forked from ggerganov/llama.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathggml-rpc.cpp
1178 lines (1087 loc) · 43.3 KB
/
ggml-rpc.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "ggml-rpc.h"
#include "ggml.h"
#include "ggml-backend-impl.h"
#include <cinttypes>
#include <string>
#include <vector>
#include <memory>
#include <mutex>
#include <unordered_map>
#include <unordered_set>
#ifdef _WIN32
# define WIN32_LEAN_AND_MEAN
# ifndef NOMINMAX
# define NOMINMAX
# endif
# include <windows.h>
# include <winsock2.h>
#else
# include <arpa/inet.h>
# include <sys/socket.h>
# include <sys/types.h>
# include <netinet/in.h>
# include <netinet/tcp.h>
# include <netdb.h>
# include <unistd.h>
#endif
#include <string.h>
#define UNUSED GGML_UNUSED
#define GGML_DEBUG 0
#if (GGML_DEBUG >= 1)
#define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
#else
#define GGML_PRINT_DEBUG(...)
#endif
#ifdef _WIN32
typedef SOCKET sockfd_t;
using ssize_t = __int64;
#else
typedef int sockfd_t;
#endif
// cross-platform socket
struct socket_t {
sockfd_t fd;
socket_t(sockfd_t fd) : fd(fd) {}
~socket_t() {
GGML_PRINT_DEBUG("[%s] closing socket %d\n", __func__, this->fd);
#ifdef _WIN32
closesocket(this->fd);
#else
close(this->fd);
#endif
}
};
// ggml_tensor is serialized into rpc_tensor
#pragma pack(push, 1)
struct rpc_tensor {
uint64_t id;
uint32_t type;
uint64_t buffer;
uint32_t ne[GGML_MAX_DIMS];
uint32_t nb[GGML_MAX_DIMS];
uint32_t op;
int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
int32_t flags;
uint64_t src[GGML_MAX_SRC];
uint64_t view_src;
uint64_t view_offs;
uint64_t data;
char name[GGML_MAX_NAME];
char padding[4];
};
#pragma pack(pop)
static_assert(sizeof(rpc_tensor) % 8 == 0, "rpc_tensor size must be multiple of 8");
// RPC commands
enum rpc_cmd {
ALLOC_BUFFER = 0,
GET_ALIGNMENT,
GET_MAX_SIZE,
BUFFER_GET_BASE,
FREE_BUFFER,
BUFFER_CLEAR,
SET_TENSOR,
GET_TENSOR,
COPY_TENSOR,
GRAPH_COMPUTE,
GET_DEVICE_MEMORY,
};
// RPC data structures
static ggml_guid_t ggml_backend_rpc_guid() {
static ggml_guid guid = {0x99, 0x68, 0x5b, 0x6c, 0xd2, 0x83, 0x3d, 0x24, 0x25, 0x36, 0x72, 0xe1, 0x5b, 0x0e, 0x14, 0x03};
return &guid;
}
struct ggml_backend_rpc_buffer_type_context {
std::string endpoint;
std::string name;
size_t alignment;
size_t max_size;
};
struct ggml_backend_rpc_context {
std::string endpoint;
std::string name;
};
struct ggml_backend_rpc_buffer_context {
std::shared_ptr<socket_t> sock;
std::unordered_map<ggml_backend_buffer_t, void *> base_cache;
uint64_t remote_ptr;
std::string name;
};
// RPC helper functions
static std::shared_ptr<socket_t> make_socket(sockfd_t fd) {
#ifdef _WIN32
if (fd == INVALID_SOCKET) {
return nullptr;
}
#else
if (fd < 0) {
return nullptr;
}
#endif
return std::make_shared<socket_t>(fd);
}
static bool set_no_delay(sockfd_t sockfd) {
int flag = 1;
// set TCP_NODELAY to disable Nagle's algorithm
int ret = setsockopt(sockfd, IPPROTO_TCP, TCP_NODELAY, (char *)&flag, sizeof(int));
return ret == 0;
}
static bool set_reuse_addr(sockfd_t sockfd) {
int flag = 1;
int ret = setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, (char *)&flag, sizeof(int));
