIiLNggrcIlKVzVZpkUkXC9zBMZ5ZkM7R/Tq4Yu55xxq+kFtLlbkbklcbnaKuxilApRxuDxS4rdZKBe5KXc0R3Y3IDGzlGeNNpPJ7rPK1O7qmK2eN2+NGnGF/fdK2ut6hXNmZzxWM4mb/8gUbGxKv0RjKiiviR6orQPsGQsItxrYrc9/+XygtgIieED/O9Xna2ee49QMoKXDu2No61ZuCfe47P4XCE03/+OIRvr6+JCYmsnz5csdtVquV5cuXM2rUqGqPGTNmDAcOHMBa6XfSvn37iI2NxdfXt9pjTp06RVJSErGxse59Am4UVd7BnX2qhFKLG37fioiIiEiDqMAtIlUVnoDi8gWb2nZ2fRx70aUpF6RzdJwOgaAoY6FJm7VpO3ybE3sRr/cko2PUVW3jjWtPdHAfP2AsaOcTaBQWK7MX2Ta903QnMezvMXsciL2o7I6uaUfWeD+jc95Zkb3BO8D4+T2R1LC5VM4aP7ObfGgzLW7WJ45n6DTjet83kHus/mPbbEbmNBi/20ymhs0VoMv5xom44jzY/pFzxzZk4Vh36JAIMQPBUgxbFjX944vHzJo1izfeeIO3336b3bt3M336dAoKCpg2zfjZmjp1KrNnz3bsP336dE6cOMEDDzzAvn37+Prrr3nmmWeYMWOGY5+HHnqIlStXcvjwYVavXs21116Ll5cXN998c5M/v/oKD/TF22z8Hsg+pZgSEREREU9TgVtEqrIXMYPbG1nHrqq8IN32D90zt9qUFlXEobQfbBSgPFmY9bTiU0ZnKDR8ATpPdnDbu4hjBp4dsdJrEgTFQEEW7Pmy8edSeKLi0w2xg4xr+2KQJw8Z3dcN0ZD8bTBen9iB5WM1sOBeOWs8KLLqfR2GVBQ3G7Jgo7vVJ44nspfRfW2zVizQWB9H10HmTuMEQsJNDZ8rVF2w8Zc3659p3tCFY93BZKp47F8WuOcTA9IiTJkyhX/84x88/vjjDBo0iC1btrB06VLHwpPJycmkpaU59o+Li+Pbb79lw4YNDBw4kN/+9rc88MAD/OlPf3Lsc+zYMW6++WZ69erFjTfeSLt27Vi7di2RkZFnPX5zYTabiAw2TkRqoUkRERERz1OBW0Sqamj+tl3lBek2NMGCdBk7wVoGge0grJNxmycLs5624yOjMzS8a3mURwPY4148caLgzI7pyrx8KqJXNjRBXIZ9LuHdICDM2A5oW/H6NLSoXF3WuLPcFZlSWxZ4cyxuZuyqfxyP/ffSpnfAUlq/8e3F8/6Tje+5uwy+Dbz8jBMK9f2eOTrVY11bONZd+l8PfiFw4iAcWuG5eUiTmzlzJkeOHKG4uJh169YxYsQIx30rVqxg4cKFVfYfNWoUa9eupaioiKSkJB555JEqmdwffPABqampFBcXc+zYMT744AO6dfPAJxOcFFVe4M7MUw63iIiIiKepwC0iVdmLmK7mb1fmWJBuOxzb0PDxalM5L9geH9BaO7httoqC3NA7jU7RhvBoB3cdiy4m3g4mMxxZBZl7PDOXDm6IKamSNe6GAneDi+3V5G9XNuAGo7h58hAc/LFhj+UO9jieXpfVHcfT+wpoEwWn0mHP13WPXZANuz4ztoe5Oe86MBz6XWts/1LP9QrsP9tDXFw41l38gmDglKpzEmlFIssXmszMVwe3iIiIiKepwC0iVTk6uOMbPlblBekauwBSOX/brrV2cKdshPRtRmfooFsbPp79ZEdBphF90lQsZZC2zdiuKbYjtGNFF2tjL3pYU4HbHV3T9qxx7wAjS9tVlReatJS5Pk5tnfMAvm0qojo8vdhk5Tie+kR2ePtWdHnXp6i8+T2wlBixNB0SXZ5mjexz3vFx3ZnmlTvVE293/1ycZZ/73m8gL9WzcxFpYtEh6uAWERERaS5U4BaRqtzZwQ1NtyBddcVHT0ZreJIjTuE64yRDQwWEVcQy2DOom0LWHig7bXQKh3eteT97V+3WD6CkoPHmU1PR17HQ5JaGjx1bTda4M9p1B99g43XL3uvaGFWyxhNq3s8e9bF3CeSmuPZY7rD9Q+PkQHhXY+HG+ki8w+j8P/RTxWKa1bFaYeNbxnZj5V13HAbRA6CsCLb+p/Z9nelUbwpRfaDTaLBZnMs0FzkHRKmDW0RERKTZUIFbRKpyVwa3XVMsSFdSYBRDoWqB2/4cTh5uHjnBTaHwBOz8xNhu6OKSlXniZIEjJmNQ7TErXS805leca3TBNob8DMhLMYqiMQOr3hc7EDBB3jE4lena+A1dYNLObK5Y+NLVjnJH1njX2vOmo/pA5zHGgo2bPFTctNkqurCdieMJi4MelxjbtXWgJ/1g/P7wC634NIq7mUwwdFrFXGpar8DZTvWmYp/Lprfrn2kucg6Isndwq8AtIiIi4nEqcItIhZJCI5cW3NfB3RQL0qVtM4pswbEQEltxe2ic8VH+sqKK53Wu2/K+8XxjBkDHoe4b1xNxL3Xlb9uZzRUFwsaKwrHPJaKXkT1cmV8wRPaqup+r4zckf9vOXuBu8FzqUWy3d3Fv9FBx89gvkL7dtTge+wmgLYuM333VsRfPB91sxLI0loE3gm+QEVVzaGX1+7jSqd4U+lwJgRGQn2ZElYi0EvaIkgxFlIiIiIh4nArcIlLBHkvgH+qeaAu7xl6QrqYF8bx8jIxmaB053DZbRTfq0LsqFtt0B090cKc40dU86DajyJm2xcggd7e6Fl1syOKOlbPGa8q8doYjMqUJiu19roI2kcYJJE8UN+3vd1fieLpfBGGdoCjXiFA6U+4x2LfU2LYX8huLX3DFgo3VdZRX+dl2w8Kx7uTtB0N+ZWzXd6FMkXOAIkpEREREmg+X/oc0b9484uPj8ff3Z8SIEaxfv77GfUtLS/nrX/9Kt27d8Pf3JyEhgaVLl1bZZ86cOQwbNozg4GCioqK45ppr2Lu3anbo+eefj8lkqnK57777XJm+iNTEkb8d795xG3tButo6TsNbUQ73oZVwIsnIYB5wg3vHtr8nmupEQVkxZOw0tutTaG3TDvpdY2xvaMT3WE0F6IYsNFkla7yba/Orbi4ZO6CsxPnj63qulXn7wmAPFTcbGsdj9oJEezRINXPf+LbxyZD4cRUd+o3J/kmXPV9D/hmfOHH3wrHuljgNMMHBFXA8ydOzEWkSUcFGB/fxU8WUWVpJDJqIiIhIM+V0gXvx4sXMmjWLJ554gk2bNpGQkMDEiRPJzKw+d/TRRx/ltdde4+WXX2bXrl3cd999XHvttWzeXNFZtnLlSmbMmMHatWtZtmwZpaWlXHLJJRQUVF0s7J577iEtLc1xefbZZ52dvojUxl68dFc8SWWOBem+cf+CdCm1dNe29UC0hqfY4zkSppwdo9FQTX2iIGMHWEshINzosq0P+3tsx8dw+qT75mKz1f4eg6pd0zVlKNfE3h0em+Cezty28UZ2tqUEMnc6d2xtWeM1SbwDjxQ37XE80Q2I4xn8KzD7GAXkyouEWkph0zvGtj3+prFF94O4kWAtq3hsO/vPdr9r3fvpGndp2xl6XGxsN8ZJTJFmqF2QH2YTWG1wvMCFk4kiIiIi4jZO/0967ty53HPPPUybNo2+ffsyf/58AgMDWbCg+v/QvPvuuzzyyCNMmjSJrl27Mn36dCZNmsTzzz/v2Gfp0qXccccd9OvXj4SEBBYuXEhycjIbN1b9mHlgYCAxMTGOS0hIiLPTF5Ha2IuX7lpgsjLHgnSWs4s3DXE6x+hahuqLj62lgzsvzej8BPcuLmlnP1GQc7RpspYrdxHXN2olbgRE9TO6obf8x31zyT0Ghdlg9obo/tXvE9PfuL8g0ygQO8Od+dtgvF6udpTXljVeE08UN63WiscadqfrcTxBkdD3amO7chf3nq+N2JU2UdD7yobN1Rn2Lu6NC43oGqjaqd6cFpc8U+VM89LTnp2LSBPwMpuICCpfaDJPMSUiIiIinuRUgbukpISNGzcyYcKEigHMZiZMmMCaNWuqPaa4uBh/f/8qtwUEBLBq1aoaHyc3NxeA8PCqXUqLFi0iIiKC/v37M3v2bAoLa1gUSkRc05gd3FDRYbvJjQvSpW01rsM6GTEVZ2otHdyb3jFOHnQaBdF93T9+cKwRj2CzQO5R949/JleKviaTUewEo/jpbCd1XXOJ6gs+/tXv4xNgnMSpvH991dUd7gpXM8Hryhqvib24ufm9piluVonjubFhY9l/L23/yMjjhopi95BfGTEsTaXPVcanFvJSYP+3xm1VOtWHNd1cnNXjYmNh39MnYednnp6NSJOIKl9oMjNfC02KiIiIeJJTBe7s7GwsFgvR0dFVbo+OjiY9Pb3aYyZOnMjcuXPZv38/VquVZcuW8cknn5CWllbt/larld/97neMGTOG/v0rOuVuueUW3nvvPX788Udmz57Nu+++y2233VbjXIuLi8nLy6tyEZE6NGYHN0CfKyEwAvLT3LcgnaMgV0NecGvo4LaUGR2f0Djd22BEZzRlDndKLbnqtRk4BXyD4Ph+OPyze+ZS36KvK13TlbPG3bHApGMuLi406Wo3eY+LIbQTFOVUv2Cju/3ixjiezqMhsg+UFsLWDyB7Pxz6CTCVx680IR9/GFz+t82GN93Xqd4UzF6QeLuxrcUmpZWILl9oMkMd3CIiIiIe5Yawz9r985//pEePHvTu3RtfX19mzpzJtGnTMNeQMzpjxgx27NjBBx98UOX2e++9l4kTJzJgwABuvfVW3nnnHT799FOSkqrP+5wzZw6hoaGOS1xcnNufm8g5xVIGOcnGdmN1cHv7GR2R4L4CSF0FOXtR9vRJI87kXLRvKeSnGicP+l7VeI/TVCcLSgoha7ex7Wyh1S8YBpZ39G5w83usrgK0K0XlKlnjnV2bX7VzKX/dMncbr2d9VM4ad7bYXrm46a7XvSZ5qbBnibHtjhM6JlNFF/eGNysKyj0n1j//3Z3smd9Jy2HTQvd1qjeFwVONqJ5jGyBtm6dnI9Lo1MEtIiIi0jw4VeCOiIjAy8uLjIyMKrdnZGQQExNT7TGRkZF89tlnFBQUcOTIEfbs2UNQUBBdu3Y9a9+ZM2fy1Vdf8eOPP9KxY8da5zJixAgADhw4UO39s2fPJjc313E5erQJPlIv0pLlHTMWN/PyhZD2jfc4idNw64J0KXUUH/2CoU2ksX2udnHbTxYMvs04idBYmiruJX0b2KxGLEpIrPPH24uee76C/Oo/XVRvNlv9u5orx4LUNx6l8tju7M4NaQ9B0UakTMaO+h1Tn6zx2gyZWr5g4y8V0UGNoTHieBKmgE8gZO+F9W8YtzXWpyHqEt4Vul1kbC95uGJ+7l44tjEERxuf1AF1cUurEFnewZ2Zrw5uEREREU9yqsDt6+tLYmIiy5cvd9xmtVpZvnw5o0aNqvVYf39/OnToQFlZGR9//DFXX3214z6bzcbMmTP59NNP+eGHH+jSpe7u0S1btgAQG1t98cPPz4+QkJAqF5FzjtXqvpxhe9EyrLPRjdlY3LkgXUE25JZ3nccm1PKYbi7M2mxQfKp5XDJ3Q9IPgKmi87OxODq4Dzfu4zR00cWY/saCk9Yy2PRuw+Zy4qCRy+zlZ2Rw1yaqr3GCqCin/idT3L3ApJ0rC03WJ2u8NkFRFcXN9W80zvu9KBc2vm08hjsL0P6hMOAGY9taanRud7/IfeM7y76YpLV8rQJPFdtdYZ/rtg+hSPFwcm6Ltndw56mDW0RERMSTvJ09YNasWdx+++0MHTqU4cOH8+KLL1JQUMC0aUZhZerUqXTo0IE5c+YAsG7dOlJSUhg0aBApKSk8+eSTWK1WHn74YceYM2bM4P333+fzzz8nODjYkecdGhpKQEAASUlJvP/++0yaNIl27dqxbds2HnzwQc477zwGDhzojtdBpOWxWuD188HbH+781shIbgh70bKx8rcrG3oX7P/OWJDuwkeNBfpcYS/ItetuFKhqEt4Fjq13X2H2/RuN+Tcn3SdUxLE0lrZNVOBOqSNXvT6G3gVH1xnZ5GMfBC+n/7kz2N9jMQPAy6f2fb19jf1SNhrHhZ/9SaWz1PUJhIZoP8SIr6lvZIqrC0xWNuwu2PkJbH7XuDSWxojjGXaXsQAuGJ80acwTfXXpMRFCOhiLTTbWwrGNJX4sRPQyuuG3LYbh93h6RiKNJkod3CIiIiLNgtMVsSlTpvCPf/yDxx9/nEGDBrFlyxaWLl3qWHgyOTm5ygKSRUVFPProo/Tt25drr72WDh06sGrVKsLCwhz7vPrqq+Tm5nL++ecTGxvruCxevBgwOse///57LrnkEnr37s3vf/97Jk+ezJdfftnApy/SguUeM6Icjq13T/SGfYzGyt+urMfFEBrX8AXpHN2vdRQHHYVZN7xOBcebX3Hb298o4ja28Eqd8O765EB13NHV3PdqI9c671jDvl/1zd+2c6ZruiFZ487MJdXJDu6GzKXzGOgy3vXj68NkNt7v7o7jiU2AftcaJyaG3O7esZ3l5Q3nzzayt8f/0bNzcZYj09zknhgqkWasooNbBW4RERERT3KppW3mzJnMnDmz2vtWrFhR5evx48eza9euWsez1VEoiYuLY+XKlU7NUeScVzlbOGUTtOvWsPHs8R1N0cFtX5Duh6eNmJJBt7g2Tko9O04rF2YbqnLX+H2rGj6eO5h9XO9QdkZYJ8AEpQVQkGVEUrhbUS4c329sN6TQ6uMPg2+F1S8b77Hek1wbp77vMTvHQpNb6t7XnjUeFG3kjbubfc7Z+42oCP9aoroqZ403pJvcZIKpn0NZI35c32RuvKz5GxY2zriuGPKrikV5W5pBt0Cvy4xIKpFzmL2DO+tUMRarDS+zG9dSEBEREZF6a2CmgYh4TH7FJyXqHUFQm6bs4AYYPNVYzO7YBkjb5toY9S3IuTNao3LXuE9A87g0RXEbjKJiaPkCwI210KR9ccKwTtCmXcPGSizPJD/wvWvfe6ulYj71jUuxF5XTthjH16bye8mdC0zaBUUan5TAVveij85kjdfFZGrc93tjLqQq7uEfouK2tAoRQb6YTGCx2jhRUOLp6YiIiIi0Wipwi7RUlTu46xtBUBObDU4cNrabooMbIDi6YkG6X950/vi8NDiVbnRzxgyofV/7c8o9BmUN/Bix/bVujMzklsCe8+2OuJfqONsxXZt23aDbhYANfnnL+eOz9xvd6j5tIKJH/Y6J7AU+gVByCo4fqH1fdz7XmrQfZFzXdRLMmaxxEREBwNvLTLs25TEl+VpoUkRERMRTVOAWaanyUyu207bW3S1am8LjUJIPmCCsCbvuht5lXG/70IhQcIa90BzZB3zb1L5vm0ijSIkNcpKdnmbVx3VDTnFL5s64l+rUN1e9vuzvsc3vOn9yw7Ho4qD6Lzho9jKynKH+ReXGPFniiEyp51xa6/taRMRFUcHK4RYRERHxNBW4RVqqyh3cpYWQvc/1sezFypD2RnZxU4kfCxG9jC7ZbYudO9aZgpzJ5J7CbF6aEQ1Tn67xc5U7F+ysjrsLrT0vhZAOxkmcXV80zVzqs9Cku7LG6zuXuj7lkdLKP5kgIuKiqBB1cIuIiIh4mgrcIi1V5QxuqL2YVpemzt+2M5lg6J3G9oY3jaiU+nIU5OpZHHRHtIa94FmfrvFzVWN2cBcch5wjxrY9WqOhvLxhyO3GtrNROK5GiNSna9qeiR3aCdpEODe+U3MZZFyfPAyFJ6rfp0rWuDq4RUScEV2+0KQ6uEVEREQ8RwVukZbK3sEdM9C4bshCk/ZiZXh8g6bkkoSbjMzirN2QvLZ+x9hsznfXuqMwqxiHxu3gTit/fdt1B/9Q9407ZCqYvCB5DWTsrN8xllJI325su9rBnb7NGKc6jvfSIOfGdlZAWwjvWvUxz1Qla7xn485HROQcY+/gzlAHt4iIiIjHqMAt0lLZC9y9LzeuG7LQpKc6uAECwqD/ZGO7vh22OUfg9Akw+0B0//od447CbKqTXePnIvuJgoIsKM5379gpbs7ftguJhd6TjO1fFtTvmMxdYCk2Cu32AnF9hXcFv1AoK4KsPdXv05SRIHV1lNvf17EJ9c8aFxERQBncIiIiIs2BCtwiLVHxKSguX5SxV3nhLn0HlJW4Np6jg9sDBW6AYeULAe76HAqy697fXqiL7gfefvV7jIZ2cLvSNX4u8g+FgHBj++Rh947dmK+vfbHJrYuNnx9n5mIyOfdYZjO0L19osqbooKZ8LzlyuGsqcOt9LSLiqqiQ8oiSfBW4RURERDxFBW6Rlsjeve0bZCx26B9qdJtm7nJtPE92cINRWGs/GCwlsPnduvd3JRvZ0cF9GKxWp6dITrKxUKEzXePnqsbK4U51MfO6PrqMh/BuUJIP2z+se39X87ftauuarpw1HjvItfGdmksdBW4tMCki4rKKDm5FlIiIiIh4igrcIi2RfYHJ4Biju7SuAlZtSgrgVIax7akObqjosP3lrboL0Pbn6UxBLjQOzN7GiYAzF+isD1e6xs9VjZHDnZdmfF9MZogd6L5x7czmigVNf6nHgqapDYxLcfxMVtPBbc8aD+9mRPQ0ttgEwAR5KZCfUfW+hmSNi4iIo4M761QxVqsTi2WLiIiIiNuowC3SEtk7uINjjeu6MnZrY4+Z8A8zFqTzlP6TjU70nCOQtLzm/axWSNtqbDtTkPPyNorc4FphVjEOFRqjg9v++kb2Bt827hu3skG3gLe/UdA99kvN+5UWVXwawuUO7vLjMnYZ41WW0sTvJb8giOxlbJ/5O8KeNe7nQta4iIgQGWSc9C612DhZ6GJUnIiIiIg0iArcIi1RfqpxHRxjXNfWLVoXT+dv2/kGQsItxvaGWhabPJFk5I97+0NkH+ceoyGF2VTFODg0Rgd3Qzum6yMwHPpdZ2zXtqBpxg6wlkGbSAjt6NpjhXWCwHZgLYXMnVXvc+UTCA1V00kwx+s+yPmscRERwdfbTHgbX0A53CIiIiKeogK3SEt0Zge3vVCWuRtKTzs3lqfztyuzR0js/xZyjla/j70gFzPQ6Mp2Rtt449rZwqzVCqkudI2fqxqzg7v9IPeNWR37gqY7PoHCE3XMxYUFJu0qRwedudBkY2aN16Smk2ANzRoXEZGKHG4VuEVEREQ8QgVukZbIkcFdXuAO6WB0m1rLIH2Hc2PZi5T24q8nRfaE+HFgs8Kmt6vfpyEL4rV1sTB74iAU57rWNX4usr9Xco8ZGc4NZbM1XYd8h0RjYVZLMWxZVP0+7ir6Orqmt1TcVjlrPKYRssZr0qFSB3fl/HFPdJOLiJxj7DncGVpoUkRERMQjVOAWaYkcHdzlESUmk+s53CebSUSJnb3DdtM71RdPG5KFHe5itEZDusbPRUExRrHfZoGc5IaPl3sUCo+D2Qei+zd8vNqYTJUWNF1Q/YKm7opLqa5r2j52RC8jG7upRPc3FlktyDJOTIB7ssZFRMTRwZ2lDm4RERERj1CBW6QlOrODG1zP4T7RjCJKAHpfAUHRcCoD9nxV9T5LmWsLTNq52sGt/O2qzGbX416qY++Yju4L3n4NH68uA24A32CjM//Qiqr3FZ+C7L3GdoM7uMuPz9oDJQXGtqc6pn38Iapv1TnYs8YDIyoWYBUREac5IkrUwS0iIiLiESpwi7Q0NpsRcwAQUl2B24kObkuZ0T0LzaeD28sHhkw1ts9cbDJ7L5SdBt8gaNfD+bHtRdmiHDh9sv7HNaRr/Fzl6smC6jTFApOV+QVBwk3G9pnvsfRtRkROSAcIjm7Y44TEGiehbFZI22bc5sn30pknwdyRNS4iIkQ7IkrUwS0iIiLiCSpwi7Q0p08a+cFgREXYObpF90Jxfv3Gyj1qdHB6+UFwe/fOsyGG3G5kFB/+GbL2Vdxu7/SNHWR0ETvLLwjaRBnb9S3MVukaVwe3gyPu5XDDx/LEoov2KJy930BeasXt7l50sfKJp8pZ4x4tcJcXthuSZy8iIg4Vi0yqg1tERETEE1TgFmlp7PnbAW2N2AG74Gij6xRbRbdoXezxEm07u1YwbixhcdBjorH9y4KK2x3xDg0oDjqbw529D0oLy7vGu7v+uOeatm4qcFutkFp+AqEpC61RfaDTaCNHfNM7Fbe7u8O6cja+I2vcu/Gzxqtz5kKT+mSCiIhbRIXYC9zq4BYRERHxhGZU0RKReqkuf9vO2ZiS5pa/XZm9w3br+1BSaGy7oyDnbLSG/TFd7Ro/V4W7KaLkxEEozjUWrYzs3fB5OcP+Htv4ttGpD41Q4K4UC2LvmI7qW/XkVFOJ6mt8WqMoF9K3uy9rXESklYsKNn6nZ+YVY7PZPDwbERERkdZH1RqRlsbewR0cc/Z9zi40ae9ibi7525V1uwjCOhvFuJ2fQFmJsSgeNCwqxNkObscCkyoCVlG5g7sh/5m3F5RjBhr5602pz5XGAov5qbDvGzidAyeSjPvcXeA+fgAOrTS2PRUJ4uUDMQOM7U1vG9ngwe2r/10iIiL1FlkeUVJisZJ7utTDsxERERFpfVTgFmlp8svzgqvLzK4cQVAf9niJ5tjBbTbD0GnG9oY3IXMnWEqMaBb7YpGucBRmj9Rvf8U4VC+sk5GTXloApzJdH8eTr6+3Hwy+zdje8CakbTG228ZDYLh7HqNNO+O1Atj2oXHtyfeS/bG3Lvb8XEREzhH+Pl6EBhgnaRVTIiIiItL0VOAWaWlq6+COHWRcnzhoLEZZlxOHjevm2MENMPhX4OVrdFHbs7jbDwaTyfUxnYnWKCsxohxAC0yeydsXQjoa2/Xthq9OqocXOhw6DTDBwR9h+0fGbe7+XtvHK8lvnPGd0eGMueiTCSIibhFdnsOdkaeFJkVERESamgrcIi1NbQXuwPCK7ubULbWPY7NVWmSymRa420RA36uNbftCgA3tOLU/17wUKKujyypzl3u6xs9V4fHGtas53FYLpJUvMOmpTuK28dB9grG9+d3GmUvl8bz8jAUuPeXM56YObhERt6icwy0iIiIiTUsFbpGWprZFJqGiO7SuHO6CbCg5BZigbWe3Tc/tht5V9euGFuTaRIBvEGCrO6bE/ho2tGv8XOWIe3GxwJ21F0oLje9Hu+7um5ezhrn5PXamyt3pMQOaPmu8soie4NOm4mt9MkFExC2iyju4FVEiIiIi0vRU4BZpafLKC9whNRW47QtN1pHDbS9KhnQwsoibq04jIapvxdcNLciZTPUvzCp/u3bOxL1Ux/76xg4Cs5dbpuSSHpdAaFz5FyaITXDv+JXH81QUi53Zq2I+YZ3dlzUuItLK2Tu4FVEiIiIi0vRU4BZpSawWOJVhbNfUwW0voKXUUeC2FyWba/62nckEQ+80tttEQUg1i2s6q77RGikqcNeqoR3cR1Yb1+0HuWU6LjN7QeLtxnZED/APce/4/qHQroex3RzeS/bfEc1hLiIi54ioYKNZIEsd3CIiIiJNTgVukZakIBtsFsBkFHurE5tg3J93DE5l1jyWI3873s2TbASDb4Nhd8Nlf3dPVEh9CrOlp40MblCMQ00a0sFdlAs7PzG2e13mvjm5avivYchUuOTpxhl/4jOQeAf0u65xxnfGqBkw4EYY/0dPz0REWqB58+YRHx+Pv78/I0aMYP369bXun5OTw4wZM4iNjcXPz4+ePXuyZMmSBo3ZHEWHlGdw56uDW0RERKSpqcAt0pLY87eDosDLu/p9/IKNnF2ofaHJltLBDeATAJc/D/3dVBysT2E2fYdxMsFdXePnIvuJgsJsKM537titi4387cje0HmM++fmLP8QuOpl6DmxccbveQlc+U/w8W+c8Z0R0h4mvwHRfeveV0SkksWLFzNr1iyeeOIJNm3aREJCAhMnTiQzs/oT6iUlJVx88cUcPnyYjz76iL179/LGG2/QoUMHl8dsruwZ3BlaZFJERESkyanALdKS5Kcb18Exte/nyOGuZaFJRwd3Cyhwu1t9Orjtr12HIVpgsib+IRDYzth2povbZoNfFhjbQ+/U6ysi0kLMnTuXe+65h2nTptG3b1/mz59PYGAgCxYsqHb/BQsWcOLECT777DPGjBlDfHw848ePJyEhweUxmyt7RElmfhE2m83DsxERERFpXVTgFmlJ8lON6+A6Oorrs9BkS+rgdjf7cz55BKzW6vfRApP140oOd/IayNoNPoGQcFPjzEtERNyqpKSEjRs3MmHCBMdtZrOZCRMmsGbNmmqP+eKLLxg1ahQzZswgOjqa/v3788wzz2CxWFwes7i4mLy8vCqX5sC+yGRRqZX84jIPz0ZERESkdVGBW6QlqW8Ht2OhyU1Gt+yZik9BQflHf1tjB3dIRzB7g6W44qTBmVLKO7iVv107V3K4N7xpXA+43liAUUREmr3s7GwsFgvR0dFVbo+OjiY9Pb3aYw4ePMhHH32ExWJhyZIlPPbYYzz//PM8/fTTLo85Z84cQkNDHZe4uDg3PLuGC/D1ItjfiI/LzFMOt4iIiEhTUoFbpCWxZ3AHx9a+X3R/MHkZRey8agq4Jw8b1wFtISDMnTNsGby8IayTsV1dYbY4H7L3Gdvq4K6dsx3cp7Jg1+fG9tC7GmdOIiLSLFitVqKionj99ddJTExkypQp/PnPf2b+/Pkujzl79mxyc3Mdl6NHj7pxxg3jiClRDreIiIhIk1KBW6QlqW8Ht28gRJUvIFddDndrzt+2q60wm7YVsEFoHARFNum0WhxnO7g3vwvWUuiQCO0HNdq0RETEvSIiIvDy8iIjI6PK7RkZGcTEVP93SWxsLD179sTLy8txW58+fUhPT6ekpMSlMf38/AgJCalyaS6iQ4yYksx8FbhFREREmpIK3CItSV55B3dIHRncUFE8rC6HuzXnb9vVVph15G8ParLptFjOdHBbLbDxLWNb3dsiIi2Kr68viYmJLF++3HGb1Wpl+fLljBo1qtpjxowZw4EDB7BWWu9i3759xMbG4uvr69KYzZm9gztDESUiIiIiTUoFbpGWxBFRUkcHN1TkcFdX4FYHd+2FWS0wWX/2EwW5x6CspPZ9DyyHnGQjd7v/dY0/NxERcatZs2bxxhtv8Pbbb7N7926mT59OQUEB06ZNA2Dq1KnMnj3bsf/06dM5ceIEDzzwAPv27ePrr7/mmWeeYcaMGfUesyWJUge3iIiIiEd4e3oCIlJPZSVQmG1s15XBDRXF2dTNxkKTJlPFferghrbxxnV1HdxaYLL+gqLBOwDKTkPuUWjXreZ9fylfXHLQreAT0DTzExERt5kyZQpZWVk8/vjjpKenM2jQIJYuXepYJDI5ORmzuaJ/Ji4ujm+//ZYHH3yQgQMH0qFDBx544AH++Mc/1nvMlkQd3CIiIiKeoQK3SEtxqjyf0uwDAeF17x/VD7x84fRJY1HJysVsRwd3vLtn2XKE19DBffpkxW2KKKmbyWS8j7J2GycLaipw5yTDvm+N7aF3Ntn0RETEvWbOnMnMmTOrvW/FihVn3TZq1CjWrl3r8pgtiTq4RURERDxDESUiLYVjgclYMNfjR9fbF6L7G9uVF5q0lELOUWO7VUeUxBvXRblQeKLidns8SXhXCGjb5NNqkWo6WVDZxrcBG3Q5DyJ6NMm0REREmpK9gztLBW4RERGRJqUCt0hLkZ9qXNcnf9uuckyJXe5RsFnAy69+USfnKt82RrwGVC3MKn/beW1rWbATjHidTe8Y21pcUkREzlHR5R3ciigRERERaVoqcIu0FI4ObicK3PaFJlMqFbhPVIonqU8n+LmsusKs8redV1cH956voCATgmKg9+VNNy8REZEmZO/gLiyxcKq4zMOzEREREWk9Wnl1S6QFyU8zrp3purZ3IadtAavV2D6pBSYdqivMpm4xrtXBXX/2EwUnD1d//y8LjOshU8HLp0mmJCIi0tTa+HnTxtcLgEx1cYuIiIg0GRW4RVoKVzq4I3qBTyCUnILj+43bHB3cKnBXdHAfNq5PZULeMcAEsQM9NauWJ7xSgdtmq3pf1l44/DOYzJB4e5NPTUREpClVxJQoh1tERESkqajALdJS2Du4Q9rX/xgvb4gpL9Tas6XtXbbq4D67g9v+GkX2Ar9gz8ypJQqNMwrYpYVwKqPqffbu7Z6XQWjHpp+biIhIE4osjynJzFcHt4iIiEhTUYFbpKXIs0eUONHBDWcvNGkvcKuD++xoDS0w6Rpv34rideU885IC2PIfY3vYnU0/LxERkSYWVd7BnZWvDm4RERGRpuJSgXvevHnEx8fj7+/PiBEjWL9+fY37lpaW8te//pVu3brh7+9PQkICS5cudXrMoqIiZsyYQbt27QgKCmLy5MlkZGScNY7IOcsRUeJEBjdUWmhykxEfcUIZ3A721yAvFUqLtMBkQ7StJs98x8dQnGssaNr1Qo9MS0REpClFl3dwZyiDW0RERKTJOF3gXrx4MbNmzeKJJ55g06ZNJCQkMHHiRDIzM6vd/9FHH+W1117j5ZdfZteuXdx3331ce+21bN682akxH3zwQb788ks+/PBDVq5cSWpqKtddd50LT1mkBSopMAqF4HoHd/o2I+aktAAwQVgnt06xRQpsB77BgA1yjqiDuyHsJwsqd3BveNO4TpwGZn1gSEREzn1RIfaIEnVwi4iIiDQVpysOc+fO5Z577mHatGn07duX+fPnExgYyIIFC6rd/9133+WRRx5h0qRJdO3alenTpzNp0iSef/75eo+Zm5vLm2++ydy5c7nwwgtJTEzkrbfeYvXq1axdu9bFpy7Sgti7t33agF+Ic8eGdzOOKSuCvd8Yt4V2BG8/986xJTKZIDze2D68CgoywewNMf09Oq0W6cwO7pSNkLYFvHxh8G0em5aIiEhTigo2IkoytcikiIiISJNxqsBdUlLCxo0bmTBhQsUAZjMTJkxgzZo11R5TXFyMv79/ldsCAgJYtWpVvcfcuHEjpaWlVfbp3bs3nTp1qvFxRc4p+ZXyt00m5441myE2wdje8Ylx3TbebVNr8eyFWftrE9UHfAI8N5+W6swObvvikn2vgTYRHpmSiIhIU7N3cGdokUkRERGRJuNUgTs7OxuLxUJ0dHSV26Ojo0lPT6/2mIkTJzJ37lz279+P1Wpl2bJlfPLJJ6SlpdV7zPT0dHx9fQkLC6v34xYXF5OXl1flItJiuZq/bWfP4T7yP+Na+dsV7K+F/bVRPIlrKndwnz4J2z82vh52l+fmJCIi0sTsHdxZ6uAWERERaTKNHor6z3/+kx49etC7d298fX2ZOXMm06ZNw9zIeaxz5swhNDTUcYmLi2vUxxNpVJU7uF3hKNrajKu2KnA7OF6L8tdGC0y6xn6ioPA4rH8Dyk5DVD+IG+HZeYmIiDSh6PIO7vziMgpLyjw8GxEREZHWwakqc0REBF5eXmRkZFS5PSMjg5iY6gtvkZGRfPbZZxQUFHDkyBH27NlDUFAQXbt2rfeYMTExlJSUkJOTU+/HnT17Nrm5uY7L0aNHnXmqIs2Lo4O7oQXucurgrnDma6EObtf4BUNgeRTJ//5pXA+70/lIHRERkRYsyM+bAB8vQDncIiIiIk3FqQK3r68viYmJLF++3HGb1Wpl+fLljBo1qtZj/f396dChA2VlZXz88cdcffXV9R4zMTERHx+fKvvs3buX5OTkGh/Xz8+PkJCQKheRFsvewR3S3rXjwzpDQHjF1+rgrlD5tfDyg6i+nptLS2c/WVByCnyDYOAUz85HRESkiZlMJkcOd2a+CtwiIiIiTcHb2QNmzZrF7bffztChQxk+fDgvvvgiBQUFTJs2DYCpU6fSoUMH5syZA8C6detISUlh0KBBpKSk8OSTT2K1Wnn44YfrPWZoaCh33XUXs2bNIjw8nJCQEO6//35GjRrFyJEj3fE6iDRveQ2MKDGZjM7kpPKTROrgrhDaEcw+YC2FmP7g7evpGbVcbbvAsQ3G9sAbja5uERGRViY62J8jxwvJ1EKTIiIiIk3C6QL3lClTyMrK4vHHHyc9PZ1BgwaxdOlSxyKRycnJVfK1i4qKePTRRzl48CBBQUFMmjSJd999t8qCkXWNCfDCCy9gNpuZPHkyxcXFTJw4kVdeeaUBT12kBXFkcLu4yCQYC00mLTc6uf1D3TOvc4HZC8I6wYkk5W83VOUTJ0Pv9Nw8REREPCiyvIM7QxElIiIiIk3C6QI3wMyZM5k5c2a1961YsaLK1+PHj2fXrl0NGhOMiJN58+Yxb948p+Yq0uLZbA3P4AaIK/+0gyI4zhbVxyhwd9InQhokur9x3WkUxAzw7FxEREQ8JCrYHlGiDm4RERGRpuBSgVtEmlBRLpSdNrYb0sHd/SK47g3okOieeZ1LLvs79L4c+l7j6Zm0bL2vgMlvQvw4T89ERETEY6JD/AHIUge3iIiISJNQgVukubPHk/iHgU+A6+OYTEYuspwttCMMusXTs2j5zGYYcL2nZyEiIuJR9g7uDHVwi4iIiDQJc927iIhHuSN/W0RERESaRFSw0cGdqQ5uERERkSahArdIc+eO/G0RERERaRLRIfYMbhW4RURERJqCCtwizZ06uEVERERaDHsHd+7pUopKLR6ejYiIiMi5TwVukebO3sEdogK3iIiISHMXEuCNr7fx36wsdXGLiIiINDoVuEWau7xU41od3CIiIiLNnslkqhRTooUmRURERBqbCtwizZ0yuEVERERaFHtMSYYWmhQRERFpdCpwizR3jgK3OrhFREREWoKo4PIO7jx1cIuIiIg0NhW4RZozqxVOqcAtIiIi0pJEh5R3cCuDW0RERKTRqcAt0pwVZoO1DDBBUJSnZyMiIiIi9RDp6OBWgVtERESksanALdKc5acZ120iwcvHs3MRERERkXpxRJRokUkRERGRRqcCt0hzpgUmRURERFoce0SJOrhFREREGp8K3CLNmb2DO6S9Z+chIiIiImC1QF4aZO+vdbeoEHVwi4iIiDQVFbhFmjN1cIuIiIg0H3kpMLc3vDqm1t2igo0O7pOFpRSXWZpiZiIiIiKtlgrcIs1ZXqpxHRzr2XmIiIiICPiHGdeWYiituTu7baAPPl4mALLyFVMiIiIi0phU4BZpztTBLSIiItJ8+AaBqfy/UEW5Ne5mMpkcXdyZKnCLiIiINCoVuEWaM3sGtzq4RURERDzPbAa/EGO7lgI3VMrh1kKTIiIiIo1KBW6R5szRwa0Ct4iIiEiz4B9qXNdV4A7WQpMiIiIiTUEFbpHmylIKBVnGtgrcIiIiIs1DvQvc5REl6uAWERERaVQqcIs0V6cyABuYvSGwnadnIyIiIiJQqcCdU+tu0SHq4BYRERFpCipwizRX9niSoBgj71FEREREPK+eBW57B3eGOrhFREREGpWqZiLNlX2ByRDFk4iIiIg0GwFhxnUdESWRjg5uFbhFREREGpMK3CLNlWOByRjPzkNEREREKviHGdd1FLijyzu4sxRRIiIiItKoVOAWaa7yUo1rLTApIiIi0nzUd5HJ8g7u7FMllFqsjT0rERERkVZLBW6R5kod3CIiIiLNTz0L3OGBvnibTQBkn1JMiYiIiEhjUYFbpLmyZ3Crg1tERESaiXnz5hEfH4+/vz8jRoxg/fr1Ne67cOFCTCZTlYu/v3+Vfe64446z9rn00ksb+2k0jL3AfTqn1t3MZhORweU53FpoUkRERKTReHt6AiJSA0cHtwrcIiIi4nmLFy9m1qxZzJ8/nxEjRvDiiy8yceJE9u7dS1RUVLXHhISEsHfvXsfXJpPprH0uvfRS3nrrLcfXfn5+7p+8O9WzgxsgKtiPtNwiMvKUwy0iIiLSWNTBLdJcqYNbREREmpG5c+dyzz33MG3aNPr27cv8+fMJDAxkwYIFNR5jMpmIiYlxXKKjo8/ax8/Pr8o+bdu2bcyn0XBOFLgjyxeazMxXB7eIiIhIY1GBW6Q5Kj0NRTnGtjK4RURExMNKSkrYuHEjEyZMcNxmNpuZMGECa9asqfG4U6dO0blzZ+Li4rj66qvZuXPnWfusWLGCqKgoevXqxfTp0zl+/HijPAe38Q8zrutR4I4uX2hSBW4RERGRxqMCt0hzZO/e9g6o6BISERER8ZDs7GwsFstZHdjR0dGkp6dXe0yvXr1YsGABn3/+Oe+99x5Wq5XRo0dz7Ngxxz6XXnop77zzDsuXL+fvf/87K1eu5LLLLsNisVQ7ZnFxMXl5eVUuTa5yB7fNVuuuUfYObkWUiIiIiDQaZXCLNEf2/O2QWKgmq1JERESkuRs1ahSjRo1yfD169Gj69OnDa6+9xlNPPQXATTfd5Lh/wIABDBw4kG7durFixQouuuiis8acM2cOf/nLXxp/8rWxF7itpcan7nwDa9w1qryDWxncIiIiIo1HHdwizZHyt0VERKQZiYiIwMvLi4yMjCq3Z2RkEBNTvzg1Hx8fBg8ezIEDB2rcp2vXrkRERNS4z+zZs8nNzXVcjh49Wv8n4S6+bcDkZWzXEVPSMzoYgHWHTpBfVNrYMxMRERFplVTgFmmO8uwFbuVvi4iIiOf5+vqSmJjI8uXLHbdZrVaWL19epUu7NhaLhe3btxMbW/MJ/GPHjnH8+PEa9/Hz8yMkJKTKpcmZTJViSnJq3XVIpzB6RAVRWGLh080pjT83ERERkVZIBW6R5kgd3CIiItLMzJo1izfeeIO3336b3bt3M336dAoKCpg2bRoAU6dOZfbs2Y79//rXv/Ldd99x8OBBNm3axG233caRI0e4++67AWMByj/84Q+sXbuWw4cPs3z5cq6++mq6d+/OxIkTPfIc661yDnctTCYTt47oBMB7a49gqyOzW0REREScpwxukebInsGtDm4RERFpJqZMmUJWVhaPP/446enpDBo0iKVLlzoWnkxOTsZsruifOXnyJPfccw/p6em0bduWxMREVq9eTd++fQHw8vJi27ZtvP322+Tk5NC+fXsuueQSnnrqKfz8/DzyHOstIAxOUmeBG+C6xI78fele9mWcYsPhkwzvEt7o0xMRERFpTVTgFmmOHAVudXCLiIhI8zFz5kxmzpxZ7X0rVqyo8vULL7zACy+8UONYAQEBfPvtt+6cXtOpZwc3QIi/D1cPas8HG47y3tojKnCLiIiIuJkiSkSaI0WUiIiIiDRfThS4AW4b2RmAb3akkX2quLFmJSIiItIqqcAt0tzYbJUK3IooEREREWl26rnIpF3/DqEkxIVRarHx31+ONt68RERERFohFbhFmpviPCgtNLbVwS0iIiLS/DjZwQ04Fpt8f10yFqsWmxQRERFxFxW4RZobe/62fyj4Bnp2LiIiIiJyNnuB+3ROvQ+5cmB7Qvy9OXbyND/tz2qceYmIiIi0QipwizQ3yt8WERERad78w4xrJzq4A3y9uD4xDoBFa480wqREREREWicVuEWaG3sHt/K3RURERJonFwrcALeONGJKftiTSUrOaTdPSkRERKR1UoFbpLnJSzWu1cEtIiIi0jy5kMEN0C0yiNHd2mG1wX/WJTfCxERERERaHxW4RZobdXCLiIiING8uFrgBbhvZGYAPNhylpMzqzlmJiIiItEouFbjnzZtHfHw8/v7+jBgxgvXr19e6/4svvkivXr0ICAggLi6OBx98kKKiIsf98fHxmEymsy4zZsxw7HP++eefdf99993nyvRFmjdHBnd7z85DRERERKrXgAL3xX2jiQr2I/tUMd/tSnfzxERERERaH6cL3IsXL2bWrFk88cQTbNq0iYSEBCZOnEhmZma1+7///vv86U9/4oknnmD37t28+eabLF68mEceecSxz4YNG0hLS3Ncli1bBsANN9xQZax77rmnyn7PPvuss9MXaf7UwS0iIiLSvFUucNtsTh3q42XmpmHGYpPvabFJERERkQZzusA9d+5c7rnnHqZNm0bfvn2ZP38+gYGBLFiwoNr9V69ezZgxY7jllluIj4/nkksu4eabb67S9R0ZGUlMTIzj8tVXX9GtWzfGjx9fZazAwMAq+4WEhDg7fZHmz9HBrQxuERERkWbJXuC2WaDklNOH3zS8E2YTrD14ggOZ+W6enIiIiEjr4lSBu6SkhI0bNzJhwoSKAcxmJkyYwJo1a6o9ZvTo0WzcuNFR0D548CBLlixh0qRJNT7Ge++9x5133onJZKpy36JFi4iIiKB///7Mnj2bwsJCZ6Yv0vxZrergFhEREWnufALA7GNsuxBT0j4sgIv6RAPw3lotNikiIiLSEN7O7JydnY3FYiE6OrrK7dHR0ezZs6faY2655Rays7MZO3YsNpuNsrIy7rvvvioRJZV99tln5OTkcMcdd5w1TufOnWnfvj3btm3jj3/8I3v37uWTTz6pdpzi4mKKi4sdX+fl5TnxTEU85PQJsJYa2ypwi4iIiDRPJhMEhEFBllHgDu3o9BC3jezMsl0ZfLzpGA9f2otAX6f+ayYiIiIi5VxaZNIZK1as4JlnnuGVV15h06ZNfPLJJ3z99dc89dRT1e7/5ptvctlll9G+fdUF9u69914mTpzIgAEDuPXWW3nnnXf49NNPSUpKqnacOXPmEBoa6rjExcW5/bmJuJ09nqRNJHj5eHYuIiIiIlKzBiw0CTCuewSd2wWSX1TGl1tT3TgxERERkdbFqQJ3REQEXl5eZGRkVLk9IyODmJjqu00fe+wxfvWrX3H33XczYMAArr32Wp555hnmzJmD1Wqtsu+RI0f4/vvvufvuu+ucy4gRIwA4cOBAtffPnj2b3Nxcx+Xo0aP1eYoinqV4EhEREZGWoYEFbrPZxC3DOwGKKRERERFpCKcK3L6+viQmJrJ8+XLHbVarleXLlzNq1KhqjyksLMRsrvowXl5eANjOWHH8rbfeIioqissvv7zOuWzZsgWA2NjqF+Lz8/MjJCSkykWk2csr797RApMiIiIizVsDC9wANwyNw9fbzPaUXLYezXHPvERERERaGacjSmbNmsUbb7zB22+/ze7du5k+fToFBQVMmzYNgKlTpzJ79mzH/ldeeSWvvvoqH3zwAYcOHWLZsmU89thjXHnllY5CNxiF8rfeeovbb78db++q+XNJSUk89dRTbNy4kcOHD/PFF18wdepUzjvvPAYOHOjqcxdpfhwd3Cpwi4iIiDRr9gL36RyXhwhv48vlA4y/+95be8QNkxIRERFpfZxeyWTKlClkZWXx+OOPk56ezqBBg1i6dKlj4cnk5OQqHduPPvooJpOJRx99lJSUFCIjI7nyyiv529/+VmXc77//nuTkZO68886zHtPX15fvv/+eF198kYKCAuLi4pg8eTKPPvqos9MXad7sGdwqcIuIiIg0b27o4Aa4bWQnPt2cwpfbUnn08r6EBmodFhERERFnmGxn5oSco/Ly8ggNDSU3N1dxJdIwealQeLxxxl46Gw7/DFe8CEOnNc5jiIiInGP0d17r5dHv/bLH4X//hJEz4NJnXB7GZrNx2T9/Zk96Po9d0Ze7xnZx4yRFREREWiZn/s5zuoNbpFU7uh7evLjxH0cd3CIiIiLNm3+Ycd3ADm6TycRtIzvz6Gc7WLTuCHeOicdkMjV8fiIiIiKthArcIs7Yv8y49gkEv+DGeYzQOOg8unHGFhERERH3cESU5DR4qGsGd2DOkt0czCpgTdJxRnePaPCYIiIiIq2FCtwizkjdZFxf8hQMu9uzcxERERERz3FTBjdAkJ831w7pwHtrk3lv3REVuEVEREScYK57FxEBwGaD1M3GdvvBnp2LiIiIiHiWmyJK7G4d0RmA73ZmkJlX5JYxRURERFoDFbhF6iv3qLG4pNkHovt7ejYiIiIi4klujCgB6BMbQmLntpRZbdz8xlqWbE/DarW5ZWwRERGRc5kK3CL1lVIeTxLdD7z9PDsXEREREfEsN0aU2D0yqTdhgT4kZRXwm0WbuGreKlbszcRmU6FbREREpCYqcIvUl+JJRERERMTOUeDOA6vVLUMmdg7np4cv4LcX9aCNrxc7UvK4460NTHltLesPnXDLY4iIiIica1TgFqkv+wKTHYZ4dh4iIiIi4nn2Ajc2KMl327Ah/j7MurgnPz18AfeM64Kvt5n1h09w42truH3BerYfc1/HuIiIiMi5QAVukfqwWiF1q7GtDm4RERER8fEHb39j240xJXbtgvz48+V9WfmH87llRCe8zSZW7sviyn+t4jeLNnIg031FdREREZGWTAVukfo4cRCKc43/xET28fRsRERERKQ5aIQc7jPFhgbwzLUDWP778Vw7uAMmEyzZns4lL/zE7/+7lcPZBcroFhERkVbN29MTEGkR7PnbMQPBSz82IiIiIoJR4D6V0agFbrvO7drwwpRB3De+G89/t5fvdmXw8aZjfLzpGEF+3sSFB9IpPIBO4YF0Cg8s/zqQDm0D8PP2avT5iYiIiHiKKnUi9aH8bRERERE5k72D+3ROkz1kr5hgXp86lC1Hc3j+u738vD+bU8Vl7E7LY3da3ln7m0wQG+LvKHiP7t6OawZ1wGQyNdmcRURERBqTCtwi9WHv4Fb+toiIiIjYNUFESU0GxYXx7l0jKCq1cOxkIcknCkk+XkjyidMknyjk6AnjttOlFlJzi0jNLWLdoRN8uPEYP+zJ4u+TBxDoq/8OioiISMunv2hE6mK1QJoWmBQRERGRM/iHGdceKHA7puDjRfeoYLpHBZ91n81mI/tUiaPgvSstjwWrDvHl1lT2pefz2q8SiY9o44FZi4iIiLiPFpkUqUvWXigtBN8gaNfD07MRERERkebCgx3c9WEymYgM9iOxc1uuGdyBRyb14f17RhIR5MfejHyu/NcqftiT4elpioiIiDSICtwidbHHk8QOArN+ZERERESkXDMvcFdneJdwvv7tWIZ0CiO/qIw7F/7Ci9/vw2q1eXpqIiIiIi5RtU6kLo4FJhVPIiIiIiKVtMACN0B0iD8f3DuKX43sDMCL3+/n7nd+Ibew1MMzExEREXGeCtwiddECkyIiIiJSnRZa4Abw9Tbz1DX9ee76gfh6m/lhTyZXzVvF7rQ8T09NRERExCkqcIvUpqwE0rcb2+2HeHYuIiIiItK8OArcOR6dRkPcMDSOT6aPpkNYAEeOF3LdK6v5fEuKp6clIiIiUm8qcIvUJnMXWEogoC20jff0bERERESkOWnBHdyV9e8Qylf3j2VcjwhOl1p44IMtPPXVLkotVk9PTURERKRO3p6egEizZs/fbj8YTCbPzkVEREREmpeAMOO6hRe4Adq28WXhtOE8/91eXlmRxJurDrE9JZd7xnXldKmFohILhSVlnC61crqkjMISC6dLLZwusTi2rTYbE/pEc8PQjgT66r+aIiIi0jT0V4dIbZS/LSIiIiI18Q8zrs+BAjeAl9nEw5f2ZmDHMB76cCvrD51g/aETTo3x8/5sXvh+H78a2Zmpo+KJDPZrpNmKiIiIGFTgFqmNCtwiIiIiUhN7RElxHlgtYPby7Hzc5NL+MXSPCuJvX+/iREEJAb5eBPp6E+DjRYCvFwE+XgT6Vt329/Ei93Qp76w5QvKJQl7+4QCv/XSQyUM6cve4LnSLDPL00xIREZFzlArcIjUpPQ0Zu4xtLTApIiIiImfyC6nYLs4z1m05R3SPCuKtacOdPm7amC58uzOd1346yNajOfxnfTIfbEhmQp9ofn1eV4bGhzfCbM+WW1hKXlGpowjv7+OFl1mRgyIiIuciFbhFapK+A2wWaBMFIe09PRsRERERaW68fcEnEEoL4XTOOVXgdpWX2cSkAbFc1j+GDYdP8vpPSXy/O5NluzJYtiuDIZ3CuPe8blzcN7pRCs4HMk/x6ookPt+SQpnVVuU+Xy8z/j5mAso7zu2Fb38fM0F+3oztHsE1gzsQFujr9nmJiIhI41GBW6Qm9gUmOwzRApMiIiIiUj3/UKPAfY7kcLuLyWRieJdwhncJ50BmPv/++RCfbEphU3IO9723kS4RbbhzTDxXDGxP2zYNLyjvSMnllRUH+GZHOrbyuraft5niMqtjnxKLlRKLlbyismrH+H53Js98s4dJ/WOYMqwTI7uGY9L/A0RERJo9FbhFaqL8bREREZEq5s2bx3PPPUd6ejoJCQm8/PLLDB9efYzFwoULmTZtWpXb/Pz8KCoqcnxts9l44okneOONN8jJyWHMmDG8+uqr9OjRo1Gfh1v5h0J+mgrctegeFcz/TR7IrEt68s7qI7y79giHsgt47POdPPnlLkZ3a8ekAbFc0jeadkHOLUq54fAJ5v14gBV7sxy3XdI3mt9c0J1BcWFYrTZKLFZOl1g4XWpcisovp0usxnWphfTcIj7edIw96fl8tiWVz7akEt8ukCnDOjE5sQNRwf7ufllERETETVTgFqlJSnkHt/K3RURERFi8eDGzZs1i/vz5jBgxghdffJGJEyeyd+9eoqKiqj0mJCSEvXv3Or4+sxv22Wef5aWXXuLtt9+mS5cuPPbYY0ycOJFdu3bh799CCor+Yca1Ctx1igr256GJvZh+fjf++8tR/vvLMXan5fHz/mx+3p/Nnz/dzsiu7bhsQCyX9oshMrj6YrfNZuOn/dnM+/EA6w+dAMBsgqsS2jP9/O70igl27Gs2m/A3G1EkdQXI3D2uC9uO5fLBhqN8sSWFw8cL+fvSPTz/3V4u6hPFTcM6cV7PSGV5i4iINDMmm81mq3u3li8vL4/Q0FByc3MJCQmp+wBp3YrzYU4cYIOHDkBQpKdnJCIiIjXQ33lNY8SIEQwbNox//etfAFitVuLi4rj//vv505/+dNb+Cxcu5He/+x05OTnVjmez2Wjfvj2///3veeihhwDIzc0lOjqahQsXctNNN9U5p2bxvV90I+z/Fq76Fwz5lWfm0IIdyi7gmx1pLNmexo6UPMftJhMMjw9n0oBYLu0fQ3SIP1arje92pTPvxyS2pxgnFHy9zExO7Mh947vSuV0bt82roLiMr7el8cGGZDYl5zhujw3154ahcdw4tCMd2wa67fFERESkKmf+zlMHt0h10rYCNgiNU3FbREREWr2SkhI2btzI7NmzHbeZzWYmTJjAmjVrajzu1KlTdO7cGavVypAhQ3jmmWfo168fAIcOHSI9PZ0JEyY49g8NDWXEiBGsWbOm2gJ3cXExxcXFjq/z8vLO2qfJ+Yca1+rgdkmXiDb85vzu/Ob87iQfLzSK3TvS2Xo0h3WHTrDu0Ame/HInQzu35WRhKQcyTwEQ4OPFLSM6cc+4rsSEur/bv42fNzcOi+PGYXHsTc9n8YajfLL5GGm5Rby0fD//+mE/95zXlQcn9MTfx8vtjy8iIiL1pwK3SHUc+duDPDoNERERkeYgOzsbi8VCdHR0ldujo6PZs2dPtcf06tWLBQsWMHDgQHJzc/nHP/7B6NGj2blzJx07diQ9Pd0xxplj2u8705w5c/jLX/7ihmfkRipwu02ndoH8enw3fj2+G8dOFrJ0RzpLtqexKTmHDYdPAhDs780do+O5Y3S803ndruoVE8zjV/bl4Ut78d2uDP6zLpk1B4/z2sqD/LA7k+dvTGBgx7AmmYuIiIicTQVukepogUkRERGRBhk1ahSjRo1yfD169Gj69OnDa6+9xlNPPeXSmLNnz2bWrFmOr/Py8oiLi2vwXBvEUeDO8eg0zjUd2wZy97iu3D2uK2m5p/luZwYmE1wzuAMh/j4emZO/jxdXJbTnqoT2fLcznUc+3c7+zFNc+8pqfnN+N+6/sAe+3maPzE1ERKQ107++ItXRApMiIiIiDhEREXh5eZGRkVHl9oyMDGJiYuo1ho+PD4MHD+bAgQMAjuOcGdPPz4+QkJAqF49TB3ejiw0N4PbR8UwdFe+x4vaZLukXw3cPjueKgbFYrDZe/uEAV8/7H7tSGxabY7PZOJB5iqSsU1itrWK5LBERkQZTgVvkTKdPwslDxrYiSkRERETw9fUlMTGR5cuXO26zWq0sX768Spd2bSwWC9u3byc2NhaALl26EBMTU2XMvLw81q1bV+8xmwUVuFut8Da+/OuWIcy7ZQhtA33YnZbHVf9axUvL91NqsTo11uHsAl5avp+LX/iJCXNXctHzKxn81DJuX7CeF7/fx4q9meQUljTSMxEREWnZFFEiciZ7PEl4Vwho69m5iIiIiDQTs2bN4vbbb2fo0KEMHz6cF198kYKCAqZNmwbA1KlT6dChA3PmzAHgr3/9KyNHjqR79+7k5OTw3HPPceTIEe6++24ATCYTv/vd73j66afp0aMHXbp04bHHHqN9+/Zcc801nnqazgsIM65V4G61Lh8Yy/Au4fz50+18tyuDucv2sWxXBs/fmEDP6OAaj8vIK+LLral8uTWVrccq3j++3mZMQO7pUlbuy2LlvizHfV0j2zA4ri2DOoUxOC6M3jHBeHupb01ERFo3FbhFzqT8bREREZGzTJkyhaysLB5//HHS09MZNGgQS5cudSwSmZycjNlcUWg7efIk99xzD+np6bRt25bExERWr15N3759Hfs8/PDDFBQUcO+995KTk8PYsWNZunQp/v7+Tf78XKYObgEig/147VeJfL4llcc/38H2lFyueGkVsy7pyT3juuJlNgGQW1jKNzvS+HxLKmsPHcdWnkJiNsGY7hFcPagDl/SLxt/biz3peWxOzmHL0Rw2J5/k8PFCDmYVcDCrgI83HQMgwMeLAR1DGRbflpFd25HYuS2BvvpvvoiItC4mm83WKoK98vLyCA0NJTc3t3lk9Unz9cGtsOcruORvMHqmp2cjIiIiddDfea1Xs/jep26G18+HkA4wa5dn5iDNSkZeEX/6eBs/7jU6r4d0CuOmYZ34blcGK/dlUmqp+C94Yue2XJXQnkkDYokM9qt13BMFJWw5etJR9N6SnEN+cVmVfbzNJgZ2DGVk13aOgncbPxW8RUSk5XHm7zz9SydyptQtxrU6uEVERESkLurgljNEh/iz4I5hfLjxGE99uYtNyTlsSs5x3N87JpirB3XgioGxxIUH1nvc8Da+XNg7mgt7G5+asFptJGWdYlPySdYdPMHag8dJzS1yPN4rK5LwNpsYUF7wHtElnKHx4QSp4C0iIucY/csmUtmpTMg7BpggdqCnZyMiIiIizZ1/mHFdcgospeDl49HpSPNgMpm4cWgcY7pH8PRXuzh8vJCLekdx1aD2teZyO8NsNtEjOpge0cFMGdYJm83GsZOnWXPwOGsPHmfdwROk5Jxmc3IOm5NzeHVFEl7lHd63DO/E1YM64Out/G4REWn5VOAWqcyevx3ZC/zc84eniIiIiJzD/Cp9ZLYoD9q089xcpNnpEBbAq7clNsljmUwm4sIDiQsP5MahcQAcPVFoFLsPGR3ex05WFLznLtvHXWO7cNPwTurqFhGRFk3/iolUpgUmRURERMQZXt7gG2R0cBflqMAtzYq94H1DecH72MlCvtyaxoL/HSItt4inv97NS8v3M3VUPHeMiSciqPYccFfZbDbyi8vIzCsiPbeYjLwiMvKLOFlQwpUJ7RnYMaxRHrelslhtnCouIzSg5X0i5NjJQlbszeL6xI74+3h5ejoi0kqowC1SWcom47r9EM/OQ0RERERaDv+w8gK3crileevYNpDp53dj2ph4Pt2cwus/HeRQdgH/+vEAb/x8kBuGduTecd3o1K7+2eBgFGSPHC9gb3o+x06eLi9gG4XszLwiMvKKOV1qqfbYr7el8cND56sYWsnDH23ji60pLJw2nDHdIzw9nXqz2WxMf28T21Ny2ZGSy/9NVuyniDQNFbhF7Gw2dXCLiIiIiPP8Q411XFTglhbC38eLm4d34sahcXy3M535K5PYeiyX99Ym8/66ZCYNiOW+8d3o3yH0rGOPnypmT3q+cUnLY29GPvsy8ikqtdb5uCH+3kSH+BMT6k9UsD8/7c8iNbeI99clc+fYLo3xVFucPel5fLzpGACPfbaDpb87r8VkpS/dkc72FOP34AcbjnJez0gmDYj18KyktduUfBKL1caw+HBPT0UakQrcInZ5KVCQCWZviOnv6dmIiIiISEvhX14EVIFbWhgvs4nLBsRyaf8Y1hw8zmsrD7JyXxZfbUvjq21pjOsRwcR+MRzOLnAUtbNPFVc7lr+PmZ7RwcS3a1NewPYjOsS//OJHVLA/Ab5Vu7TfX5fMI59uZ96PB7hxWJyywIF//XDAsX0wu4AF/zvEfeO7eXBG9WOx2nh+2T4AOrcL5MjxQv708TYS4sLoEBbg4dlJa1RSZuXvS/fw5qpDAHw8fRSJnVXkPlfpXw8RO3v3dlQf8NE/wCIiIiJST44Cd45HpyHiKpPJxOhuEYzuFsGu1Dxe+ymJr7al8fP+bH7en33GvtA5PJBeMcH0jgmhd0wwvWND6BQeiJfZ5NTj3jC0I6//lMTh44W8teoQ91/Uw51Pq8U5kHmKr7enAXD32C78e9UhXlq+n2sGdSAm1N/Ds6vdZ5tTOJB5itAAHz77zRimLdzAlqM5/O6DzfznnpF4e7WMLnQ5Nxw9UcjM9zex9VjFiec/f7qDr+4fq/fiOcql7+q8efOIj4/H39+fESNGsH79+lr3f/HFF+nVqxcBAQHExcXx4IMPUlRU5Lj/ySefxGQyVbn07t27yhhFRUXMmDGDdu3aERQUxOTJk8nIyHBl+iLVU/62iIiIiLhCHdxyDunbPoR/3jSYFQ+dzx2j4xnXI4I7Rsfzf9cN4LMZY9j5l4ms+MMFvParoTx4cU8uGxBLl4g2The3AXy8zDx4cU8AXv/pICcLStz9dOql1GLlmSW7+dvXuygpqztqpbHM+/EANhtc3DeaRyb1YUinMApLLDyzZLfH5lQfJWVWXvje6N6efn432rbx5aWbBhPk582Gwyf5148H6hhBxH2W7khj0ks/s/VYLqEBPvzjhgTCAn3Yk57PwtWHPT09aSROF7gXL17MrFmzeOKJJ9i0aRMJCQlMnDiRzMzMavd///33+dOf/sQTTzzB7t27efPNN1m8eDGPPPJIlf369etHWlqa47Jq1aoq9z/44IN8+eWXfPjhh6xcuZLU1FSuu+46Z6cvUjPlb4uIiIiIK1TglnNQXHggT17Vj3fvGsGTV/XjpuGdGBQXRqCvez8IfuXA9vSOCSa/uIz5PyW5dez6KLNY+d3iLbz+00He+PkQD3ywmVJL0xe5D2cX8PmWFAB+e2EPzGYTf726PyYTfLE1lbUHjzf5nOpr8YZkjp08TWSwH7ePigegU7tAnr7GiP58afl+Nhw+4cEZSmtQVGrhic93cN97m8gvKmNIpzCWPDCO6xM78qdLjSbaucv2kZpz2sMzlcbgdIF77ty53HPPPUybNo2+ffsyf/58AgMDWbBgQbX7r169mjFjxnDLLbcQHx/PJZdcws0333xW17e3tzcxMTGOS0RExUrBubm5vPnmm8ydO5cLL7yQxMRE3nrrLVavXs3atWudfQoiZ9MCkyIiIiLiKhW4RVxmNpv4w8ReACz832Ey8orqOMJ9rFYbD3+8ja+3peHjZcLXy8w3O9J5cPEWypq4yP3KigNYbXBBr0gGdDR+p/TvEMotwzsB8MTnO5t8TvVxusTCy+W54fdf2L1Kzvo1gztw3eAOWG3wuw+2kFtY6qlpyjnucHYBk19dzdtrjgDw6/FdWfzrUY789xuHxpHYuS2FJRb++uUuT05VGolTBe6SkhI2btzIhAkTKgYwm5kwYQJr1qyp9pjRo0ezceNGR0H74MGDLFmyhEmTJlXZb//+/bRv356uXbty6623kpyc7Lhv48aNlJaWVnnc3r1706lTpxofV8QpJw8ZmYlefhDV19OzEREREZGWJCDMuFaBW8QlF/aOYkinMIrLrLz8w/4meUybzcajn+/gk00peJlNvHzzEF69bQg+Xia+2pbGQx9uxWK1Nclcjp4o5JNNRvf2mTnkD13Si7BAH/Zm5PPu2iNNMh9nvLPmMJn5xXQIC+CmYZ3Ouv+v1/Snc7tAUnJO88in27HZmuY1bW5sNht5RaVYm+g91Zp8sTWVK15exc7UPMLb+PLWtGHMvqwPPpWyts1mE09f0x8vs4mlO9P5YY8ij881Tn22KDs7G4vFQnR0dJXbo6Oj2bNnT7XH3HLLLWRnZzN27FhsNhtlZWXcd999VSJKRowYwcKFC+nVqxdpaWn85S9/Ydy4cezYsYPg4GDS09Px9fUlLCzsrMdNT0+v9nGLi4spLq5Y3TkvL8+Zpyqtjb17O6Y/ePt6di4iIiIi0rKog1ukQUwmEw9f2pubXl/LB+uPcs+4rnRu16bRHs9ms/HXr3bx/rpkTCZ4YcogLu0fA8C/bhnCjEWb+GxLKt5eZp6dPBCzC/niznh1ZRJlVhvjekQwpFPbKve1bePLHyb24s+f7mDud/u4YmB7IoP9GnU+9ZVfVMqrK41Ymd9N6IGv99k9lEF+3rx002Amv7qar7encd4vEUypphDeEp0usbA7PY+TBSWcKCghp7CUE4Ul5BQaX58sKOVkYQknC437yqw2EjqG8tmMMZhMjfueag2KSi385ctd/Ge90SA7PD6cl24eXOOCrH1iQ7hrbBde/+kgj3++k1FdI6p84qC1sVpt7M3Ip3tUUJWTAS1Voz+DFStW8Mwzz/DKK6+wadMmPvnkE77++mueeuopxz6XXXYZN9xwAwMHDmTixIksWbKEnJwc/vvf/7r8uHPmzCE0NNRxiYuLc8fTkXOVFpgUEREREVepwC3SYCO7tmNcjwjKrDZe/L7xurhtNhvPfbuXt/53GIBnJw/kqoT2jvsn9ovhpZsH42U28dHGYzzy6fZG7bpNzTnNh78cBeD+C3tUu89NwzoxoEMo+cVlPLu0+uZCT/j3z4fIKSyla2Qbrh3cocb9EuLC+P0lRgzNk1/sIinrVFNNsdGUWqxcP381172ymrve/oU/fLSNvy3ZzasrkvjP+qN8uzOD9YdPsD/zFNmnSigrfw9tPZbLpuQcz07+HHAg8xTXzPsf/1lvnKS6/8LuvH/PiBqL23YPXNSD9qH+HDt5mn/92DSfFmlujp8q5tUVSYz/x49c9s+fuevtX5rs0yqNyakO7oiICLy8vMjIqNrKn5GRQUxMTLXHPPbYY/zqV7/i7rvvBmDAgAEUFBRw77338uc//xmz+ewae1hYGD179uTAASPHKSYmhpKSEnJycqp0cdf2uLNnz2bWrFmOr/Py8lTklpqlbjGulb8tIiIiIs6yF7hP53h0GiIt3cMTe/Pz/lV8tiWF+8Z3o1dMsNsf4+UfDvDKCqPr+Klr+nPD0LPrBJMGxFJmtfG7DzbzwYajeHuZeOrq/o3SdfvayiRKLTZGdg1neJfwavfxMpv4y9X9uO6V1Xy48Rg3j+h0Vqd3UztRUMKbqw4B8PuLe+FdRwfor8/rys/7s1iddJzf/mczn/xmNH7eLbd79s1Vh9iZmkeAjxc9ooNoG+hLeBtfwgJ9CA/0JayNL+GBvrQN9KFtG1/aBvrytyW7+XJrKl9uTSWxs2e/fy3ZtzuNnPzCEgsRQb68MGUQ43pE1uvYNn7ePHFVP3797kZe/+kg1w7uQPco9/+eaW5sNhsbDp9k0bojfLM9nZJKef4/7cviuW/38qfLentwhg3nVAe3r68viYmJLF++3HGb1Wpl+fLljBo1qtpjCgsLzypie3kZv8Rqyl46deoUSUlJxMbGApCYmIiPj0+Vx927dy/Jyck1Pq6fnx8hISFVLiLVslogbYux3UEd3CIiIiLiJHVwi7jFgI6hTBoQg80G//hur9vHf/2nJOYu2wfAo5f34VcjO9e471UJ7fnHDQmYTPDe2mT+8uUut+dHZ+YV8Z8NRvf2b2vo3rYb0qktNyR2BIwFJz3dcTl/ZRKnisvoGxvCZf2rbzyszGw28cKUQbQN9GFnah7PLXX/97epHD1RyIvfG++jp67pzxczx/L2ncN5YcognriyH/df1INfjezM5QNjGd09gj6xIcSE+nPNIOOTAku2p3n8+9dSbT+Wy2//s5nCEguju7VjyW/H1bu4bXdJ32gu6h1FqcXGnz/dcU7nwucXlfLOmsNc+uLP3PjaGj7fkkqJxUpCx1CenTyQf9yQABg/z19vS/PwbBvG6YiSWbNm8cYbb/D222+ze/dupk+fTkFBAdOmTQNg6tSpzJ4927H/lVdeyauvvsoHH3zAoUOHWLZsGY899hhXXnmlo9D90EMPsXLlSg4fPszq1au59tpr8fLy4uabbwYgNDSUu+66i1mzZvHjjz+yceNGpk2bxqhRoxg5cqQ7XgdpzY4fgJJT4NMGInp6ejYiIiIi0tKowC3iNrMu7onZBMt2ZbA5+aTbxn1nzWGeWWLEezx0SU/uHte1zmOuG9KRv183EICFqw/zzJLdbi2GvfbTQUrKrCR2bsuobu3q3P/hS3sT7O/N9pRcFpcXxj0hI6+It1cfBuAPE3vVO6M8OsSf5643Cmr/XnWIFXszG2uKjcZms/HY5zsoKrUysms4k4fUHM1ypnE9Ignx9yYzv5gNh0804izPTcdPFXPfexspLrNyUe8o3r1rBFEhtUeSVMdkMvHkVf3w9zGz7tAJxwKvja2o1MJrK5OY/t5GDmcXNOpj7UjJZfYn2xjxzHIe/3wnezPy8fcxM2VoHF/OHMvnM8dy47A4rk/syL3nGb8L//DRVvam5zfqvBqTUxElAFOmTCErK4vHH3+c9PR0Bg0axNKlSx0LTyYnJ1fp2H700UcxmUw8+uijpKSkEBkZyZVXXsnf/vY3xz7Hjh3j5ptv5vjx40RGRjJ27FjWrl1LZGTFWZgXXngBs9nM5MmTKS4uZuLEibzyyisNee4iBnv+dmwCmFvuR6RERERExEP8w4zrstNQVgzezWMBOJGWqHtUMJOHdOTDjcd47tu9vH9Pw5va/rvhKI9/vhOAmRd0Z2Yd3dKV3TgsjjKrjUc+3c4bPx/C28vMwxN7NTiuJPtUMYvWHQHgtxf1qNd4kcF+zLq4J3/5chfPfruHy/rH0LaNb4Pm4YqXf9hPcZmVoZ3bcn4v57pnJ/SNZuqozryz5ggPfbiVbx44r9ksmlkfS7ans2JvFr5eZv527QCn3ge+3mYu7R/Df385xpdbUxnZte6TGmIos1iZ+f5mUnJO0zWiDS/cNAivBiz+GhceyG8v6sGzS/fyzJLdXNQnirDAxvlZKrNY+WjjMV78fj/peUUAbDuWy4f3jaJ9WIDbHsdms/HVtjTeXHWILUdzHLd3jwrithGduHZIR0IDfM467uGJvdiZmsv/Dhzn1+/+wuczx1a7X3Nnsp3LvfiV5OXlERoaSm5uruJKpKolD8P612DkDLj0GU/PRkRERJykv/Nar2bzvbda4a/hgA0eOgBBzhV8RKSqYycLufAfKymxWFl09wjGdI9weazPt6Twu8VbsNngrrFdePTyPi4Vp99Zc9hRJP/thd2ZVb5ooqv+75s9zF+ZRELHUD6bMabecyqzWLn8pVXszcjntpGdePqaAQ2ah7OSjxdy4fMrKLPa+ODekS4VaYtKLVz9r/+xNyOf8T0jeeuOYfXuAvekvKJSLnp+JVn5xTxwUQ8evNj5T4D/tC+LqQvWE97Gl/WPXFRndrkYnv5qF/9edYg2vl58NmMMPaIbnptdUmbl8pd+Zn/mKW4e3ok517n3Z8lms/HtznSe+3YvSVlGx3b7UH+8vcwknyika0Qb/nvfKCKCGn6Cx2az8fele5m/0lhfwMfLxKX9Y7l1RCdGdAmv8/fLiYISrnx5FSk5p7mgVyRv3t48fiad+TtPP0kiqZuNay0wKSIiIiKuMJvBr/w/XoopEWmwjm0DuWVEJwCe/Xavy7EgS3ekMeu/W7HZ4NYRnVwubgNMHRXP41f0BeClHw7w0vL9Lo0DcLKghHfWHAbq371t5+1l5i9X9wNg0bpkdqQ07e+cF5fvo8xqY1yPCJc7kP19vHj5lsH4eZtZuS+LBf875OZZNo7nlu4lK7+YrhFtmH5+N5fGGN2tHeFtfDlRUMLqpONunuG56fMtKfy7fEHT529McEtxG4yO+qev6Q/Af9Yns8mNkUhrko5z7Surue+9TSRlFRAW6MOjl/fhh4fO5z/3jqR9qD8Hswv41ZvryS0sbdBjWa02Hv98p6O4Pf38bqz+00W8fPNgRnZtV6/fL+FtfHntV4n4eZv5cW+WI2O+JXE6okSc8Nblnp6B1Ie9wK0FJkVERETEVf6hUJyrAreIm8y4oDv//eUoW4/m8N2uDCb2q3shQzuL1canm1OY/ck2LFYb1yd25Kmr+zc4VuTOsV0os1p5Zske5i7bx+lSCw9O6Imvt3O9gwv+d4jCEgv92odwYe8op+cxsms7rkpozxdbU3n88x18dN/oJum23J+Rz6ebjbzihxrYwd4zOphHr+jLY5/tYM43e0jPLeJ3F/ckyK95lqk2J5/kvfJImaev7Y+/j2vxpt5eZi7rH8Oidcl8tS2V83q65xM/32xP4/EvdtI9MohR3doxsms7BsWFOf3erE72qWJ2puYRHeJH75im/bTUztRc/vjxNgBmXNCNS/vHunX8EV3bMXlIRz7edIw/f7qDL2eOaVBX/a7UPP6+dA8r92UBEODjxV1ju3Dv+K6E+BuxHx3CAlh0z0humL+G3Wl5TFu4nnfvGkEbF977ZRYrD3+8jU82pWAywTPXDuDm4Z1cmnv/DqHMuW4As/67lZd+OED/DqFc4sTvXU9rnr85zhVHVnl6BlJfwe2hbRdPz0JEREREWir/UMgFitzXASbSmkUG+3HnmC7868cD/OPbvUzoE11n5u7pEgsfbjzKv38+RPKJQgCuGBjL3ycPdFsB+N7zulFqsfHct3t5dUUSP+zO5NnrB5IQF1av43NPl7Lwf4cBuP9C57q3K3tkUh++353BpuQcPt2cwuTEji6N44y5y/Zhs8HEftH1fr61uW1EJ3am5PLBhqP8e9UhvtqWxhNX9uXS/jENPhnhTqUWK7M/2Y7NBtcN6cDobq5H5gBcMbA9i9Yls3RHOk9fM6DBRWiL1cb/Ld1DVn4xWfnFrDlodIb7+5gZ2jm8vOAdzsCOYfjUUbw9fqqY7Sm57EjJZdsx4zo1t8hx//WJHfnTZb3dEqtRl5MFJfz63Y0UlVoZ3zOSWRc37KRKTR6Z1Jvvd2ewOy2PhasP12sB2jMdPVHI89/t5fOtqdhs4G02cdPwOH57YY9qF8LsEtGGd+8azpTX1rApOYdfv7uRf98+1KkTJ8VlFh74zxaW7kzHy2xi7o0JXD2o/oueVue6IR3ZnpLLW/87zKz/buWzGUF0jwpq0JhNRRncjWnnp03zONJwHRIhzLWzXCIiIuJZzSaHWZpcs/rev3W50eBy/QLoP9mzcxE5R+SeLuW8Z38k93Qpc29M4Loh1Rdxs08V887qw7y79ggnyz/uHxbowx2j45lxQfc6i3qu+GJrKk9+sZMTBSWYTUa+96yLexHgW3uB6p/f7+eF7/fRKzqYbx4Y16DC+/yVSfzfN3uICPLjh4fGOzpEq1NYUsbxUyWcKCjhZGEJHdsG0C0yqN6F5G3HcrjqX//DZIJvf3cePd0UEwHw495Mnvh8p+OkxPiekfz16n50btfGbY/REK//lMQzS/YQFujD8lnjadfA4q7FamPknOVk5Rfz5u1DuahPdIPG+3ZnOr9+dyOhAT48dElP1h46wdqk4xwvKKmyX6CvF0PjwxnV1Sh4x4UHsis1j+0puWw/lsv2lFxSck5X+xidwgMd358Qf2/+cGlvbhneqUELPdbGYrVxx1vr+Xl/Np3CA/ly5lhCAxtv4cP/rE9m9ifbaePrxfe/H09saO2LP9psNtLzitidlseKvVn8Z30ypRajvHrFwFgeuqQX8RF1v383JZ/ktn+vo7DEwiV9o3nl1iH16iA/XWLh1+9t5Kd9xoKn824dwsV9G/Y+siu1WLnt3+tYd+gEXSPb8PmMMQTX8rulMTnzd54K3CIiIiLSounvvNarWX3v/3ML7P0arngBht7p2bmInENeXZHE35fuIS48gOWzzq/S7Xoou4A3fj7IxxuPUVxmBYxC3N3junB9YkcCfRv3Q+snCkr465c7+WxLKgCd2wUy57oBNXb45heVMvbvRsH+5ZsHc2VC+wY9fkmZlUtf/ImD2QVMGhDDgA5hHD9VzImCEo4XGMVsY7uYolLrWcd3CAvg/F6RnN8ritHd2tUakTB1wXp+2pfFtYM78MKUQQ2ad3WKSi288uMB5q88SInFip+3mRkXdOfX47vi5+1cHIjNZmN/5im+2Z7O6qRsLusfw+2j413qCj92spCL5/7E6VILz14/kBuHxjk9RnWe/GInC1cfdsvrecP81Ww4fJIZF3TjDxN7AxWvwZqk46w9aFxO1jPruWtEG/p3CGVAh1AGdAylX/sQgv192JR8ksc+28HO1DwABnYM5elr+jOwY1iD5l8d+yKsAT5efDpjdKNHo1itNq6fv5pNyTlc1j+GV29LdNxXVGphf8YpdqfnsTvNuOxJzyfnjNdzXI8IHp7YmwEdQ5167NUHsrlj4QZKyqxcO7gDz9+QUOuJr/yiUu5a+AvrD58gwMeLN6YOZWyPhn2q4ExZ+cVc9a9VpOUWcUnfaObfluiRRSdV4K5Gs/rjV0RERETcRn/ntV7N6nv/2W9gyyKY8CSMfdCzcxE5h5wusXDecz+SlV/MU1f341ej4tl45CSv/5TEd7sysFc0EjqGcu953bi0f0yjdZXW5Ic9Gfz50x2klUc53Dy8E7Mn9T6ro/qVFQd4duleukW24bsHx7tlnj/ty2LqgvX12tfX20y7Nr6EBvhwMLuAkrKKorevl5nhXcLLC96RVbq71x08zpTX1+JtNrH89+MbtbP6YNYpHvt8B/87YMRsdIlow1NX96+zgGez2diekss3O9L5dkc6B7MLqtx/fq9I/nFDglPRGjabjbve/oUf9mQyvEs4i+8d6bbolI1HTjD51TUE+Xnzy6MTXM703nI0h2vm/Q8fLxOr/ngh0dXEYYBRwN2bkc+apOOsOXicdQePk1dURny7QAZ0DGNAhxAGdAijX4eQWj8JUGax8t7aIzz/3T7yi8swmYwFXP9wSW+3dVh/tS2Vme8ba6X965bBXDGwYSeC6mt3Wh5XvLzK6B4fHc/xghL2pOVxMLsAi/Xs0qmX2US3yDb0jQ3hhqFxjOnuepH5+10Z3PfeRsqsNm4b2anGNQNOFpRw+1vr2XYsl2B/bxZOG0Zi53CXH7c2W4/mcMNraygps/L7i3ty/0U9GuVxaqMCdzWa1R+/IiIiIuI2+juv9WpW3/uls2HtK0Zxe8KTnp2LyDnm3TWHeezznUQE+dG5XSAbj1Rk3V/UO4p7z+vK8C7hHs1tzi8q5f++2cOidckARIf48bdrBjChPDagsKSMsX//kRMFJbwwJYFrB7svM3vejwf45fAJwtv40S7Il/A2xqWd49qP8CBf2vh6OV6jwpIy1h48zo97slixL5OjJ6pGU9i7uy/oFcX8lUn8cuQkt4zoxDPXDnDbvGtis9n4clsaT321i6z8YgCuTGjPo5f3qVLAtVhtbDxykqU70vl2Z3qVeA1fLzPjekTQIzqYBf87REmZlYggP56/MYHx9VzY8ZvtaUxftAkfLxPfPDCO7lHui2WxWm2Me/ZHUnJOM/+2IS4vnnj/fzbz5dZUrhvSgbk3Dqr3cRarjeIyi8ufcsjML+KZr3c7Pr3Qro0vsyf1YfKQDg36OdyTnse181ZzutTCr8d3ZfZlfVweyxV/+3oXb/x86Kzb2wb60Cc2hD6xIfSOCaZPbAg9ooOc/nRBbT7fksLvFm/BZoPp53fjj5f2rnJ/Zl4Rt725jn0Zpwhv48s7dw6nfwfnusWd9d8NR3n4422YTLDg9mFc4MKiuA2hAnc1mtUfvyIiIiLiNvo7r/VqVt/7Ff8HK+YY8SRXvODZuYicY0rKrFw0d4WjCOvrZeaawe25Z1xXergxC9od1h48zp8+3sbh40Ze8VUJ7Xniyr58simFvy3ZTXy7QL6fNb5eObtNxWazcTC7gBV7s1ixN5N1B09QYqkaaeLrbWblH86vM5vYnfKKSpn73T7eWXMYqw2C/Lz5/SU96RYZxNKd6Xy3M4PsU8WO/QN9vbigVxQT+8dwQa9IR27wnvQ8fvufzezLOAXA3WO78IdLe9VanMwvKmXC3JVk5BXz2wu7M+sS9y9w+MyS3bz+00EuHxjLvFuGOH18Ss5pznv2RyxWG0t+O46+7Zv+38E1Scd57PMdHMg0Xtth8W156pr+LkWK5BaWctW8VRw5Xsi4HhEsnDa8yT+NUVBcxmOf76DUYqNPrFHI7hsbQlSwX5OcQHt/XTKPfLodgIcv7cVvzu8OGFE5t/17HYePFxId4sd7d41ost99j362nffWJhPs782XM8fWK1vcXVTgrkaz+uNXRERERNxGf+e1Xs3qe7/2VVj6J2OByesXeHYuIuegVfuzeWbJbsb3imTa6HiiaohiaA6KSi288P0+3vjpIFab0f0JcLKw1K05zo2lsKSMNUnHWbE3ix/3ZnLs5Gl+e1EPZl3c0yPz2ZGSy58/28HWozln3Rfs783FfaK5tH8M5/WMrDHqo6jUwjNLdvPOmiMA9Gsfwks3D6ZbZFC1+9szsuPbBbL0d+e5HCFSG/vCnf4+ZjY+enGtGejVsXcbj+nejkV3j3T7/OqrpMzKgv8d4p/f7+d0qQUvs4lpo+O5dWRnYkP96/XaWaw27np7Ayv2ZtGxbQBfzhxL2za+TTD75se+qCnAU1f3Y0z3CG779zpSc4vo2DaA9+8eSad2gU02n5IyKze/sZaNR07SMzqIT38zxun3qqtU4K5Gs/rjV0RERETcRn/ntV7N6nu/5X34bDp0uwh+9Yln5yIizcK2Yzk8/NE29qTnA9CxbQA/PnQ+Ps2oe7suNpuN3NOlhAb4eDQCxmK18cGGZF5Yth+wcXHfGC7tH8Ooru2qLDxal2W7Mnj4o62cLCwlwMeLJ67sy5RhcVWe29ajOVzzyv+w2eC9u0a4fQE/O5vNxvn/WMGR44W8dPNgrnJi0dH8olJGz/mB/OIy3rqj6aMjqpOSc5qnvtzF0p3pVW5vG+hDbGgAsaH+xIT6Exvqf8bXAcz78QD/+vEA/j5mPp4+mn7tGzd6o7l7/ru9vPzDAQBCA3zIPV1Kt8g2LLp7JDGhTX9yLzOviCteXkVmfjE3D49jznUDm+Rxnfk7r2lK7iIiIiIiIucy//L/jBflenYeItJsDOwYxpf3j2X+iiT+n707j4uq3v84/pphB1kUBNwXRHFfUHFNTdwqy/KWlmV5y/aV22aLXqub3ep6/VWWLVZaVlbXdrWU0jR3zF1R3DcQVBZB1pnfHwdQEpWBYYbl/Xw85jGHM9/zPZ9hAMfP+cznu+DPozx3ddtqldwGMJlMBHg7v5LWxWxiXFQzxkU1w2q1ljvZPqRdCIsfvYKYLzfxR8JJnl6wld/3JDPt+k74e7uRX2Bh0oKtWK1wfddGlZbcBuN7e02nBsz8bS8/bj5mU4L7yw1HyMjJp1VwnTL3FK9sjQK8mHVbJL/Fn2D6L7vZcyKD7DwLp7PyOJ2Vx47j6Zed49+jO9X65DZAzJDWZGTn8/GqA6SdzaNdAz/m3tnTpkVS7SnYz5N3bu3Gv37ayYNXOn6xybJQgltERERERKSilOAWkVK4uZh5aHA4Dw2umkmh6qiileQhfp588vco3luxj9d/jmfh1kQ2HUplxtiubDmSyo7j6fh7ufHs1ZW/wOE1nRoy87e9LItPJj07D7/CvuGXkl9g4cOVxkKId/ZrgdnBfaovZ1CbYAa1CcZqtZJ+Np9jaWdJTMvmeFo2iWlnOZaWXfj1WY6nZZOVWwDA3Ve05LoujZwcfdVgMpmYfE07/LzcOHr6LJNHtsPf6/I/G5Upslk9/ndfH6d+kuNSlOAWERERERGpKM8A414JbhGRKs9sNnHvgDB6twzkkS/+5MDJLMa+t7p48c9JIyIcUi0bEepLq+A6JJw4w5LtSYyObHzZY37ensTR1LPU83Hn+q5VNyFsMpnw93bD39uNtg1Kby9htVpJz84n/Wwejes6bgHT6sBsNjmt7/3FVNXkNkD1+myMiIiIiIhIVaQKbhGRaqdzkwB+fLg/f4tsjMVqLKjXo3ldhy0EWtSmBODHLcfKdMwHK/cBcGuvZpWy+KUjmUwm/L3caFLPu0onT6XqU4JbRERERESkoooS3AU5kJft3FhERKTM6ni48vqNnXnrlq6M6tKQ6Td1cWjbj2s6Gb23V+xJ4XRm7iXHxh08zZ+HUnF3NXNbr2aOCE+kWlCCW0REREREpKLc64Cp8L9X2alODUVERGx3TaeGzBjblSb1vB163lbBdWjbwI98i5WftydecuwHK4zq7eu7NKK+r3MWHBSpipTgFhERERERqSizGTwKe4yqTYmIiNigqE3JD5doU3LoZFZxAvzO/i0cEpdIdaEEt4iIiIiIiD2oD7eIiJTDyMI2Jav3niQ5I6fUMR+t2o/FCgNa16d1iK8jwxOp8pTgFhERERERsQcluEVEpByaBnrTubE/Fiss3nb8gsfTzubx5frDANyl6m2RCyjBLSIiIiIiYg9eAca9EtwiImKjosUmf9h8YYL7i3WHyMwtoE2IL/1aBTk6NJEqTwluEREREREReyiu4E51ahgiIlL9XF3Yh3v9wVMkpmUX788rsPDxqgOA0XvbZDI5IzyRKk0JbhEREREREXtQixIRESmnhgFedG9WF6sVftp6rop74dbjHE/LJqiOB9d1aejECEWqLiW4RURERERE7MEzwLg/m+rMKEREpJq6prCK+4fNxwCwWq28v2IfALf3boaHq4vTYhOpypTgFhERERERsQdVcIuISAVc1akBZhNsOpzK4VNZrNt/im1H0/FwNTOuVzNnhydSZSnBLSIiIiIiYg9KcIuISAUE+3oS1SIQgB+3HOeDlfsBGB3ZmHo+7s4MTaRKU4JbRERERETKZObMmTRv3hxPT0+ioqJYt25dmY774osvMJlMjBo1qsT+O+64A5PJVOI2fPjwSojcQZTgFhGRChrZ2eiz/emagyzdmQTAnf1aODMkkSpPCW4REREREbms+fPnExMTw5QpU9i4cSOdO3dm2LBhnDhx4pLHHThwgMcff5z+/fuX+vjw4cM5fvx48e3zzz+vjPAdo6gHtxLcIiJSTsM7hOJiNnE09SxWKwyOCCasfh1nhyVSpSnBLSIiIiIilzV9+nQmTpzIhAkTaNeuHbNmzcLb25sPP/zwoscUFBQwbtw4pk6dSsuWLUsd4+HhQWhoaPGtbt26lfUUKp8quEVEpILq+bjTt1VQ8dd39lf1tsjlKMEtIiIiIiKXlJubS1xcHNHR0cX7zGYz0dHRrF69+qLHvfDCCwQHB3PnnXdedMyyZcsIDg6mTZs23HfffZw8efKiY3NyckhPTy9xq1KU4BYRETu4vqvRpqRDIz96twx0cjQiVZ+rswMQEREREZGqLSUlhYKCAkJCQkrsDwkJYdeuXaUes3LlSmbPns2mTZsuOu/w4cO54YYbaNGiBXv37uWZZ55hxIgRrF69GhcXlwvGT5s2jalTp1bouVSq4gR3KlitYDI5NRwREameRnVphKvZTGSzupj0b4nIZSnBLSIiIiIidpWRkcFtt93G+++/T1BQ0EXHjR07tni7Y8eOdOrUibCwMJYtW8bgwYMvGD9p0iRiYmKKv05PT6dJkyb2Db4iihLclnzIywJ3H+fGIyIi1ZLJZCpebFJELk8JbhERERERuaSgoCBcXFxISkoqsT8pKYnQ0NALxu/du5cDBw4wcuTI4n0WiwUAV1dX4uPjCQsLu+C4li1bEhQUREJCQqkJbg8PDzw8PCr6dCqPuw+YXMBaYLQpUYJbREREpNKpB7eIiIiIiFySu7s7kZGRxMbGFu+zWCzExsbSu3fvC8ZHRESwdetWNm3aVHy79tprGTRoEJs2bbpo1fWRI0c4efIkDRo0qLTnUqlMJvAKMLbVh1tERETEIVTBLSIiIiIilxUTE8Ptt99O9+7d6dmzJzNmzCAzM5MJEyYAMH78eBo1asS0adPw9PSkQ4cOJY4PCAgAKN5/5swZpk6dyujRowkNDWXv3r08+eSTtGrVimHDhjn0udmVpz9knVSCW0RERMRBlOAWEREREZHLGjNmDMnJyUyePJnExES6dOnC4sWLixeePHToEGZz2T8g6uLiwpYtW5gzZw6pqak0bNiQoUOH8uKLL1btNiSXU7zQpBLcIiIiIo5gslqtVmcH4Qjp6en4+/uTlpaGn5+fs8MRERERETvR+7zaq0q+9nOvg33L4Ib3odNNzo5GREREpFqy5X2eenCLiIiIiIjYS1EF99lUp4YhIiIiUlsowS0iIiIiImIvalEiIiIi4lBKcIuIiIiIiNhLcYI71alhiIiIiNQWSnCLiIiIiIjYi2eAca8KbhERERGHUIJbRERERETEXtSiRERERMShlOAWERERERGxF1Vwi4iIiDiUEtwiIiIiIiL2oh7cIiIiIg6lBLeIiIiIiIi9qEWJiIiIiEMpwS0iIiIiImIvSnCLiIiIOFS5EtwzZ86kefPmeHp6EhUVxbp16y45fsaMGbRp0wYvLy+aNGnCY489RnZ2dvHj06ZNo0ePHvj6+hIcHMyoUaOIj48vMcfAgQMxmUwlbvfee295whcREREREakc5ye4rVbnxiIiIiJSC9ic4J4/fz4xMTFMmTKFjRs30rlzZ4YNG8aJEydKHf/ZZ5/x9NNPM2XKFHbu3Mns2bOZP38+zzzzTPGY5cuX88ADD7BmzRqWLFlCXl4eQ4cOJTMzs8RcEydO5Pjx48W3V1991dbwRUREREREKo9XgHFvtUDuGaeGIiIiIlIbuNp6wPTp05k4cSITJkwAYNasWfz00098+OGHPP300xeMX7VqFX379uWWW24BoHnz5tx8882sXbu2eMzixYtLHPPxxx8THBxMXFwcV1xxRfF+b29vQkNDbQ1ZRERERETEMVw9wcUdCnKNKm4PX2dHJCIiIlKj2VTBnZubS1xcHNHR0ecmMJuJjo5m9erVpR7Tp08f4uLiituY7Nu3j4ULF3LVVVdd9DxpaUa/unr16pXYP2/ePIKCgujQoQOTJk0iKyvLlvBFREREREQql8mkPtwiIiIiDmRTBXdKSgoFBQWEhISU2B8SEsKuXbtKPeaWW24hJSWFfv36YbVayc/P59577y3RouR8FouFRx99lL59+9KhQ4cS8zRr1oyGDRuyZcsWnnrqKeLj41mwYEGp8+Tk5JCTk1P8dXp6ui1PVUREREREpHw8/SEzGc6mOjsSERERkRrP5hYltlq2bBkvv/wyb7/9NlFRUSQkJPDII4/w4osv8vzzz18w/oEHHmDbtm2sXLmyxP677767eLtjx440aNCAwYMHs3fvXsLCwi6YZ9q0aUydOtX+T0hERERERORSVMEtIiIi4jA2tSgJCgrCxcWFpKSkEvuTkpIu2hv7+eef57bbbuOuu+6iY8eOXH/99bz88stMmzYNi8VSYuyDDz7Ijz/+yG+//Ubjxo0vGUtUVBQACQkJpT4+adIk0tLSim+HDx8u69MUEREREREpPyW4RURERBzGpgS3u7s7kZGRxMbGFu+zWCzExsbSu3fvUo/JysrCbC55GhcXFwCsVmvx/YMPPsg333zDr7/+SosWLS4by6ZNmwBo0KBBqY97eHjg5+dX4iYiIiIiIlLplOAWERERcRibW5TExMRw++230717d3r27MmMGTPIzMxkwoQJAIwfP55GjRoxbdo0AEaOHMn06dPp2rVrcYuS559/npEjRxYnuh944AE+++wzvvvuO3x9fUlMTATA398fLy8v9u7dy2effcZVV11FYGAgW7Zs4bHHHuOKK66gU6dO9vpeiIiIiIiIVJxngHGvBLeIiIhIpbM5wT1mzBiSk5OZPHkyiYmJdOnShcWLFxcvPHno0KESFdvPPfccJpOJ5557jqNHj1K/fn1GjhzJv/71r+Ix77zzDgADBw4sca6PPvqIO+64A3d3d5YuXVqcTG/SpAmjR4/mueeeK89zFhGptaYt3MmGg6f5YHx36vq4OzscERGRmkkV3CIiIiIOY7IW9Qmp4dLT0/H39yctLU3tSkSkViqwWGk7eTG5+Rbu7NeC569p5+yQRETsQu/zaq8q+9qvmA6xU6HLrTBqprOjEREREal2bHmfZ1MPbhERqb6OnM4iN99Y3PeT1Qc5fCrLyRGJiIjUUMUV3KlODUNERESkNlCCW0SkltiTdKZ4O7fAwn9+iXdiNCIiIjWYWpSIiIiIOIwS3CIitcSeE0aCOyLUF4BvNx1j21H9x1tERMTuiheZTHVmFCIiIiK1ghLcIiK1REJhgvvqjg24tnNDAP69eJczQxIREamZVMEtIiIi4jBKcIuI1BIJJzIAaBVchyeGtcHNxcSKPSms2JPs5MhERERqGK8A414JbhEREZFK5+rsAERE7O3wqSz+u2Q3f+/Xgg6N/J0dTpVgtVqLK7jDQ+rQpJ43t/Zqxkd/HOCVRbvoGxaE2WxycpSXtnDrcVbvPcmTw9vg6+nm7HDkIj5ZfYD9KVncO6AlwX6ezg6n0uTmW5ixdDcN/D25rXdzZ4djk5Nncnjz1wT2Jp+5/OBCZpOJW3s1Y0i7kEqMTKQGKa7gTgeLBcyqKxIRERGpLEpwi0iN88w3W1mxJ4XDp7P46t4+zg6nSjielk1mbgGuZhPNAn0AeOjKcL7ecITtx9L5fvMxRnVt5OQoL85qtTL5u+2knMnheNpZ3rute5VPyNdGmw+n8vx32wH4asNhHh/Whlt7NcOlBr5WU3/Yzry1hwBwMZu5JaqpkyO6PIvFyhfrD/PvxbtIO5tn8/Hbj6UzsE193FyUqBO5LA+/wg0r5GacS3iLiIiIiN0pwS0iNcrKPSms2JMCwPoDp9mVmE5EqN9ljqr5ihaYbB7kU5ycqufjzr0Dw3jt53he/yWeER1D8XB1cWaYF3XwZBYpZ3IAWLrzBP9dupt/DG3j5KjkfFarlWmLdgLg4+5CRk4+U77fztdxR/jX9R3o1DjAuQHa0adrDhYntwEmf7eNVsF16NminhOjurQdx9J57tutbDyUCkDbBn5M6NMcN9eyXXx4eeEukjNy+GV7Eld3alCJkYrUEG6e4OoJ+dlwNlUJbhEREZFKpAS3iNQYFsu5BJu7i5ncAgufrT3EC9d1cHJkzrcnyei/HR5cp8T+v/dtwdzVBzhy+iyfrD7IXf1bOiO8y1p/4BQA/l5upJ3N481fE4gI9VOirQpZFp/Mmn2ncHc1s/jRK1i2O5lXF+9i69E0rpv5B7dGNePxYW3w96re7WXW7T/FP783qtSfGNaGHcfS+Wnrce77NI7vH+pHowAvJ0dY0pmcfP67ZDcfrzpAgcWKj7sLMUPbcHvvZrjaUIm9LzmTN39NYN7ag/q9EykrT384k60+3CIiIiKVTJ8xFZEa44ctx9h+LJ06Hq68dmMnABZsPEpmTr6TI3O+ol67f01we7m78Fh0awDe+i2hXG0LHCHu4GkAxvZswl39WgDw+Feb2X5MSYOqoMBi5ZVFuwC4o09zmtTz5rZezYj9xwBGdWmI1QqfrDnI4P8s57tNR7FarU6OuHyOnM7ivk/jyLdYuaZTA+4fGMZrN3aiXQM/TmbmcvfcDZzNLXB2mIBRUb9o63Gi/7Oc2Sv3U2CxclXHUGL/MZA7+7WwKbkNMLZnU8wmWLX3pE29u0VqteI+3Pq3SkRERKQyKcEtIjVCTn4Br/0cD8C9A1oyslNDmgd6cyYnnx82H3NydM63J8lISIX9JcEN8LfIxrQKrkNqVh6zlu91dGhlUlTB3aNZPZ4eEUH/8CDO5hVw99w4Tha2LhHnWbDxCPFJGfh5unL/wLDi/cG+nswY25XP7oqiZX0fUs7k8MgXm7h19tpqlyQ9m1v485aZS/uGfrz2t86YTCa83V15b3wk9Xzc2X4snSf/t8XpCfxDJ7OY8PF67pu3kcT0bJrW8+bjCT14e1wkof7lW/izUYAXV0YEA/D5ee1ZROQSlOAWERERcQgluEWkRvh0zSGOnD5LsK8Hf+/XArPZVLzo27xanoyxWq3FPbjDg30veNzVxcxTwyMA+HDlfo6nnXVofJdzKjOXvcmZAEQ2q4uri5m3bu5G80Bvjqae5f55G8krsDg5ytorO6+A6Ut2A/DAoFYEeLtfMKZPqyAWPdKfx4e2xsPVzB8JJxkxYwXTf4knO69qVDxfitVq5YmvN7PjeDqBPu68N747Xu7n+tU3ruvNO+O64Wo28cPmY7zjpAtFOfkFvBm7hyH/Xc6y+GTcXEw8fGUrfnnsCga2Ca7w/OOimgHw9cYj1eJ1E3E6zwDjXgluERERkUqlHtwiUu2lZ+fx1q97AHhsSGu83Y0/bX+LbMLrP+9m69E0Nh9OpXOTACdG6TwpZ3JJO5uH2QQt6/uUOia6bTA9mtdl/YHT/HfJbl79W2cHR3lxRe1JWgXXoa6PkTz193bj/fHduf7tVazdf4oXftjBi6NqZ691i8XKD1uOsT8ls8zHeLu7MLpbYwLreFT4/B+vOsDxtGwa+ntye5/mFx3n4erCg1eGc23nRkz+fhvL4pN549cEvt10jH+P7kTvsMAKx/JXx9POsnTnCa7p2KD4Z6c83l62lx+3HMfVbOKdWyNL7bMd1TKQf17bnue+3cZrP8cTEerLlREhFQnfJqv2pvDct9vYV3gxqE9YIC+O6kBY/Qs/tVFeV7SuT6MAL46mnuWnLccZHdnYbnOL1Eiq4BYRERFxCCW4RaTam7VsL6ez8gir78ON5yVc6vm4c1XHUL7ddIx5aw/W2gT3nhPGApNN6nnj6eZS6hiTycTTI9oy+p1VfB13hLv6t6R1yIXV3s6w4WBhe5LmdUvsDw/xZcaYLkz8ZAOfrDlI2wZ+xVX7tcl/lsQz8zfbK4YXbDzK/+7rg49H+d8KpGbl8vZvCQDEDG1z0Z+v8zUN9OajO3qweFsiU3/YwaFTWUz4eB1f39uHDo38yx3LX53OzGXMu2s4dCqL/y7ZzaQREfwtsjEmk8mmeWJ3JvH6L0b7o6nXtadni3oXHXtrr2bsOJ7OZ2sP8cjnm/jmgb60KqUtkD0lZ+Twr5928O0moxVTUB0Pnr+mLdd2bmjzc70cl8JPxrz2czzz1h5UglvkcooT3KlODUNERESkplOLEhGp1hLTsvnwj/0APDU84oKF027tZXyk/vvNx6rsAoqVLeFE6QtM/lVks7oMbx+KxQr/LlwwsCrYcMCo4I5sdmFiMbpdCP8YYiySOeX7bcW9umuLHzYfK05uX9+1Ebf2alqmW1AdD3YlZvD4V5uxWMrfL3rmbwmkZ+cTEerL9V0blfk4k8nEiI4NWPqPAVzRuj7ZeRYmzt1AcoZ9+qnnF1h48PONHDqVhclktLl54ustjHl3DbuTMso8T8KJDB75YhNWK9zaq2lxi45L+efI9vRsXo+MnHzunruh0v7uFFisfLLmIFf+ZxnfbjqGyUTxwp7XdWlk9+R2kRu7N8bVbGLjoVR2HEuvlHOI1Biq4BYRERFxCFVwi0i1NmPpbrLzLHRvVpch7S5sBxDZrC5tQnyJT8rgm41HuKNvCydE6VxFCe5WpfTf/qsnhrdhyc4kYnedYO2+k0S1tH/bCFtk5xWw9YiRGPhrBXeRBwa1YufxDH7aepx7P4nj+4f6ldpCoqbZfiyNJ77eDMA9V7Rk0lVty3zs9V0bc/N7a1i0LZG3fkvg4cHhNp//yOks5qw6CMBTIyJwMdueUK3j4cqbN3fl+rf/YF9yJvfPi2PeXb1wd63Y9feXF+7ij4STeLu78OU9vfkjIYUZS/ew7sAprvq/FdzZvwWPDA4vbmdUmrSsPCbOjeNMTj49W9Rj8jXty3Rud1czb9/ajeve+oN9KZk8/PmffHhHj3J9fy5m29E0nv1mK5sLfzc6NvLnpVEdHPIplWBfT4a1D+Wnrcf5bN1BXhrVsdLPKVJtKcEtIiIi4hCq4BaRamtPUgZfbjgMwKSrIkqtWDSZTIzrdW6xSau1/NWq1dWepKIE9+VbJYTVr8PYHk0AmLZol9O/X1uPppFbYCGojgdN63mXOsZkMvHajZ1o18CPk5m53PPJBs7m1uwF8FLO5HD33Diy8ywMaF2fJwsXCS2ryGZ1eamwZ/n0Jbv5eXuizTFM/2U3uQUWercMZGDr+jYfX8Tfy+in7uvhyvoDp5ny/fYK/dx9teFw8ac6pt/UmQ6N/LlnQBhL/zGAoe1CyLdYeXf5PoZM/50lO5JKnaPAYuWhL/5kf0omjQK8eGdcN5uS7kF1PHj3tkg83cws353Mqz/b5xMR6dl5/PP77Vz71ko2H0nD18OVqde259sH+jq0BVPR39RvNh7lTE6+w84rUu0owS0iIiLiEEpwi0i19e/F8VisMKx9SKntK4qM6toILzcX9pw4w7r9tauFBcCeMrYoKfJIdDje7i5sOpzKom22Jz7tqajlSI/mdS/ZcsHb3ZX3xkdSz8edbUfTefJ/W5yenK8sufkW7v90I0dTz9IiyIc3bu5arurgm3o04Y7CRSFj5m8iPrHsrTt2HEvnm01HgYtfXLJFWP06vHFzV0wm+HzdIT5de6hc82w8dJpnv9kGwCODwxneoUHxY40CvHhvfHc+GN+9eKHEiXM3cNecDRw5nVVinn8v3sXvu5PxdDPz3vjIci3G2aGRP68VLtb67vJ9fPvn0XI9JwCr1coPm48R/Z/lfLzqABYrjOzckNh/DOD2Ps3tWh1eFr1bBtIyyIfM3AK+21T+5yVS43kFGPdKcIuIiIhUKiW4RaRaWn/gFEt3JuFiNl22etXP043rujQEjCru2iQ1K5eUM0Zf47AyJriDfT25q39LAF77OZ68AkulxXc5ccX9t0tvT3K+xnW9eWdcN1zNJn7YfIxZy/dVdnhOMfWH7aw7cApfD1feH98dfy+3cs/17NVt6RMWSGZuARPnbiA1K7dMx72yeBdWK1zTqQGdGgeU+/znGxQRzJPDjN/lqd9vZ82+kzYdn5iWzT2fxJFbYGFY+xAeuUjbleh2ISyJuYL7BobhajaxdGcSQ6b/zqzle8krsPDNn0d473fjZ+f1GzvTvmH5F74c2bkh9w8MA+Cp/21hy5FUm+fYn5LJ+A/X8dDnf3IiI4cWQT58cmdP3ry5K8F+nuWOrSJMJlPxgq6frqmdn4wRKRNVcIuIiIg4hHpwi0i1Y7VaeXnhTgDG9GhCWP3LJ27HRTXji/WHWbTtOCln2hFUjorM6qio/3ZDf0/qeJT9T/7dV7Tks7UH2Z+SyYylu4lqUbZe3K5mE12b1sXL3aVc8Z7PYrGy4aCR4O7R/OIV+ueLahnIP69tz3PfbuPVn3fh6+l60dYmf2U2mejcxB9fz/InjCvbp2sOMm/tIUwm+L+bu5Sp7cyluLmYmXlLN66duZJDp7J48LM/+XhCjwsWaz3fHwkp/L47GVeziceHtqnQ+f/q3gEt2Xk8ne83H+P+eRv57oG+NCnD65edV8A9nxiLVLYJ8eU/N3XBfImqZm93V54aHsENXRvx7LfbWLf/FK8s2sXXcUc4dMqo5n5wUCuu6dSwws/p8aFtiE/MIHbXCe6eG8fLN3TA1Vy2+oINB08za/lecvMtuLuaeWBgK+4Z0BJPt4r/flXU3yIb8+rP8ew8ns6mw6l0bXr5i1AitY4S3CIiIiIOoQS3iFQ7P29P5M9DqXi5ufBoGRfH69jYn86N/dl8JI2v445w74CwSo6yaihqT9Iq5PILTJ6vjocrDw8OZ/J325n5215m/ra3zMde27khb9zc1abzlWZv8hnSzubh5eZCu4Z+ZT7u1l7N2HE8nc/WHuK5b7fZdM6ezesx/55eFW65URnW7jvJP7/fDsATw9pwZcSFi6qWR10fd94f350b3l7FyoQUXl64i8kj25U61mKx8soio5/0uKimNA/ysUsMRUwmE/8e3Yl9KWfYdjSdiXM3sOD+PpdcDNJqtfLMAmPBxQBvo593WS/mhIf4Mv/uXizYeJR/LdxZfEEoum0wMUNa2+U5mc0m/ju2C9fP/IO9yZn8/eMNNs/RPzyIF6/rYPfvd0UEeLtzTacGLNh4lHlrDynBLVIazwDj/myqM6MQERERqfGU4BaRaiWvwMKri+MBmNi/hU0f0R8X1YzNR7bw2dpD3N2/5SUrPGuKogUmy9p/+3w392zKxoOniS+c43IsFivxSRn8vD2RzJx8fGyoGC/N+sL2JF2aBOB2iYri0vxzZHtczabiOcpi74kzrDtwip+3JzG8Q6hN56tsR05ncf+8jeRbrFzTqQH32fkCTUSoH9Nv6sy9n27kwz/207aBLzd2b3LBuB+3Hmfr0TR83F14qIwXl2zl5e7Ce7d159q3VrIrMYPHv9rMzFu6XfSiw+yV+1nw51FczCZm3tKNpoFlq9gvYjKZGB3ZmMFtg/m/2D2knMnl5es72PXvg5+nGx/e0YN/fr+dxPScMh/n7e7ChL7Nubpjgyp50eXWXs1YsPEoP2w+xvNXt8Pfu+p++kHEKYoquHMzoCAfXPRfLxEREZHKoHdZIlKtzF9/mH0pmQT6uDPxipY2HXtN5wa8+NMODp3KYkVCCgNa16+kKKuOhOTCCu5yJLjdXMzMGFv2Smyr1cqg15dx4GQWv8WfqHB7hw0HjQUmuze3vTLU3dXMC9d1sOmY13+O563fEnj1511Etw2+ZJsOR8rKzefuuXGczMylfUM/Xvtb50pJdg7v0IBHBofzf7F7ePabbYQF16HbeVW5ufkWXv/ZuLh0z4CwSm3z0zDAi3dujeSW99ewcGsib/2aUGpCffnu5OJ2Rc9d3Za+rYLKfc4Ab3emjGxf7uMvp1mgDx9N6Flp8ztD1yYBtG3gx87j6Xy98Qh39mvh7JBEqhaP8z59lJMO3mVrtyUiIiIitqka/3sXESmDzJx8ZizdA8BDV7ayuVeyt7sro7s1BmDemoN2j68qSkjKAMpXwW0rk8nE8A4NAFi0LbHC820orL7uXsb+2xV1z4CW1PV2Y19yJvM3HHbIOS/HarXyxNdb2HE8nUAfd94b390u/c0v5pHB4QxrH0JugYV7P4kjKT27+LF5aw9y6FQW9X09uKt/5ScyezSvV3yR4j9LdvPL9pI/U/tTMnnos41YrHBjZGPu6NO80mOSkkwmE+MKF5uct/agFpsU+StXd3Ar/FSJ+nCLiIiIVBoluEWk2pi9cj8pZ3JoFujNLVHNyjXHLYXJmNhdJziedtae4VU5Z3LyOZZmJCgruhhhWY0obO3x264TZOcVlHueE+nZHDqVhckEXZsG2Cm6S/P1dOOhK40q4RlL95CVm++Q817K28v28tOW47iaTbxzaySNArwq9Xxms4n/3NSFNiG+nMjI4e5P4sjOKyAjO483f00A4NHo8Ev2xLanm3s2ZXxv43f9sfmb2F14wSYjO4+JczeQnp1P16YBvHR9hyrZwqM2GNW1ET7uLuxLzmTNvlPODkccYObMmTRv3hxPT0+ioqJYt25dmY774osvMJlMjBo1qsR+q9XK5MmTadCgAV5eXkRHR7Nnz55KiNxJivpwK8EtIiIiUmmU4BaRaiHlTA7vLjcWOnx8aBvcXcv356t1iC89W9SjwGJl/vqqUaVbWfYWLphX39eDAG93h5yzU2N/GgV4kZVbwPLdyeWeZ8NBo3o7ItQPPxsr9StiXK+mNKnnRXJGDh+s2O+w85Zm6Y4kXv/FaAky9br29GzhmEr2Oh6uvD++OwHebmw+nMoz32zl3eX7OJWZS8v6PowppTd3ZXr+mnb0almPzNwCJs7dwKnMXB6bv4mEE2cI9fPk3Vsj8XCtvKp2ubQ6Hq5c17URYFRxS802f/58YmJimDJlChs3bqRz584MGzaMEydOXPK4AwcO8Pjjj9O/f/8LHnv11Vd54403mDVrFmvXrsXHx4dhw4aRnZ1dykzVUFEfbiW4RURERCqNEtwiUi28GbuHzNwCOjX25+qODSo0V9FH6r9Yd5j8Aos9wquS9hQmuFvVd0z1NhS1KTGquBdXoE3J+gOF/beb2d5/uyI8XF14fGgbAN5dvpeUM2VfEPByzuYWkJmTX6bbjmPpPDp/E1Yr3NqrKePK+YmF8moa6M3MW7rhYjaxYONR3l5mVG8/OSzC4b3J3VzMvD3OqF4/eDKLof/9naU7T+Duaubd2yJtWmhWKkfR39SftyeSnGG/3xmpeqZPn87EiROZMGEC7dq1Y9asWXh7e/Phhx9e9JiCggLGjRvH1KlTadmy5NoZVquVGTNm8Nxzz3HdddfRqVMn5s6dy7Fjx/j2228r+dk4iBLcIiIiIpVOi0yKSJV3+FQW89YeAuDpERGYzRVrRTC8Qyj1fNxJTM8mdtcJhrUPtUeYVc6eE4X9t0Mcl+AGo03J7JX7WbojiZz8gnJV18YdLOq/7dgEN8DITg35YMV+th5N483YPUy1cbHKv7JYrExasLVcfb17tqjH5Gsqb+HDS+nbKojnrm7L1B92YLFCZLO6DGsf4pRY6vm48/747ox+Z1XxRYd/j+5I5yYBTolHSmrf0J+uTQP481AqX244zAODWjk7JKkEubm5xMXFMWnSpOJ9ZrOZ6OhoVq9efdHjXnjhBYKDg7nzzjtZsWJFicf2799PYmIi0dHRxfv8/f2Jiopi9erVjB071v5PxNGKE9ypZRufeRKOboCQDuDfqNLCEhEREalJVMEtIlXevLWHyLdY6dcqiD5hQRWez8PVhRu7Ny6eu6YqalHiiAUmz9etaV2CfT3IyMlnVcJJm4/PzMln+7F0wFho0NHMZhNPj4gAjJ+PAymZFZrvzV8TypXc7tDIj3fGdSt3Ox57uKNPc+7o0xxfD1cmX9POqX2u2zX0Y8bYLgTVceex6NZc37Wx02KRCxV9yuDzdYcosGixyZooJSWFgoICQkJKXugKCQkhMbH0T+ysXLmS2bNn8/7775f6eNFxtsyZk5NDenp6iVuVVpYKbqsVDq2BBXfD9Lbw2U3w33bwTj+IfQEOrQVL+de1EBEREanpVMEtIlVaTn4BXxUmB4sWm7OHW3o25d3l+/h9dzKHTmbRNNDbbnNXFUUtSsIcnOA2m402JXNXH2Th1uMMigi26fjNh1MpsFhp6O9Jw0peVPFi+rYK4orW9fl9dzKv/RLPzFu6lWuexdsS+e/S3YBRcXxdl7JX43m4mp2+cKLJZOKf17ZnykjnJreLDGsfytB2IVUiFinpmk4NeOGH7Rw5fZbf9yQzqI1tv/dS82RkZHDbbbfx/vvvExRU8YvTRaZNm8bUqVPtNl+lu1SCOzsNtnwJGz6EEzvO7fdvCmmHIWmrcVvxH/CqB62iIXwotBoM3o6/ACwiIiJSVamCW0SqtMXbEjmZmUuonydX2pgovZRmgT5c0bo+AJ+tq3lV3Nl5BRw6lQVAeLCvw88/ooPRJ33JziTybOxzvv5AUXsS5/7n/enhEZhM8NOW42w+nGrz8bsS04n5chMAE/o2Z0yPpni6uZT5VpWSuIpFLsfTzYW/RRoLkM5bU/P+pgoEBQXh4uJCUlJSif1JSUmEhl7Y6mvv3r0cOHCAkSNH4urqiqurK3PnzuX777/H1dWVvXv3Fh9X1jkBJk2aRFpaWvHt8OEqvmB0aQnuY3/C9w/BfyJg4eNGctvVC7reChN/hce2whN74fr3oMNoY46zp2Drl7DgLngtDGYPMxLfiduMCnARERGRWkwJbhGp0opaiIzt2cTui9sVLYz21YbD5OTXrI/+7kvOxGqFAG83guq4O/z8PVvUI9DHndSsPNbuO2XTsRsOFi4w6YT+2+dr19CP6wsrrl9ZtAurDQmE05m5TJy7gazcAvqEBfLsVW0rK0yRKuOWwr+pv+5K4ljqWSdHI/bm7u5OZGQksbGxxfssFguxsbH07t37gvERERFs3bqVTZs2Fd+uvfZaBg0axKZNm2jSpAktWrQgNDS0xJzp6emsXbu21DkBPDw88PPzK3Gr0rwCjPuM47DxE3hvELw3EDbOhbwsqB8BI16Ff+yC62ZCo0hjvE8gdB4Df/sQntgHExZB30chuB1YLXB4jdG+ZFZfeKcvZCRdJAARERGRmk8JbhGpsvYkZbBu/ylczCbG9mhq9/kHRwQT4ufBycxcFm8rvddndVW0wGSr+nWcUvHqYjYxtHBBwoXbjpf5uAKLlT8PpQLQvZnzP34dM7Q17i5mVu87ybLdyWU6Jr/AwgOfbeTwqbM0refNzFu62f3ijEhV1Cq4Dr1bBmKxwhfrq3hVrZRLTEwM77//PnPmzGHnzp3cd999ZGZmMmHCBADGjx9fvAilp6cnHTp0KHELCAjA19eXDh064O7ujslk4tFHH+Wll17i+++/Z+vWrYwfP56GDRsyatQoJz5TOyqq4N75A3z/IBzbCC7u0PFGI2l9/xqIuudcIrw0Lq7QrA8MmQr3r4ZHt8LV/4HwYeDqCSe2w+o3HfJ0RERERKoi/Y9bRKqsourt6LbBhPp72n1+VxdzceK8pi02mVC0wGSIY/tvn6+oTckv2xPLvOjcrsR0zuTk4+vhSptQx7dW+avGdb25vY/R+/3fi3aV6Xm89NNOVu09ibe7C++P705dH8dX0Is4y7hext/UL9Ydsrk9kVR9Y8aM4fXXX2fy5Ml06dKFTZs2sXjx4uJFIg8dOsTx42W/qAnw5JNP8tBDD3H33XfTo0cPzpw5w+LFi/H0tP+/+05R57xWK3VbwJAXIGYnjP7ASFqX5yJ0QFPocReM+xJu/NjYt3Eu5FZsUWQRERGR6kqLTIpIqbYcSeXVxfE8NTyCjo39HX7+s7kF/G/jEQDGRdlvccm/GtuzCW/9lsC6/acY9t/fy/X/THtzdTHxWHRrBrcNKfccRQnuVk7ov12kd1gg/l5upJzJZcOBU0S1DLzsMRsK+293bVYXF3MVeDGABwa1Yv76w+xKzOCbP4/yt8jGFx375frDfLzqAADTb+pSJZL0Io40tF0oQXXcOZGRQ+zOJIYXXuiSmuPBBx/kwQcfLPWxZcuWXfLYjz/++IJ9JpOJF154gRdeeMEO0VVBYYPgmv9CQDNoOQjMdq4vCh9mJM5P74fNnxuJbxEREZFaRgluEblAgcXKE19tIT4pA//f9zLzlm4Oj+GHzcfIyM6naT1v+rUKqrTzNPD3YkSHUH7ccpz4pIxKO4+t/vPL7goluPcUJ7idV8Ht5mImum0I/9t4hEXbEsuW4D5YuMBkM+f23z5fgLc79w9qxSuLdjH9l3iu6dQATzeXC8bFHTzNc99uA+DR6HCGdyh9gTSRmszd1cxN3Zvw9rK9fL/5mBLcIi5u0P3vlTe/2QxR98Lip2DtuxD5d/sn0UVERESqOCW4ReQCCzYeKU72/pGQQoHF6vBq2nlrDwLGomXmSj736zd25tZezcrcRqMy5eQXMHFuHDuOp3PwZCbNAn1sniOvwMKBFONjyuFOTHADXNUxlP9tPMLibYlMvqbdJV9Lq9XK+v1VY4HJv7qjT3PmrDrAsbRs5qw6wD0Dwko8npiWzb2fxpFbYGF4+1AevjLcSZGKON+4Xs1o28CPYe11kUfEIbrcAr++BCm7Yd+v0Cra2RGJiIiIOJQS3CJSQnZeAdOX7C7+OjUrj+3H0ujUOMBhMWw9ksbmI2m4u5i58RLtIOzF082FXmWoLnaUqBb1WLX3JIu2JXLvXxKpZXHwZCb5Fis+7i40qITe5bboFx5EHQ9XEtOz2XQklW5NL564Ppp6lsT0bFzMJro0CXBckGXg6eZCzJDWPPH1Fmb+lsCYHk0I8DZ6a2fnFXD3JxtIzsihTYgv/7mpc6VflBGpyhoFeNEowMvZYYjUHp5+0PVWWPsOrHlHCW4RERGpdfT5NREp4eNVBzielk1Df08GtK4PwIo9KQ6N4bN1RvX2iI6hBNbxcOi5q4IRHY2P9C/alliu4/cknWtPYnJyU3EPVxcGtw0GYNHWSy88FlfYnqRDQz+83ave9dcbujUmItSX9Ox83l62FzCqzict2MqWI2kEeLvx/vju+HhUvdhFRKSGi7obMEHCUkjefdnhIiIiIjWJEtwiUiw1K5e3f0sAIGZoG6ILE5Mr9iQ7LIb07Dy+23QMqNzFJauyYe1DMJlg8+FUjqaetfn4PVVggcnzjSjsRb1oWyJW68XbwKw/YLQniWxWzyFx2crFbOKp4RGAcSHoaOpZPlixn2/+PIqL2cTbt3SjaaC3k6MUEZFaqV5LaD3c2F73rnNjEREREXEwJbhFpNjM3xJIz84nItSX67s2on+4UcEdd/A0Wbn5Donh2z+PkpVbQHhwHXpUsT7MjhLs60mPwiTv4nJUcScUJrjDQ5zbf7vIgNbBeLm5cOT0WbYfS7/ouA0HjAruqvy6D2xTn14t65Gbb+H+eRuZtmgnAM9f3ZY+lbgYqoiIyGX1ute43/Q5nE11aigiIiIijqQEt4gAcOR0FnNWGa1BnhoRgYvZRLNAbxrX9SKvwMrafacqPQar1cq8NYcAGBfV1OntNZxpeGHV8+Jtl27rUZriCu76VSPB7eXuwqAI42LJwou0KUk7m1e8sGlkFU5wm0wmJo1oCxgV9hYrjOnehNv7NHduYCIiIi0GQHA7yMuEPz9xdjQiIiIiDqMEt4gAMP2X3eQWWOjdMpCBhb23TSZTcRW3I/pwxx08TXxSBl5uLlzfrfIXl6zKihLcGw6e5kR6dpmPK7BY2ZtctSq4AYZ3MPqKL75Im5I/D53GaoVmgd4E+zp3YczL6dwkgKs7Gc+nW9MAXhjVvlZfjBERkSrCZIKoe4ztde+BpcC58YiIiIg4iBLcIsKOY+l8s+koAJOuiiiRrOsfbrRdcEQf7nlrjertazs3xN/LrdLPV5U1DPCiS5MArFb4eXvZ25QcOZ1Fbr4FD1czjetWnX7QV0YE4+5qZl9KJrsLF8E8X1F7ku5VtP/2X027oSMvXteej+7oiYeri7PDERERMXS8CbzqQuohiF/o7GhEREREHEIJbhHhlcW7sFrhmk4N6NQ4oMRjfcICMZmMtheJaWWvJLbVqcxcfipsXzGuV9NKO091cv7ijGW1pzB53LJ+HVzMVaequI6HK1eEX7xNyYaDRguc7lW4Pcn5/DzduK13c/y9a/eFGBERqWLcvSHyDmN7zSynhiIiIiLiKOVKcM+cOZPmzZvj6elJVFQU69atu+T4GTNm0KZNG7y8vGjSpAmPPfYY2dklE2WXmzM7O5sHHniAwMBA6tSpw+jRo0lKSipP+CJynj8SUvh9dzJuLiaeGNbmgscDvN2Lk96VWcX9ddxhcvMtdGzkf0GSvbYaUdjWY+3+U5w8k1OmY4r6b4cHV532JEVGFPcVL5mwz823sOlwKlC1F5gUERGpFnrcBSYXOLgSjm9xdjQiIiIilc7mBPf8+fOJiYlhypQpbNy4kc6dOzNs2DBOnDhR6vjPPvuMp59+milTprBz505mz57N/PnzeeaZZ2ya87HHHuOHH37gq6++Yvny5Rw7dowbbrihHE9ZRIpYLFamLdoJwLioZjQL9Cl1XP9WRpuSlQmV04fbYrHy2dpzi0uKoWmgN+0b+lFgsbJkR9ku6O05YSzUWBUT3NFtQ3BzMRGflFHcJxxg+7E0svMsBHi70TKo6sUtIiJSrfg3hnbXGttr33VuLCIiIiIOYHOCe/r06UycOJEJEybQrl07Zs2ahbe3Nx9++GGp41etWkXfvn255ZZbaN68OUOHDuXmm28uUaF9uTnT0tKYPXs206dP58orryQyMpKPPvqIVatWsWbNmnI+dRH5cetxth1Nx8fdhQevbHXRcUV9uFfuScFiuXCBwIpatfckB05m4evhyrVdGtp9/urM1jYlewsruFtVwQS3v7cbfcKMn6Xzq7jjDhb1366LuQq1VREREam2ou4z7rd+BZmVv1C4iIiIiDPZlODOzc0lLi6O6OjocxOYzURHR7N69epSj+nTpw9xcXHFCe19+/axcOFCrrrqqjLPGRcXR15eXokxERERNG3a9KLnFZFLy8238PrP8QDcMyCMoDoeFx3btWldvN1dOJmZy87EdLvHMm/tQQBu6NYIb3dXu89fnQ0vbFOyam8KaVl5lxxrtVrPtSgJqXoJbjg/YX+uD/f6A0b/7chqssCkiIhIldekJzTsCgU5sOEjZ0cjIiIiUqlsSnCnpKRQUFBASEhIif0hISEkJpZeXXjLLbfwwgsv0K9fP9zc3AgLC2PgwIHFLUrKMmdiYiLu7u4EBASU+bw5OTmkp6eXuInIOfPWHuTQqSzq+3pwV/8Wlxzr7mqmd8tAAFbssW8VUFJ6Nr8Utt+4JaqZXeeuCVoF16F1SB3yCqws3XnpNiXH0rLJyi3A1Wy6aLsZZxvaPhQXs4ltR9M5fCoLq9VaXMGt/tsiIiJ2YjJBr/uN7fUfQH6uc+MRERERqUTlWmTSFsuWLePll1/m7bffZuPGjSxYsICffvqJF198sVLPO23aNPz9/YtvTZo0qdTziVQnGdl5vPlrAgCPRoeXqWq633ltSuxp/vrDFFis9Ghelzahvnadu6YoquK+XJuShMLq7eZBPri5VPqf93Kp5+NOVAujUnvRtuMcOJlFyplc3F3MdGjk7+ToREREapB2o6BOKJxJhB3fOTsaERERkUpjUwYkKCgIFxcXkpJKVhEmJSURGhpa6jHPP/88t912G3fddRcdO3bk+uuv5+WXX2batGlYLJYyzRkaGkpubi6pqallPu+kSZNIS0srvh0+fNiWpypSo727fB+nMnNpWd+HMd3LdvGnf3h9ANYdOEV2XoFd4sgvsPD5uqLFJVW9fTFXdTT+zv2+J5kzOfkXHbcnqeouMHm+8/uKbyhsT9KpsT+ebi7ODEtERKRmcXWHHnca22veBquN66hknYLVM+HoRvvHJiIiImJHNiW43d3diYyMJDY2tnifxWIhNjaW3r17l3pMVlYWZnPJ07i4GEkMq9VapjkjIyNxc3MrMSY+Pp5Dhw5d9LweHh74+fmVuImI0RLkg5X7AHhyWASuZaz0DavvQwN/T3LzLazbf8ousSyLT+Z4WjZ1vd0Y3qH0i1UCbUJ8aRHkQ26+hV93nbjouKIK7qqe4B7WPhSTCf48lMoPW4xe3JFqTyIiImJ/kRPAxR2ObYQj68t2TEE+rHsf3uwGPz8D8/4G2Wr3KCIiIlWXzZ9hj4mJ4f3332fOnDns3LmT++67j8zMTCZMmADA+PHjmTRpUvH4kSNH8s477/DFF1+wf/9+lixZwvPPP8/IkSOLE92Xm9Pf358777yTmJgYfvvtN+Li4pgwYQK9e/emV69e9vg+iNQaM5buJjvPQmSzugxrH3L5AwqZTCb6F7YpWbEn2S6xFC0ueVP3JqrevQSTyVR8AWDxeYsz/lVRgjusiie4g/086d7MSGj/vtv4WeqhBSZFRETsr0596Hijsb3mncuP3/sbzOoHCx+Hs8YaGWSdhD/+r/JiFBEREamgyzfe/YsxY8aQnJzM5MmTSUxMpEuXLixevLh4kchDhw6VqNh+7rnnMJlMPPfccxw9epT69eszcuRI/vWvf5V5ToD//ve/mM1mRo8eTU5ODsOGDePtt9+uyHMXqXUSTmQwf73RrmfSiAhMJpNNx/cLr8+XG47YZaHJw6eyWFaY3Ly5Z9MKz1fTXdWhAe8s28tvu5I5m1uAl3vJCwJWq5U9xRXcVb+X+YgODVh/4HTx15HNVMEtIiJSKaLuhU3zjD7caUfBv9GFY07uhV+eg/iFxtdedWHQs+AdCF9PMFqV9JwIvvrEnYiIiFQ9JqvV1mZs1VN6ejr+/v6kpaWpXYnUWhPnbmDJjiSGtAvh/fHdbT7+VGYukS8twWqFdc8OJtjXs9yxvLp4F28v20v/8CA+uTOq3PPUFlarlf6v/saR02eZdWu34oUni5zIyKbnv2Ixm2DHC8OrfEX8sdSz9HnlVwBaBddhacwAJ0ckItWZ3ufVXnrty+ijq+DgH9AvBqKnnNufnQ6/v2ZUd1vywORiJLIHPAXe9Yy+3bOHwpF1EHkHjFQlt4iIiDiGLe/zbG5RIiLV07ajaSzZkYTZBE8Nb1OuOer5uNO+ofFH5Y+E8ldxZ+Xm8+UGo5J8XJSqt8vCZDIxvP25xRn/qqg9SdN63lU+uQ3QMMCLzk0CAOih/tsiIiKVK+pe4z7uY8g7C5YCiJtj9Nle9YaR3G4VDfevhhH/NpLbACYTDHnB2N74CSTvdkr4IiIiIpeiBLdILfHLjiTAWOCvVQVaWPQPrw/Ait3lT3B/uHI/KWdyaVzXi8Fty94HvLYb0dGo2o7deYKc/IISjxUluFtV8f7b53t0cDitgutwS89mzg5FRESkZou4GvybwtlTsGQKvDcQfngYMpMhMBxu+Qpu/R/UL6UIollvaHMVWAsgdqrDQxcRERG5HCW4RWqJlYULQw5sU79C8/RvVbjQZEIK5elwdPJMDrOW7wPgiWFtcHPRn6Gy6tokgBA/D87k5LPyL33Q9yQVJbirfv/tIoMiglkaM4COjf2dHYqIiEjNZi5sPQKw7l1I3AIe/jDsZbhvFbQeeunjB08Bkxl2/QiH1lR+vCIiIiI2UGZJpBZIO5vH5iNpgLFQZEVENq+Lp5uZ5Iwc4pMybD7+zV8TOJOTT4dGfozs1LBCsdQ2ZvPF25QkFC8wWX0quEVERMSBut1mLBppMkP3v8PDG6H3A+DqfvljgyOg663G9pLJRm9uERERkSpCCW6RWmD13pMUWKy0rO9DowCvCs3l4epCVItAgAuqiC/n0Mks5q09CMDTw9tiNpsqFEttVNSmZMmOJPIKLMX791TDFiUiIiLiQF514d4/4NGtcM1/wSfItuMHPgOuXnB4Lez6qXJiFBERESkHJbhFaoGVCUZ7kqL2IhXVP9yY53cbE9yv/RJPXoGV/uFB9Au3Tyy1TY/m9Qiq407a2TxW7z0JQGpWLilncgAIU4JbRERELsavAfg3Lv+xve83tmOnQkG+/eISERERqQAluEVqgRWFiej+FWxPUqRonnX7T5KdV3CZ0YatR9L4YfMxAJ4aHmGXOGojF7OJoX9pU1LUnqRRgBd1PFydFpuIiIjUcH0fAa96kLIb/vzE2dGIiIiIAEpwi9R4h05mcfBkFq5mE73CAu0yZ+uQOgT7epCdZyHu4OnLjrdarbyyeCcAo7o0pEMjLSpYESM6GAnuX7YnUmCxFrcnUfW2iIiIVCpPfxjwpLG9bBrkZjo3HhERERGU4Bap8VYUtifp2jTAbtW9JpOpuMXIijK0Kfl9Twp/JJzE3cXMP4a2sUsMtVmvloH4e7lxMjOXdftPsSdJC0yKiIiIg3T/OwQ0gzNJsPptZ0cjIiIiogS3SE230s7tSYr0L05wJ19ynMVi5ZVFuwC4rXczmtTztmsctZGbi5mh7UIAWLztOAnJSnCLiIiIg7h6wODJxvYf/weZtq3JIiIiImJvSnCL1GAFFit/JBj/6bD3oo59Cxes3H4snZOFCxyW5ttNR9l5PB1fT1ceHNTKrjHUZiM6nuvDvTsxA4BWSnCLiIiII7S/ARp0gdwMWP6q7cdnpsAPj8C7A+DELruHJyIiIrWLEtwiNdiWI6mkZ+fj5+lKJzv3vQ729SQi1BeAlQmlV+5k5xXwn192A3DfwDDq+rjbNYbarG+rIHw9XDmRkUNiejagBLeIiIg4iNkMQ6Ya2xs+hFP7ynacpQDWvQ9vdoO4j+H4JvjqDsg7W0mBioiISG2gBLdIDVbUH7tPWBCuLvb/db+itdH2ZOVF+nB/svogR1PPEurnyd/7trD7+WszD1cXBrcNLv66vq8HAd66gCAiIiIO0nIghF0Jljz49aXLjz+8Dt4bCAsfh+w0CO0IPsGQvBN+frayoxUREZEaTAlukRqsuP92a/u2JynSr7BNycqEFKxWa4nH0rLyeOu3BABihrTG082lUmKozYZ3aFC83aq+qrdFRETEwaKnAibY9j84urH0MWeS4dv7YfYQSNwCnv5w1etw93K4fpYxZsNs2Pmjw8IWERGRmkUJbpEa6kxOPhsPnQagfyv7LjBZpGeLeri7mjmels3ewoUOi7y9PIG0s3m0DqnD6MjGlXL+2m5A6/p4FV44CA9RgltEREQcrEEn6HSTsb10Cpxf8FCQD2vfhTcjYdM8Y1/XW+HBOOg5Ecwu0Gow9HnIeOz7ByHtqGPjFxERkRpBCW6RGmrN3pPkW6w0C/SmaaB3pZzD082Fns3rAefaoQAcSz3LR38cAOCp4RG4mE2Vcv7azsvdhREdjMUmuzWt6+RoREREpFYa9Cy4uMP+3yEh1th3cDW8NwAWPQk5adCgM9y5FK6bCXX+Unhx5WRjwcqzp2HB3UafbhEREREbKMEtUkOt2JMMnGsjUln6hwcVnu9cgnv6kt3k5lvo2aIeV0YEX+xQsYMXR3Vgzt97cm3nhs4ORURERGqjus2g593G9pLnYcE98NFwSNoGngFw9XSY+Bs06VH68a7u8LcPwc0HDq6EFdMdFrqIiIjUDEpwi9RQKxIK+2+HV057kiL9ChPca/adJDffwq7EdP638QgAk0ZEYDKpersy+Xi4MqB1fcyqkhcRERFn6f8P8PCHEztgyxeACbrdDg9thB53Gu1ILiUwDK7+j7G9bBocWlvpIYuIiEjNoQS3SA10NPUs+5IzMZugd1hgpZ6rbagfgT7uZOUWsPHQaV5dHI/VCld1DKWr2maIiIiI1Hze9eDK54zthl3hrli49g3wseF9aOex0PFGsBbA/+6Cs6mVEqqIiIjUPEpwi9RAKwvbk3RpEoC/l1ulnstsNhVXcc9Yuptfd53A1WziiWERlXpeEREREalCou6GmF1w16/QONL2400mo51JQDNIOwQ/PlZy0UoRERGRi1CCW6QG+r2wH3a/Sm5PUqSoz/eafacAuLlnU1oE+Tjk3CIiIiJSRfg1AHMF/ovp6Wf04za7wvYF8Oen9otNREREaiwluEVqGIvFyqrC/ttXhFfuApNFzu/z7ePuwsODwx1yXhERERGpYRp3h0HPGtuLnoSUPc6NR0RERKo8JbhFapjtx9I5nZVHHQ9XOjcJcMg5Q/09aRPiC8DEK1pS39fDIecVERERkRqo76PQ4grIy4KvJ0B+jrMjEhERkSpMCW6RGub3wv7bvcMCcXNx3K/4v//WiceHtubeAWEOO6eIiIg41syZM2nevDmenp5ERUWxbt26i45dsGAB3bt3JyAgAB8fH7p06cInn3xSYswdd9yByWQqcRs+fHhlPw2p6sxmuP498KoHiVth6dTKO1d2Ghz4A7Z+DVmnKu88IiIiUmlcnR2AiNjXysL+2/0d1J6kSJcmAXRxUMW4iIiION78+fOJiYlh1qxZREVFMWPGDIYNG0Z8fDzBwcEXjK9Xrx7PPvssERERuLu78+OPPzJhwgSCg4MZNmxY8bjhw4fz0UcfFX/t4aFPgglGP+9Rb8PnY2HNTAgbBOFDyj+f1Qrpx4yEeeJWSNxs3J8+cG6Mf1O47RsIalXh8EVERMRxTFZr7ViaOj09HX9/f9LS0vDz83N2OCKVIis3n85TfyGvwMpvjw/UQo8iIlIr6H2eY0RFRdGjRw/eeustACwWC02aNOGhhx7i6aefLtMc3bp14+qrr+bFF18EjAru1NRUvv3223LFpNe+Flj4JKx7F7yD4L5V4BtS+riCfMjLhNxMyM2C3AxISYDELYW3rZB1svRj/ZuAJR8yjoN3INzyFTSOrLznJCIiIpdly/s8VXCL1CBr958ir8BKowAvmgd6OzscERERqSFyc3OJi4tj0qRJxfvMZjPR0dGsXr36ssdbrVZ+/fVX4uPj+fe//13isWXLlhEcHEzdunW58soreemllwgMDLT7c5BqasgLcPAPSNoGH18Fvg0g90xhEjuzMKmdBQVl6NNtcoH6bSC0Y+Gtk3HvXQ8yU2De3+DYnzBnJIyZC62iK//5iYiISIUpwS1Sg6zYbbQnuaJ1ECaTycnRiIiISE2RkpJCQUEBISElq2dDQkLYtWvXRY9LS0ujUaNG5OTk4OLiwttvv82QIefaTAwfPpwbbriBFi1asHfvXp555hlGjBjB6tWrcXFxuWC+nJwccnLOJTLT09Pt8OykSnPzhNGz4b2BcDLBuF2KyQXcfcDNGwKaQoNO55LZwW3Bzav043yC4PYfYP5tsO83+GwMXPc2dB5j96ckIiIi9qUEt0gNsjLBWGCyX6v6To5EREREBHx9fdm0aRNnzpwhNjaWmJgYWrZsycCBAwEYO3Zs8diOHTvSqVMnwsLCWLZsGYMHD75gvmnTpjF1aiUuOChVU3AE3PkLHN8M7t7g5mMksd29wb2Okcx2L9zn4g7lLfTw8IVbvoTv7oetX8E3d0NmMvR50L7PR0REROxKCW6RGiIxLZvdSWcwmaBPmD7WKyIiIvYTFBSEi4sLSUlJJfYnJSURGhp60ePMZjOtWhkL9nXp0oWdO3cybdq04gT3X7Vs2ZKgoCASEhJKTXBPmjSJmJiY4q/T09Np0qRJOZ6RVDsNOhm3yubqDte/Bz71Yc3b8MuzcCYJoqeC2Wz7fFYrHFoNKXvA09+4eQUUbhfemy/8tIKIiIiUnRLcIjXEygSjPUmnRv7U9XF3cjQiIiJSk7i7uxMZGUlsbCyjRo0CjEUmY2NjefDBsle3WiyWEi1G/urIkSOcPHmSBg0alPq4h4cHHh4eNsUuYjOzGYa9DHVCYOkUWPUGnDkB170FLm5lm+PMCdj0GWycC6f2Xnqsh1/JhLdXgFGZ7u59rjr9/Cr1Evu8jePrtSx/5bqIiEg1pwS3SA2xYk9he5LwICdHIiIiIjVRTEwMt99+O927d6dnz57MmDGDzMxMJkyYAMD48eNp1KgR06ZNA4x2It27dycsLIycnBwWLlzIJ598wjvvvAPAmTNnmDp1KqNHjyY0NJS9e/fy5JNP0qpVK4YNG+a05ykCGMnifo9CnWD47kHY8gVknYSb5hjJ5dJYCoz+3XFzIH4hWPKN/e51oEkU5GVBdhqcTTXu8zKNx3PSjVva4fLHG3UfjHil/MeLiIhUY0pwi9QAFouVPworuPuHq/+2iIiI2N+YMWNITk5m8uTJJCYm0qVLFxYvXly88OShQ4cwn9fCITMzk/vvv58jR47g5eVFREQEn376KWPGGIv2ubi4sGXLFubMmUNqaioNGzZk6NChvPjii6rSlqqjyy3gHQhf3g4JS2DOSLjlK/A5ryVg2lH481Pjlnbo3P5G3SHydmh/A3jUuXDu/Fwj0Z2dBtmpxu1s4X1uJuRmGUnw3CwjOZ6bWXh/3v7cM5Bx3KgUv/K50s8jIiJSw5msVqvV2UE4Qnp6Ov7+/qSlpeHn5+fscETsavuxNK5+YyXe7i5smjwUd9dy9AcUERGppvQ+r/bSay8Oc3gdfHYTnD0NgeEw7ks4sdOo1k5YAlaLMc7THzqNNRLbIe0rPy6rFd7qDicT4Nq3oNttlX9OERERB7DlfZ4quEVqgJV7jOrtXi0DldwWEREREbG3Jj3h7z/DJzfAyT3wRteSjzfrC91uh3bXgpuX4+IymaDrrbD0n0YFuRLcIiJSCykTJlIDrChMcPdrpf7bIiIiIiKVon4buPMXqB9hfO0dBH0ehgfjYMJC6DzGscntIp1vBpMLHF4DKXscf34REREnUwW3SDWXnVfAugOnALiitRLcIiIiIiKVxr8RTPwVjm2Cxj3A1d3ZEYFvKIQPgd2LjSruIVOdHZGIiIhDqYJbpJpbt/8UufkWQv08CauvRWVERERERCqVuw8071s1kttFuha2Jtn8ORTkOzcWERERB1OCW6SaW5lgtCfpHx6EyWRycjQiIiIiIuJwrYeBT304k2QseikiIlKLKMEtUs0V998OV3sSEREREZFaycUNOo0xtv/81LmxiIiIOJgS3CLVWHJGDjuPpwNaYFJEREREpFbreqtxv3sxnDnh3FhEREQcSAlukWrsj8L2JO0b+hFYx8PJ0YiIiIiIiNMEt4VG3cGSD1vmOzsaERERh1GCW6Qa+31PMgD9w+s7ORIREREREXG6boWLTf75KVitzo1FRETEQZTgFqmmjqae5ffd5xaYFBERERGRWq79DeDqBcm74MgGZ0cjIiLiEEpwi1QzeQUW3vt9L0OmLyflTA5BddyJbFbX2WGJiIiIiIizefpB+1HG9p+fODUUp8tIhAN/ODsKERFxgHIluGfOnEnz5s3x9PQkKiqKdevWXXTswIEDMZlMF9yuvvrq4jGlPW4ymXjttdeKxzRv3vyCx1955ZXyhC9SbW04cIpr3ljJywt3kZVbQI/mdfl8Yi883VycHZqIiIiIiFQFRYtNblsAuZnOjcVZrFb4fCx8fJWS3CIitYCrrQfMnz+fmJgYZs2aRVRUFDNmzGDYsGHEx8cTHBx8wfgFCxaQm5tb/PXJkyfp3LkzN954Y/G+48ePlzhm0aJF3HnnnYwePbrE/hdeeIGJEycWf+3r62tr+CLV0qnMXF5ZtJMvNxwBoK63G5OuasvfujXGbDY5OToREREREakymvWFui3g9H7Y8T10udnZETle4lY49qexvfMHaN7XufGIiEilsrmCe/r06UycOJEJEybQrl07Zs2ahbe3Nx9++GGp4+vVq0doaGjxbcmSJXh7e5dIcJ//eGhoKN999x2DBg2iZcuWJeby9fUtMc7Hx8fW8EWqFYvFyvz1hxj8n2XFye2xPZrw6z8GclP3Jkpui4iIiIhISSbTuSruPz91bizOsvnzc9sJS5wXh4iIOIRNCe7c3Fzi4uKIjo4+N4HZTHR0NKtXry7THLNnz2bs2LEXTU4nJSXx008/ceedd17w2CuvvEJgYCBdu3bltddeIz8/35bwRaqVXYnp3PTuap7631ZOZ+UREerL1/f25pXRnajr4+7s8EREREREpKrqfDOYzHBwJZzc6+xoHKsgD7Z+de7rkwlwar/z4hERkUpnU4uSlJQUCgoKCAkJKbE/JCSEXbt2Xfb4devWsW3bNmbPnn3RMXPmzMHX15cbbrihxP6HH36Ybt26Ua9ePVatWsWkSZM4fvw406dPL3WenJwccnJyir9OT0+/bHwiVUFmTj7/F7uH2Sv3U2Cx4u3uwmPRrbmjb3PcXLQurIiIiIiIXIZ/IwgbbFQvb5oHgyc7OyLHSYiFzGTwDoKgcDi0GhKWQs+Jlz9WRESqJZt7cFfE7Nmz6dixIz179rzomA8//JBx48bh6elZYn9MTEzxdqdOnXB3d+eee+5h2rRpeHh4XDDPtGnTmDp1qv2CF3GAtftO8tj8TRxLywZgePtQJo9sR8MALydHJiIiIiIi1UrXWwsT3J/BoGfBXEsWpt/8mXHf6SaoE2IkuPf8ogS3iEgNZlM5aFBQEC4uLiQlJZXYn5SURGho6CWPzczM5Isvvii19UiRFStWEB8fz1133XXZWKKiosjPz+fAgQOlPj5p0iTS0tKKb4cPH77snCLOZLFYi5PbTep58dEdPZh1W6SS2yIiIiIiYrs2I8CrHmQch72/Ojsaxzh7GuIXGdudb4bwIcb2/hWQl+28uEREpFLZlOB2d3cnMjKS2NjY4n0Wi4XY2Fh69+59yWO/+uorcnJyuPXWWy86Zvbs2URGRtK5c+fLxrJp0ybMZjPBwcGlPu7h4YGfn1+Jm0hVtulIKsfSsvFxd2HxI1cwKKL0n20REREREZHLcvWAzmON7T8/cW4sjrJtARTkQnB7CO0Iwe3AtyHknzX6kYuISI1kc0PfmJgY3n//febMmcPOnTu57777yMzMZMKECQCMHz+eSZMmXXDc7NmzGTVqFIGBgaXOm56ezldffVVq9fbq1auZMWMGmzdvZt++fcybN4/HHnuMW2+9lbp169r6FESqpMXbEgEY3DYEHw+Hdg8SEREREZGaqGthgdmuhZCZ4txYHGHzF8Z9l5vBZDJu4dHGvj1LnReXiIhUKpuzaGPGjCE5OZnJkyeTmJhIly5dWLx4cfHCk4cOHcJsLpk3j4+PZ+XKlfzyyy8XnfeLL77AarVy8803X/CYh4cHX3zxBf/85z/JycmhRYsWPPbYYyX6cotUZ1arlYVbjwMwosOl2/2IiIiIiIiUSUh7aNgVjv0JW76E3vc7O6LKk5IAR9aByQwdbzq3P3wobJxr9CPnFaeFJyIilcdktVqtzg7CEdLT0/H39yctLU3tSqTK2XY0jWveXImXmwsbnx+Cl3stWQBGRETEDvQ+r/bSay9SBus/gJ/+YbTtuO8Po6rZWaxWSDsMR9bDkTg4sR263gYd/1bxuX99CX5/DVoNgVu/Prc/Ox1ebQGWfHj4T6jXsuLnEhGRSmfL+zz1QRCpAoqqtwe2qa/ktoiIiIiI2E+Hv8HPzxrJ5GN/QqNujjt3ToZxziMbCm/rIfNEyTFHNkCLK6BOBdYgslhKtic5n6cfNO0NB1YYbUqi7i7/eUREpEpSglvEyaxWa3H/7eFqTyIiIiIiIvbkFQBtr4WtX8Kfn1ZugvvUfiORXJTQTt4JVkvJMWZXCOkAjXvAwVVG4n3ZNLjmv+U/78GVRmW4hz+0uerCx1tFG3ElLFGCuzysVudW/ouIXIYS3CJOtjvpDPtSMnF3NXNlRAWqFkRERERERErT9VYjwb31axj2L3Dzst/cBfmwe5HRCmXfsgsf928CjSKNhHbj7tCg87nzH/gDPr4K4uZAz3sgOKJ8MRRVb7cfVfpzCx8CS6fA/hWQlw1unuU7T220bxnMvw163AWDJyvRLSJVkhLcIk5W1J7kivAgfD3dnByNiIiIiIjUOM37Q0BTSD0EO3+ATjdd/pjLyUg0EtNxH0PGscKdJmjWpzCZXZjQ9r3Ep1Sb94U2V0P8T0YC+pb5tseRmwk7vjO2u9xS+pjgduDb0Ijz4Eqjolsuz2qFpf+EnHRYOd24H/EamM3OjkxEpAQluEWc7Fx7kgZOjkRERERERGoksxm63ArLXoY/Pyl/gttqNVp9rJ8Nu340Fm4E8A6CbuMh8g6o28y2OYdMhd2Ljdv+341+3LbY+SPknoG6LaBJVOljTCajinvjHKMPtxLcZbNvmdFD3exmvNbrP4D8bBj5Bpi1dpSIVB267CbiRHuTzxCflIGr2cSQtiHODkdERERERGqqLrcAJiOJvO592P0LHNsE6cehIO/Sx2anwdp3YWYUzBkJO741Ep5NesENH0DMDoieYntyGyAoHLr/3dj+5TljwUhbbP7MuO9886XbZ4QPMe73/GJ7jLXVysK+6N3/Dte/Cyaz0cd9wd2X/5kREXEgVXCLOFFR9XafVkH4e6s9iYiIiIiIVJKAJhA2CPb+Cgsfv/Bx70CoEwJ1gkven0yALV9CXpYxzs3HqADvcSeEdrRPbAOfNvpoH98MW7+CzmPKdlzaUdi33Ni+3DEtBhgLXJ7aC6f2Qb2WFYu5pjsaB/uXG9+zPg8aLW5cPeB/d8K2r41K7r99BK7uzo5UREQJbhFnWrTN6L89osMl+tKJiIiIiIjYw4hXYdWbkHEcziTBmRPGzVoAWSeN24kdpR9bP8JYaLDTGPD0s29cPkHQPwZip0LsC9Du2rIthLllPmCFZn2hbvNLj/X0g6a9jRYre5ZC1N32iLzmKqre7nijkdwGYxFPV0/48jajRc38cXDTXPsuWlqdJMRC0jbo/ZD6kos4mRLcIk5y+FQW246mYzbB0HZqTyIiIiIiIpUsKByufaPkPosFzp4qTHgXJb0L7zMSjYRml5uNJPKlWoBUVK/7jN7e6UdgzTtGwvtSrFaj6huM9iRl0SraSHAnLFGC+1KSdxu9zQH6PlrysTbDjcVAP7/FaPfy2U1w8xfg7uPwMJ0qPxe+nmC07wloZiT/RcRplOAWcZKi6u2oFoEE1vFwcjQiIiIiIlIrmc1GBbVPEIS0d14cbl4w+Hn45h6jerjbeCOmizm2EVLiwdUL2l1XtnOED4GlU2D/Csg7W3srjy/njxmAFdpcDcERFz4ediXc+j8jub3/d/jkBhj3lf0r+6uyfcuM5DYYi5cqwS3iVPoMhYiTLCrsvz2io9qTiIiIiIiI0PEmCO0EOemw/N+XHrvpc+O+7TVlT6wGtwO/RpB/Fg78UbFYa6q0I4WtX4B+j118XPO+MP478PSHw2tg7nWQdcoxMVYFO749t733Vzh9wFmRiAhKcIs4xfG0s/x5KBWTCYa1V4JbREREREQEsxmGvmRsb/gQUvaUPi4/11joEKDz2LLPbzIZbUrAaFMiF1r1FljyoXl/aNLj0mMbd4fbfwCvekZF/ZyRcCbZMXE6U36u0YMcwLeBcb/xE+fFI5eWmwW5mc6OQiqZEtwiTrC4sHo7smldQvw8nRyNiIiIiIhIFdFyAIQPM5KsS/9Z+pg9P8PZ00ZyseUg2+YPH1I4RwUS3DkZ8ONjsPBJ2DwfUhKMXubVXeZJo90GXLp6+3wNOsOEheATbCy4+PHVkH688mKsCvb/brQn8QmGYS8b+/78FArynRuXXKggD94fBG92N35vpcZSD24RJyhqTzK8g6q3RUREREREShjyglFhvetHOLgKmvUp+XjR4pKdbgKzi21ztxgAZlc4tRdO7YN6LW2P7+dnzyWCi3j6Q6PIkrc6wbbP7Uzr3oW8LCNpHXZl2Y8LbgsTFsHca42+6B+NgL//DL4hlRerM+34xrhvOxIirgHvIDiTaFx4ibjaubFJSXuWQPIuY3vfMuM1kxpJFdwiDpackcP6A0ZvshEdGzg5GhERERERkSomOAK63W5s//xsyerozJOw+2dju/PNts/t6QdNexvbe5bafnzC0nPJ7a63QZMocPU0Knr3/gq/vwafj4XXw+G/HeDL2+GPN4yFLU/uNfpUV8Vq75wMWPuusd3vMaOdiy2CWhmV3AHN4PR++PUF+8dYFRTkwa6fjO32o8DVHbqOM76Om3PRw8RJNs07t130d0NqJFVwizjYz9sTsVqhc2N/GgVo1W4REREREZELDJwEW78yejtvXwAd/2bs3/Y/sORBgy5G5XB5tIqGAyuMKvGou8t+3NlU+O4hYzvqXhhRuBBmQR6c2AFH4+BInHGfvAvSDhu38xckBMAEXgFG72rven+5r2vc12sJLQfanmgur7g5kJ0K9cKg7bXlm6Nucxg9G2ZHw6bPoM/DUL+NPaN0vv3LjfY4PvWhWV9jX7fb4Y//M36e0o6Af2PnxiiGzBTYvfjc13uWgNXquN8pcSgluEUcbHFxexJVb4uIiIiIiJTKNwT6Pgq/vQSxU43WAq4esPkz4/Eut5R/7vChsHSK0Us57yy4lbHw6OdnIOOYkXwePPncfhc3o61Hg87Q/e/GvpwMOLbJSHYfjYPErUbCLTcDsBpJ0rOnjVYpF9PxJrjuLeN5V6b8HFj9lrHd9xHb276cr0kPo23Hrh8h9gUYO+/yx1Qn27817tuOPPd9CgwzFuU8sMLoxT3waaeFJ+fZ+pXRyz+ko/F7diYRErcYv6dS4yjBLeJApzNzWb3vJAAj1H9bRERERETk4no/ABtmQ+ohWPcetBoCx/40emh3GF3+eYPbgl8jSD8KB/6A8OjLHxO/uLDdgQlGvQPuPpce7+ELLfobt/Pl555Lbp89ZbQs+et91knY8wts/dKoAB8zD3wCy/10L2vLfMg4biza2XlsxecbPBniFxpJ7sPrjaR3TVCQZzwngHbXlXws8g4jwb3xE7jiiYpdJBD7+LPw4krk7Ub7oPiFsPsXJbhrKPXgFnGgJTuSKLBYadvAj+ZBl3lDJCIiIiIiUpu5e8OVzxnbv78Ga2Ya2+HDwCeo/POaTEabEjDaSlxO1in44WFju/cD0LRX+c/t6m5UpwdHGItntr0Guo2Hfo8ai2te9xbc/DmM+xo8/OHQavhgMKTsKf85L8VSACtnGNu9H7BPtXj9Nucq7Jf+02gLURMcWGFcmPAOhGb9Sj4WcQ141YX0I5AQ6/jY9v8On42BpB2OP3dVdHwLJG0FF3fjYlj4UGP/nl+cG5dUGiW4RRxo0bbjAFyl6m0REREREZHL63wzhHQwFnHcOLdwnx2qjMOHGPd7ypDgXvQknEmCoNbnEu6VLWwQ3LXk3KKNHww2kpj2tvMHo32DZ4BRhWwvAyeBiwccXGkszFkTnN+exOUvDRHcPM8terrRwYtNHlgJ8240+k0vfsqx566qihaXbHOV0d++6Pf9yHpjoVqpcZTgFnGQ9Ow8ViakADCioxLcIiIiIiIil2V2gaEvnvvaqy60HlbxeVsMMFqdnNoLJy/RB3vH90YvX5PZaE1S1n7d9lC/DdwVC417Ggn+T643ejzbi9UKK6cb21H3GG1V7MW/8bkFPJdOBYvFfnM7Q0H+ee1JRpU+ptvtxn38IshIdEhYHF5vVG7nZxtf7/8dDq1xzLmrqvxc2PKlsd31VuPev7FxoQwr7HVChb1UOiW4RRwkdmcSeQVWWgXXoVWwHd84iIiIiIiI1GRhV55rKdLxRvu00fD0g6a9je2LVRhnpsCPjxnbfR+Fxt0rfl5b1akPt/9gtFmw5MN3D9gvYbz3Vzi+Gdy8oec9FZ/vr/rFgIef0Spi29f2n9+RDqwweqN71TMWlCxNcAQ06QXWAvteiLiY45vh09GQewZaDoROhZ9sWP5q5Z+7Ktu92OhnXycUWg46t7+oinv3z86JSyqVEtwiDrJoq3EFV+1JREREREREbHT9ezD0Jfu2CLlcm5Kf/gFZKVC/LQx82n7ntZWbJ9zwAVzxpPH1yunw9QTIO1uxeVf+17jvdnvlLGLpXQ/6PmJs//qSUVlbXe34zrhve82F7UnOF1lYxb1xbuVWrZ/YaVT056QZF2rGfmb8jJpcjArlI3GVd+6qbtNnxn3nsSVfq/DCT34kLDV6z0uNogS3iANk5uSzfHcyAMM7NHByNCIiIiLlM3PmTJo3b46npydRUVGsW7fuomMXLFhA9+7dCQgIwMfHhy5duvDJJ5+UGGO1Wpk8eTINGjTAy8uL6Oho9uyppIXURKR68wmEPg+Bp7/95mxVmOA+sOLCZPG2/8GOb42E4fXv2KdqvCLMZrjyWRg1C8xuRmwfXwNnTpRvviMbjOdtdjUWl6wsve6DOiGQehDiPq6885TmxE54fzBsnl+xeQryjV7lcPH2JEXajTIWB009CPuXVey8F3NyL8y9zqgob9gNbvkS3H2gXgvodJMx5vfXKufcVV1G0rmFJLuMK/lY4x5Gr/nsVKMXt9QoSnCLOMBv8SfIybfQLNCbtg3UnkRERESqn/nz5xMTE8OUKVPYuHEjnTt3ZtiwYZw4UXpypV69ejz77LOsXr2aLVu2MGHCBCZMmMDPP5/7aPCrr77KG2+8waxZs1i7di0+Pj4MGzaM7OxsRz0tEanNgtuCXyOjf/GBP87tz0gyqrcBrngcGnZ1Tnyl6XIzjP/WSNQd3WAsPnlip+3zFFVvdxoDAU3sGWFJ7j4woHDhw99fhZwzlXeu8xXkwYK7je/RTzGQfqz8cx38w6jk96oLLa649Fh373NJ5rhKWGwy9RDMudZY9DSkA9z6P6PdTpH+/wBMsHsRHN9i//NXdVu/NFrENO4B9VuXfMzFFVoNNraLkuBSYyjBLeIAi7YZ7UlGdGiAyWRycjQiIiIitps+fToTJ05kwoQJtGvXjlmzZuHt7c2HH35Y6viBAwdy/fXX07ZtW8LCwnjkkUfo1KkTK1euBIzq7RkzZvDcc89x3XXX0alTJ+bOncuxY8f49ttvHfjMRKTWMpnO9fZOKGxTYrUafbfPnobQjtD/cefFdzHN+xmLT9ZraSQ8Zw+FLV9B8m7Iybj88Sd2FS6YaDrXQqQydRtvxJqZDKtnVv75AP74P0gsTPDmnoFfni//XDu+Ne4jrgEXt8uPL2pTsusnOJNc/vP+VfoxmDMS0o9AYDjc9q3RBuZ8QeHQ4QZju7ZVcVut8Oc8Y7vLLaWPKWpTslsJ7ppGCW6RSpadV8Bvu4zKphHqvy0iIiLVUG5uLnFxcURHRxfvM5vNREdHs3r16sseb7VaiY2NJT4+niuuMKrf9u/fT2JiYok5/f39iYqKuuicOTk5pKenl7iJiFRIcR/uwoTXli8h/iejDciod8DV3XmxXUpQKyPJ3bQP5KTDgrtgZg+Y1himNYG3ehptLL69H2JfhPUfQPwiOLbpXOIz4mqo36byY3VxO9c7fdUbxuKdlenELlj+b2O7z0OAyVjk8sBK2+eyFJxrT9J+VNmOCe0IjSLBkgebP7P9nKU5k2y8nqcPQN3mcPv3xgKkpSm6KLPz+/JV91dXx/6E5J3g6gntbyh9TKvBgMlY+LQiVf1S5SjBLVLJlu9OJiu3gEYBXnRqbMd+cSIiIiIOkpKSQkFBASEhISX2h4SEkJiYeNHj0tLSqFOnDu7u7lx99dW8+eabDBliJJOKjrNlzmnTpuHv7198a9KkEj9WLyK1Q4sBRh/qU/uMNiWLnjD2D3jKSFRWZd71jHYlvR+E+hFG72cwEt4p8bBvGWyaByteN1qufD4W3htgJHsB+sU4LtZ210ODzkY19e+vV955LAXw3QNQkGtU6w55Ebr/3Xhs4RNG6xJbHFxlVJ57Bhg/K2XVrbCKO26OUVlcEVmnjAUlU3YbLXXGfw9+DS8+PqQdtB1pbFfm97qq2VRYvR1xDXgFlD7GJwgadze21aakRlGCW6SSLS5sTzK8Q6jak4iIiEit4uvry6ZNm1i/fj3/+te/iImJYdmyZeWeb9KkSaSlpRXfDh8+bL9gRaR28vSDpr2N7c9vhuw0aNAF+j3m1LDKzNUDhv0LHlgLkw7BpKPw4AYjCTpqFgyeDD3ugjZXG73E64SAyQwd/gaNIx0Xp9kM0f80tjfMhtMHK+c8a2cZfbc9/OCa/xptaK58DrzqwYkdRiW7LWxtT1Kkw2hwrwOn9pavcrxIdjp8OtqoOPYJNl7Xus0uf9wVhRdqti+AlITyn7+6yMuGrYUXbrqOu/TY8KHG/Z4llRuTOJSrswMQqcly8gtYuiMJUHsSERERqb6CgoJwcXEhKSmpxP6kpCRCQy/+HsdsNtOqVSsAunTpws6dO5k2bRoDBw4sPi4pKYkGDRqUmLNLly6lzufh4YGHh0cFn42IyF+ED4EDKyAnDVzc4fpZxoJ01ZFHHfAIN3oxX4zFYiScHS3sSqMKev9y+O1luOFd+85/cq/RjgVg6Evg38jY9q5nJPp/fNQ4b4fRUCf48vNZCmDH98Z2WduTFPGoAx3/BnEfw8Y50KK/bccD5GbCZ2Pg2EYjQT/+O6M1TVk06Ayth8PuxbDiP3D9O7afv7ysVqOVik994/vgCLsXQXaqUeF+uUr78KHw279g72+Qn2NcJKoJsk7B5s+N1itWK2A979MD1nP74Lxtk/G3olGk8YmVavy9qKZ/sWseq9XK4m2JHE096+xQxI6Opp4lIyefYF8PujWt6+xwRERERMrF3d2dyMhIYmNjGTVqFAAWi4XY2FgefPDBMs9jsVjIyckBoEWLFoSGhhIbG1uc0E5PT2ft2rXcd9999n4KIiIX12oILJlsbA96BoLbOjeeyuaM5HaR6H/C+4Ngy3yjP3ZoB/vMa7HA9w9D/lkjwdltfMnHu403Es3H/oQlU8qW8D20GjJPgKe/be1Jis95u5Hg3vE9jDh14YKQl3L2NHx1BxxaZbSeue0bo/WILa540khwb5kPA56Eei1sO94W6ceMljhFtzNJRi/s8CFGP+zWw8Ddp/LOX7S4ZOexYHa59NjQTsYnGc4kwcE/jAsv1VnaUVjzNmz4CPIyyz+P2e1c//jG3Y37emHO/XthAyW4q4iftydy37yNzg5DKsmw9qGYzWpPIiIiItVXTEwMt99+O927d6dnz57MmDGDzMxMJkyYAMD48eNp1KgR06ZNA4x+2d27dycsLIycnBwWLlzIJ598wjvvGEkFk8nEo48+yksvvUR4eDgtWrTg+eefp2HDhsVJdBERhwhua7TxyM+BPg87O5qarVE3aDfKaP3x64twy3z7zBv3IRxcCW7ecO0bRmuS85ld4KrX4YPBxsKPkXdA06hLz7njO+O+zdXlW2y0YVcjmZq4BTZ/Ab3vv/wx+blGC5dlrxgVyW4+cOvX0LCL7edvHGkkb/f+Civ/a3xf7CUnw+hZv+83I6GdvKvk4yYXyM82Fujc+YPxurQeDh1ugFbR4OZlv1jSj8PeWGO7y2Xak4CRsA0fAn9+arQpqa4J7uTd8Mf/GRcwLIW95UM6GM/HZC78HTCd97tgunBfQR4kbYOjcZB10vi0wLGNsP5943FPf2jY7VzCu1Fk2T794ARKcFcBeQUW/r04HoDuzerSqK4df9HF6bzdXXnwyjJ+jEhERESkihozZgzJyclMnjyZxMREunTpwuLFi4sXiTx06BDm86p8MjMzuf/++zly5AheXl5ERETw6aefMmbMmOIxTz75JJmZmdx9992kpqbSr18/Fi9ejKenp8Ofn4jUYiYTXP0fZ0dRe1z5vJH03L0YDq6GZr0rNl/qIaMqG4wK8brNSx/XuDt0vdVIbC58HO5edvFqX4ul/O1JiphMEHm7scDnxjnQ674LE+9FrFbY9RMsed5Y8BSgflsjKd2kZ/nOD0YV995fYdNnRl/ugHIuzlyQbyQ+9/5mJLWPrAdL/nkDTEZCP2wQtBwITaIgOd7oAb5tAaQeNLa3LwB3X2gzwkh2h11Z8bYYW74AqwWa9ILAsLIdEz7U+DnY/TMMn1ax8zvakQ3GBYtdP1HccqRZP+j3qHHxoDxrvxW1lTkad+52fLOxJsG+wte8yBVPwpXP2uGJ2JfJaq3ocq7VQ3p6Ov7+/qSlpeHn5+fscEr4ZM1Bnv92G4E+7ix/chB1PHTdQURERKSsqvL7PKlceu1FRKqpHx4x2nc0iYK//1y+pBwYiblPbzCSuE16wYRFl26pkJkCb3YzEndX/8eo3C/NwVXw0QijPcgTCeWr4AbjPP+JgLws43k27XXhmGN/ws/PGu0ywOhdPehZ6HqbfXrBf3yN0WO+x0S4+nXbjz++Gb4cbyRAz1e3ObQsTGi3uOLiLVisViM5vm0BbP8W0o+ce8zDH9peY7QxCbvS9nYYVivM7Akpu+HaNy9sTXMx2enwagsjSf/QxrInxp3FaoWEWPhjhvFaFom4Bvo+Ck162P+cBXmQtL1k0js5Hm54HzrdaP/zlcKW93nKpDpZZk4+/7d0DwAPDw5XcltEREREREREarYBT8Pm+XB4LcQvgoiryjfPpnlGctvVE66befkEqU8QDHoOFj1hLEjZ7nrwCbxw3PZvjfuIq8qf3AajxUP7G2DTpxA3p2SCO+2IEcOWL4yvXT2h94NGJa6Hb/nP+VdXPGEkRTfOhSseB9+LLw59gc3z4YeHjXYjnv5GMrsoqV3Wnt4m07n2FkNehKMbjGT3jm8h47jxGm6aZyS4R8+2rVf5kQ1GctvVy2h9U1aeftC0t/F92fMLBJZz7Y/0Y0abkI43Gp8QsLeCfOP7tHIGJG019pndoNMY6Psw1G9j/3MWcXEzWuM07AI97jT2ZaeDuWrmLatHp/Aa7P0V+0g5k0OzQG9u7tnU2eGIiIiIiIiIiFQuvwbQ615je+kUOLnX9jnSj8PPzxjbg56BoDK2Bu3+d6NXcXYqxE698HGLBXYWtiexJWl6MZG3G/fbv4GzqUb/6l9fgjcjzyW3O42Bh+Jg8PP2TW6DUV3dJAoKcuCPMvbhLsiDRU/DN3cbye1WQ+CRzXDTXOg+ofwLVprNRsuVEa/AYzuMivseE40e3Xt/hfcGwLFNZZ9vU+Hiku2uM5LWtmg9zLjf84ttxxWxWODrO2HtLPj4atiztHzzXEz6cWNB1v/daSS33XyMCyCPbIZRMys3uX0xnn7g7u3485aBEtxOlJyRw3u/G72VnhjWBndXvRwiIiIiIiIiUgv0fRS86hoVuG91h/9NNFoglIXVCj/FGC1AGnaDXg+U/bwursaCk2BUNR+NK/n4kXVGZbGHn9FTuqIa9zD6aeefNaqh3+gGv79mJI6b9oGJv8EN74F/44qfqzQmEwx40tje8CGcSb70+DPJMHcUrDUWheaKJ4zFQL3q2jcusxma9THapty1FOq2MPqpfzjM6Bl+OXlnjUpwgC632H7+8MIE94GVkHPG9uM3zIZDq4zt/Gz4fOy5yv+KSo6H2UOMBUq96hqfOnhsGwz7F/g3ss85ahhlVJ3ojdg9ZOUW0LmxP1d3bODscEREREREREREHMMrAO74yVjwz2qBrV/CzCj46g6j9++lbPsfxC802jVcN9P2XtXNehtV01hh4RNGNW6RoiRlmxEVXwARChebvMPY3vEdZJ6Aei1hzKcwYSE06lbxc1xO2GDjQkD+WVj91sXHHY0zqqgPrjQWgxwzD6587uKLcdpLSHtj0c/wYUay+Nv74McYyM+9+DG7foKcNPBvCs37237OoHAIaAYFubD/d9uOPX3w3MKmw18x2tBY8uDrCWVLzl/KobUweyikHYZ6Ycb3ZcATtrVuqYWU4HaS/SmZfL7uEABPj2iLqbwLKoiIiIiIiIiIVEch7WHcV0YSL+IawGq08ninD3wxrvR2FZkpsKiwIvmKJyCkXfnOPeQFI4l7NM7okQ1GonvHd8a2PdqTFOk8BvwagWeAkRC9fy20HVn+xTVtdX4V9/oPIOvUhWM2fgIfjoD0oxAYDhNjjQUgHcUrAG7+AgY+A5iMCumPrzb6XJfmz8LXrMvNti9OCcb3pLhNyc9lP85qNSrx8zKhWV/oeQ+M/sBYFNRqMZLza9+zPR6AnT/C3GuN9jmNusOdS4zFPOWylOB2ktd/jiffYmVgm/r0DitlQQMRERERERERkdqgYVcYOw/u/QPaXw+YYNePRjXxvJuMxQSLLHwCsk4afbT7PVb+c/qGwsCnje2l/4Szp+HIesg4ZiS+w66syDMqyasuPLgBHt8Dve6r2MKV5dV6OIR2hNwzsObtc/vzc41q6e8fNPp0t7kaJv7qnB7PZjMMfMpoieLpb7SLeXcAHPij5Li0I7BvmbHd+ebyny98qHG/Z4mRuC6LPz8xzu3qBde+acRsdjG2e91vjFn0BKz4j22xrJ8NX95mVLC3Hg63/1D6AqhSKiW4nWDT4VR+2nockwmeGh7h7HBERERERERERJwvtAPc+DE8sBY63gQms1Fd+8Fgoy/076/D9gVgcoHr3qp4ojjqHqgfYSTMf/3XJDhRRAAAE1RJREFUuertNiPAzbOiz6Ykd2/nJLaLmExGxTvA2neNBS8zEmHONUa1NCYY9KzROsXWBRvtrfUwo6o/uL3R0mXOSFj99rkk9ObPASs061f+BS8BmvczEtXpRy/fFgeMavKfnzW2r3wOAsPOPWYywbCXYcBTxtexLxgXTi6XOLdaIfZFo6e81QLdbjdaw1TRxRyrKiW4HcxqtTJt4U4AbujamLYNnPxHQ0RERERERESkKqnfBka/b1Q9d7nVSGjv+w1+fdF4vO8jRtV3Rbm4wYhXje0Ns2FzYf/kdtdVfO6qKGKkseBlTjosfNyojj68Fjz8jarpAU+Wr91HZajXEu5aAh1vBGsB/DwJ/neXsSBkUZ/r8iwueT43L2hxhbG955dLj7Va4YdHje9do+5GJf5fmUww6BkYUvhzuvK/xvf5/B7v5yvIg+8egBWFi54OfAZG/p/tPeVFCW5H+y3+BGv3n8Ld1UzM0NbODkdEREREREREpGoKDINRM+HhjcZCjWY3CO10rkrWHloOMNqiWC1GmxL3OtBqsP3mr0rMZrjicWN761dwJtFIeN/927l+1FWJuw/c8D4M/zeYXWHb1/B2Lzi1D9x87HMhonVRm5LLJLi3fGl8msDF3VjY9FILb/Z9GK6ZAZiMnuff3Q8F+SXH5JyBz8fCpnnGBZyRbxjtWbRGX7kowe1ABRYr/14UD8CEPs1pFODl5IhERERERERERKq4us2NytanDsBdS+3fPmToS+BW2BKi9XCjsreman+90ZYFjATxXUtLttqoakwm6HVvYU/qYEg7bOxvPwo86lR8/qI+3IfXGhc4SpORdG5h0wFPQXAZ2g13n2Ak500uRkuVr++A/BzjsTPJRmuYhKVGi5Sxn0Hk7RV+KrWZEtwO9L+NR4hPysDfy437B7ZydjgiIiIiIiIiItWHRx1w9bD/vP6NjVYlfo3PLRRYU5ld4PYf4Y6f4MY59kkSO0KzPnDP79Ckl1HN3XOifeYNaGpUsVstkBBb+piFj0N2qvHpgb6PlH3uTjfCmE+Mqu+dP8DnNxu9vmcPgWN/gncg3PEjtBlul6dSm5UrwT1z5kyaN2+Op6cnUVFRrFu37qJjBw4ciMlkuuB29dVXF4+54447Lnh8+PCSL+6pU6cYN24cfn5+BAQEcOedd3LmzJnyhO8U2XkF/HfJbgAeGBSGv7ebkyMSEREREREREREAut0GMduhcaSzI6l8deobCyxWt3YYfg3g74uNSn579GAvcqk2Jdu/hZ3fG0n162YafdttEXE13PKl8QmBvbHwTh84vR8CmsHff4HG3SscvpQjwT1//nxiYmKYMmUKGzdupHPnzgwbNowTJ06UOn7BggUcP368+LZt2zZcXFy48cYbS4wbPnx4iXGff/55icfHjRvH9u3bWbJkCT/++CO///47d999t63hO81HfxzgeFo2jQK8GN+7ubPDERERERERERERqV5MJvDwte+cRW1KEpaCpeDc/syTRvU2QL8YaNCpfPOHDYLbvjUW8wRo0BnuXAJB6u5gLzYvyzl9+nQmTpzIhAkTAJg1axY//fQTH374IU8//fQF4+vVq1fi6y+++AJvb+8LEtweHh6EhoaWes6dO3eyePFi1q9fT/fuxpWNN998k6uuuorXX3+dhg0b2vo0HOp0Zi5vL0sAIGZIazzdLtGIXkRERERERERERByjSZSRfM46CUc3QpMexv7FT0NmMgS3gyueqNg5mkbBxFjY+yt0ucX+SfpazqYK7tzcXOLi4oiOjj43gdlMdHQ0q1evLtMcs2fPZuzYsfj4+JTYv2zZMoKDg2nTpg333XcfJ0+eLH5s9erVBAQEFCe3AaKjozGbzaxdu9aWp+AUM39LICM7n4hQX0Z1beTscERERERERERERASMtiNhg4ztojYl8Ytg65dgMsN1b4Gre8XPExQOUfcouV0JbEpwp6SkUFBQQEhISIn9ISEhJCYmXvb4devWsW3bNu66664S+4cPH87cuXOJjY3l3//+N8uXL2fEiBEUFBgfC0hMTCQ4OLjEMa6urtSrV++i583JySE9Pb3EzRkOn8pi7uqDADw9IgIXczXrbyQiIiIiIiIiIlKTtR5m3O/5Gc6mwo+PGV/3eQga1YK+7NWczS1KKmL27Nl07NiRnj17ltg/duzY4u2OHTvSqVMnwsLCWLZsGYMHDy7XuaZNm8bUqVMrFK89TF+ym9wCC33CAhnQur6zwxEREREREREREZHztSrsVnF8M3x7H2Qch8BWMHCSc+OSMrGpgjsoKAgXFxeSkpJK7E9KSrpo/+wimZmZfPHFF9x5552XPU/Lli0JCgoiIcHoWx0aGnrBIpb5+fmcOnXqouedNGkSaWlpxbfDhw9f9rz2tv1YGt9uOmrEM6Itpuq2Oq2IiIiIiIiIiEhNVycYGnYztuMXAia4bia4eTk1LCkbmxLc7u7uREZGEhsbW7zPYrEQGxtL7969L3nsV199RU5ODrfeeutlz3PkyBFOnjxJgwYNAOjduzepqanExcUVj/n111+xWCxERUWVOoeHhwd+fn4lbo72yqJdWK0wsnNDOjb2d/j5RUREREREREREpAzCh57bjroHmvZyXixiE5sS3AAxMTG8//77zJkzh507d3LfffeRmZnJhAkTABg/fjyTJl1Yvj979mxGjRpFYGBgif1nzpzhiSeeYM2aNRw4cIDY2Fiuu+46WrVqxbBhRv+btm3bMnz4cCZOnMi6dev4448/ePDBBxk7diwNGzYsz/OudHuSMliZkIKbi4knhrZxdjgiIiIiIiIiIiJyMe2uNRaVrNsCrnze2dGIDWzuwT1mzBiSk5OZPHkyiYmJdOnShcWLFxcvPHno0CHM5pJ58/j4eFauXMkvv/xywXwuLi5s2bKFOXPmkJqaSsOGDRk6dCgvvvgiHh4exePmzZvHgw8+yODBgzGbzYwePZo33njD1vAdJjzEl4UP92fT4VSaBno7OxwRERERERERERG5mJD2cO9KqBMKHnWcHY3YwGS1Wq3ODsIR0tPT8ff3Jy0tzSntSkRERESkcuh9Xu2l115ERESkZrLlfZ7NLUpERERERERERERERKoCJbhFREREREREREREpFpSgltEREREREREREREqiUluEVERERERERERESkWlKCW0RERERERERERESqJSW4RURERERERERERKRaUoJbRERERERERERERKolJbhFREREREREREREpFpSgltEREREREREREREqiUluEVERERERERERESkWlKCW0RERERERERERESqJSW4RURERERERERERKRaUoJbRERERERERERERKolJbhFREREREREREREpFpSgltEREREREREREREqiUluEVERERERERERESkWlKCW0RERERERERERESqJVdnB+AoVqsVgPT0dCdHIiIiIiL2VPT+ruj9ntQeeo8vIiIiUjPZ8h6/1iS4MzIyAGjSpImTIxERERGRypCRkYG/v7+zwxAH0nt8ERERkZqtLO/xTdZaUupisVg4duwYvr6+mEwmh5wzPT2dJk2acPjwYfz8/BxyTql8el1rHr2mNZNe15pJr2vNY4/X1Gq1kpGRQcOGDTGb1YGvNtF7fLEXva41j17Tmkmva82k17XmcfR7/FpTwW02m2ncuLFTzu3n56df0BpIr2vNo9e0ZtLrWjPpda15KvqaqnK7dtJ7fLE3va41j17Tmkmva82k17XmcdR7fJW4iIiIiIiIiIiIiEi1pAS3iIiIiIiIiIiIiFRLSnBXIg8PD6ZMmYKHh4ezQxE70uta8+g1rZn0utZMel1rHr2mUt3oZ7Zm0uta8+g1rZn0utZMel1rHke/prVmkUkRERERERERERERqVlUwS0iIiIiIiIiIiIi1ZIS3CIiIiIiIiIiIiJSLSnBLSIiIiIiIiIiIiLVkhLcIiIiIiIiIiIiIlItKcFdiWbOnEnz5s3x9PQkKiqKdevWOTskKaPff/+dkSNH0rBhQ0wmE99++22Jx61WK5MnT6ZBgwZ4eXkRHR3Nnj17nBOslNm0adPo0aMHvr6+BAcHM2rUKOLj40uMyc7O5oEHHiAwMJA6deowevRokpKSnBSxXM4777xDp06d8PPzw8/Pj969e7No0aLix/V61gyvvPIKJpOJRx99tHifXtvq55///Ccmk6nELSIiovhxvaZSHej9ffWm9/g1j97f10x6j1/z6f19zVCV3t8rwV1J5s+fT0xMDFOmTGHjxo107tyZYcOGceLECWeHJmWQmZlJ586dmTlzZqmPv/rqq7zxxhvMmjWLtWvX4uPjw7Bhw8jOznZwpGKL5cuX88ADD7BmzRqWLFlCXl4eQ4cOJTMzs3jMY489xg8//MBXX33F8uXLOXbsGDfccIMTo5ZLady4Ma+88gpxcXFs2LCBK6+8kuuuu47t27cDej1rgvXr1/Puu+/SqVOnEvv12lZP7du35/jx48W3lStXFj+m11SqOr2/r/70Hr/m0fv7mknv8Ws2vb+vWarM+3urVIqePXtaH3jggeKvCwoKrA0bNrROmzbNiVFJeQDWb775pvhri8ViDQ0Ntb722mvF+1JTU60eHh7Wzz//3AkRSnmdOHHCCliXL19utVqN19HNzc361VdfFY/ZuXOnFbCuXr3aWWGKjerWrWv94IMP9HrWABkZGdbw8HDrkiVLrAMGDLA+8sgjVqtVv6vV1ZQpU6ydO3cu9TG9plId6P19zaL3+DWT3t/XXHqPXzPo/X3NUpXe36uCuxLk5uYSFxdHdHR08T6z+f/bu5+XqNY4juOfe52OWdnYVMxoMcNEZUQUNOI0RLSYNhJBrSRcDNWuURRp00IiCNr24w+olUgEErSpMHNVEcaALpImBIO0aJGl9AvnuYtLB4biFtyRc57H9wsGZs45yBc+HPjwXTz+rSNHjujx48cBToZamJ6e1tzcXFW+0WhU2WyWfC0zPz8vSYrFYpKk8fFxff/+vSrbXbt2KZlMkq0FlpaWNDQ0pMXFReVyOfJ0QLFY1NGjR6sylHhXbfby5Uu1tLRo27Zt6urq0szMjCQyRfjR791Hx3cD/d49dHy30O/dE5Z+H6n5X4Tev3+vpaUlxePxquvxeFwvXrwIaCrUytzcnCT9Mt8f9xB+lUpFfX19OnjwoPbs2SPp32w9z1NTU1PVs2QbbhMTE8rlcvry5YvWrVun4eFh7d69W6VSiTwtNjQ0pOfPn+vZs2c/3eNdtVM2m9XNmzfV2tqq2dlZXbx4UYcOHdLk5CSZIvTo9+6j49uPfu8WOr576PfuCVO/Z8ENYEUqFouanJysOh8KdmptbVWpVNL8/Lxu376tQqGgsbGxoMfC//D69Wv19vbqwYMHWr16ddDjoEY6Ojr873v37lU2m1UqldKtW7fU0NAQ4GQAABfQ791Cx3cL/d5NYer3HFGyDDZt2qS6urqf/jPo27dvlUgkApoKtfIjQ/K1V3d3t+7evavR0VFt3brVv55IJPTt2zd9+PCh6nmyDTfP87R9+3ZlMhldvnxZ+/bt09WrV8nTYuPj43r37p3279+vSCSiSCSisbExXbt2TZFIRPF4nGwd0NTUpJ07d6pcLvO+IvTo9+6j49uNfu8eOr5b6PcrQ5D9ngX3MvA8T5lMRiMjI/61SqWikZER5XK5ACdDLaTTaSUSiap8P378qKdPn5JvyBlj1N3dreHhYT18+FDpdLrqfiaT0apVq6qynZqa0szMDNlapFKp6OvXr+RpsXw+r4mJCZVKJf/T1tamrq4u/zvZ2m9hYUGvXr1Sc3Mz7ytCj37vPjq+nej3Kwcd3270+5UhyH7PESXLpL+/X4VCQW1tbWpvb9eVK1e0uLioU6dOBT0a/sDCwoLK5bL/e3p6WqVSSbFYTMlkUn19fbp06ZJ27NihdDqtgYEBtbS06Pjx48ENjd8qFosaHBzUnTt31NjY6J/7FI1G1dDQoGg0qjNnzqi/v1+xWEzr169XT0+PcrmcDhw4EPD0+JXz58+ro6NDyWRSnz590uDgoB49eqR79+6Rp8UaGxv9szN/WLt2rTZu3OhfJ1v7nDt3TseOHVMqldKbN2904cIF1dXV6eTJk7yvsAL93n50fPfQ791Ex3cP/d5Noer3Bsvm+vXrJplMGs/zTHt7u3ny5EnQI+EPjY6OGkk/fQqFgjHGmEqlYgYGBkw8Hjf19fUmn8+bqampYIfGb/0qU0nmxo0b/jOfP382Z8+eNRs2bDBr1qwxJ06cMLOzs8ENjf90+vRpk0qljOd5ZvPmzSafz5v79+/798nTHYcPHza9vb3+b7K1T2dnp2lubjae55ktW7aYzs5OUy6X/ftkChvQ7+1Gx3cP/d5NdPyVgX5vvzD1+7+MMab2a3MAAAAAAAAAAJYXZ3ADAAAAAAAAAKzEghsAAAAAAAAAYCUW3AAAAAAAAAAAK7HgBgAAAAAAAABYiQU3AAAAAAAAAMBKLLgBAAAAAAAAAFZiwQ0AAAAAAAAAsBILbgAAAAAAAACAlVhwAwAAAAAAAACsxIIbAAAAAAAAAGAlFtwAAAAAAAAAACux4AYAAAAAAAAAWOkfVjknue7urnUAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "Classification Report:\n", + " precision recall f1-score support\n", + "\n", + " 0 0.88 0.58 0.70 12\n", + " 1 0.93 0.98 0.96 66\n", + "\n", + " accuracy 0.92 78\n", + " macro avg 0.90 0.78 0.83 78\n", + "weighted avg 0.92 0.92 0.92 78\n", + "\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Display sample predictions\n", + "print(\"First 5 Predictions:\", y_pred[:5].flatten())\n", + "print(\"First 5 Actual Values:\", y_test[:5].values)\n" + ], + "metadata": { + "id": "CmTx8L7f96bg", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "0cd1d5f1-6d9e-4212-a7ef-faa428a33d32" + }, + "execution_count": 27, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "First 5 Predictions: [1 1 1 1 0]\n", + "First 5 Actual Values: [0 1 1 1 0]\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "

Problem 2 : Predict User Behavior

\n", + "\n", + "* Model 1: Deep Neural Network (DNN)\n", + "* Model 2: Long Short-Term Memory (LSTM)\n", + "\n", + "* Model 3: Gated Recurrent Unit (GRU)\n" + ], + "metadata": { + "id": "Gs24Mn0RnJ9l" + } + }, + { + "cell_type": "code", + "source": [ + "# Ensure all entries in 'Reviews' are converted to strings\n", + "data['Reviews'] = data['Reviews'].astype(str)\n", + "\n", + "# Clean the 'Reviews' column by removing 'Nil' entries and stripping spaces\n", + "data['Reviews'] = data['Reviews'].str.strip().replace(['Nil', 'nil', 'NIL'], np.nan)\n", + "\n", + "# Drop rows with missing reviews\n", + "data = data.dropna(subset=['Reviews'])" + ], + "metadata": { + "id": "jux2EYWWqNq6" + }, + "execution_count": 28, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "positive_words = ['good', 'improved', 'happy', 'love', 'satisfied', 'okay', 'best', 'no issues', 'quick']\n", + "\n", + "def label_review(review):\n", + " review = review.lower()\n", + " if any(word in review for word in positive_words):\n", + " return 1 # Positive review\n", + " else:\n", + " return 0 # Negative review\n", + "\n", + "data['Sentiment'] = data['Reviews'].apply(label_review)" + ], + "metadata": { + "id": "J1Codx7bnMxE", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "28cacf6f-0731-4c0e-8369-84d691f265b6" + }, + "execution_count": 29, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + ":10: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " data['Sentiment'] = data['Reviews'].apply(label_review)\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "print(data['Reviews'].head())" + ], + "metadata": { + "id": "mBFq_J3ZvG0E", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "35da5309-09b8-4f3c-efc2-2f999df0c903" + }, + "execution_count": 30, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2 Many a times payment gateways are an issue, so...\n", + "11 Language barrier is also one major issue. Mosl...\n", + "17 Spillage, bad packaging and missing items\n", + "18 Once my order from kfc got exchanged with some...\n", + "22 I feel Swiggy has a good interface for users a...\n", + "Name: Reviews, dtype: object\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "print(data['Sentiment'].head())" + ], + "metadata": { + "id": "wXEbGTw2vqU_", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "af0c957b-1989-47e7-aa8f-17ce504dcb81" + }, + "execution_count": 31, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2 0\n", + "11 0\n", + "17 0\n", + "18 0\n", + "22 1\n", + "Name: Sentiment, dtype: int64\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "**Model 1: Deep Neural Network (DNN)**" + ], + "metadata": { + "id": "is1zu2u3SzLk" + } + }, + { + "cell_type": "code", + "source": [ + "# Tokenization and Padding\n", + "tokenizer = Tokenizer(num_words=5000, oov_token=\"\") # Tokenize top 5000 words\n", + "tokenizer.fit_on_texts(data['Reviews'])\n", + "sequences = tokenizer.texts_to_sequences(data['Reviews'])\n", + "padded_sequences = pad_sequences(sequences, maxlen=100, padding='post')\n", + "\n", + "# Train-Test Split\n", + "X_train, X_test, y_train, y_test = train_test_split(padded_sequences, data['Sentiment'], test_size=0.2, random_state=42)" + ], + "metadata": { + "id": "JTklJ-ZM7VPU" + }, + "execution_count": 32, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Build the Deep Neural Network Model\n", + "model_dnn = Sequential([\n", + " Embedding(input_dim=5000, output_dim=64, input_length=100),\n", + " Bidirectional(LSTM(64, return_sequences=True)),\n", + " Dropout(0.5),\n", + " Bidirectional(LSTM(32)),\n", + " Dense(32, activation='relu'),\n", + " Dropout(0.5),\n", + " Dense(1, activation='sigmoid') # Binary classification\n", + "])\n", + "\n", + "# Compile the Model\n", + "model_dnn.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])\n", + "\n", + "# Train the Model\n", + "history_dnn = model_dnn.fit(X_train, y_train, epochs=10, validation_data=(X_test, y_test), batch_size=16)\n", + "\n", + "# Evaluate the Model\n", + "loss, accuracy = model_dnn.evaluate(X_test, y_test)\n", + "print(f\"Test Accuracy: {accuracy:.2f}\")\n", + "\n", + "# Predict on test data\n", + "y_pred = (model_dnn.predict(X_test) > 0.5).astype(\"int32\") # Threshold at 0.5\n", + "\n", + "# Accuracy and Loss curves\n", + "result=pd.DataFrame(history_dnn.history)\n", + "fig, ax=plt.subplots(nrows=1, ncols=2,figsize=(18,6))\n", + "ax=ax.flatten()\n", + "ax[0].plot(result[['accuracy','val_accuracy']])\n", + "ax[0].set_title(\"Accuracy\")\n", + "ax[1].plot(result[['loss','val_loss']])\n", + "ax[1].set_title(\"Loss\")\n", + "\n", + "plt.show()\n", + "\n", + "# Classification Report\n", + "print(\"\\nClassification Report:\\n\", classification_report(y_test, y_pred))" + ], + "metadata": { + "id": "VpV-SBXmSto2", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "outputId": "a3d267a2-0eae-42dc-efb5-3953c47ce551" + }, + "execution_count": 33, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/10\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/embedding.py:90: UserWarning: Argument `input_length` is deprecated. Just remove it.\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m13s\u001b[0m 359ms/step - accuracy: 0.5232 - loss: 0.6913 - val_accuracy: 0.6531 - val_loss: 0.6712\n", + "Epoch 2/10\n", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 162ms/step - accuracy: 0.6249 - loss: 0.6736 - val_accuracy: 0.6531 - val_loss: 0.6452\n", + "Epoch 3/10\n", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 160ms/step - accuracy: 0.6575 - loss: 0.6555 - val_accuracy: 0.6531 - val_loss: 0.6520\n", + "Epoch 4/10\n", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 161ms/step - accuracy: 0.7409 - loss: 0.6318 - val_accuracy: 0.7347 - val_loss: 0.5989\n", + "Epoch 5/10\n", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 186ms/step - accuracy: 0.8986 - loss: 0.5021 - val_accuracy: 0.8571 - val_loss: 0.3891\n", + "Epoch 6/10\n", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 289ms/step - accuracy: 0.9734 - loss: 0.1812 - val_accuracy: 0.8367 - val_loss: 0.4719\n", + "Epoch 7/10\n", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 162ms/step - accuracy: 0.9824 - loss: 0.1630 - val_accuracy: 0.8571 - val_loss: 0.4902\n", + "Epoch 8/10\n", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 162ms/step - accuracy: 0.9960 - loss: 0.0746 - val_accuracy: 0.8367 - val_loss: 0.6595\n", + "Epoch 9/10\n", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 164ms/step - accuracy: 0.9956 - loss: 0.0543 - val_accuracy: 0.8367 - val_loss: 0.7016\n", + "Epoch 10/10\n", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 163ms/step - accuracy: 0.9975 - loss: 0.0279 - val_accuracy: 0.8367 - val_loss: 0.6956\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - accuracy: 0.8391 - loss: 0.6946\n", + "Test Accuracy: 0.84\n", + "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 954ms/step\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABaYAAAIQCAYAAAB607l0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC4AElEQVR4nOzdd3gU5frG8e/upndCCi0QErogvfciKPaCYENR8IhdLEfs9fA7Fo6oKIpgRcHeUFqQ3psUaaEllAQCaaRnd39/TEiIBEnZZJPs/bmuvTKZnXn3WeacOLnz7vuY7Ha7HRERERERERERERGRKmJ2dgEiIiIiIiIiIiIi4loUTIuIiIiIiIiIiIhIlVIwLSIiIiIiIiIiIiJVSsG0iIiIiIiIiIiIiFQpBdMiIiIiIiIiIiIiUqUUTIuIiIiIiIiIiIhIlVIwLSIiIiIiIiIiIiJVSsG0iIiIiIiIiIiIiFQpBdMiIiIiIiIiIiIiUqUUTIuIiIiIiIiIiIhIlVIwLSJylvfeew+TyUT37t2dXYqIiIiIiFQTn3zyCSaTiQ0bNji7FBGRWkPBtIjIWWbNmkVkZCTr1q0jNjbW2eWIiIiIiIiIiNRKCqZFRAocOHCAVatWMXnyZEJDQ5k1a5azSypRRkaGs0sQEREREREREakQBdMiIgVmzZpFnTp1uPzyy7nhhhtKDKZTUlJ45JFHiIyMxNPTk0aNGjF69GiSkpIKj8nOzuaFF16gRYsWeHl5Ub9+fa677jr27dsHwJIlSzCZTCxZsqTY2AcPHsRkMvHJJ58U7rvjjjvw8/Nj3759DB8+HH9/f2655RYAli9fzogRI2jcuDGenp5ERETwyCOPkJWVdU7du3bt4sYbbyQ0NBRvb29atmzJ008/DcAff/yByWTihx9+OOe8L7/8EpPJxOrVq8v87ykiIiIi4ko2b97MZZddRkBAAH5+fgwePJg1a9YUOyYvL48XX3yR5s2b4+XlRd26denTpw8LFy4sPCYhIYExY8bQqFEjPD09qV+/PldffTUHDx6s4nckIlK53JxdgIhIdTFr1iyuu+46PDw8uOmmm3j//fdZv349Xbt2BeD06dP07duXnTt3cuedd9KpUyeSkpL4+eefOXz4MCEhIVitVq644gpiYmIYNWoUDz30EOnp6SxcuJDt27cTHR1d5rry8/MZNmwYffr04Y033sDHxweAb775hszMTMaPH0/dunVZt24d77zzDocPH+abb74pPH/r1q307dsXd3d37r77biIjI9m3bx+//PILr776KgMGDCAiIoJZs2Zx7bXXnvNvEh0dTc+ePSvwLysiIiIiUrvt2LGDvn37EhAQwBNPPIG7uzsffPABAwYMYOnSpYU9bF544QUmTZrE2LFj6datG2lpaWzYsIFNmzZxySWXAHD99dezY8cOHnjgASIjIzl+/DgLFy4kLi6OyMhIJ75LERHHUjAtIgJs3LiRXbt28c477wDQp08fGjVqxKxZswqD6ddff53t27fz/fffFwtwn3nmGex2OwCfffYZMTExTJ48mUceeaTwmCeffLLwmLLKyclhxIgRTJo0qdj+//73v3h7exd+f/fdd9OsWTOeeuop4uLiaNy4MQAPPPAAdrudTZs2Fe4D+L//+z8ATCYTt956K5MnTyY1NZXAwEAATpw4wYIFCwpnVouIiIiISMmeeeYZ8vLyWLFiBVFRUQCMHj2ali1b8sQTT7B06VIA5s6dy/Dhw/nwww9LHCclJYVVq1bx+uuv89hjjxXunzhxYuW/CRGRKqalPEREMGYGh4eHM3DgQMAIa0eOHMns2bOxWq0AfPfdd7Rv3/6cWcVnjj9zTEhICA888MB5jymP8ePHn7Pv7FA6IyODpKQkevXqhd1uZ/PmzYARLi9btow777yzWCj993pGjx5NTk4O3377beG+OXPmkJ+fz6233lruukVEREREajur1cqCBQu45pprCkNpgPr163PzzTezYsUK0tLSAAgKCmLHjh3s3bu3xLG8vb3x8PBgyZIlJCcnV0n9IiLOomBaRFye1Wpl9uzZDBw4kAMHDhAbG0tsbCzdu3cnMTGRmJgYAPbt20fbtm3/cax9+/bRsmVL3Nwc94EUNzc3GjVqdM7+uLg47rjjDoKDg/Hz8yM0NJT+/fsDkJqaCsD+/fsBLlh3q1at6Nq1a7F1tWfNmkWPHj1o1qyZo96KiIiIiEitc+LECTIzM2nZsuU5z7Vu3RqbzUZ8fDwAL730EikpKbRo0YJ27drx+OOPs3Xr1sLjPT09+e9//8vvv/9OeHg4/fr147XXXiMhIaHK3o+ISFVRMC0iLm/x4sUcO3aM2bNn07x588LHjTfeCFBiE8SKON/M6TMzs//O09MTs9l8zrGXXHIJc+fO5d///jc//vgjCxcuLGycaLPZylzX6NGjWbp0KYcPH2bfvn2sWbNGs6VFRERERByoX79+7Nu3j5kzZ9K2bVs++ugjOnXqxEcffVR4zMMPP8yePXuYNGkSXl5ePPvss7Ru3brwU5EiIrWF1pgWEZc3a9YswsLCmDp16jnPff/99/zwww9MmzaN6Ohotm/f/o9jRUdHs3btWvLy8nB3dy/xmDp16gDG+nFnO3ToUKlr3rZtG3v27OHTTz9l9OjRhfvP7uYNFH6U8EJ1A4waNYoJEybw1VdfkZWVhbu7OyNHjix1TSIiIiIirig0NBQfHx927959znO7du3CbDYTERFRuC84OJgxY8YwZswYTp8+Tb9+/XjhhRcYO3Zs4THR0dE8+uijPProo+zdu5cOHTrw5ptv8sUXX1TJexIRqQqaMS0iLi0rK4vvv/+eK664ghtuuOGcx/333096ejo///wz119/PX/++Sc//PDDOeOcaWx4/fXXk5SUxLvvvnveY5o0aYLFYmHZsmXFnn/vvfdKXbfFYik25pntKVOmFDsuNDSUfv36MXPmTOLi4kqs54yQkBAuu+wyvvjiC2bNmsWll15KSEhIqWsSEREREXFFFouFoUOH8tNPP3Hw4MHC/YmJiXz55Zf06dOHgIAAAE6ePFnsXD8/P5o1a0ZOTg4AmZmZZGdnFzsmOjoaf3//wmNERGoLzZgWEZf2888/k56ezlVXXVXi8z169CA0NJRZs2bx5Zdf8u233zJixAjuvPNOOnfuzKlTp/j555+ZNm0a7du3Z/To0Xz22WdMmDCBdevW0bdvXzIyMli0aBH33nsvV199NYGBgYwYMYJ33nkHk8lEdHQ0v/76K8ePHy913a1atSI6OprHHnuMI0eOEBAQwHfffVdig5S3336bPn360KlTJ+6++26aNm3KwYMHmTt3Llu2bCl27OjRo7nhhhsAePnll0v/DykiIiIi4gJmzpzJvHnzztn/wgsvsHDhQvr06cO9996Lm5sbH3zwATk5Obz22muFx7Vp04YBAwbQuXNngoOD2bBhA99++y33338/AHv27GHw4MHceOONtGnTBjc3N3744QcSExMZNWpUlb1PEZGqoGBaRFzarFmz8PLy4pJLLinxebPZzOWXX86sWbPIyclh+fLlPP/88/zwww98+umnhIWFMXjw4MLmhBaLhd9++41XX32VL7/8ku+++466devSp08f2rVrVzjuO++8Q15eHtOmTcPT05Mbb7yR119//YJNCs9wd3fnl19+4cEHHyxce+7aa6/l/vvvp3379sWObd++PWvWrOHZZ5/l/fffJzs7myZNmhSuoX22K6+8kjp16mCz2c4b1ouIiIiIuKr333+/xP133HEHy5cvZ+LEiUyaNAmbzUb37t354osv6N69e+FxDz74ID///DMLFiwgJyeHJk2a8Morr/D4448DEBERwU033URMTAyff/45bm5utGrViq+//prrr7++St6jiEhVMdn//lluERFxWfn5+TRo0IArr7ySGTNmOLscEREREREREamltMa0iIgU+vHHHzlx4kSxhooiIiIiIiIiIo6mGdMiIsLatWvZunUrL7/8MiEhIWzatMnZJYmIiIiIiIhILaYZ0yIiwvvvv8/48eMJCwvjs88+c3Y5IiIiIiIiIlLLaca0iIiIiIiIiIiIiFQpzZgWERERERERERERkSqlYFpEREREREREREREqpSbswsoDZvNxtGjR/H398dkMjm7HBERERFxELvdTnp6Og0aNMBs1pwJV6J7fBEREZHaqbT3+DUimD569CgRERHOLkNEREREKkl8fDyNGjVydhlShXSPLyIiIlK7Xegev0YE0/7+/oDxZgICApxcjYiIiIg4SlpaGhEREYX3e+I6dI8vIiIiUjuV9h6/RgTTZz7aFxAQoJtWERERkVpISzm4Ht3ji4iIiNRuF7rH10J+IiIiIiIiIiIiIlKlFEyLiIiIiIiIiIiISJVSMC0iIiIiIiIiIiIiVUrBtIiIiIiIiIiIiIhUKQXTIiIiIiIiIiIiIlKlFEyLiIiIiIiIiIiISJVSMC0iIiIiIiIiIiIiVUrBtIiIiIiIiIiIiIhUKQXTIiIiIiIiIiIiIlKlyhxML1u2jCuvvJIGDRpgMpn48ccfL3jOkiVL6NSpE56enjRr1oxPPvmkHKWKiIiIiIiIiIiISG1Q5mA6IyOD9u3bM3Xq1FIdf+DAAS6//HIGDhzIli1bePjhhxk7dizz588vc7EiIiIiIiIiIiIiUvO5lfWEyy67jMsuu6zUx0+bNo2mTZvy5ptvAtC6dWtWrFjB//73P4YNG1bWlxcRERERERERERGRGq7S15hevXo1Q4YMKbZv2LBhrF69+rzn5OTkkJaWVuwhIiIiIiIiIiIiIrVDpQfTCQkJhIeHF9sXHh5OWloaWVlZJZ4zadIkAgMDCx8RERGVXaaIiIiIiIiIiIiIVJFKD6bLY+LEiaSmphY+4uPjnV2SiIiIiIiIiIiIiDhIpQfT9erVIzExsdi+xMREAgIC8Pb2LvEcT09PAgICij1ERERERKTyTJ06lcjISLy8vOjevTvr1q0777EDBgzAZDKd87j88sursGIRERERqckqPZju2bMnMTExxfYtXLiQnj17VvZLi4iIiIhIKcyZM4cJEybw/PPPs2nTJtq3b8+wYcM4fvx4icd///33HDt2rPCxfft2LBYLI0aMqOLKRURERKSmcivrCadPnyY2Nrbw+wMHDrBlyxaCg4Np3LgxEydO5MiRI3z22WcA3HPPPbz77rs88cQT3HnnnSxevJivv/6auXPnOu5diIiIiPwDu91Oek4+yRm5JGfmkZyZW7idkpnLqYxcUgr25+bbnF2u080a1x1PN4uzy5AqNHnyZMaNG8eYMWMAmDZtGnPnzmXmzJk8+eST5xwfHBxc7PvZs2fj4+OjYFpERESqD5sVYhfBllmQnQqeAeAVAJ6BxlevwLP2nf21YL+bh7PfQa1X5mB6w4YNDBw4sPD7CRMmAHD77bfzySefcOzYMeLi4gqfb9q0KXPnzuWRRx5hypQpNGrUiI8++ohhw4Y5oHwRERFxNVabnZTMolA5OTOvIGQuvp2SmcepzFxSCrbzbXZnl15j2PVP5VJyc3PZuHEjEydOLNxnNpsZMmQIq1evLtUYM2bMYNSoUfj6+p73mJycHHJycgq/T0tLK3/RIiIiIueTkQSbP4cNMyEl7sLHn4+bdwmh9d/Ca6/A8xxTsN/i7rj3VQuVOZgeMGAA9n/4beWTTz4p8ZzNmzeX9aVERESklsvJtxbOVE7OKPh6JlQ+K2A+e4ZzWnZeuYNTb3cLdXzcCfLxoI6vO3V8PAoe7tTxNba93Ktlb+gq5W7Rv4ErSUpKwmq1Eh4eXmx/eHg4u3btuuD569atY/v27cyYMeMfj5s0aRIvvvhihWoVERERKZHdDofXw/qPYMcPYM019nsFQcdbod7FkJNmzJw+8zU7rWD7b19zTxvn5mfB6Sw4nXjel70gd5/zBNtnBdwXmrltKXN8W2PU3ncmIiIiVcZut5OZay0WJJ+9PEaxJTQKQuiUzFwycq3lfk1/L7dzQuUgn4Kw2bdg/5nguSCE9nLX8hQijjZjxgzatWtHt27d/vG4iRMnFn7aEowZ0xEREZVdnoiIiNRmuRmw7RsjkE7YVrS/QSfoOhbaXgfu3mUb02a9QHh99v7zHJOXYYyVl2k8TieU/z26+/5DsH1mdvb5Zm4HVOtwu3pWJSIiIk5js9lJz84vCpHPms189vIYZ89wTs7MK/fazGYTBJ0dKv8tbC6c4ezjTrCvR+GxmtUr4hghISFYLBYSE4vPBkpMTKRevXr/eG5GRgazZ8/mpZdeuuDreHp64unpWaFaRURERAA4sQc2zIAtXxphMICbF7S9AbreCQ07l39sswW86xiP8rLmG3VVJODOyzTGysswHunHyl+Pdx3498Hyn19JFEyLiIgAp3Py+Xp9PF+sPcSJ9JwLn1Bb2SEzz4q1nOsxe1jMZ81adi+YxVw8VP576Bzg5Y7ZbHLwGxGR0vLw8KBz587ExMRwzTXXAGCz2YiJieH+++//x3O/+eYbcnJyuPXWW6ugUhEREXFp1jzYNdeYHX1wedH+4Cjochd0uBl8gs9/flWyuBm1VKQeax7kpF9g+ZHUc78/+5j8LGMsU/Wc1KNgWkREXFpiWjafrDrIrDWHSMvOd3Y51YqPh6VweYxiofJZ4XKQjwfBZ2Y7+3rg62HBZFLILFLTTJgwgdtvv50uXbrQrVs33nrrLTIyMhgzZgwAo0ePpmHDhkyaNKnYeTNmzOCaa66hbt26zihbREREXEHaUdj4KWz8pGhJDJMZWlwGXe+CqIFgrp7Ba4VY3CsebufnGuH2maVFqhkF0yIi4pJ2JaQxfdkBfv7zCHlWY3Zw0xBfxvZtSo+ourhytOrj4UaQj7vWYxZxISNHjuTEiRM899xzJCQk0KFDB+bNm1fYEDEuLg7z337h2717NytWrGDBggXOKFlERERqM7sdDiwzZkfvmgv2gt40vmHQ+XbodDsEqVfFBbl5gFtdoHpOIjDZ7eXta1910tLSCAwMJDU1lYCAAGeXIyIiNZTdbmdl7Ek+XL6fZXtOFO7vFhnMuH5RDG4VpiUlRKqY7vNcV1Vf+7lbj7HuwEka1fGhUR1vIoKNr4He7vqkh4iISHWRlQJ/zjbWj07aU7S/SW9jdnSrK42wVaq10t7naca0iIjUern5Nn7depQPl+1nV0I6YDTcu6xtfcb2bUrHxhVoaiEiIjXCitgTfLUu/pz9fp5uNKrjXfDwKfY1oo4PgT7uTqhWRETExRzbasyO3vZNUdM/Dz9oP8pYPzq8jXPrk0qhYFpERGqt1Kw8vloXx8crD5CYZjQ09PGwcGOXCO7q05SIYB8nVygiIlVlaJt6BPl4cDg5i8PJmRxOzuJEeg6nc/LZlZBe+IfLv/P3cjsrsC4eWjcK9ibAS8G1iIhIueRlw18/GYH04XVF+8PaGLOjLx4Jnv7Oq08qnYJpERGpdQ4nZ/LxyoPMXhdHRq6xFlmovyd39Irklu6NCfLRR79ERFzNwFZhDGwVVmxfdp61WFB9Zjs+OYsjyZkknc4lPTufncfS2HksrcRxA84Krs8sD3J2kO2v4FpERKS45IOwYSZs+hyyThn7zO7Q5iroOhYa9wQts+USFEyLiEitse1wKh8u389v245htRktFFqE+zGubxRXdWiAp5ua+YmISBEvdwvNwvxoFuZX4vNZuVaOpBhB9eHkLA6fyiwWZJ/MyCUtO5+/jqXx13mC6yAfdyOkDio+6zoi2IeGdbzx89SvZCIi4gJsVohdZMyO3rsQKGh5F9AIutwBHUeDf7gzKxQn0F2QiIjUaDabnSV7jvPhsv2s2X+qcH/vZnUZ1zeK/i1C1dRKRETKxdvDQrMwf5qFlfwx4szc/JJnXJ8yviZn5pFS8Nh+pOTguo6PewkzrotmXft46Fc2ERGpwTKSYPPnxgzplLii/dGDjeU6mg8Di/5b56p05UVEpEbKzrPy4+YjfLTiALHHTwPgZjZxZfsGjO3blIsaBDq5QhERqe18PNxoEe5Pi/CSg+vTOfkcOSu4jj8z4zrF+JqSmUdyZh7JmalsO5Ja4hh1fT3OWR7EmHHtTcMgH7w99GkgERGpZux2OLzemB294wew5hr7vYKg463Q5U6oG+3UEqV6UDAtIiI1SnJGLl+sOcSnqw+SdNq4wfHzdOPm7o25o1ckDYK8nVyhiIiIwc/TjZb1/GlZr+TgOj07r9hM67/PuE7LzudkRi4nM3L583DJwXWInwcNz27I+LcZ117uCq5FRKSK5GbAtm+MQDphW9H+Bp2MtaPbXgfu+n1NiiiYFhGRGuFgUgYzVhzgm43xZOfZAGgQ6MWdfZoysmuEmkuJiEiN4+/lTuv67rSuH1Di86lZeYUzruP/vmTIqUzSc/JJOp1L0ulc/oxPKXGMUH/PwqC6QaAXnm5mTCYTZpMJixlMJhMWswmzCcyF+wu+N5sK9hV/zmSi4Jii5898f77nSnodsxksphKeM5uwmEqooWDbcs7roGW7RESc6cQe2DADtnwJOQVLV7l5QdsboOud0LCzc+uTakvBtIiIVGsbDyUzfdl+5v+VgL2gP8ZFDQK4u18Uw9vVx91idm6BIiIilSTQ251Ab3faNDh/cB3/t4aMRbOuM8nItXIiPYcT6Tlsjkup2uKrmKkg1C4ptD4TdHu6mbmsXX3+1T+KMH8vZ5csIlKzWfNg11xjdvTB5UX7g6Ogy13Q4WbwCXZefVIjKJgWEZFqx2qzs/CvBKYvP8DGQ8mF+we2DGVc3yh6RtfVzCgREXF5gd7uBDYMpG3Dc/sq2O12UrPyioXWx1KzybfasNrt2OxGA2Hb37atdox9Z763GWOdec5ut2M9c56Ngv3GGEXPnT2eHbudwnPO3j7z2kXjFZz7t+dKw24Hq92OlX8+fsaKA3yx5hC3dG/CPf2jCAtQQC0iUiZpR2Hjp7DxEzidYOwzmaHFZUYzw6iBYNbkISkdBdMiIlJtZOVa+XZjPB+tOMChk5kAeFjMXNOxAWP7Rp23uZSIiMgFbf0G/voRmvYzHqGtjGm2tZTJZCLIx4MgH48Sg+uapFjg/bfQuqTnjP0Ubp95Lv5UJlP/iGVTXAozVx5g1loF1CIipWK3w4FlxuzoXXPBbjX2+4ZB59uh0+0QFOHcGqVGUjAtIiJOdyI9h89WH+TzNYdIycwDjFlgt/VowuheTfRxWxERqbg9v8OuX40HgG8oRPYxQurIflA3ulYH1TWZyWTCzVLxa9Mi3J9BrcJYEZvEW4v2svFQcmFAfXP3xozvH62AWkTkbFkp8OdsY/3opD1F+5v0NmZHt7oS3DycVp7UfCa73V66z0Y5UVpaGoGBgaSmphIQUPL6aiIiUvPEHk/no+UH+H7zEXLzjYaGjYN9uKtPU0Z0aYSPh/5+KlLb6T7PdVX5tT+6BfbFwIHlELcG8rOKP+/fAJr2LQiq+0KdJpVfkziN3W5nZexJ3lq0hw0Fy4Z5uJm5uVtjxg+IJlwBtYi4smNbjdnR276BPOOTrHj4QftRxvrR4W2cW59Ue6W9z1MwLSIiVcput7Nm/ymmL9/P4l3HC/d3iAjiX/2iGHpRPSxmzVgTcRW6z3NdTr32+TlwZKPxseQDy+HwOrDmFj8mqElBUN3fCKoD6ldtjVIl7HY7q/YZAfX6g8UD6nv6R1MvUAG1iLiIvGz46ycjkD68rmh/WBtjdvTFI8FTSytK6SiYFhGRaiXfauO37QlMX7afbUdSAeMT05e0DufuflF0blJHDQ1FXJDu81xXtbr2eVkQv9YIqQ8sM0LrM+tnnlG3efEZ1b4hzqlVKoXdbmf1vpO8tWgv6w6eAoyA+qauEYwf0EwBtYjUXskHYcNM2PQ5ZBk//zC7Q5uroOtYaNxTS11JmSmYFhGRauF0Tj6z18Xx8cqDHEkxPjbt6WZmRJdG3NUniqYhvk6uUEScSfd5rqtaX/ucdGO5jwPLjMexP4G//doUdpERVEf2hcje4F3HKaWKY9ntdlbvP8lbC88KqC1mRnWLYPyAaOoHeju5QhERB7BZIXaRMTt670IK/xsX0Ai63AEdR4N/uDMrlBpOwbSIiDhVQmo2H686wJdr40jPzgegrq8Ho3tGcmuPxtT183RyhSJSHeg+z3XVqGuflQyHVhXNqD6+428HmKD+xUWNFJv01Meda7jCgHrRXtYdKAqoR3Y1AuoGQQqoRaQGykiCzZ8bM6RT4or2Rw82lutoPgws6vMjFadgWkREnOKvo2l8tHw/P/95lHyb8Z+YqFBfxvWN4tqODfFytzi5QhGpTnSf57pq9LXPSIKDy4uC6pN7iz9vskDDTkXLfkR0Bw8f59QqFba6YA3qtWcF1Dd2bcS9A5opoBaRmuHIJlg7DXb8UNRTwSsIOt4KXe6EutFOLU9qHwXTIiJSZex2O8v3JjF9+X6W700q3N+taTB3941iUKswzGpoKCIl0H2e66pV1z7tWEFQvcz4mnyw+PMWD2jUtSiobtQF3PTJoZpm9b6TTInZw5r9RkDtbjFxY5cI7h3YjIYKqEWkujq4Aj69qqh3QoNOxtrRba8Dd/3sksqhYFpERCpdbr6Nn/88ykfL97MrIR0AswmGt6vPuL5RtI8Icm6BIlLt6T7PddXqa58SVzSb+sAySD9a/Hk3b2jcvWjpjwYd9dHpGmTN/pNMWbSX1ftPAkZAPaJLBPcOiKZRHc2MF5FqxJoH0/rAiV3Gch2DnoaGnZ1dlbgABdMiIlJpUjPz+HJdHJ+sOkBiWg4APh4WRnaN4M7eTYkI1i9lIlI6us9zXS5z7e12OLW/KKQ+uBwyThQ/xsMPmvQyZlM37Qf12oFZS19Vd2v3n2RKzF5W7VNALSLV1Kp3YMEz4FMXHtioRr1SZRRMi4iIw8WfymTmygPMWR9PZq7xUbAwf0/G9G7Kzd0aE+jj7uQKRaSm0X2e63LZa2+3w4ndBSH1MmNmdXZK8WO8Ao2Q+kxQHdYaTFoSq7pad+AUU2L2sDK2KKC+oXME9w1UQC0iTpR2FN7tCrmn4eqpxnrSIlVEwbSIiDjMn/EpTF++n9+2HaOgnyGt6vkztm8UV7VvgIeb2bkFikiNpfs816VrX8Bmg8TtRbOpD66E3PTix/iEQNMzQXV/o0mVgupz2ayQnWoE/Vkp53615kKrK6Be20p5+fUHTzFl0V5WxBr9NtzMJkZ0MZok6tNkIlLlvr0Ttn9n9Di4cwGY9TubVB0F0yIiUiE2m53Fu47z4fL9rCvoQg/Qt3kI4/pG0bd5CCb9UiwiFaT7PNela38e1nw49iccWGoE1YdWQ35W8WP86xc1UmzaD+o0cU6tleFMuJyVfP6AucSvqZCTWooXMBkNvwY8BSHNKuUtlBRQ39C5EfcNVEAtIlXkwDL49EowmWHcH9Cgg7MrEhejYFpERMolO8/KD5uPMH35fvafyACMX6iuat+AsX2jaNNAP4dFxHF0n+e6dO1LKT8XjmwsmlEdv9aY+Xu2oMZGE8Wm/YyZ1QENnFPrGdb8v81cTi5dsJydAjlpFX99d1/wDgKvoOJfs5Jh92/GMSYLdLwF+v8bAhtV/DVLsOHgKabE7GX53qKA+vpOjbh/kAJqEalE1jx4vzck7Yau4+DyN5xdkbggBdMiIlJmm+OS+dfnGzmebjQ09Pd04+YejbmjVyT1A72dXJ2I1Ea6z3NduvbllJcF8euMkPrAMiO0tuUXP6Zus6LZ1JF9wS+07K9TLFw+O1guaSZzavHv/74USXl4+J0bLJfmq1cguHmcf9xjW+GPV2HPPON7iwd0uQv6Plq+f6dS2HjoFG8tKh5QX9epIfcPbE7jugqoRcTBVr4NC581loF6YIMaHopTKJgWEZEy+WP3ce79YhNZeVYaBHpxZ5+mjOwagb+XGhqKSOXRfZ7r0rV3kJzTELemoJHiMmMZELut+DFhbYyAunF3o/lidQyXveuctS8QLJV8/xG3Fha/bAT8YMyy7nEP9Hqg0kKcjYeSmRKzl2V7TgBgMZu4rmND7h/UjCZ1fSvlNUXExaQeMRoe5mWo4aE4lYJpEREpte82HuaJ77Zitdnp1yKU92/phK+nm7PLEhEXoPs816VrX0myUuDQqqIZ1YnbKzaeh//fguTAEoLlOiUEzlUQLleU3Q77l0DMS3B0k7HPKxB6PwTd7wGPygmLN8UlM2XRXpaeFVBf27Eh9w9sRmSIAmoRqYBvxsCO76FRN7hzvhoeitMomBYRkQuy2+18uGw/k37fBcC1HRvy3+svxsNNNzAiUjV0n+e6dO2rSMZJI6Q+uNyYTe3mdYEZzHWKL4thcYE/VNvtsGsuLH4FTuw09vmGQt/HoMsYcPOslJfdHGfMoF6yuyigvqZDQx4YpIBaRMph/1L47Cqj4eHdS6B+e2dXJC5MwbSIiPwjm83Oq7/tZMaKAwCM69uUiZe1xmw2ObkyEXElus9zXbr2Uu3YrLD9O2MN6uSDxr7ACKNBYvubKi2k3xKfwpRFe/hDAbWIlFd+LkzrYzQ87HY3DH/d2RWJi1MwLSIi55Wbb+Pxb//kpy1HAXhqeCvu7hft5KpExBXpPs916dpLtWXNg81fwNLXIN24V6JuMxj4FLS5ttI+Gv/3gNpsgms6NuSBQc1pqoBaRP7Jyimw8LmChocbjU++iDiRgmkRESnR6Zx8xn+xkeV7k3Azm3jthou5rlMjZ5clIi5K93muS9deqr28LFg/A1ZMhsyTxr7wdjDoGWgxDEyV8ymzP+NTmBKzl8W7jgMFAXUHo0liVKhfpbymiNRgxRoevgcdb3F2RSIKpkVE5FxJp3O485P1bD2cire7hfdv7cSAlmHOLktEXJju81yXrr3UGDnpsOZ9WPUO5KQZ+xp1g8HPQdO+lfayWw+nMGXRXmLOCqivLgiooxVQi8gZ39wBO36AiO4wZp4aHkq1oGBaRESKiT+VyW0z1nLwZCZ1fNyZeUdXOjau4+yyRMTF6T7PdenaS42TeQpWvgVrP4T8LGNf1AAY9Bw06lxpL7v1cApvx+xl0c6igPqq9g24f1BzmoUpoBZxafuXwGdXFzQ8XAr1L3Z2RSKAgmkRETnLjqOp3PHxek6k59AwyJvP7uqmmTYiUi3oPs916dpLjZWeAMvegI2fgC3P2NfqChj4NIS3qbSX3XY4lSkxe1m0MxEwVhK5qn0DHlBALeKa8nNhWm9I2gPd/gXDX3N2RSKFFEyLiAgAq/ed5O7PNpCek0+rev58emc3wgO8nF2WiAig+zxXpmsvNV7yIVj6X/jzK7DbABO0GwEDnoS6lddUevsRI6Be+FdRQH3lxQ14cHAzmoX5V9rrikg1s+ItWPQ8+IbC/RvU8FCqFQXTIiLCb9uO8fDsLeRabXRrGsz00V0I9HZ3dlkiIoV0n+e6dO2l1jixG/74D/z1o/G92Q063gr9noDAhpX2stuPpPJ2zF4WnBVQX3FxAx4c1Izm4QqoRWq11MPwbjej4eE170OHm51dkUgxCqZFRFzc56sP8tzPO7DbYdhF4UwZ1REvd4uzyxIRKUb3ea5L115qnaNbYPErELvQ+N7iCd3GQZ9HwDek0l62pID68nb1eXBwc1oooBapnb6+3fhjWEQPGPO7Gh5KtaNgWkTERdntdv63cA9vL44F4ObujXn56rZYzCYnVyYici7d57kuXXuptQ6thpiXIG6V8b2HH/S4F3rdD16BlfayO44aAfX8HQqoRWq1fX/A59cYDQ//tQzqtXN2RSLnUDAtIuKC8q02nv1pO1+tiwfg4SHNeWhwc0wmhdIiUj3pPs916dpLrWa3w74YiHkZjm0x9nkFQZ+HjSZlHj6V9tJ/HU3j7Zi9zNuRABgB9fB29XlwUHNa1lNALVKj5efC+73g5F7ofg9c9l9nVyRSotLe52muv4hILZGdZ2X8rE18tS4eswleuaYtDw9poVBaREREpKqZTNBsCNy9BG78HEJaQnYKLHoB3u4A66YbAVMlaNMggGm3deb3h/pyWdt62O0wd+sxhr21jE9WHqiU1xSRKrJmqhFK+4bCgInOrkakwhRMi4jUAqmZedw2Yy0L/0rEw83Me7d04tYeTZxdloiIiIhrM5mgzVVw72q4ZhoENYHTifDbY/BuZ9g8C6z5lfLSresH8P6tRkA97KJwACb9vov4U5mV8noiUslSD8PS14ztS14G7yCnliPiCAqmRURquITUbG78YDXrDybj7+nGZ3d249K29Z1dloiIiIicYbZAh5vg/g1w+ZvgVw9S4uCne+H9nrDjB7DZKuWlW9cPYNqtnekZVZecfBsv/vJXpbyOiFSy+U9DXiY07gntRzm7GhGHUDAtIlKDxR4/zfXvr2J3Yjph/p58fU9PekTVdXZZIiIiIlISNw/oOhYe3Fww47EOJO2Bb+6AD/vD3oXG+tQOZjKZeOnqi3Azm1i0M5GYnYkOfw0RqUT7FsNfP4LJAsPfMD6NIVILKJgWEamhNsUlc8O0VRxJySIqxJfvxveidX01jxIRERGp9jx8oPeD8NBW6P8kePhDwlaYdQN8fBkcXOnwl2we7s9dfZoC8MIvO8jOszr8NUSkEuTnwG+PG9vd7oZ6bZ1bj4gDKZgWEamB/th1nJunryElM4/2EUF8c09PIoIrr7u7iIiIiFQCrwAYOBEe+hN6PQBuXhC3Gj4ZDp9fB0c2OfTlHhjcnHoBXsSfymLa0n0OHVtEKsnqqXAyFnzDjJ8XIrWIgmkRkRrm242HGfvZBrLzbPRvEcqXY7tT18/T2WWJiIiISHn51oWhrxhLfHS5C8xusC8Gpg+EObfC8V0OeRk/TzeeuaI1AO8t2cehkxkOGVdEKklKPCx73dge+jJ4BTq3HhEHUzAtIlJD2O12pi3dx2Pf/InVZue6jg356PYu+Hq6Obs0EREREXGEgAZwxWSjSeLFowAT7PwF3usB3/8LTh2o8Etc3q4+fZqFkJtv44Wfd2CvhDWtRcRBFpzV8PDikc6uRsThFEyLiNQANpudl3/dyf/9bsyW+Ve/KN4Y0R53i36Mi4iIiNQ6wU3hug/g3tXQ+krADltnw7td4NcJkHas3EObTCZeuOoi3C0m/th9gkU7jzuubhFxnNgY+OsnNTyUWk2JhohINZebb+PhOVuYudKYIfPM5a2ZOLw1ZrNuTERERERqtbDWMPILGLcYogeBLR82zIC3O8CCZyDjZLmGbRbmx9i+UQC88PMOsnLVCFGkWsnPgd+fMLa7/0sND6XWUjAtIlKNnc7J565P1/Pzn0dxM5t4a2SHwl8iRERERMRFNOwMt/0Ad8yFiB6Qnw2r3oEp7eGPSZCdVuYhHxjUjAaBXhxJyeL9JbGVULSIlNvqd4saHg540tnViFQaBdMiItVU0ukcbvpwDcv3JuHjYWHGHV25pmNDZ5clIiIiIs4S2QfunAe3fAv1LobcdFj6f0ZAvfJtyMsq9VA+Hm48e0UbAKYt3c+BJDVCFKkWUuJh2RvG9tBX1PBQajUF0yIi1VDcyUxueH8V246kEuzrwVfjetC/RaizyxIRkVps6tSpREZG4uXlRffu3Vm3bt0/Hp+SksJ9991H/fr18fT0pEWLFvz2229VVK2ICzOZoPklcPdSGPEJ1G0OWadg4bPwdkdY/xHk55ZqqEvb1qNfi1ByrTaeVyNEkeph/lMFDQ97wcU3OrsakUqlYFpEpJrZcTSV695fxcGTmTSq48239/SkfUSQs8sSEZFabM6cOUyYMIHnn3+eTZs20b59e4YNG8bx4yU3RcvNzeWSSy7h4MGDfPvtt+zevZvp06fTsKE+2SNSZcxmuOhauHcNXP0eBDaG9GMw91GjSeKWr8D2z2tHm0wmXrzqIjwsZpbtOcH8HYlVVLyIlCh2Eez82Wh4eLkaHkrtp2BaRKQaWbUviZEfrCHpdA6t6vnz/fheRIX6ObssERGp5SZPnsy4ceMYM2YMbdq0Ydq0afj4+DBz5swSj585cyanTp3ixx9/pHfv3kRGRtK/f3/at29fxZWLCBY36HgLPLABLnvdWJM25RD8eA+83wv++hn+YSZ00xBf7u5n9DB5+de/yMzNr6rKReRs+Tnw21kND8Mvcm49IlVAwbSISDUxd+sx7pi5ntM5+XRvGszX9/QkLMDL2WWJiEgtl5uby8aNGxkyZEjhPrPZzJAhQ1i9enWJ5/z888/07NmT++67j/DwcNq2bct//vMfrNbzz87MyckhLS2t2ENEHMjNE7rfDQ9tgSEvgFcQnNgFX98GHw4wZmKeJ6C+b2AzGgZ5cyQli3cXqxGiiFOsegdO7QO/cDU8FJehYFpEpBr4bPVB7v9qE7lWG5e1rcend3YjwMvd2WWJiIgLSEpKwmq1Eh4eXmx/eHg4CQkJJZ6zf/9+vv32W6xWK7/99hvPPvssb775Jq+88sp5X2fSpEkEBgYWPiIiIhz6PkSkgIcv9HkEHvoT+j0B7r5wbAt8cT0sf6PEU7w9LDx/pdEIcfry/ew7cboKCxYRNTwUV6VgWkTEiex2O28u2M1zP+3AbodbezTm3Zs74eVucXZpIiIi52Wz2QgLC+PDDz+kc+fOjBw5kqeffppp06ad95yJEyeSmppa+IiPj6/CikVckHcQDHraCKi7jjP2Lf8fZJ4q8fBL2oQzsGUoeVY7L6gRokjVmj8R8rOgSW9oN8LZ1YhUGQXTIiJOkm+1MfH7bbxT8HHJCZe04OWr22Ixq8GFiIhUnZCQECwWC4mJxZueJSYmUq9evRLPqV+/Pi1atMBiKfpDauvWrUlISCA3N7fEczw9PQkICCj2EJEq4BcKw1+Heu0gLwPWvF/iYSaTiReuuggPNzPL9ybx+/aSPzEhIg62dxHs/MVoeDhcDQ/FtSiYFhFxgqxcK/d8sYnZ6+Mxm+A/17bjwcHNMekmREREqpiHhwedO3cmJiamcJ/NZiMmJoaePXuWeE7v3r2JjY3FZrMV7tuzZw/169fHw8Oj0msWkTIymaDf48b22g8gO7XEw5rU9eWe/tGA0QgxI0eNEEUqVX4O/F7w/83u90B4G+fWI1LFFEyLiFSxlMxcbpuxlkU7E/FwM/P+rZ25uXtjZ5clIiIubMKECUyfPp1PP/2UnTt3Mn78eDIyMhgzZgwAo0ePZuLEiYXHjx8/nlOnTvHQQw+xZ88e5s6dy3/+8x/uu+8+Z70FEbmQVldCaCvISYV108972L0DookI9uZYajZvL95bhQWKuKBVb8Op/Wp4KC5LwbSISBU6lprFiGmr2XAoGX8vNz6/sxvDLir5Y9IiIiJVZeTIkbzxxhs899xzdOjQgS1btjBv3rzChohxcXEcO3as8PiIiAjmz5/P+vXrufjii3nwwQd56KGHePJJ/VItUm2ZzdD3MWN79VTIzSjxMC93Cy9ceREAM5YfIPZ4elVVKOJaUuJg2ZvG9tBXwUtLXInrMdlrQEeDtLQ0AgMDSU1N1Vp0IlJjxR5PZ/SMdRxNzSY8wJNP7+xGq3r6mSYirk33ea5L117ECaz5MLWrMUNz6KvQ6/7zHjr20/Us2nmcXtF1mTW2u5acE3G02bfArl+hSR+441etLS21Smnv8zRjWkSkCmw8lMwN01ZzNDWbqFBfvhvfS6G0iIiIiFQtixv0mWBsr3ob8rLPe+jzV16Ep5uZVftO8uvWY+c9TkTKYe9CI5Q2WYzmpAqlxUUpmBYRqWQxOxO55aM1pGTm0SEiiG/v6UWjOj7OLktEREREXNHFIyEwAk4nwubPz3tYRLAP9w1sBsArc//itBohijhGfg78/oSx3WO8Gh6KS1MwLSJSib7eEM/dn28kO8/GgJahfDmuO8G+Hs4uS0RERERclZsH9H7I2F45BfJzz3vo3f2iaFLXh8S0HKYs2lNFBYrUcoUND+tB/387uxoRp1IwLSJSCex2O+8tieWJb7ditdm5rlNDpo/ugo+Hm7NLExERERFX1/E28AuH1HjYOue8h3m5W3jhKqMR4syVB9mdoEaIIhWSfKio4eEwNTwUUTAtIuJgNpudF3/5i9fm7QbgX/2jeHNEe9wt+pErIiIiItWAuxf0etDYXjHZaIp4HgNbhjG0TThWm53nftqO3W6voiJFaqH5T0F+FkT2hbbXO7saEadTSiIi4kA5+VYemrOFT1YdBOCZy1sz8bLW6mIuIiIiItVLlzHgHWwsKbDj+3889Lkr2+DlbmbtgVP8/OfRKipQpJbZs8BoeGh2U8NDkQIKpkVEHOR0Tj53fbKBX/48ipvZxFsjOzC2b5SzyxIREREROZeHL/S8z9he9gbYbOc9tFEdHx4Y1ByAV+buJC07ryoqFKk98rKLGh52vwfCWju3HpFqQsG0iIgDnEjPYdSHq1kRm4SPh4WZd3Tlmo4NnV2WiIiIiMj5dRsHnoGQtBt2/fKPh47t25SmIb6cSM/hrYV7q6hAkVpi1TuQfAD868OAJ51djUi1oWBaRKSCDp3M4IZpq9h+JI1gXw++GteDfi1CnV2WiIiIiMg/8wqE7v8ytpe9Dv+wfrSnW1EjxE9XH2TnsbSqqFCk5ks+BMvfMLaHvgKe/s6tR6QaUTAtIlIB24+kcv37qzh0MpNGdbz59p6etI8IcnZZIiIiIiKl02M8ePhBwjbYu+AfD+3fIpTL2tZTI0SRspg3EfKz1fBQpAQKpkVEymlVbBKjPlxD0ulcWtcP4PvxvYgK9XN2WSIiIiIipecTDF3vMraXvvaPs6YBnr2iDd7uFtYfTOb7TUeqoECRGmzPAtg9t6Dh4RtqeCjyNwqmRUTK4detR7n943WczsmnR1Qwc/7Vg7AAL2eXJSIiIiJSdj3vBzcvOLIBDiz9x0MbBHnz4GCjEeKk33eSmqVGiCIlOrvhYY/xENbKufWIVEMKpkVEyuiTlQd44KvN5FntDG9Xj0/v7EaAl7uzyxIRERERKR+/MOh8h7G97I0LHn5Xn6ZEhfqSdDqX/y3cU7m1idRUq94uanjY/9/OrkakWipXMD116lQiIyPx8vKie/furFu37rzH5uXl8dJLLxEdHY2Xlxft27dn3rx55S5YRMRZ7HY7r8/fxQu//IXdDqN7NuGdmzrh6WZxdmkiIiIiIhXT60Ewu8PB5XBo9T8e6uFm5uWr2wLw2eqD7DiaWhUVitQcyQdh+ZvG9rBX1fBQ5DzKHEzPmTOHCRMm8Pzzz7Np0ybat2/PsGHDOH78eInHP/PMM3zwwQe88847/PXXX9xzzz1ce+21bN68ucLFi4hUlXyrjX9/t5Wpf+wD4NFLWvDiVRdhMWuNMBERERGpBQIbQsdbjO3lF5413btZCFdcXB+bHZ79cTs2mxohihQ60/CwaT+46DpnVyNSbZU5mJ48eTLjxo1jzJgxtGnThmnTpuHj48PMmTNLPP7zzz/nqaeeYvjw4URFRTF+/HiGDx/Om2++WeHiRUSqQlaulXu+2MjXGw5jNsH/XdeOBwY3x6TGFSIiIiJSm/R+GEwWiF0ERzZd8PBnLm+Dj4eFTXEpfLvpcOXXJ1IT7JkPu38zGh5e9roaHor8gzIF07m5uWzcuJEhQ4YUDWA2M2TIEFavLvmjPjk5OXh5FW8I5u3tzYoVK8pRrohI1UrJzOXWGWtZtPM4nm5mpt3amVHdGju7LBERERERxwtuChffaGyXYq3peoFePDzEaIT4f7/vIjVTjRDFxRVreHivGh6KXECZgumkpCSsVivh4eHF9oeHh5OQkFDiOcOGDWPy5Mns3bsXm83GwoUL+f777zl27Nh5XycnJ4e0tLRiDxGRqnY0JYsR01az8VAyAV5ufDG2O0MvqufsskREREREKk+fCYAJds+FhO0XPHxM76Y0D/PjVEYubyzYXfn1iVRnK6cY60v7N4D+Tzi7GpFqr1zND8tiypQpNG/enFatWuHh4cH999/PmDFjMJvP/9KTJk0iMDCw8BEREVHZZYqIFLM3MZ3r31/F3uOnqRfgxTf39KJrZLCzyxIRERERqVyhLeCia4zt5RdegtPdYualgkaIX6w9xLbDaoQoLurUAVgx2dhWw0ORUilTMB0SEoLFYiExMbHY/sTEROrVK3kWYWhoKD/++CMZGRkcOnSIXbt24efnR1RU1HlfZ+LEiaSmphY+4uPjy1KmiEiFbDx0ihumreZYajbRob58d28vWtbTTYWIiIiIuIi+jxlfd/wASXsveHjP6Lpc3aEBdjs8+5MaIYqLKtbw8FpnVyNSI5QpmPbw8KBz587ExMQU7rPZbMTExNCzZ89/PNfLy4uGDRuSn5/Pd999x9VXX33eYz09PQkICCj2EBGpCrsT0rnlo7WkZuXRsXEQ397Ti4ZB3s4uS0RERESk6tRrCy2HA3ZYPrlUpzw1vDV+nm5siU/h6w2aXCYuZvc82PO70fBw+BtqeChSSmVeymPChAlMnz6dTz/9lJ07dzJ+/HgyMjIYM2YMAKNHj2bixImFx69du5bvv/+e/fv3s3z5ci699FJsNhtPPKG1dkSk+vnvvF1k59noGVWXWWO7U8fXw9kliYiIiIhUvX4Fs6a3zjHWzL2A8ICiRoj/nbeL5IzcSixOpBrJyypqeNjzPght6dx6RGqQMgfTI0eO5I033uC5556jQ4cObNmyhXnz5hU2RIyLiyvW2DA7O5tnnnmGNm3acO2119KwYUNWrFhBUFCQw96EiIgjrDtwisW7jmMxm/jPde3w8XBzdkkiIiIiIs7RsDNEDwa7FVa8VapTbu8VSctwf5Iz83hdjRDFVaycAimHjIaH/TQJU6QsTHa7vdov/pSWlkZgYCCpqala1kNEKoXdbmfEtNVsOJTMTd0aM+m6ds4uSUTEJeg+z3Xp2ovUAIdWw8eXgsUDHtwCgQ0veMq6A6e48YPVmEzw4729aR8RVOllijjNqQMwtTtYc2DEJ1pbWqRAae/zyjxjWkSkNvpj93E2HErG083MQ4ObO7scERERERHna9ITmvQBay6seqdUp3RrGsx1HRsWNkK0qhGi1GbznjRC6ab9oc01zq5GpMZRMC0iLs9ms/PaPOOjhnf0jqReoJeTKxIRERERqSbOrDW98RM4fbxUpzw5vBX+nm5sPZzK7PVxlVebiDPt/h32zAOzuxoeipSTgmkRcXk//3mUXQnp+Hu5Mb5/tLPLERERERGpPqIGQMMukJ8Fq6eW6pQwfy8mDG0BwGvzdnNKjRCltsnLgt//bWz3vA9CWzi3HpEaSsG0iLi03Hwbby40Zkvf0z+aIB8PJ1ckIiIiIlKNmEzQ73Fje/1HkHmqVKfd1qMJresHkJqVx2vzdlVigSJOsOIto+FhQMOi/3+ISJkpmBYRlzZ7fRzxp7II9fdkTO9IZ5cjIiIiIlL9tBgG4e0g9zSsnVaqU9wsZl6++iIAZq+PZ1NccmVWKFJ1Tu2HFf8ztoe9Cp5+zq1HpAZTMC0iLisjJ5+3Y2IBeHBwc3w83JxckYiIiIhINWQyFa01vXYaZKeW6rQukcHc0LkRAM/+qEaIUkv8XtDwMGqAGh6KVJCCaRFxWR+vPEDS6RwaB/swskuEs8sREREREam+Wl8FIS2NUHr9R6U+7cnLWuHv5caOo2l8ufZQJRYoUgV2/w575xsNDy97XQ0PRSpIwbSIuKTkjFw+WLofgEeHtsDDTT8ORURERETOy2yGvo8a26unQm5GqU4L8fPk8WEtAXh9/m6STudUVoUilSsvC35/wtjudb8aHoo4gJIYEXFJ05buIz0nn1b1/Lny4gbOLkdEREREpPprez3UaQqZJ2HjJ6U+7ZbuTbioQQBp2fn83+9qhCg11Ir/QUocBDRSw0MRB1EwLSIu51hqFp+sOgjAvy9thdmsj1+JiIiIiFyQxQ36TjC2V74NedmlO81s4uVr2gLw7cbDbDh4qrIqFKkcp/bDireM7WGvgoevU8sRqS0UTIuIy3k7Zi85+Ta6RQYzoGWos8sREREREak5Lh5lzBg9nQBbvij1aZ0a1yns6/LsTzvIt9oqq0IRx7Lb4fd/FzQ8HAhtrnZ2RSK1hoJpEXEp+06c5usNhwF44tKWmNSsQkRERESk9Nw8oM/DxvaKt8CaV+pTn7i0JYHe7uw8lsYXa9QIUWqI3b/D3gVGw8Phango4kgKpkXEpUxesAerzc6Q1mF0iQx2djkiIiIiIjVPx1vBLxxS42HrnFKfVtfPkycuNRohvrlgDyfS1QhRqrncTGO2NECvByCkuXPrEallFEyLiMvYdjiVuduOYTLBYwWdwUVEREREpIzcvY2QDmD5m2CzlvrUUV0bc3GjQNJz8pn0285KKlDEQVb8D1LPNDx8zNnViNQ6CqZFxGW8Nt/oAH5Nh4a0qhfg5GpERERERGqwzmPAO9hoCrfjh1KfZjGbePnqtphM8P3mI6zdf7ISixSpgJP7YOVbxval/1HDQ5FKoGBaRFzCqtgklu9Nwt1i4pEhLZxdjoiIiIhIzebpBz3vNbaXvQG20jczbB8RxKiujQF47qcd5KkRolQ3hQ0PcyF6ELS+ytkVidRKCqZFpNaz2+38d/5uAG7u1pjGdX2cXJGIiIiISC3Q7W7wDIQTO2HXr2U69YlhLanj487uxHQ+W61GiFLN7P4NYhcaDQ8vU8NDkcqiYFpEar35OxL5Mz4FHw8L9w9SswoREREREYfwCoTudxvby143ZpmWUh1fD/59aSsA/rdwD4lp2ZVRoUjZ5WbC708a270fhJBmzq1HpBZTMC0itVq+1cYbC4zZ0nf1aUqov6eTKxIRERERqUW6jwd3X0jYCnsXlunUG7tE0D4iiNM5+fxHjRClulgxuajhYd9HnV2NSK2mYFpEarXvNx8h9vhpgnzcGdcvytnliIiIiIjULr51oeudxvay18o0a9psNvFKQSPEn7YcZfU+NUIUJzu5D1ZOMbYvnaSGhyKVTMG0iNRa2XlW3lq4B4D7BjQjwMvdyRWJiIiIiNRCPR8ANy84vB4OLCvTqe0aBXJL9zONELerEaI4T7GGh4Oh9ZXOrkik1lMwLSK11qy1cRxNzaZegBe39Wzi7HJERERERGon/3DodLuxvez1Mp/++NBWBPt6sPf4aT5ZedCxtYmU1q65RsNDiwcMV8NDkaqgYFpEaqX07Dym/hELwMNDmuPlbnFyRSIiIiIitVjvB8HsDgeXQ9yaMp0a6OPOk5cZjRDfWrSHhFQ1QpQqlpsJ8woaHvZ6EOpGO7ceERehYFpEaqWPlh/gVEYuUSG+3NC5kbPLERERERGp3QIbQYebje1lb5T59Bs6NaJT4yAycq28MvcvBxcncgHL34TUeAiMUMNDkSqkYFpEap2k0zl8tHw/AI8Na4mbRT/qREREREQqXZ9HwGQxlkM4urlMp5rNJl6+pi1mE/y69RgrY5MqqUiRvzm5D1a9bWxfOgk8fJxbj4gLUVojIrXO1D9iyci10q5hIJe1refsckREREREXENwU2g3wtgux6zpixoEMrpnJGA0QszNVyNEqWR2O/z2uNHwsNkQaHWFsysScSkKpkWkVok/lcmsNXEA/PvSVpjUsEJEREREpOr0nQCYYNevkFj2JTkeuaQFIX4e7DuRwYwVBxxfn8jZdv0K+2KMhoeXvaaGhyJVTMG0iNQqby3aS67VRu9mdenTPMTZ5YiIiIiIuJbQltDmamN7edlnTQd6uzPxstYAvB2zl6MpWY6sTqRIbgbMm2hsq+GhiFMomBaRWmNPYjo/bD4MwOPDWjm5GhERkZpl6tSpREZG4uXlRffu3Vm3bt15j/3kk08wmUzFHl5eXlVYrYhUa/0eM75u/x6S9pb59Os6NaRrZB2y8tQIUSqRGh6KOJ2CaRGpNd6YvxubHS69qB4dIoKcXY6IiEiNMWfOHCZMmMDzzz/Ppk2baN++PcOGDeP48ePnPScgIIBjx44VPg4dOlSFFYtItVavHbS4DLDDiv+V+XSTycRLV7fFYjbx27YElu054fgaxbUlxcKqd4ztS/9PDQ9FnETBtIjUCpviklnwVyJmEzw2rIWzyxEREalRJk+ezLhx4xgzZgxt2rRh2rRp+Pj4MHPmzPOeYzKZqFevXuEjPDy8CisWkWrvzKzpP2dDctn/cNW6fgC3FzRCfOHnHeTkWx1YnLg0ux1+P9Pw8BJodbmzKxJxWQqmRaTGs9vt/Pf3XQDc0LkRzcL8nVyRiIhIzZGbm8vGjRsZMmRI4T6z2cyQIUNYvXr1ec87ffo0TZo0ISIigquvvpodO3b84+vk5OSQlpZW7CEitVijLhA1EOxWWPlWuYZ4+JLmhPp7sj8pg4+WqxGiOMjOX2Df4oKGh/9Vw0MRJ1IwLSI13rK9Saw9cAoPNzMPDangbGmbDbZ8CbvmQs5pxxQoNcep/bBhprEeYlaKs6sREakSSUlJWK3Wc2Y8h4eHk5CQUOI5LVu2ZObMmfz000988cUX2Gw2evXqxeHDh8/7OpMmTSIwMLDwERER4dD3ISLVUL/Hja+bv4C0o2U+PcDLnaeHG40Q31m8l8PJmY6sTlzR2Q0Pez+khociTubm7AJERCrCZrPz2jxjtvToHk1oGORdsQHXf2R8rAvA4glN+0KLS6H5UKjTpILVSrVjzYP4tbBnHuyZD0l7ip4zWaBJL2gxzPjfQN1mmk0hIlKgZ8+e9OzZs/D7Xr160bp1az744ANefvnlEs+ZOHEiEyZMKPw+LS1N4bRIbRfZGxr3grhVxnq+l04q8xBXd2jAV+viWHvgFC//+hcf3NalEgoVl7H8TUg7DIGNoc+ECx8vIpVKwbSI1Ghztx1jx9E0/DzduHdgs4oNlpUMSwpuln1CIDMJYhcZD4CwNkUhZaOuYLZU7PXEOTJPGdd0zzzja3Zq0XNmN4joARknIGk3HFxuPBY8A8FRxrVvMcz4BcvNw3nvQUTEgUJCQrBYLCQmJhbbn5iYSL169Uo1hru7Ox07diQ2Nva8x3h6euLp6VmhWkWkBur/OHx+LWz42AgC/ULLdLrJZOLla9py2ZTlzN+RyB+7jzOwZVglFSu1WlIsrHzb2L5MDQ9FqgMF0yJSY+VZbUxeaMxwvbtfFMG+FQwKl70BWacgtDXcswJO7SuaSRu3Bo7/ZTxW/A+86xizqFsMg+jB4B1U8TcklcNuhxO7iq5l/Fqw24qe96lrXMvmQyF6UNG1PLUf9iwwzju4wvh+zXvGw8Mfmg0ygupml5T5FywRkerEw8ODzp07ExMTwzXXXAOAzWYjJiaG+++/v1RjWK1Wtm3bxvDhwyuxUhGpkaIGQsPOcGQjrJkKQ14o8xAtwv25s3ck05cf4IWfd9Dz4bp4uWuSiJTBmYaHtjzjvr+l/nslUh0omBaRGuubDYc5kJRBXV8P7uzTtGKDndoP6z40toe+AhY3CG1pPHo/ZMyy3bfYCCn3LjRmV2+dYzy05EP1k5cNh1YYQfSeeZASV/z58LZF16th55JnvwdHQY97jEdOOuxfArvnwd75xozqv34yHpiM5j5nxgtvq+svIjXOhAkTuP322+nSpQvdunXjrbfeIiMjgzFjxgAwevRoGjZsyKRJxieLXnrpJXr06EGzZs1ISUnh9ddf59ChQ4wdO9aZb0NEqiOTyVhr+qtRsG469HoQfILLPMxDQ1rw859HOXQykw+X7efBwc0roViptXb+XNDw0FMND0WqEQXTIlIjZeVamRJjzJa+f1Az/Dwr+ONs0QtgzTVmPzcfcu7zPsHQ7gbjYc2Hw+uKZuCe2KUlH6qD9ATYu8C4Jvv+gLyMoucsnhDV37gmzYdBUBnXNPX0h9ZXGg+bDY5uLrj+8yBhKxxebzwWvwIBDYtC6qb9wL2C656LiFSBkSNHcuLECZ577jkSEhLo0KED8+bNK2yIGBcXh9lc1Dc9OTmZcePGkZCQQJ06dejcuTOrVq2iTZs2znoLIlKdtbgUwttB4jZjMsiAJ8s8hJ+nG09f3oYHv9rM1D9iubZjQyKCtRSD/IPMU5C4HRJ3FC3h0fsh4/c1EakWTHa73e7sIi4kLS2NwMBAUlNTCQgIcHY5IlINTFu6j//7fRcNg7xZ/Fh/PN0q8FG+Q6vh40vBZIZ7VkJ4GX+pPnWgIBAtWPLBmlv0nJZ8qDw2GyT8WTQr+ujm4s/71y8eEHv4Vk4daUcLaphvzKrOzyp6zs27eCAe2LByahCpwXSf57p07UVczI4f4Js7wCsQHt4OXmX//73dbueWj9ayat9JhrQO56Pb1QhRMBqaJ+01AugzQXTiDkg/Wvy4oMZw71qtLS1SBUp7n6dgWkRqnNTMPPq+tpi07HzeHNGe6zs3Kv9gNht8NBiOboLOd8CVUypW3JklH/bMM9Ynzjh+1pNa8qHCcjOK//ueTij+fMPORbPV611c9f++eVnGHyf2zDOW/Ug7XPz5eu0K6rsUGnSCs2Yfirgq3ee5Ll17ERdjs8J7PSBpDwx+HvpOKNcwscfTufSt5eTb7My4vQuDW4c7uFCp1k4fLwqfEwq+nthlrB1dkjqRxu9d4RcZv+8FNKjKakVcloJpEam1Xpu3i/eW7KNFuB+/P9QPi7kC4ePWb+D7seDhBw9uBj8Hdvi22eDY5qIZvcf+LP68lnwoneRDRTPSDywHa07Rcx5+ED2waEa6fzX6xcRuN26Uzyz5cng9cNZ/cn1DixpoRg0s16whkdpA93muS9dexAX9ORt++JfRfPrhbeX+RNuk33fywdL9RAR7s/CR/mqEWBvlZUPS7qLZz2fC6IwTJR/v4W+Ez/UKQujwthDW2liST0SqnIJpEamVjqdl0+/1P8jOszF9dBcuaVOBIDIvC97pYsxqHfwc9H3UcYWWJO1o8TWQteRDyWxWI8Q9E+ge/6v480FNoOVlxr9Vk97g5umcOssqI8lonLlnntF4JSet6DmzO0T2LprtrXXvxIXoPs916dqLuCBrPrzTCVIOwbBJ0PPecg2TkZPPkMlLOZaazUODm/PIJS0cXKhUGbvd+D3p78twJO0Bu7WEE0xGs/kz4XP4RcYjqLE+jSpSjSiYFpFa6dkft/P5mkN0ahzEd+N7YarIzceyN2DxyxAYAfevr9oZyxda8iG8HbR0oSUfslJgX4wRRO9dAFnJRc+ZzNC4Z9Hs8pAWNf+m05oHcauN97v7dzi1r/jzIS2K3m9ED7CoV7HUXrrPc1269iIuauMn8MtDRj+QB7eAu1e5hvlt2zHunbUJDzczCx/pR5O6ldRPRBwnNxNO7Cy+DEfidshOKfl4ryBjKbwz4XP4RRDaWmtEi9QACqZFpNY5dDKDwW8uJd9mZ/bdPegRVbf8g6UnGrM1ck/DdR/BxSMcV2hZ2e3GrOAzM4Tj11FsyQefkKIlH6IH1Y4lH+x2OBlb9J4PrSo+I8IrCJpfYgSz0YPAJ9hppVaJpDP/FvOMwNqWX/ScVyA0G1KwXMmQ2v9vIS5H93muS9dexEXl58DbHSHtCFw+GbreVa5h7HY7o2euY/neJAa2DGXmHV0rNmlFHMduh5S4s2ZAF3w9uY9iv+ecYbIYEzMKA+i2xpIc/vVr/oQUERelYFpEap2HZm/mpy1H6d8ilE/v7FaxwX55yJit0bAz3LWoes1IzkiC2EVGSBkbc+6SD016FS35UDfaeXWWVX4uxK0qWnP71P7iz4e2Kpol3Kib684SzkoxlvrYu8B4ZJ4ses5khojuRf9Ooa10sy41nu7zXJeuvYgLW/sB/P4EBDaGBzeBxb1cw+w7cZpL31pGntXOh7d1ZuhF9RxcqFxQTjok/lV8GY7EHZCbXvLxPiEF60C3LVqKI7RlzVmeT0RKRcG0iNQqO46mcvnbKwD49YE+tG0YWP7BEnfAtD5gt8Gd86FxDwdVWQnOXvJhzzxjlvHZ6jY3QsqWlxmBZTlv6ivN6RMQW7Cucuzi4jeoZndo2tcIWJsPheCmzquzurJZ4cjGopnliduLPx/UuOiPFJF9dUMvNZLu81yXrr2IC8vLgrcuhozjcPV70PGWcg91pjF6wyBvFk3oj7eHGiFWCpsVkg8WD6ATthnrhZfE7G5MoqjXtvhMaEc2mxeRakvBtIjUKmM+Xscfu09wZfsGvHNTx4oN9vm1xozUNlfDjZ85psCqkhQLewtC6kOrzl3yIXpwQdB7iXOWfLDbjZvVM0Hq4Q0U+7iebxi0GGrUGDVAXbLLKiWu4I8U8+HAMrDmFD3n7gvRAwsaaA4Ff80YkppB93muS9dexMWtfBsWPgvB0Ua/F3P5AuXM3HwumbyMIylZPDCoGY8ObengQl1QVvJZs6ALgujjOyEvs+Tj/RsUD5/DL4KQ5tVv0oyIVBkF0yJSa6zdf5KRH67BzWxi0YT+RIZUoLHJ3kUw63qweMB9ayE4ynGFVrXsVCNgP9Mw8O9LPjTqVrTkQ1jrylvyIS/LCEnPhNFpR4o/X7990aze+h2r17IpNVluBuxfWvCHivmQfqz48w06Fv2712uvf3eptnSf57p07UVcXM5peKutEYJePwPa3VDuoeZtT+CeLzbiYTEz/5F+NK3I7wuuxJpvfCLz78tw/L0x+xluXsbvFWcH0GEXgW8Fev+ISK2kYFpEagW73c4N01az8VAyt3RvzKvXtiv/YNZ8mNYbTuyCXg/A0FccV6izXWjJh8DGBUt+XApN+pS7+3mh1CNFgej+pZCfVfScm3fxmbsBDSr2WnJhdjskbC1a8uXIxuLP+9UrPlPdQ7+sSfWh+zzXpWsvIix9Hf54BcLawD0ry/2HdLvdzh0fr2fpnhP0axHKp2PUCPEcmaeM+8XCAHo7HN9V/BN4ZwtsXDQL+sya0MFR5Z7ZLiKuRcG0iNQKMTsTuevTDXi5m1n6+EDCAyoQqK6fAXMngHcwPLgZvIMcVme1kxJfPDj++5IPUQMKZlMPK92SDzYbHN1UEHzPM9aTO1tAIyP0bnEpRPYBd2+Hvh0po/REYxb9nnmw7w/Iyyh6zuJZtLZ3i2HGOtUiTqT7PNelay8iZKXAW+2MZt8jZ0HrK8o91IGkDIb9bxm5VhvTbu3EpW3rO67Omsxuh3UfwvynwZZ37vPuvhDepmgGdHhbY1Z0bf5dSUQqnYJpEanxrDY7w6csZ3diOvf0j+bJy1qVf7DsNHi7I2QmwWWvQ/e7HVdodZebUXypjb8v+VC/w1lLbXQomqmSnQb7/yha0zgz6ayTTBBx9lIhbSpvqRCpmPwcOLiiaDb13xvUhLUpuo6NumoWjFQ53ee5Ll17EQEg5mVY/oax/NvdSyt0T/nmgt28sziWBoFeLHq0Pz4ebg4stAbKz4G5j8Lmz43vg5pA/YvPCqEvgqBILfkmIg6nYFpEarwfNh/mkTl/EuDlxvInBhHoU4HmGYtegBX/g7rN4d7VrtuI44JLPoRDsyHGOtEHVxafVeEZAM0Kmis2GwK+IVVbu1Sc3Q4ndhf9kSJ+DdhtRc97BxuNM0Na6A8Nrq7XQ2Cpml/mdZ/nunTtRQSAjJPGWtN5mXDLt8a9SDll5Vq55H9LOZycxb0Donni0gpMbKnp0hNhzq1weJ3Rf2bIi8ZyhrrHE5EqoGBaRGq03Hwbg95cwuHkLJ64tCX3DmhW/sGSD8G7XY3lLG6aYyw5IYb0RIhdWLTkQ+7p4s/XbVY0m7pxT9cN9GurzFMQG2Nc/9iFRkNNEYCnEyu+Fn0p6T7Pdenai0ih+U/D6neN5t13LahQeLrwr0TGfbYBd4uJeQ/3IzrUz4GF1hBHNsHsWyD9KHgGwg0zofkQZ1clIi6ktPd5Lv65FhGprr5aF8fh5CzC/D0Z06tpxQaLedEIpZv2MwJWKeIfDh1vNR75OXBopbEmtW+oEUiHVOAPAlL9+QTDxSOMhzUf4tcaAXVG0oXPldpNS7qIiEhV6vUArJtuzO49uNy4by+nIa3DGNQqjMW7jvP8Tzv4/K5urtUI8c858MuDkJ9tfApu1Fe6pxeRakvBtIhUOxk5+byzeC8ADw5ujrdHBQKS+PWw/TvABENf1UfX/ombJ0QPMh7ieixuENnbeIiIiIhUJf960Gk0rJ8Oy16vUDBtMpl4/so2rIhNYkVsEr9tS+Dyi12gEaLNCoueh1XvGN83HwbXTwevQOfWJSLyD7TCvYhUOzNXHCDpdC5N6vowsmtE+Qey22H+U8Z2x1uMRh8iIiIiIlL99H4IzG5G0+64tRUaqkldX+4dEA3Ay7/+RUZOviMqrL6yUuDLG4tC6T4T4KavFEqLSLWnYFpEqpXkjFw+XLYfgEeHtsTdUoEfUzt+MD4O6O4LA59xUIUiIiIiIuJwQRHQ/iZje/kbFR7unv7RNA72ISEtm7cLPo1ZK53YA9MHQewicPM21pMe8ryW5RKRGkHBtIhUK+8v3Ud6Tj5t6gdwRbsKfOQuL9v4KBsYsy8CXODjeyIiIiIiNVmfR8Bkhr0L4OiWCg3l5W7hhavaADBj+QH2JqY7oMBqZs98+GgwnNoHAY3gznnQ9npnVyUiUmoKpkWk2jiWmsUnqw4C8PilLTGbK7Ae9LoPICUO/BtAr/sdU6CIiIiIiFSeutHQboSx7YBZ04NahTOkdTj5NjvP/bQDu91e4TGrBbsdlk+GL0dCTho07gl3L4EGHZxdmYhImSiYFpFqY8qiveTm2+jWNJgBLULLP1BGEiwruJEd/Bx4+DqmQBERERERqVx9JgAm2PkLHN9Z4eGev7INnm5mVu8/yS9bj1W8PmfLzYTv7oKYFwE7dB4Do38Gvwr8/iQi4iQKpkWkWog9fpqvN8QD8O9LW2IyVWC29JJJxsyB+u3h4pEOqlBERERERCpdWCtoc5WxvfzNCg8XEezDfQObATB1cWzNnjWdEg8zh8H274xGkZdPhivfAjcPZ1cmIlIuCqZFpFqYvHA3NjsMaR1O5ybB5R/oxG7Y8LGxPfRVMOvHnIiIiIhIjdL3MePr9u/g5L4KD3d7r0i83M3sTkxnc3xKhcdzikOrYfpASNgKPnVh9E/Q9S5nVyUiUiFKbETE6bYeTuG3bQmYTPD4sJYVG2zBs2C3QqsroGlfxxQoIiIiIiJVp/7F0OJSsNuMtZQrKNDbneEFjdW/WhtX4fGq3IaP4dMrIeMEhLcz1pOO7OPsqkREKkzBtIg43evzdwNwbceGtKznX/6B9i2GvfONj7Vd8pKDqhMRERERkSp3Ztb01tmQfKjCw93UrTEAv249Rnp2XoXHqxLWPJj7KPz6MNjyoM01cNd8CGrs7MpERBxCwbSIONXK2CSW703C3WLikSEtyj+QzQrznzG2u44zOnqLiIiIiEjNFNEVogaALR9WTqnwcF2a1KFZmB9ZeVZ+2nK04vVVtowk+OwaWP8RYIJBz8KIT9TYXURqFQXTIuI0drud1+btAuCW7k2ICPYp/2BbZsHxHeAVBP2fcEyBIiIiIiLiPP0eN75u/hzSjlVoKJPJxKiuEQDMXl/Nl/NI2AYfDoRDK8DDH276Cvo9BhVpEC8iUg0pmBYRp5m/I4E/D6fi42Ep7JRdLjnpsPgVY7v/v8GnAs0TRURERESkemjSGxr3BGsurHqnwsNd16kRHhYz24+ksf1IqgMKrAQ7foAZQyE1Duo0hbGLoOVlzq5KRKRSKJgWEafIt9oK15Ye26cpof6e5R9s5RQ4nQjBUdB1rIMqFBERERERpzKZjJnCABtmGstbVECwrwdDLwoH4Kt11WzWtM1mTLb55g7Iy4SogTBuMYS1cnZlIiKVRsG0iDjF95uOsO9EBnV83BnbL6r8A6UeLpo9cclL4ObhmAJFRERERMT5ogdDg46QnwWrp1Z4uDNNEH/acpTM3PwKj+cQ2Wkw5xZY9rrxfc/74ZZv9UlQEan1FEyLSJXLzrPyv0V7ALhvYDMCvNzLP1jMy5CfbXzMr9UVDqpQRERERESqBZOpaK3pddMhK7lCw/WMqkvjYB9O5+Tz69aKrVvtECf3wYxLYPdvYPGEa6bBsFfB4ubsykREKp2CaRGpcl+sOcSx1GzqB3pxa48m5R/oyCbYOtvYHvaqmoGIiIiIiNRGLS6D8LaQmw5rP6zQUGaziZFnmiA6ezmPfYth+iA4sQv86sGY36HDTc6tSUSkCimYFpEqlZ6dx9Q/YgF4ZEgLvNwt5RvIbof5TxvbF48yPt4nIiIiIiK1j9kMfR81tte8ZzQ/r4ARnRthMZvYFJfCnsSKjVUudruxLMkX10N2CjTsAncvgUadq74WEREnUjAtIlVq+vIDJGfmER3qy3WdGpZ/oJ2/QNwqcPOGwc86rkAREREREal+2lwNdZsbQe76GRUaKizAi8GtwgAnNEHMy4Yf74X5T4HdBh1ugTvmQkD9qq1DRKQaUDAtIlUm6XQOHy3fD8BjQ1viZinnj6D8XFj4nLHd6wEIbOSgCkVEREREpFoyW4pmTa9+F3IzKzTcmSaIP2w+QnaetaLVlU7aMfjkcvjzSzCZYdgkuHoquHtVzeuLiFQzCqZFpMq8uziWzFwrFzcK5NK29co/0PrpkHwA/MKh90OOK1BERERERKqvdjdAUBPIOAGbPq3QUP1ahNIg0IuUzDzm70hwUIH/4PAG+HAAHNkAXkFw6/fQ8171yRERl6ZgWkSqRPypTGatPQTAvy9tham8N2CZp2Dpf43tQc+Ap5+DKhQRERERkWrN4g59HjG2V06B/JzyD2U2MaKL0QSx0pfz2PIlfHwZnE6A0NZw9x8QPbByX1NEpAZQMC0iVeJ/i/aQZ7XTp1kIvZuFlH+gpa9BdqrRlbvDLY4rUEREREREqr8ON4N/A0g/BltmVWioG7tGYDLBmv2nOJCU4aACz2LNh3lPwY/jwZoLLS+HsQshOMrxryUiUgMpmBaRSrc7IZ0fNh8B4PFhLcs/UFKssYwHwNBXjHXmRERERETEdbh5Fi3nt+J/YM0r91ANg7zp3yIUgNnrHTxrOvMUzLoB1kw1vu//bxj5BXj6O/Z1RERqMAXTIlLp3liwG7sdhrerR/uIoPIPtPA5sOVD82H66JuIiIiIiKvqNBp8QyElDrZ9U6GhRnU1miB+t/Ewufk2R1QHx3fC9EGw/w9w94ERn8LAp8CsCEZE5Gz6qSgilWrjoWQW/pWI2QQTLqnAbOkDy2H3XDBZYOjLjitQRERERERqFg8f6Hm/sb38TbBZyz3U4NZhhPh5knQ6l5idiRWvbddv8NEQo1l7UGO4awFcdE3FxxURqYUUTItIpbHb7fx33i4ARnSOoFlYORsV2mww/ylju8udEFqBgFtERERERGq+rneBVxCcjIW/fiz3MO4WMyO6NALgq/Xx5a/Hboelr8PsmyD3NET2hXFLoF678o8pIlLLKZgWkUqzdM8J1h04hYebmYeGNC//QFtnQ8JW8AyAAU86rkAREREREamZPP2hx73G9rI3jMks5TSqawQAy/eeIP5UZtkHyM2Ab+6AP14xvu92N9z2A/jWLXdNIiKuoFzB9NSpU4mMjMTLy4vu3buzbt26fzz+rbfeomXLlnh7exMREcEjjzxCdnZ2uQoWkZrBZrPz2rzdANzeswkNgrzLN1BuBsS8ZGz3ewx8QxxUoYiIiIiI1Gjd/2VMXjn+F+z5vdzDNKnrS6/outjt8M2GMs6aTj4EM4Yas7bN7nDlFBj+Oljcy12PiIirKHMwPWfOHCZMmMDzzz/Ppk2baN++PcOGDeP48eMlHv/ll1/y5JNP8vzzz7Nz505mzJjBnDlzeOqppypcvIhUX79uO8Zfx9Lw93Tj3gHNyj/Qqnch/RgENYFu/3JcgSIiIiIiUrN5B0G3ccb2steN5TTKaVQ3owni1xsOk28t5ezrgytg+kBI3G40Y7z9F+h8R7lrEBFxNWUOpidPnsy4ceMYM2YMbdq0Ydq0afj4+DBz5swSj1+1ahW9e/fm5ptvJjIykqFDh3LTTTddcJa1iNRceVYbkxcYs6Xv7hdFHV+P8g2UdgxWvmVsX/IiuHs5pkAREREREakdetwL7j5wdDPsiyn3MMMuCqeOjzsJadks3XPinw+222H9R/DZ1ZB5Euq3h7uXQJOe5X59ERFXVKZgOjc3l40bNzJkyJCiAcxmhgwZwurVq0s8p1evXmzcuLEwiN6/fz+//fYbw4cPr0DZIlKdfb0hnoMnMwnx8+DOPk3LP9DiVyAvEyK6Q5trHFafiIiIiIjUEr4hRoN0MJoPlnPWtKebhes6FTRBXPcPy3nk58KvD8PcR8GWD21vgDHzILBRuV5XRMSVlSmYTkpKwmq1Eh4eXmx/eHg4CQkJJZ5z880389JLL9GnTx/c3d2Jjo5mwIAB/7iUR05ODmlpacUeIlIzZOVambJoLwD3D2yGr6db+QY6thW2zDK2h74KJpODKhQRERERkVql5/1g8YT4NcbyGuV0UzejCeIfu4+TmFZCX6zTx+Gzq2DjJ4AJhrwI138EHj7lfk0REVdWruaHZbFkyRL+85//8N5777Fp0ya+//575s6dy8svv3zecyZNmkRgYGDhIyIiorLLFBEH+WTVQY6n59Cojjc3dW9cvkHsdljwNGA3ZiBEdHVojSIiIiIiUosE1IdOtxnby14v9zDNwvzp0qQOVpv93CaIR7fAhwMhbrXRcPHmr6HPw5pAIyJSAWUKpkNCQrBYLCQmJhbbn5iYSL169Uo859lnn+W2225j7NixtGvXjmuvvZb//Oc/TJo0CZut5IYCEydOJDU1tfARH1/Grrgi4hSpmXm8vyQWgAmXtMDTzVK+gfbMgwPLjFkPQ553YIUiIiIiIlIr9X4IzG5wYCnEl7+n1U0FTRDnbIjHZitYFmTbtzDzUkg7DHWbwdgYaDHUEVWLiLi0MgXTHh4edO7cmZiYooYCNpuNmJgYevYseZH/zMxMzObiL2OxGGGV/TxrP3l6ehIQEFDsISLV37Rl+0jLzqdluD9Xd2hYvkGsebDgGWO7570QVM5Z1yIiIiIi4jqCGkP7Ucb2sjfKPczwdvXx93Ij/lQWK/cmwqIX4Lu7ID8Lml1ihNKhLRxTs4iIiyvzUh4TJkxg+vTpfPrpp+zcuZPx48eTkZHBmDFjABg9ejQTJ04sPP7KK6/k/fffZ/bs2Rw4cICFCxfy7LPPcuWVVxYG1CJS8x1Py+bjlQcAeHxYSyzmcn6kbcNMOBkLPiHQZ4IDKxQRERERkVqtzwQwmWHvfDj2Z7mG8PawcG3HhviTSdBPt8OK/xlP9H4Ibp4D3kGOq1dExMWVOZgeOXIkb7zxBs899xwdOnRgy5YtzJs3r7AhYlxcHMeOHSs8/plnnuHRRx/lmWeeoU2bNtx1110MGzaMDz74wHHvQkSc7u3Fe8nOs9G5SR0Gtw4r3yBZybDk/4ztQU+Dlz4tISIiUlWmTp1KZGQkXl5edO/enXXrSvdR+NmzZ2Mymbjmmmsqt0ARkQupGw1trze2KzBrenTzfH70eJZ2mWuwu3nBdR/BJS+BWZPrREQcyWQ/33oa1UhaWhqBgYGkpqZqWQ+RauhgUgZDJi8l32bn63/1pFvT4PINNP9pWP0uhLaCe1aCxc2xhYqISLWj+7zqYc6cOYwePZpp06bRvXt33nrrLb755ht2795NWNj5/+B88OBB+vTpQ1RUFMHBwfz444+lfk1dexGpFMd3wns9jO1710BY67Kdv3cRfHsn5KRy1B7Mmq5vc90VVzq+ThGRWqy093llnjEtIvJ3kxfuId9mZ2DL0PKH0qf2w9qCT1IMfVWhtIiISBWaPHky48aNY8yYMbRp04Zp06bh4+PDzJkzz3uO1Wrllltu4cUXXyQqKqoKqxUR+QdhraF1QZC8fHLpz7PbYeUU+HIE5KRyok4Hrs55hXd3+5+3P5aIiFSMgmkRqZAdR1P5+c+jADw2rGX5B1r0AtjyIHowNB/imOJERETkgnJzc9m4cSNDhhT999dsNjNkyBBWr1593vNeeuklwsLCuOuuu0r1Ojk5OaSlpRV7iIhUin6PG1+3fwsn9134+Lws+P5uWPgc2G3Q8Ta8x/5Ghkdd9p/IYN2BU5Vbr4iIi1IwLSIV8vr83QBc1b4BFzUILN8gh1bDXz8ZjUqGvuLA6kRERORCkpKSsFqthT1jzggPDychIaHEc1asWMGMGTOYPn16qV9n0qRJBAYGFj4iIiIqVLeIyHnVbw/Nhxkh85nmheeTegQ+vgy2fQ0mCwx/A656Bz9fX65q3wCA2evjq6BoERHXo2BaRMptzf6TLNl9AjeziQmXtCjfIDYbzH/K2O40GsLbOK5AERERcbj09HRuu+02pk+fTkhISKnPmzhxIqmpqYWP+HgFPSJSifo9Znz98ytIiSv5mLi18OEAOLoZvINh9I/QbRyYTACM6tYYgN+2HSM1M6/yaxYRcTFaxFVEysVut/PavF0AjOoWQWSIb/kG2v4tHN0EHn4w8GkHVigiIiKlERISgsViITExsdj+xMRE6tWrd87x+/bt4+DBg1x5ZVEzMJvNBoCbmxu7d+8mOjr6nPM8PT3x9PR0cPUiIucR0Q2a9ocDS421oy9/s/jzmz6DXycYywmGXQQ3fQl1Iosd0r5RIK3q+bMrIZ0fNh/mjt5Nq65+EREXoBnTIlIuMTuPsykuBS93Mw8Oal6+QfKyYNGLxnbfCeAX5rgCRUREpFQ8PDzo3LkzMTExhftsNhsxMTH07NnznONbtWrFtm3b2LJlS+HjqquuYuDAgWzZskVLdIhI9XFmrelNn0PaMWPbmge/PQE/P2CE0q2vhLsWnBNKA5hMJm4qmDU9e328miCKiDiYgmkRKTOrzV64tvSdvZsSFuBVvoFWT4W0wxAYAT3udWCFIiIiUhYTJkxg+vTpfPrpp+zcuZPx48eTkZHBmDFjABg9ejQTJ04EwMvLi7Zt2xZ7BAUF4e/vT9u2bfHw8HDmWxERKRLZByJ6gDUHVr8Lmafgi+tg3QfG8wOfhhGfgaffeYe4pkNDPN3M7EpIZ0t8StXULSLiIrSUh4iU2U9bjrA7MZ1Ab3f+1f/cj+qWSnpiUSOSwc+Du7fjChQREZEyGTlyJCdOnOC5554jISGBDh06MG/evMKGiHFxcZjNmtMiIjWMyWTMmp51PWyYCTt/gZRDxjKC134Ara+44BCBPu5c3q4+328+wux18XRsXKcKChcRcQ0mew34LEpaWhqBgYGkpqYSEBDg7HJEXFpOvpXBby7lcHIW/760FeMHlDOY/uUh2PgJNOwMdy0C/bIrIuKSdJ/nunTtRaRK2O1Gg8NjW4zv60TCqK/K1HR93YFT3PjBanw8LKx7egh+nprjJyLyT0p7n6ckSETK5Ku1cRxOziLM35M7ekWWb5DEHUazEYBh/1EoLSIiIiIilcNkgiEvgMUTogfBuD/KFEoDdI2sQ3SoL5m5Vn7ecrRy6hQRcUFKg0Sk1E7n5PPO4lgAHhrSHG8PS9kHsdth/tNgt0Gbq6FxDwdXKSIiIiIicpbogfDvg3DbD+ATXObTTSYTo7qeaYIY5+DiRERcl4JpESm1mSsOcDIjl8i6PtzYJaJ8g8Qugv1/gMXDmLkgIiIiIiJS2Tx8KnT6dZ0a4m4xsfVwKjuOpjqoKBER16ZgWkRK5VRGLtOX7Qfg0aEtcbeU48eHNR8WPGNsd/8XBEc5sEIREREREZHKUdfPk6EX1QNg9rp4J1cjIlI7KJgWkVJ5f0ks6Tn5XNQggMvb1S/fIJs+hRO7wDsY+j7m2AJFREREREQq0U0Fy3n8uOUIWblWJ1cjIlLzKZgWkQs6mpLFp6sPAfDEpa0wm01lHyQ7Ff74j7E9YCJ4BzmuQBERERERkUrWK7ouEcHepGfnM3fbMWeXIyJS4ymYFpELmrJoL7n5Nro3DaZf85DyDbJ8MmQmQd3m0GWMYwsUERERERGpZGbzWU0Q16kJoohIRSmYFpF/FHv8NN9sNNZQe+LSVphM5ZgtnXwI1rxvbA99GSzuDqxQRERERESkaozo3AiL2cSGQ8nsTUx3djkiIjWagmkR+UdvLtiNzQ6XtAmnc5M65Rsk5kWw5kDTftDiUscWKCIiIiIiUkXCArwY1CoMgNnr1QRRRKQiFEyLyHn9GZ/C79sTMJng8WEtyzdI/HrY/h1ggqGvQnlmXIuIiIiIiFQTN3WLAOD7TYfJyVcTRBGR8lIwLSLn9fr83QBc17ERLcL9yz6A3Q7znzK2O94C9S92YHUiIiIiIiJVr3+LMOoHepGcmcf8HYnOLkdEpMZSMC0iJVqxN4kVsUl4WMw8PKR5+QbZ8QMcXgfuPjDwGccWKCIiIiIi4gQWs4kRXYxZ02qCKCJSfgqmReQcdrud1+bvAuCWHo2JCPYp+yB52bDoeWO798MQUN9xBYqIiIiIiDjRjV0aYTLBqn0nOZiU4exyRERqJAXTInKOedsT2Ho4FR8PC/cNbFa+QdZOg5Q48G8Ave53bIEiIiIiIiJO1KiOD/2ahwJqgigiUl4KpkWkmHyrjdcXGGtLj+0bRYifZ9kHyUiC5W8a24OfBQ9fB1YoIiIiIiLifGeaIH678TB5VpuTqxERqXkUTItIMT9sPsL+ExnU8XFnXN+m5RtkySTISYP67eHiUY4tUEREREREpBoY3DqcED9Pkk7nELNTTRBFRMpKwbSIFMq32pj6RywA9/SPxt/LveyDHN8FGz42toe+Cmb9mBERERERkdrH3WLmhs6NAPhqnZbzEBEpKyVGIlLol61HOXgykzo+7tzao0n5Bln4LNit0OoKaNrXsQWKiIiIiIhUI6O6Gst5LNt7gsPJmU6uRkSkZlEwLSIAWG123l1szJYe2zcKX0+3sg+ybzHsXQBmNxjyooMrFBERERERqV4iQ3zpGVUXux2+3nDY2eWIiNQoCqZFBIDfth1j34kMAr3dGd2zHLOlbVaY/4yx3XUchDRzbIEiIiIiIiLV0KiCJojfbIjHarM7uRoRkZpDwbSIYLPZeWfxXgDu6tO0fGtLb/4Cju8AryDo/4RjCxQREREREammhl1UjyAfd46lZrN0z3FnlyMiUmMomBYR5u9IYE/iafy93Li9V2TZB8hJhz9eNbb7PwE+wQ6tT0REREREpLrycrdwXUc1QRQRKSsF0yIuzm6383bB2tJjekUS6F2O2dIrp8DpRAiOMpbxEBERERERcSE3FSznsXjXcY6nZTu5GhGRmkHBtIiLW7TzODuPpeHrYeHOPk3LPkDqYVj1jrF9yUvg5uHYAkVERERERKq55uH+dG5SB6vNzjcb1QRRRKQ0FEyLuDC73c7bMcba0rf3iiTIpxyhcsxLkJ8NTXpDqyscXKGIiIiIiEjNMKqrMWt69vo4bGqCKCJyQQqmRVzYkt0n2HYkFR8PC2P7RpV9gCObYOscY3voK2AyObZAERERERGRGuLyi+vj7+lG/KksVu076exyRESqPQXTIi7KbrczpWC29G09mhDsW8bZ0nY7zH/a2L54FDTs5OAKRUREREREag4fDzeu7tgAgK/Wxzm5GhGR6k/BtIiLWr43iS3xKXi5m8s3W3rnLxC3Cty8YfCzji9QRERERESkhhnVtTEAC3YkcPJ0jpOrERGp3hRMi7igs9eWvrlbE0L9Pcs2QH4uLHzO2O51PwQ2cnCFIiIiIiIiNU/bhoG0axhIntXO95uOOLscEZFqTcG0iAtavf8kGw4l4+Fm5l/9yzFbev10SD4AfuHQ+2GH1yciIiIiIlJTjepmNEH8an0cdruaIIqInI+CaREXdGa29E1dIwgP8CrbyZmnYOl/je1Bz4Cnn4OrExERERERqbmuat8AHw8L+09ksP5gsrPLERGpthRMi7iYtftPsmb/KTwsZu4ZEF32AZb+F7JTIbwtdLjF8QWKiIiIiIjUYP5e7lx5sdEEcfY6NUEUETkfBdMiLuadxbEA3NClEfUDvct2clIsrP/I2B76CpgtDq5ORERERESk5juznMfcbcdIzcxzcjUiItWTgmkRF7LxUDIrYpNwM5sY378cs6UXPge2fGg+DKIHOr5AERERERGRWqBDRBCt6vmTk2/jxy1qgigiUhIF0yIu5J3FxtrS13dqRESwT9lOPrAMds8FkwWGvlwJ1YmIiIiIiNQOJpOJUV0LmiCuUxNEEZGSKJgWcRF/xqewZPcJLGYT9w4s42xpmw3mP21sdxkDoS0dX6CIiIiIiEgtcm3HRni6mdmVkM6fh1OdXY6ISLWjYFrERZyZLX1Nh4Y0qetbtpO3zoaEreAZAAMmVkJ1IiIiIiIitUugjzvD29UH1ARRRKQkCqZFXMD2I6ks2nkcswnuK+ts6dwMiHnJ2O73GPiGOL5AERERERGRWujMch4//3mU0zn5Tq5GRKR6UTAt4gLeXRwLwJXtGxAV6le2k1e9A+nHIKgJdPtXJVQnIiIiIiJSO3VrGkxUqC+ZuVZ++fOos8sREalWFEyL1HK7EtKYtyMBkwnuH9isbCenHYOVU4ztIS+Au5fD6xMREREREamtzm6CqOU8RESKUzAtUsu9UzBbeni7+jQP9y/byYtfgbxMaNQNLrq2EqoTERERERGp3a7v1Ah3i4k/D6fy19E0Z5cjIlJtKJgWqcX2Jqbz27ZjADwwqIyzpY/9CVtmGdvD/gMmk4OrExERERERqf3q+nkytE09AGav16xpEZEzFEyL1GLv/hGL3Q7DLgqnVb2A0p9ot8P8pwE7tL0eIrpWWo0iIiIiIiK13ahuxnIeP2w+Qlau1cnViIhUDwqmRWqp/SdOFzbXeGBQ87KdvGceHFwOFk8Y/HwlVCciIiIiIuI6ekeHEBHsTXp2fuGnWkVEXJ2CaZFaauof+7DZYUjrMNo2DCz9idY8WPCMsd3zXqjTpHIKFBERERERcRFms4mRXQqaIGo5DxERQMG0SK106GQGP245ApRjtvTC5+FkLPiEQJ8JlVCdiIiIiIiI6xnRJQKL2cT6g8nEHk93djkiIk6nYFqkFnrvj31YbXb6twilfURQ6U/c8DGsmWpsX/4meJVhXWoRERERERE5r/AALwa2DANg9rp4J1cjIuJ8CqZFapn4U5l8t+kwAA8OLsNs6f1L4bfHjO2BT8NF1zi+OBERERERERd2U0ETxO82HSYnX00QRcS1KZgWqWWmLd1Hvs1On2YhdG5Sp3QnJcXC17eBLR/ajYB+j1dukSIiIiIiIi6of4tQ6gV4kZyZx4Idic4uR0TEqRRMi9QiR1Oy+HqD8ZGwUs+WzjwFX94I2anQqBtc9S6YTJVYpYiIiIiIiGtys5i5sUsjQE0QRUQUTIvUIh8s3Uee1U6PqGC6NQ2+8An5ufD1aDi1DwIbw6hZ4O5V+YWKiIiIiIi4qBu7RmAywcrYkxw6meHsckREnEbBtEgtcTwtm6/WF8yWHlSK2dJ2O/z2KBxcDh7+cPMc8Aur5CpFRERERERcW6M6PvRtHgrAnPVqgigirkvBtEgt8cGy/eTm2+jSpA49o+te+ITVU2HTZ2Ayww0zIbxN5RcpIiIi1dbUqVOJjIzEy8uL7t27s27duvMe+/3339OlSxeCgoLw9fWlQ4cOfP7551VYrYhIzXZTV6MJ4jcbD5NntTm5GhER51AwLVILnEjPYdbaQ4CxtrTpQmtE7/4dFjxjbA/7D7QYWskVioiISHU2Z84cJkyYwPPPP8+mTZto3749w4YN4/jx4yUeHxwczNNPP83q1avZunUrY8aMYcyYMcyfP7+KKxcRqZkGtw4nxM+DE+k5LN5V8s9aEZHaTsG0SC3w0fL9ZOfZ6BARRN/mIf98cMI2+PYuwA6dx0D3e6qkRhEREam+Jk+ezLhx4xgzZgxt2rRh2rRp+Pj4MHPmzBKPHzBgANdeey2tW7cmOjqahx56iIsvvpgVK1ZUceUiIjWTh5uZ6zsXNEFcpyaIIuKaFEyL1HAnT+fw2WpjtvRDF5otnZ4IX46CvAxo2h+Gvw4Xml0tIiIitVpubi4bN25kyJAhhfvMZjNDhgxh9erVFzzfbrcTExPD7t276dev33mPy8nJIS0trdhDRMSVjeraGICle05wNCXLydWIiFQ9BdMiNdyMFQfIyrPSrmEgA1qGnv/AvCyYfROkHYa6zeDGT8HiXnWFioiISLWUlJSE1WolPDy82P7w8HASEhLOe15qaip+fn54eHhw+eWX884773DJJZec9/hJkyYRGBhY+IiIiHDYexARqYmahvjSIyoYmx2+3qAmiCLiehRMi9RgKZm5hbOlHxjU7Pyzpe12+PFeOLIRvOvAzV8bX0VERETKyd/fny1btrB+/XpeffVVJkyYwJIlS857/MSJE0lNTS18xMcrhBERuambMWv66/XxWG12J1cjIlK13JxdgIiU38yVBzmdk0/r+gFc0ib8/Acu+T/Y8T2Y3WHkF1A3uuqKFBERkWotJCQEi8VCYmJisf2JiYnUq1fvvOeZzWaaNWsGQIcOHdi5cyeTJk1iwIABJR7v6emJp6enw+oWEakNhl1UjyAfd46mZrNs7wkGtgxzdkkiIlVGM6ZFaqjUrDw+XnkAgAf/abb0tm9h6f8Z21f8DyL7VFGFIiIiUhN4eHjQuXNnYmJiCvfZbDZiYmLo2bNnqcex2Wzk5ORURokiIrWWl7uFazs2BNQEUURcj2ZMi9RQn646SHp2Pi3C/Rh20XlmM8WvN5bwAOj1IHS6reoKFBERkRpjwoQJ3H777XTp0oVu3brx1ltvkZGRwZgxYwAYPXo0DRs2ZNKkSYCxXnSXLl2Ijo4mJyeH3377jc8//5z333/fmW9DRKRGuqlbYz5eeZCYncc5np5NmL+Xs0sSEakSCqZFaqD07DxmrDBmS98/qDlmcwmzpVPijGaH1hxoORyGvFC1RYqIiEiNMXLkSE6cOMFzzz1HQkICHTp0YN68eYUNEePi4jCbiz5smZGRwb333svhw4fx9vamVatWfPHFF4wcOdJZb0FEpMZqEe5Pp8ZBbIpL4duNh7l3QDNnlyQiUiVMdru92q+un5aWRmBgIKmpqQQEBDi7HBGne29JLK/N201UqC8LH+mP5e/BdE46zBgGx3dAeDu4cx54+jmnWBERkX+g+zzXpWsvIlLk6w3xPPHtVprU9eGPRweUPPlIRKSGKO19ntaYFqlhMnLy+Wi5MVv6gUHNzg2lbVb49i4jlPYLh5tnK5QWERERERGpxq64uD7+nm4cOpnJmv0nnV2OiEiVUDAtUsPMWnuIUxm5RNb14cqLG5x7wMLnYO98cPOCUV9BYKOqL1JERERERERKzcfDjas6GL/ffbU+3snViIhUDQXTIjVIVq6VD5ftB+C+gc1ws/zt/8IbP4HV7/5/e3ceV2Wdv3/8OufAYQcXNtkCNTV3BSG10sqyPadyrTRbp9QWZvqms+j0mylrbMopLMtssVyzmmxfKC0LRTFzxwUVUNlcAEG2c87vD5Sy1EDh3BzO6/l4nMec7nMfuJgbZj5dvPnctc+HvSRFxTs3IAAAAADgrIxOjJEkfb4pT4fKqgxOAwBNj2IacCEL0rNVdLRKUa19NKxP5MkvZq2QPv5T7fNL/yp1v8n5AQEAAAAAZ6V7ZJC6RwaqymbXe+tyjY4DAE2OYhpwERXVNr28Ypek2mlpz19OSxftlJbcLtlrpB7DpUseNSglAAAAAOBsjepXOzW9MD1bDofD4DQA0LQopgEXsWRtjgpKKxUR5K2b+/5i3+jyQ9KCEVJFsRSVKN2QIpm4gzMAAAAAuJobe0fIx9OiXYVlWrv3sNFxAKBJUUwDLqCyxqaXltdOS99/aUdZPY7/6NZUSUvGSod2SUEx0qj5kqe3gUkBAAAAAGcrwNtT1/VsJ6l2ahoAWjKKacAFLM3I1YHiCoUHemtEwvFpaYdD+uRP0p7vJKu/NGaR5B9qbFAAAAAAwDkZdfwmiJ9sPKDiY9UGpwGApkMxDTRz1Ta7Xvymdlr6vkHt5eVhqX0hbZa0bp5kMku3vCaFdTMwJQAAAACgMfSNaaVOYf6qqLbrg/X7jI4DAE2GYhpo5t5ft0/7jhxTsL+XRh//zbkyP5W++Fvt86FPSp2GGhcQAAAAANBoTCbTL26CmMNNEAG0WBTTQDNWY7Mr5ZudkqQ/Dmovb0+LlLdRWnqXJIcUP15K+qOxIQEAAAAAjeqmvpGyepi19UCJNuQWGx0HAJrEWRXTs2bNUmxsrLy9vZWUlKT09PTTnjt48GCZTKbfPK699tqzDg24iw/W71f2oXK19bNqTFKMVJovLRglVZdJcYOka2ZIJpPRMQEAAAAAjaiVr1XXdA+XJC1aw00QAbRMDS6mFy9erOTkZE2bNk3r1q1Tr169NHToUBUUFJzy/Pfee08HDhyoe2zatEkWi0XDhw8/5/BAS2azO+qmpe+5pL18TdXSotFSSa7UtqM04k3J4mlwSgAAAABAUzhxE8Rl6/errLLG4DQA0PgaXEw/++yzuueeezR+/Hh17dpVs2fPlq+vr1577bVTnt+mTRuFh4fXPb788kv5+vpSTAO/46MN+7W7qEytfD11W1KM9L8HpH0Zkk9racyS2v8EAAAAALRISXFt1D7YT2VVNn34036j4wBAo2tQMV1VVaWMjAwNGTLk5w9gNmvIkCFKS0ur18eYO3euRo0aJT8/v9OeU1lZqZKSkpMegDux2x164evaaem7L4qTf9oz0ub3JLOHNOItqW0HgxMCAAAAAJqSyWTSyH7RkqSFa3IMTgMAja9BxXRRUZFsNpvCwsJOOh4WFqa8vLzffX96ero2bdqku++++4znTZ8+XUFBQXWP6OjohsQEXN6nm/K0s+CoAr09dGerDGnFU7UvXPecFHexseEAAAAAAE5xc3yUPC0m/ZRzRFsPMLQHoGU5q5sfnq25c+eqR48eSkxMPON5U6ZMUXFxcd0jJ4ffDMJ91E5L75Ak/aXnUfl+/GDtCwMelPqONTAZAAAAAMCZgv29dEXX2uHARencBBFAy9KgYjo4OFgWi0X5+fknHc/Pz1d4ePgZ31tWVqZFixbprrvu+t3P4+XlpcDAwJMegLv4Yku+tuWV6nyvwxqx8zHJVil1vkYa8g+jowEAAAAAnGxUv9qbIL7/4z5VVNsMTgMAjadBxbTValV8fLxSU1PrjtntdqWmpqp///5nfO8777yjyspK3XbbbWeXFHADDkfttLSfjmmB33MylxdKYT2km+ZIZovR8QAAAAAATnZRx2BFtfZRSUWNPtl4wOg4ANBoGryVR3JysubMmaM333xTW7du1f3336+ysjKNHz9ekjR27FhNmTLlN++bO3euhg0bprZt2557aqCF+npbgbbuP6JZXrMUUr5T8g+TxiySvPyNjgYAAAAAMIDZbNLIhNp7by1KZ6tTAC2HR0PfMHLkSBUWFmrq1KnKy8tT79699dlnn9XdEDE7O1tm88l9d2ZmplauXKkvvviicVIDLZDD4dDzqTs0xWOBBpvWSR7e0qiFUlCU0dEAAAAAAAYanhCt577arvQ9h7Sz4Kg6hjK8BMD1NbiYlqSJEydq4sSJp3xt+fLlvznWuXNnORyOs/lUgNtYsb1QFxx4X/d4flJ7YNhLUlS8saEAAAAAAIYLD/LWZV1C9dXWAi1ek62/XtvV6EgAcM4avJUHgMbncDj09afv6J8er9ceuPSvUvebjA0FAAAAAGg2TtwE8d11+1RZw00QAbg+immgGchYt1Z/OvwveZpsquhyk3TJo0ZHAgAAAAA0I4M7hygs0EuHyqr05ZZ8o+MAwDmjmAaMVn5IEZ+MU5CpXDl+3eV980uSyWR0KgAAAABAM+JhMWsEN0EE0IJQTANGqqlS8bwxirDtU64jWF63LpQ8vY1OBQAAAABohkYkRMtkklbuLFL2wXKj4wDAOaGYBozicEif/ElBeWk66vDW/7o8q9CIGKNTAQAAAACaqeg2vrqoY7AkafHabIPTAMC5oZgGjJI2S1o3TzaHSY/YJukPV19pdCIAAAAAQDM3OrF2oOmdtbmqsdkNTgMAZ49iGjBC5qfSF3+TJD1Rc5uC+96gyFY+BocCAAAAADR3Qy4IU1s/qwpKK/X1tgKj4wDAWaOYBpwtb6O09C5JDs2vuVxvOq7WA4M7Gp0KAAAAAOACrB5m3RIfJUlatIabIAJwXRTTgDOV5ksLRknVZdri3UfTasbppj5Rim7ja3QyAAAAAICLGNkvWpK0PLNAB4qPGZwGAM4OxTTgLNXHpEVjpJJcVQa116gj98tu8tCES5mWBgAAAADUX/sQfyXFtZHdIS1Zk2t0HAA4KxTTgDM4HNIHE6R9ayWf1vp/gdNUIn/d2DtSscF+RqcDAAAAALiYEzdBXLI2Rza7w+A0ANBwFNOAM6x4Wtr0rmT20J7LX9b8HZ4ymcS0NAAAAADgrFzVPVxBPp7ad+SYvttRaHQcAGgwimmgqW1cKi2fXvv8uuf078zg2qc9I9Qx1N/AYAAAAAAAV+XtadEf+kRKkhalcxNEAK6HYhpoSjlrpP89UPt8wCRlRvxBn2zMkyRNuoxpaQAAAADA2TuxncdXW/NVWFppcBoAaBiKaaCpHMmWFo2WbJVS52ukIY8r5ZudkqRreoSrU1iAwQEBAAAAAK6sc3iA+sS0Uo3doaUZ3AQRgGuhmAaaQmWptGCUVFYohfWQbpqjnUXH9NGG/ZKkiZeeb3BAAAAAAEBLMLpf7dT04jXZcji4CSIA10ExDTQ2u016926pYLPkHyaNWSR5+WvWNzvlcEhXdA1T14hAo1MCAAAAAFqA63q1k7+Xh/YcLFda1kGj4wBAvVFMA43ty6nS9s8kD29p1EIpKEp7isr0wfp9kqQHL2NaGgAAAADQOHytHrqhd4QkboIIwLVQTAONKeMNKS2l9vmwl6SoeEnSrG92yu6QLusSqh5RQcblAwAAAAC0OCe28/hsU54Ol1UZnAYA6odiGmgsWSukj/9U+/zSv0rdb5Ik5Rwq13s/1k5LT7qso1HpAAAAAAAtVI+oIHWLCFSVzV73758A0NxRTAONoWintOR2yV4j9RguXfJo3UsvLt8pm92hi88PVp+Y1gaGBAAAAAC0VKMSa6emF6VzE0QAroFiGjhX5YekBSOkimIpKlG6IUUymSRJ+44c09KMXEnSQ5eztzQAAAAAoGnc2DtCPp4W7Sg4qnXZh42OAwC/i2IaOBe2amnJWOnQLikoRho1X/L0rnt59vJdqrY5NKBDWyXEtjEwKAAAAACgJQv09tS1PdtJkhZyE0QALoBiGjhbDof0cbK05zvJ6i+NWST5h9a9nFdcocVrahcDDzItDQAAAABoYqMToyVJH23Yr5KKaoPTAMCZUUwDZyttlrRunmQyS7e8JoV1O+nl2St2qcpmV2JcG13Yvq1BIQEAAAAA7qJvTGudH+qvimq7Pli/3+g4AHBGFNPA2cj8VPrib7XPr3xC6jT0pJcLSiq0MD1bkvTgZUxLAwAAAACanslkOukmiADQnFFMAw2Vt1FaepckhxQ/Xrrw/t+c8sq3WaqssatvTCsN7Mi0NAAAAADAOW7qEymrxazN+0u0MbfY6DgAcFoU00BDlOZLC0ZJ1WVS3CDpmhmSyXTSKUVHKzV/9fFp6cvPl+lXrwMAAAAA0FRa+1l1VfdwSdLCNUxNA2i+KKaB+qo+Ji0aI5XkSm07SiPelCyevznt1e9261i1Tb2igjSoU4gBQQEAAAAA7mzU8ZsgLlu/X2WVNQanAYBTo5gG6sPhkD6YIO1bK/m0lsYsqf3PXzlUVqV5aXskSZMuY1oaAAAAAOB8/du3VWxbXx2trNHHGw4YHQcAToliGqiPFU9Lm96VzB7SiLekth1OedprK3ervMqmru0CdfkFoU4OCQAAcPZmzZql2NhYeXt7KykpSenp6ac9d86cObr44ovVunVrtW7dWkOGDDnj+QAA5zKZTBrZr/YmiGznAaC5opgGfs/GpdLy6bXPr3tOirv4lKcVl1frjR/2SGJvaQAA4FoWL16s5ORkTZs2TevWrVOvXr00dOhQFRQUnPL85cuXa/To0frmm2+Ulpam6OhoXXnlldq3b5+TkwMATueW+Ch5mE36MfuIMvNKjY4DAL9BMQ2cSc4a6X8P1D4fMEnqO/a0p77+w24draxRl/AAXdk1zEkBAQAAzt2zzz6re+65R+PHj1fXrl01e/Zs+fr66rXXXjvl+fPnz9cDDzyg3r17q0uXLnr11Vdlt9uVmprq5OQAgNMJCfDSFcf/3XRhOlPTAJofimngdI5kS4tGS7ZKqfM10pDHT3tqSUW1Xlu5W1Lt3tJmM9PSAADANVRVVSkjI0NDhgypO2Y2mzVkyBClpaXV62OUl5erurpabdq0Oe05lZWVKikpOekBAGhaoxJrt/N4b12uKqptBqcBgJNRTAOnUlkqLRgllRVKYT2km+ZIZstpT5/3wx6VVNSoY6i/ru4e7sSgAAAA56aoqEg2m01hYSf/xVdYWJjy8vLq9TEee+wxRUREnFRu/9r06dMVFBRU94iOjj6n3ACA33dxx2BFtvJRSUWNPt3ETRABNC8eRgdolvK3SIVbjU4BI61fIBVslvzDpDGLJC//0556tLJGr9ZNS3dkWhoAALiVp556SosWLdLy5cvl7e192vOmTJmi5OTkun8uKSmhnAaAJmY2mzSyX7Se/XK7nvh4q6Ja+6pf7On/ugUAnIli+lS2Lvv5ZndwXx7e0qiFUlDUGU97K22vjpRXq32wn67rGeGkcAAAAI0jODhYFotF+fn5Jx3Pz89XePiZ/xLsmWee0VNPPaWvvvpKPXv2POO5Xl5e8vLyOue8AICGGdc/Vp9uytPWAyUaM2eV/nFDN92adJ7RsQCAYvqUWsVIsRcbnQJG8vCS+k+QouLPeFp5VY1e/S5LkjTh0o6yMC0NAABcjNVqVXx8vFJTUzVs2DBJqruR4cSJE0/7vn//+9964okn9PnnnyshIcFJaQEADRXk66l37++vR5du0McbDuiv72/S5v0l+sf13WT1YIdXAMahmD6V3mNqH8DvWLA6WwfLqhTTxlc39mZaGgAAuKbk5GSNGzdOCQkJSkxM1MyZM1VWVqbx48dLksaOHavIyEhNn177V4VPP/20pk6dqgULFig2NrZuL2p/f3/5+59+CzQAgDF8rR5KGd1H3SICNePzTC1Yna0d+aV68dZ4hQTw1ywAjMGvxoCzVFFt0+wVJ6alO8jDwo8TAABwTSNHjtQzzzyjqVOnqnfv3lq/fr0+++yzuhsiZmdn68CBn2+a9dJLL6mqqkq33HKL2rVrV/d45plnjPoSAAC/w2Qy6YHBHfXauH4K8PbQmj2HdUPKSm3IPWJ0NABuyuRwOBxGh/g9JSUlCgoKUnFxsQIDA42OA0iSXv9+tx7/cIsiW/nomz8P5k+gAAA4C6zz3BfXHgCMs6vwqO6dt1a7Csvk5WHWUzf30B/6nPn+SgBQX/Vd59GkAWehdlp6lyTpgUs7UEoDAAAAAFxGhxB/vT9hoC7vEqrKGrseWfyT/vXRFtXY7EZHA+BGaNOAs/BORq7ySyrVLshbt8TzW2UAAAAAgGsJ9PbUnLEJmnhpR0nSqyt3a/wba3SkvMrgZADcBcU00EBVNXa99M1OSdL9gzvIy8NicCIAAAAAABrObDbpz0M768Vb+8rH06LvdhTphpTvlZlXanQ0AG6AYhpooHfX5Wp/cYVCA7w0IiHa6DgAAAAAAJyTa3q003sPDFB0Gx9lHyrXH178Xp9tOvD7bwSAc0AxDTRAtc2uWcenpe8b1EHenkxLAwAAAABc3wXtArVswkUa0KGtyqts+uPb6/Tsl9tltzuMjgaghaKYBhrg/R/3KffwMQX7WzUmMcboOAAAAAAANJrWflbNuzNRdw6MkyQ9n7pD976VodKKaoOTAWiJKKaBeqqx2fXi8Wnpey9pLx8r09IAAAAAgJbFw2LW1Ou76j/De8nqYdZXW/P1hxd/0O6iMqOjAWhhKKaBevpww37tOViuNn5W3Zp0ntFxAAAAAABoMjfHR2nJff0VHuitnQVHdWPKSi3PLDA6FoAWhGIaqAeb3aEXvq6dlr7rojj5eXkYnAgAAAAAgKbVO7qVlk0aqPjzWqukokZ3vrFGs1fsksPBvtMAzh3FNFAPH288oKzCMgX5eGpsf6alAQAAAADuITTAWwvuSdLoxGjZHdJTn27TQ4vW61iVzehoAFwcxTTwO+x2h1K+3iGpdlo6wNvT4EQAAAAAADiPl4dFT/6hh/45rLs8zCYt+2m/bpn9g3IPlxsdDYALo5gGfsfnm/O0Pf+oArw9NG5ArNFxAAAAAABwOpPJpNsvPE/z705SWz+rNu8v0Q0p32tV1kGjowFwURTTwBnY7Q79N7V2Wnr8wDgF+TAtDQAAAABwX0nt22rZpIvUPTJQh8qqdNurqzUvbQ/7TgNoMIpp4Ay+2pqvbXml8rNadOfAWKPjAAAAAABguMhWPnrnvgG6oVeEauwOTf1gsya/u1GVNew7DaD+KKaB03A4HHr++N7S4wbEqpWv1eBEAAAAAAA0Dz5Wi/47qrf+ck0XmU3S4rU5Gv3KKhWUVBgdDYCLoJgGTmN5ZqE27SuRr9Wiuy9ub3QcAAAAAACaFZPJpHsv6aDXxycq0NtD67KP6PqUlVqfc8ToaABcAMU0cAoOx897S99+4Xlq48e0NAAAAAAApzKoU4iWTbxI54f6K7+kUiNeTtPSjFyjYwFo5iimgVP4bkeR1ucckbenmWlpAAAAAAB+R2ywn96fMFBXdA1TVY1df37nJz3+4WbV2OxGRwPQTFFMA7/yy2npMYnnKSTAy+BEAAAAAAA0f/5eHnr5tng9dPn5kqTXv9+jsa+l61BZlcHJADRHHkYHAIzicDhUWFqprKIyZRWWaXfRUWUVlimrqEy7i8pk9TDrvkFMSwMAAAAAUF9ms0mPXNFJF7QLVPKS9fph10HdkLJSc8Ym6IJ2gUbHA9CMUEyjxSuvqvm5cC4sU1bRUe0+/ry0sua077v7ojiFBXo7MSkAAAAAAC3DVd3DFRc8UPfMW6vsQ+W66cUf9MzwXrq2ZzujowFoJiim0SLY7A7lHi6vm37OKqwtn7MKy5RXUnHa95lNUlRrX8UF+6l9iJ/aB/upfYi/OoT4KzyIUhoAAAAAgLPVOTxAyyYO1KSFP+q7HUWasGCdthzooD9d0Vlms8noeAAMRjENl+FwOHSorKqucK4toY8qq6hM2QfLVXWGGyq08bPWls/BfooL8VP7YH91CPFTTFtfeXlYnPhVAAAAAADgPlr5WvX6Hf309GfbNOe73Zr1zS5tPVCqmaN6K9Db0+h4AAxEMY1mp6Lapj0HT+z7XKZdhUfrnhcfqz7t+6weZsW1rZ18jjs++RwX7KcOIX5q5Wt14lcAAAAAAABO8LCY9ddru6pbRJAee3eDvt5WoGGzvtecsQnqEOJvdDwABqGYhiHsdof2Fx+rK5xPTD5nFZZpf/ExORynf29kK5+fy+dgP8WF+Kt9sJ8iWvnIwp8CAQAAAADQLA3rE6kOIf669621yios07CU7/Xf0b11WZcwo6MBMADFNJpUcXm1dhUdPemmgyfK6Mqa02+9EeDtUbvXc/CJCWh/tQ/xU2xbP/lY2XoDAAAAAABX1CMqSMsmXqQH5mdozZ7DuuvNtfrzlZ31wOAOMpkYNgPcCcU0zllljU05h8q1q/BE6fzz1hsHy6pO+z5Pi0kxbXzV/vjEc/uQn7ffaOtn5f+QAAAAAABogUICvDT/7gv1+IebNX91tmZ8nqkt+0s0Y3hP+VqpqgB3wU876sXhcCi/pPKkLTdOTEDnHCqX/Qxbb4QFeql9sP/xmw4eL6CD/RXV2kceFrPzvggAAAAAANAsWD3MeuIPPdQtIkjTlm3SxxsPaFfhUc0Zm6DoNr5GxwPgBBTT+A2b3aEvt+Rry4GSuv2fdxeVqbzKdtr3+FktddPOJ/Z/7hDir9hgP/l78W0GAAAAAAB+a0xSjM4P89f9b6/TtrxS3ZCyUrNu7asBHYKNjgagidEY4iQ2u0MPL16vD3/a/5vXLGaTolv71G29EXd88rl9iJ9CA7zYegMAAAAAADRYv9g2+nDSQN33VoY25Bbr9rnp+tu1F+iOAbF0DUALRjGNOg6HQ399f6M+/Gm/PC0m/eH43XJPTELHtPGV1YOtNwAAAAAAQONqF+SjJff111/e26j3ftynxz/cos37S/SvYd3l7WkxOh6AJkAxDUm1pfS/Pt6qRWtyZDZJ/x3VR9f0aGd0LAAAAAAA4Ca8PS36z4he6hoRqCc/2aqlGbnaWXBUL98er7BAb6PjAWhkjL9CkvTcVzs0d+VuSdLTN/eklAYAAAAAAE5nMpl098XtNe/OJAX5eGp9zhFd98JKZew9bHQ0AI2MYhp65dtdej51hyTp8Ru6aXhCtMGJAAAAAACAO7vo/GAtmzhQncMCVFhaqdGvrNLiNdlGxwLQiCim3dz81Xv15CfbJEmPDu2scQNijQ0EAAAAAAAg6by2fnrvgQG6qlu4qmx2PfbuRk37YJOqbXajowFoBBTTbuz9H3P1t/9tkiTdP7iDJlza0eBEAAAAAAAAP/Pz8tCLt/ZV8hWdJElvpu3Vba+u1sGjlQYnA3CuKKbd1Oeb8/TndzbI4ZDG9T9P/ze0s9GRAAAAAAAAfsNsNunBy8/XnLEJ8vfy0Ordh3RDyvfavL/Y6GgAzgHFtBv6bkehJi34UTa7Qzf3jdK067vJZDIZHQsAAAAAAOC0rugapv9NGKC4YD/tO3JMN7/0g5b9tN/oWADOEsW0m1mz55DumbdWVTa7ru4erqdv7iGzmVIaAAAAAAA0fx1DA/S/CQM1qFOIKqrtenDhj3rq022y2R1GRwPQQBTTbmRjbrHufH2NKqrtGtQpRP8d1UceFr4FAAAAAACA6wjy8dRrd/TTHwd1kCTNXrFLd725RsXHqg1OBqAhaCXdxPb8Uo19bbVKK2uUGNdGs2+Ll9WDyw8AAAAAAFyPxWzS5Ku76PnRfeTtadbyzEINm/W9dhaUGh0NQD2dVTM5a9YsxcbGytvbW0lJSUpPTz/j+UeOHNGECRPUrl07eXl5qVOnTvrkk0/OKjAabu/BMt326modLq9Wr6ggzR2XIB+rxehYAAAAAAAA5+SGXhFa+scBimzlo91FZRo26wd9uSXf6FgA6qHBxfTixYuVnJysadOmad26derVq5eGDh2qgoKCU55fVVWlK664Qnv27NHSpUuVmZmpOXPmKDIy8pzD4/cdKD6mMXNWq6C0Up3DAvTmnYkK8PY0OhYAAAAAAECj6B4ZpGUTByopro2OVtbonnlr9XzqDtnZdxpo1kwOh6NBP6VJSUnq16+fUlJSJEl2u13R0dGaNGmSJk+e/JvzZ8+erRkzZmjbtm3y9Dy7QrSkpERBQUEqLi5WYGDgWX0Md1R0tFIjXk5TVmGZ4oL9tPi+CxUa4G10LAAAgDqs89wX1x4A0NiqbXb966MtejNtryTpqm7h+s+IXvLz8jA4GeBe6rvOa9DEdFVVlTIyMjRkyJCfP4DZrCFDhigtLe2U71m2bJn69++vCRMmKCwsTN27d9eTTz4pm8122s9TWVmpkpKSkx5omOLyat0+N11ZhWWKbOWjt+9OopQGAAAAAAAtlqfFrMdv7K6nb+4hq8Wszzbn6aYXf1D2wXKjowE4hQb9yqioqEg2m01hYWEnHQ8LC9O2bdtO+Z6srCx9/fXXuvXWW/XJJ59o586deuCBB1RdXa1p06ad8j3Tp0/X448/3pBo+IWjlTW64410bT1QomB/L719d5IiW/kYHQsAAAAAAKDJjewXo46hAfrj2xnKzC/V9SkrNX5grCJb+SiilY/Cg7zVLshbvlYmqQEjNflPoN1uV2hoqF555RVZLBbFx8dr3759mjFjxmmL6SlTpig5Obnun0tKShQdHd3UUVuEimqb7nlzrX7MPqJWvp56++5ExQX7GR0LAAAAAADAaeLPa60PJ16k+97O0E85RzTzqx2/OSfIx1PtjpfU4UE+igjyVniQN+U14CQN+ukKDg6WxWJRfv7JdzfNz89XeHj4Kd/Trl07eXp6ymKx1B274IILlJeXp6qqKlmt1t+8x8vLS15eXg2JBtXupTRh/jqlZR2Un9WiN8cnqks4+/UBAAAAAAD3Ex7krcX3Xqj5q7O1Pa9U+4uPKa+4QgeKK3S0skbFx6pVfKxa2/JKT/sxKK+BptOgnxyr1ar4+HilpqZq2LBhkmonolNTUzVx4sRTvmfgwIFasGCB7Ha7zObaLa23b9+udu3anbKUxtmx2R16ZPF6pW4rkJeHWXPv6Kde0a2MjgUAAAAAAGAYb0+L7roo7jfHSyuqdeB4SX3gyDEdKK5QXnEF5TXgRA3+qUhOTta4ceOUkJCgxMREzZw5U2VlZRo/frwkaezYsYqMjNT06dMlSffff79SUlL00EMPadKkSdqxY4eefPJJPfjgg437lbgxu92hKe9t0EcbDsjTYtLLt8frwvZtjY4FAAAAAADQLAV4eyrA21OdwgJOew7lNdC0GvwdP3LkSBUWFmrq1KnKy8tT79699dlnn9XdEDE7O7tuMlqSoqOj9fnnn+uRRx5Rz549FRkZqYceekiPPfZY430VbszhcOifH2/RkrW5Mpuk50f10eDOoUbHAgAAAAAAcGmU10DTMjkcDofRIX5PSUmJgoKCVFxcrMBA9kz+pf98kakXvt4pSXpmeC/dEh9lcCIAAID6Y53nvrj2AAB3Ud/yuj4or+EK6rvO4zvVhc1esauulP5/N3ajlAYAAMBZmzVrlmbMmKG8vDz16tVLL7zwghITE0957ubNmzV16lRlZGRo7969eu655/Twww87NzAAAC6iOUxe94tro6S4NjKZTE3xJQJnhWLaRb21aq+e+nSbJOn/ruqssf1jjQ0EAAAAl7V48WIlJydr9uzZSkpK0syZMzV06FBlZmYqNPS328SVl5erffv2Gj58uB555BEDEgMA0LI4o7xuH+ynUYnRurlvlNr6ezX1lwT8LrbycEHvrctV8pKfJEkTLu2gR4d2MTgRAADA2WGd1zwkJSWpX79+SklJkSTZ7XZFR0dr0qRJmjx58hnfGxsbq4cffrjBE9NcewAAGt+pyus9B8v01ZZ8lVXZJEmeFpOu7BauMYkx6t++rcxmpqjRuNjKo4X6bFOeHl26QZJ0x4BY/fnKzgYnAgAAgCurqqpSRkaGpkyZUnfMbDZryJAhSktLa7TPU1lZqcrKyrp/LikpabSPDQAAap1u8vpoZY0+/Gm/FqVn66fcYn284YA+3nBA57X11ch+0bolPkqhAd4GpYa7MhsdAPW3YnuhJi1cJ5vdoVviozT1uq7sDQQAAIBzUlRUJJvNprCwsJOOh4WFKS8vr9E+z/Tp0xUUFFT3iI6ObrSPDQAAzszfy0OjE2P0wcSL9PGDF+n2C89TgJeH9h4s178/y9SA6V/r/rcztGJ7oez2Zr+5AloIimkXkb77kO57a62qbQ5d26Odnr65J39qAQAAAJcxZcoUFRcX1z1ycnKMjgQAgFvqFhGkfw7rrtV/vVz/vqWn+sa0Uo3doU835Wnca+m6ZMY3Svl6h/JLKoyOihaOrTxcwIbcI7rzjTWqqLbr0s4hem5kb1kopQEAANAIgoODZbFYlJ+ff9Lx/Px8hYeHN9rn8fLykpcXN1oCAKC58LV6aERCtEYkRGtbXokWpefovXW5yj18TM98sV3PfbVDl3UJ1ZjEGF3SKYQuCo2OielmLjOvVGNfS9fRyhpd2L6NXrotXlYPLhsAAAAah9VqVXx8vFJTU+uO2e12paamqn///gYmAwAAztIlPFD/uKGb0v86RM+O6KV+sa1lszv05ZZ8jX9jjS5++mvN/Gq79h85ZnRUtCBMTDdje4rKdNvc1TpSXq1e0a306rh+8va0GB0LAAAALUxycrLGjRunhIQEJSYmaubMmSorK9P48eMlSWPHjlVkZKSmT58uqfaGiVu2bKl7vm/fPq1fv17+/v7q2LGjYV8HAAA4N96eFt3UN0o39Y3SzoJSLUzP0bvrcrW/uEIzv9qh51N3aHDnUI1OjNGlnUPkYWF4EmfP5HA4mv2O5iUlJQoKClJxcbECAwONjuMU+48c0/DZadp35Ji6hAdo0b0XqpWv1ehYAAAAjcod13nNVUpKimbMmKG8vDz17t1bzz//vJKSkiRJgwcPVmxsrN544w1J0p49exQXF/ebjzFo0CAtX768Xp+Paw8AgGuoqLbp8815WpierVVZh+qOhwV61W0FEt3G18CEaG7qu86jmG6GCksrNfLlNGUVlSku2E9L7uuvkAD24wMAAC2Pu63z8DOuPQAArier8KgWr8nROxm5OlRWJUkymaRLzg/R6MRoXX5BmDyZonZ7FNMu6kh5lUa9skrb8koV2cpHS/7YX5GtfIyOBQAA0CTcaZ2Hk3HtAQBwXZU1Nn25JV+L0nO0cmdR3fFgfy+NSIjSqH4ximnLFLW7qu86jz2mm5GjlTUa9/oabcsrVUiAl+bfnUQpDQAAAAAAgGbFy8Oi63pG6LqeEdp7sEyL1uTonbW5KjpaqReX79KLy3fpoo7BGp0Yoyu6hsnqwRQ1fouJ6WaiotqmO15P16qsQ2rl66nF9/ZX5/AAo2MBAAA0KXdY5+HUuPYAALQs1Ta7Urfma0F6jr7bUagTjWNbP6tuiY/SyH7Rah/ib2xIOAUT0y6kqsau+9/O0KqsQ/L38tC8OxMppQEAAAAAAOAyPC1mXdW9na7q3k45h8q1ZG2OFq/JUUFppV7+Nksvf5ulC9u30ejEGF3VPVxeHhajI8NgFNMGq7HZ9cji9foms1Denma9dkc/9YxqZXQsAAAAAAAA4KxEt/HVn67srIcuP1/fZBZqYXq2lmcWaFXWIa3KOqTWvp66qW+URidGq2Mow5nuimLaQHa7Q5Pf26iPNx6Qp8Wkl29PUGJcG6NjAQAAAAAAAOfMw2LWFV3DdEXXMO0/cqxuivpAcYXmrtytuSt3KzG2jUYlRuuaHu3k7ckUtTthj2mDOBwOPf7hFr3xwx5ZzCbNGtNHV3VvZ3QsAAAAp2qJ6zzUD9ceAAD3ZLM7tGJ7gRam5+jrbQWy2WuryUBvj+NT1DFscevi2GO6mfvPF9v1xg97JEkzbulJKQ0AAAAAAIAWz2I26bIuYbqsS5jyiiv0ztocLVqTo31HjumNH/bojR/2qG9MK41OjNF1PSPkY2WKuqViYtoALy3fpac/2yZJ+ueN3XR7/1hjAwEAABikpa3zUH9cewAAcILd7tB3O4u0cHW2vtqar5rjU9QBXh4a1idSoxKj1S0iyOCUqC8mppupeWl76krpyVd3oZQGAAAAAACAWzObTRrUKUSDOoWooLRCSzNytSg9R9mHyvXWqr16a9Ve9YoK0ujEGF3fK0J+XlSaLQET0060NCNXf37nJ0nSxEs76s9DOxucCAAAwFgtZZ2HhuPaAwCAM7HbHUrLOqgF6dn6YnOeqm21Faaf1aIbekdqTGKMekQxRd0cMTHdzHy68YD+b2ltKX3HgFj96cpOBicCAAAAAAAAmiez2aSBHYM1sGOwDh6t1LvrcrUwPUe7i8q0MD1bC9Oz1T0yUKP6xejG3hEK8PY0OjIaiIlpJ/gms0D3zluraptDIxKi9NRNPWU2m4yOBQAAYDhXX+fh7HHtAQBAQzkcDq3KOqRFa7L16cY8VdnskiQfT4tu6BWhUYnR6h3dSiYTvZuR6rvOo5huYquyDmrca+mqrLHr2p7t9PyoPrJQSgMAAEhy7XUezg3XHgAAnIvDZVV678d9WpierZ0FR+uOdwkP0JikGN3YO1JBPkxRG4Fiuhn4KeeIbn11tY5W1uiyLqGafVu8rB5mo2MBAAA0G666zsO549oDAIDG4HA4tHbvYS1Mz9bHGw6osqZ2itrb06xre0RoTFK0+sa0ZoraiSimDbYtr0QjX16l4mPV6t++rV4f30/enhajYwEAADQrrrjOQ+Pg2gMAgMZWXF6t93+s3Ys6M7+07nh0Gx8N7hSqwZ1D1L9DW/laue1eU6KYNtDuojINn52moqOV6h3dSm/fnSR/L77hAQAAfs3V1nloPFx7AADQVBwOh37MOaKFq7P10YYDOlZtq3vNajErqX0bDeoUosGdQ9QhxJ9p6kZGMW2QfUeOafhLP2h/cYW6hAdo8b39FeTLfjYAAACn4krrPDQurj0AAHCGssoape06qOXbC7Q8s1C5h4+d9HpUa5/jJXWoBnRoKz+GS89Zfdd5/DfdiApKK3TrnFXaX1yh9sF+euuuJEppAAAAAAAAwCB+Xh4a0jVMQ7qGyeFwaFdhmZZnFmjF9kKtzjqk3MPHNH91tuavzpbVYla/uNZ12350DGWauikxMd1IjpRXadQrq7Qtr1SRrXz0zh/7K6KVj9GxAAAAmjVXWOehaXDtAQCA0cqrjk9TZxZq+fYC5Rw6eZo6spWPBnUO0eBOIRrQMZiteuuJiWknKq2o1rjX0rUtr1QhAV6af3cSpTQAAAAAAADQjPlaPXT5BWG6/ILaaerdRWXHS+pCrco6qH1HjmnB6mwtWJ0tT4tJ/WLb1G370SmMaepzxcT0OTpWZdO419OVvvuQWvt6avF9/dUpLMDoWAAAAC6hOa/z0LS49gAAoDk7VmXTqqyDWp5ZoOXbC7X3YPlJr0cEeWtQ5xAN6hSqgR3bKsCb7XxPYGLaCapq7Lp/fobSdx+Sv5eH5t2ZRCkNAAAAAAAAuDgfq0WXdgnVpV1CJen4NHXtDRRXZR3U/uIKLUzP0cL0HHmYTUqIba3BnWv3pu4cFsA0dT0wMX2Wamx2TVr4oz7dlCdvT7Pm3ZmkxLg2RscCAABwKc1xnQfn4NoDAABXVVFtU1rWQa3ILNTyzALt+dU0dbsg7+NbfoRoYMdgt5umZmK6CdntDj327kZ9uilPVotZr9yeQCkNAAAAAAAAuAFvT4su7RyqSzuHSuqmPUVlWrG9tqROyzqoA8UVWrQmR4vW1E5T9z2vtQZ3DtHgTqG6oB3T1CcwMd1ADodD05Zt1ry0vbKYTZo1pq+u6h5uaCYAAABX1ZzWeXAurj0AAGiJKqptWr37kJZnFmhFZqGyispOej0s0KvuBooXnR+swBY4Tc3EdBOZ8Xmm5qXtlckkPTO8J6U0AAAAAAAAAEm109SDOoVoUKcQ6Xop+2C5lm+v3Zv6h11Fyi+p1JK1uVqyNlcWs0nxMa01qHPtth9d2wW61TQ1E9MNMOubnZrxeaYk6V/Duuu2C88zLAsAAEBL0FzWeXA+rj0AAHA3FdU2pe8+pOWZhVq+vUBZhSdPU4cGnDxNHeTjmtPU9V3nUUzX0xvf79Y/PtwiSZpydRfdN6iDITkAAABakuawzoMxuPYAAMDd5Rwq1/LthVqRWaDvdx7UsWpb3WsWs0l9Y1rVFdVd2wXKbHaNaWqK6Ub0ztocPbp0gyTpwcs6KvnKzk7PAAAA0BIZvc6Dcbj2AAAAP6ussWnN7sNanlmg5dsLtbPg6EmvB/ufmKYO0SXnhyjIt/lOU7PHdCP5eMMBPfZubSl958A4PXJFJ4MTAQAAAAAAAGhJvDwsuuj8YF10frD+ptpp6hXbC+v2pi46Wql31+Xq3XW5MpukPjGtNfj4NHW3CNeZpv4lJqbP4JttBbr3rbWqtjk0MiFaT93cw602IAcAAGhqTM26L649AABA/VTW2LR2z+HjRXWBtuf/epraqkuO33DxkvND1NrPalDSWmzlcY7Sdh3UHa+nq7LGrut6ttN/R/WRxQV/8wAAANCcUU66L649AADA2dl35JhWZNaW1N/vLFJZ1c97U5tNUq/oVhrcKVSDO4eoR2SQ06epKabPwY/Zh3Xbq6tVVmXT5V1CNfv2eHlazE3+eQEAANwN5aT74toDAACcu6oau9buPXS8qC5UZn7pSa+39audpv7HDd0U5OOcfanZY/oczEvbq7IqmwZ0aKtZt/allAYAAAAAAADQ7Fg9zBrQIVgDOgRryjUXaP+RY3Vbfny/86AOllXp2+2FCvBqfjVw80vUDDx9c0/FtPHVvZe0l7enxeg4AAAAAAAAAPC7Ilr5aHRijEYnxqiqxq512YdVWFrZLG+OSDF9ClYPsx65opPRMQAAAAAAAADgrFg9zLqwfVujY5wWe1QAAAAAAAAAAJyKYhoAAAAAAAAA4FQU0wAAAAAAAAAAp6KYBgAAAAAAAAA4FcU0AAAAAAAAAMCpKKYBAAAAAAAAAE5FMQ0AAAAAAAAAcCqKaQAAAAAAAACAU1FMAwAAAAAAAACcimIaAAAAAAAAAOBUFNMAAAAAAAAAAKeimAYAAAAAAAAAOBXFNAAAAAAAAADAqSimAQAAAAAAAABORTENAAAAAAAAAHAqimkAAAAAAAAAgFNRTAMAAAAAAAAAnMrD6AD14XA4JEklJSUGJwEAAEBjOrG+O7Heg/tgjQ8AANAy1XeN7xLFdGlpqSQpOjra4CQAAABoCqWlpQoKCjI6BpyINT4AAEDL9ntrfJPDBcZT7Ha79u/fr4CAAJlMJqd8zpKSEkVHRysnJ0eBgYFO+ZxoPrj+7o3r7964/u6N6+98DodDpaWlioiIkNnMLnPuxNlrfH6+wfeAe+P6uzeuv3vj+jtffdf4LjExbTabFRUVZcjnDgwM5JvWjXH93RvX371x/d0b19+5mJR2T0at8fn5Bt8D7o3r7964/u6N6+9c9VnjM5YCAAAAAAAAAHAqimkAAAAAAAAAgFNRTJ+Gl5eXpk2bJi8vL6OjwABcf/fG9XdvXH/3xvUHWi5+vsH3gHvj+rs3rr974/o3Xy5x80MAAAAAAAAAQMvBxDQAAAAAAAAAwKkopgEAAAAAAAAATkUxDQAAAAAAAABwKoppAAAAAAAAAIBTUUyfwqxZsxQbGytvb28lJSUpPT3d6EhwgunTp6tfv34KCAhQaGiohg0bpszMTKNjwSBPPfWUTCaTHn74YaOjwEn27dun2267TW3btpWPj4969OihtWvXGh0LTmKz2fT3v/9dcXFx8vHxUYcOHfTPf/5T3CMaaDlY47sn1vj4Jdb47oc1vvtife8aKKZ/ZfHixUpOTta0adO0bt069erVS0OHDlVBQYHR0dDEVqxYoQkTJmjVqlX68ssvVV1drSuvvFJlZWVGR4OTrVmzRi+//LJ69uxpdBQ4yeHDhzVw4EB5enrq008/1ZYtW/Sf//xHrVu3NjoanOTpp5/WSy+9pJSUFG3dulVPP/20/v3vf+uFF14wOhqARsAa332xxscJrPHdD2t898b63jWYHPyq4CRJSUnq16+fUlJSJEl2u13R0dGaNGmSJk+ebHA6OFNhYaFCQ0O1YsUKXXLJJUbHgZMcPXpUffv21Ysvvqh//etf6t27t2bOnGl0LDSxyZMn6/vvv9d3331ndBQY5LrrrlNYWJjmzp1bd+zmm2+Wj4+P3n77bQOTAWgMrPFxAmt898Qa3z2xxndvrO9dAxPTv1BVVaWMjAwNGTKk7pjZbNaQIUOUlpZmYDIYobi4WJLUpk0bg5PAmSZMmKBrr732pP8dQMu3bNkyJSQkaPjw4QoNDVWfPn00Z84co2PBiQYMGKDU1FRt375dkvTTTz9p5cqVuvrqqw1OBuBcscbHL7HGd0+s8d0Ta3z3xvreNXgYHaA5KSoqks1mU1hY2EnHw8LCtG3bNoNSwQh2u10PP/ywBg4cqO7duxsdB06yaNEirVu3TmvWrDE6CpwsKytLL730kpKTk/WXv/xFa9as0YMPPiir1apx48YZHQ9OMHnyZJWUlKhLly6yWCyy2Wx64okndOuttxodDcA5Yo2PE1jjuyfW+O6LNb57Y33vGiimgVOYMGGCNm3apJUrVxodBU6Sk5Ojhx56SF9++aW8vb2NjgMns9vtSkhI0JNPPilJ6tOnjzZt2qTZs2ezaHUTS5Ys0fz587VgwQJ169ZN69ev18MPP6yIiAi+BwCghWCN735Y47s31vjujfW9a6CY/oXg4GBZLBbl5+efdDw/P1/h4eEGpYKzTZw4UR999JG+/fZbRUVFGR0HTpKRkaGCggL17du37pjNZtO3336rlJQUVVZWymKxGJgQTaldu3bq2rXrSccuuOACvfvuuwYlgrM9+uijmjx5skaNGiVJ6tGjh/bu3avp06ezcAVcHGt8SKzx3RVrfPfGGt+9sb53Dewx/QtWq1Xx8fFKTU2tO2a325Wamqr+/fsbmAzO4HA4NHHiRL3//vv6+uuvFRcXZ3QkONHll1+ujRs3av369XWPhIQE3XrrrVq/fj0L1hZu4MCByszMPOnY9u3bdd555xmUCM5WXl4us/nkZZHFYpHdbjcoEYDGwhrfvbHGd2+s8d0ba3z3xvreNTAx/SvJyckaN26cEhISlJiYqJkzZ6qsrEzjx483Ohqa2IQJE7RgwQJ98MEHCggIUF5eniQpKChIPj4+BqdDUwsICPjNXoN+fn5q27YtexC6gUceeUQDBgzQk08+qREjRig9PV2vvPKKXnnlFaOjwUmuv/56PfHEE4qJiVG3bt30448/6tlnn9Wdd95pdDQAjYA1vvtije/eWOO7N9b47o31vWswORwOh9EhmpuUlBTNmDFDeXl56t27t55//nklJSUZHQtNzGQynfL466+/rjvuuMO5YdAsDB48WL1799bMmTONjgIn+OijjzRlyhTt2LFDcXFxSk5O1j333GN0LDhJaWmp/v73v+v9999XQUGBIiIiNHr0aE2dOlVWq9XoeAAaAWt898QaH7/GGt+9sMZ3X6zvXQPFNAAAAAAAAADAqdhjGgAAAAAAAADgVBTTAAAAAAAAAACnopgGAAAAAAAAADgVxTQAAAAAAAAAwKkopgEAAAAAAAAATkUxDQAAAAAAAABwKoppAAAAAAAAAIBTUUwDAAAAAAAAAJyKYhoAAAAAAAAA4FQU0wAAAAAAAAAAp6KYBgAAAAAAAAA4FcU0AAAAAAAAAMCp/j/tcwoDousSdAAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "Classification Report:\n", + " precision recall f1-score support\n", + "\n", + " 0 0.80 1.00 0.89 32\n", + " 1 1.00 0.53 0.69 17\n", + "\n", + " accuracy 0.84 49\n", + " macro avg 0.90 0.76 0.79 49\n", + "weighted avg 0.87 0.84 0.82 49\n", + "\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Predict sentiment of new reviews\n", + "new_reviews = [\"Satisfied with service\", \"Bad service and terrible taste.\"]\n", + "new_sequences = tokenizer.texts_to_sequences(new_reviews)\n", + "new_padded = pad_sequences(new_sequences, maxlen=100, padding='post')\n", + "predictions = model_dnn.predict(new_padded)\n", + "\n", + "print(\"Sentiment Predictions:\", [\"Positive\" if p > 0.5 else \"Negative\" for p in predictions])" + ], + "metadata": { + "id": "QAjRitQ578vZ", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "5bfa9e1f-c657-4d6e-a13c-fd65e52c5885" + }, + "execution_count": 34, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step\n", + "Sentiment Predictions: ['Positive', 'Negative']\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "**Model 2: Long Short-Term Memory (LSTM)**" + ], + "metadata": { + "id": "0TFXeS9oMae8" + } + }, + { + "cell_type": "code", + "source": [ + "# Prepare reviews data\n", + "tokenizer = Tokenizer(num_words=5000) # Keep top 5000 words\n", + "tokenizer.fit_on_texts(data['Reviews'].astype(str))\n", + "X = tokenizer.texts_to_sequences(data['Reviews'].astype(str))\n", + "X = pad_sequences(X, maxlen=100) # Pad sequences to a fixed length of 100\n", + "\n", + "# Prepare target labels\n", + "y = data['Sentiment']\n", + "\n", + "# Train-test split\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)\n", + "\n", + "# Build the LSTM model\n", + "model = Sequential()\n", + "model.add(Embedding(input_dim=5000, output_dim=64, input_length=100)) # Embedding layer\n", + "model.add(SpatialDropout1D(0.2)) # Regularize with dropout on embedded features\n", + "model.add(LSTM(128, dropout=0.2, recurrent_dropout=0.2,return_sequences=True)) # LSTM with dropout\n", + "model.add(LSTM(128, dropout=0.2, recurrent_dropout=0.2,return_sequences=True)) # Second LSTM\n", + "model.add(LSTM(64)) # Second LSTM\n", + "model.add(Dense(1, activation='sigmoid')) # Sigmoid for binary classification\n", + "\n", + "# Compile the model\n", + "model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])\n", + "\n", + "# **FORCE BUILD the model by sending a dummy input**\n", + "model.build(input_shape=(None, 100)) # This ensures the model initializes properly\n", + "\n", + "# Print model summary\n", + "model.summary()\n", + "\n", + "# Train the model\n", + "history_zlstm = model.fit(\n", + " X_train, y_train,\n", + " epochs=25, # You can increase epochs for better results\n", + " batch_size=16,\n", + " validation_split=0.1,\n", + " verbose=1\n", + ")\n", + "\n", + "# Evaluate the model on the test set\n", + "loss, accuracy = model.evaluate(X_test, y_test, verbose=1)\n", + "print(f'Test Accuracy: {accuracy:.4f}')\n", + "\n", + "# Predict on test data\n", + "y_pred = (model.predict(X_test) > 0.5).astype(\"int32\") # Threshold at 0.5\n", + "\n", + "# Accuracy and Loss curves\n", + "result=pd.DataFrame(history_zlstm.history)\n", + "fig, ax=plt.subplots(nrows=1, ncols=2,figsize=(18,6))\n", + "ax=ax.flatten()\n", + "ax[0].plot(result[['accuracy','val_accuracy']])\n", + "ax[0].set_title(\"Accuracy\")\n", + "ax[1].plot(result[['loss','val_loss']])\n", + "ax[1].set_title(\"Loss\")\n", + "\n", + "plt.show()\n", + "\n", + "# Classification Report\n", + "print(\"\\nClassification Report:\\n\", classification_report(y_test, y_pred))\n" + ], + "metadata": { + "id": "H1XDkDx1y4uL", + "collapsed": true, + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "outputId": "466f281d-fec2-4247-c59f-a49b0d015f4e" + }, + "execution_count": 41, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/embedding.py:90: UserWarning: Argument `input_length` is deprecated. Just remove it.\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1mModel: \"sequential_7\"\u001b[0m\n" + ], + "text/html": [ + "
Model: \"sequential_7\"\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩\n", + "│ embedding_4 (\u001b[38;5;33mEmbedding\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m320,000\u001b[0m │\n", + "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", + "│ spatial_dropout1d_2 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "│ (\u001b[38;5;33mSpatialDropout1D\u001b[0m) │ │ │\n", + "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", + "│ lstm_10 (\u001b[38;5;33mLSTM\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m98,816\u001b[0m │\n", + "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", + "│ lstm_11 (\u001b[38;5;33mLSTM\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m131,584\u001b[0m │\n", + "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", + "│ lstm_12 (\u001b[38;5;33mLSTM\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m49,408\u001b[0m │\n", + "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", + "│ dense_10 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m) │ \u001b[38;5;34m65\u001b[0m │\n", + "└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘\n" + ], + "text/html": [ + "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓\n",
+              "┃ Layer (type)                          Output Shape                         Param # ┃\n",
+              "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩\n",
+              "│ embedding_4 (Embedding)              │ (None, 100, 64)             │         320,000 │\n",
+              "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+              "│ spatial_dropout1d_2                  │ (None, 100, 64)             │               0 │\n",
+              "│ (SpatialDropout1D)                   │                             │                 │\n",
+              "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+              "│ lstm_10 (LSTM)                       │ (None, 100, 128)            │          98,816 │\n",
+              "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+              "│ lstm_11 (LSTM)                       │ (None, 100, 128)            │         131,584 │\n",
+              "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+              "│ lstm_12 (LSTM)                       │ (None, 64)                  │          49,408 │\n",
+              "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
+              "│ dense_10 (Dense)                     │ (None, 1)                   │              65 │\n",
+              "└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m599,873\u001b[0m (2.29 MB)\n" + ], + "text/html": [ + "
 Total params: 599,873 (2.29 MB)\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m599,873\u001b[0m (2.29 MB)\n" + ], + "text/html": [ + "
 Trainable params: 599,873 (2.29 MB)\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" + ], + "text/html": [ + "
 Non-trainable params: 0 (0.00 B)\n",
+              "
\n" + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/25\n", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m12s\u001b[0m 273ms/step - accuracy: 0.6141 - loss: 0.6776 - val_accuracy: 0.4091 - val_loss: 0.7630\n", + "Epoch 2/25\n", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 359ms/step - accuracy: 0.6151 - loss: 0.6819 - val_accuracy: 0.4091 - val_loss: 0.7158\n", + "Epoch 3/25\n", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 217ms/step - accuracy: 0.6423 - loss: 0.6570 - val_accuracy: 0.4091 - val_loss: 0.7837\n", + "Epoch 4/25\n", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 216ms/step - accuracy: 0.6724 - loss: 0.6120 - val_accuracy: 0.6364 - val_loss: 0.6518\n", + "Epoch 5/25\n", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 255ms/step - accuracy: 0.7839 - loss: 0.5681 - val_accuracy: 0.6818 - val_loss: 0.6591\n", + "Epoch 6/25\n", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 213ms/step - accuracy: 0.8723 - loss: 0.3123 - val_accuracy: 0.6818 - val_loss: 0.5115\n", + "Epoch 7/25\n", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 217ms/step - accuracy: 0.9608 - loss: 0.1604 - val_accuracy: 0.7727 - val_loss: 0.5428\n", + "Epoch 8/25\n", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 302ms/step - accuracy: 0.9786 - loss: 0.0615 - val_accuracy: 0.7727 - val_loss: 0.5275\n", + "Epoch 9/25\n", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 213ms/step - accuracy: 0.9656 - loss: 0.0778 - val_accuracy: 0.8636 - val_loss: 0.3172\n", + "Epoch 10/25\n", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 225ms/step - accuracy: 0.9922 - loss: 0.0448 - val_accuracy: 0.9091 - val_loss: 0.3901\n", + "Epoch 11/25\n", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 217ms/step - accuracy: 0.9961 - loss: 0.0327 - val_accuracy: 0.9091 - val_loss: 0.5497\n", + "Epoch 12/25\n", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 221ms/step - accuracy: 0.9985 - loss: 0.0232 - val_accuracy: 0.9091 - val_loss: 0.5471\n", + "Epoch 13/25\n", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 321ms/step - accuracy: 0.9970 - loss: 0.0153 - val_accuracy: 0.8636 - val_loss: 0.5552\n", + "Epoch 14/25\n", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 217ms/step - accuracy: 0.9854 - loss: 0.0275 - val_accuracy: 0.9091 - val_loss: 0.5589\n", + "Epoch 15/25\n", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 216ms/step - accuracy: 0.9964 - loss: 0.0130 - val_accuracy: 0.9091 - val_loss: 0.5495\n", + "Epoch 16/25\n", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 216ms/step - accuracy: 0.9975 - loss: 0.0061 - val_accuracy: 0.9091 - val_loss: 0.5625\n", + "Epoch 17/25\n", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 216ms/step - accuracy: 1.0000 - loss: 0.0078 - val_accuracy: 0.9091 - val_loss: 0.5810\n", + "Epoch 18/25\n", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 252ms/step - accuracy: 0.9956 - loss: 0.0094 - val_accuracy: 0.9091 - val_loss: 0.5915\n", + "Epoch 19/25\n", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 217ms/step - accuracy: 1.0000 - loss: 0.0052 - val_accuracy: 0.9091 - val_loss: 0.6220\n", + "Epoch 20/25\n", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 304ms/step - accuracy: 0.9906 - loss: 0.0132 - val_accuracy: 0.9091 - val_loss: 0.5484\n", + "Epoch 21/25\n", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 312ms/step - accuracy: 1.0000 - loss: 0.0113 - val_accuracy: 0.9091 - val_loss: 0.5268\n", + "Epoch 22/25\n", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 236ms/step - accuracy: 0.9949 - loss: 0.0242 - val_accuracy: 0.9091 - val_loss: 0.3066\n", + "Epoch 23/25\n", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 236ms/step - accuracy: 1.0000 - loss: 0.0112 - val_accuracy: 0.9091 - val_loss: 0.5300\n", + "Epoch 24/25\n", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 235ms/step - accuracy: 0.9843 - loss: 0.0210 - val_accuracy: 0.9091 - val_loss: 0.4969\n", + "Epoch 25/25\n", + "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 240ms/step - accuracy: 0.9854 - loss: 0.0254 - val_accuracy: 0.9091 - val_loss: 0.3999\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step - accuracy: 0.9200 - loss: 0.2155\n", + "Test Accuracy: 0.9200\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 659ms/step\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABaoAAAIQCAYAAABg71n6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADRBklEQVR4nOzdd3hUddrG8e/MpIckEFJogUAgkFAFFWkCEkDAhg11XRTbLoq64u7rsnbdlS0uq2vDAquuoKwKNopIFBRBURCkBELoLY2S3mfeP04SiCRAkpk5M8n9ua65zmHmzDl3qMOT5zw/i8PhcCAiIiIiIiIiIiIiYhKr2QFEREREREREREREpHlToVpERERERERERERETKVCtYiIiIiIiIiIiIiYSoVqERERERERERERETGVCtUiIiIiIiIiIiIiYioVqkVERERERERERETEVCpUi4iIiIiIiIiIiIipVKgWEREREREREREREVOpUC0iIiIiIiIiIiIiplKhWkRERERERERERERMpUK1iMgpXn75ZSwWCwMHDjQ7ioiIiIiIeIg333wTi8XCjz/+aHYUEZEmS4VqEZFTzJs3j9jYWNatW0daWprZcUREREREREREmgUVqkVEKu3Zs4c1a9Ywa9YsIiMjmTdvntmRalVQUGB2BBERERERERERp1KhWkSk0rx582jVqhUTJkzg2muvrbVQfeLECR544AFiY2Px9/enQ4cOTJ48mezs7OpjiouLeeKJJ4iPjycgIIC2bdty9dVXs2vXLgBWrlyJxWJh5cqVNc69d+9eLBYLb775ZvVzt956Ky1atGDXrl2MHz+ekJAQfvWrXwHwzTffcN1119GxY0f8/f2JiYnhgQceoKio6LTc27dv5/rrrycyMpLAwEC6d+/Oww8/DMBXX32FxWJh0aJFp71v/vz5WCwW1q5dW++fTxERERGR5uSnn35i3LhxhIaG0qJFC0aNGsV3331X45iysjKefPJJunXrRkBAAK1bt2bo0KF88cUX1cekp6czZcoUOnTogL+/P23btuXKK69k7969bv6KRETcy8fsACIinmLevHlcffXV+Pn5ceONN/LKK6/www8/cMEFFwCQn5/PsGHDSElJ4bbbbqN///5kZ2fzySefcPDgQSIiIqioqOCyyy4jOTmZG264gfvvv5+8vDy++OILtmzZQlxcXL1zlZeXM3bsWIYOHcqzzz5LUFAQAO+//z6FhYVMnTqV1q1bs27dOl544QUOHjzI+++/X/3+n3/+mWHDhuHr68tdd91FbGwsu3bt4tNPP+Uvf/kLI0aMICYmhnnz5jFx4sTTfk7i4uIYNGhQI35mRURERESatq1btzJs2DBCQ0P5v//7P3x9fXn11VcZMWIEq1atql4D54knnmDmzJnccccdXHjhheTm5vLjjz+yYcMGRo8eDcA111zD1q1buffee4mNjSUzM5MvvviC/fv3Exsba+JXKSLiWipUi4gA69evZ/v27bzwwgsADB06lA4dOjBv3rzqQvU//vEPtmzZwsKFC2sUdB955BEcDgcAb7/9NsnJycyaNYsHHnig+pg//vGP1cfUV0lJCddddx0zZ86s8fzf/vY3AgMDq39811130bVrV/70pz+xf/9+OnbsCMC9996Lw+Fgw4YN1c8B/PWvfwXAYrFw8803M2vWLHJycggLCwMgKyuL5cuXV3dei4iIiIhI7R555BHKyspYvXo1Xbp0AWDy5Ml0796d//u//2PVqlUALF68mPHjx/Paa6/Vep4TJ06wZs0a/vGPf/D73/+++vkZM2a4/osQETGZRn+IiGB0DkdHRzNy5EjAKN5OmjSJ9957j4qKCgA+/PBD+vbte1rXcdXxVcdERERw77331nlMQ0ydOvW0504tUhcUFJCdnc3gwYNxOBz89NNPgFFs/vrrr7nttttqFKl/mWfy5MmUlJTwwQcfVD+3YMECysvLufnmmxucW0RERESkqauoqGD58uVcddVV1UVqgLZt23LTTTexevVqcnNzAWjZsiVbt25l586dtZ4rMDAQPz8/Vq5cyfHjx92SX0TEU6hQLSLNXkVFBe+99x4jR45kz549pKWlkZaWxsCBA8nIyCA5ORmAXbt20atXrzOea9euXXTv3h0fH+fdsOLj40OHDh1Oe37//v3ceuuthIeH06JFCyIjIxk+fDgAOTk5AOzevRvgrLl79OjBBRdcUGMu97x587jooovo2rWrs74UEREREZEmJysri8LCQrp3737aawkJCdjtdg4cOADAU089xYkTJ4iPj6d379784Q9/4Oeff64+3t/fn7/97W8sXbqU6OhoLr74Yv7+97+Tnp7utq9HRMQsKlSLSLP35ZdfcuTIEd577z26detW/bj++usBal1UsTHq6qyu6tz+JX9/f6xW62nHjh49msWLF/PQQw/x0Ucf8cUXX1QvxGi32+uda/LkyaxatYqDBw+ya9cuvvvuO3VTi4iIiIg40cUXX8yuXbuYO3cuvXr14o033qB///688cYb1cf87ne/IzU1lZkzZxIQEMCjjz5KQkJC9V2TIiJNlWZUi0izN2/ePKKionjppZdOe23hwoUsWrSI2bNnExcXx5YtW854rri4OL7//nvKysrw9fWt9ZhWrVoBxvy5U+3bt++cM2/evJnU1FTeeustJk+eXP38qauFA9W3Hp4tN8ANN9zA9OnTeffddykqKsLX15dJkyadcyYRERERkeYoMjKSoKAgduzYcdpr27dvx2q1EhMTU/1ceHg4U6ZMYcqUKeTn53PxxRfzxBNPcMcdd1QfExcXx4MPPsiDDz7Izp076devH//85z9555133PI1iYiYQR3VItKsFRUVsXDhQi677DKuvfba0x7Tpk0jLy+PTz75hGuuuYZNmzaxaNGi085TtVDiNddcQ3Z2Ni+++GKdx3Tq1AmbzcbXX39d4/WXX375nHPbbLYa56zaf/7552scFxkZycUXX8zcuXPZv39/rXmqREREMG7cON555x3mzZvHpZdeSkRExDlnEhERERFpjmw2G2PGjOHjjz9m79691c9nZGQwf/58hg4dSmhoKABHjx6t8d4WLVrQtWtXSkpKACgsLKS4uLjGMXFxcYSEhFQfIyLSVKmjWkSatU8++YS8vDyuuOKKWl+/6KKLiIyMZN68ecyfP58PPviA6667jttuu40BAwZw7NgxPvnkE2bPnk3fvn2ZPHkyb7/9NtOnT2fdunUMGzaMgoICVqxYwd13382VV15JWFgY1113HS+88AIWi4W4uDg+++wzMjMzzzl3jx49iIuL4/e//z2HDh0iNDSUDz/8sNYFV/79738zdOhQ+vfvz1133UXnzp3Zu3cvixcvZuPGjTWOnTx5Mtdeey0ATz/99Ln/RIqIiIiINANz585l2bJlpz3/xBNP8MUXXzB06FDuvvtufHx8ePXVVykpKeHvf/979XGJiYmMGDGCAQMGEB4ezo8//sgHH3zAtGnTAEhNTWXUqFFcf/31JCYm4uPjw6JFi8jIyOCGG25w29cpImIGFapFpFmbN28eAQEBjB49utbXrVYrEyZMYN68eZSUlPDNN9/w+OOPs2jRIt566y2ioqIYNWpU9WKHNpuNJUuW8Je//IX58+fz4Ycf0rp1a4YOHUrv3r2rz/vCCy9QVlbG7Nmz8ff35/rrr+cf//jHWRc9rOLr68unn37KfffdVz27buLEiUybNo2+ffvWOLZv37589913PProo7zyyisUFxfTqVOn6hncp7r88stp1aoVdru9zuK9iIiIiEhz9corr9T6/K233so333zDjBkzmDlzJna7nYEDB/LOO+8wcODA6uPuu+8+PvnkE5YvX05JSQmdOnXiz3/+M3/4wx8AiImJ4cYbbyQ5OZn//ve/+Pj40KNHD/73v/9xzTXXuOVrFBExi8Xxy3u/RUSk2SovL6ddu3ZcfvnlzJkzx+w4IiIiIiIiItJMaEa1iIhU++ijj8jKyqqxQKOIiIiIiIiIiKupo1pERPj+++/5+eefefrpp4mIiGDDhg1mRxIRERERERGRZkQd1SIiwiuvvMLUqVOJiori7bffNjuOiIiIiIiIiDQz6qgWEREREREREREREVOpo1pERERERERERERETKVCtYiIiIiIiIiIiIiYysfsAOfCbrdz+PBhQkJCsFgsZscRERERESdxOBzk5eXRrl07rFb1UDQn+owvIiIi0jQ19DO+VxSqDx8+TExMjNkxRERERMRFDhw4QIcOHcyOIW6kz/giIiIiTVt9P+N7RaE6JCQEML640NBQk9OIiIiIiLPk5uYSExNT/XlPmg99xhcRERFpmhr6Gd8rCtVVtwKGhobqQ6yIiIhIE6TRD82PPuOLiIiING31/YyvQYAiIiIiIiIiIiIiYioVqkVERERERERERETEVCpUi4iIiIiIiIiIiIipVKgWEREREREREREREVOpUC0iIiIiIiIiIiIiplKhWkREREREeOmll4iNjSUgIICBAweybt26Mx7/3HPP0b17dwIDA4mJieGBBx6guLjYTWlFREREpKlRoVpEREREpJlbsGAB06dP5/HHH2fDhg307duXsWPHkpmZWevx8+fP549//COPP/44KSkpzJkzhwULFvCnP/3JzclFREREpKlQoVpEREREpJmbNWsWd955J1OmTCExMZHZs2cTFBTE3Llzaz1+zZo1DBkyhJtuuonY2FjGjBnDjTfeeNYubBERERGRuqhQLSIiIiLSjJWWlrJ+/XqSkpKqn7NarSQlJbF27dpa3zN48GDWr19fXZjevXs3S5YsYfz48XVep6SkhNzc3BoPEREREZEqPmYHEBERERER82RnZ1NRUUF0dHSN56Ojo9m+fXut77npppvIzs5m6NChOBwOysvL+e1vf3vG0R8zZ87kySefdGp2EREREWk61FEtIiIiIiL1snLlSp555hlefvllNmzYwMKFC1m8eDFPP/10ne+ZMWMGOTk51Y8DBw64MbGIiIiIeDp1VIuIiIiINGMRERHYbDYyMjJqPJ+RkUGbNm1qfc+jjz7Kr3/9a+644w4AevfuTUFBAXfddRcPP/wwVuvp/TD+/v74+/s7/wsQERERkSZBHdUiIiIiIs2Yn58fAwYMIDk5ufo5u91OcnIygwYNqvU9hYWFpxWjbTYbAA6Hw3VhRURERKTJUke1iIiIiEgzN336dG655RbOP/98LrzwQp577jkKCgqYMmUKAJMnT6Z9+/bMnDkTgMsvv5xZs2Zx3nnnMXDgQNLS0nj00Ue5/PLLqwvWIiIiIiL1Ue+O6q+//prLL7+cdu3aYbFY+Oijj876npUrV9K/f3/8/f3p2rUrb775ZgOiioiIiIiIK0yaNIlnn32Wxx57jH79+rFx40aWLVtWvcDi/v37OXLkSPXxjzzyCA8++CCPPPIIiYmJ3H777YwdO5ZXX33VrC9BRERERLycxVHPe/OWLl3Kt99+y4ABA7j66qtZtGgRV111VZ3H79mzh169evHb3/6WO+64g+TkZH73u9+xePFixo4de07XzM3NJSwsjJycHEJDQ+sTV0REREQ8mD7nNV/6tRcRERFpmhr6Oa/eoz/GjRvHuHHjzvn42bNn07lzZ/75z38CkJCQwOrVq/nXv/51zoVqEREREREREREREWm6XD6jeu3atSQlJdV4buzYsfzud7+r8z0lJSWUlJRU/zg3N9dV8UREpBmz2x0czilid1YBu7Py2Z1dwJ7sAoL8bHSOaEGXyGDiIoPpEtGCVsF+Zsc9jd3u4EhusZE9y8i+J7uAyBB/khKiGNYtkmB/71iOIiuvhK+2Z7IqNQt/XyujekRzcXwEIQG+Zkc7J0fzS/hqRxYrd2Tia7MyskcUw+MjCQv0jvwi4gUOb4Sv/wGXPApRPcxOIyIiIuJ0Lv/fa3p6evVsuyrR0dHk5uZSVFREYGDgae+ZOXMmTz75pKujiYhIM5FbXHayGF1Z0N2Vlc/eowUUl9nreFdGjR+1CvKlS2QLukQEG9vIYLpEBNOpdTB+PvVe8qFe8orL2JNdUP017Krc35OdX2f+D9YfxM9mZVBca5ISo0lKiKJt2On/5prF4XCwMzOfL7ZlsCIlg40HTnDqMLKFGw7ha7NwUZfWJCVEMyohig6tgswL/AsOh4NdWQWsSMlgxbYM1u8/XiP/op8O4WO1cGHncJISoklKiKZja8/JLyJeprQA3r8Fju8Fmy9c96bZiUREREScziPbrGbMmMH06dOrf5ybm0tMTIyJiURExNOVVdg5cKywuhC9OzufXVlGQTc7v6TO9/naLHQMD6pRfC4srTCKwtlGYftITjHHC8tYv+846/cdr/F+qwViwoN+UcBuQVxkMJEh/lgslnPKX15h5+Dxoupr7jqlyzsrr+78PlYLHVsHVV+zU+tgdmXlsyIlg31HC1mVmsWq1Cwe/Qh6tgslKSGa0YnR9GwXes7ZnKWsws4Pe47xRYpRnD5wrKjG673bhzEqIYrC0gpWbMtgd3YB3+zM5pud2Tz+yVYS2oaSlBBFUkI0vduHYbW6N395hZ0f9x1nRWVxfe/RwhqvJ1bmK61wsCIlg7TMfNbsOsqaXUd56rNtdI8OYVRCFEmJ0fTr0NLt+UXEi335F6NIDZD6uVG49gs2NZKIiIiIs7m8UN2mTRsyMmp2pWVkZBAaGlprNzWAv78//v7+ro4mIlJvDoeDowWllJTX1YUrrma3O0g/ZdzFrsqC8v6jhZTb614fODLEv7qYHBcZXF1Q7tAqEB/bmTuiC0vLKwvXBew5pYC9OyufgtIK9h0tZN/RQr7akVXjfS38fegSGUznCONaVfvFZUYhfFf2yQ7vfUcLKKuoO39EC/8ao0g6RxhfQ0x4EL615H9kQgJpmfmsSMlkRUoGG/YfZ+vhXLYezuX55J20CQ2oLpoO6tKaAF/bWX7mGyanqIyVOzJZkZLJyh2Z5BWXV7/m52NlSGXH96ge0bQJC6h+7U/jE9iVlU9ySgYrtmXy475jpBzJJeVILi98mUZUiD+jEoxO8SFdI1yWP7e4jK9Ts1ixLYOvdmSRU1R2Mr/NykVxrRmdEMUlCdG0b3nyc80fx/VgT3aBkT8lgx/2HmdHRh47MvJ4eeUuIlr4c0mPSJISohnaLYIgP8/oHcgtLuPwiSJ6tNHCdiIe48A6+O5lY98/FEpyjWJ1r6vNzSUiIiLiZBaHw1H3/4rP9maLhUWLFnHVVVfVecxDDz3EkiVL2Lx5c/VzN910E8eOHWPZsmXndB2tCC4i7lZUWlHdlVtjfnFWAXkl5Wc/gZgiwNd6crb0KR3OsRHBhLpg1rHD4SAzr4Rdp4wUqfq9cuBYIWeom9fK38dK54hg4qo6syOD6VxZlG7srOPsfGMG9IqUDL5OzaaorKL6tSA/G8O6RZCUEM0lPaJo3aJx3yzed7TAKJBvy+CHvcdqfAOhdbAfl/QwCuTD6lGgPVZQWlnwzmDVjiwKSk/mD/C1MqxbJEkJUVzSI5rIkMblP3CssLLAnMl3u4/WyN8qyJeRPaIYnRDNsPhIWpzjDPAThaWs3JFVnf/Uv0f8fawM7RrBqMoRJ9GhAWc4U+OdevfB7uz8ylE4J+8+8POxkvLUpdjc1PGtz3nNl37tz0FZMbx6MWTvgL43QUg0rP4XJFwBk/5rdjoRERGRWjX0c169C9X5+fmkpaUBcN555zFr1ixGjhxJeHg4HTt2ZMaMGRw6dIi3334bgD179tCrVy/uuecebrvtNr788kvuu+8+Fi9ezNixY136xYmInEltC+lV7R/OKa7zfRaL0Ukp5jnZXXxy1EaXyGDahAZ4zDiFkvIK9h8tZNcvCth7sgsI9LVVjxnpEnmyO7pdWKBb8heXVbB299HqERYZuSdHi1gs0L9jq8oRIVHERbY464iQCruDjQdOVM9r3pmZX+P1blEtKudkR9MvpmWjC6Al5RV8v/tY9fVO/fNqsUC/mJbVc6Hjo8+e32538POhnOqfj+3peTVe7xIZzOiEaJISo+nfsVWj85eW21m3pzJ/SgYHj9ccgdK3Q1hlt3g0CW1DGjSiperuj9P+fjuHuw+iQvz57N6hRLm4YF5Fn/OaL/3an4Pkp+Cbf0KLaLj7O8g5CK8OA58A+MMu8G9hdkIRERGR07itUL1y5UpGjhx52vO33HILb775Jrfeeit79+5l5cqVNd7zwAMPsG3bNjp06MCjjz7Krbfees7X1IdYEWmMXy6kt/uUcQtnGuHRMsi31rnDHVsH4e/jmjEDIu7mcDjYcii3umi69XBujddjWwdVF00viG1VPSalsLScb3ZmV47EyCQ7v7T6PTarhQtjw6sXcezU2nVzVB0OB9uO5JJcOeLk54M5NV6PCQ+sLlpf2Dm8ekxKUWkF36ZlsyIlg+TtmTXmgFstcH5sOKMrO5y7RLquEORwONiRkVdZJM9k44ETNV5v3zKQpIQoRiVEM7BL+Gl/9xSXVbD3aEGt33DLLa777o9AX1v1N0hO/Xuuc0QwIS64++BM9Dmv+dKv/Vkc3givXwKOCpg0DxIuA4cDXhgAx3bBNXOg97VmpxQRERE5jdsK1WbQh1gROZtf3sq+O+tk9+CpBbRf8rVZ6NS6ZqGmagZwq2A/N34FIp7h8Imi6rEXa3cdpbTi5DdzwgJ9GdE9krziclanZVN6yjd6QgJ8GNE9iqSEKEbERxEW5N5iZ5X0nGKSt2eQnJJZa8bh8ZEUl1WwOi2b4rKTr7XwN15LSjTym/XnPzO3mC+3GzO9V6dl1ZoxMsS/siCdz6ETRdT1Sc5iMQrdXSJbVP4d55l3H+hzXvOlX/szqCiD10ZCxmboORGue/Pka8lPwzfPQo/L4IZ5pkUUERERqYsK1SLS5NV+K7tRlN5/7Oy3shszf42CTdXIiPYtz76QnkhzlV9SzjepWaxIyeTL7RkcLyyr8XpVt/LohGguOKVb2VMUlpazemdl13RKJkcLan7TqqpbOSkxmoGdW+Pn41n5z9T1farQAJ9T7vw4ZTZ762CXLTLpTPqc13zp1/4MVv0DvvozBIbDPeugReTJ19K3wOwhYPOHP6RBgH7uRERExLM09HOeZywxLyJyitNuZc8qYFd2AXvqcyt7ZIvqzujYiCC338ou0hS08PdhXO+2jOvdlgq7gw37j7NqRxZB/jaSEqLpFnX2+c9mCvLzYUzPNozp2aZ6jvaqHZn4+VgZlRBNjzYNm//sLoF+NmN8SmJ09RztL7dnUlJWUfl3nVGQbh3s59Ffh4jUU2YKrPqbsT/u7zWL1ADRPSEiHrJTIXUZ9Lne/RlFREREXECFahExhd3u4EhuMXtOGdWxq7IofTjn3G9lj4s8WayJDvGcW9lFmhqb1cIFseFcEBtudpQGsVktDOjUigGdWpkdpUGsVgv9YlrSL6al2VFEvJvDYXyY8FT2Cvj4HrCXQfy42mdQWyzGOJBVf4MtC1WoFhERkSZDhWoRcatVqVk8tyKV7UfyKCqrqPO4U29lj6uer9qCTq2DvOJWdhEREfEwmdvh0/vh2rkQ1t7sNLX77mU4tB78Q+GyWXUX1asK1buSoegEBLZ0Z0oRERERl1ChWkTc4khOEU9/to0lm9Orn/OxWujYOoguEZVjOk6ZIR2uW9lFRETEWRwO+PQ+OPA9/PcqmLIUgiPMTlXT0V3w5Z+N/bF/gdB2dR8blQCRPSBrO+xYCv1udE9GERERERdSoVpEXKqsws7c1Xt4PnknhaUV2KwWbhkUy80XdaRjeJAWMhQRERHXs1jgmjkw91JjtvN/J8Itn3pOJ7LdDp/cC+XF0GUEnPfrs7+n59Ww8hnYukiFahEREWkSVCESEZf5fvdRJvz7G2Yu3U5haQUDOrXi02lDeezyRLpEtlCRWkRERNynZQxM/hiCIyH9Z5g/CUoLzE5l+HEO7PsWfIPh8n+f2xztnlcZ211fQtFxl8YTERERcQdViUTE6bLySpi+YCOTXvuO1Ix8woP9+Pu1fXj/N4NIbBdqdjwRERFpriK6wq8XQUAYHPgO3vsVlJeYm+nEfljxhLGf9AS06nRu74vsDlE9jYUXty92VToRERERt1GhWkScpsLu4K01e7nknytZ+NMhLBa4aWBHvnxwONefH4PVqpnTIiIiYrI2veFXHxjdy7u/gg9ug4pyc7I4HMYCj6X50HEQXHBH/d7fc6Kx3brI+dlERERE3EyFahFxip/2H+fKl1bz+CdbySsup1f7UBbdPYRnJvamZZCf2fFEREREToq5EG6YBzY/2P4ZfDLNmBPtbhvnG6M7fALgihfBWs//nlUVqnevhMJjTo8nIiIi4k4qVIt4maP5Jfzn2z189vNhcovLzI7D8YJSZizczNWvrGHLoVxCAnx4+sqefHzPUPrFtDQ7noiIiEjt4kbCdW+CxQab3oVlDxkdzu6SewQ+n2Hsj/yTMZakviK6Gh3i9nJI+dS5+URERETczMfsACJybux2B+/9cIC/LdtOTpFRoPa1WRjYuTVJCVGMSogmJjzIrXneX3+Avy7dzvFCI8/V/dszY1wCkSH+bsshIiIi0mA9JsBVr8Ciu2Dda+AfCqMedf11HQ5Y/CAU50C78+Ciexp+rp4TIX2zMf5jwC3OyygiIiLiZipUi3iBzQdzeOTjLWw6cAKA+OgWVNgd7MoqYHVaNqvTsnni0230aBNCUkI0SYnR9Gkf5rKZ0NsO5/LIR5vZsP9knqev7MXALq1dcj0RERERl+k7CUpyYcnv4ZtnISAUhtzv2mtuXQg7FoPVF658CWyN+G9Zz4mQ/BTs+RoKsiE4wnk5RURERNxIhWoRD5ZTVMY/l+/gv9/tw+GAFv4+PDgmnl9f1Akfm5U92QUkp2TwxbYMfth7jO3peWxPz+PFr9KIDPFnVI8okhKiGdI1gkA/W6Pz5BWXMeuLVN5asxe7A4L9bPwuKZ5bh8Tia9MkIREREfFSF94JJXmQ/CR88Rj4h8D5t7nmWgXZsOQPxv7Fv4fono07X3gXaNsPjmw0xn+cP6WxCUVERERMoUK1iAdyOBws3HCImUtTyM4vBeDKfu14eHwCUaEB1cd1jgjmjmFduGNYF44XlLIyNZMVKZms2pFFVl4J7/1wgPd+OECAr5WhXSNISojmkoQookIC6rp0nXk+2XSYPy9OISuvBIAJvdvyyGUJtA0LdN4XLiIiImKWYdONYvXqWfDZdGMMSO9rnX+dpQ9B4VGI6glDpzvnnD0nGoXqrQtVqBYRERGvpUK1iIfZkZ7Hox9vYd0eY+X2uMhgnr6qF4PjznwbZ6tgPyae14GJ53WgtNzO93uOkpySyRfbMjh0oogVKUYRG6BvTEtGV8617tEmBIul7hEhaZl5PPrRVtbuPgoYxfEnr+jJxfGRTvqKRURERDzEqMeMYvUPr8PCu8AvGLqPc975ty+GLR8YCzhe9RL4+DnnvD2vghWPw97VkJ8JLaKcc14RERERN7I4HO5c2rphcnNzCQsLIycnh9DQULPjiLhEQUk5zyfvZO7qPZTbHQT62rhvVDduH9oZP5+Gj9VwOBxsT89jxbYMVmzPrJ5zXaV9y0BGJ0aTlBDNhZ3Dq69VWFrOC1+m8cY3uymrcODvY2XayK7cNbwL/j6NHyMiIiIC+pzXnHnsr73dDh9NhZ/fA5s//Op96DK88ectOgEvDYT8dBjyOxj9ZOPPearXRsLhDTDhn3DBHc49t4iIiEg9NPRzngrVIiZzOBws2ZzO059tIz23GICxPaN57PKetG/p/LEambnFJG/PJDklg292ZlNSbq9+LcTfh4u7R9KvQ0veXLOXQyeKABjVI4onruhJTHiQ0/OIiEjzps95zZdH/9pXlMP7t8D2z8A3GG75BDqc37hzfnwP/PQOtO4Gv/0GfJ38OW/NC7D8EYgdBrd+5txzi4iIiNSDCtUiXmhPdgGPfbyFb3ZmA9AxPIgnr+jJyB7uuV2zqLSC1WnZJKdksCIlk+z8khqvt28ZyBNX9GR0YrRb8oiISPOjz3nNl8f/2peXwPzrYfdKCGgJty6GNr0adq60ZHjnasACty2Djhc5MWilE/vhud7GNR7cDiFtnH8NERERkXPQ0M95mlEtYoLisgpe/iqN2at2U1phx8/HytThcUwdEUeAr/vGagT62RidGM3oxGjsdgebDp5gRUoGG/ad4ILYVkwd0ZVAP435EBERkWbIxx9umA9vXwUH18F/JxpF5tZx9TtPSR58er+xP/A3rilSA7TsCB0ugIM/wLZPYOBdrrmOiIiIiIuoUC3iZskpGTzx6VYOHDPGagyPj+TJK3oSGxFsai6r1cJ5HVtxXsdWpuYQERER8Rh+wcaM6jcvg4zN8PaVRrE6rMO5n2PFk5BzwCgkX/Ko67IC9JxoFKq3LlKhWkRERLxOw1doE5F6OXi8kDvf/pHb3/qRA8eKaBsWwOyb+/PmlAtML1KLiIiISB0CW8KvF0HrrkbB+e0rIT/r3N6791v44XVj/4oXwL+Fy2ICkHiVsd2/FnIPu/ZaIiIiIk6mQrWIi5WW23npqzSSZq3ii20Z+Fgt/GZ4F1ZMH86lvdpisVjMjigiIiIiZ9IiEiZ/DGExcDTNGANSdPzM7ykthE+mGfv9b4EuI1wek7D2EHMR4IBtH7v+eiIiIiJOpEK1iAt9m5bNpc9/zT8+30FxmZ2BncNZcv8wZoxLINhfk3dEREREvEZYB6NYHRxljAGZdz2U5Nd9/Mpn4NhuCGkHY552X86eE43t1kXuu6aIiIiIE6hQLeICGbnF3PvuT/zqje/ZnVVARAt/npvUj/fuuoj46BCz44mIiIhIQ7SOM8aABIQZCywu+BWUFZ9+3MH1sPYlY/+yfxnHu0vilYAFDnwPOQfdd10RERGRRlKhWsTJUo7kkvTPVXy66TBWC9w6OJbkB4dz1XntNeZDRERExNu16QW/+hB8g2H3SvjwdqgoP/l6eQl8fA847ND7euh+qXvzhbaFToON/a0fuffaIiIiIo2gQrWIk/1zeSp5JeX0bBfKJ9OG8sQVPQkL9DU7loiIiIg4S8wFcOO7YPOH7Z8ZhWm73Xjt62chKwWCI2Hc38zJp/EfIiIi4oVUqBZxoh3peaxIycBigRduPI9e7d14m6eIiIiIuE+X4XDdm2Cxwc/vwdI/QPpmWD3LeH38sxAUbk62hCsACxz6EY7vMyeDiIiISD2pUC3iRK+u2gXAuF5t6BLZwuQ0IiIiIuJSPcbDxFcBC/zwBrw5AezlkHA59LzKvFwh0RA71Njf9rF5OURERETqQYVqESc5cKyQjzcdBmDq8K4mpxERERERt+hznbFgIkBxDgS0hPH/NDUScMr4j4Xm5hARERE5RypUizjJG9/spsLuYFi3CHp30MgPERERkWbj/Clw6d8gtANc+ZLR0Wy2hCvAYoXDP8GxPWanERERETkrFapFnCA7v4T3fjgAwNQRcSanERERERG3u+i3MH0rJFxmdhJDi0iIHWbsb/vI1CgiIiIi50KFahEnePPbvZSU2+kb05JBXVqbHUdERERE5JTxH4vMzSEiIiJyDlSoFmmkvOIy3lq7F4C7R8RhsVjMDSQiIiIiApXjP2xwZBMc3WV2GhEREZEzUqFapJHmf7+fvOJyuka1YHSCB8wjFBEREWmAl156idjYWAICAhg4cCDr1q2r89gRI0ZgsVhOe0yYMMGNieWsgltDl+HGvrqqRURExMOpUC3SCMVlFbyx2lic5rfD47Ba1U0tIiIi3mfBggVMnz6dxx9/nA0bNtC3b1/Gjh1LZmZmrccvXLiQI0eOVD+2bNmCzWbjuuuuc3NyOavq8R8fmRpDRERE5GxUqBZphIUbDpGVV0K7sACu6NvO7DgiIiIiDTJr1izuvPNOpkyZQmJiIrNnzyYoKIi5c+fWenx4eDht2rSpfnzxxRcEBQWpUO2JelwGVh/I2AzZO81OIyIiIlInFapFGqi8ws6rXxuz/u68uAt+PvrjJCIiIt6ntLSU9evXk5SUVP2c1WolKSmJtWvXntM55syZww033EBwcLCrYkpDBYVDl5HGvsZ/iIiIiAdTZU2kgZZuSWff0UJaBfky6YIYs+OIiIiINEh2djYVFRVER9dcayM6Opr09PSzvn/dunVs2bKFO+6444zHlZSUkJubW+MhblI9/kOFahEREfFcKlSLNIDD4eDllUY39a2DOxPk52NyIhERERFzzJkzh969e3PhhRee8biZM2cSFhZW/YiJ0Tf63abHeLD6QuY2yNxudhoRERGRWqlQLdIAq1KzSDmSS5CfjVsGdzI7joiIiEiDRUREYLPZyMjIqPF8RkYGbdq0OeN7CwoKeO+997j99tvPep0ZM2aQk5NT/Thw4ECjcks9BLaCuEuM/W0fmRpFREREpC4qVIs0QFU39U0XdqRlkJ/JaUREREQazs/PjwEDBpCcnFz9nN1uJzk5mUGDBp3xve+//z4lJSXcfPPNZ72Ov78/oaGhNR7iRr2uNrZbFoLDYW4WERERkVqoUC1ST+v3HWPdnmP42izcMayL2XFEREREGm369Om8/vrrvPXWW6SkpDB16lQKCgqYMmUKAJMnT2bGjBmnvW/OnDlcddVVtG7d2t2Rpb66jwObH2TvgMwUs9OIiIiInEaDdUXq6ZXKbuqrz+tAm7AAk9OIiIiINN6kSZPIysriscceIz09nX79+rFs2bLqBRb379+P1Vqzx2XHjh2sXr2a5cuXmxFZ6isgDLomwY4lxqKK0YlmJxIRERGpweJweP59X7m5uYSFhZGTk6NbBMVUO9LzGPvc11gskDx9OF0iW5gdSURExKvpc17zpV97E/z8P1h4J7TuBtN+AIvF7EQiIiLSBDX0c55Gf4jUw+xVRjf1uF5tVKQWEREREe/SfRzY/OHoTsjYYnYaERERkRpUqBY5RweOFfLJpsMATB3e1eQ0IiIiIiL15B8C3UYb+1sXmZtFRERE5BdUqBY5R69/s5sKu4Nh3SLo3SHM7DgiIiIiIvXXc6Kx3boIPH8KpIiIiDQjKlSLnIPs/BIW/HAAgKkj4kxOIyIiIiLSQPGXgk8gHNsN6T+bnUZERESkmgrVIufgP9/uoaTcTt+Ylgzq0trsOCIiIiIiDePfAuLHGPtbFpqbRUREROQUKlSLnEVecRlvr90HwN0j4rBodXQRERERqYXd7iWjNDT+Q0RERDyQj9kBRDzdvO/3k1dcTteoFoxOiDY7joiIiIi4QVFpBccKSzleUMrxwlKOF5ZxvKCUYwWlnCgs5VhhmbEtqDqmjHK7nQm92zLtkq50jQox+0uoW7cx4BsEJ/bB4Z+gfX+zE4mIiIioUC1yJsVlFcxZvQeA3w6Pw2pVN7WIiIiIN8rKKyE9p7iy6GwUl49VFp9PPlfG8cric0m5vUHX+WjjYT7edJjxvYyCdULbUCd/JU7gFwzxY42O6q2LVKgWERERj6BCtcgZfLjhIFl5JbQLC+CKvu3MjiMiIiIiDfS3Zdv5YP3Ber3H12ahVZCf8Qj2rdz60SrI2A8P9qvx3PHCMl5ZmcbnWzNYvPkIizcfYUxiNPeN6kav9mEu+soaqOfVlYXqj2D0U6DxdiIiImIyFapF6lBeYefVVbsBuPPiLvj5aKS7iIiIiLeKDvUnOtS/uvAcHuxHyyDfyq0f4VWF6FNea+HvU6/1STq1hld/fT7b03N54cs0lmw+wvJtGSzflsHI7pHcO6ob/Tu2cuFXWQ/dRoNvMOTsh0ProcP5ZicSERGRZk6FapE6LNmSzv5jhbQK8mXSBTFmxxERERGRRvjD2B78YWwPt1yrR5tQXrqpP2mZebz01S4+3niIr3Zk8dWOLIZ1i+DeS7pxYedwt2Spk28gdB8HWz4wOqtVqBYRERGTqVAtUguHw8ErK3cBMGVIZ4L89EfFqYqOQ8FRs1M0nNUGrWK99xbZ4lzIzzQ7hYh4svAuYNWdRCKN1TUqhH9N6sd9o7rx8ldpLPrpEN/szOabndkM7BzO/aO6MSiudb26tp2q58TKQvVHMPpp/bkXERERU6n6JlKLlalZpBzJJdjPxuRBncyO07Skfg7/uwXKi8xO0jjxl8IN842itTfZtwbmT4KSXLOTiIgnezgDrAFmpxBpMjpHBPOP6/py36huvLJqF+//eIDv9xzjpje+Z0CnVtx7SVeGx0e6v2DdNQn8QiD3IBz8AToOdO/1RURERE6hQrVILaq6qW8a2JGWQX4mp2lCThyAhXcZRWq/Ft5X5K1Skg+py+Drf8CIP5qd5twVHIUPbjeK1L7BYNM/ASIiIu4UEx7EMxN7M21kV15dtYt3fzjA+n3HufU/P9CnQxj3XtKNpIQo9xWsfQOgx3j4eYEx/kOFahERETGRqhQiv7B+3zHW7TmGr83C7UO7mB2n6agogw9vh+IT0O48uG05+HjpNwF+/h8svBNW/hU6DYbOF5ud6OzsdvhoKuQdhtbd4K6V4N/C7FQiIiLNUruWgTx5ZS/uGdmV177ezbzv9/PzwRzufPtHEtuGcu8lXRnbsw1WqxsK1j0nGoXqbR/B2GecP/7DbjcWbMzaAfkZkHglBIQ59xoiIiLSJDToU8hLL71EbGwsAQEBDBw4kHXr1tV5bFlZGU899RRxcXEEBATQt29fli1b1uDAIq5W1U19Tf8OtAnTbc9O89Vf4MD34B8K1/7He4vUAH2uh/NuBhzw4Z2Qn2V2orNb+yLs/Bx8AuC6N1WkFhER8QBRoQE8clkiqx8aydQRcQT72dh2JJep8zZw6fNf8/HGQ1TYHa4NEXcJ+IdB3hHjs1pD2e1wbA/sWAqr/wULfwOvDoeZ7eH5vjD/evjkXvjyL87LLiIiIk1KvTuqFyxYwPTp05k9ezYDBw7kueeeY+zYsezYsYOoqKjTjn/kkUd45513eP311+nRoweff/45EydOZM2aNZx33nlO+SJEnGVHeh4rUjKxWOCui9VN7TRpK4z/sABc8QKEdzY3jzOM+wcc/BGytsOiu+BXH3ruAkQHfoDkJ439S/8KbXqZm0dERERqaN3Cn4cu7cFdw7rwn2/38J81e0nNyOf+9zby/Iqd3DOyK1f2a4ePzQWfNXz8occE2DQfti6EToPOfLy9Ao7vNTqks1Iqt9shK7XuNUhsfhDaznjf9s9g3N+8d1FqERERcRmLw+Go17foBw4cyAUXXMCLL74IgN1uJyYmhnvvvZc//vH0Wa3t2rXj4Ycf5p577ql+7pprriEwMJB33nnnnK6Zm5tLWFgYOTk5hIaG1ieuSL08sGAji346xITebXnpV/3NjtM05B6B2UOhMBsuuAMm/NPsRM6TmQKvjTT+UzbqMRj2oNmJTld0HGZfbNxy2/NquHau/mMoIh5Fn/OaL/3a1y2nqIy31uxlzuo95BSVAdAxPIi7R8RxzYAO+Dq7YJ26HOZfBy2iYXqKsY5IVUE6M6WyEF1ZmM7eCeXFtZ/H5g8R8RDVAyK7Q2QCRPaAVrFgL4O/dTY+N/3ma2jb17lfg4iIiHiMhn7Oq1dHdWlpKevXr2fGjBnVz1mtVpKSkli7dm2t7ykpKSEgoOb4hMDAQFavXl3ndUpKSigpKan+cW5ubn1iijTIgWOFfLLpMABTR8SZnKaJsFfAh3cYReo2vWFME7vVMyoBxv8DPplm3MbacfDZu5DcyeGAj6cZRepWneHy51WkFhER8QJhgb7cN6obtw3tzH/X7uONb3az/1ghf1y4mTdW7+GxyxK5OD7SeRfsMsKYG52fAfMnQV46ZKdCRUntx/sEGAXpyB6VRekeJwvSdS2WbfOBuJGwYwnsWKZCtYiIiJymXoXq7OxsKioqiI6OrvF8dHQ027dvr/U9Y8eOZdasWVx88cXExcWRnJzMwoULqaioqPM6M2fO5Mknn6xPNJFGe/2b3VTYHQzrFkGv9lrgxSlW/R32rQa/FnDtm8bK8k3NeTfD3m+MRYg+vB1+uxqCws1OZVj3mnF7rc3PmEsdoG41ERERb9LC34epI+K4ZXAn5n+/n5dX7iItM5/Jc9eRlBDFwxMS6RwR3PgL+fhBwuXw0zuQ9sUpzwdCZPzJQnRVYbplp7oL0mfSfZxRqE5dCiMeanxuERERaVLqPaO6vp5//nnuvPNOevTogcViIS4ujilTpjB37tw63zNjxgymT59e/ePc3FxiYmJcHVWasay8Ehb8cABQN7XT7F4Fq/5m7F/2HER0NTWOy1gsxjiTQ+vhaBp8NBVufM/8zuXDP8HyR4z9MX+Gdv1MjSMiIiINF+Tnwx3DunDd+TH8O3knb63Zy4qUTFalZnHbkM5Mu6QrIQG+jbvIyEcgoCUER1SO7OheWZB24piRbmON7eGfjPFwoW2dd24RERHxevX61BEREYHNZiMjI6PG8xkZGbRp06bW90RGRvLRRx9RUFDAvn372L59Oy1atKBLl7oXqvP39yc0NLTGQ8SV3lyzh5JyO/1iWjKoS2uz43i//ExYeCfggPN+DX2uMzuRa/mHGB3LNn9IXQZrXzI3T3EuvD8FKkqhx2Vw4V3m5hERERGnCAv05dHLEln2u4sZHh9JWYWDV7/ezchnV/G/Hw9gt9dr+aGaQtvC2L/A0Aeg+6XG4tfOXig6JBraDzD2d37u3HOLiIiI16vXJw8/Pz8GDBhAcnJy9XN2u53k5GQGDTrzXNaAgADat29PeXk5H374IVdeeWXDEos4WV5xGW+v3QcY3dQWszthvZ3dDgvvMmYcRibAuL+bncg92vSGS2ca+yseh4PrzcnhcMCn98HxPRDWEa580fzubhEREXGqrlEteOu2C/nPrRfQJSKY7PwS/u+Dn7nypW9Zv++Y2fHOLH6csd2xzNwcIiIi4nHq/S3y6dOn8/rrr/PWW2+RkpLC1KlTKSgoYMqUKQBMnjy5xmKL33//PQsXLmT37t188803XHrppdjtdv7v//7PeV+FSCPM+34/ecXldI1qweiE6LO/Qc5s9SzY/ZUx0/C6N8EvyOxE7nP+bZB4FdjL4YNboeiE+zOsfxO2LgKrD1w7FwJbuT+DiIiIuMXIHlEs+93FPDw+gRB/HzYfyuGaV9Zy/3s/cSSnyOx4tet+qbHd/RWUFpqbRURERDxKvQvVkyZN4tlnn+Wxxx6jX79+bNy4kWXLllUvsLh//36OHDlSfXxxcTGPPPIIiYmJTJw4kfbt27N69WpatmzptC9CpKGKyyqYs3oPAL8dHofVqs7TRtm3Br76i7E/4VljsZ3mxGKBK/5trHh/Yj98Ms3ocHaX9C2w7I/G/qjHIeYC911bRERETOHnY+XOi7vw5e9HcMMFMVgs8PHGw1zy7Cr+nbyT4rK6F7E3RXQvCO0A5cWwZ5XZaURERMSDWBwOd1ZRGiY3N5ewsDBycnI0r1qcat73+3h40RbahQWw6v9G4mtz8hy+5qTgKMweCnmHoc8NMHF28x05cWgDzBkD9jIY/yxceKfrr1mSD6+NgKM7odsYuHGB8+dKioi4gD7nNV/6tXeNLYdyePLTrfyw9zgA7VsG8qfxCYzv3cZzRtwtfhB+eAP632J8k19ERESalIZ+zlMVQ5qt8go7r67aDcCdF3dRkbox7Hb4aKpRpG7dFSb8s/kWqQHa94cxTxv7n/8JDm90/TWX/N4oUoe0g6tmq0gtIiLSTPVqH8b/fjOIF248j3ZhARw6UcQ98zdww2vfse1wrtnxDFVzqlM/Nz5HioiIiKBCtTRjS7aks/9YIeHBftxwQUez43i3714yVm63+Rtzqf1bmJ3IfAN/C93HQ0UpfDAFil34H8Of5sGmd8FihWvnQHBr111LREREPJ7FYuHyvu1IfnAE94/qhr+Ple/3HOOyF77hT4s2czS/xNyAsUPBNxjy0+HIRnOziIiIiMdQoVqaJYfDwSsrdwFw6+BYAv1sJifyYgd/hBVPGPuXzoQ2vU2N4zEsFrjyJQiLgWO74bPfuWZedeZ2o5saYOSfoNNg519DREREvFKgn40HRsfz5e9HcFmfttgdMP/7/Yx4diVzVu+hrMKkbmbfAIgbaeynLjMng4iIiHgcFaqlWVq5I4uUI7kE+9m4ZVCs2XG8V9FxeH8K2Muh50Q4/zazE3mWoHC4di5YbLDlQ9jwlnPPX1podGuXFUKXETB0unPPLyIiIk1C+5aBvHhTf/73m0H0bBdKXnE5T3+2jUuf+5pVqVnmhOpeOf5jx1Jzri8iIiIeR4VqaZaquqlvGtiRsCBfk9N4KYcDPp4GOfuhVSxc/nzznktdl5gLYdRjxv7ShyBjq/POveyPkLkNgqPg6tfBqjsDREREpG4Xdg7nk2lD+evVvWkd7MeurAJumbuO29/8gd1Z+e4N020sYIH0nyHnkHuvLSIiIh5JhWppdtbvO866vcfws1m5Y1gXs+N4r3Wvw/bPwOoL1/4HAsLMTuS5Bt8HXUdDeTG8fyuUFjT+nJs/qOzQtsA1r0OLqMafU0RERJo8m9XCDRd25Mvfj+COoZ3xsVpI3p7J2Oe+5pklKRSXVbgnSItI6HCBsa/xHyIiIoIK1dIMLdxwEIDL+7YjOjTA5DRe6vBGWP6wsT/mz9C+v6lxPJ7VChNnQ0hbyE6Fxb9v3PmO7oJP7zf2L/6DMfZDREREpB7CAn155LJEPn/gYkZ2j6SswsFrX+/miU+cePfX2XS/1NiqUC0iIiKoUC3NTIXdwedb0wG4sl87k9N4qeJcoyu4ohS6T4CBvzE7kXcIjoBr3gCLFTbNh43zG3aesmJ4/xYozYdOQ2D4Q87NKSIiIs1KXGQL/jPlQl7+ldF4sODHA2w7nOuei8dXzqnevco5d5yJiIiIV1OhWpqVdXuOkZ1fSligL4PiWpsdx/s4HEYn7/E9EBYDV76oudT1ETsURsww9hc/CFmp9T/H8kcgfTMEtTYK3zYf52YUERGRZml877Zc1qctDgf8efE2HA6H6y8alQAtO0JFCexe6frriYh4I7sddq7QPH9pFlSolmZl6ZYjAIxJjMbXpt/+9bb+Tdi6EKw+xlzqoHCzE3mfYQ9C5+FQVmh0ppcVnft7t30MP7xu7E98FUJ1V4CIiIg4z0OX9sDPx8qaXUf5cnum6y9osZzsqt6xxPXXExHxNif2w9tXwLxrYM4Y3X0iTZ4qddJs2O0Olm4xxn6M79PW5DReKH0LLPujsT/qMYi5wNw83spqg6tfh+BIyNx68uf0bI7vhY/vNfaH3A/dRrssooiIiDRPMeFB3DakMwB/WZJCWYXd9RetnlO93OgaFBER427mn+bBy4Nh7zfGc7kHYdXfzc0l4mIqVEuz8eO+42TllRAS4MOQuAiz43iXknz4YAqUF0PX0TDoXrMTebeQaKNYjcXoUt/8wZmPLy+F96dASQ50uBAuedQdKUVERKQZuntkHK2D/didVcD87/e7/oKdhoJfCBRkwuENrr+eiIiny8+CBTfDx3dDaR7EDIRx/zBeW/siZO0wN5+IC6lQLc3Gks3G2I/RidH4+ei3fr0s+T1kp0JIW2PkhFU/f40WN9IYAwLG3O+ju+o+NvlJ4z9uAS3h2jlg83VLRBEREWl+QgN8eWB0PADPrUglp7DMtRf08YOulxj7O5a69loiIp4u5TN4+SLY/hlYfSHpCZiyFAbeZYxKspcb/z93xzoCIiZQtUmaBbvdwbLKsR8TemvsR71snA+b3gWLFa6ZA8FahNJpRsyAjoOhNN+YV11ecvoxO5Ya3zUHuOplY8EhERERERe64YIYukW14HhhGS9+tdP1F6yaU526zPXXEhHxRMU5sGgqLPgVFGZDdC+4ayUMfcAYHwkw7q/gEwB7vjbWjhJpglSolmbhpwPHSc8tpoW/D0O7aezHOcvaAYsru35H/Alih5ibp6mx+cA1b0BgOKT/DMsfqfl6zkH4aKqxP3Aq9Jjg/owiIiLS7PjYrDw8IQGAN9fsZd9RFy/e1W2M0RSRscVYOExEpDnZ8zW8MgQ2zTf+Lhz6ANz5JbTpVfO4VrEn78r9/GEoyXN7VBFXU6FamoUlm41u6qSEKPx9bCan8RKlhUaXb1khdB4Ow6abnahpCmtvjFMBWPcabPvE2K8ogw9ug6Lj0O48GP2UeRlFRESk2RnRPYqL4yMpq3Dw16XbXXux4NbGDFaA1M9dey0REU9RVgTLZsBbl0POAaMQPWWpMe7Dx7/29wy+D1p1hrwjsPKv7kwr4hYqVEuT53A4WFo5n3q8xn6cu2V/hMxtEBxlLPxnVYHfZeLHGB84AD6eBsf3wlfPwIHvwT8Urp1rzG8UERERcaOHxydgtcDSLems23PMtReLv9TYak61iDQHhzbAqxfDdy8bPx4wBX77LXS86Mzv8w2A8c8a+9+9AhnbXJtTxM1UqJYmb+OBExzOKSbYz8bF8ZFmx/EOmz+ADW8BFrj6NQiJNjtR0zfqMehwAZTkwH8nwupZxvOXPw/hXczNJiIizcJLL71EbGwsAQEBDBw4kHXr1p3x+BMnTnDPPffQtm1b/P39iY+PZ8mSJW5KK+7QvU0IN1xorI/x58XbsNtduHhX98o51Xu/0e3sItJ0VZQZndBvJEF2KrRoA7/6AC5/DvxbnNs5uiVBj8vAUaGFFaXJUaFamryllYsoXpIQTYCvuoLP6sR++PR+Y//i30PcSHPzNBc2X2OxyoAwOLbbeO7826DX1ebmEhGRZmHBggVMnz6dxx9/nA0bNtC3b1/Gjh1LZmZmrceXlpYyevRo9u7dywcffMCOHTt4/fXXad++vZuTi6s9kBRPC38ffj6Yw8ebDrnuQhHxxu3sFaWw6yvXXUdExCxZqTBnNKycaRSZe06Eu9dCt9H1P9elfwWfQNj3Lfz8P+dnFTGJCtXSpDkcDpZUjv2Y0LuNyWm8xA9zoDQfOlwIw/9odprmpVUnuOoVsPpA234wdqbZiUREpJmYNWsWd955J1OmTCExMZHZs2cTFBTE3Llzaz1+7ty5HDt2jI8++oghQ4YQGxvL8OHD6du3r5uTi6tFhvhz98g4AP6+bAdFpRWuuZDFcrKrOnWZa64hImIGu90Y0/HqMDj8k9GcdM0cuO5NCApv2DlbxsDwPxj7yx+BohPOSitiKhWqpUnbfCiHg8eLCPS1MTw+yuw4ns9eAT8vMPYH3ws2H3PzNEc9JsDvtsAdK4z5YyIiIi5WWlrK+vXrSUpKqn7OarWSlJTE2rVra33PJ598wqBBg7jnnnuIjo6mV69ePPPMM1RUuKiIKaa6bUhn2rcM5EhOMW98s9t1F6qaU536ufG5VETE2504AP+90lgDqrwY4i6Bu7+D3tc2/tyD7oXW3aAg0+jSFmkCVKiWJm3J5sqxHz2iCPTT2I+z2r3SWD04sBXEjzU7TfMV2tYYBSIiIuIG2dnZVFRUEB1dc02K6Oho0tPTa33P7t27+eCDD6ioqGDJkiU8+uij/POf/+TPf/5zndcpKSkhNze3xkO8Q4CvjYfG9QDglVW7yMwtds2FOg0G/zAozIZD611zDRERd3A4YON8eGUw7PkafINgwj/h5oUQ2s451/Dxg/H/MPbXvQZHfnbOeUVMpEK1NFkOh4OlW4yxH+N7tzU5jZfY9K6x7XUt+Pibm0VEREQ8lt1uJyoqitdee40BAwYwadIkHn74YWbPnl3ne2bOnElYWFj1IyYmxo2JpbEu79OW8zq2pLC0gn8uT3XNRWy+0HWUsb9DC3OKiJfKz4IFN8NHU6Ek1xir+dvVcMEdxpgjZ4obacy6dtiNhRXtdueeX8TNVKiWJmvr4Vz2HS0kwNfKyB6RZsfxfMU5kPKZsd/vRnOziIiIiNtERERgs9nIyMio8XxGRgZt2tS+xkfbtm2Jj4/HZjt5x1pCQgLp6emUlpbW+p4ZM2aQk5NT/Thw4IDzvghxOYvFwiMTEgH43/oDbDvsoo74qjnVOzSnWkS80PbF8Mog2P4ZWH1h1GMwZSm0jnPdNcc+A77BcOB72DTfddcRcQMVqqXJquqmHtk9iiA/zVo+q60fQXkRRPaAdv3NTiMiIiJu4ufnx4ABA0hOTq5+zm63k5yczKBBg2p9z5AhQ0hLS8N+SudWamoqbdu2xc/Pr9b3+Pv7ExoaWuMh3mVAp1Zc1qctDgf8efE2HA6H8y/SNQksNshKgeN7nX9+ERFXKM6Fj+6B926CgiyISoQ7v4RhD7p+7afQdjDij8b+F49B4THXXk/EhVSolibJ4XBUz6cep7Ef56Zq7EffG51/O5KIiIh4tOnTp/P666/z1ltvkZKSwtSpUykoKGDKlCkATJ48mRkzZlQfP3XqVI4dO8b9999Pamoqixcv5plnnuGee+4x60sQN3no0h74+VhZs+soX27PdP4FgsKhY+U3SNRVLSKeyuGA7J2w4W346G548XzY+A5ggSH3w10roW0f9+W5aKrRdFZ4FL6se70IEU+nNlNpkran57EnuwA/HyuX9IgyO47nO7Yb9q8FixX6TDI7jYiIiLjZpEmTyMrK4rHHHiM9PZ1+/fqxbNmy6gUW9+/fj9V6ssclJiaGzz//nAceeIA+ffrQvn177r//fh566CGzvgRxk5jwIG4b0pnZq3bxlyUpXBwfia/Nyf1P3S+FfashdSlc9FvnnltEpCEqyuDIJuP/zfu/M7aFR2se07ITTJxtLAzrbjZfGP8svHUZ/DgXzrsZ2utOafE+KlRLk7R0szH2Y0R8JC389dv8rDa9Z2y7jIRQdaCLiIg0R9OmTWPatGm1vrZy5crTnhs0aBDfffedi1OJJ7p7ZBzv/3iA3VkFzP9+P7cMjnXuBeLHwfJHYO+3xu30ARoTIyJuVpwLB384WZQ++KMxKvNUNn/ocD50vMi4EyR2KPgGmpMXoPMw6H09bP4fLH4Q7kgGqwYpiHdRBU+apCVbjLEf4zX24+zs9pNjP/rdZG4WEREREfF4oQG+PDA6nkc+2sJzK1K5ql97woJ8nXeBiK7QuiscTYNdydBzovPOLSJSm9wjNbulM7aAw17zmMBWEHPRycJ0u37g429K3DqNeRpSl8HhDbDhLTh/itmJROpFhWppclIz8kjLzMfPZuWSBI39OKt938KJ/eAfCj0mmJ1GRERERLzADRfE8NaavezMzOfFr3by8IRE514g/lJY+6Ixp1qFahFxJocDslONgvS+tcb2xL7Tj2vZyShIVxWmI+I9v0M5pA2M/BMs+yMkPwkJV0Bwa7NTiZwzFaqlyVlSOfbj4vgIQgOc2NnRVFV1U/e8ytzblERERETEa/jYrDw8IYFb//MDb67Zy80XdaJT62DnXaD7OKNQvXM52CvAanPeuUWkeXE44PBPsPebyo7p76Do2C8OskCbXicL0zEXQVh7U+I22gV3wk/vGF3hyU/AFS+YnUjknKlQLU3O0s3G2I9xvTT246xKC2Dbx8Z+v1+Zm0VEREREvMqI7lFcHB/J16lZ/HXpdl65eYDzTh5zEQS0NIpJB9ZBp0HOO7eINA8l+ca85h/mGEXbU/kEQIcLKrulLzL2A8LMyelsNh9jYcX/XAob3obzJkPMBWanEjknKlRLk5KWmc+OjDx8bRaSEqPNjuP5Uj6F0nwI7wIxA81OIyIiIiJe5uHxCazemcXSLems23OMCzuHO+fENh/oNho2vw+pS1WoFpFzl5UKP86BjfOhJNd4zicQ4kZWdkwPgrZ9wcfP3Jyu1GkQ9L0JNs2HJQ/CnV/pzhTxCh4+XEekfpZWjv0Y2jWCsECN/TirjfONbd8bwWIxN4uIiIiIeJ3ubUK44cKOAPx58TbsdofzTh5/qbHdscx55xSRpqmi3GjEeusKeOkC+H62UaQO7wJjn4EHU+DGd2HIfUZ3cVMuUlcZ/ZTRJX5kE/w41+w0IudEhWppUhZXFqrH9dbYj7M6cQD2fG3s95lkbhYRERER8VoPJMXTwt+Hnw/m8PGmQ847cdcksPpA9g44ust55xWRpiM/E1b9A57vAwtuhj2rwGKF7uPh5g9h2noYdA8EtjI7qfu1iIRLHjX2k5+G/Cxz84icAxWqpcnYnZXP9vQ8fKwWxmjsx9n9/B7ggNhh0KqT2WlERERExEtFhvhz98g4AP6+bAdFpRXOOXFgS+g02NhPVVe1iFRyOGDfWvjgNpiVCF/9GXIPQVBrGPoA3LfR6J7umgTWZl72Ov82Y8xJSQ588ZjZaUTOqpn/iZWmZOkWYxHFwV0jaBnUDG7jaQyHAza+a+z3vdHcLCIiIiLi9W4b0pn2LQM5klPMG9/sdt6J48cZ2x1LnXdOEfFOJfnGCIvZQ42FArd8CPYyYyHEia/B9BRIekKNWKey2mDCLGN/03yjwC/iwVSoliZjSeXYj/G92picxAsc/AGO7QLfIEi8wuw0IiIiIuLlAnxtPDSuBwCvrNpFZm6xc07cvXJO9f61UHTCOecUEe+SlQpLH4JZCfDZA5CxxVgc8bxfw12r4I4V0HcS+PibndQzdTgf+k829pf83pjnLeKhVKiWJmHf0QK2Hs7FZrUwpqcK1WdVtYhi4pXgH2JuFhERERFpEi7v05bzOraksLSCfy5Pdc5Jw7tARHewl0PaCuecU0Q837ksjnjli9Cun9lJvcOoJ4w53Rlb4IfXzU4jUicVqqVJqBr7MahLa8KDNfbjjMqKYetCY19jP0RERETESSwWC49MSATgf+sPsO1wrnNOXNVVrTnVIk3fGRdHXNi8F0dsjODWMOpxY//Lv0Beurl5ROqgQrU0CVVjP8b1Vjf1We1YAsU5EBZjLKQoIiIiIuIkAzq14rI+bXE44M+Lt+FwOBp/0qo51Tu/0C3rIk2RvQL2flvL4ogRMHQ63L+pcnHEUVocsTH63wLtB0BpHix/1Ow0IrXyMTuASGMdOFbIzwdzsFpgrMZ+nF3V2I8+k/SPvIiIiIg43UOX9mD5tgzW7DrKl9szGZUQ3bgTxlwIgeFQdAwOfAexQ50TVETMU3gMdn0JO5cbY30Kj558rcOFcMEd0PMqzZ12JqsVxj8Lr18Cm/9nzK3urOY18SwqVIvXW1Y59mNg59ZEtNA/YmeUlw67ko19jf0QEREREReICQ/itiGdmb1qF39ZksLF8ZH42hrRIGG1Qbcx8PN7sGOpCtUiAA6HMbO5INt4FB2HljEQ2cP4M+NpHA7I2Ao7PzfujjjwPTjsJ1/3D4PEK4wCteZOu077/nD+bfDjHGNhxd+uBpuv2alEqqlQLV5vceXYj/Ea+3F2P//P+DDQ4UKI6Gp2GhERERFpou4ZGcf7Px5gd1YB87/fzy2DYxt3wu6XGoXq1GUw9i9OySjiURwOKM2HgiwoOGpsC7Pr/nFhNlSUnn4e32Bod55RkGw/wHiEdQCLxf1fU0k+7Pn6ZHE691DN1yMTIH4MdBtr3Dmhgql7jHoUtn0EWdvhu1dgyH1mJxKppkK1eLVDJ4rYeOAEFguM7aVC9Rk5HLDpXWO/303mZhERERGRJi0kwJfpY+J5eNEWnluRylX92hMW1IgiVNwosPrC0TTITlPThXgPhwNyD0NmCuSnVxaaK7ugf1mIriip//l9gyE4AgLC4Nhuo9i9b7XxqBIcdbJo3WGAUch21WKER3cZ4zx2Loe9q2sW030Coctw6DbauEuiZUfXZJAzC2wFo5+Cj++BlX+FXtdAWHuzU4kAKlSLl6sa+3FBbDhRIQEmp/FwRzZB5jaw+UPPiWanEREREZEmbtL5Mby1Zi+pGfm8+NVOHp6Q2PCTBYRC7BDYvRJSl0LEvU7LKeI0ZUVGl2r6FmPMRcYW41F0/NzP4RMIwZFG8Tk4wtgPan3Kc7/4sW/gyffaKyA7FQ6tP/nI2AoFmcafm9SlJ49t3fVk8br9AIjuBb4N+D91eQnsW3OyOH00rebrLTtB/FijMB07tGZeMU/fm2DD28YIluUPw3Vvmp1IBFChWrzckqqxH+qmPruqRRR7TIDAlqZGEREREZGmz8dm5eEJidwydx1vrtnLzRd1olPr4IafsPt4o1C9YxkMVqFaTFTVJZ2xFTI2G9v0LXB0Z825y1UsNojoZozgqLXwHHGyMO3XiD8jVhtEJRiP8242nisrgvTNcPDHk8Xr43uMgvLRNPh5QeV7faFNr8rC9fnGtnVXYwG+X8o9XFmY/sL4M1maf0oGH+g4qLI4Pdb4us0YOyJnVrWw4mvDYesi6H8LxI00O5WICtXivdJzilm/z/jO9KW92pqcxsOVl8Lm9419jf0QERERETcZHh/J8PhIVqVm8del23nl5gENP1n8pbD0/2D/Wig8BkHhzgsqns3hqBwjUWIsuhcQCv4h4B9qFHZdWQitb5d0YLhR8I2ufLTpBRHdG9at7Ay+gcb855gLTz5XeAwObTil8/pHKDwKh38yHj+8YRznH1o573qA8XVkbDUK1Omba16jRfTJcR5dRhq/PuL52vaBC++C72cbCytOXQM+/mankmZOhWrxWsu2GN3U53dqRZswjf04o53LoeiY8QGii75LKiIiIiLu8/CEBL7ZmcXSLems23OMCzs3sMDcqhNEJRrj7NJWQJ/rnRtUPNeWD+HD22t/zWI7WbQOCD1lW9tzv9wPOblvsVZ2SVcWoqsK02fsko6H6J41C9MhbTy/gzgoHLolGQ8wvhFwYl9l0bqygH14I5Tkwp5VxqMGi1G8jh9rFKjb9K2981o838g/wZaFRnf9iidg1OPmfVNFBBWqxYst2WzMpx7XW93UZ1W1iGKf68GmP/YiIiIi4j7x0SFcNyCGBT8eYOGGgw0vVIPRVZ25DXYsVaG6OUn51NiGtAObr1FALc4FR4XxKD5hPHIacQ2bf92LGf6ySzq6J0T2aDoFPYsFWsUaj17XGM9VlENWysmu6/QtxuvxY6FrkjGmRLxfQBiM+TMsugu+e9koWg+5Dwbc2rgxNCINpIqVeKXM3GJ+2HcMgHGaT31mBUch9XNjv6/GfoiIiIiI+w3tFsGCHw+QmpHXuBN1HwerZ0FaMlSUGUVLadrsFcYcZIDr3zo5wsLhMMZyVBWtS3KhOAdK8n7xXG7lczm1PJcL5cXG+SpKTs6SrhrZ4U1d0s5m84E2vY3HgFvNTiOu1Od6KC+CVf+A3IPw+Z/gm1kw6B644A6NchG3UqFavNLnW9NxOOC8ji1p11KrBp/Rlg/AXgZt+0F0I1ZaFxERERFpoG7RLQDYmZGPw+HA0tCiX/sBxsJzhdmwbw10Ge7ElGdwfC+sf9P4TB0/1pj7K+5xaIPRLR0QBu36n3zeYgG/IOMR0ojmpfJSo2Bdmg8t2jSdLmmRc2WxGN+M6HuTcTf26lnG33nJT8K3z8HAqTDwN1oXQNxCQ4TEKy3ebMynHq9FFM9u4zxjq0UURURERMQknSOCsVkt5JWUk5Fbx3iFc2G1GYVigNRlzgl3Jg4HbJwPrwyF1f+C92+Bf3SFD++EHcuMIqe4VtoKY9tlhGvGGPr4GWMsWsWqSC3Nm48fDLgFpq2Hia8ZM9iLc2DVX+G5PsYM6/wss1NKE6dCtXidrLwS1u2pHPvRW2M/zihjGxzZBFZf6HWt2WlEREREpJny97ER2zoIoPHjP+IvNbY7lhqFZFcpPGYUpj+aCqV50LYvtOxodN5u/h+8Owme7Qof3wO7vjRm+orz7Uo2tl2TzM0h0lzYfKDvJLj7O7juTWP8TWme8c2653rDshnGwqMiLqBCtXid5dvSsTugb4cwOrQKMjuOZ9s039jGj4Xg1uZmEREREZFmLT46BHBCoTruErD5wfE9kJ3qhGS12PUVvDIYtn0MVh8Y9Rjc+RXc/zPckQwX3W2MiSjOgZ/egf9OhH92h8UPGiNJ7HbX5Gpuio4bC/kBxI0yN4tIc2O1Qc+J8NvVcON7xuid8iJj0cXn+8JnD8DxfWanlCZGhWrxOksqx36M662xH2dUUQ4//8/Y73ujuVlEREREpNnrFmXMqU7LzG/cifxbQOwwY3/H0kam+oWyYlj2J/jvVZB3BFp3gztWwLAHjaKNxQIdzodLZ8L0bXDrYjj/NghqbczN/uEN+M84+FdP4zwH17u267up270SHHaI7AFh7c1OI9I8WSzGQrZ3fgm/XgQdB0NFKfw4F17oDx/dA0d3mZ1SmggVqsWrHM0v4bvdxtgPzac+i91fQX4GBIZDtzFmpxERERGRZq6bszqqwSiagHPnVGdshdcvge9eMn58/u3wm6+h3Xm1H2+1QexQuOxf8GAq3LwQ+t0M/mGQd9g4zxuXGJ2HK56E9C0qWtdX1Xxqjf0QMZ/FYtzRcttSuHUJdBkJ9nLY+A68eD58cLsxflSkEVSoFq/yxbYMKuwOerUPpWNrjf04o42VYz96X2csiiAiIiIiYqKq0R87M/JxNLZgWzWn+sD3xizpxrDbYe1L8NoIyNwKwZFw0//gslngd47/57D5QNdRcNVL8IedcMO7xhoxvsFwYh+sngWzh8BLA2HlXyF7Z+MyNwcOB6R9aezHXWJuFhGpKXYITP7IGIUUP86482HLB/DKIHjvV3B4o9kJxUupUC1eZXHV2A91U59Z0XHYvtjY73eTuVlERERERIDOEcHYrBbySspJzy1u3MlaxkB0b6M4snN5w8+Tc8gY8/H5n4xb2ePHwdS1xhovDeXjDz3Gw7Vz4A9pxmJkCZeDzR+yd8DKmUb34eyhxuJkmvFau6ztRme6TwB0Gmx2GhGpTYfz4ab34DffQOKVgAW2fwavDYd518GBdWYnbDy7Hb54DL6brfUH3ECFavEaxwtKWbPrKADjNZ/6zLYugooSiEo0VicXERERETGZn4+V2Mq7IndmNHJONUD3yq7qhs6p3rrIWDBxzyrwCTRGeNz4LrSIbHy2Kn5BxmJkk94xitYTXzXG8ll9IH0zrHgCnu8DbyTBd69AaYHzru3tqsZ+dBoCvoHmZhGRM2vbB65/G+7+DvpMAovV+CbinNHw1uWw5xvvHX10cB18+zwsewjeuRryM81O1KQ1qFD90ksvERsbS0BAAAMHDmTdujN/h+S5556je/fuBAYGEhMTwwMPPEBxcSO/gy7NzhcpxtiPhLahdI4INjuOZ9v4rrHte6MxR0pERERExAPEO3NOdXzlnOq0ZCgvPff3FefCoqnw/q1QfMKYQf3bb4xFEV352TkgFPreAL96H36/Ey5/HjpfbBR0Dv4Ay/5oFK7FkJZsbDWfWsR7RPWAq1+DaT/Ceb82vim352t46zL4/GGz0zXM4Z9O7u/+yrgbZvcq8/I0cfUuVC9YsIDp06fz+OOPs2HDBvr27cvYsWPJzKz9Owrz58/nj3/8I48//jgpKSnMmTOHBQsW8Kc//anR4aV5WVI59mN8rzYmJ/Fw2WnGd/wsVuhzvdlpRERERESqdTtlTnWjtTsPWkRDaR7sW31u79n/nTEretN84/PysN/D7V9ARLfG56mPoHAYcCvc8ilM3w6D7zWe37fGvTk8VWnhyZ+LrqPMzSIi9dc6Dq58Ee77CQZMMZ77cS5UlJubqyGq5m33vh4iEyA/A96+Er6aCfYKU6M1RfUuVM+aNYs777yTKVOmkJiYyOzZswkKCmLu3Lm1Hr9mzRqGDBnCTTfdRGxsLGPGjOHGG288axe2yKlyCsv4Ni0bgPF9NPbjjDZVdlPHjYIQFfVFRERExHN0i2oBQGqmEzqqrVZjjAbAjmVnPraiDL78M/xnHJzYDy07wq1LYNSjYPNtfJbGCImGi+4x9jO3afwHwL5vjVGGoR0gIt7sNCLSUC07woRZ4BcC5UXGnH5vc2Sjse11Ddz5pdEpjgNW/dUoWOceMTNdk1OvQnVpaSnr168nKenkrTdWq5WkpCTWrl1b63sGDx7M+vXrqwvTu3fvZsmSJYwfP77O65SUlJCbm1vjIc3bipQMyiocdI8OIS6yhdlxPJfdDpveM/b73WhuFhERERGRX6ga/ZGWkY/DGfNKu1eO/0hdWvf80+w0Y07q1/8wFl/sexP89lvoNKjx13eW0LYQ0s7Id2ST2WnMVz32Y5RGGYp4O6v15NpZp47R8AalBZCdauy362esO3Dli3D16+AbDHu/MUaBVP2dJY1Wr0J1dnY2FRUVREdH13g+Ojqa9PT0Wt9z00038dRTTzF06FB8fX2Ji4tjxIgRZxz9MXPmTMLCwqofMTEx9YkpTVDV2I9xvdUhfEZ7v4bcg+AfBt0nmJ1GRERERKSGzhHB+Fgt5JWUk57rhHWLuowAm7/RJZ2ZUvM1h8O41fzVYUZxJKAlXPcmTHzFmBftadr3N7aH1pubwxPsOqVQLSLer10/Y+tther0zcY3EFu0qXnHep/r4TdfQ3RvKMw2Fllc8aR3jjbxMA1aTLE+Vq5cyTPPPMPLL7/Mhg0bWLhwIYsXL+bpp5+u8z0zZswgJyen+nHgwAFXxxQPlltcxjc7jbEfE3pr7McZVS2i2Otq8A0wN4uIiIiIyC/4+ViJrVwYPdUZc6r9gqHLcGM/denJ5/Oz4N0b4bMHoKwQOg+HqWug58TGX9NVOpxvbJt7ofrEfqOD0WIzft1ExPu1O8/YVs179hZVeasK7aeK6Ap3rIDzbzd+vHoWvDkBcg66K12TVK9CdUREBDabjYyMjBrPZ2Rk0KZN7Z2ujz76KL/+9a+544476N27NxMnTuSZZ55h5syZ2O32Wt/j7+9PaGhojYc0X1+mZFJaYadrVIvqxVekFiV5kPKJsd/vJnOziIiIiIjUoWpO9c4MJ8ypBoi/1NhWzalO/RxeGWQUrm1+MPYZ+PVHENbeOddzlfYDjG1zL1RX3ULf4QIIbGlqFBFxkqpCdfpmY80Ab1E1n7ptv9pf9w2Ay2bBtf8B/1A48J0xCiT1c3clbHLqVaj28/NjwIABJCefnL1it9tJTk5m0KDa53sVFhZitda8jM1mA3DOTDJp8hZXjv0Y30tjP85o2ydGt0h4nPGhTkRERETEA1U1n+x0Rkc1nCxUH/wBProH5l8PBVkQlQh3rYRB9xgzUj1d236Axegozs8yO415NPZDpOlp1dkYUVpRcvqYJk9WtWZA1YztuvS6Gn6zyvh7vOi48e/Q5w9DeanLIzY19f7Xevr06bz++uu89dZbpKSkMHXqVAoKCpgyZQoAkydPZsaMGdXHX3755bzyyiu899577Nmzhy+++IJHH32Uyy+/vLpgLVKX/JJyVqUaH9LG99HYjzPaVDn2o9+NWnBERERERDxWfLTRUZ2a6aSO6rD2lUUEB2x8x3juonvgzq8guqdzruEOAaEQ2d3Yb65d1RVlsHuVsR+nQrVIk2G1QrvKYm9Vl7KnKy2ErO3Gfm2jP34pvAvcvhwG/tb48doX4T/j4Pg+l0Vsinzq+4ZJkyaRlZXFY489Rnp6Ov369WPZsmXVCyzu37+/Rgf1I488gsVi4ZFHHuHQoUNERkZy+eWX85e//MV5X4U0WV9uz6S03E6XiGC6a+xH3Y7vNVabxQJ9bjA7jYiIiIhIneIrP9enZeTjcDiwOKPJIuEKo/MtpC1c9QrEjWz8Oc3QfoBRGDm0HrpfanYa9zv4I5TkQmCrcysMiYj3aNsP9nxtLKjYf7LZac4uY4uxkGJwlPFvy7nw8Ydxf4PYYfDx3XDoR2NB3ytfgoTLXZu3iah3oRpg2rRpTJs2rdbXVq5cWfMCPj48/vjjPP744w25lDRzS342xn6M693GOR9gm6pNC4xt52HQMsbcLCIiIiIiZxDbOhgfq4W8knKO5BTTrmVg4086aBpExEPsUAgKb/z5zNK+P2yc13w7qqvGfsRdAlbdgS3SpFQvqPiTuTnO1akLKda3HpVwGbTpDR/cZhSrF9wMF/4GxjxtFLOlTl4wqEuaq4KScr7akQnA+N4a+1Enh+OUsR+/MjeLiIiIeK2XXnqJ2NhYAgICGDhwIOvWravz2DfffBOLxVLjERAQ4Ma04s38fKzERgQDsDPTSXOqfQMg8QrvLlJDzQUVm+OaTlULKWrsh0jTU1WoztjqHbObz7aQ4tm06gS3LYPB9xo/XvcqzBkDx3Y7I12TpUK1eKyVO7IoKbfTqXUQiW1DzY7jufZ/B8f3gF8L3UoiIiIiDbJgwQKmT5/O448/zoYNG+jbty9jx44lMzOzzveEhoZy5MiR6se+fZrBKOeuak71zgwnzaluKqJ6gs0fik80v2JGwdGTnZZxl5ibRUScr1UsBLSEilLI3GZ2mrM7taO6oWy+MObPcNP/IDDcKH7Pvhi2LHRCwKZJhWrxWEs2V4796NVWYz/OZNN8Y5t4JfgFm5tFREREvNKsWbO48847mTJlComJicyePZugoCDmzp1b53ssFgtt2rSpflStWSNyLrpFGXOqU1WorsnHD9r2MfYPbTA3i7vt/gpwQHQvCNUdtSJNjsVysujr6eM/yopOLqTY0I7qU8WPhd+uho6DoDQPPpgCnz1gXEdqUKFaPFJRaQVfbjc6eCZo7EfdSgth60fGft8bTY0iIiIi3qm0tJT169eTlJRU/ZzVaiUpKYm1a9fW+b78/Hw6depETEwMV155JVu3bnVHXGkiulV1VDtr9EdTcur4j+Yk7ZT51CLSNFWN/6gaq+Gp0reAowKCIyG0nXPOGdYebvkMhj0IWODHufBGEmTvdM75mwgVqsUjrdyRSVFZBR1aBdKrvcZ+1Gn7YmNV7LCO0GmI2WlERETEC2VnZ1NRUXFaR3R0dDTp6em1vqd79+7MnTuXjz/+mHfeeQe73c7gwYM5ePBgndcpKSkhNze3xkOar/hoo6M6LSMfR3OcxXwm7c83ts2pUO1wnFxIsavmU4s0WVXdyZ7eUX3qfGpn3uFv84FRj8HNH0JQBGRsgVeHw6YFzruGl1OhWjzSki3Gf4rG99bYjzOqGvvR9waw6o+ziIiIuMegQYOYPHky/fr1Y/jw4SxcuJDIyEheffXVOt8zc+ZMwsLCqh8xMTFuTCyeJrZ1MD5WC3kl5RzJKTY7jmdp39/YHtkEFWXmZnGXjC2QnwG+Qcat8SLSNFUvqLgNykvMzXImzphPfSZdR8HUbyF2GJQVwKK74POHXXMtL6PKlnic4rIKvkzJAIxCtdQh9zDsXmns973B1CgiIiLivSIiIrDZbGRkZNR4PiMjgzZt2pzTOXx9fTnvvPNIS0ur85gZM2aQk5NT/Thw4ECjcot38/Ox0jnCWF9Fc6p/IbxL5YJjJUYBtzmoGvsROwx8/M3NIiKu07KjsaigvQwyPHhk2Kkd1a4S0gYmfwwjZhg/XvsiZO1w3fW8hArV4nG+Ts2ioLSCdmEB9O0QZnYcz/XzAnDYjY6D1nFmpxEREREv5efnx4ABA0hOTq5+zm63k5yczKBB59bZWFFRwebNm2nbtu4mA39/f0JDQ2s8pHmrmlOdpjnVNVkszW9OtcZ+iDQP3rCgYlkRZKYY+67qqK5itcGIP0KPy4wfr3nBtdfzAipUi8dZttUY+3FpL439qJPDARvfNfa1iKKIiIg00vTp03n99dd56623SElJYerUqRQUFDBlyhQAJk+ezIwZM6qPf+qpp1i+fDm7d+9mw4YN3Hzzzezbt4877rjDrC9BvFC3KGNOtTqqa1FdqN5gbg53KMmHfZULt8apUC3S5FWN//DUQnXGVmMhxaAICG3vnmsOvs/Y/rwA8mpfH6S58DE7gMipyivsJKdkAjC2Z/RZjm7GDm2A7B3gEwA9rzI7jYiIiHi5SZMmkZWVxWOPPUZ6ejr9+vVj2bJl1Qss7t+/H+sp62EcP36cO++8k/T0dFq1asWAAQNYs2YNiYmJZn0J4oWqFlRMzVBH9WmaU0f13tXGGICWnXSnqEhzUFWorhqv4Wmqx370de5CimfScSDEXAQHvoPvZ0PSE+65rgdSoVo8yrq9x8gpKiM82I/zY8PNjuO5qhZR7HEZBGg8ioiIiDTetGnTmDZtWq2vrVy5ssaP//Wvf/Gvf/3LDamkKTt19IfD4dDdlKeqWlAxawcU50JAEx6Vc+rYD/0eEGn6quY+Z6YYYzZ8A02NcxpXL6RYlyH3wXvfwQ9zYdiD4B/i3ut7CBWqxaMs32os4pOUEIXN6sUfUrJ2QNEJF53cAZs/MHb7aeyHiIiIiHin2NbB+Fgt5JeUcySnmHYtPaxYYaYWURDWEXL2G919nS82O5HrpK0wthr7IdI8hHUwxmoUZhtjNjqcb3aimtyxkGJt4sdB625wdCdseBsG3ePe63sIFarFYzgcDpZXzqcek3huK8x7pB1L4d0bXH+dkLbQZaTrryMiIiIi4gJ+PlY6RwSzMzOf1Iw8Fap/qX1/o1B9aH3TLVQf2wPHdoPVp+l+jSJSk8VijP9I+8KYU+1JheqyYvctpPhLVisMngaf3g9rX4YL7wKbr3szeAAVqsVjbD2cy+GcYoL8bAztFmF2nIb74Q1jGxwJfi1ccw2rD1z8e2OFWBERERERLxUfHcLOzHx2ZuQzonuU2XE8S4fzYdtHTXtOddXYj5iBTXu8iYjU1K5fZaF6o9lJasrcCvZyCAyHsBj3X7/PDfDlXyD3IGxZCH0nuT+DyVSoFo/xeWU39fD4SAJ8vbQAm3sEdn1p7N/2uRYDERERERE5g65RRmNHakaeyUk8UPWCihvMzeFKaZWF6rhLzM0hIu5VtaDi4Z/MzfFLp86nNmNmvm8ADPwNfPk0rPk39Lm+2c3ut579EBH3qJpPPaZntMlJGmHz/8BhNzoCVKQWERERETmj+GhjsaidmfkmJ/FAbfuCxQq5h4yGmKamvBT2fG3sd00yN4uIuFdVoTprO5QWmpvlVGbNpz7VBbeDbzBkbDnZCNmMqFAtHmFvdgE7MvLwsVq4pLuXFqodDtj4rrHfV4scioiIiIicTXy00VGdlpmPw+EwOY2H8QuGqERjvymO/zi4DkrzjUXV2vQxO42IuFNIWwiOAkeFUZD1FKd2VJslsBX0n2zsr/m3eTlMokK1eITl24yxHxd1aU1YkJcOiz+yEbJSwCcAek40O42IiIiIiMeLjQjGx2ohv6ScwznFZsfxPO37G9umWKhOW2Fs4y4xFhETkeajakFF8Jw51eUlJxdSNLOjGmDQ3WCxwe6VnvPz4yb610A8QpMY+1HVTd1jAgS2NDWKiIiIiIg38LVZ6RwRDGhOda2q51Q3xUJ15XzqrqPMzSEi5vC0OdUZW8FeZnQ0t+xobpaWHaHX1cb+mhfMzeJmKlSL6bLySli//zgAoxO9tFBdXgqb3zf2+95kbhYRERERES9SNac6LUNzqk9TVag+/BPY7eZmcab8TEj/2djXQooizVPVeA1PKVSfOp/aExYwHHyfsd26CE7sNzeLG6lQLaZbkZKBwwF9O4TRNizQ7DgNs/NzKDoGLdpA3Eiz04iIiIiIeI1ulXOq1VFdi8gE8AmEklw4mmZ2GufZ9ZWxbdMHWkSZm0VEzFE1XiN7B5QWmBoF8Iz51Kdq2we6jDDmeK992ew0bqNCtZhu+VZjPvWYnm1MTtIIVWM/+lwPVpu5WUREREREvEhVR3VqpjqqT2PzOVk0aUrjP6rmU2vsh0jzFdrWWFTRYYf0zWanqdlR7SmG3G9sN7wFhcfMzeImKlSLqfJLyvk27SgAY7x17EdBttFRDdBPYz9EREREROqjW5TRUZ2WkYfD4TA5jQdqanOq7XbY9aWx3zXJ3CwiYq6qorDZ4z/KSyBjm7Hftq+5WU7VZSS06Q1lhfDjHLPTuIUK1WKqlTsyKa2w0yUimK6VH1C9zuYPwF5u/AUblWB2GhERERERrxIbEYyvzUJBaQWHc4rNjuN5mlqhOv1nKMwGvxbQ4UKz04iImaoXVNxoagwyU4yFFANaQqtYc7OcymI5Oav6+9egrOn/G6lCtZhq+dYMAEb3jMbiCcPqG2LTfGPb71fm5hARERER8UK+NiudI4IBzamuVVWhOn1z0yhSVI396Hwx+PiZm0VEzFVdqDa5o7p67Edfz1hI8VQ9J0JoByjIhJ/fMzuNy6lQLaYpLbfz1fZMAMYkeul86oytcGQTWH2h97VmpxERERER8Urdoow51TtVqD5dy44QFGF0+2VsMTtN41WP/dB8apFmr2oGf3YqlJj497+nLaR4KpsvDLrH2F/zgjE+qQlToVpMs3b3UfJKyokM8ee8mJZmx2mYjZXd1PFjISjc3CwiIiIiIl6qW7QxBnBnhhZUPI3F0nTGfxTnwoHvjf04FapFmr0WURDaHnCYu6CiJy6keKr+kyEgDI6mwY4lZqdxKRWqxTTLt6YDMDoxGqvVw26tOBcV5fDz/4x9LaIoIiIiItJg8dFGR3VqpgrVtWoqheo9Xxvr+4R3gfDOZqcREU9g9viP8lLjbnnwzI5qAP8WcP7txv6af5ubxcVUqBZT2O0OvthmzKcekxhtcpoG2vWlMSMoqDV0HW12GhERERERrxVf2VGdlpGHw+EwOY0HaiqF6l3JxrZrkrk5RMRzVHUxm1WozkqBilKjY7mVB38DbeBvwOZn3JWy/zuz07iMCtViio0HT5CZV0KIvw+D4yLMjtMwVYso9r5Oi4CIiIiIiDRCp9bB+NosFJRWcOhEkdlxPE/7/sb2aBoUHTc3S0M5HCcXUtTYDxGpUt1RvdGc61dd1xMXUjxVSBvoe4Ox/23T7apWoVpMsXyr0U09okcUfj5e+Nuw6Dhsr5wLpLEfIiIiIiKN4muz0jkiGICdGv9xuqDwk51+ZnUdNtbRXXBiv7EQfexQs9OIiKeoGrdxdKcxx97dPH0+9akG3WtsdyyB7J3mZnERL6wQSlOwfJsxn9prx35sXQQVJRDVE9r0MTuNiIiIiIjX61Y5p3pnRp7JSTyUt4//qBr70fEiY96qiAhAcASExRj7Rza5//pVHdWeOp/6VJHx0H084IA1L5idxiVUqBa3S8vMZ3dWAX42KyO6R5odp2E2vmts+93o2beGiIiIiIh4ifioygUVM9RRXasO5xvbg15aqE7TfGoRqUNVkbiqu9ldKspOLqToDR3VAIPvM7ab3oO8DHOzuIAK1eJ2n281uqkHd21NSICvyWkaIHsnHFwHFhv0vt7sNCIiIiIiTUK3ygUV1VFdh1M7qr1twcnyEtj7jbHfVfOpReQXqudUu3m0UWaKcbe8fxiEd3HvtRuq40XQ4UIj97pXzU7jdCpUi9st32Z8x2dMYhuTkzTQpspu6q6jIMRLR5eIiIiIiHiY+KpCdWY+Dm8rxLpDm95g9YGCTMg5aHaa+tm/FsoKoUU0RPcyO42IeJqqbmZ3F6qr51P38Z675S0WGFLZVf3DHChpWnchqVAtbpWeU8ymAyewWCApMcrsOPVnt8OmBcZ+3xvNzSIiIiIi0oR0ah2Mr81CYWkFh04UmR3H8/gGQnRPY9/b5lRXjf2IG+U9xSARcZ+qjupju6HohPuuWzWfum1f913TGbqPh/A4KD4BP/3X7DROpUK1uNUXlYso9u/YiqiQAJPTNMDeryH3IASEVQ6wFxERERERZ/C1WekSUTX+o2l1iDmNty6ouOtLY6uxHyJSm6BwaNnJ2HfngopV16oqlHsLqw0GTzP2175kzNpuIlSoFrc6OfbDS0dmVC2i2Osa8PXCQruIiIiIiAfrWjn+I1VzqmtXXajeYG6O+sg9AhlbAAt0GWl2GhHxVFULKrpr/EdFeeXfTXjPQoqn6nsjBEdCzgHY+pHZaZxGhWpxm5yiMtbuOgrAmJ5eOJ+6JA9SPjH2+95kbhYRERERkSYoPioEMOZUSy2qCtWHfwJ7hblZzlVVN3W78yC4tblZRMRzVXU1V82NdrWs7VBeDH4h3rOQ4ql8A+HC3xj7a573vkV266BCtbjNV9szKbc7iI9uQeeIYLPj1N+2j40FQFp3hQ7nm51GRERERKTJqV5QUR3VtYuIB78WUFYAWTvMTnNudlXOp9bYDxE5k6pCtbs6qqsXUuwLVi8tj15wO/gGQfpm2L3S7DRO4aW/EuKNllfOpx6T6IXd1HBy7EffG7UAiIiIiIiIC3SrKlRn5mO3N43uMKey2k4Wc7xhTrW94mRHdZwK1SJyBlULGh7fC4XHXH+9qoUUq0aOeKOgcDjv18b+t8+bm8VJVKgWtyguq2DljiwAxnrj2I/je2HfasACfW8wO42IiIiISJPUqXUwvjYLhaUVHDpRZHYcz1Q9p/pHc3Oci8Mboeg4+IfqrlQRObPAVtCqs7HvjgUVqzuq+7n+Wq406B6w2GD3V3DkZ7PTNJoK1eIW36ZlU1haQduwAHq1DzU7Tv1tWmBsuwyHsA7mZhERERERaaJ8bVa6RBhd1WmaU1276kK1F3RUV4396DIcbL7mZhERz+eu8R8V5ZBeuZCiN3dUA7TqBD2vMvbXvGBqFGdQoVrcYvnWDADGJEZj8baxGQ4HbKoa+6FFFEVEREREXKlq/Eeq5lTXrqpQnbENSgvNzXI2aZWFao39EJFzUVU0dnWhOnsHlBdVLqQY59prucPg+4ztlg/hxH5zszSSCtXichV2BytSjEK1V4792P8dHN9jLFqScJnZaUREREREmrRuUSEApGaoo7pWoe2gRRtwVEC6B9/mXXQCDv5g7GshRRE5F1Ud1VVjOVylaj512z7eu5Diqdr1g84XG/8ufPeK2WkapQn8aoinW7/vOEcLSgkL9OWCzuFmx6m/jfOMbeJV4BdsahQRERERkaYuPrpq9Ic6qmtlsXjH+I89q4yiSUQ8tOxodhoR8QZVCyqe2A8FR113naYyn/pUQ+43tuvfMtYG8FIqVIvLLd+aDsCoHlH42rzst1xpIWz9yNjvd6OpUUREREREmoNu0UZH9c7MfOx2h8lpPFT7/sbWkwvVGvshIvUVEHZyFMcRF47/qOqo9vb51KeKGwXRvaCsAH6ca3aaBvOyqqF4G4fDwfJtlfOpvXHsx/bFUJpndAB0HGx2GhERERGRJi+2dRC+NguFpRUcOlFkdhzP5Okd1Q7HyUK1xn6ISH1UL6i40TXnryiH9M3GflPqqLZYYPC9xv73r0JZsbl5GkiFanGp7el57D9WiL+PlYvjI8yOU3+b5hvbvjc1jblFIiIiIiIezsdmpUuEMf5jp8Z/1K6qkHN8r2tvj2+o7FTIPQg2f+g0xOw0IuJNqgvVLuqozk41FlL0DYbWTWAhxVP1ugZC20N+Bvy8wOw0DaLKm7jU8q1GN/WwbpEE+fmYnKaecg/D7pXGft8bTI0iIiIiItKcdKucU71TCyrWLrAltO5m7B/eYGqUWlV1U3caDH5B5mYREe9SNY7jyCbXnL/qvG37gNXmmmuYxeYLF91t7K95Aex2c/M0gArV4lLLtxnzqcf2jDY5SQP8vAAcdmPkR3hns9OIiIiIiDQb8ZVzqlNVqK5b1fiPgz+am6M2aSuMrcZ+iEh9tekDWCDnAORnOf/8TXEhxVMNuAX8w+DoTkhdZnaaelOhWlzmwLFCth7OxWqBUQleVqh2OGDju8a+FlEUEREREXGr+GiN/jirDucbW0+bU11WBPu+Nfa1kKKI1FdAKERU3jFSVVR2pqa4kOKp/EPg/CnG/pp/m5ulAVSoFpf5onIRxQtiwwkP9jM5TT0d2gDZO8AnEBKvMjuNiIiIiEiz0jXK6KjemZGP3e4wOY2Hat/f2B5abzTaeIp9a6C8GELaQVSC2WlExBtVdTs7e0FFewWk/1zzGk3RwN+C1Rf2r4UD68xOUy8qVIvLnBz70cbkJA1QtYhiwmXGd/NERERERMRtYlsH4WezUlRWwaETRWbH8UzRvcDmB0XHjEUVPUXVfOqul4DFYm4WEfFOrlpQMXsnlBUaCylWdW03RaFtoe8kY//b583NUk8qVItLHCsoZd2eYwCMTvSysR/lJbD5A2O/r8Z+iIiISPPw0ksvERsbS0BAAAMHDmTdunPrwHnvvfewWCxcddVVrg0ozYqPzUqXyGBA4z/q5OMPbXob+540/mNXZaFaYz9EpKFcVaiuGiXSpnfTW0jxlwbfZ2y3L4bsNHOz1IMK1eISySkZ2B2Q2DaUmHAvW+U5dRkUnzBuVesywuw0IiIiIi63YMECpk+fzuOPP86GDRvo27cvY8eOJTMz84zv27t3L7///e8ZNmyYm5JKc9I1yphTrQUVz6BqQcVDG8zNUSXnIGRtB4tV/5cSkYZr0xuwQN5hyMtw3nmb+nzqU0V2h/hLAQesfdHsNOdMhWpxieWV86m9cuxH1SKKfSc1/e+wiYiIiACzZs3izjvvZMqUKSQmJjJ79myCgoKYO3dune+pqKjgV7/6FU8++SRdunRxY1ppLuKjjTnVqRnqqK5TdaHaQzqqd31pbNsPgKBwc7OIiPfyb2EUWsG5CypWnaspz6c+VVVX9cb5kH/m5gNPoUK1OF1haTlfp2YBMKanl439yM+EncuN/b43mZtFRERExA1KS0tZv349SUlJ1c9ZrVaSkpJYu3Ztne976qmniIqK4vbbb3dHTGmG4qONjuq0THVU16mqUH1kE1SUmZsFIG2FsdXYDxFprOoFFZ00/sNeAUcqF1JsDh3VAJ0GQ/vzoaIE1r1mdppzokK1ON3XqdmUlNuJCQ+kR5sQs+PUz+b3wVFhfOCLjDc7jYiIiIjLZWdnU1FRQXR0zQaD6Oho0tPTa33P6tWrmTNnDq+//vo5X6ekpITc3NwaD5Ez6VbZUb0zIx+73WFyGg8VHgf+YVBeBJkp5mapKIfdK439rklnPFRE5Kyq51RvdM75jqZBWQH4BkFEM6n3WCwwpLKr+oc3oLTA3DznQIVqcbrl24z/0IxNbIPF21Z5rh77oUUURURERGqTl5fHr3/9a15//XUiIiLO+X0zZ84kLCys+hETE+PClNIUdAoPws9mpaisgkMnisyO45msVmhfWcw59KO5WQ5vgOIcCGgJ7fubm0VEvJ+zF1SsKng3h4UUT9XjMqM7vf9kz7jz5iwaVKiuz4rgI0aMwGKxnPaYMGFCg0OL5yqrsJOcYsy9GeNt86nTN0PGZrD5Qa9rzE4jIiIi4hYRERHYbDYyMmouVpSRkUGbNqd/ntu1axd79+7l8ssvx8fHBx8fH95++20++eQTfHx82LVrV63XmTFjBjk5OdWPAwcOuOTrkabDx2alS2QwoDnVZ9T+fGNr9pzqqrEfXUY0ryKQiLhGm97Gwqz56ZB7pPHna27zqatYbXDXShj9FAS2NDvNWdW7UF3fFcEXLlzIkSNHqh9btmzBZrNx3XXXNTq8eJ4f9hwjp6iM1sF+DOjUyuw49VPVTd19nBb+EBERkWbDz8+PAQMGkJycXP2c3W4nOTmZQYMGnXZ8jx492Lx5Mxs3bqx+XHHFFYwcOZKNGzfW2Snt7+9PaGhojYfI2VSP/9Cc6rpVL6i4wdwcaZV/h3TVfGoRcQK/IIjsYew7Y0HFqo7qtn0bfy5v40XTDupdqK7viuDh4eG0adOm+vHFF18QFBSkQnUTtXyb0YmTlBCNzeo9fxCoKIPN/zP2tYiiiIiINDPTp0/n9ddf56233iIlJYWpU6dSUFDAlClTAJg8eTIzZswAICAggF69etV4tGzZkpCQEHr16oWfn5+ZX4o0MfFRxoKK6qg+g6oxG5kpUGLSz1PhMWP0B2ghRRFxHmeN/7DbIb2ZLaTopepVqG7oiuCnmjNnDjfccAPBwcH1Syoez+FwsHyrMZ96TM/osxztYdKSoSALgiPVASAiIiLNzqRJk3j22Wd57LHH6NevHxs3bmTZsmXVCyzu37+fI0eccNutSD11izYK1Tsz1FFdp5A2ENoBcMCRTeZk2LEUHHaITICw9uZkEJGmp2pMR2ML1cd2QWk++ARCRPdGxxLX8anPwWdaEXz79u1nff+6devYsmULc+bMOeNxJSUllJSUVP9YK4J7hy2HcjmcU0yQn40hXc99YR2PsGm+se19Pdh8zc0iIiIiYoJp06Yxbdq0Wl9buXLlGd/75ptvOj+QCCdHf6Rl5mO3O7B6012b7tS+P+QeNOZUxw5177VL8uDLPxv7WutHRJypuqN6IzgcDR9hUb2QYi+w1asUKm7WoMUUG2rOnDn07t2bCy+88IzHaUVw77R8m9FNPaJ7JAG+XrR4RuExowMAoN+N5mYREREREZFqncKD8LNZKSqr4NCJIrPjeK7qOdUmLKi48q+QdxhaxcLg2r/ZJSLSIG16gcUGBZmQe7jh52muCyl6oXoVquu7IvipCgoKeO+997j99tvPeh2tCO6dPq8a+5F45t8LHmfLh1BRCtG9jVVlRURERETEI/jYrHSJNMZGak71GZi1oGLGVvjuFWN//LPgG+je64tI0+YbCFEJxn5jxn9UdVRrPrXHq1ehur4rgp/q/fffp6SkhJtvvvms19GK4N5nT3YBqRn5+FgtjOweZXac+tn0rrHtp0UURUREREQ8TdX4j1TNqa5bu36ABXIOQF7G2Y52DrsdPpsOjgpIuBy6jXbPdUWkeakqLld1RdeX3X5yfr86qj1evUd/1GdF8FPNmTOHq666itatWzc+tXicLyrHfgyKa01YkBfNeM5KNW6Ps/pA7+vMTiMiIiIiIr8QH1W5oGKmOqrr5B8CkT2MfXeN/9g0Hw58B77BcOlf3XNNEWl+qudUN7Cj+thuKM0Dn4CTf0+Kx6r3BPFJkyaRlZXFY489Rnp6Ov369TttRXCrtWb9e8eOHaxevZrly5c7J7V4nM+3Gt+1H5MYfZYjPUzVIopdR0OLSHOziIiIiIjIaao6qneqo/rM2g+ArBSjUN1jvGuvVXgMlj9q7I94CMI6uPZ6ItJ8tT2lUN2QBRWrOrGjtZCiN2jQr1B9VwTv3r07DoejIZcSL5CZV8yG/ccBGO1N86ntFbBpgbGvRRRFRERERDxSt2ijozotMx+73YHVWs8iRXPRYQBsfMc9HdXJT0LRMYhMgIvudv31RKT5iu5p3AVfeBRyDkLLmPq9v6oTW/OpvUK9R3+I/FJySiYOB/SNaUmbsACz45y73SuN1akDWkL8pWanERERERGRWnQKD8LPZqWorIKDx4vMjvP/7d15fFTl3ffx78wkM1lIJgkhG4SEHdmCBoi4VFujaKvVai0iFkRLnyL0tuaxj9JWqa0ttlVve1ta7mKptKKi3mpb5aZVFFsrm+wqu0ACZCVkJ9vMef6YzEAggSyTnMzM5/16zWtOzpw584uHwYvvXPO7+i7vgorHt3p6svaUgs3SlhWe7RuflmwB1PoRQOAJj5CSxni2u9L+g/7UAYWgGt329089/akDr+1HyyKK478uhTnMrQUAAABAm8JsVg0dEC2JPtXnlTTG04O1vtLTk7UnuJqlt/MkGVLWnVLGZT3zOgBwJu9s6M4G1WcupMiM6oBAUI1uqa5v0kcHTkiSpo0NoKC6vkra/ZZne+Kd5tYCAAAA4LxGtvSp3kef6vbZwqXULM92T7X/+PgPUtFOKcIpXfuTnnkNADibd0FFb7/pjjp5SGqokmwOFlIMEATV6JYP9pWq0eXW0AHRGp4UY3Y5HffZm1LzKSlxlJR2idnVAAAAADiPEUmePtX7i5lRfV7e9h89EVRXF0nvPe7ZvmYRi9ED6D1pZy2o2FHeGdjJY2lTFCAIqtEtf/+0WJJ0XSAtoihJ21vafkyc0fkVYwEAAAD0qhHeGdW0/ji/ngyq//5Dz8zEtEuk7Lv9f34AaE/SGMkaLp06KVUc6fjzvDOwafsRMMLMLgCBq6HZpff3lEiSrvNn24+6cmn9Eqmm2H/nPJPhlvI/kixWacL0nnkNAAAAAH4zMtkzo/pASY3cbkNWK5NN2jSw5duiRTul5gb/rcXz+Trpk9c8/4a68WnJavPPeQGgI8IcnlnRhdul49ul+MyOPY+FFAMOQTW6bMPn5appaFZSjEMTB8X556Rut/TaHM9AqKcN+5IUm9bzrwMAAACgWwYnRMkeZlV9k1tHT57S4P5RZpfUN8UPkSLjPbMOiz85PcO6O5obpLcf9GxP/tbpr+ADQG9Ku7glqN4mjb3lwscbBgspBiCCanTZ3z8tkiRdOybZfzMaPnzKE1KHR0lXPNBzn9Rbw6XxX++ZcwMAAADwqzCbVUMTo7WnqFr7iqsJqttjsXjC6QPvSse2+ieo/uhZ6cR+KTpJ+uIPu38+AOiKtInSFp3uO30hJw9J9ZWSzS4NuKgnK4MfEVSjS9xuQ+981tKfeqyf+lMf+Uh6/+ee7S8/KV080z/nBQAAABDwRibHeILqkmrljvFj68FgM3BSS1C9RdLc7p3r5GHpn7/ybE/7mRQZ183iAKCLvN/mKNzumS19ofXGjm/33CePlcLsPVkZ/IjFFNEl249WqLS6QTGOME0d2r/7J6w9Ib12r6d/9IQ7pIl3dv+cAAAAAIKGr091cY3JlfRx/lpQ0TCk/31Iaq6XMq+Uxt/e/doAoKsGXCTZHJ5Z0icPXfh470KK9KcOKATV6BJv248vjk6SPaybf4zcbunNeVL1can/COkrT134kzEAAAAAIWVEcowkaV9JtcmV9HHeBRXL9nkCna7au1rat8bTNpF/owEwW5jdMzta6lj7D++MavpTBxSCanSaYRj6x6feth9++Mrd+t9I+//u+WTs9uclR7/unxMAAABAUBmR1DKjuqRGbrdhcjV9WHSiFJfh2e5oL9ezNdZ6ZlNL0mXflQaM8k9tANAd3vYf3hC6PWcupMiM6oBCUI1OO1hao0NltbLbrLp6VFL3TlawWVr7mGf7hieklHHdLxAAAABA0MnoHy17mFX1TW4dPXnK7HL6tu62//jnr6TKAsk5WPrC9/1XFwB0hy+ovsCHcCcPS/UVnoUUk8b0dFXwI4JqdEp9k0s/evMTSdLlw/urn6Mb63GeOim9do/kbpbGfk3KnuOnKgEAAAAEG5vVomEDPLOq9xXT/uO8fEH11s4/t2SP9NGznu0bfiHZo/xXFwB0h7eNR+FOTxvZ9nj7UyeNYSHFAENQjQ5rbHbrvpVbteHzcvVzhOnBad34+pdhSH9ZIFXmS/FDpJv+i55nAAAAAM7L2/6DPtUX4A2qj37s+bdXRxmGtPpBz2SikTdIo7/cM/UBQFcMGC2FRUgNF1hQkf7UAYugGh3ichvKe2W73ttToohwq5bfPVlj05xdP+Gm30t73vIszHH7H6WIWP8VCwAAACAojUz2BNX7i2tMrqSPS50gWWxSTZFUdbzjz9v5inT4X1JYpKc1IwD0JbZwKWW8Z/t87T+8M6rpTx1wCKpxQYZh6Idv7NJbOwsVbrNo6V3ZmjIkoesnPL5N+sePPNvXPX66xxAAAAAAnMeI5BhJ0n5mVJ+fPfp0X9aO9qk+VSH944ee7S88KMVn9kRlANA93vC5vaDaME7PqE7N6o2K4EcE1TgvwzD089W79fLmAlkt0q/vuLh7CyjWV0mvzpFcjdLoG6Wc/+O/YgEAAAAEtZEtQfWBkhq53Z1oaRGKBnVyQcX3HpdqS6XEkdJl/9FzdQFAd/gWVNze9uMVRzwLKVrDpeSxvVUV/ISgGuf17HsHtOxfnr4/T9w6QV8en9r1kxmG9Lf7PX2EnIOlm39DX2oAAAAAHTY4IUr2MKvqm9wqOFlndjl928BOBNXHt0mbn/Nsf/lJFh8D0Hd5g+rCHW0vqFi4w3OfdJEU5ui9uuAXBNVo1/IPD+npd/ZJkh65cYy+MTm9eyfc8rz06euSNUz6+nIpMr77RQIAAAAIGTarRcMGtCyoSJ/q8/MG1ce3S25X+8e5XdJbeZIMafzt0tCreqM6AOiaxJGePvqN1VL5wXMfZyHFgEZQjTa98nGBfvLWZ5Kk7+WO0L1XDOneCYs+kdY87Nm+5lEpfXI3KwQAAAAQinwLKtKn+vwGjJbCoz1hTtn+9o/b8rx0fKvkiPWsIQQAfZktzLNgrNR2n2oWUgxoBNU4x+pdhXr4f3ZKku69Yojuv2ZE907YUCO9erfUXC8Nv1aa+t3uFwkAAAAgJHn7VO9nRvX5WW2nZxS21/6jpkRa+5hn+0s/kmJSeqU0AOgWX5/qs4LqMxdSZEZ1QCKoRivr9pbo/pe3yW1I0yel60dfuUiW7vaRXv2gdGK/FJMqfe2/JSt/7AAAAAB0zfAkb+sPZlRf0MBLPPftBdXvPCrVV0opE6RJ9/ZeXQDQHd7Z0mcvqFhZIJ0q97ScTWIhxUBEYgifTYfK9Z0XtqjJZegrE1L181vHdz+k3v6itOMlyWKVbvuDFN3fP8UCAAAACEneGdUHSmrkchsmV9PH+RZU/Pjcxw5/6Pm3mizSjf/p+To9AASCVgsqntGD3xtcJ10khUf0elnoPoJqSJI+OVape5/frPomt64eNUD/+Y2Jslm7GVKX7pXe/r+e7at/IGVe3v1CAQAAAIS0wQlRcoRZ1dDs1tGTdWaX07d5g+riT6WmU6f3u5pO/1st+25p0KReLw0AuixxhKcHf1Nt6x789KcOeATV0IGSas1avknVDc2aMiRBv5uZLXtYN/9oNNZ5+lI31UlDr5auzPNHqQAAAABCnM1q0bAB3vYf9Kk+L2e6FD1AcjdLRbtO79/wW6l0jxTV37PYPQAEEqvt9IKK3nBaoj91ECCoDnEF5XWa+dxGldc2asIgp/4we5Ii7bbun3jNw1LJZ1J0kvS133v+EgEAAAAAPxiRTJ/qDrFYzmj/0dKnuvKotO4Jz/a1P5WiEsypDQC64+wFFQ3jjBnVF5tSErqPoDqEFVfVa+ZzG1Vc1aARSf20Ys4UxUSEd//Eu16Ttq6QZJFu/b0Uk9z9cwIAAABAC2+f6v0E1Rc2sKWthzeo/t+HPN98HTxVypphXl0A0B1nB9WVR6W6E56FFJNZSDFQEVSHqJO1jfrmHzYqv7xOgxOi9MK3chQfbe/+iU8clP52v2f7Cw9Kw77Y/XMCAAAAwBlGJHlmVO8vofXHBQ28xHN/bIu07+/Snrcki036ylOSlUgAQIDy9qEu2iW5mk/Pph7AQoqBjP8rhaDq+ibN/uMm7SuuUXKsQyu/laPkWD+8iZvqpVdnS401Usbl0lUPd/+cAAAAAHCWES0zqg+U1MjlNkyupo/zzjos/1x6q2XtoKn3MeMQQGDrP1yy9/N8Q6Rs3+n+1KlZppaF7iGoDjH1TS7du+Jj7TxaqfiocL1wb47SE6L8c/J3HvF8khWZIN32nGQL8895AQAAAOAMgxOi5AizqqHZrYLyOrPL6duiEqSEYZ7tqqNSTBqTigAEPqv19Kzq49tOz6hmIcWARlAdQhqb3Zr3whZtOlSuGEeY/nRPjm8mQrd99ldp0+8927f+XopN8895AQAAAOAsNqtFwwbQ/qPDvAsqStINT0iOfubVAgD+4g2lj287Y0b1RJOKgT8QVIcIl9vQA69s1/t7SxURbtUf7p6s8YOc/jn5ycPSXxZ4ti+/XxpxrX/OCwAAAADtGJnsCVv3saDihQ29ynM//Frpoq+aWwsA+Iu3tdG+NVJdmaf/fso4c2tCt9CbIQQYhqEfvrFLb+8sVLjNoqV3ZWvKkAT/nLy5UXrtHqmhUho0WfrSI/45LwAAAACch/fbofsJqi8s604pJlXKuEyyWMyuBgD8wxtUVxZ47geMlsIjzasH3caM6iBnGIZ+9vZuvby5QFaL9Os7LtbVo5L89wJrH/OsHh3hlL6+XLKF++/cAAAAANCOEUneGdW0/rggq1Uafg0BDoDgEj9EcsSe/pn+1AGPoDrI/dfaA3ruw0OSpCdum6Avj0/138n3rpHW/8azffNvpbjB/js3AAAAAJzHyJYZ1QdLa+RyGyZXAwDodVarlJp1+mf6Uwc8guogtvzDQ/rPd/dJkh69cYy+MSndfyevPCq9+R3Pds486aIb/XduAAAAALiA9IQoOcKsamh2q6C8zuxyAABm8Lb/kJhRHQQIqoPUK5sL9JO3PpMkPZA7UvdcMcR/J3c1S6/dK5066fm06trH/HduAAAAmGLJkiXKzMxURESEcnJytGnTpnaPff311zVp0iTFxcUpOjpaEydO1J///OderBaQbFaLhg1gQUUACGnecNpilZJZSDHQsZhiLyqpqtfaPSVau7tYGz4vV2Ozu8deq9HlOfe3rhii/7hmuH9PvusVqWCDpw/Q7X+Uwhz+PT8AAAB61apVq5SXl6elS5cqJydHzzzzjKZNm6a9e/cqKenc9U0SEhL0wx/+UKNHj5bdbtdbb72lOXPmKCkpSdOmTTPhN0CoGpncT58VVml/SY2uG2t2NQCAXjfkKikqURp8qWSPMrsadBNBdQ8yDEN7iqr17mfFendPiXYUVPTq68+amqEffuUiWfy9qnPhDs/9JbOkhKH+PTcAAAB63dNPP625c+dqzpw5kqSlS5fq7bff1vLly/Xwww+fc/zVV1/d6uf7779fK1as0IcffkhQjV41oqVP9X5mVANAaIpOlP7vXs+MagQ8gmo/a2x2a+OhE55weneJjlWcavV4Vnqcrr0oSVePSlJCtL3H6nCEWdW/Xw/NdD5xwHOfOLJnzg8AAIBe09jYqC1btmjhwoW+fVarVbm5uVq/fv0Fn28Yht577z3t3btXv/jFL3qyVOAc3gUV9xXXmFwJAMA0NuLNYMGV9IOKuka9v7dE7+4u0Qd7S1XT0Ox7zBFm1ZUjEpV7UbK+NDpJSbERJlbqJ96gur+fW4oAAACg15WVlcnlcik5ObnV/uTkZO3Zs6fd51VWVmrgwIFqaGiQzWbTb3/7W1177bXtHt/Q0KCGhgbfz1VVVd0vHiFvRJKnR/XB0hq53IZsVj9/mxQAAPQaguouOlRW2zJrulgfHzkpl9vwPZbYz6Hci5KUe1GyLh+eqEi7zcRK/ay5QarI92wTVAMAAISsmJgYbd++XTU1NVq7dq3y8vI0dOjQc9qCeC1evFiPPcYi3PCv9IQoOcKsamh2K7+8TkMSo80uCQAAdBFBdQe53Ia25p/0hdMHS2tbPT46JUa5FyUrd0yyJgx0yhqsn+SXH5IMt2SPkfqdu7AOAAAAAktiYqJsNpuKi4tb7S8uLlZKSkq7z7NarRo+3DNxYeLEidq9e7cWL17cblC9cOFC5eXl+X6uqqpSenp6938BhDSb1aLhSf306fEq7S+uJqgGACCAEVSfR01Ds/61r1Tv7i7R+3tLVF7b6HsszGrRpUP7K/eiJF1zUbLSE0JkZVFf249hkr8XaQQAAECvs9vtys7O1tq1a3XLLbdIktxut9auXasFCxZ0+Dxut7tVa4+zORwOORw9tIYKQtrI5BhPUF1So+vGml0NAADoKoLqNvzvrkK9vLlA6w+eUKPL7dvvjAzXF0cNUO6YZH1h5ADFRoSbWKVJ6E8NAAAQdPLy8jR79mxNmjRJU6ZM0TPPPKPa2lrNmTNHkjRr1iwNHDhQixcvluRp4zFp0iQNGzZMDQ0NWr16tf785z/rd7/7nZm/BkLU8JY+1fuKq02uBAAAdAdBdRt2F1Xrg32lkqTM/lG+lh6TMuIVZrOaXJ3JCKoBAACCzvTp01VaWqpHH31URUVFmjhxotasWeNbYDE/P19W6+lxcG1tre677z4dPXpUkZGRGj16tF544QVNnz7drF8BIWxkcowkaV9xjcmVAACA7iCobsNNE1IVZbcp96JkDRsQLQstLk47cdBzT1ANAAAQVBYsWNBuq49169a1+vnxxx/X448/3gtVARc2Mtkzo/pgaY1cbkO2YF0vCACAIEdQ3YYRyTEa0fKpPM5yZo9qAAAAADDZoPgoOcKsamh2K7+8jgUVAQAIUCHexwKdUl8p1ZZ4tgmqAQAAAPQBNquFPtUAAAQBgmp0nLftR3SSFOE0txYAAAAAaOHtU72foBoAgIBFUI2Ooz81AAAAgD5obFqsJOmdz4pNrgQAAHQVQTU6ztufOpGgGgAAAEDfccvFA2W3WbXjaKW25Z80uxwAANAFBNXoON9CigTVAAAAAPqOxH4O3ZSVJkl6/qPD5hYDAAC6hKAaHUdQDQAAAKCPuvuyTEnS2zsLVVJVb24xAACg0wiq0TGGQY9qAAAAAH3W+EFOTcqIV7Pb0MqN+WaXAwAAOomgGh1TUyI1VksWqxSfaXY1AAAAAHCO2S2zqlduzFdDs8vcYgAAQKcQVKNjvG0/4gZLYQ5zawEAAACANlw/LkXJsQ6V1TRo9a5Cs8sBAACdQFCNjjmx33NP2w8AAAAAfVS4zapvXpohSXr+oyMmVwMAADqDoBodw0KKAAAAAALAHVMGy26zakdBhbblnzS7HAAA0EFdCqqXLFmizMxMRUREKCcnR5s2bTrv8RUVFZo/f75SU1PlcDg0cuRIrV69uksFwyQspAgAAAAgACT2c+imrDRJ0vMfHTa3GAAA0GGdDqpXrVqlvLw8LVq0SFu3blVWVpamTZumkpKSNo9vbGzUtddeq8OHD+u1117T3r17tWzZMg0cOLDbxaMX+WZUDzO3DgAAAAC4gLtbFlVcvatQJVX15hYDAAA6pNNB9dNPP625c+dqzpw5GjNmjJYuXaqoqCgtX768zeOXL1+u8vJyvfnmm7r88suVmZmpq666SllZWd0uHr3E1SyVH/JsM6MaAAAAQB83fpBT2RnxanIZWrkx3+xyAABAB3QqqG5sbNSWLVuUm5t7+gRWq3Jzc7V+/fo2n/PXv/5VU6dO1fz585WcnKxx48bp5z//uVwuV/cqR++pzJfcTZLNIcUOMrsaAAAAALgg76zqlRvz1djsNrcYAABwQZ0KqsvKyuRyuZScnNxqf3JysoqKitp8zueff67XXntNLpdLq1ev1iOPPKKnnnpKjz/+eLuv09DQoKqqqlY3mMjXn3qYZGX9TQAAAAB93/XjUpQc61BZTYNW7yo0uxwAAHABPZ46ut1uJSUl6fe//72ys7M1ffp0/fCHP9TSpUvbfc7ixYvldDp9t/T09J4uE+dDf2oAAAAAASbcZtVdORmSpD+yqCIAAH1ep4LqxMRE2Ww2FRcXt9pfXFyslJSUNp+TmpqqkSNHymaz+fZddNFFKioqUmNjY5vPWbhwoSorK323goKCzpQJf/MF1fSnBgAAABA4ZuQMlt1m1Y6CCm3LP2l2OQAA4Dw6FVTb7XZlZ2dr7dq1vn1ut1tr167V1KlT23zO5ZdfrgMHDsjtPt0TbN++fUpNTZXdbm/zOQ6HQ7Gxsa1uMJEvqB5hbh0AAAAA0AmJ/Ry6KStNkvQ8s6oBAOjTOt36Iy8vT8uWLdOKFSu0e/duzZs3T7W1tZozZ44kadasWVq4cKHv+Hnz5qm8vFz333+/9u3bp7fffls///nPNX/+fP/9FuhZvh7VzKgGAAAAEFi8iyqu3lWokqp6c4sBAADtCuvsE6ZPn67S0lI9+uijKioq0sSJE7VmzRrfAov5+fmynrHgXnp6uv7+97/rgQce0IQJEzRw4EDdf//9euihh/z3W6DnNJ2SKltarxBUAwAAAAgw4wc5lZ0Rry1HTmrlxnw9cO1Is0sCAABtsBiGYZhdxIVUVVXJ6XSqsrKSNiC9rfhT6XeXSRFx0kOHJYvF7IoAAEAQYZwXurj26E1/23Fc331pmxL7OfTRw1+SPazTXy4GAAAd1NVxHv93xvmduZAiITUAAACAAHT9uBQlxzpUVtOg1bsKzS4HAAC0gaAa53dmUA0AAAAAASjcZtVdORmSpD+yqCIAAH0SQTXOr4ygGgAAAEDgm5EzWHabVTsKKrQt/6TZ5QAAgLMQVOP8fDOqh5lbBwAAAAB0Q2I/h27KSpMkrWBWNQAAfQ5BNc6P1h8AAAAAgsTdl2VKkt7eVaiSqnpziwEAAK0QVKN9deXSqXLPdsJQc2sBAAAAgG4aP8ip7Ix4NbkMrdyYb3Y5AADgDATVaN+Jg577mDTJ0c/cWgAAAADAD7yzqlduzFdjs9vcYgAAgA9BNdpHf2oAAAAAQeb6cSlKjnWorKZBq3cVml0OAABoQVCN9tGfGgAAAECQCbdZdVdOhiTpjyyqCABAn0FQjfYRVAMAAAAIQjNyBstus2pHQYW25Z80uxwAACCCapyPt0c1QTUAAACAIJLYz6GbstIkSSuYVQ0AQJ9AUI22ud1SOUE1AAAAgODkXVTx7V2FKqmuN7cYAABAUI12VBdKTXWSNUyKzzC7GgAAAADwq/GDnMrOiFeTy9CLG/PNLgcAgJBHUI22eftTx2dKtnBTSwEAAACAnuCdVf3Chnw1NrvNLQYAgBBHUI22sZAiAAAAgCB3/bgUJcc6VFbToNW7Cs0uBwCAkEZQjbaxkCIAAACAIBdus+quHE+rw+dZVBEAAFMRVKNtvhnVw8ytAwAAAAB60IycwbLbrNpeUKFt+SfNLgcAgJBFUI220foDAAAAQAhI7OfQjVmpkqQVzKoGAMA0BNU4V3OjdPKwZ5ugGgAAAECQm3PZEEnS27sKVVJdb3I1AACEJoJqnKviiGS4pPAoKSbV7GoAAAAAoEeNH+RUdka8mlyGXtyYb3Y5AACEJIJqnOvM/tQWi7m1AAAAoFcsWbJEmZmZioiIUE5OjjZt2tTuscuWLdOVV16p+Ph4xcfHKzc397zHA4Hg7ssyJUkvbMhXY7Pb3GIAAAhBBNU4F/2pAQAAQsqqVauUl5enRYsWaevWrcrKytK0adNUUlLS5vHr1q3TjBkz9P7772v9+vVKT0/Xddddp2PHjvVy5YD/XD8uRcmxDpXVNGj1rkKzywEAIOQQVONcBNUAAAAh5emnn9bcuXM1Z84cjRkzRkuXLlVUVJSWL1/e5vErV67Ufffdp4kTJ2r06NF67rnn5Ha7tXbt2l6uHPCfcJtVd+VkSJKeZ1FFAAB6HUE1znXioOeeoBoAACDoNTY2asuWLcrNzfXts1qtys3N1fr16zt0jrq6OjU1NSkhIaGnygR6xYycwbLbrNpeUKFt+SfNLgcAgJBCUI1zMaMaAAAgZJSVlcnlcik5ObnV/uTkZBUVFXXoHA899JDS0tJahd1na2hoUFVVVasb0Nck9nPoxizPgvIrmFUNAECvIqhGaw01UnVLP7aEoebWAgAAgD7viSee0Msvv6w33nhDERER7R63ePFiOZ1O3y09Pb0XqwQ6bs5lQyRJb+8qVEl1vcnVAAAQOgiq0Vp5S9uPqP5SFF/dBAAACHaJiYmy2WwqLi5utb+4uFgpKSnnfe6TTz6pJ554Qv/4xz80YcKE8x67cOFCVVZW+m4FBQXdrh3oCeMHOZWdEa8ml6EXN+abXQ4AACGDoBqt+dp+jDC3DgAAAPQKu92u7OzsVgshehdGnDp1arvP++Uvf6mf/vSnWrNmjSZNmnTB13E4HIqNjW11A/qq2ZdlSpJWbsxXY7Pb3GIAAAgRBNVojYUUAQAAQk5eXp6WLVumFStWaPfu3Zo3b55qa2s1Z84cSdKsWbO0cOFC3/G/+MUv9Mgjj2j58uXKzMxUUVGRioqKVFNTY9avAPjVDeNSlBzrUGl1g/73k0KzywEAICQQVKM134zqYebWAQAAgF4zffp0Pfnkk3r00Uc1ceJEbd++XWvWrPEtsJifn6/CwtNh3e9+9zs1Njbq61//ulJTU323J5980qxfAfCrcJtVd+VkSJL++O/D5hYDAECICDO7APQxvqCaGdUAAAChZMGCBVqwYEGbj61bt67Vz4cPH+75ggCTzcgZrGffO6DtBRXaXlChielxZpcEAEBQY0Y1TjMMgmoAAAAAkJTYz6Ebs1IlSSs+OmxuMQAAhACCapxWd0Kqr5RkkRKGmF0NAAAAAJhqzmWefxe9tfO4SqrrTa4GAIDgRlCN08r2e+6d6VJ4pLm1AAAAAIDJxg9yKjsjXk0uQy9uzDe7HAAAghpBNU5jIUUAAAAAaGX2ZZmSpJUb89XY7Da3GAAAghhBNU6jPzUAAAAAtHLDuBQlxzpUWt2g1bsKzS4HAICgRVCN0wiqAQAAAKCVcJtVM3MyJEkvbDhicjUAAAQvgmqcduKg556gGgAAAAB87picrjCrRR8fOak9RVVmlwMAQFAiqIaH2yWVf+7Zpkc1AAAAAPgkxUbourHJksSiigAA9BCCanhUHpVcDZI1XIobbHY1AAAAANCneNt/vL71mGobmk2uBgCA4ENQDQ9vf+qEoZLVZm4tAAAAANDHTB3aX0MSo1XT0Ky/7ThudjkAAAQdgmp40J8aAAAAANpltVp05xTPt09X0v4DAAC/I6iGh3dGdSJBNQAAAAC05bbsQbKHWbXrWKV2Hq0wuxwAAIIKQTU8vEE1M6oBAAAAoE0J0XZ9ZXyqJGnlBmZVAwDgTwTV8CCoBgAAAIALmpnjaf/x1x3HVXmqyeRqAAAIHgTVkJobpIqW2QAE1QAAAADQruyMeI1KjtGpJpfe3HbM7HIAAAgaBNWQyg9JMiRHrBQ9wOxqAAAAAKDPslgsmnmpd1HFIzIMw+SKAAAIDgTVOKPtxzDJYjG3FgAAAADo4265eKAiw23aV1yjj4+cNLscAACCAkE16E8NAAAAAJ0QGxGumyemSZJWbjhicjUAAAQHgmpIJ/Z77gmqAQAAAKBDZuZkSJJW7ypSeW2jydUAABD4CKohnTjouSeoBgAAAIAOGT/IqQmDnGp0ufXalgKzywEAIOARVKN1j2oAAAAAQIfMzPEsqvjixny53SyqCABAdxBUh7pTFVJtqWc7gaAaAAAAADrqpqw0xTjCdPhEnT46eMLscgAACGgE1aGuvKXtR79kKSLW3FoAAAAAIIBE2cN06yUDJUkrN7KoIgAA3UFQHeroTw0AAAAAXXZny6KK//isWMVV9SZXAwBA4CKoDnX0pwYAAACALhuVEqPJmfFyuQ29splFFQEA6CqC6lDnC6qZUQ0AAAAAXTGzZVb1S5vy5WJRRQAAuoSgOtQRVAMAAABAt1w/LkXxUeE6Xlmv9/eUmF0OAAABiaA6lBnGGT2qR5hbCwAAAAAEqIhwm26flC6JRRUBAOgqgupQVlMsNdZIFqsUn2l2NQAAAAAQsGZMGSxJWrevVAXldSZXAwBA4OlSUL1kyRJlZmYqIiJCOTk52rRpU7vHPv/887JYLK1uERERXS4YfuRt+xGXIYXZza0FAAAAAALYkMRoXTE8UYYhvbw53+xyAAAIOJ0OqletWqW8vDwtWrRIW7duVVZWlqZNm6aSkvb7cMXGxqqwsNB3O3KEr0L1CfSnBgAAAAC/mZnjmVW9avNRNTa7Ta4GAIDA0umg+umnn9bcuXM1Z84cjRkzRkuXLlVUVJSWL1/e7nMsFotSUlJ8t+Tk5G4VDT8hqAYAAAAAv8kdk6wBMQ6V1TTonc+KzS4HAICA0qmgurGxUVu2bFFubu7pE1itys3N1fr169t9Xk1NjTIyMpSenq6bb75Zn376adcrhv/4FlIcZm4dAAAAABAEwm1W3TGZRRUBAOiKTgXVZWVlcrlc58yITk5OVlFRUZvPGTVqlJYvX66//OUveuGFF+R2u3XZZZfp6NGj7b5OQ0ODqqqqWt3QA8r2e+6ZUQ0AAAAAfnHHlMGyWqSPDp7QwdIas8sBACBgdGkxxc6YOnWqZs2apYkTJ+qqq67S66+/rgEDBui///u/233O4sWL5XQ6fbf09PSeLjP0uJqlk4c82wTVAAAAAOAXA+Mi9cVRSZKklzayqCIAAB3VqaA6MTFRNptNxcWte20VFxcrJSWlQ+cIDw/XxRdfrAMHDrR7zMKFC1VZWem7FRQUdKZMdETFEcndLIVFSLEDza4GAAAAAILGzEs9iyq+tvWo6ptcJlcDAEBg6FRQbbfblZ2drbVr1/r2ud1urV27VlOnTu3QOVwul3bt2qXU1NR2j3E4HIqNjW11g595+1MnDJOsPT6xHgAAAABCxlUjkzQwLlIVdU1avavQ7HIAAAgInU4o8/LytGzZMq1YsUK7d+/WvHnzVFtbqzlz5kiSZs2apYULF/qO/8lPfqJ//OMf+vzzz7V161bdddddOnLkiL71rW/577dA551omdHOQooAAAAA4Fc2q0UzpngXVaT9BwAAHRHW2SdMnz5dpaWlevTRR1VUVKSJEydqzZo1vgUW8/PzZT1jhu7Jkyc1d+5cFRUVKT4+XtnZ2froo480ZswY//0W6DxfUE1/agAAAADwt29MStcz7+7XliMntbuwShel8k1hAADOx2IYhmF2ERdSVVUlp9OpyspK2oD4y4qvSoc+kG7+rXTxTLOrAQAAIYpxXuji2iMU3Ldyi1bvKtI3L83QT28ZZ3Y5AAD0iq6O82hOHKq8PaqZUQ0AAAAAPWJmToYk6Y1tx1Tb0GxyNQAA9G0E1aGosU6qOurZJqgGAAAAgB4xdWh/DUmMVk1Ds/6647jZ5QAA0KcRVIei8s8995HxUnR/c2sBAAAAgCBltVp055TBkqQXNhxRAHTeBADANATVoYiFFAEAAHCWJUuWKDMzUxEREcrJydGmTZvaPfbTTz/VbbfdpszMTFksFj3zzDO9VygQYG7LHiR7mFWfHq/SzqOVZpcDAECfRVAdigiqAQAAcIZVq1YpLy9PixYt0tatW5WVlaVp06appKSkzePr6uo0dOhQPfHEE0pJSenlaoHAkhBt11fGp0qSVm48YnI1AAD0XQTVoci3kOIwc+sAAABAn/D0009r7ty5mjNnjsaMGaOlS5cqKipKy5cvb/P4yZMn61e/+pXuuOMOORyOXq4WCDwzczztP/6647gqTzWZXA0AAH0TQXUoYkY1AAAAWjQ2NmrLli3Kzc317bNarcrNzdX69etNrAwIHtkZ8RqVHKP6Jrfe2HrU7HIAAOiTCKpDEUE1AAAAWpSVlcnlcik5ObnV/uTkZBUVFfntdRoaGlRVVdXqBoQKi8WimZd6ZlWv3JjPoooAALSBoDrU1JVLp8o92wlDza0FAAAAIWPx4sVyOp2+W3p6utklAb3qlosHKjLcpv0lNdp8+KTZ5QAA0OcQVIca72zq2IGSPdrcWgAAAGC6xMRE2Ww2FRcXt9pfXFzs14USFy5cqMrKSt+toKDAb+cGAkFsRLhunpgmiUUVAQBoC0F1qPG1/WAhRQAAAEh2u13Z2dlau3atb5/b7dbatWs1depUv72Ow+FQbGxsqxsQambmZEiS/ndXkU7UNJhcDQAAfQtBdaihPzUAAADOkpeXp2XLlmnFihXavXu35s2bp9raWs2ZM0eSNGvWLC1cuNB3fGNjo7Zv367t27ersbFRx44d0/bt23XgwAGzfgUgIIwf5NSEQU41utx6bQuLKgIAcKYwswtALyOoBgAAwFmmT5+u0tJSPfrooyoqKtLEiRO1Zs0a3wKL+fn5slpPz3E5fvy4Lr74Yt/PTz75pJ588kldddVVWrduXW+XDwSUmTmDtfPoLr24KV9zrxwqq9VidkkAAPQJBNWh5sRBzz1BNQAAAM6wYMECLViwoM3Hzg6fMzMzZRhGL1QFBJ+bstL0+Fu7deREnf59sExXjhhgdkkAAPQJtP4IJW43QTUAAAAAmCjKHqZbLxkoSVq5Ib/HX6+gvE5P/2OvvvqbD/Xn9Yf5kAkA0GcxozqUVB+Xmk9J1jApbrDZ1QAAAABASLozJ0Mr1h/RO7uLVVxVr+TYCL+ev77JpTWfFOmVjwv00cETvv07j1Zq59FK/fSWcYoIt/n1NQEA6C6C6lDi7U8dnynZwk0tBQAAAABC1aiUGE3OjNfmwye1anOB/uOaEd0+p2EY+uRYlVZ9nK+/bD+u6vpmSZLFIl0xPFGjU2L0hw8P6dUtR7W/pEZL78pWitO/ATkAAN1BUB1KWEgRAAAAAPqEmTkZ2nz4pF7alK/7rh6mMFvXOnOerG3UG9uO6ZWPC7SnqNq3f2BcpL4xKV23ZQ/UoPgoSdJVI5M0/8Wt2l5QoZt+86GW3nWJsjMS/PL7AADQXQTVoYT+1AAAAADQJ1w/LkXxfwtXYWW91u0tVe6Y5A4/1+U29OGBMr2yuUDvfFasRpdbkmQPs+r6sSmaPjldU4f2l9VqafW8K0Yk6m8LrtDcP32svcXVuuP3G/TTm8fpjim0hgQAmI+gOpQwoxoAAAAA+oSIcJtun5Su3//zc63ceKRDQXX+iTq9uqVAr205qsLKet/+cQNj9Y1J6bo5a6CcUedv8zi4f5Rev+8yPfjqDv3vJ0V6+PVd+vR4lR65cYzsYV2b1Q0AgD8QVIcSgmoAAAAA6DNmTBms3//zc63bV6qC8jqlJ0Sdc4x3YcRVmwu0/vPTCyM6I8P1tYsH6vZJgzQ2zdmp1412hOm3My/RkvcP6Kl39unPG45ob1G1fnvXJUrs5+j27wUAQFcQVIeK5kbp5BHPNkE1AAAAAJhuSGK0rhieqA8PlOnlzfn6/rTRkjwLI+46VqlVmwv01x3nLoz4jUnpunZMsiLCbV1+bYvFogVfGqHRKbH63qrt2nS4XF999kP99zcnafygzgXfAAD4A0F1qKg4IhkuKTxaikkxuxoAAAAAgKSZOYP14YEyrdp8VLOnZuqtnYXnLIw4KD5St2e3XhjRX3LHJOvN+Zfr23/6WJ+X1errSz/SL26boFsuHujX1wEA4EIIqkOFr+3HMM/H8AAAAAAA0+WOSdaAGIdKqxuUs3itDMOz3x5m1Q3jUvSNSW0vjOhPw5P66Y35l+t7L2/T+3tL9b1V2/Xp8Uo9dP1ohdnoWw0A6B38HydUlO333NP2AwAAAAD6jHCbVTOmDJYkGYZnYcSf3jxWm3+Qq1/fcbEuH57YoyG1lzMyXM/Nnqz5XxwmSVr2r0Oa8/xmVdQ19vhrAwAgMaM6dLCQIgAAAAD0SQu+OFyDE6J0UWpMpxdG9Ceb1aLvTxutMalOPfjqDv1rf5m++pt/a9msSRqVEmNaXQCA0MCM6lBx4qDnnqAaAAAAAPoUe5hVX88eZGpIfaavTEjV/8y7TIPiI5VfXqev/fbfWvNJodllAQCCHEF1qGBGNQAAAACgg8akxepvC67QZcP6q67Rpe+8sFVP/2Ov3G7D7NIAAEGKoDoUNFRLNUWe7f5Dza0FAAAAABAQ4qPt+tM9U3TP5UMkSf/13gF9+88fq7q+yeTKAADBiKA6FHjbfkQlSpHx5tYCAAAAAAgYYTarHr1pjJ66PUv2MKve3V2iW5b8W5+X1phdGgAgyBBUhwLafgAAAAAAuuG27EF69f9MVUpshA6W1urmJf/W+3tKzC4LABBECKpDAQspAgAAAAC6KSs9Tn/97uWalBGv6vpm3bNis3677oAMg77VAIDuI6gOBb4Z1cPMrQMAAAAAENCSYiL04txLdWfOYBmG9Ms1e7XgpW2qa2w2uzQAQIAjqA4F3qA6cYS5dQAAAAAAAp49zKqff228fva1cQq3WfT2zkLd+tuPtG5viWoaCKwBAF0TZnYB6GGGQesPAAAAAIDfzczJ0MjkGM17Yav2FFXr7j9ultUijU1zasqQBE0ZkqDJmQlKiLabXSoAIAAQVAe72jKpoVKSRYofYnY1AAAAAIAgMjkzQX/77uX69bv79dHBE8ovr9OuY5XadaxSf/jwkCRpRFI/X3A9ZUiCUp2RJlcNIFg0u9x6aVO+MhOjdeWIAWaXg24iqA523rYfcelSeIS5tQAAAAAAgk6qM1JP3DZBklRYeUqbDpVr8+FybTpUrn3FNdpf4rmt3JgvSUpPiNSUzP7KGZKgyUMSlNk/ShaLxcxfAUAAqm9yacGL2/Tu7mJJ0vdyR+j+a0bw90kAI6gOdr6FFGn7AQAAAADoWanOSN08caBunjhQklRe26jNh8u1+VC5Nh0u1yfHKlVQfkoF5Uf1P1uPSpIGxDg0ZUiCJ7jOTNCo5BhZrQRNANpXWdekb/1pszYfPqkwq0XNbkPPvLtfB0pq9OTtWYoIt5ldIrqAoDrYEVQDAAAAAEySEG3XtLEpmjY2RZJU09CsLUdOeoLrQ+XaXlCh0uoGvb2zUG/vLJQkOSPDNTkz3tfjetxAp8JtVjN/DQB9SFFlvWYv36S9xdWKjQjTc7Mn6/PSGv3ozU/01s5C5ZfXadmsSUqOpbNAoCGoDnYE1QAAAACAPqKfI0xXjRygq0Z6esnWN7m082ilNh06oY2HyrXlyElVnmrSu7tL9O7uEklSZLhN2RnxumF8im6ZOFDRDqIMIFQdKKnR7OWbdKzilJJjHVpxzxSNTonVlCEJyugfrXkrt2jn0Up99Tcf6rlZkzV+kNPsktEJFsMwDLOLuJCqqio5nU5VVlYqNjbW7HICy5IcqXSPdNf/SMNzza4GAACgFcZ5oYtrD6AtzS63Pius0qZD5drY0uu6oq7J93g/R5huu2Sg7ro0QyOSY0ysFEBv25Z/Uvc8v1kn65o0dEC0/nTPFA2Kj2p1zJETtbp3xcc6UFKjiHCrnrp9or4yIdWkikNXV8d5BNXBzO2SfpYiuRql+3dI8ZlmVwQAANAK47zQxbUH0BFut6EDpTVat7dEL20q0KGyWt9jOUMS9M2pGbpuTIrsYbQGAYLZur0lmvfCVp1qcikrPU5/vHuyEqLtbR5bVd+k7764TR/sK5UkPZA7Uv9xzXAWWexFXR3n8X2ZYFZZ4AmpbXbJmW52NQAAAAAAdIrVatHI5BiNTI7Rt64Yqn8fLNMLG47onc+KtbFl1nViP4dmTEnXjCmDlRYXaXbJAPzsjW1H9f1Xd6rZbegLIwfodzMvOW8LoNiIcP1h9iT9fPUeLf/3If3nu/t0oLRGv/r6BBZZ7OMIqoOZtz91wlDJyhsRAAAAABC4rFaLrhwxQFeOGKDCylN6aVOBXtqUr9LqBj373gEtef+ArrkoWd+8NENXDE+U1crsSSDQPfevz/X427slSbdMTNMvv57VoW9QhNmsevSmMRqR3E+PvPmJ/rbjuPJP1Or3LLLYp/HdmGB24qDnnoUUAQAAAABBJNUZqbxrR+qjh7+kJXdeoqlD+8ttSO98VqxZyzfpi0+t07J/fq6TtY1mlwqgC9xuQ4tX7/aF1PdeMURPf2Nip9v8zJgyWH++N0dxUeHacbRSN//m3/rkWGVPlAw/IKgOZt4Z1f2HmVsHAAAAAAA9INxm1VcmpOqlb1+qd/O+oLsvy1SMI0xHTtTpZ6t369LFa/V/X9mh7QUVCoAlugBIanK59eBrO/Tf//xckvTwDaP1o69c1OVvSUwd1l9/mX+5hif1U1FVvb6+9COt3lXoz5LhJwTVwcwXVDOjGgAAAAAQ3IYnxejHXx2rjT+8RotvHa8xqbFqaHbrf7Ye1S1L/q2bfvOhVm3O16lGl9mlAmhHXWOzvv2nj/X61mOyWS168vYsfeeqYd1eCDGjf7Rev+8yXTVygOqb3Lpv5VY9u3Y/H2D1MQTVwYygGgAAAAAQYqLsYZoxZbDe/o8r9Pp9l+nWiwfKHmbVJ8eq9ND/7FLOz9/VY3/7VAdLa8wuFcAZTtY2auZzG/X+3lJFhFu1bFa2vp49yG/n9y6yeM/lQyRJT72zT/e/vF31TXx41VdYjAD46KCqqkpOp1OVlZWKjY01u5zA0FQv/SxFkiE9uF/ql2R2RQAAAOdgnBe6uPYAelN5baNe/bhAKzfmK7+8zrf/smH99c1LM5Q7JlnhNubyAWY5VnFKs/6wUQdLa+WMDNfyuycrOyO+x17vpU35euTNT9TsNpSVHqdl38xWEoss+k1Xx3kE1cGqZLf020slh1N6+IjUza9IAAAA9ATGeaGLaw/ADG63oX/uL9ULG47ovT0lcrckIkkxDqUnRMnlNmQYhtyG5HIbchuGDENyGWdsu8/ddhtquTdazqFW24YMxUfZlRoXqTRnhFKdkUqLi1BaXKRSnZ77Af0cXe7BCwSyfcXVmr18kwor65XqjNCf7pmiEckxPf666w+e0LyVW1RR16RUZ4SWzZqkcQOdPf66XoZhqKD8lDYfLldtY7MiwmxyhFsVEW7z3MJObzt821bfz91th9KTujrOC+vBmmCmMxdS7MN/cAEAAAAA6C1Wq0VXj0rS1aOSdPRknV7alK9VmwtUUt2gkuqGHn1t72vsKGj78TCrRcmxERoYF6nUuNNhdqrTE2YPjItUXFR4nw6ngM7acqRc9zz/sSpPNWl4Uj/96Z4pSouL7JXXnjqsv96873Ldu2KzDpbW6val6/Wf07N0/bjUHnk9wzB0qKxWGw+Va+PnJ7TxULkKK+u7fL6zw2tf0N1G4N0vIkyLbhrrx9+mZxBUByv6UwMAAAAA0K5B8VH6/rTRuv+akdrw+QnVNbpks1pktUhWi0XWlm2bxSKLpWXb2nrbamm5WXV6+4zHLC3bhiGV1TToeEW9CitPqbCyXscrPPeFFadUVFWvZrehYxWndKziVLs1R4RbleY8I8humY2d4oxQRLhNkuSNsb2BtjfXPr3fe7b2Hrecc7xFFqU4I5TYz05QDr9597NizX9xqxqa3bpkcJyW3z1ZcVH2Xq0hMzFab8y/XAte3KZ/7ivVd17YqgevG6n5Xxze7T/rhmHoQEmNNrQE05sOlZ/zgViY1aIJg5xKjo1QQ7Nb9U2ulptb9c0uNTSdsa/ZLZf7dGOMhma3Gprdqmz/rwyfGAdBNcxEUA0AAAAAwAXZw6z6wsgBPf46aXGRmtDOunDNLrdKqhtUWHnKF2afHWqX1TSqvsmtz8tq9XlZbY/X25bYiDANS+qnYQO8t2gNS+qnwQlR9PgOIM0utw6W1urT45X69HiV9hRVKS7SrgmDnMpKj9P4gU5FO3o2Mnzl4wItfH2XXG5DXxqdpCV3XqJIu61HX7M9sRHhWj57kn62erf++O/DevIf+7S/pEa/uG2C7wOgjnC7De0trvbNlt50qFwnahtbHWO3WTUxPU45QxOUM6S/LsmIU5S94/+tm1ye4Pp0qO39+fS2775lX0OzS9YA+YCJoDpYnTjoue8/zNw6AAAAAADAeYXZrEqLi1RaXKSyM9o+pqHZpaLK+nMC7OMVp1RU1aAml1veZch8cy6NVnfnPG74Hjda/3zWambNbrdKqxtUVd+sbfkV2pZf0erxcJtFGf2jPcG1N8RO6qehA6IVGxHe6f8e8J/6Jpd2F1bp0+Oe22fHK7WnqFoNze5zjn17V6Ekzyz6EUn9NGFQnLLS45Q1yKnRKbGyh3X/wwjDMPS7Dw7ql2v2SpJuu2SQnrhtvOkfdITZrFp001iNSIrRo3/5RH/ZflxHTtTp97OylRTT9iKLLreh3YVV2tASTG8+XK6KuqZWx0SEW3XJ4HjlDOmvnKEJmpge16nw+2zhNqvCbVb1fAdvcxBUBytmVAMAAAAAEDQcYTZl9I9WRv9oU16/vsmlwydqdbCkVgdLa07fSmp1qsmlAyU1OlBSI6m41fOSYx3nzMAeNqCfUp0R3WqtYBiGGprdqmt0qa6xueXes32qZfuU9+cmTygbbrPIZrUozGZVuPfeZlGY1aowm0VhZz0WZrMovOUxz3OtCrNaFH7WY2E2i+w28xe3q6xr0qeFlfrsuDeYrtSBkhq5jXOPjbbbNCYtVmPTnLooNUbltU3aUVChnUcrdLyyXvuKa7SvuEavbTkqyTMT+KK0WE0c5PQF2EMTozu1AKjbbejxt3dr+b8PSZL+z1VD9fD1o03/73amO3MGKzMxSvet3KrtBRW6+Tf/9i2y2ORy65Njlb7Z0psPl6u6vrnV86PsNmVnxOvSof2VMyRBEwbF+SXgDxUWwzj7c7K+hxXBO+lUhfSLlo9gFx6VHMH6OQsAAAh0jPNCF9ceAIKD222osKpeB0tah9cHS2vOu0BllN2moQOiNXxAPw0d0E82q+V0wNx0Ong+1ehS7Rnhs2dfs041udoMYM1iD7MqPipc8VF2JUTbFR9lV3x0uBKi7Irz7ou2tzomym7rUkhrGIZKqhv06fFKfXKsytfC4+jJtpsVJ/aza0yaU2PTYltuTmUkRLUbMpdU12tnQaV2HK3QjqOV2lFQocpTTeccF+MI0/iW4Hpiuue+vQ8gGpvd+v5rO/SX7cclST/6ykX61pVDO/2795bDZbW+RRYjwz3h89b8k6prdLU6LsYRpkmZ8cppCabHDXSaPju8L+jqOI+gOhgd3SI99yWpX4r04F6zqwEAAGgX47zQxbUHgOBXVd+kz0trdcAbYrfcHzlRp2Y/psyOMKui7DZF2cMUabcp2m5T5Bk/R7a0WnC5DTW53Gp2GWp2u9V05r3L3fK4Z1+zy1CT9/6Mfafvu1+/3WZVfLQnuPYF3Gf87N12RobrWMWpVu07ymoa2zznoPhIjfOG0gM9oXRSjKPbs9fzy+u0vaBCO1uC60+OV6q+6dz2IQNiHMoa5FTWoDhNaGkbEmazat4LW/Sv/WUKs1r0q9sn6GsXt9OwvQ+pPNWk777kWWTRyxkZrsmZCbq0pcf0mLRY2ToxqzxUEFT709Y/S9te6PnX6SmnyqWyfVLGFdKct82uBgAAoF2ElX3HkiVL9Ktf/UpFRUXKysrSs88+qylTprR7/KuvvqpHHnlEhw8f1ogRI/SLX/xCX/7ylzv8elx7AAhdTS638svrdLCkRgdKa3So1LM4ZJTdpkh7WEvo7Amao3yhs+cWGR6maMcZQXS4zZSg0DA8YXWzy1Cjy63q+iadrG3SybpGnaxrVHlto07WNelkbeMZ+5pUUdeoE7WNamyjR3RnWC3S8KR+GtsSSo9Ji9XYVKecUb3TE7zZ5da+4hrtPFrhmXldUKm9xdVytRHgxzjCVN3QrMhwm3531yW6elRSr9ToD80ut17YcESGpJwh/TU6JaZT7U5CVVfHefSobkvVMalgg9lVdN/AS8yuAAAAAAFg1apVysvL09KlS5WTk6NnnnlG06ZN0969e5WUdO4/Jj/66CPNmDFDixcv1o033qgXX3xRt9xyi7Zu3apx48aZ8BsAAAJJuM3q61t9ndnFdJHF4ulbHW6TImWTMzJcg+I79lzDMHSqyeULssu9YbY33G4JuivqmlruGzUgxqGxA52+1h2jU2K6tShfd4XZrBrTEpDfMWWwJOlUo0ufFVZqe0GlJ8AuqNDhE3WqbmhWfFS4lt89WRcP7uB/pD4izGbV3ZcPMbuMkMGM6raU7vXcAllYhDTkSik80uxKAAAA2sWs2r4hJydHkydP1m9+8xtJktvtVnp6ur773e/q4YcfPuf46dOnq7a2Vm+99ZZv36WXXqqJEydq6dKlHXpNrj0AAMGvoq5Rnx2v0rCkfkqOjTC7HPSSXp1R3dmvBXq9/PLLmjFjhm6++Wa9+eabXXnp3jFglOcGAAAABLnGxkZt2bJFCxcu9O2zWq3Kzc3V+vXr23zO+vXrlZeX12rftGnT+vYYHwAA9Lq4KLsuG55odhkIEJ1ehtL7tcBFixZp69atysrK0rRp01RSUnLe5x0+fFgPPvigrrzyyi4XCwAAAMC/ysrK5HK5lJyc3Gp/cnKyioqK2nxOUVFRp46XpIaGBlVVVbW6AQAAAF6dDqqffvppzZ07V3PmzNGYMWO0dOlSRUVFafny5e0+x+VyaebMmXrsscc0dOjQbhUMAAAAIPAsXrxYTqfTd0tPTze7JAAAAPQhnQqqvV8LzM3NPX2CC3wtUJJ+8pOfKCkpSffee2/XKwUAAADgd4mJibLZbCouLm61v7i4WCkpKW0+JyUlpVPHS9LChQtVWVnpuxUUFHS/eAAAAASNTgXVXfla4Icffqg//OEPWrZsWYdfh68FAgAAAL3DbrcrOztba9eu9e1zu91au3atpk6d2uZzpk6d2up4SXrnnXfaPV6SHA6HYmNjW90AAAAAr063/uiM6upqffOb39SyZcuUmNjxxul8LRAAAADoPXl5eVq2bJlWrFih3bt3a968eaqtrdWcOXMkSbNmzWq12OL999+vNWvW6KmnntKePXv04x//WB9//LEWLFhg1q8AAACAABfWmYM7+7XAgwcP6vDhw7rpppt8+9xut+eFw8K0d+9eDRs27JznLVy4sNUq4lVVVYTVAAAAQA+ZPn26SktL9eijj6qoqEgTJ07UmjVrfN+kzM/Pl9V6eo7LZZddphdffFE/+tGP9IMf/EAjRozQm2++qXHjxpn1KwAAACDAWQzDMDrzhJycHE2ZMkXPPvusJE/wPHjwYC1YsEAPP/xwq2Pr6+t14MCBVvt+9KMfqbq6Wr/+9a81cuRI2e32C75mVVWVnE6nKisr+YogAABAEGGcF7q49gAAAMGpq+O8Ts2oljxfC5w9e7YmTZqkKVOm6Jlnnjnna4EDBw7U4sWLFRERcc6siri4OElitgUAAAAAAAAAQFIXgurOfi0QAAAAAAAAAIDz6XTrDzPwtUAAAIDgxDgvdHHtAQAAglNXx3lMfQYAAAAAAAAAmIqgGgAAAAAAAABgKoJqAAAAAAAAAICpCKoBAAAAAAAAAKYiqAYAAAAAAAAAmIqgGgAAAAAAAABgKoJqAAAAAAAAAICpwswuoCMMw5AkVVVVmVwJAAAA/Mk7vvOO9xA6GOMDAAAEp66O8QMiqK6urpYkpaenm1wJAAAAekJ1dbWcTqfZZaAXMcYHAAAIbp0d41uMAJi+4na7dfz4ccXExMhisfTKa1ZVVSk9PV0FBQWKjY3tlddE7+H6Bjeub3Dj+gY3rm9wa+v6Goah6upqpaWlyWqlK10o6e0xPn+/BD+ucXDj+gY3rm9w4/oGN3+O8QNiRrXVatWgQYNMee3Y2FjeREGM6xvcuL7Bjesb3Li+we3s68tM6tBk1hifv1+CH9c4uHF9gxvXN7hxfYObP8b4TFsBAAAAAAAAAJiKoBoAAAAAAAAAYCqC6nY4HA4tWrRIDofD7FLQA7i+wY3rG9y4vsGN6xvcuL4wE3/+gh/XOLhxfYMb1ze4cX2Dmz+vb0AspggAAAAAAAAACF7MqAYAAAAAAAAAmIqgGgAAAAAAAABgKoJqAAAAAAAAAICpCKoBAAAAAAAAAKYiqG7DkiVLlJmZqYiICOXk5GjTpk1mlwQ/+PGPfyyLxdLqNnr0aLPLQhf985//1E033aS0tDRZLBa9+eabrR43DEOPPvqoUlNTFRkZqdzcXO3fv9+cYtElF7rGd9999znv6euvv96cYtEpixcv1uTJkxUTE6OkpCTdcsst2rt3b6tj6uvrNX/+fPXv31/9+vXTbbfdpuLiYpMqRmd05PpeffXV57x/v/Od75hUMUIFY/zgxBg/uDDGD26M74MbY/zg1ltjfILqs6xatUp5eXlatGiRtm7dqqysLE2bNk0lJSVmlwY/GDt2rAoLC323Dz/80OyS0EW1tbXKysrSkiVL2nz8l7/8pf7rv/5LS5cu1caNGxUdHa1p06apvr6+lytFV13oGkvS9ddf3+o9/dJLL/ViheiqDz74QPPnz9eGDRv0zjvvqKmpSdddd51qa2t9xzzwwAP629/+pldffVUffPCBjh8/rltvvdXEqtFRHbm+kjR37txW799f/vKXJlWMUMAYP7gxxg8ejPGDG+P74MYYP7j12hjfQCtTpkwx5s+f7/vZ5XIZaWlpxuLFi02sCv6waNEiIysry+wy0AMkGW+88YbvZ7fbbaSkpBi/+tWvfPsqKioMh8NhvPTSSyZUiO46+xobhmHMnj3buPnmm02pB/5VUlJiSDI++OADwzA879fw8HDj1Vdf9R2ze/duQ5Kxfv16s8pEF519fQ3DMK666irj/vvvN68ohBzG+MGLMX7wYowf3BjfBz/G+MGtp8b4zKg+Q2Njo7Zs2aLc3FzfPqvVqtzcXK1fv97EyuAv+/fvV1pamoYOHaqZM2cqPz/f7JLQAw4dOqSioqJW72Wn06mcnBzey0Fm3bp1SkpK0qhRozRv3jydOHHC7JLQBZWVlZKkhIQESdKWLVvU1NTU6j08evRoDR48mPdwADr7+nqtXLlSiYmJGjdunBYuXKi6ujozykMIYIwf/BjjhwbG+KGB8X3wYIwf3HpqjB/mtwqDQFlZmVwul5KTk1vtT05O1p49e0yqCv6Sk5Oj559/XqNGjVJhYaEee+wxXXnllfrkk08UExNjdnnwo6KiIklq873sfQyB7/rrr9ett96qIUOG6ODBg/rBD36gG264QevXr5fNZjO7PHSQ2+3W9773PV1++eUaN26cJM972G63Ky4urtWxvIcDT1vXV5LuvPNOZWRkKC0tTTt37tRDDz2kvXv36vXXXzexWgQrxvjBjTF+6GCMH/wY3wcPxvjBrSfH+ATVCBk33HCDb3vChAnKyclRRkaGXnnlFd17770mVgagK+644w7f9vjx4zVhwgQNGzZM69at0zXXXGNiZeiM+fPn65NPPqGfaJBq7/p++9vf9m2PHz9eqampuuaaa3Tw4EENGzast8sEEMAY4wPBg/F98GCMH9x6coxP648zJCYmymaznbPiaHFxsVJSUkyqCj0lLi5OI0eO1IEDB8wuBX7mfb/yXg4tQ4cOVWJiIu/pALJgwQK99dZbev/99zVo0CDf/pSUFDU2NqqioqLV8byHA0t717ctOTk5ksT7Fz2CMX5oYYwfvBjjhx7G94GJMX5w6+kxPkH1Gex2u7Kzs7V27VrfPrfbrbVr12rq1KkmVoaeUFNTo4MHDyo1NdXsUuBnQ4YMUUpKSqv3clVVlTZu3Mh7OYgdPXpUJ06c4D0dAAzD0IIFC/TGG2/ovffe05AhQ1o9np2drfDw8Fbv4b179yo/P5/3cAC40PVty/bt2yWJ9y96BGP80MIYP3gxxg89jO8DC2P84NZbY3xaf5wlLy9Ps2fP1qRJkzRlyhQ988wzqq2t1Zw5c8wuDd304IMP6qabblJGRoaOHz+uRYsWyWazacaMGWaXhi6oqalp9ancoUOHtH37diUkJGjw4MH63ve+p8cff1wjRozQkCFD9MgjjygtLU233HKLeUWjU853jRMSEvTYY4/ptttuU0pKig4ePKj/9//+n4YPH65p06aZWDU6Yv78+XrxxRf1l7/8RTExMb6edE6nU5GRkXI6nbr33nuVl5enhIQExcbG6rvf/a6mTp2qSy+91OTqcSEXur4HDx7Uiy++qC9/+cvq37+/du7cqQceeEBf+MIXNGHCBJOrR7BijB+8GOMHF8b4wY3xfXBjjB/cem2Mb+Aczz77rDF48GDDbrcbU6ZMMTZs2GB2SfCD6dOnG6mpqYbdbjcGDhxoTJ8+3Thw4IDZZaGL3n//fUPSObfZs2cbhmEYbrfbeOSRR4zk5GTD4XAY11xzjbF3715zi0annO8a19XVGdddd50xYMAAIzw83MjIyDDmzp1rFBUVmV02OqCt6yrJ+OMf/+g75tSpU8Z9991nxMfHG1FRUcbXvvY1o7Cw0Lyi0WEXur75+fnGF77wBSMhIcFwOBzG8OHDje9///tGZWWluYUj6DHGD06M8YMLY/zgxvg+uDHGD269Nca3tLwYAAAAAAAAAACmoEc1AAAAAAAAAMBUBNUAAAAAAAAAAFMRVAMAAAAAAAAATEVQDQAAAAAAAAAwFUE1AAAAAAAAAMBUBNUAAAAAAAAAAFMRVAMAAAAAAAAATEVQDQAAAAAAAAAwFUE1AAAAAAAAAMBUBNUAAAAAAAAAAFMRVAMAAAAAAAAATEVQDQAAAAAAAAAw1f8HUhOnOtI6GbUAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "Classification Report:\n", + " precision recall f1-score support\n", + "\n", + " 0 0.94 0.94 0.94 16\n", + " 1 0.89 0.89 0.89 9\n", + "\n", + " accuracy 0.92 25\n", + " macro avg 0.91 0.91 0.91 25\n", + "weighted avg 0.92 0.92 0.92 25\n", + "\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Predict sentiment of new reviews\n", + "new_reviews = [\"Bad packaging and missing items\", \"Was satisfied by my order.\"]\n", + "new_sequences = tokenizer.texts_to_sequences(new_reviews)\n", + "new_padded = pad_sequences(new_sequences, maxlen=100, padding='post')\n", + "predictions = model.predict(new_padded)\n", + "\n", + "print(\"Sentiment Predictions:\", [\"Positive\" if p > 0.5 else \"Negative\" for p in predictions])" + ], + "metadata": { + "id": "29c1EHaJNJ8x", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "bcaca185-2994-448d-84b2-d4c9c8e13c93" + }, + "execution_count": 43, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 227ms/step\n", + "Sentiment Predictions: ['Negative', 'Negative']\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "**Model 3: Gated Recurrent Unit (GRU)**" + ], + "metadata": { + "id": "-pJRGOHUTRL6" + } + }, + { + "cell_type": "code", + "source": [ + "# Create and fit the tokenizer\n", + "tokenizer = Tokenizer(num_words=5000) # Keep top 5000 words\n", + "tokenizer.fit_on_texts(data['Reviews'].astype(str))\n", + "\n", + "# Get the word_index from the tokenizer\n", + "word_index = tokenizer.word_index\n", + "\n", + "# Build GRU model\n", + "model = Sequential()\n", + "model.add(Embedding(input_dim=len(word_index) + 1, output_dim=128, input_length=100))\n", + "model.add(GRU(units=128, return_sequences=False))\n", + "model.add(Dropout(0.5))\n", + "model.add(Dense(1, activation='sigmoid'))\n", + "\n", + "# Compile the model\n", + "model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])\n", + "\n", + "# Train the model\n", + "model.fit(X_train, y_train, batch_size=16, epochs=25, validation_data=(X_test, y_test))\n", + "\n", + "# Evaluate the model on the test set\n", + "loss, accuracy = model.evaluate(X_test, y_test, verbose=1)\n", + "print(f'Test Accuracy: {accuracy:.4f}')\n", + "\n", + "# Predict on test data\n", + "y_pred = (model.predict(X_test) > 0.5).astype(\"int32\") # Threshold at 0.5\n", + "\n", + "# Accuracy and Loss curves\n", + "result=pd.DataFrame(history_dnn.history)\n", + "fig, ax=plt.subplots(nrows=1, ncols=2,figsize=(18,6))\n", + "ax=ax.flatten()\n", + "ax[0].plot(result[['accuracy','val_accuracy']])\n", + "ax[0].set_title(\"Accuracy\")\n", + "ax[1].plot(result[['loss','val_loss']])\n", + "ax[1].set_title(\"Loss\")\n", + "\n", + "plt.show()\n", + "\n", + "# Classification Report\n", + "print(\"\\nClassification Report:\\n\", classification_report(y_test, y_pred))" + ], + "metadata": { + "collapsed": true, + "id": "KYluq4ZD67bO", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "outputId": "b43ae704-1111-413b-b4aa-a7da776a9060" + }, + "execution_count": 45, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/25\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/embedding.py:90: UserWarning: Argument `input_length` is deprecated. Just remove it.\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m14/14\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 120ms/step - accuracy: 0.6104 - loss: 0.6840 - val_accuracy: 0.6400 - val_loss: 0.6429\n", + "Epoch 2/25\n", + "\u001b[1m14/14\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 92ms/step - accuracy: 0.6184 - loss: 0.6245 - val_accuracy: 0.6400 - val_loss: 0.5760\n", + "Epoch 3/25\n", + "\u001b[1m14/14\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 97ms/step - accuracy: 0.7124 - loss: 0.5082 - val_accuracy: 0.9200 - val_loss: 0.4254\n", + "Epoch 4/25\n", + "\u001b[1m14/14\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 146ms/step - accuracy: 0.9247 - loss: 0.2955 - val_accuracy: 0.9200 - val_loss: 0.2687\n", + "Epoch 5/25\n", + "\u001b[1m14/14\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 153ms/step - accuracy: 0.9720 - loss: 0.1317 - val_accuracy: 0.8400 - val_loss: 0.3963\n", + "Epoch 6/25\n", + "\u001b[1m14/14\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 92ms/step - accuracy: 0.9987 - loss: 0.0253 - val_accuracy: 0.9200 - val_loss: 0.1983\n", + "Epoch 7/25\n", + "\u001b[1m14/14\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 91ms/step - accuracy: 0.9994 - loss: 0.0191 - val_accuracy: 0.9200 - val_loss: 0.2451\n", + "Epoch 8/25\n", + "\u001b[1m14/14\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 95ms/step - accuracy: 1.0000 - loss: 0.0137 - val_accuracy: 0.8800 - val_loss: 0.3076\n", + "Epoch 9/25\n", + "\u001b[1m14/14\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 92ms/step - accuracy: 0.9924 - loss: 0.0095 - val_accuracy: 0.9200 - val_loss: 0.2994\n", + "Epoch 10/25\n", + "\u001b[1m14/14\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 91ms/step - accuracy: 1.0000 - loss: 0.0027 - val_accuracy: 0.9200 - val_loss: 0.2769\n", + "Epoch 11/25\n", + "\u001b[1m14/14\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 105ms/step - accuracy: 1.0000 - loss: 0.0015 - val_accuracy: 0.9200 - val_loss: 0.2629\n", + "Epoch 12/25\n", + "\u001b[1m14/14\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 146ms/step - accuracy: 1.0000 - loss: 0.0015 - val_accuracy: 0.9200 - val_loss: 0.2642\n", + "Epoch 13/25\n", + "\u001b[1m14/14\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 97ms/step - accuracy: 1.0000 - loss: 0.0014 - val_accuracy: 0.8800 - val_loss: 0.2609\n", + "Epoch 14/25\n", + "\u001b[1m14/14\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 95ms/step - accuracy: 1.0000 - loss: 0.0011 - val_accuracy: 0.8800 - val_loss: 0.2544\n", + "Epoch 15/25\n", + "\u001b[1m14/14\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 93ms/step - accuracy: 1.0000 - loss: 0.0012 - val_accuracy: 0.8800 - val_loss: 0.2636\n", + "Epoch 16/25\n", + "\u001b[1m14/14\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 93ms/step - accuracy: 1.0000 - loss: 5.7661e-04 - val_accuracy: 0.8800 - val_loss: 0.2744\n", + "Epoch 17/25\n", + "\u001b[1m14/14\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 93ms/step - accuracy: 1.0000 - loss: 5.1287e-04 - val_accuracy: 0.8800 - val_loss: 0.2786\n", + "Epoch 18/25\n", + "\u001b[1m14/14\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 159ms/step - accuracy: 1.0000 - loss: 5.5192e-04 - val_accuracy: 0.8800 - val_loss: 0.2855\n", + "Epoch 19/25\n", + "\u001b[1m14/14\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 154ms/step - accuracy: 1.0000 - loss: 6.2982e-04 - val_accuracy: 0.8800 - val_loss: 0.2929\n", + "Epoch 20/25\n", + "\u001b[1m14/14\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 92ms/step - accuracy: 1.0000 - loss: 6.3369e-04 - val_accuracy: 0.8800 - val_loss: 0.3039\n", + "Epoch 21/25\n", + "\u001b[1m14/14\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 94ms/step - accuracy: 1.0000 - loss: 5.0888e-04 - val_accuracy: 0.8800 - val_loss: 0.3110\n", + "Epoch 22/25\n", + "\u001b[1m14/14\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 92ms/step - accuracy: 1.0000 - loss: 4.4154e-04 - val_accuracy: 0.8800 - val_loss: 0.3187\n", + "Epoch 23/25\n", + "\u001b[1m14/14\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 94ms/step - accuracy: 1.0000 - loss: 5.7314e-04 - val_accuracy: 0.8800 - val_loss: 0.3230\n", + "Epoch 24/25\n", + "\u001b[1m14/14\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 95ms/step - accuracy: 1.0000 - loss: 4.3548e-04 - val_accuracy: 0.8800 - val_loss: 0.3277\n", + "Epoch 25/25\n", + "\u001b[1m14/14\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 97ms/step - accuracy: 1.0000 - loss: 5.7217e-04 - val_accuracy: 0.8800 - val_loss: 0.3350\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 70ms/step - accuracy: 0.8800 - loss: 0.3350\n", + "Test Accuracy: 0.8800\n", + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 331ms/step\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABaYAAAIQCAYAAAB607l0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC4AElEQVR4nOzdd3gU5frG8e/upndCCi0QErogvfciKPaCYENR8IhdLEfs9fA7Fo6oKIpgRcHeUFqQ3psUaaEllAQCaaRnd39/TEiIBEnZZJPs/bmuvTKZnXn3WeacOLnz7vuY7Ha7HRERERERERERERGRKmJ2dgEiIiIiIiIiIiIi4loUTIuIiIiIiIiIiIhIlVIwLSIiIiIiIiIiIiJVSsG0iIiIiIiIiIiIiFQpBdMiIiIiIiIiIiIiUqUUTIuIiIiIiIiIiIhIlVIwLSIiIiIiIiIiIiJVSsG0iIiIiIiIiIiIiFQpBdMiIiIiIiIiIiIiUqUUTIuIiIiIiIiIiIhIlVIwLSJylvfeew+TyUT37t2dXYqIiIiIiFQTn3zyCSaTiQ0bNji7FBGRWkPBtIjIWWbNmkVkZCTr1q0jNjbW2eWIiIiIiIiIiNRKCqZFRAocOHCAVatWMXnyZEJDQ5k1a5azSypRRkaGs0sQEREREREREakQBdMiIgVmzZpFnTp1uPzyy7nhhhtKDKZTUlJ45JFHiIyMxNPTk0aNGjF69GiSkpIKj8nOzuaFF16gRYsWeHl5Ub9+fa677jr27dsHwJIlSzCZTCxZsqTY2AcPHsRkMvHJJ58U7rvjjjvw8/Nj3759DB8+HH9/f2655RYAli9fzogRI2jcuDGenp5ERETwyCOPkJWVdU7du3bt4sYbbyQ0NBRvb29atmzJ008/DcAff/yByWTihx9+OOe8L7/8EpPJxOrVq8v87ykiIiIi4ko2b97MZZddRkBAAH5+fgwePJg1a9YUOyYvL48XX3yR5s2b4+XlRd26denTpw8LFy4sPCYhIYExY8bQqFEjPD09qV+/PldffTUHDx6s4nckIlK53JxdgIhIdTFr1iyuu+46PDw8uOmmm3j//fdZv349Xbt2BeD06dP07duXnTt3cuedd9KpUyeSkpL4+eefOXz4MCEhIVitVq644gpiYmIYNWoUDz30EOnp6SxcuJDt27cTHR1d5rry8/MZNmwYffr04Y033sDHxweAb775hszMTMaPH0/dunVZt24d77zzDocPH+abb74pPH/r1q307dsXd3d37r77biIjI9m3bx+//PILr776KgMGDCAiIoJZs2Zx7bXXnvNvEh0dTc+ePSvwLysiIiIiUrvt2LGDvn37EhAQwBNPPIG7uzsffPABAwYMYOnSpYU9bF544QUmTZrE2LFj6datG2lpaWzYsIFNmzZxySWXAHD99dezY8cOHnjgASIjIzl+/DgLFy4kLi6OyMhIJ75LERHHUjAtIgJs3LiRXbt28c477wDQp08fGjVqxKxZswqD6ddff53t27fz/fffFwtwn3nmGex2OwCfffYZMTExTJ48mUceeaTwmCeffLLwmLLKyclhxIgRTJo0qdj+//73v3h7exd+f/fdd9OsWTOeeuop4uLiaNy4MQAPPPAAdrudTZs2Fe4D+L//+z8ATCYTt956K5MnTyY1NZXAwEAATpw4wYIFCwpnVouIiIiISMmeeeYZ8vLyWLFiBVFRUQCMHj2ali1b8sQTT7B06VIA5s6dy/Dhw/nwww9LHCclJYVVq1bx+uuv89hjjxXunzhxYuW/CRGRKqalPEREMGYGh4eHM3DgQMAIa0eOHMns2bOxWq0AfPfdd7Rv3/6cWcVnjj9zTEhICA888MB5jymP8ePHn7Pv7FA6IyODpKQkevXqhd1uZ/PmzYARLi9btow777yzWCj993pGjx5NTk4O3377beG+OXPmkJ+fz6233lruukVEREREajur1cqCBQu45pprCkNpgPr163PzzTezYsUK0tLSAAgKCmLHjh3s3bu3xLG8vb3x8PBgyZIlJCcnV0n9IiLOomBaRFye1Wpl9uzZDBw4kAMHDhAbG0tsbCzdu3cnMTGRmJgYAPbt20fbtm3/cax9+/bRsmVL3Nwc94EUNzc3GjVqdM7+uLg47rjjDoKDg/Hz8yM0NJT+/fsDkJqaCsD+/fsBLlh3q1at6Nq1a7F1tWfNmkWPHj1o1qyZo96KiIiIiEitc+LECTIzM2nZsuU5z7Vu3RqbzUZ8fDwAL730EikpKbRo0YJ27drx+OOPs3Xr1sLjPT09+e9//8vvv/9OeHg4/fr147XXXiMhIaHK3o+ISFVRMC0iLm/x4sUcO3aM2bNn07x588LHjTfeCFBiE8SKON/M6TMzs//O09MTs9l8zrGXXHIJc+fO5d///jc//vgjCxcuLGycaLPZylzX6NGjWbp0KYcPH2bfvn2sWbNGs6VFRERERByoX79+7Nu3j5kzZ9K2bVs++ugjOnXqxEcffVR4zMMPP8yePXuYNGkSXl5ePPvss7Ru3brwU5EiIrWF1pgWEZc3a9YswsLCmDp16jnPff/99/zwww9MmzaN6Ohotm/f/o9jRUdHs3btWvLy8nB3dy/xmDp16gDG+nFnO3ToUKlr3rZtG3v27OHTTz9l9OjRhfvP7uYNFH6U8EJ1A4waNYoJEybw1VdfkZWVhbu7OyNHjix1TSIiIiIirig0NBQfHx927959znO7du3CbDYTERFRuC84OJgxY8YwZswYTp8+Tb9+/XjhhRcYO3Zs4THR0dE8+uijPProo+zdu5cOHTrw5ptv8sUXX1TJexIRqQqaMS0iLi0rK4vvv/+eK664ghtuuOGcx/333096ejo///wz119/PX/++Sc//PDDOeOcaWx4/fXXk5SUxLvvvnveY5o0aYLFYmHZsmXFnn/vvfdKXbfFYik25pntKVOmFDsuNDSUfv36MXPmTOLi4kqs54yQkBAuu+wyvvjiC2bNmsWll15KSEhIqWsSEREREXFFFouFoUOH8tNPP3Hw4MHC/YmJiXz55Zf06dOHgIAAAE6ePFnsXD8/P5o1a0ZOTg4AmZmZZGdnFzsmOjoaf3//wmNERGoLzZgWEZf2888/k56ezlVXXVXi8z169CA0NJRZs2bx5Zdf8u233zJixAjuvPNOOnfuzKlTp/j555+ZNm0a7du3Z/To0Xz22WdMmDCBdevW0bdvXzIyMli0aBH33nsvV199NYGBgYwYMYJ33nkHk8lEdHQ0v/76K8ePHy913a1atSI6OprHHnuMI0eOEBAQwHfffVdig5S3336bPn360KlTJ+6++26aNm3KwYMHmTt3Llu2bCl27OjRo7nhhhsAePnll0v/DykiIiIi4gJmzpzJvHnzztn/wgsvsHDhQvr06cO9996Lm5sbH3zwATk5Obz22muFx7Vp04YBAwbQuXNngoOD2bBhA99++y33338/AHv27GHw4MHceOONtGnTBjc3N3744QcSExMZNWpUlb1PEZGqoGBaRFzarFmz8PLy4pJLLinxebPZzOWXX86sWbPIyclh+fLlPP/88/zwww98+umnhIWFMXjw4MLmhBaLhd9++41XX32VL7/8ku+++466devSp08f2rVrVzjuO++8Q15eHtOmTcPT05Mbb7yR119//YJNCs9wd3fnl19+4cEHHyxce+7aa6/l/vvvp3379sWObd++PWvWrOHZZ5/l/fffJzs7myZNmhSuoX22K6+8kjp16mCz2c4b1ouIiIiIuKr333+/xP133HEHy5cvZ+LEiUyaNAmbzUb37t354osv6N69e+FxDz74ID///DMLFiwgJyeHJk2a8Morr/D4448DEBERwU033URMTAyff/45bm5utGrViq+//prrr7++St6jiEhVMdn//lluERFxWfn5+TRo0IArr7ySGTNmOLscEREREREREamltMa0iIgU+vHHHzlx4kSxhooiIiIiIiIiIo6mGdMiIsLatWvZunUrL7/8MiEhIWzatMnZJYmIiIiIiIhILaYZ0yIiwvvvv8/48eMJCwvjs88+c3Y5IiIiIiIiIlLLaca0iIiIiIiIiIiIiFQpzZgWERERERERERERkSqlYFpEREREREREREREqpSbswsoDZvNxtGjR/H398dkMjm7HBERERFxELvdTnp6Og0aNMBs1pwJV6J7fBEREZHaqbT3+DUimD569CgRERHOLkNEREREKkl8fDyNGjVydhlShXSPLyIiIlK7Xegev0YE0/7+/oDxZgICApxcjYiIiIg4SlpaGhEREYX3e+I6dI8vIiIiUjuV9h6/RgTTZz7aFxAQoJtWERERkVpISzm4Ht3ji4iIiNRuF7rH10J+IiIiIiIiIiIiIlKlFEyLiIiIiIiIiIiISJVSMC0iIiIiIiIiIiIiVUrBtIiIiIiIiIiIiIhUKQXTIiIiIiIiIiIiIlKlFEyLiIiIiIiIiIiISJVSMC0iIiIiIiIiIiIiVUrBtIiIiIiIiIiIiIhUKQXTIiIiIiIiIiIiIlKlyhxML1u2jCuvvJIGDRpgMpn48ccfL3jOkiVL6NSpE56enjRr1oxPPvmkHKWKiIiIiIiIiIiISG1Q5mA6IyOD9u3bM3Xq1FIdf+DAAS6//HIGDhzIli1bePjhhxk7dizz588vc7EiIiIiIiIiIiIiUvO5lfWEyy67jMsuu6zUx0+bNo2mTZvy5ptvAtC6dWtWrFjB//73P4YNG1bWlxcRERERERERERGRGq7S15hevXo1Q4YMKbZv2LBhrF69+rzn5OTkkJaWVuwhIiIiIiIiIiIiIrVDpQfTCQkJhIeHF9sXHh5OWloaWVlZJZ4zadIkAgMDCx8RERGVXaaIiIiIiIiIiIiIVJFKD6bLY+LEiaSmphY+4uPjnV2SiIiIiIiIiIiIiDhIpQfT9erVIzExsdi+xMREAgIC8Pb2LvEcT09PAgICij1ERERERKTyTJ06lcjISLy8vOjevTvr1q0777EDBgzAZDKd87j88sursGIRERERqckqPZju2bMnMTExxfYtXLiQnj17VvZLi4iIiIhIKcyZM4cJEybw/PPPs2nTJtq3b8+wYcM4fvx4icd///33HDt2rPCxfft2LBYLI0aMqOLKRURERKSmcivrCadPnyY2Nrbw+wMHDrBlyxaCg4Np3LgxEydO5MiRI3z22WcA3HPPPbz77rs88cQT3HnnnSxevJivv/6auXPnOu5diIiIiPwDu91Oek4+yRm5JGfmkZyZW7idkpnLqYxcUgr25+bbnF2u080a1x1PN4uzy5AqNHnyZMaNG8eYMWMAmDZtGnPnzmXmzJk8+eST5xwfHBxc7PvZs2fj4+OjYFpERESqD5sVYhfBllmQnQqeAeAVAJ6BxlevwLP2nf21YL+bh7PfQa1X5mB6w4YNDBw4sPD7CRMmAHD77bfzySefcOzYMeLi4gqfb9q0KXPnzuWRRx5hypQpNGrUiI8++ohhw4Y5oHwRERFxNVabnZTMolA5OTOvIGQuvp2SmcepzFxSCrbzbXZnl15j2PVP5VJyc3PZuHEjEydOLNxnNpsZMmQIq1evLtUYM2bMYNSoUfj6+p73mJycHHJycgq/T0tLK3/RIiIiIueTkQSbP4cNMyEl7sLHn4+bdwmh9d/Ca6/A8xxTsN/i7rj3VQuVOZgeMGAA9n/4beWTTz4p8ZzNmzeX9aVERESklsvJtxbOVE7OKPh6JlQ+K2A+e4ZzWnZeuYNTb3cLdXzcCfLxoI6vO3V8PAoe7tTxNba93Ktlb+gq5W7Rv4ErSUpKwmq1Eh4eXmx/eHg4u3btuuD569atY/v27cyYMeMfj5s0aRIvvvhihWoVERERKZHdDofXw/qPYMcPYM019nsFQcdbod7FkJNmzJw+8zU7rWD7b19zTxvn5mfB6Sw4nXjel70gd5/zBNtnBdwXmrltKXN8W2PU3ncmIiIiVcZut5OZay0WJJ+9PEaxJTQKQuiUzFwycq3lfk1/L7dzQuUgn4Kw2bdg/5nguSCE9nLX8hQijjZjxgzatWtHt27d/vG4iRMnFn7aEowZ0xEREZVdnoiIiNRmuRmw7RsjkE7YVrS/QSfoOhbaXgfu3mUb02a9QHh99v7zHJOXYYyVl2k8TieU/z26+/5DsH1mdvb5Zm4HVOtwu3pWJSIiIk5js9lJz84vCpHPms189vIYZ89wTs7MK/fazGYTBJ0dKv8tbC6c4ezjTrCvR+GxmtUr4hghISFYLBYSE4vPBkpMTKRevXr/eG5GRgazZ8/mpZdeuuDreHp64unpWaFaRURERAA4sQc2zIAtXxphMICbF7S9AbreCQ07l39sswW86xiP8rLmG3VVJODOyzTGysswHunHyl+Pdx3498Hyn19JFEyLiIgAp3Py+Xp9PF+sPcSJ9JwLn1Bb2SEzz4q1nOsxe1jMZ81adi+YxVw8VP576Bzg5Y7ZbHLwGxGR0vLw8KBz587ExMRwzTXXAGCz2YiJieH+++//x3O/+eYbcnJyuPXWW6ugUhEREXFp1jzYNdeYHX1wedH+4Cjochd0uBl8gs9/flWyuBm1VKQeax7kpF9g+ZHUc78/+5j8LGMsU/Wc1KNgWkREXFpiWjafrDrIrDWHSMvOd3Y51YqPh6VweYxiofJZ4XKQjwfBZ2Y7+3rg62HBZFLILFLTTJgwgdtvv50uXbrQrVs33nrrLTIyMhgzZgwAo0ePpmHDhkyaNKnYeTNmzOCaa66hbt26zihbREREXEHaUdj4KWz8pGhJDJMZWlwGXe+CqIFgrp7Ba4VY3CsebufnGuH2maVFqhkF0yIi4pJ2JaQxfdkBfv7zCHlWY3Zw0xBfxvZtSo+ourhytOrj4UaQj7vWYxZxISNHjuTEiRM899xzJCQk0KFDB+bNm1fYEDEuLg7z337h2717NytWrGDBggXOKFlERERqM7sdDiwzZkfvmgv2gt40vmHQ+XbodDsEqVfFBbl5gFtdoHpOIjDZ7eXta1910tLSCAwMJDU1lYCAAGeXIyIiNZTdbmdl7Ek+XL6fZXtOFO7vFhnMuH5RDG4VpiUlRKqY7vNcV1Vf+7lbj7HuwEka1fGhUR1vIoKNr4He7vqkh4iISHWRlQJ/zjbWj07aU7S/SW9jdnSrK42wVaq10t7naca0iIjUern5Nn7depQPl+1nV0I6YDTcu6xtfcb2bUrHxhVoaiEiIjXCitgTfLUu/pz9fp5uNKrjXfDwKfY1oo4PgT7uTqhWRETExRzbasyO3vZNUdM/Dz9oP8pYPzq8jXPrk0qhYFpERGqt1Kw8vloXx8crD5CYZjQ09PGwcGOXCO7q05SIYB8nVygiIlVlaJt6BPl4cDg5i8PJmRxOzuJEeg6nc/LZlZBe+IfLv/P3cjsrsC4eWjcK9ibAS8G1iIhIueRlw18/GYH04XVF+8PaGLOjLx4Jnv7Oq08qnYJpERGpdQ4nZ/LxyoPMXhdHRq6xFlmovyd39Irklu6NCfLRR79ERFzNwFZhDGwVVmxfdp61WFB9Zjs+OYsjyZkknc4lPTufncfS2HksrcRxA84Krs8sD3J2kO2v4FpERKS45IOwYSZs+hyyThn7zO7Q5iroOhYa9wQts+USFEyLiEitse1wKh8u389v245htRktFFqE+zGubxRXdWiAp5ua+YmISBEvdwvNwvxoFuZX4vNZuVaOpBhB9eHkLA6fyiwWZJ/MyCUtO5+/jqXx13mC6yAfdyOkDio+6zoi2IeGdbzx89SvZCIi4gJsVohdZMyO3rsQKGh5F9AIutwBHUeDf7gzKxQn0F2QiIjUaDabnSV7jvPhsv2s2X+qcH/vZnUZ1zeK/i1C1dRKRETKxdvDQrMwf5qFlfwx4szc/JJnXJ8yviZn5pFS8Nh+pOTguo6PewkzrotmXft46Fc2ERGpwTKSYPPnxgzplLii/dGDjeU6mg8Di/5b56p05UVEpEbKzrPy4+YjfLTiALHHTwPgZjZxZfsGjO3blIsaBDq5QhERqe18PNxoEe5Pi/CSg+vTOfkcOSu4jj8z4zrF+JqSmUdyZh7JmalsO5Ja4hh1fT3OWR7EmHHtTcMgH7w99GkgERGpZux2OLzemB294wew5hr7vYKg463Q5U6oG+3UEqV6UDAtIiI1SnJGLl+sOcSnqw+SdNq4wfHzdOPm7o25o1ckDYK8nVyhiIiIwc/TjZb1/GlZr+TgOj07r9hM67/PuE7LzudkRi4nM3L583DJwXWInwcNz27I+LcZ117uCq5FRKSK5GbAtm+MQDphW9H+Bp2MtaPbXgfu+n1NiiiYFhGRGuFgUgYzVhzgm43xZOfZAGgQ6MWdfZoysmuEmkuJiEiN4+/lTuv67rSuH1Di86lZeYUzruP/vmTIqUzSc/JJOp1L0ulc/oxPKXGMUH/PwqC6QaAXnm5mTCYTZpMJixlMJhMWswmzCcyF+wu+N5sK9hV/zmSi4Jii5898f77nSnodsxksphKeM5uwmEqooWDbcs7roGW7RESc6cQe2DADtnwJOQVLV7l5QdsboOud0LCzc+uTakvBtIiIVGsbDyUzfdl+5v+VgL2gP8ZFDQK4u18Uw9vVx91idm6BIiIilSTQ251Ab3faNDh/cB3/t4aMRbOuM8nItXIiPYcT6Tlsjkup2uKrmKkg1C4ptD4TdHu6mbmsXX3+1T+KMH8vZ5csIlKzWfNg11xjdvTB5UX7g6Ogy13Q4WbwCXZefVIjKJgWEZFqx2qzs/CvBKYvP8DGQ8mF+we2DGVc3yh6RtfVzCgREXF5gd7uBDYMpG3Dc/sq2O12UrPyioXWx1KzybfasNrt2OxGA2Hb37atdox9Z763GWOdec5ut2M9c56Ngv3GGEXPnT2eHbudwnPO3j7z2kXjFZz7t+dKw24Hq92OlX8+fsaKA3yx5hC3dG/CPf2jCAtQQC0iUiZpR2Hjp7DxEzidYOwzmaHFZUYzw6iBYNbkISkdBdMiIlJtZOVa+XZjPB+tOMChk5kAeFjMXNOxAWP7Rp23uZSIiMgFbf0G/voRmvYzHqGtjGm2tZTJZCLIx4MgH48Sg+uapFjg/bfQuqTnjP0Ubp95Lv5UJlP/iGVTXAozVx5g1loF1CIipWK3w4FlxuzoXXPBbjX2+4ZB59uh0+0QFOHcGqVGUjAtIiJOdyI9h89WH+TzNYdIycwDjFlgt/VowuheTfRxWxERqbg9v8OuX40HgG8oRPYxQurIflA3ulYH1TWZyWTCzVLxa9Mi3J9BrcJYEZvEW4v2svFQcmFAfXP3xozvH62AWkTkbFkp8OdsY/3opD1F+5v0NmZHt7oS3DycVp7UfCa73V66z0Y5UVpaGoGBgaSmphIQUPL6aiIiUvPEHk/no+UH+H7zEXLzjYaGjYN9uKtPU0Z0aYSPh/5+KlLb6T7PdVX5tT+6BfbFwIHlELcG8rOKP+/fAJr2LQiq+0KdJpVfkziN3W5nZexJ3lq0hw0Fy4Z5uJm5uVtjxg+IJlwBtYi4smNbjdnR276BPOOTrHj4QftRxvrR4W2cW59Ue6W9z1MwLSIiVcput7Nm/ymmL9/P4l3HC/d3iAjiX/2iGHpRPSxmzVgTcRW6z3NdTr32+TlwZKPxseQDy+HwOrDmFj8mqElBUN3fCKoD6ldtjVIl7HY7q/YZAfX6g8UD6nv6R1MvUAG1iLiIvGz46ycjkD68rmh/WBtjdvTFI8FTSytK6SiYFhGRaiXfauO37QlMX7afbUdSAeMT05e0DufuflF0blJHDQ1FXJDu81xXtbr2eVkQv9YIqQ8sM0LrM+tnnlG3efEZ1b4hzqlVKoXdbmf1vpO8tWgv6w6eAoyA+qauEYwf0EwBtYjUXskHYcNM2PQ5ZBk//zC7Q5uroOtYaNxTS11JmSmYFhGRauF0Tj6z18Xx8cqDHEkxPjbt6WZmRJdG3NUniqYhvk6uUEScSfd5rqtaX/ucdGO5jwPLjMexP4G//doUdpERVEf2hcje4F3HKaWKY9ntdlbvP8lbC88KqC1mRnWLYPyAaOoHeju5QhERB7BZIXaRMTt670IK/xsX0Ai63AEdR4N/uDMrlBpOwbSIiDhVQmo2H686wJdr40jPzgegrq8Ho3tGcmuPxtT183RyhSJSHeg+z3XVqGuflQyHVhXNqD6+428HmKD+xUWNFJv01Meda7jCgHrRXtYdKAqoR3Y1AuoGQQqoRaQGykiCzZ8bM6RT4or2Rw82lutoPgws6vMjFadgWkREnOKvo2l8tHw/P/95lHyb8Z+YqFBfxvWN4tqODfFytzi5QhGpTnSf57pq9LXPSIKDy4uC6pN7iz9vskDDTkXLfkR0Bw8f59QqFba6YA3qtWcF1Dd2bcS9A5opoBaRmuHIJlg7DXb8UNRTwSsIOt4KXe6EutFOLU9qHwXTIiJSZex2O8v3JjF9+X6W700q3N+taTB3941iUKswzGpoKCIl0H2e66pV1z7tWEFQvcz4mnyw+PMWD2jUtSiobtQF3PTJoZpm9b6TTInZw5r9RkDtbjFxY5cI7h3YjIYKqEWkujq4Aj69qqh3QoNOxtrRba8Dd/3sksqhYFpERCpdbr6Nn/88ykfL97MrIR0AswmGt6vPuL5RtI8Icm6BIlLt6T7PddXqa58SVzSb+sAySD9a/Hk3b2jcvWjpjwYd9dHpGmTN/pNMWbSX1ftPAkZAPaJLBPcOiKZRHc2MF5FqxJoH0/rAiV3Gch2DnoaGnZ1dlbgABdMiIlJpUjPz+HJdHJ+sOkBiWg4APh4WRnaN4M7eTYkI1i9lIlI6us9zXS5z7e12OLW/KKQ+uBwyThQ/xsMPmvQyZlM37Qf12oFZS19Vd2v3n2RKzF5W7VNALSLV1Kp3YMEz4FMXHtioRr1SZRRMi4iIw8WfymTmygPMWR9PZq7xUbAwf0/G9G7Kzd0aE+jj7uQKRaSm0X2e63LZa2+3w4ndBSH1MmNmdXZK8WO8Ao2Q+kxQHdYaTFoSq7pad+AUU2L2sDK2KKC+oXME9w1UQC0iTpR2FN7tCrmn4eqpxnrSIlVEwbSIiDjMn/EpTF++n9+2HaOgnyGt6vkztm8UV7VvgIeb2bkFikiNpfs816VrX8Bmg8TtRbOpD66E3PTix/iEQNMzQXV/o0mVgupz2ayQnWoE/Vkp53615kKrK6Be20p5+fUHTzFl0V5WxBr9NtzMJkZ0MZok6tNkIlLlvr0Ttn9n9Di4cwGY9TubVB0F0yIiUiE2m53Fu47z4fL9rCvoQg/Qt3kI4/pG0bd5CCb9UiwiFaT7PNela38e1nw49iccWGoE1YdWQ35W8WP86xc1UmzaD+o0cU6tleFMuJyVfP6AucSvqZCTWooXMBkNvwY8BSHNKuUtlBRQ39C5EfcNVEAtIlXkwDL49EowmWHcH9Cgg7MrEhejYFpERMolO8/KD5uPMH35fvafyACMX6iuat+AsX2jaNNAP4dFxHF0n+e6dO1LKT8XjmwsmlEdv9aY+Xu2oMZGE8Wm/YyZ1QENnFPrGdb8v81cTi5dsJydAjlpFX99d1/wDgKvoOJfs5Jh92/GMSYLdLwF+v8bAhtV/DVLsOHgKabE7GX53qKA+vpOjbh/kAJqEalE1jx4vzck7Yau4+DyN5xdkbggBdMiIlJmm+OS+dfnGzmebjQ09Pd04+YejbmjVyT1A72dXJ2I1Ea6z3NduvbllJcF8euMkPrAMiO0tuUXP6Zus6LZ1JF9wS+07K9TLFw+O1guaSZzavHv/74USXl4+J0bLJfmq1cguHmcf9xjW+GPV2HPPON7iwd0uQv6Plq+f6dS2HjoFG8tKh5QX9epIfcPbE7jugqoRcTBVr4NC581loF6YIMaHopTKJgWEZEy+WP3ce79YhNZeVYaBHpxZ5+mjOwagb+XGhqKSOXRfZ7r0rV3kJzTELemoJHiMmMZELut+DFhbYyAunF3o/lidQyXveuctS8QLJV8/xG3Fha/bAT8YMyy7nEP9Hqg0kKcjYeSmRKzl2V7TgBgMZu4rmND7h/UjCZ1fSvlNUXExaQeMRoe5mWo4aE4lYJpEREpte82HuaJ77Zitdnp1yKU92/phK+nm7PLEhEXoPs816VrX0myUuDQqqIZ1YnbKzaeh//fguTAEoLlOiUEzlUQLleU3Q77l0DMS3B0k7HPKxB6PwTd7wGPygmLN8UlM2XRXpaeFVBf27Eh9w9sRmSIAmoRqYBvxsCO76FRN7hzvhoeitMomBYRkQuy2+18uGw/k37fBcC1HRvy3+svxsNNNzAiUjV0n+e6dO2rSMZJI6Q+uNyYTe3mdYEZzHWKL4thcYE/VNvtsGsuLH4FTuw09vmGQt/HoMsYcPOslJfdHGfMoF6yuyigvqZDQx4YpIBaRMph/1L47Cqj4eHdS6B+e2dXJC5MwbSIiPwjm83Oq7/tZMaKAwCM69uUiZe1xmw2ObkyEXElus9zXbr2Uu3YrLD9O2MN6uSDxr7ACKNBYvubKi2k3xKfwpRFe/hDAbWIlFd+LkzrYzQ87HY3DH/d2RWJi1MwLSIi55Wbb+Pxb//kpy1HAXhqeCvu7hft5KpExBXpPs916dpLtWXNg81fwNLXIN24V6JuMxj4FLS5ttI+Gv/3gNpsgms6NuSBQc1pqoBaRP7Jyimw8LmChocbjU++iDiRgmkRESnR6Zx8xn+xkeV7k3Azm3jthou5rlMjZ5clIi5K93muS9deqr28LFg/A1ZMhsyTxr7wdjDoGWgxDEyV8ymzP+NTmBKzl8W7jgMFAXUHo0liVKhfpbymiNRgxRoevgcdb3F2RSIKpkVE5FxJp3O485P1bD2cire7hfdv7cSAlmHOLktEXJju81yXrr3UGDnpsOZ9WPUO5KQZ+xp1g8HPQdO+lfayWw+nMGXRXmLOCqivLgiooxVQi8gZ39wBO36AiO4wZp4aHkq1oGBaRESKiT+VyW0z1nLwZCZ1fNyZeUdXOjau4+yyRMTF6T7PdenaS42TeQpWvgVrP4T8LGNf1AAY9Bw06lxpL7v1cApvx+xl0c6igPqq9g24f1BzmoUpoBZxafuXwGdXFzQ8XAr1L3Z2RSKAgmkRETnLjqOp3PHxek6k59AwyJvP7uqmmTYiUi3oPs916dpLjZWeAMvegI2fgC3P2NfqChj4NIS3qbSX3XY4lSkxe1m0MxEwVhK5qn0DHlBALeKa8nNhWm9I2gPd/gXDX3N2RSKFFEyLiAgAq/ed5O7PNpCek0+rev58emc3wgO8nF2WiAig+zxXpmsvNV7yIVj6X/jzK7DbABO0GwEDnoS6lddUevsRI6Be+FdRQH3lxQ14cHAzmoX5V9rrikg1s+ItWPQ8+IbC/RvU8FCqFQXTIiLCb9uO8fDsLeRabXRrGsz00V0I9HZ3dlkiIoV0n+e6dO2l1jixG/74D/z1o/G92Q063gr9noDAhpX2stuPpPJ2zF4WnBVQX3FxAx4c1Izm4QqoRWq11MPwbjej4eE170OHm51dkUgxCqZFRFzc56sP8tzPO7DbYdhF4UwZ1REvd4uzyxIRKUb3ea5L115qnaNbYPErELvQ+N7iCd3GQZ9HwDek0l62pID68nb1eXBwc1oooBapnb6+3fhjWEQPGPO7Gh5KtaNgWkTERdntdv63cA9vL44F4ObujXn56rZYzCYnVyYici7d57kuXXuptQ6thpiXIG6V8b2HH/S4F3rdD16BlfayO44aAfX8HQqoRWq1fX/A59cYDQ//tQzqtXN2RSLnUDAtIuKC8q02nv1pO1+tiwfg4SHNeWhwc0wmhdIiUj3pPs916dpLrWa3w74YiHkZjm0x9nkFQZ+HjSZlHj6V9tJ/HU3j7Zi9zNuRABgB9fB29XlwUHNa1lNALVKj5efC+73g5F7ofg9c9l9nVyRSotLe52muv4hILZGdZ2X8rE18tS4eswleuaYtDw9poVBaREREpKqZTNBsCNy9BG78HEJaQnYKLHoB3u4A66YbAVMlaNMggGm3deb3h/pyWdt62O0wd+sxhr21jE9WHqiU1xSRKrJmqhFK+4bCgInOrkakwhRMi4jUAqmZedw2Yy0L/0rEw83Me7d04tYeTZxdloiIiIhrM5mgzVVw72q4ZhoENYHTifDbY/BuZ9g8C6z5lfLSresH8P6tRkA97KJwACb9vov4U5mV8noiUslSD8PS14ztS14G7yCnliPiCAqmRURquITUbG78YDXrDybj7+nGZ3d249K29Z1dloiIiIicYbZAh5vg/g1w+ZvgVw9S4uCne+H9nrDjB7DZKuWlW9cPYNqtnekZVZecfBsv/vJXpbyOiFSy+U9DXiY07gntRzm7GhGHUDAtIlKDxR4/zfXvr2J3Yjph/p58fU9PekTVdXZZIiIiIlISNw/oOhYe3Fww47EOJO2Bb+6AD/vD3oXG+tQOZjKZeOnqi3Azm1i0M5GYnYkOfw0RqUT7FsNfP4LJAsPfMD6NIVILKJgWEamhNsUlc8O0VRxJySIqxJfvxveidX01jxIRERGp9jx8oPeD8NBW6P8kePhDwlaYdQN8fBkcXOnwl2we7s9dfZoC8MIvO8jOszr8NUSkEuTnwG+PG9vd7oZ6bZ1bj4gDKZgWEamB/th1nJunryElM4/2EUF8c09PIoIrr7u7iIiIiFQCrwAYOBEe+hN6PQBuXhC3Gj4ZDp9fB0c2OfTlHhjcnHoBXsSfymLa0n0OHVtEKsnqqXAyFnzDjJ8XIrWIgmkRkRrm242HGfvZBrLzbPRvEcqXY7tT18/T2WWJiIiISHn51oWhrxhLfHS5C8xusC8Gpg+EObfC8V0OeRk/TzeeuaI1AO8t2cehkxkOGVdEKklKPCx73dge+jJ4BTq3HhEHUzAtIlJD2O12pi3dx2Pf/InVZue6jg356PYu+Hq6Obs0EREREXGEgAZwxWSjSeLFowAT7PwF3usB3/8LTh2o8Etc3q4+fZqFkJtv44Wfd2CvhDWtRcRBFpzV8PDikc6uRsThFEyLiNQANpudl3/dyf/9bsyW+Ve/KN4Y0R53i36Mi4iIiNQ6wU3hug/g3tXQ+krADltnw7td4NcJkHas3EObTCZeuOoi3C0m/th9gkU7jzuubhFxnNgY+OsnNTyUWk2JhohINZebb+PhOVuYudKYIfPM5a2ZOLw1ZrNuTERERERqtbDWMPILGLcYogeBLR82zIC3O8CCZyDjZLmGbRbmx9i+UQC88PMOsnLVCFGkWsnPgd+fMLa7/0sND6XWUjAtIlKNnc7J565P1/Pzn0dxM5t4a2SHwl8iRERERMRFNOwMt/0Ad8yFiB6Qnw2r3oEp7eGPSZCdVuYhHxjUjAaBXhxJyeL9JbGVULSIlNvqd4saHg540tnViFQaBdMiItVU0ukcbvpwDcv3JuHjYWHGHV25pmNDZ5clIiIiIs4S2QfunAe3fAv1LobcdFj6f0ZAvfJtyMsq9VA+Hm48e0UbAKYt3c+BJDVCFKkWUuJh2RvG9tBX1PBQajUF0yIi1VDcyUxueH8V246kEuzrwVfjetC/RaizyxIRkVps6tSpREZG4uXlRffu3Vm3bt0/Hp+SksJ9991H/fr18fT0pEWLFvz2229VVK2ICzOZoPklcPdSGPEJ1G0OWadg4bPwdkdY/xHk55ZqqEvb1qNfi1ByrTaeVyNEkeph/lMFDQ97wcU3OrsakUqlYFpEpJrZcTSV695fxcGTmTSq48239/SkfUSQs8sSEZFabM6cOUyYMIHnn3+eTZs20b59e4YNG8bx4yU3RcvNzeWSSy7h4MGDfPvtt+zevZvp06fTsKE+2SNSZcxmuOhauHcNXP0eBDaG9GMw91GjSeKWr8D2z2tHm0wmXrzqIjwsZpbtOcH8HYlVVLyIlCh2Eez82Wh4eLkaHkrtp2BaRKQaWbUviZEfrCHpdA6t6vnz/fheRIX6ObssERGp5SZPnsy4ceMYM2YMbdq0Ydq0afj4+DBz5swSj585cyanTp3ixx9/pHfv3kRGRtK/f3/at29fxZWLCBY36HgLPLABLnvdWJM25RD8eA+83wv++hn+YSZ00xBf7u5n9DB5+de/yMzNr6rKReRs+Tnw21kND8Mvcm49IlVAwbSISDUxd+sx7pi5ntM5+XRvGszX9/QkLMDL2WWJiEgtl5uby8aNGxkyZEjhPrPZzJAhQ1i9enWJ5/z888/07NmT++67j/DwcNq2bct//vMfrNbzz87MyckhLS2t2ENEHMjNE7rfDQ9tgSEvgFcQnNgFX98GHw4wZmKeJ6C+b2AzGgZ5cyQli3cXqxGiiFOsegdO7QO/cDU8FJehYFpEpBr4bPVB7v9qE7lWG5e1rcend3YjwMvd2WWJiIgLSEpKwmq1Eh4eXmx/eHg4CQkJJZ6zf/9+vv32W6xWK7/99hvPPvssb775Jq+88sp5X2fSpEkEBgYWPiIiIhz6PkSkgIcv9HkEHvoT+j0B7r5wbAt8cT0sf6PEU7w9LDx/pdEIcfry/ew7cboKCxYRNTwUV6VgWkTEiex2O28u2M1zP+3AbodbezTm3Zs74eVucXZpIiIi52Wz2QgLC+PDDz+kc+fOjBw5kqeffppp06ad95yJEyeSmppa+IiPj6/CikVckHcQDHraCKi7jjP2Lf8fZJ4q8fBL2oQzsGUoeVY7L6gRokjVmj8R8rOgSW9oN8LZ1YhUGQXTIiJOkm+1MfH7bbxT8HHJCZe04OWr22Ixq8GFiIhUnZCQECwWC4mJxZueJSYmUq9evRLPqV+/Pi1atMBiKfpDauvWrUlISCA3N7fEczw9PQkICCj2EJEq4BcKw1+Heu0gLwPWvF/iYSaTiReuuggPNzPL9ybx+/aSPzEhIg62dxHs/MVoeDhcDQ/FtSiYFhFxgqxcK/d8sYnZ6+Mxm+A/17bjwcHNMekmREREqpiHhwedO3cmJiamcJ/NZiMmJoaePXuWeE7v3r2JjY3FZrMV7tuzZw/169fHw8Oj0msWkTIymaDf48b22g8gO7XEw5rU9eWe/tGA0QgxI0eNEEUqVX4O/F7w/83u90B4G+fWI1LFFEyLiFSxlMxcbpuxlkU7E/FwM/P+rZ25uXtjZ5clIiIubMKECUyfPp1PP/2UnTt3Mn78eDIyMhgzZgwAo0ePZuLEiYXHjx8/nlOnTvHQQw+xZ88e5s6dy3/+8x/uu+8+Z70FEbmQVldCaCvISYV108972L0DookI9uZYajZvL95bhQWKuKBVb8Op/Wp4KC5LwbSISBU6lprFiGmr2XAoGX8vNz6/sxvDLir5Y9IiIiJVZeTIkbzxxhs899xzdOjQgS1btjBv3rzChohxcXEcO3as8PiIiAjmz5/P+vXrufjii3nwwQd56KGHePJJ/VItUm2ZzdD3MWN79VTIzSjxMC93Cy9ceREAM5YfIPZ4elVVKOJaUuJg2ZvG9tBXwUtLXInrMdlrQEeDtLQ0AgMDSU1N1Vp0IlJjxR5PZ/SMdRxNzSY8wJNP7+xGq3r6mSYirk33ea5L117ECaz5MLWrMUNz6KvQ6/7zHjr20/Us2nmcXtF1mTW2u5acE3G02bfArl+hSR+441etLS21Smnv8zRjWkSkCmw8lMwN01ZzNDWbqFBfvhvfS6G0iIiIiFQtixv0mWBsr3ob8rLPe+jzV16Ep5uZVftO8uvWY+c9TkTKYe9CI5Q2WYzmpAqlxUUpmBYRqWQxOxO55aM1pGTm0SEiiG/v6UWjOj7OLktEREREXNHFIyEwAk4nwubPz3tYRLAP9w1sBsArc//itBohijhGfg78/oSx3WO8Gh6KS1MwLSJSib7eEM/dn28kO8/GgJahfDmuO8G+Hs4uS0RERERclZsH9H7I2F45BfJzz3vo3f2iaFLXh8S0HKYs2lNFBYrUcoUND+tB/387uxoRp1IwLSJSCex2O+8tieWJb7ditdm5rlNDpo/ugo+Hm7NLExERERFX1/E28AuH1HjYOue8h3m5W3jhKqMR4syVB9mdoEaIIhWSfKio4eEwNTwUUTAtIuJgNpudF3/5i9fm7QbgX/2jeHNEe9wt+pErIiIiItWAuxf0etDYXjHZaIp4HgNbhjG0TThWm53nftqO3W6voiJFaqH5T0F+FkT2hbbXO7saEadTSiIi4kA5+VYemrOFT1YdBOCZy1sz8bLW6mIuIiIiItVLlzHgHWwsKbDj+3889Lkr2+DlbmbtgVP8/OfRKipQpJbZs8BoeGh2U8NDkQIKpkVEHOR0Tj53fbKBX/48ipvZxFsjOzC2b5SzyxIREREROZeHL/S8z9he9gbYbOc9tFEdHx4Y1ByAV+buJC07ryoqFKk98rKLGh52vwfCWju3HpFqQsG0iIgDnEjPYdSHq1kRm4SPh4WZd3Tlmo4NnV2WiIiIiMj5dRsHnoGQtBt2/fKPh47t25SmIb6cSM/hrYV7q6hAkVpi1TuQfAD868OAJ51djUi1oWBaRKSCDp3M4IZpq9h+JI1gXw++GteDfi1CnV2WiIiIiMg/8wqE7v8ytpe9Dv+wfrSnW1EjxE9XH2TnsbSqqFCk5ks+BMvfMLaHvgKe/s6tR6QaUTAtIlIB24+kcv37qzh0MpNGdbz59p6etI8IcnZZIiIiIiKl02M8ePhBwjbYu+AfD+3fIpTL2tZTI0SRspg3EfKz1fBQpAQKpkVEymlVbBKjPlxD0ulcWtcP4PvxvYgK9XN2WSIiIiIipecTDF3vMraXvvaPs6YBnr2iDd7uFtYfTOb7TUeqoECRGmzPAtg9t6Dh4RtqeCjyNwqmRUTK4detR7n943WczsmnR1Qwc/7Vg7AAL2eXJSIiIiJSdj3vBzcvOLIBDiz9x0MbBHnz4GCjEeKk33eSmqVGiCIlOrvhYY/xENbKufWIVEMKpkVEyuiTlQd44KvN5FntDG9Xj0/v7EaAl7uzyxIRERERKR+/MOh8h7G97I0LHn5Xn6ZEhfqSdDqX/y3cU7m1idRUq94uanjY/9/OrkakWipXMD116lQiIyPx8vKie/furFu37rzH5uXl8dJLLxEdHY2Xlxft27dn3rx55S5YRMRZ7HY7r8/fxQu//IXdDqN7NuGdmzrh6WZxdmkiIiIiIhXT60Ewu8PB5XBo9T8e6uFm5uWr2wLw2eqD7DiaWhUVitQcyQdh+ZvG9rBX1fBQ5DzKHEzPmTOHCRMm8Pzzz7Np0ybat2/PsGHDOH78eInHP/PMM3zwwQe88847/PXXX9xzzz1ce+21bN68ucLFi4hUlXyrjX9/t5Wpf+wD4NFLWvDiVRdhMWuNMBERERGpBQIbQsdbjO3lF5413btZCFdcXB+bHZ79cTs2mxohihQ60/CwaT+46DpnVyNSbZU5mJ48eTLjxo1jzJgxtGnThmnTpuHj48PMmTNLPP7zzz/nqaeeYvjw4URFRTF+/HiGDx/Om2++WeHiRUSqQlaulXu+2MjXGw5jNsH/XdeOBwY3x6TGFSIiIiJSm/R+GEwWiF0ERzZd8PBnLm+Dj4eFTXEpfLvpcOXXJ1IT7JkPu38zGh5e9roaHor8gzIF07m5uWzcuJEhQ4YUDWA2M2TIEFavLvmjPjk5OXh5FW8I5u3tzYoVK8pRrohI1UrJzOXWGWtZtPM4nm5mpt3amVHdGju7LBERERERxwtuChffaGyXYq3peoFePDzEaIT4f7/vIjVTjRDFxRVreHivGh6KXECZgumkpCSsVivh4eHF9oeHh5OQkFDiOcOGDWPy5Mns3bsXm83GwoUL+f777zl27Nh5XycnJ4e0tLRiDxGRqnY0JYsR01az8VAyAV5ufDG2O0MvqufsskREREREKk+fCYAJds+FhO0XPHxM76Y0D/PjVEYubyzYXfn1iVRnK6cY60v7N4D+Tzi7GpFqr1zND8tiypQpNG/enFatWuHh4cH999/PmDFjMJvP/9KTJk0iMDCw8BEREVHZZYqIFLM3MZ3r31/F3uOnqRfgxTf39KJrZLCzyxIRERERqVyhLeCia4zt5RdegtPdYualgkaIX6w9xLbDaoQoLurUAVgx2dhWw0ORUilTMB0SEoLFYiExMbHY/sTEROrVK3kWYWhoKD/++CMZGRkcOnSIXbt24efnR1RU1HlfZ+LEiaSmphY+4uPjy1KmiEiFbDx0ihumreZYajbRob58d28vWtbTTYWIiIiIuIi+jxlfd/wASXsveHjP6Lpc3aEBdjs8+5MaIYqLKtbw8FpnVyNSI5QpmPbw8KBz587ExMQU7rPZbMTExNCzZ89/PNfLy4uGDRuSn5/Pd999x9VXX33eYz09PQkICCj2EBGpCrsT0rnlo7WkZuXRsXEQ397Ti4ZB3s4uS0RERESk6tRrCy2HA3ZYPrlUpzw1vDV+nm5siU/h6w2aXCYuZvc82PO70fBw+BtqeChSSmVeymPChAlMnz6dTz/9lJ07dzJ+/HgyMjIYM2YMAKNHj2bixImFx69du5bvv/+e/fv3s3z5ci699FJsNhtPPKG1dkSk+vnvvF1k59noGVWXWWO7U8fXw9kliYiIiIhUvX4Fs6a3zjHWzL2A8ICiRoj/nbeL5IzcSixOpBrJyypqeNjzPght6dx6RGqQMgfTI0eO5I033uC5556jQ4cObNmyhXnz5hU2RIyLiyvW2DA7O5tnnnmGNm3acO2119KwYUNWrFhBUFCQw96EiIgjrDtwisW7jmMxm/jPde3w8XBzdkkiIiIiIs7RsDNEDwa7FVa8VapTbu8VSctwf5Iz83hdjRDFVaycAimHjIaH/TQJU6QsTHa7vdov/pSWlkZgYCCpqala1kNEKoXdbmfEtNVsOJTMTd0aM+m6ds4uSUTEJeg+z3Xp2ovUAIdWw8eXgsUDHtwCgQ0veMq6A6e48YPVmEzw4729aR8RVOllijjNqQMwtTtYc2DEJ1pbWqRAae/zyjxjWkSkNvpj93E2HErG083MQ4ObO7scERERERHna9ITmvQBay6seqdUp3RrGsx1HRsWNkK0qhGi1GbznjRC6ab9oc01zq5GpMZRMC0iLs9ms/PaPOOjhnf0jqReoJeTKxIRERERqSbOrDW98RM4fbxUpzw5vBX+nm5sPZzK7PVxlVebiDPt/h32zAOzuxoeipSTgmkRcXk//3mUXQnp+Hu5Mb5/tLPLERERERGpPqIGQMMukJ8Fq6eW6pQwfy8mDG0BwGvzdnNKjRCltsnLgt//bWz3vA9CWzi3HpEaSsG0iLi03Hwbby40Zkvf0z+aIB8PJ1ckIiIiIlKNmEzQ73Fje/1HkHmqVKfd1qMJresHkJqVx2vzdlVigSJOsOIto+FhQMOi/3+ISJkpmBYRlzZ7fRzxp7II9fdkTO9IZ5cjIiIiIlL9tBgG4e0g9zSsnVaqU9wsZl6++iIAZq+PZ1NccmVWKFJ1Tu2HFf8ztoe9Cp5+zq1HpAZTMC0iLisjJ5+3Y2IBeHBwc3w83JxckYiIiIhINWQyFa01vXYaZKeW6rQukcHc0LkRAM/+qEaIUkv8XtDwMGqAGh6KVJCCaRFxWR+vPEDS6RwaB/swskuEs8sREREREam+Wl8FIS2NUHr9R6U+7cnLWuHv5caOo2l8ufZQJRYoUgV2/w575xsNDy97XQ0PRSpIwbSIuKTkjFw+WLofgEeHtsDDTT8ORURERETOy2yGvo8a26unQm5GqU4L8fPk8WEtAXh9/m6STudUVoUilSsvC35/wtjudb8aHoo4gJIYEXFJ05buIz0nn1b1/Lny4gbOLkdEREREpPprez3UaQqZJ2HjJ6U+7ZbuTbioQQBp2fn83+9qhCg11Ir/QUocBDRSw0MRB1EwLSIu51hqFp+sOgjAvy9thdmsj1+JiIiIiFyQxQ36TjC2V74NedmlO81s4uVr2gLw7cbDbDh4qrIqFKkcp/bDireM7WGvgoevU8sRqS0UTIuIy3k7Zi85+Ta6RQYzoGWos8sREREREak5Lh5lzBg9nQBbvij1aZ0a1yns6/LsTzvIt9oqq0IRx7Lb4fd/FzQ8HAhtrnZ2RSK1hoJpEXEp+06c5usNhwF44tKWmNSsQkRERESk9Nw8oM/DxvaKt8CaV+pTn7i0JYHe7uw8lsYXa9QIUWqI3b/D3gVGw8Phango4kgKpkXEpUxesAerzc6Q1mF0iQx2djkiIiIiIjVPx1vBLxxS42HrnFKfVtfPkycuNRohvrlgDyfS1QhRqrncTGO2NECvByCkuXPrEallFEyLiMvYdjiVuduOYTLBYwWdwUVEREREpIzcvY2QDmD5m2CzlvrUUV0bc3GjQNJz8pn0285KKlDEQVb8D1LPNDx8zNnViNQ6CqZFxGW8Nt/oAH5Nh4a0qhfg5GpERERERGqwzmPAO9hoCrfjh1KfZjGbePnqtphM8P3mI6zdf7ISixSpgJP7YOVbxval/1HDQ5FKoGBaRFzCqtgklu9Nwt1i4pEhLZxdjoiIiIhIzebpBz3vNbaXvQG20jczbB8RxKiujQF47qcd5KkRolQ3hQ0PcyF6ELS+ytkVidRKCqZFpNaz2+38d/5uAG7u1pjGdX2cXJGIiIiISC3Q7W7wDIQTO2HXr2U69YlhLanj487uxHQ+W61GiFLN7P4NYhcaDQ8vU8NDkcqiYFpEar35OxL5Mz4FHw8L9w9SswoREREREYfwCoTudxvby143ZpmWUh1fD/59aSsA/rdwD4lp2ZVRoUjZ5WbC708a270fhJBmzq1HpBZTMC0itVq+1cYbC4zZ0nf1aUqov6eTKxIRERERqUW6jwd3X0jYCnsXlunUG7tE0D4iiNM5+fxHjRClulgxuajhYd9HnV2NSK2mYFpEarXvNx8h9vhpgnzcGdcvytnliIiIiIjULr51oeudxvay18o0a9psNvFKQSPEn7YcZfU+NUIUJzu5D1ZOMbYvnaSGhyKVTMG0iNRa2XlW3lq4B4D7BjQjwMvdyRWJiIiIiNRCPR8ANy84vB4OLCvTqe0aBXJL9zONELerEaI4T7GGh4Oh9ZXOrkik1lMwLSK11qy1cRxNzaZegBe39Wzi7HJERERERGon/3DodLuxvez1Mp/++NBWBPt6sPf4aT5ZedCxtYmU1q65RsNDiwcMV8NDkaqgYFpEaqX07Dym/hELwMNDmuPlbnFyRSIiIiIitVjvB8HsDgeXQ9yaMp0a6OPOk5cZjRDfWrSHhFQ1QpQqlpsJ8woaHvZ6EOpGO7ceERehYFpEaqWPlh/gVEYuUSG+3NC5kbPLERERERGp3QIbQYebje1lb5T59Bs6NaJT4yAycq28MvcvBxcncgHL34TUeAiMUMNDkSqkYFpEap2k0zl8tHw/AI8Na4mbRT/qREREREQqXZ9HwGQxlkM4urlMp5rNJl6+pi1mE/y69RgrY5MqqUiRvzm5D1a9bWxfOgk8fJxbj4gLUVojIrXO1D9iyci10q5hIJe1refsckREREREXENwU2g3wtgux6zpixoEMrpnJGA0QszNVyNEqWR2O/z2uNHwsNkQaHWFsysScSkKpkWkVok/lcmsNXEA/PvSVpjUsEJEREREpOr0nQCYYNevkFj2JTkeuaQFIX4e7DuRwYwVBxxfn8jZdv0K+2KMhoeXvaaGhyJVTMG0iNQqby3aS67VRu9mdenTPMTZ5YiIiIiIuJbQltDmamN7edlnTQd6uzPxstYAvB2zl6MpWY6sTqRIbgbMm2hsq+GhiFMomBaRWmNPYjo/bD4MwOPDWjm5GhERkZpl6tSpREZG4uXlRffu3Vm3bt15j/3kk08wmUzFHl5eXlVYrYhUa/0eM75u/x6S9pb59Os6NaRrZB2y8tQIUSqRGh6KOJ2CaRGpNd6YvxubHS69qB4dIoKcXY6IiEiNMWfOHCZMmMDzzz/Ppk2baN++PcOGDeP48ePnPScgIIBjx44VPg4dOlSFFYtItVavHbS4DLDDiv+V+XSTycRLV7fFYjbx27YElu054fgaxbUlxcKqd4ztS/9PDQ9FnETBtIjUCpviklnwVyJmEzw2rIWzyxEREalRJk+ezLhx4xgzZgxt2rRh2rRp+Pj4MHPmzPOeYzKZqFevXuEjPDy8CisWkWrvzKzpP2dDctn/cNW6fgC3FzRCfOHnHeTkWx1YnLg0ux1+P9Pw8BJodbmzKxJxWQqmRaTGs9vt/Pf3XQDc0LkRzcL8nVyRiIhIzZGbm8vGjRsZMmRI4T6z2cyQIUNYvXr1ec87ffo0TZo0ISIigquvvpodO3b84+vk5OSQlpZW7CEitVijLhA1EOxWWPlWuYZ4+JLmhPp7sj8pg4+WqxGiOMjOX2Df4oKGh/9Vw0MRJ1IwLSI13rK9Saw9cAoPNzMPDangbGmbDbZ8CbvmQs5pxxQoNcep/bBhprEeYlaKs6sREakSSUlJWK3Wc2Y8h4eHk5CQUOI5LVu2ZObMmfz000988cUX2Gw2evXqxeHDh8/7OpMmTSIwMLDwERER4dD3ISLVUL/Hja+bv4C0o2U+PcDLnaeHG40Q31m8l8PJmY6sTlzR2Q0Pez+khociTubm7AJERCrCZrPz2jxjtvToHk1oGORdsQHXf2R8rAvA4glN+0KLS6H5UKjTpILVSrVjzYP4tbBnHuyZD0l7ip4zWaBJL2gxzPjfQN1mmk0hIlKgZ8+e9OzZs/D7Xr160bp1az744ANefvnlEs+ZOHEiEyZMKPw+LS1N4bRIbRfZGxr3grhVxnq+l04q8xBXd2jAV+viWHvgFC//+hcf3NalEgoVl7H8TUg7DIGNoc+ECx8vIpVKwbSI1Ghztx1jx9E0/DzduHdgs4oNlpUMSwpuln1CIDMJYhcZD4CwNkUhZaOuYLZU7PXEOTJPGdd0zzzja3Zq0XNmN4joARknIGk3HFxuPBY8A8FRxrVvMcz4BcvNw3nvQUTEgUJCQrBYLCQmJhbbn5iYSL169Uo1hru7Ox07diQ2Nva8x3h6euLp6VmhWkWkBur/OHx+LWz42AgC/ULLdLrJZOLla9py2ZTlzN+RyB+7jzOwZVglFSu1WlIsrHzb2L5MDQ9FqgMF0yJSY+VZbUxeaMxwvbtfFMG+FQwKl70BWacgtDXcswJO7SuaSRu3Bo7/ZTxW/A+86xizqFsMg+jB4B1U8TcklcNuhxO7iq5l/Fqw24qe96lrXMvmQyF6UNG1PLUf9iwwzju4wvh+zXvGw8Mfmg0ygupml5T5FywRkerEw8ODzp07ExMTwzXXXAOAzWYjJiaG+++/v1RjWK1Wtm3bxvDhwyuxUhGpkaIGQsPOcGQjrJkKQ14o8xAtwv25s3ck05cf4IWfd9Dz4bp4uWuSiJTBmYaHtjzjvr+l/nslUh0omBaRGuubDYc5kJRBXV8P7uzTtGKDndoP6z40toe+AhY3CG1pPHo/ZMyy3bfYCCn3LjRmV2+dYzy05EP1k5cNh1YYQfSeeZASV/z58LZF16th55JnvwdHQY97jEdOOuxfArvnwd75xozqv34yHpiM5j5nxgtvq+svIjXOhAkTuP322+nSpQvdunXjrbfeIiMjgzFjxgAwevRoGjZsyKRJxieLXnrpJXr06EGzZs1ISUnh9ddf59ChQ4wdO9aZb0NEqiOTyVhr+qtRsG469HoQfILLPMxDQ1rw859HOXQykw+X7efBwc0roViptXb+XNDw0FMND0WqEQXTIlIjZeVamRJjzJa+f1Az/Dwr+ONs0QtgzTVmPzcfcu7zPsHQ7gbjYc2Hw+uKZuCe2KUlH6qD9ATYu8C4Jvv+gLyMoucsnhDV37gmzYdBUBnXNPX0h9ZXGg+bDY5uLrj+8yBhKxxebzwWvwIBDYtC6qb9wL2C656LiFSBkSNHcuLECZ577jkSEhLo0KED8+bNK2yIGBcXh9lc1Dc9OTmZcePGkZCQQJ06dejcuTOrVq2iTZs2znoLIlKdtbgUwttB4jZjMsiAJ8s8hJ+nG09f3oYHv9rM1D9iubZjQyKCtRSD/IPMU5C4HRJ3FC3h0fsh4/c1EakWTHa73e7sIi4kLS2NwMBAUlNTCQgIcHY5IlINTFu6j//7fRcNg7xZ/Fh/PN0q8FG+Q6vh40vBZIZ7VkJ4GX+pPnWgIBAtWPLBmlv0nJZ8qDw2GyT8WTQr+ujm4s/71y8eEHv4Vk4daUcLaphvzKrOzyp6zs27eCAe2LByahCpwXSf57p07UVczI4f4Js7wCsQHt4OXmX//73dbueWj9ayat9JhrQO56Pb1QhRMBqaJ+01AugzQXTiDkg/Wvy4oMZw71qtLS1SBUp7n6dgWkRqnNTMPPq+tpi07HzeHNGe6zs3Kv9gNht8NBiOboLOd8CVUypW3JklH/bMM9Ynzjh+1pNa8qHCcjOK//ueTij+fMPORbPV611c9f++eVnGHyf2zDOW/Ug7XPz5eu0K6rsUGnSCs2Yfirgq3ee5Ll17ERdjs8J7PSBpDwx+HvpOKNcwscfTufSt5eTb7My4vQuDW4c7uFCp1k4fLwqfEwq+nthlrB1dkjqRxu9d4RcZv+8FNKjKakVcloJpEam1Xpu3i/eW7KNFuB+/P9QPi7kC4ePWb+D7seDhBw9uBj8Hdvi22eDY5qIZvcf+LP68lnwoneRDRTPSDywHa07Rcx5+ED2waEa6fzX6xcRuN26Uzyz5cng9cNZ/cn1DixpoRg0s16whkdpA93muS9dexAX9ORt++JfRfPrhbeX+RNuk33fywdL9RAR7s/CR/mqEWBvlZUPS7qLZz2fC6IwTJR/v4W+Ez/UKQujwthDW2liST0SqnIJpEamVjqdl0+/1P8jOszF9dBcuaVOBIDIvC97pYsxqHfwc9H3UcYWWJO1o8TWQteRDyWxWI8Q9E+ge/6v480FNoOVlxr9Vk97g5umcOssqI8lonLlnntF4JSet6DmzO0T2LprtrXXvxIXoPs916dqLuCBrPrzTCVIOwbBJ0PPecg2TkZPPkMlLOZaazUODm/PIJS0cXKhUGbvd+D3p78twJO0Bu7WEE0xGs/kz4XP4RcYjqLE+jSpSjSiYFpFa6dkft/P5mkN0ahzEd+N7YarIzceyN2DxyxAYAfevr9oZyxda8iG8HbR0oSUfslJgX4wRRO9dAFnJRc+ZzNC4Z9Hs8pAWNf+m05oHcauN97v7dzi1r/jzIS2K3m9ED7CoV7HUXrrPc1269iIuauMn8MtDRj+QB7eAu1e5hvlt2zHunbUJDzczCx/pR5O6ldRPRBwnNxNO7Cy+DEfidshOKfl4ryBjKbwz4XP4RRDaWmtEi9QACqZFpNY5dDKDwW8uJd9mZ/bdPegRVbf8g6UnGrM1ck/DdR/BxSMcV2hZ2e3GrOAzM4Tj11FsyQefkKIlH6IH1Y4lH+x2OBlb9J4PrSo+I8IrCJpfYgSz0YPAJ9hppVaJpDP/FvOMwNqWX/ScVyA0G1KwXMmQ2v9vIS5H93muS9dexEXl58DbHSHtCFw+GbreVa5h7HY7o2euY/neJAa2DGXmHV0rNmlFHMduh5S4s2ZAF3w9uY9iv+ecYbIYEzMKA+i2xpIc/vVr/oQUERelYFpEap2HZm/mpy1H6d8ilE/v7FaxwX55yJit0bAz3LWoes1IzkiC2EVGSBkbc+6SD016FS35UDfaeXWWVX4uxK0qWnP71P7iz4e2Kpol3Kib684SzkoxlvrYu8B4ZJ4ses5khojuRf9Ooa10sy41nu7zXJeuvYgLW/sB/P4EBDaGBzeBxb1cw+w7cZpL31pGntXOh7d1ZuhF9RxcqFxQTjok/lV8GY7EHZCbXvLxPiEF60C3LVqKI7RlzVmeT0RKRcG0iNQqO46mcvnbKwD49YE+tG0YWP7BEnfAtD5gt8Gd86FxDwdVWQnOXvJhzzxjlvHZ6jY3QsqWlxmBZTlv6ivN6RMQW7Cucuzi4jeoZndo2tcIWJsPheCmzquzurJZ4cjGopnliduLPx/UuOiPFJF9dUMvNZLu81yXrr2IC8vLgrcuhozjcPV70PGWcg91pjF6wyBvFk3oj7eHGiFWCpsVkg8WD6ATthnrhZfE7G5MoqjXtvhMaEc2mxeRakvBtIjUKmM+Xscfu09wZfsGvHNTx4oN9vm1xozUNlfDjZ85psCqkhQLewtC6kOrzl3yIXpwQdB7iXOWfLDbjZvVM0Hq4Q0U+7iebxi0GGrUGDVAXbLLKiWu4I8U8+HAMrDmFD3n7gvRAwsaaA4Ff80YkppB93muS9dexMWtfBsWPgvB0Ua/F3P5AuXM3HwumbyMIylZPDCoGY8ObengQl1QVvJZs6ALgujjOyEvs+Tj/RsUD5/DL4KQ5tVv0oyIVBkF0yJSa6zdf5KRH67BzWxi0YT+RIZUoLHJ3kUw63qweMB9ayE4ynGFVrXsVCNgP9Mw8O9LPjTqVrTkQ1jrylvyIS/LCEnPhNFpR4o/X7990aze+h2r17IpNVluBuxfWvCHivmQfqz48w06Fv2712uvf3eptnSf57p07UVcXM5peKutEYJePwPa3VDuoeZtT+CeLzbiYTEz/5F+NK3I7wuuxJpvfCLz78tw/L0x+xluXsbvFWcH0GEXgW8Fev+ISK2kYFpEagW73c4N01az8VAyt3RvzKvXtiv/YNZ8mNYbTuyCXg/A0FccV6izXWjJh8DGBUt+XApN+pS7+3mh1CNFgej+pZCfVfScm3fxmbsBDSr2WnJhdjskbC1a8uXIxuLP+9UrPlPdQ7+sSfWh+zzXpWsvIix9Hf54BcLawD0ry/2HdLvdzh0fr2fpnhP0axHKp2PUCPEcmaeM+8XCAHo7HN9V/BN4ZwtsXDQL+sya0MFR5Z7ZLiKuRcG0iNQKMTsTuevTDXi5m1n6+EDCAyoQqK6fAXMngHcwPLgZvIMcVme1kxJfPDj++5IPUQMKZlMPK92SDzYbHN1UEHzPM9aTO1tAIyP0bnEpRPYBd2+Hvh0po/REYxb9nnmw7w/Iyyh6zuJZtLZ3i2HGOtUiTqT7PNelay8iZKXAW+2MZt8jZ0HrK8o91IGkDIb9bxm5VhvTbu3EpW3rO67Omsxuh3UfwvynwZZ37vPuvhDepmgGdHhbY1Z0bf5dSUQqnYJpEanxrDY7w6csZ3diOvf0j+bJy1qVf7DsNHi7I2QmwWWvQ/e7HVdodZebUXypjb8v+VC/w1lLbXQomqmSnQb7/yha0zgz6ayTTBBx9lIhbSpvqRCpmPwcOLiiaDb13xvUhLUpuo6NumoWjFQ53ee5Ll17EQEg5mVY/oax/NvdSyt0T/nmgt28sziWBoFeLHq0Pz4ebg4stAbKz4G5j8Lmz43vg5pA/YvPCqEvgqBILfkmIg6nYFpEarwfNh/mkTl/EuDlxvInBhHoU4HmGYtegBX/g7rN4d7VrtuI44JLPoRDsyHGOtEHVxafVeEZAM0Kmis2GwK+IVVbu1Sc3Q4ndhf9kSJ+DdhtRc97BxuNM0Na6A8Nrq7XQ2Cpml/mdZ/nunTtRQSAjJPGWtN5mXDLt8a9SDll5Vq55H9LOZycxb0Donni0gpMbKnp0hNhzq1weJ3Rf2bIi8ZyhrrHE5EqoGBaRGq03Hwbg95cwuHkLJ64tCX3DmhW/sGSD8G7XY3lLG6aYyw5IYb0RIhdWLTkQ+7p4s/XbVY0m7pxT9cN9GurzFMQG2Nc/9iFRkNNEYCnEyu+Fn0p6T7Pdenai0ih+U/D6neN5t13LahQeLrwr0TGfbYBd4uJeQ/3IzrUz4GF1hBHNsHsWyD9KHgGwg0zofkQZ1clIi6ktPd5Lv65FhGprr5aF8fh5CzC/D0Z06tpxQaLedEIpZv2MwJWKeIfDh1vNR75OXBopbEmtW+oEUiHVOAPAlL9+QTDxSOMhzUf4tcaAXVG0oXPldpNS7qIiEhV6vUArJtuzO49uNy4by+nIa3DGNQqjMW7jvP8Tzv4/K5urtUI8c858MuDkJ9tfApu1Fe6pxeRakvBtIhUOxk5+byzeC8ADw5ujrdHBQKS+PWw/TvABENf1UfX/ombJ0QPMh7ieixuENnbeIiIiIhUJf960Gk0rJ8Oy16vUDBtMpl4/so2rIhNYkVsEr9tS+Dyi12gEaLNCoueh1XvGN83HwbXTwevQOfWJSLyD7TCvYhUOzNXHCDpdC5N6vowsmtE+Qey22H+U8Z2x1uMRh8iIiIiIlL99H4IzG5G0+64tRUaqkldX+4dEA3Ay7/+RUZOviMqrL6yUuDLG4tC6T4T4KavFEqLSLWnYFpEqpXkjFw+XLYfgEeHtsTdUoEfUzt+MD4O6O4LA59xUIUiIiIiIuJwQRHQ/iZje/kbFR7unv7RNA72ISEtm7cLPo1ZK53YA9MHQewicPM21pMe8ryW5RKRGkHBtIhUK+8v3Ud6Tj5t6gdwRbsKfOQuL9v4KBsYsy8CXODjeyIiIiIiNVmfR8Bkhr0L4OiWCg3l5W7hhavaADBj+QH2JqY7oMBqZs98+GgwnNoHAY3gznnQ9npnVyUiUmoKpkWk2jiWmsUnqw4C8PilLTGbK7Ae9LoPICUO/BtAr/sdU6CIiIiIiFSeutHQboSx7YBZ04NahTOkdTj5NjvP/bQDu91e4TGrBbsdlk+GL0dCTho07gl3L4EGHZxdmYhImSiYFpFqY8qiveTm2+jWNJgBLULLP1BGEiwruJEd/Bx4+DqmQBERERERqVx9JgAm2PkLHN9Z4eGev7INnm5mVu8/yS9bj1W8PmfLzYTv7oKYFwE7dB4Do38Gvwr8/iQi4iQKpkWkWog9fpqvN8QD8O9LW2IyVWC29JJJxsyB+u3h4pEOqlBERERERCpdWCtoc5WxvfzNCg8XEezDfQObATB1cWzNnjWdEg8zh8H274xGkZdPhivfAjcPZ1cmIlIuCqZFpFqYvHA3NjsMaR1O5ybB5R/oxG7Y8LGxPfRVMOvHnIiIiIhIjdL3MePr9u/g5L4KD3d7r0i83M3sTkxnc3xKhcdzikOrYfpASNgKPnVh9E/Q9S5nVyUiUiFKbETE6bYeTuG3bQmYTPD4sJYVG2zBs2C3QqsroGlfxxQoIiIiIiJVp/7F0OJSsNuMtZQrKNDbneEFjdW/WhtX4fGq3IaP4dMrIeMEhLcz1pOO7OPsqkREKkzBtIg43evzdwNwbceGtKznX/6B9i2GvfONj7Vd8pKDqhMRERERkSp3Ztb01tmQfKjCw93UrTEAv249Rnp2XoXHqxLWPJj7KPz6MNjyoM01cNd8CGrs7MpERBxCwbSIONXK2CSW703C3WLikSEtyj+QzQrznzG2u44zOnqLiIiIiEjNFNEVogaALR9WTqnwcF2a1KFZmB9ZeVZ+2nK04vVVtowk+OwaWP8RYIJBz8KIT9TYXURqFQXTIuI0drud1+btAuCW7k2ICPYp/2BbZsHxHeAVBP2fcEyBIiIiIiLiPP0eN75u/hzSjlVoKJPJxKiuEQDMXl/Nl/NI2AYfDoRDK8DDH276Cvo9BhVpEC8iUg0pmBYRp5m/I4E/D6fi42Ep7JRdLjnpsPgVY7v/v8GnAs0TRURERESkemjSGxr3BGsurHqnwsNd16kRHhYz24+ksf1IqgMKrAQ7foAZQyE1Duo0hbGLoOVlzq5KRKRSKJgWEafIt9oK15Ye26cpof6e5R9s5RQ4nQjBUdB1rIMqFBERERERpzKZjJnCABtmGstbVECwrwdDLwoH4Kt11WzWtM1mTLb55g7Iy4SogTBuMYS1cnZlIiKVRsG0iDjF95uOsO9EBnV83BnbL6r8A6UeLpo9cclL4ObhmAJFRERERMT5ogdDg46QnwWrp1Z4uDNNEH/acpTM3PwKj+cQ2Wkw5xZY9rrxfc/74ZZv9UlQEan1FEyLSJXLzrPyv0V7ALhvYDMCvNzLP1jMy5CfbXzMr9UVDqpQRERERESqBZOpaK3pddMhK7lCw/WMqkvjYB9O5+Tz69aKrVvtECf3wYxLYPdvYPGEa6bBsFfB4ubsykREKp2CaRGpcl+sOcSx1GzqB3pxa48m5R/oyCbYOtvYHvaqmoGIiIiIiNRGLS6D8LaQmw5rP6zQUGaziZFnmiA6ezmPfYth+iA4sQv86sGY36HDTc6tSUSkCimYFpEqlZ6dx9Q/YgF4ZEgLvNwt5RvIbof5TxvbF48yPt4nIiIiIiK1j9kMfR81tte8ZzQ/r4ARnRthMZvYFJfCnsSKjVUudruxLMkX10N2CjTsAncvgUadq74WEREnUjAtIlVq+vIDJGfmER3qy3WdGpZ/oJ2/QNwqcPOGwc86rkAREREREal+2lwNdZsbQe76GRUaKizAi8GtwgAnNEHMy4Yf74X5T4HdBh1ugTvmQkD9qq1DRKQaUDAtIlUm6XQOHy3fD8BjQ1viZinnj6D8XFj4nLHd6wEIbOSgCkVEREREpFoyW4pmTa9+F3IzKzTcmSaIP2w+QnaetaLVlU7aMfjkcvjzSzCZYdgkuHoquHtVzeuLiFQzCqZFpMq8uziWzFwrFzcK5NK29co/0PrpkHwA/MKh90OOK1BERERERKqvdjdAUBPIOAGbPq3QUP1ahNIg0IuUzDzm70hwUIH/4PAG+HAAHNkAXkFw6/fQ8171yRERl6ZgWkSqRPypTGatPQTAvy9tham8N2CZp2Dpf43tQc+Ap5+DKhQRERERkWrN4g59HjG2V06B/JzyD2U2MaKL0QSx0pfz2PIlfHwZnE6A0NZw9x8QPbByX1NEpAZQMC0iVeJ/i/aQZ7XTp1kIvZuFlH+gpa9BdqrRlbvDLY4rUEREREREqr8ON4N/A0g/BltmVWioG7tGYDLBmv2nOJCU4aACz2LNh3lPwY/jwZoLLS+HsQshOMrxryUiUgMpmBaRSrc7IZ0fNh8B4PFhLcs/UFKssYwHwNBXjHXmRERERETEdbh5Fi3nt+J/YM0r91ANg7zp3yIUgNnrHTxrOvMUzLoB1kw1vu//bxj5BXj6O/Z1RERqMAXTIlLp3liwG7sdhrerR/uIoPIPtPA5sOVD82H66JuIiIiIiKvqNBp8QyElDrZ9U6GhRnU1miB+t/Ewufk2R1QHx3fC9EGw/w9w94ERn8LAp8CsCEZE5Gz6qSgilWrjoWQW/pWI2QQTLqnAbOkDy2H3XDBZYOjLjitQRERERERqFg8f6Hm/sb38TbBZyz3U4NZhhPh5knQ6l5idiRWvbddv8NEQo1l7UGO4awFcdE3FxxURqYUUTItIpbHb7fx33i4ARnSOoFlYORsV2mww/ylju8udEFqBgFtERERERGq+rneBVxCcjIW/fiz3MO4WMyO6NALgq/Xx5a/Hboelr8PsmyD3NET2hXFLoF678o8pIlLLKZgWkUqzdM8J1h04hYebmYeGNC//QFtnQ8JW8AyAAU86rkAREREREamZPP2hx73G9rI3jMks5TSqawQAy/eeIP5UZtkHyM2Ab+6AP14xvu92N9z2A/jWLXdNIiKuoFzB9NSpU4mMjMTLy4vu3buzbt26fzz+rbfeomXLlnh7exMREcEjjzxCdnZ2uQoWkZrBZrPz2rzdANzeswkNgrzLN1BuBsS8ZGz3ewx8QxxUoYiIiIiI1Gjd/2VMXjn+F+z5vdzDNKnrS6/outjt8M2GMs6aTj4EM4Yas7bN7nDlFBj+Oljcy12PiIirKHMwPWfOHCZMmMDzzz/Ppk2baN++PcOGDeP48eMlHv/ll1/y5JNP8vzzz7Nz505mzJjBnDlzeOqppypcvIhUX79uO8Zfx9Lw93Tj3gHNyj/Qqnch/RgENYFu/3JcgSIiIiIiUrN5B0G3ccb2steN5TTKaVQ3owni1xsOk28t5ezrgytg+kBI3G40Y7z9F+h8R7lrEBFxNWUOpidPnsy4ceMYM2YMbdq0Ydq0afj4+DBz5swSj1+1ahW9e/fm5ptvJjIykqFDh3LTTTddcJa1iNRceVYbkxcYs6Xv7hdFHV+P8g2UdgxWvmVsX/IiuHs5pkAREREREakdetwL7j5wdDPsiyn3MMMuCqeOjzsJadks3XPinw+222H9R/DZ1ZB5Euq3h7uXQJOe5X59ERFXVKZgOjc3l40bNzJkyJCiAcxmhgwZwurVq0s8p1evXmzcuLEwiN6/fz+//fYbw4cPr0DZIlKdfb0hnoMnMwnx8+DOPk3LP9DiVyAvEyK6Q5trHFafiIiIiIjUEr4hRoN0MJoPlnPWtKebhes6FTRBXPcPy3nk58KvD8PcR8GWD21vgDHzILBRuV5XRMSVlSmYTkpKwmq1Eh4eXmx/eHg4CQkJJZ5z880389JLL9GnTx/c3d2Jjo5mwIAB/7iUR05ODmlpacUeIlIzZOVambJoLwD3D2yGr6db+QY6thW2zDK2h74KJpODKhQRERERkVql5/1g8YT4NcbyGuV0UzejCeIfu4+TmFZCX6zTx+Gzq2DjJ4AJhrwI138EHj7lfk0REVdWruaHZbFkyRL+85//8N5777Fp0ya+//575s6dy8svv3zecyZNmkRgYGDhIyIiorLLFBEH+WTVQY6n59Cojjc3dW9cvkHsdljwNGA3ZiBEdHVojSIiIiIiUosE1IdOtxnby14v9zDNwvzp0qQOVpv93CaIR7fAhwMhbrXRcPHmr6HPw5pAIyJSAWUKpkNCQrBYLCQmJhbbn5iYSL169Uo859lnn+W2225j7NixtGvXjmuvvZb//Oc/TJo0CZut5IYCEydOJDU1tfARH1/Grrgi4hSpmXm8vyQWgAmXtMDTzVK+gfbMgwPLjFkPQ553YIUiIiIiIlIr9X4IzG5wYCnEl7+n1U0FTRDnbIjHZitYFmTbtzDzUkg7DHWbwdgYaDHUEVWLiLi0MgXTHh4edO7cmZiYooYCNpuNmJgYevYseZH/zMxMzObiL2OxGGGV/TxrP3l6ehIQEFDsISLV37Rl+0jLzqdluD9Xd2hYvkGsebDgGWO7570QVM5Z1yIiIiIi4jqCGkP7Ucb2sjfKPczwdvXx93Ij/lQWK/cmwqIX4Lu7ID8Lml1ihNKhLRxTs4iIiyvzUh4TJkxg+vTpfPrpp+zcuZPx48eTkZHBmDFjABg9ejQTJ04sPP7KK6/k/fffZ/bs2Rw4cICFCxfy7LPPcuWVVxYG1CJS8x1Py+bjlQcAeHxYSyzmcn6kbcNMOBkLPiHQZ4IDKxQRERERkVqtzwQwmWHvfDj2Z7mG8PawcG3HhviTSdBPt8OK/xlP9H4Ibp4D3kGOq1dExMWVOZgeOXIkb7zxBs899xwdOnRgy5YtzJs3r7AhYlxcHMeOHSs8/plnnuHRRx/lmWeeoU2bNtx1110MGzaMDz74wHHvQkSc7u3Fe8nOs9G5SR0Gtw4r3yBZybDk/4ztQU+Dlz4tISIiUlWmTp1KZGQkXl5edO/enXXrSvdR+NmzZ2Mymbjmmmsqt0ARkQupGw1trze2KzBrenTzfH70eJZ2mWuwu3nBdR/BJS+BWZPrREQcyWQ/33oa1UhaWhqBgYGkpqZqWQ+RauhgUgZDJi8l32bn63/1pFvT4PINNP9pWP0uhLaCe1aCxc2xhYqISLWj+7zqYc6cOYwePZpp06bRvXt33nrrLb755ht2795NWNj5/+B88OBB+vTpQ1RUFMHBwfz444+lfk1dexGpFMd3wns9jO1710BY67Kdv3cRfHsn5KRy1B7Mmq5vc90VVzq+ThGRWqy093llnjEtIvJ3kxfuId9mZ2DL0PKH0qf2w9qCT1IMfVWhtIiISBWaPHky48aNY8yYMbRp04Zp06bh4+PDzJkzz3uO1Wrllltu4cUXXyQqKqoKqxUR+QdhraF1QZC8fHLpz7PbYeUU+HIE5KRyok4Hrs55hXd3+5+3P5aIiFSMgmkRqZAdR1P5+c+jADw2rGX5B1r0AtjyIHowNB/imOJERETkgnJzc9m4cSNDhhT999dsNjNkyBBWr1593vNeeuklwsLCuOuuu0r1Ojk5OaSlpRV7iIhUin6PG1+3fwsn9134+Lws+P5uWPgc2G3Q8Ta8x/5Ghkdd9p/IYN2BU5Vbr4iIi1IwLSIV8vr83QBc1b4BFzUILN8gh1bDXz8ZjUqGvuLA6kRERORCkpKSsFqthT1jzggPDychIaHEc1asWMGMGTOYPn16qV9n0qRJBAYGFj4iIiIqVLeIyHnVbw/Nhxkh85nmheeTegQ+vgy2fQ0mCwx/A656Bz9fX65q3wCA2evjq6BoERHXo2BaRMptzf6TLNl9AjeziQmXtCjfIDYbzH/K2O40GsLbOK5AERERcbj09HRuu+02pk+fTkhISKnPmzhxIqmpqYWP+HgFPSJSifo9Znz98ytIiSv5mLi18OEAOLoZvINh9I/QbRyYTACM6tYYgN+2HSM1M6/yaxYRcTFaxFVEysVut/PavF0AjOoWQWSIb/kG2v4tHN0EHn4w8GkHVigiIiKlERISgsViITExsdj+xMRE6tWrd87x+/bt4+DBg1x5ZVEzMJvNBoCbmxu7d+8mOjr6nPM8PT3x9PR0cPUiIucR0Q2a9ocDS421oy9/s/jzmz6DXycYywmGXQQ3fQl1Iosd0r5RIK3q+bMrIZ0fNh/mjt5Nq65+EREXoBnTIlIuMTuPsykuBS93Mw8Oal6+QfKyYNGLxnbfCeAX5rgCRUREpFQ8PDzo3LkzMTExhftsNhsxMTH07NnznONbtWrFtm3b2LJlS+HjqquuYuDAgWzZskVLdIhI9XFmrelNn0PaMWPbmge/PQE/P2CE0q2vhLsWnBNKA5hMJm4qmDU9e328miCKiDiYgmkRKTOrzV64tvSdvZsSFuBVvoFWT4W0wxAYAT3udWCFIiIiUhYTJkxg+vTpfPrpp+zcuZPx48eTkZHBmDFjABg9ejQTJ04EwMvLi7Zt2xZ7BAUF4e/vT9u2bfHw8HDmWxERKRLZByJ6gDUHVr8Lmafgi+tg3QfG8wOfhhGfgaffeYe4pkNDPN3M7EpIZ0t8StXULSLiIrSUh4iU2U9bjrA7MZ1Ab3f+1f/cj+qWSnpiUSOSwc+Du7fjChQREZEyGTlyJCdOnOC5554jISGBDh06MG/evMKGiHFxcZjNmtMiIjWMyWTMmp51PWyYCTt/gZRDxjKC134Ara+44BCBPu5c3q4+328+wux18XRsXKcKChcRcQ0mew34LEpaWhqBgYGkpqYSEBDg7HJEXFpOvpXBby7lcHIW/760FeMHlDOY/uUh2PgJNOwMdy0C/bIrIuKSdJ/nunTtRaRK2O1Gg8NjW4zv60TCqK/K1HR93YFT3PjBanw8LKx7egh+nprjJyLyT0p7n6ckSETK5Ku1cRxOziLM35M7ekWWb5DEHUazEYBh/1EoLSIiIiIilcNkgiEvgMUTogfBuD/KFEoDdI2sQ3SoL5m5Vn7ecrRy6hQRcUFKg0Sk1E7n5PPO4lgAHhrSHG8PS9kHsdth/tNgt0Gbq6FxDwdXKSIiIiIicpbogfDvg3DbD+ATXObTTSYTo7qeaYIY5+DiRERcl4JpESm1mSsOcDIjl8i6PtzYJaJ8g8Qugv1/gMXDmLkgIiIiIiJS2Tx8KnT6dZ0a4m4xsfVwKjuOpjqoKBER16ZgWkRK5VRGLtOX7Qfg0aEtcbeU48eHNR8WPGNsd/8XBEc5sEIREREREZHKUdfPk6EX1QNg9rp4J1cjIlI7KJgWkVJ5f0ks6Tn5XNQggMvb1S/fIJs+hRO7wDsY+j7m2AJFREREREQq0U0Fy3n8uOUIWblWJ1cjIlLzKZgWkQs6mpLFp6sPAfDEpa0wm01lHyQ7Ff74j7E9YCJ4BzmuQBERERERkUrWK7ouEcHepGfnM3fbMWeXIyJS4ymYFpELmrJoL7n5Nro3DaZf85DyDbJ8MmQmQd3m0GWMYwsUERERERGpZGbzWU0Q16kJoohIRSmYFpF/FHv8NN9sNNZQe+LSVphM5ZgtnXwI1rxvbA99GSzuDqxQRERERESkaozo3AiL2cSGQ8nsTUx3djkiIjWagmkR+UdvLtiNzQ6XtAmnc5M65Rsk5kWw5kDTftDiUscWKCIiIiIiUkXCArwY1CoMgNnr1QRRRKQiFEyLyHn9GZ/C79sTMJng8WEtyzdI/HrY/h1ggqGvQnlmXIuIiIiIiFQTN3WLAOD7TYfJyVcTRBGR8lIwLSLn9fr83QBc17ERLcL9yz6A3Q7znzK2O94C9S92YHUiIiIiIiJVr3+LMOoHepGcmcf8HYnOLkdEpMZSMC0iJVqxN4kVsUl4WMw8PKR5+QbZ8QMcXgfuPjDwGccWKCIiIiIi4gQWs4kRXYxZ02qCKCJSfgqmReQcdrud1+bvAuCWHo2JCPYp+yB52bDoeWO798MQUN9xBYqIiIiIiDjRjV0aYTLBqn0nOZiU4exyRERqJAXTInKOedsT2Ho4FR8PC/cNbFa+QdZOg5Q48G8Ave53bIEiIiIiIiJO1KiOD/2ahwJqgigiUl4KpkWkmHyrjdcXGGtLj+0bRYifZ9kHyUiC5W8a24OfBQ9fB1YoIiIiIiLifGeaIH678TB5VpuTqxERqXkUTItIMT9sPsL+ExnU8XFnXN+m5RtkySTISYP67eHiUY4tUEREREREpBoY3DqcED9Pkk7nELNTTRBFRMpKwbSIFMq32pj6RywA9/SPxt/LveyDHN8FGz42toe+Cmb9mBERERERkdrH3WLmhs6NAPhqnZbzEBEpKyVGIlLol61HOXgykzo+7tzao0n5Bln4LNit0OoKaNrXsQWKiIiIiIhUI6O6Gst5LNt7gsPJmU6uRkSkZlEwLSIAWG123l1szJYe2zcKX0+3sg+ybzHsXQBmNxjyooMrFBERERERqV4iQ3zpGVUXux2+3nDY2eWIiNQoCqZFBIDfth1j34kMAr3dGd2zHLOlbVaY/4yx3XUchDRzbIEiIiIiIiLV0KiCJojfbIjHarM7uRoRkZpDwbSIYLPZeWfxXgDu6tO0fGtLb/4Cju8AryDo/4RjCxQREREREammhl1UjyAfd46lZrN0z3FnlyMiUmMomBYR5u9IYE/iafy93Li9V2TZB8hJhz9eNbb7PwE+wQ6tT0REREREpLrycrdwXUc1QRQRKSsF0yIuzm6383bB2tJjekUS6F2O2dIrp8DpRAiOMpbxEBERERERcSE3FSznsXjXcY6nZTu5GhGRmkHBtIiLW7TzODuPpeHrYeHOPk3LPkDqYVj1jrF9yUvg5uHYAkVERERERKq55uH+dG5SB6vNzjcb1QRRRKQ0FEyLuDC73c7bMcba0rf3iiTIpxyhcsxLkJ8NTXpDqyscXKGIiIiIiEjNMKqrMWt69vo4bGqCKCJyQQqmRVzYkt0n2HYkFR8PC2P7RpV9gCObYOscY3voK2AyObZAERERERGRGuLyi+vj7+lG/KksVu076exyRESqPQXTIi7KbrczpWC29G09mhDsW8bZ0nY7zH/a2L54FDTs5OAKRUREREREag4fDzeu7tgAgK/Wxzm5GhGR6k/BtIiLWr43iS3xKXi5m8s3W3rnLxC3Cty8YfCzji9QRERERESkhhnVtTEAC3YkcPJ0jpOrERGp3hRMi7igs9eWvrlbE0L9Pcs2QH4uLHzO2O51PwQ2cnCFIiIiIiIiNU/bhoG0axhIntXO95uOOLscEZFqTcG0iAtavf8kGw4l4+Fm5l/9yzFbev10SD4AfuHQ+2GH1yciIiIiIlJTjepmNEH8an0cdruaIIqInI+CaREXdGa29E1dIwgP8CrbyZmnYOl/je1Bz4Cnn4OrExERERERqbmuat8AHw8L+09ksP5gsrPLERGpthRMi7iYtftPsmb/KTwsZu4ZEF32AZb+F7JTIbwtdLjF8QWKiIiIiIjUYP5e7lx5sdEEcfY6NUEUETkfBdMiLuadxbEA3NClEfUDvct2clIsrP/I2B76CpgtDq5ORERERESk5juznMfcbcdIzcxzcjUiItWTgmkRF7LxUDIrYpNwM5sY378cs6UXPge2fGg+DKIHOr5AERERERGRWqBDRBCt6vmTk2/jxy1qgigiUhIF0yIu5J3FxtrS13dqRESwT9lOPrAMds8FkwWGvlwJ1YmIiIiIiNQOJpOJUV0LmiCuUxNEEZGSKJgWcRF/xqewZPcJLGYT9w4s42xpmw3mP21sdxkDoS0dX6CIiIiIiEgtcm3HRni6mdmVkM6fh1OdXY6ISLWjYFrERZyZLX1Nh4Y0qetbtpO3zoaEreAZAAMmVkJ1IiIiIiIitUugjzvD29UH1ARRRKQkCqZFXMD2I6ks2nkcswnuK+ts6dwMiHnJ2O73GPiGOL5AERERERGRWujMch4//3mU0zn5Tq5GRKR6UTAt4gLeXRwLwJXtGxAV6le2k1e9A+nHIKgJdPtXJVQnIiIiIiJSO3VrGkxUqC+ZuVZ++fOos8sREalWFEyL1HK7EtKYtyMBkwnuH9isbCenHYOVU4ztIS+Au5fD6xMREREREamtzm6CqOU8RESKUzAtUsu9UzBbeni7+jQP9y/byYtfgbxMaNQNLrq2EqoTERERERGp3a7v1Ah3i4k/D6fy19E0Z5cjIlJtKJgWqcX2Jqbz27ZjADwwqIyzpY/9CVtmGdvD/gMmk4OrExERERERqf3q+nkytE09AGav16xpEZEzFEyL1GLv/hGL3Q7DLgqnVb2A0p9ot8P8pwE7tL0eIrpWWo0iIiIiIiK13ahuxnIeP2w+Qlau1cnViIhUDwqmRWqp/SdOFzbXeGBQ87KdvGceHFwOFk8Y/HwlVCciIiIiIuI6ekeHEBHsTXp2fuGnWkVEXJ2CaZFaauof+7DZYUjrMNo2DCz9idY8WPCMsd3zXqjTpHIKFBERERERcRFms4mRXQqaIGo5DxERQMG0SK106GQGP245ApRjtvTC5+FkLPiEQJ8JlVCdiIiIiIiI6xnRJQKL2cT6g8nEHk93djkiIk6nYFqkFnrvj31YbXb6twilfURQ6U/c8DGsmWpsX/4meJVhXWoRERERERE5r/AALwa2DANg9rp4J1cjIuJ8CqZFapn4U5l8t+kwAA8OLsNs6f1L4bfHjO2BT8NF1zi+OBERERERERd2U0ETxO82HSYnX00QRcS1KZgWqWWmLd1Hvs1On2YhdG5Sp3QnJcXC17eBLR/ajYB+j1dukSIiIiIiIi6of4tQ6gV4kZyZx4Idic4uR0TEqRRMi9QiR1Oy+HqD8ZGwUs+WzjwFX94I2anQqBtc9S6YTJVYpYiIiIiIiGtys5i5sUsjQE0QRUQUTIvUIh8s3Uee1U6PqGC6NQ2+8An5ufD1aDi1DwIbw6hZ4O5V+YWKiIiIiIi4qBu7RmAywcrYkxw6meHsckREnEbBtEgtcTwtm6/WF8yWHlSK2dJ2O/z2KBxcDh7+cPMc8Aur5CpFRERERERcW6M6PvRtHgrAnPVqgigirkvBtEgt8cGy/eTm2+jSpA49o+te+ITVU2HTZ2Ayww0zIbxN5RcpIiIi1dbUqVOJjIzEy8uL7t27s27duvMe+/3339OlSxeCgoLw9fWlQ4cOfP7551VYrYhIzXZTV6MJ4jcbD5NntTm5GhER51AwLVILnEjPYdbaQ4CxtrTpQmtE7/4dFjxjbA/7D7QYWskVioiISHU2Z84cJkyYwPPPP8+mTZto3749w4YN4/jx4yUeHxwczNNPP83q1avZunUrY8aMYcyYMcyfP7+KKxcRqZkGtw4nxM+DE+k5LN5V8s9aEZHaTsG0SC3w0fL9ZOfZ6BARRN/mIf98cMI2+PYuwA6dx0D3e6qkRhEREam+Jk+ezLhx4xgzZgxt2rRh2rRp+Pj4MHPmzBKPHzBgANdeey2tW7cmOjqahx56iIsvvpgVK1ZUceUiIjWTh5uZ6zsXNEFcpyaIIuKaFEyL1HAnT+fw2WpjtvRDF5otnZ4IX46CvAxo2h+Gvw4Xml0tIiIitVpubi4bN25kyJAhhfvMZjNDhgxh9erVFzzfbrcTExPD7t276dev33mPy8nJIS0trdhDRMSVjeraGICle05wNCXLydWIiFQ9BdMiNdyMFQfIyrPSrmEgA1qGnv/AvCyYfROkHYa6zeDGT8HiXnWFioiISLWUlJSE1WolPDy82P7w8HASEhLOe15qaip+fn54eHhw+eWX884773DJJZec9/hJkyYRGBhY+IiIiHDYexARqYmahvjSIyoYmx2+3qAmiCLiehRMi9RgKZm5hbOlHxjU7Pyzpe12+PFeOLIRvOvAzV8bX0VERETKyd/fny1btrB+/XpeffVVJkyYwJIlS857/MSJE0lNTS18xMcrhBERuambMWv66/XxWG12J1cjIlK13JxdgIiU38yVBzmdk0/r+gFc0ib8/Acu+T/Y8T2Y3WHkF1A3uuqKFBERkWotJCQEi8VCYmJisf2JiYnUq1fvvOeZzWaaNWsGQIcOHdi5cyeTJk1iwIABJR7v6emJp6enw+oWEakNhl1UjyAfd46mZrNs7wkGtgxzdkkiIlVGM6ZFaqjUrDw+XnkAgAf/abb0tm9h6f8Z21f8DyL7VFGFIiIiUhN4eHjQuXNnYmJiCvfZbDZiYmLo2bNnqcex2Wzk5ORURokiIrWWl7uFazs2BNQEUURcj2ZMi9RQn646SHp2Pi3C/Rh20XlmM8WvN5bwAOj1IHS6reoKFBERkRpjwoQJ3H777XTp0oVu3brx1ltvkZGRwZgxYwAYPXo0DRs2ZNKkSYCxXnSXLl2Ijo4mJyeH3377jc8//5z333/fmW9DRKRGuqlbYz5eeZCYncc5np5NmL+Xs0sSEakSCqZFaqD07DxmrDBmS98/qDlmcwmzpVPijGaH1hxoORyGvFC1RYqIiEiNMXLkSE6cOMFzzz1HQkICHTp0YN68eYUNEePi4jCbiz5smZGRwb333svhw4fx9vamVatWfPHFF4wcOdJZb0FEpMZqEe5Pp8ZBbIpL4duNh7l3QDNnlyQiUiVMdru92q+un5aWRmBgIKmpqQQEBDi7HBGne29JLK/N201UqC8LH+mP5e/BdE46zBgGx3dAeDu4cx54+jmnWBERkX+g+zzXpWsvIlLk6w3xPPHtVprU9eGPRweUPPlIRKSGKO19ntaYFqlhMnLy+Wi5MVv6gUHNzg2lbVb49i4jlPYLh5tnK5QWERERERGpxq64uD7+nm4cOpnJmv0nnV2OiEiVUDAtUsPMWnuIUxm5RNb14cqLG5x7wMLnYO98cPOCUV9BYKOqL1JERERERERKzcfDjas6GL/ffbU+3snViIhUDQXTIjVIVq6VD5ftB+C+gc1ws/zt/8IbP4HV7/5/e3ceV2Wdv3/8OufAYQcXNtkCNTV3BSG10sqyPadyrTRbp9QWZvqms+j0mylrbMopLMtssVyzmmxfKC0LRTFzxwUVUNlcAEG2c87vD5Sy1EDh3BzO6/l4nMec7nMfuJgbZj5dvPnctc+HvSRFxTs3IAAAAADgrIxOjJEkfb4pT4fKqgxOAwBNj2IacCEL0rNVdLRKUa19NKxP5MkvZq2QPv5T7fNL/yp1v8n5AQEAAAAAZ6V7ZJC6RwaqymbXe+tyjY4DAE2OYhpwERXVNr28Ypek2mlpz19OSxftlJbcLtlrpB7DpUseNSglAAAAAOBsjepXOzW9MD1bDofD4DQA0LQopgEXsWRtjgpKKxUR5K2b+/5i3+jyQ9KCEVJFsRSVKN2QIpm4gzMAAAAAuJobe0fIx9OiXYVlWrv3sNFxAKBJUUwDLqCyxqaXltdOS99/aUdZPY7/6NZUSUvGSod2SUEx0qj5kqe3gUkBAAAAAGcrwNtT1/VsJ6l2ahoAWjKKacAFLM3I1YHiCoUHemtEwvFpaYdD+uRP0p7vJKu/NGaR5B9qbFAAAAAAwDkZdfwmiJ9sPKDiY9UGpwGApkMxDTRz1Ta7Xvymdlr6vkHt5eVhqX0hbZa0bp5kMku3vCaFdTMwJQAAAACgMfSNaaVOYf6qqLbrg/X7jI4DAE2GYhpo5t5ft0/7jhxTsL+XRh//zbkyP5W++Fvt86FPSp2GGhcQAAAAANBoTCbTL26CmMNNEAG0WBTTQDNWY7Mr5ZudkqQ/Dmovb0+LlLdRWnqXJIcUP15K+qOxIQEAAAAAjeqmvpGyepi19UCJNuQWGx0HAJrEWRXTs2bNUmxsrLy9vZWUlKT09PTTnjt48GCZTKbfPK699tqzDg24iw/W71f2oXK19bNqTFKMVJovLRglVZdJcYOka2ZIJpPRMQEAAAAAjaiVr1XXdA+XJC1aw00QAbRMDS6mFy9erOTkZE2bNk3r1q1Tr169NHToUBUUFJzy/Pfee08HDhyoe2zatEkWi0XDhw8/5/BAS2azO+qmpe+5pL18TdXSotFSSa7UtqM04k3J4mlwSgAAAABAUzhxE8Rl6/errLLG4DQA0PgaXEw/++yzuueeezR+/Hh17dpVs2fPlq+vr1577bVTnt+mTRuFh4fXPb788kv5+vpSTAO/46MN+7W7qEytfD11W1KM9L8HpH0Zkk9racyS2v8EAAAAALRISXFt1D7YT2VVNn34036j4wBAo2tQMV1VVaWMjAwNGTLk5w9gNmvIkCFKS0ur18eYO3euRo0aJT8/v9OeU1lZqZKSkpMegDux2x164evaaem7L4qTf9oz0ub3JLOHNOItqW0HgxMCAAAAAJqSyWTSyH7RkqSFa3IMTgMAja9BxXRRUZFsNpvCwsJOOh4WFqa8vLzffX96ero2bdqku++++4znTZ8+XUFBQXWP6OjohsQEXN6nm/K0s+CoAr09dGerDGnFU7UvXPecFHexseEAAAAAAE5xc3yUPC0m/ZRzRFsPMLQHoGU5q5sfnq25c+eqR48eSkxMPON5U6ZMUXFxcd0jJ4ffDMJ91E5L75Ak/aXnUfl+/GDtCwMelPqONTAZAAAAAMCZgv29dEXX2uHARencBBFAy9KgYjo4OFgWi0X5+fknHc/Pz1d4ePgZ31tWVqZFixbprrvu+t3P4+XlpcDAwJMegLv4Yku+tuWV6nyvwxqx8zHJVil1vkYa8g+jowEAAAAAnGxUv9qbIL7/4z5VVNsMTgMAjadBxbTValV8fLxSU1PrjtntdqWmpqp///5nfO8777yjyspK3XbbbWeXFHADDkfttLSfjmmB33MylxdKYT2km+ZIZovR8QAAAAAATnZRx2BFtfZRSUWNPtl4wOg4ANBoGryVR3JysubMmaM333xTW7du1f3336+ysjKNHz9ekjR27FhNmTLlN++bO3euhg0bprZt2557aqCF+npbgbbuP6JZXrMUUr5T8g+TxiySvPyNjgYAAAAAMIDZbNLIhNp7by1KZ6tTAC2HR0PfMHLkSBUWFmrq1KnKy8tT79699dlnn9XdEDE7O1tm88l9d2ZmplauXKkvvviicVIDLZDD4dDzqTs0xWOBBpvWSR7e0qiFUlCU0dEAAAAAAAYanhCt577arvQ9h7Sz4Kg6hjK8BMD1NbiYlqSJEydq4sSJp3xt+fLlvznWuXNnORyOs/lUgNtYsb1QFxx4X/d4flJ7YNhLUlS8saEAAAAAAIYLD/LWZV1C9dXWAi1ek62/XtvV6EgAcM4avJUHgMbncDj09afv6J8er9ceuPSvUvebjA0FAAAAAGg2TtwE8d11+1RZw00QAbg+immgGchYt1Z/OvwveZpsquhyk3TJo0ZHAgAAAAA0I4M7hygs0EuHyqr05ZZ8o+MAwDmjmAaMVn5IEZ+MU5CpXDl+3eV980uSyWR0KgAAAABAM+JhMWsEN0EE0IJQTANGqqlS8bwxirDtU64jWF63LpQ8vY1OBQAAAABohkYkRMtkklbuLFL2wXKj4wDAOaGYBozicEif/ElBeWk66vDW/7o8q9CIGKNTAQAAAACaqeg2vrqoY7AkafHabIPTAMC5oZgGjJI2S1o3TzaHSY/YJukPV19pdCIAAAAAQDM3OrF2oOmdtbmqsdkNTgMAZ49iGjBC5qfSF3+TJD1Rc5uC+96gyFY+BocCAAAAADR3Qy4IU1s/qwpKK/X1tgKj4wDAWaOYBpwtb6O09C5JDs2vuVxvOq7WA4M7Gp0KAAAAAOACrB5m3RIfJUlatIabIAJwXRTTgDOV5ksLRknVZdri3UfTasbppj5Rim7ja3QyAAAAAICLGNkvWpK0PLNAB4qPGZwGAM4OxTTgLNXHpEVjpJJcVQa116gj98tu8tCES5mWBgAAAADUX/sQfyXFtZHdIS1Zk2t0HAA4KxTTgDM4HNIHE6R9ayWf1vp/gdNUIn/d2DtSscF+RqcDAAAAALiYEzdBXLI2Rza7w+A0ANBwFNOAM6x4Wtr0rmT20J7LX9b8HZ4ymcS0NAAAAADgrFzVPVxBPp7ad+SYvttRaHQcAGgwimmgqW1cKi2fXvv8uuf078zg2qc9I9Qx1N/AYAAAAAAAV+XtadEf+kRKkhalcxNEAK6HYhpoSjlrpP89UPt8wCRlRvxBn2zMkyRNuoxpaQAAAADA2TuxncdXW/NVWFppcBoAaBiKaaCpHMmWFo2WbJVS52ukIY8r5ZudkqRreoSrU1iAwQEBAAAAAK6sc3iA+sS0Uo3doaUZ3AQRgGuhmAaaQmWptGCUVFYohfWQbpqjnUXH9NGG/ZKkiZeeb3BAAAAAAEBLMLpf7dT04jXZcji4CSIA10ExDTQ2u016926pYLPkHyaNWSR5+WvWNzvlcEhXdA1T14hAo1MCAAAAAFqA63q1k7+Xh/YcLFda1kGj4wBAvVFMA43ty6nS9s8kD29p1EIpKEp7isr0wfp9kqQHL2NaGgAAAADQOHytHrqhd4QkboIIwLVQTAONKeMNKS2l9vmwl6SoeEnSrG92yu6QLusSqh5RQcblAwAAAAC0OCe28/hsU54Ol1UZnAYA6odiGmgsWSukj/9U+/zSv0rdb5Ik5Rwq13s/1k5LT7qso1HpAAAAAAAtVI+oIHWLCFSVzV73758A0NxRTAONoWintOR2yV4j9RguXfJo3UsvLt8pm92hi88PVp+Y1gaGBAAAAAC0VKMSa6emF6VzE0QAroFiGjhX5YekBSOkimIpKlG6IUUymSRJ+44c09KMXEnSQ5eztzQAAAAAoGnc2DtCPp4W7Sg4qnXZh42OAwC/i2IaOBe2amnJWOnQLikoRho1X/L0rnt59vJdqrY5NKBDWyXEtjEwKAAAAACgJQv09tS1PdtJkhZyE0QALoBiGjhbDof0cbK05zvJ6i+NWST5h9a9nFdcocVrahcDDzItDQAAAABoYqMToyVJH23Yr5KKaoPTAMCZUUwDZyttlrRunmQyS7e8JoV1O+nl2St2qcpmV2JcG13Yvq1BIQEAAAAA7qJvTGudH+qvimq7Pli/3+g4AHBGFNPA2cj8VPrib7XPr3xC6jT0pJcLSiq0MD1bkvTgZUxLAwAAAACanslkOukmiADQnFFMAw2Vt1FaepckhxQ/Xrrw/t+c8sq3WaqssatvTCsN7Mi0NAAAAADAOW7qEymrxazN+0u0MbfY6DgAcFoU00BDlOZLC0ZJ1WVS3CDpmhmSyXTSKUVHKzV/9fFp6cvPl+lXrwMAAAAA0FRa+1l1VfdwSdLCNUxNA2i+KKaB+qo+Ji0aI5XkSm07SiPelCyevznt1e9261i1Tb2igjSoU4gBQQEAAAAA7mzU8ZsgLlu/X2WVNQanAYBTo5gG6sPhkD6YIO1bK/m0lsYsqf3PXzlUVqV5aXskSZMuY1oaAAAAAOB8/du3VWxbXx2trNHHGw4YHQcAToliGqiPFU9Lm96VzB7SiLekth1OedprK3ervMqmru0CdfkFoU4OCQAAcPZmzZql2NhYeXt7KykpSenp6ac9d86cObr44ovVunVrtW7dWkOGDDnj+QAA5zKZTBrZr/YmiGznAaC5opgGfs/GpdLy6bXPr3tOirv4lKcVl1frjR/2SGJvaQAA4FoWL16s5ORkTZs2TevWrVOvXr00dOhQFRQUnPL85cuXa/To0frmm2+Ulpam6OhoXXnlldq3b5+TkwMATueW+Ch5mE36MfuIMvNKjY4DAL9BMQ2cSc4a6X8P1D4fMEnqO/a0p77+w24draxRl/AAXdk1zEkBAQAAzt2zzz6re+65R+PHj1fXrl01e/Zs+fr66rXXXjvl+fPnz9cDDzyg3r17q0uXLnr11Vdlt9uVmprq5OQAgNMJCfDSFcf/3XRhOlPTAJofimngdI5kS4tGS7ZKqfM10pDHT3tqSUW1Xlu5W1Lt3tJmM9PSAADANVRVVSkjI0NDhgypO2Y2mzVkyBClpaXV62OUl5erurpabdq0Oe05lZWVKikpOekBAGhaoxJrt/N4b12uKqptBqcBgJNRTAOnUlkqLRgllRVKYT2km+ZIZstpT5/3wx6VVNSoY6i/ru4e7sSgAAAA56aoqEg2m01hYSf/xVdYWJjy8vLq9TEee+wxRUREnFRu/9r06dMVFBRU94iOjj6n3ACA33dxx2BFtvJRSUWNPt3ETRABNC8eRgdolvK3SIVbjU4BI61fIBVslvzDpDGLJC//0556tLJGr9ZNS3dkWhoAALiVp556SosWLdLy5cvl7e192vOmTJmi5OTkun8uKSmhnAaAJmY2mzSyX7Se/XK7nvh4q6Ja+6pf7On/ugUAnIli+lS2Lvv5ZndwXx7e0qiFUlDUGU97K22vjpRXq32wn67rGeGkcAAAAI0jODhYFotF+fn5Jx3Pz89XePiZ/xLsmWee0VNPPaWvvvpKPXv2POO5Xl5e8vLyOue8AICGGdc/Vp9uytPWAyUaM2eV/nFDN92adJ7RsQCAYvqUWsVIsRcbnQJG8vCS+k+QouLPeFp5VY1e/S5LkjTh0o6yMC0NAABcjNVqVXx8vFJTUzVs2DBJqruR4cSJE0/7vn//+9964okn9PnnnyshIcFJaQEADRXk66l37++vR5du0McbDuiv72/S5v0l+sf13WT1YIdXAMahmD6V3mNqH8DvWLA6WwfLqhTTxlc39mZaGgAAuKbk5GSNGzdOCQkJSkxM1MyZM1VWVqbx48dLksaOHavIyEhNn177V4VPP/20pk6dqgULFig2NrZuL2p/f3/5+59+CzQAgDF8rR5KGd1H3SICNePzTC1Yna0d+aV68dZ4hQTw1ywAjMGvxoCzVFFt0+wVJ6alO8jDwo8TAABwTSNHjtQzzzyjqVOnqnfv3lq/fr0+++yzuhsiZmdn68CBn2+a9dJLL6mqqkq33HKL2rVrV/d45plnjPoSAAC/w2Qy6YHBHfXauH4K8PbQmj2HdUPKSm3IPWJ0NABuyuRwOBxGh/g9JSUlCgoKUnFxsQIDA42OA0iSXv9+tx7/cIsiW/nomz8P5k+gAAA4C6zz3BfXHgCMs6vwqO6dt1a7Csvk5WHWUzf30B/6nPn+SgBQX/Vd59GkAWehdlp6lyTpgUs7UEoDAAAAAFxGhxB/vT9hoC7vEqrKGrseWfyT/vXRFtXY7EZHA+BGaNOAs/BORq7ySyrVLshbt8TzW2UAAAAAgGsJ9PbUnLEJmnhpR0nSqyt3a/wba3SkvMrgZADcBcU00EBVNXa99M1OSdL9gzvIy8NicCIAAAAAABrObDbpz0M768Vb+8rH06LvdhTphpTvlZlXanQ0AG6AYhpooHfX5Wp/cYVCA7w0IiHa6DgAAAAAAJyTa3q003sPDFB0Gx9lHyrXH178Xp9tOvD7bwSAc0AxDTRAtc2uWcenpe8b1EHenkxLAwAAAABc3wXtArVswkUa0KGtyqts+uPb6/Tsl9tltzuMjgaghaKYBhrg/R/3KffwMQX7WzUmMcboOAAAAAAANJrWflbNuzNRdw6MkyQ9n7pD976VodKKaoOTAWiJKKaBeqqx2fXi8Wnpey9pLx8r09IAAAAAgJbFw2LW1Ou76j/De8nqYdZXW/P1hxd/0O6iMqOjAWhhKKaBevpww37tOViuNn5W3Zp0ntFxAAAAAABoMjfHR2nJff0VHuitnQVHdWPKSi3PLDA6FoAWhGIaqAeb3aEXvq6dlr7rojj5eXkYnAgAAAAAgKbVO7qVlk0aqPjzWqukokZ3vrFGs1fsksPBvtMAzh3FNFAPH288oKzCMgX5eGpsf6alAQAAAADuITTAWwvuSdLoxGjZHdJTn27TQ4vW61iVzehoAFwcxTTwO+x2h1K+3iGpdlo6wNvT4EQAAAAAADiPl4dFT/6hh/45rLs8zCYt+2m/bpn9g3IPlxsdDYALo5gGfsfnm/O0Pf+oArw9NG5ArNFxAAAAAABwOpPJpNsvPE/z705SWz+rNu8v0Q0p32tV1kGjowFwURTTwBnY7Q79N7V2Wnr8wDgF+TAtDQAAAABwX0nt22rZpIvUPTJQh8qqdNurqzUvbQ/7TgNoMIpp4Ay+2pqvbXml8rNadOfAWKPjAAAAAABguMhWPnrnvgG6oVeEauwOTf1gsya/u1GVNew7DaD+KKaB03A4HHr++N7S4wbEqpWv1eBEAAAAAAA0Dz5Wi/47qrf+ck0XmU3S4rU5Gv3KKhWUVBgdDYCLoJgGTmN5ZqE27SuRr9Wiuy9ub3QcAAAAAACaFZPJpHsv6aDXxycq0NtD67KP6PqUlVqfc8ToaABcAMU0cAoOx897S99+4Xlq48e0NAAAAAAApzKoU4iWTbxI54f6K7+kUiNeTtPSjFyjYwFo5iimgVP4bkeR1ucckbenmWlpAAAAAAB+R2ywn96fMFBXdA1TVY1df37nJz3+4WbV2OxGRwPQTFFMA7/yy2npMYnnKSTAy+BEAAAAAAA0f/5eHnr5tng9dPn5kqTXv9+jsa+l61BZlcHJADRHHkYHAIzicDhUWFqprKIyZRWWaXfRUWUVlimrqEy7i8pk9TDrvkFMSwMAAAAAUF9ms0mPXNFJF7QLVPKS9fph10HdkLJSc8Ym6IJ2gUbHA9CMUEyjxSuvqvm5cC4sU1bRUe0+/ry0sua077v7ojiFBXo7MSkAAAAAAC3DVd3DFRc8UPfMW6vsQ+W66cUf9MzwXrq2ZzujowFoJiim0SLY7A7lHi6vm37OKqwtn7MKy5RXUnHa95lNUlRrX8UF+6l9iJ/aB/upfYi/OoT4KzyIUhoAAAAAgLPVOTxAyyYO1KSFP+q7HUWasGCdthzooD9d0Vlms8noeAAMRjENl+FwOHSorKqucK4toY8qq6hM2QfLVXWGGyq08bPWls/BfooL8VP7YH91CPFTTFtfeXlYnPhVAAAAAADgPlr5WvX6Hf309GfbNOe73Zr1zS5tPVCqmaN6K9Db0+h4AAxEMY1mp6Lapj0HT+z7XKZdhUfrnhcfqz7t+6weZsW1rZ18jjs++RwX7KcOIX5q5Wt14lcAAAAAAABO8LCY9ddru6pbRJAee3eDvt5WoGGzvtecsQnqEOJvdDwABqGYhiHsdof2Fx+rK5xPTD5nFZZpf/ExORynf29kK5+fy+dgP8WF+Kt9sJ8iWvnIwp8CAQAAAADQLA3rE6kOIf669621yios07CU7/Xf0b11WZcwo6MBMADFNJpUcXm1dhUdPemmgyfK6Mqa02+9EeDtUbvXc/CJCWh/tQ/xU2xbP/lY2XoDAAAAAABX1CMqSMsmXqQH5mdozZ7DuuvNtfrzlZ31wOAOMpkYNgPcCcU0zllljU05h8q1q/BE6fzz1hsHy6pO+z5Pi0kxbXzV/vjEc/uQn7ffaOtn5f+QAAAAAABogUICvDT/7gv1+IebNX91tmZ8nqkt+0s0Y3hP+VqpqgB3wU876sXhcCi/pPKkLTdOTEDnHCqX/Qxbb4QFeql9sP/xmw4eL6CD/RXV2kceFrPzvggAAAAAANAsWD3MeuIPPdQtIkjTlm3SxxsPaFfhUc0Zm6DoNr5GxwPgBBTT+A2b3aEvt+Rry4GSuv2fdxeVqbzKdtr3+FktddPOJ/Z/7hDir9hgP/l78W0GAAAAAAB+a0xSjM4P89f9b6/TtrxS3ZCyUrNu7asBHYKNjgagidEY4iQ2u0MPL16vD3/a/5vXLGaTolv71G29EXd88rl9iJ9CA7zYegMAAAAAADRYv9g2+nDSQN33VoY25Bbr9rnp+tu1F+iOAbF0DUALRjGNOg6HQ399f6M+/Gm/PC0m/eH43XJPTELHtPGV1YOtNwAAAAAAQONqF+SjJff111/e26j3ftynxz/cos37S/SvYd3l7WkxOh6AJkAxDUm1pfS/Pt6qRWtyZDZJ/x3VR9f0aGd0LAAAAAAA4Ca8PS36z4he6hoRqCc/2aqlGbnaWXBUL98er7BAb6PjAWhkjL9CkvTcVzs0d+VuSdLTN/eklAYAAAAAAE5nMpl098XtNe/OJAX5eGp9zhFd98JKZew9bHQ0AI2MYhp65dtdej51hyTp8Ru6aXhCtMGJAAAAAACAO7vo/GAtmzhQncMCVFhaqdGvrNLiNdlGxwLQiCim3dz81Xv15CfbJEmPDu2scQNijQ0EAAAAAAAg6by2fnrvgQG6qlu4qmx2PfbuRk37YJOqbXajowFoBBTTbuz9H3P1t/9tkiTdP7iDJlza0eBEAAAAAAAAP/Pz8tCLt/ZV8hWdJElvpu3Vba+u1sGjlQYnA3CuKKbd1Oeb8/TndzbI4ZDG9T9P/ze0s9GRAAAAAAAAfsNsNunBy8/XnLEJ8vfy0Ordh3RDyvfavL/Y6GgAzgHFtBv6bkehJi34UTa7Qzf3jdK067vJZDIZHQsAAAAAAOC0rugapv9NGKC4YD/tO3JMN7/0g5b9tN/oWADOEsW0m1mz55DumbdWVTa7ru4erqdv7iGzmVIaAAAAAAA0fx1DA/S/CQM1qFOIKqrtenDhj3rq022y2R1GRwPQQBTTbmRjbrHufH2NKqrtGtQpRP8d1UceFr4FAAAAAACA6wjy8dRrd/TTHwd1kCTNXrFLd725RsXHqg1OBqAhaCXdxPb8Uo19bbVKK2uUGNdGs2+Ll9WDyw8AAAAAAFyPxWzS5Ku76PnRfeTtadbyzEINm/W9dhaUGh0NQD2dVTM5a9YsxcbGytvbW0lJSUpPTz/j+UeOHNGECRPUrl07eXl5qVOnTvrkk0/OKjAabu/BMt326modLq9Wr6ggzR2XIB+rxehYAAAAAAAA5+SGXhFa+scBimzlo91FZRo26wd9uSXf6FgA6qHBxfTixYuVnJysadOmad26derVq5eGDh2qgoKCU55fVVWlK664Qnv27NHSpUuVmZmpOXPmKDIy8pzD4/cdKD6mMXNWq6C0Up3DAvTmnYkK8PY0OhYAAAAAAECj6B4ZpGUTByopro2OVtbonnlr9XzqDtnZdxpo1kwOh6NBP6VJSUnq16+fUlJSJEl2u13R0dGaNGmSJk+e/JvzZ8+erRkzZmjbtm3y9Dy7QrSkpERBQUEqLi5WYGDgWX0Md1R0tFIjXk5TVmGZ4oL9tPi+CxUa4G10LAAAgDqs89wX1x4A0NiqbXb966MtejNtryTpqm7h+s+IXvLz8jA4GeBe6rvOa9DEdFVVlTIyMjRkyJCfP4DZrCFDhigtLe2U71m2bJn69++vCRMmKCwsTN27d9eTTz4pm8122s9TWVmpkpKSkx5omOLyat0+N11ZhWWKbOWjt+9OopQGAAAAAAAtlqfFrMdv7K6nb+4hq8Wszzbn6aYXf1D2wXKjowE4hQb9yqioqEg2m01hYWEnHQ8LC9O2bdtO+Z6srCx9/fXXuvXWW/XJJ59o586deuCBB1RdXa1p06ad8j3Tp0/X448/3pBo+IWjlTW64410bT1QomB/L719d5IiW/kYHQsAAAAAAKDJjewXo46hAfrj2xnKzC/V9SkrNX5grCJb+SiilY/Cg7zVLshbvlYmqQEjNflPoN1uV2hoqF555RVZLBbFx8dr3759mjFjxmmL6SlTpig5Obnun0tKShQdHd3UUVuEimqb7nlzrX7MPqJWvp56++5ExQX7GR0LAAAAAADAaeLPa60PJ16k+97O0E85RzTzqx2/OSfIx1PtjpfU4UE+igjyVniQN+U14CQN+ukKDg6WxWJRfv7JdzfNz89XeHj4Kd/Trl07eXp6ymKx1B274IILlJeXp6qqKlmt1t+8x8vLS15eXg2JBtXupTRh/jqlZR2Un9WiN8cnqks4+/UBAAAAAAD3Ex7krcX3Xqj5q7O1Pa9U+4uPKa+4QgeKK3S0skbFx6pVfKxa2/JKT/sxKK+BptOgnxyr1ar4+HilpqZq2LBhkmonolNTUzVx4sRTvmfgwIFasGCB7Ha7zObaLa23b9+udu3anbKUxtmx2R16ZPF6pW4rkJeHWXPv6Kde0a2MjgUAAAAAAGAYb0+L7roo7jfHSyuqdeB4SX3gyDEdKK5QXnEF5TXgRA3+qUhOTta4ceOUkJCgxMREzZw5U2VlZRo/frwkaezYsYqMjNT06dMlSffff79SUlL00EMPadKkSdqxY4eefPJJPfjgg437lbgxu92hKe9t0EcbDsjTYtLLt8frwvZtjY4FAAAAAADQLAV4eyrA21OdwgJOew7lNdC0GvwdP3LkSBUWFmrq1KnKy8tT79699dlnn9XdEDE7O7tuMlqSoqOj9fnnn+uRRx5Rz549FRkZqYceekiPPfZY430VbszhcOifH2/RkrW5Mpuk50f10eDOoUbHAgAAAAAAcGmU10DTMjkcDofRIX5PSUmJgoKCVFxcrMBA9kz+pf98kakXvt4pSXpmeC/dEh9lcCIAAID6Y53nvrj2AAB3Ud/yuj4or+EK6rvO4zvVhc1esauulP5/N3ajlAYAAMBZmzVrlmbMmKG8vDz16tVLL7zwghITE0957ubNmzV16lRlZGRo7969eu655/Twww87NzAAAC6iOUxe94tro6S4NjKZTE3xJQJnhWLaRb21aq+e+nSbJOn/ruqssf1jjQ0EAAAAl7V48WIlJydr9uzZSkpK0syZMzV06FBlZmYqNPS328SVl5erffv2Gj58uB555BEDEgMA0LI4o7xuH+ynUYnRurlvlNr6ezX1lwT8LrbycEHvrctV8pKfJEkTLu2gR4d2MTgRAADA2WGd1zwkJSWpX79+SklJkSTZ7XZFR0dr0qRJmjx58hnfGxsbq4cffrjBE9NcewAAGt+pyus9B8v01ZZ8lVXZJEmeFpOu7BauMYkx6t++rcxmpqjRuNjKo4X6bFOeHl26QZJ0x4BY/fnKzgYnAgAAgCurqqpSRkaGpkyZUnfMbDZryJAhSktLa7TPU1lZqcrKyrp/LikpabSPDQAAap1u8vpoZY0+/Gm/FqVn66fcYn284YA+3nBA57X11ch+0bolPkqhAd4GpYa7MhsdAPW3YnuhJi1cJ5vdoVviozT1uq7sDQQAAIBzUlRUJJvNprCwsJOOh4WFKS8vr9E+z/Tp0xUUFFT3iI6ObrSPDQAAzszfy0OjE2P0wcSL9PGDF+n2C89TgJeH9h4s178/y9SA6V/r/rcztGJ7oez2Zr+5AloIimkXkb77kO57a62qbQ5d26Odnr65J39qAQAAAJcxZcoUFRcX1z1ycnKMjgQAgFvqFhGkfw7rrtV/vVz/vqWn+sa0Uo3doU835Wnca+m6ZMY3Svl6h/JLKoyOihaOrTxcwIbcI7rzjTWqqLbr0s4hem5kb1kopQEAANAIgoODZbFYlJ+ff9Lx/Px8hYeHN9rn8fLykpcXN1oCAKC58LV6aERCtEYkRGtbXokWpefovXW5yj18TM98sV3PfbVDl3UJ1ZjEGF3SKYQuCo2OielmLjOvVGNfS9fRyhpd2L6NXrotXlYPLhsAAAAah9VqVXx8vFJTU+uO2e12paamqn///gYmAwAAztIlPFD/uKGb0v86RM+O6KV+sa1lszv05ZZ8jX9jjS5++mvN/Gq79h85ZnRUtCBMTDdje4rKdNvc1TpSXq1e0a306rh+8va0GB0LAAAALUxycrLGjRunhIQEJSYmaubMmSorK9P48eMlSWPHjlVkZKSmT58uqfaGiVu2bKl7vm/fPq1fv17+/v7q2LGjYV8HAAA4N96eFt3UN0o39Y3SzoJSLUzP0bvrcrW/uEIzv9qh51N3aHDnUI1OjNGlnUPkYWF4EmfP5HA4mv2O5iUlJQoKClJxcbECAwONjuMU+48c0/DZadp35Ji6hAdo0b0XqpWv1ehYAAAAjcod13nNVUpKimbMmKG8vDz17t1bzz//vJKSkiRJgwcPVmxsrN544w1J0p49exQXF/ebjzFo0CAtX768Xp+Paw8AgGuoqLbp8815WpierVVZh+qOhwV61W0FEt3G18CEaG7qu86jmG6GCksrNfLlNGUVlSku2E9L7uuvkAD24wMAAC2Pu63z8DOuPQAArier8KgWr8nROxm5OlRWJUkymaRLzg/R6MRoXX5BmDyZonZ7FNMu6kh5lUa9skrb8koV2cpHS/7YX5GtfIyOBQAA0CTcaZ2Hk3HtAQBwXZU1Nn25JV+L0nO0cmdR3fFgfy+NSIjSqH4ximnLFLW7qu86jz2mm5GjlTUa9/oabcsrVUiAl+bfnUQpDQAAAAAAgGbFy8Oi63pG6LqeEdp7sEyL1uTonbW5KjpaqReX79KLy3fpoo7BGp0Yoyu6hsnqwRQ1fouJ6WaiotqmO15P16qsQ2rl66nF9/ZX5/AAo2MBAAA0KXdY5+HUuPYAALQs1Ta7Urfma0F6jr7bUagTjWNbP6tuiY/SyH7Rah/ib2xIOAUT0y6kqsau+9/O0KqsQ/L38tC8OxMppQEAAAAAAOAyPC1mXdW9na7q3k45h8q1ZG2OFq/JUUFppV7+Nksvf5ulC9u30ejEGF3VPVxeHhajI8NgFNMGq7HZ9cji9foms1Denma9dkc/9YxqZXQsAAAAAAAA4KxEt/HVn67srIcuP1/fZBZqYXq2lmcWaFXWIa3KOqTWvp66qW+URidGq2Mow5nuimLaQHa7Q5Pf26iPNx6Qp8Wkl29PUGJcG6NjAQAAAAAAAOfMw2LWFV3DdEXXMO0/cqxuivpAcYXmrtytuSt3KzG2jUYlRuuaHu3k7ckUtTthj2mDOBwOPf7hFr3xwx5ZzCbNGtNHV3VvZ3QsAAAAp2qJ6zzUD9ceAAD3ZLM7tGJ7gRam5+jrbQWy2WuryUBvj+NT1DFscevi2GO6mfvPF9v1xg97JEkzbulJKQ0AAAAAAIAWz2I26bIuYbqsS5jyiiv0ztocLVqTo31HjumNH/bojR/2qG9MK41OjNF1PSPkY2WKuqViYtoALy3fpac/2yZJ+ueN3XR7/1hjAwEAABikpa3zUH9cewAAcILd7tB3O4u0cHW2vtqar5rjU9QBXh4a1idSoxKj1S0iyOCUqC8mppupeWl76krpyVd3oZQGAAAAAACAWzObTRrUKUSDOoWooLRCSzNytSg9R9mHyvXWqr16a9Ve9YoK0ujEGF3fK0J+XlSaLQET0060NCNXf37nJ0nSxEs76s9DOxucCAAAwFgtZZ2HhuPaAwCAM7HbHUrLOqgF6dn6YnOeqm21Faaf1aIbekdqTGKMekQxRd0cMTHdzHy68YD+b2ltKX3HgFj96cpOBicCAAAAAAAAmiez2aSBHYM1sGOwDh6t1LvrcrUwPUe7i8q0MD1bC9Oz1T0yUKP6xejG3hEK8PY0OjIaiIlpJ/gms0D3zluraptDIxKi9NRNPWU2m4yOBQAAYDhXX+fh7HHtAQBAQzkcDq3KOqRFa7L16cY8VdnskiQfT4tu6BWhUYnR6h3dSiYTvZuR6rvOo5huYquyDmrca+mqrLHr2p7t9PyoPrJQSgMAAEhy7XUezg3XHgAAnIvDZVV678d9WpierZ0FR+uOdwkP0JikGN3YO1JBPkxRG4Fiuhn4KeeIbn11tY5W1uiyLqGafVu8rB5mo2MBAAA0G666zsO549oDAIDG4HA4tHbvYS1Mz9bHGw6osqZ2itrb06xre0RoTFK0+sa0ZoraiSimDbYtr0QjX16l4mPV6t++rV4f30/enhajYwEAADQrrrjOQ+Pg2gMAgMZWXF6t93+s3Ys6M7+07nh0Gx8N7hSqwZ1D1L9DW/laue1eU6KYNtDuojINn52moqOV6h3dSm/fnSR/L77hAQAAfs3V1nloPFx7AADQVBwOh37MOaKFq7P10YYDOlZtq3vNajErqX0bDeoUosGdQ9QhxJ9p6kZGMW2QfUeOafhLP2h/cYW6hAdo8b39FeTLfjYAAACn4krrPDQurj0AAHCGssoape06qOXbC7Q8s1C5h4+d9HpUa5/jJXWoBnRoKz+GS89Zfdd5/DfdiApKK3TrnFXaX1yh9sF+euuuJEppAAAAAAAAwCB+Xh4a0jVMQ7qGyeFwaFdhmZZnFmjF9kKtzjqk3MPHNH91tuavzpbVYla/uNZ12350DGWauikxMd1IjpRXadQrq7Qtr1SRrXz0zh/7K6KVj9GxAAAAmjVXWOehaXDtAQCA0cqrjk9TZxZq+fYC5Rw6eZo6spWPBnUO0eBOIRrQMZiteuuJiWknKq2o1rjX0rUtr1QhAV6af3cSpTQAAAAAAADQjPlaPXT5BWG6/ILaaerdRWXHS+pCrco6qH1HjmnB6mwtWJ0tT4tJ/WLb1G370SmMaepzxcT0OTpWZdO419OVvvuQWvt6avF9/dUpLMDoWAAAAC6hOa/z0LS49gAAoDk7VmXTqqyDWp5ZoOXbC7X3YPlJr0cEeWtQ5xAN6hSqgR3bKsCb7XxPYGLaCapq7Lp/fobSdx+Sv5eH5t2ZRCkNAAAAAAAAuDgfq0WXdgnVpV1CJen4NHXtDRRXZR3U/uIKLUzP0cL0HHmYTUqIba3BnWv3pu4cFsA0dT0wMX2Wamx2TVr4oz7dlCdvT7Pm3ZmkxLg2RscCAABwKc1xnQfn4NoDAABXVVFtU1rWQa3ILNTyzALt+dU0dbsg7+NbfoRoYMdgt5umZmK6CdntDj327kZ9uilPVotZr9yeQCkNAAAAAAAAuAFvT4su7RyqSzuHSuqmPUVlWrG9tqROyzqoA8UVWrQmR4vW1E5T9z2vtQZ3DtHgTqG6oB3T1CcwMd1ADodD05Zt1ry0vbKYTZo1pq+u6h5uaCYAAABX1ZzWeXAurj0AAGiJKqptWr37kJZnFmhFZqGyispOej0s0KvuBooXnR+swBY4Tc3EdBOZ8Xmm5qXtlckkPTO8J6U0AAAAAAAAAEm109SDOoVoUKcQ6Xop+2C5lm+v3Zv6h11Fyi+p1JK1uVqyNlcWs0nxMa01qHPtth9d2wW61TQ1E9MNMOubnZrxeaYk6V/Duuu2C88zLAsAAEBL0FzWeXA+rj0AAHA3FdU2pe8+pOWZhVq+vUBZhSdPU4cGnDxNHeTjmtPU9V3nUUzX0xvf79Y/PtwiSZpydRfdN6iDITkAAABakuawzoMxuPYAAMDd5Rwq1/LthVqRWaDvdx7UsWpb3WsWs0l9Y1rVFdVd2wXKbHaNaWqK6Ub0ztocPbp0gyTpwcs6KvnKzk7PAAAA0BIZvc6Dcbj2AAAAP6ussWnN7sNanlmg5dsLtbPg6EmvB/ufmKYO0SXnhyjIt/lOU7PHdCP5eMMBPfZubSl958A4PXJFJ4MTAQAAAAAAAGhJvDwsuuj8YF10frD+ptpp6hXbC+v2pi46Wql31+Xq3XW5MpukPjGtNfj4NHW3CNeZpv4lJqbP4JttBbr3rbWqtjk0MiFaT93cw602IAcAAGhqTM26L649AABA/VTW2LR2z+HjRXWBtuf/epraqkuO33DxkvND1NrPalDSWmzlcY7Sdh3UHa+nq7LGrut6ttN/R/WRxQV/8wAAANCcUU66L649AADA2dl35JhWZNaW1N/vLFJZ1c97U5tNUq/oVhrcKVSDO4eoR2SQ06epKabPwY/Zh3Xbq6tVVmXT5V1CNfv2eHlazE3+eQEAANwN5aT74toDAACcu6oau9buPXS8qC5UZn7pSa+39audpv7HDd0U5OOcfanZY/oczEvbq7IqmwZ0aKtZt/allAYAAAAAAADQ7Fg9zBrQIVgDOgRryjUXaP+RY3Vbfny/86AOllXp2+2FCvBqfjVw80vUDDx9c0/FtPHVvZe0l7enxeg4AAAAAAAAAPC7Ilr5aHRijEYnxqiqxq512YdVWFrZLG+OSDF9ClYPsx65opPRMQAAAAAAAADgrFg9zLqwfVujY5wWe1QAAAAAAAAAAJyKYhoAAAAAAAAA4FQU0wAAAAAAAAAAp6KYBgAAAAAAAAA4FcU0AAAAAAAAAMCpKKYBAAAAAAAAAE5FMQ0AAAAAAAAAcCqKaQAAAAAAAACAU1FMAwAAAAAAAACcimIaAAAAAAAAAOBUFNMAAAAAAAAAAKeimAYAAAAAAAAAOBXFNAAAAAAAAADAqSimAQAAAAAAAABORTENAAAAAAAAAHAqimkAAAAAAAAAgFNRTAMAAAAAAAAAnMrD6AD14XA4JEklJSUGJwEAAEBjOrG+O7Heg/tgjQ8AANAy1XeN7xLFdGlpqSQpOjra4CQAAABoCqWlpQoKCjI6BpyINT4AAEDL9ntrfJPDBcZT7Ha79u/fr4CAAJlMJqd8zpKSEkVHRysnJ0eBgYFO+ZxoPrj+7o3r7964/u6N6+98DodDpaWlioiIkNnMLnPuxNlrfH6+wfeAe+P6uzeuv3vj+jtffdf4LjExbTabFRUVZcjnDgwM5JvWjXH93RvX371x/d0b19+5mJR2T0at8fn5Bt8D7o3r7964/u6N6+9c9VnjM5YCAAAAAAAAAHAqimkAAAAAAAAAgFNRTJ+Gl5eXpk2bJi8vL6OjwABcf/fG9XdvXH/3xvUHWi5+vsH3gHvj+rs3rr974/o3Xy5x80MAAAAAAAAAQMvBxDQAAAAAAAAAwKkopgEAAAAAAAAATkUxDQAAAAAAAABwKoppAAAAAAAAAIBTUUyfwqxZsxQbGytvb28lJSUpPT3d6EhwgunTp6tfv34KCAhQaGiohg0bpszMTKNjwSBPPfWUTCaTHn74YaOjwEn27dun2267TW3btpWPj4969OihtWvXGh0LTmKz2fT3v/9dcXFx8vHxUYcOHfTPf/5T3CMaaDlY47sn1vj4Jdb47oc1vvtife8aKKZ/ZfHixUpOTta0adO0bt069erVS0OHDlVBQYHR0dDEVqxYoQkTJmjVqlX68ssvVV1drSuvvFJlZWVGR4OTrVmzRi+//LJ69uxpdBQ4yeHDhzVw4EB5enrq008/1ZYtW/Sf//xHrVu3NjoanOTpp5/WSy+9pJSUFG3dulVPP/20/v3vf+uFF14wOhqARsAa332xxscJrPHdD2t898b63jWYHPyq4CRJSUnq16+fUlJSJEl2u13R0dGaNGmSJk+ebHA6OFNhYaFCQ0O1YsUKXXLJJUbHgZMcPXpUffv21Ysvvqh//etf6t27t2bOnGl0LDSxyZMn6/vvv9d3331ndBQY5LrrrlNYWJjmzp1bd+zmm2+Wj4+P3n77bQOTAWgMrPFxAmt898Qa3z2xxndvrO9dAxPTv1BVVaWMjAwNGTKk7pjZbNaQIUOUlpZmYDIYobi4WJLUpk0bg5PAmSZMmKBrr732pP8dQMu3bNkyJSQkaPjw4QoNDVWfPn00Z84co2PBiQYMGKDU1FRt375dkvTTTz9p5cqVuvrqqw1OBuBcscbHL7HGd0+s8d0Ta3z3xvreNXgYHaA5KSoqks1mU1hY2EnHw8LCtG3bNoNSwQh2u10PP/ywBg4cqO7duxsdB06yaNEirVu3TmvWrDE6CpwsKytLL730kpKTk/WXv/xFa9as0YMPPiir1apx48YZHQ9OMHnyZJWUlKhLly6yWCyy2Wx64okndOuttxodDcA5Yo2PE1jjuyfW+O6LNb57Y33vGiimgVOYMGGCNm3apJUrVxodBU6Sk5Ojhx56SF9++aW8vb2NjgMns9vtSkhI0JNPPilJ6tOnjzZt2qTZs2ezaHUTS5Ys0fz587VgwQJ169ZN69ev18MPP6yIiAi+BwCghWCN735Y47s31vjujfW9a6CY/oXg4GBZLBbl5+efdDw/P1/h4eEGpYKzTZw4UR999JG+/fZbRUVFGR0HTpKRkaGCggL17du37pjNZtO3336rlJQUVVZWymKxGJgQTaldu3bq2rXrSccuuOACvfvuuwYlgrM9+uijmjx5skaNGiVJ6tGjh/bu3avp06ezcAVcHGt8SKzx3RVrfPfGGt+9sb53Dewx/QtWq1Xx8fFKTU2tO2a325Wamqr+/fsbmAzO4HA4NHHiRL3//vv6+uuvFRcXZ3QkONHll1+ujRs3av369XWPhIQE3XrrrVq/fj0L1hZu4MCByszMPOnY9u3bdd555xmUCM5WXl4us/nkZZHFYpHdbjcoEYDGwhrfvbHGd2+s8d0ba3z3xvreNTAx/SvJyckaN26cEhISlJiYqJkzZ6qsrEzjx483Ohqa2IQJE7RgwQJ98MEHCggIUF5eniQpKChIPj4+BqdDUwsICPjNXoN+fn5q27YtexC6gUceeUQDBgzQk08+qREjRig9PV2vvPKKXnnlFaOjwUmuv/56PfHEE4qJiVG3bt30448/6tlnn9Wdd95pdDQAjYA1vvtije/eWOO7N9b47o31vWswORwOh9EhmpuUlBTNmDFDeXl56t27t55//nklJSUZHQtNzGQynfL466+/rjvuuMO5YdAsDB48WL1799bMmTONjgIn+OijjzRlyhTt2LFDcXFxSk5O1j333GN0LDhJaWmp/v73v+v9999XQUGBIiIiNHr0aE2dOlVWq9XoeAAaAWt898QaH7/GGt+9sMZ3X6zvXQPFNAAAAAAAAADAqdhjGgAAAAAAAADgVBTTAAAAAAAAAACnopgGAAAAAAAAADgVxTQAAAAAAAAAwKkopgEAAAAAAAAATkUxDQAAAAAAAABwKoppAAAAAAAAAIBTUUwDAAAAAAAAAJyKYhoAAAAAAAAA4FQU0wAAAAAAAAAAp6KYBgAAAAAAAAA4FcU0AAAAAAAAAMCp/j/tcwoDousSdAAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "Classification Report:\n", + " precision recall f1-score support\n", + "\n", + " 0 0.93 0.88 0.90 16\n", + " 1 0.80 0.89 0.84 9\n", + "\n", + " accuracy 0.88 25\n", + " macro avg 0.87 0.88 0.87 25\n", + "weighted avg 0.89 0.88 0.88 25\n", + "\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Predict sentiment of new reviews\n", + "new_reviews = [\"The food was good!\", \"I'm quite satisfied with the service.\"]\n", + "new_sequences = tokenizer.texts_to_sequences(new_reviews)\n", + "new_padded = pad_sequences(new_sequences, maxlen=100, padding='post')\n", + "predictions = model.predict(new_padded)\n", + "\n", + "print(\"Sentiment Predictions:\", [\"Positive\" if p > 0.5 else \"Negative\" for p in predictions])" + ], + "metadata": { + "id": "guEceo_O8O39", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "a0bf24b0-9aae-4498-a964-37e461de4ea4" + }, + "execution_count": 46, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 234ms/step\n", + "Sentiment Predictions: ['Positive', 'Positive']\n" + ] + } + ] + } + ] +} \ No newline at end of file diff --git a/Online Food Delivery Preferences/Model/README.md b/Online Food Delivery Preferences/Model/README.md new file mode 100644 index 000000000..1370e1de0 --- /dev/null +++ b/Online Food Delivery Preferences/Model/README.md @@ -0,0 +1,157 @@ +## **Online Food Delivery Preferences** + +### 🎯 **Goal** + +The project focuses on two primary objectives: + +Predict whether customers will place future orders using CNN, RNN, and a hybrid RNN+LSTM model based on demographic data such as age, occupation, monthly income, and family size. +Perform sentiment analysis on customer reviews to better understand customer experiences, using DNN, LSTM, and GRU models to classify the reviews as positive or negative. + + +### 🧵 **Dataset** + +Link : https://www.kaggle.com/datasets/benroshan/online-food-delivery-preferencesbangalore-region/data + +The dataset consists of 388 entries with 55 columns, providing detailed insights into customer preferences and experiences in online food delivery. Key variables include: + +1. **Demographics**: Age, gender, marital status, occupation, income, and education levels. +2. **Geographical Data**: Latitude, longitude, pin codes. +3. **Service Preferences**: Meal and medium preferences (e.g., "Medium (P1)", "Meal (P1)"), ease, convenience, and time-saving benefits. +4. **Delivery Experience**: Factors like restaurant choices, payment options, food quality, tracking systems, and road conditions. +5. **Challenges**: Common issues such as late deliveries, hygiene concerns, wrong orders, missing items, and delivery delays. +6. **User Feedback**: Reviews, Google Maps accuracy, politeness of delivery personnel, and the influence of ratings. +7. **Outcome**: Whether this consumer will buy again or not (e.g., "Output"). + +### 🧾 **Description** + +This project is divided into two main tasks: + +Customer Reordering Behavior Prediction: +For predicting whether a customer will reorder, CNN, RNN, and RNN+LSTM models were used. These models are trained on the structured dataset containing demographic data and behavioral factors. + +Sentiment Analysis of Customer Reviews: +For text-based sentiment analysis, DNN, LSTM, and GRU models were developed. These models aim to classify customer reviews as positive or negative, helping businesses understand customer satisfaction more effectively. + +### 🧮 **What I had done!** + +1) Data Preprocessing: +-Removed missing and irrelevant data (e.g., 'Nil' reviews). +-Tokenized reviews and converted them into sequences suitable for deep learning models. + +2) Exploratory Data Analysis (EDA): +-Analyzed the distribution of customer demographics such as age, income, family size etc. +-Created visualizations like bar charts and word clouds for reviews to understand sentiment polarity. + +3) Model Implementation for Prediction: +-Built CNN, RNN, and RNN+LSTM models to predict customer reordering behavior. +-Experimented with different architectures to capture patterns in structured data. + +4) Model Implementation for Sentiment Analysis: +-Developed DNN, LSTM, and GRU models for customer review analysis. +-These models were optimized to handle varying text lengths and interpret user sentiment effectively. + +5) Evaluation and Comparison: +-Compared models using accuracy, precision, recall, and F1-score. +-Identified the most accurate models for each task. + +### 🚀 **Models Implemented** + +For Customer Reordering Prediction: +CNN (Convolutional Neural Network): Captures local patterns and relationships in structured data such as demographic information. +RNN (Recurrent Neural Network): Captures sequential dependencies between behavioral factors, though it can suffer from vanishing gradients. +RNN + LSTM (Hybrid Model): Handles long-term dependencies more effectively than standard RNNs, providing more accurate predictions for reordering behavior. + +For Sentiment Analysis: +DNN (Deep Neural Network): A feedforward network used for simple yet effective sentiment classification. +LSTM (Long Short-Term Memory): Captures long-term dependencies in reviews, making it suitable for longer texts. +GRU (Gated Recurrent Unit): An efficient variant of LSTM, offering similar capabilities with fewer parameters. + +### 📚 **Libraries Needed** + +1. **os** +- Provides functions for interacting with the operating system (e.g., file and directory management). + +2. **pandas** + - Used for data manipulation and analysis, especially with DataFrames. + +3. **numpy** + - Supports numerical operations, including working with arrays, matrices, and mathematical computations. + +4. **scipy** + - Provides statistical functions and tools for scientific computing. + +5. **matplotlib** + - A plotting library used for creating visualizations like graphs and charts. + +6. **seaborn** + - A data visualization library built on Matplotlib, offering advanced statistical plots. + +7. **scikit-learn (sklearn)** + - A machine learning library providing tools for: + - Data preprocessing (e.g., LabelEncoder, StandardScaler) + - Model evaluation (e.g., classification_report, accuracy_score) + - Train-test data splitting (e.g., train_test_split) + +8. **tensorflow** + - A deep learning framework used to build and train neural networks. + +9. **tensorflow.keras** + - A high-level neural network API within TensorFlow, offering: + - Model creation using Sequential + - Neural network layers (e.g., Dense, LSTM, GRU, Dropout) + - Regularization techniques (e.g., L2 regularizers) + - Text processing tools (e.g., Tokenizer, pad_sequences) . + +### 📊 **Exploratory Data Analysis Results** + +

Demographic Details

+![Age Group] +(https://github.com/Pratzybha/Images/blob/main/Images/AgeGroup.png) + +![Demographic Details] +(https://github.com/Pratzybha/Images/blob/main/Images/DemographicDetails.png) + +

Correlation Calculation

+![Correlation Calculation] +(https://github.com/Pratzybha/Images/blob/main/Images/CorrelationCalculation.png) + +

Features That Influence Users To Use Online Food Delivery

+![Features That Influence Users To Use Online Food Delivery] +(https://github.com/Pratzybha/Images/blob/main/Images/FeaturesOnlineDelivery%201.png) + +

Features That Discourage Users To Use Online Food Delivery

+![Features That Discourage Users To Use Online Food Delivery] +(https://github.com/Pratzybha/Images/blob/main/Images/FeaturesOnlineDelivery%202.png) + +

Time Factor

+![Time Factor] +(https://github.com/Pratzybha/Images/blob/main/Images/FeaturesOnlineDelivery%203.png) + +### 📈 **Performance of the Models based on the Accuracy Scores** + +| Model | Accuracy | +|------------|----------| +| CNN | 90% | +| RNN | 92% | +| RNN + LSTM | 92.3% | +| DNN | 84% | +| LSTM | 92% | +| GRU | 88% | + + +### 📢 **Conclusion** + +The project successfully demonstrates the potential of deep learning models for both customer behavior prediction and sentiment analysis. + +The RNN + LSTM Hybrid model provided the best performance for sentiment analysis, achieving an accuracy of 92.3%. +The LSTM model effectively predicted reordering behavior with 92% accuracy. +These insights help food delivery companies better understand customer preferences and enhance their service quality. + + +### ✒️ **Your Signature** + +Your Name: [Pratibha Balgi] + +GitHub: [https://github.com/Pratzybha] + +LinkedIn: [https://www.linkedin.com/in/pratibhabalgi2410/] diff --git a/Online Food Delivery Preferences/requirements.txt.txt b/Online Food Delivery Preferences/requirements.txt.txt new file mode 100644 index 000000000..0b090dbda --- /dev/null +++ b/Online Food Delivery Preferences/requirements.txt.txt @@ -0,0 +1,10 @@ +Libraries used - + +matplotlib +numpy +os +pandas +scipy +seaborn +sklearn +tensorflow ​ \ No newline at end of file