return ret == 0;
}
static std::shared_ptr<socket_t> socket_connect(const char * host, int port) {
struct sockaddr_in addr;
auto sockfd = socket(AF_INET, SOCK_STREAM, 0);
auto sock_ptr = make_socket(sockfd);
if (sock_ptr == nullptr) {
return nullptr;
}
if (!set_no_delay(sockfd)) {
fprintf(stderr, "Failed to set TCP_NODELAY\n");
return nullptr;
}
addr.sin_family = AF_INET;
addr.sin_port = htons(port);
struct hostent * server = gethostbyname(host);
if (server == NULL) {
fprintf(stderr, "Cannot resolve host '%s'\n", host);
return nullptr;
}
memcpy(&addr.sin_addr.s_addr, server->h_addr, server->h_length);
if (connect(sock_ptr->fd, (struct sockaddr *)&addr, sizeof(addr)) < 0) {
return nullptr;
}
return sock_ptr;
}
static std::shared_ptr<socket_t> socket_accept(sockfd_t srv_sockfd) {
auto client_socket_fd = accept(srv_sockfd, NULL, NULL);
auto client_socket = make_socket(client_socket_fd);
if (client_socket == nullptr) {
return nullptr;
}
if (!set_no_delay(client_socket_fd)) {
fprintf(stderr, "Failed to set TCP_NODELAY\n");
return nullptr;
}
return client_socket;
}
static std::shared_ptr<socket_t> create_server_socket(const char * host, int port) {
auto sockfd = socket(AF_INET, SOCK_STREAM, 0);
auto sock = make_socket(sockfd);
if (sock == nullptr) {
return nullptr;
}
if (!set_reuse_addr(sockfd)) {
fprintf(stderr, "Failed to set SO_REUSEADDR\n");
return nullptr;
}
struct sockaddr_in serv_addr;
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = inet_addr(host);
serv_addr.sin_port = htons(port);
if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0) {
return nullptr;
}
if (listen(sockfd, 1) < 0) {
return nullptr;
}
return sock;
}
static bool send_data(sockfd_t sockfd, const void * data, size_t size) {
size_t bytes_sent = 0;
while (bytes_sent < size) {
ssize_t n = send(sockfd, (const char *)data + bytes_sent, size - bytes_sent, 0);
if (n < 0) {
return false;
}
bytes_sent += n;
}
return true;
}
static bool recv_data(sockfd_t sockfd, void * data, size_t size) {
size_t bytes_recv = 0;
while (bytes_recv < size) {
ssize_t n = recv(sockfd, (char *)data + bytes_recv, size - bytes_recv, 0);
if (n <= 0) {
return false;
}
bytes_recv += n;
}
return true;
}
static bool parse_endpoint(const std::string & endpoint, std::string & host, int & port) {
size_t pos = endpoint.find(':');
if (pos == std::string::npos) {
return false;
}
host = endpoint.substr(0, pos);
port = std::stoi(endpoint.substr(pos + 1));
return true;
}
// RPC request : | rpc_cmd (1 byte) | request_size (8 bytes) | request_data (request_size bytes) |
// RPC response: | response_size (8 bytes) | response_data (response_size bytes) |
static bool send_rpc_cmd(const std::shared_ptr<socket_t> & sock, enum rpc_cmd cmd, const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
uint8_t cmd_byte = cmd;
if (!send_data(sock->fd, &cmd_byte, sizeof(cmd_byte))) {
return false;
}
uint64_t input_size = input.size();
if (!send_data(sock->fd, &input_size, sizeof(input_size))) {
return false;
}
if (!send_data(sock->fd, input.data(), input.size())) {
return false;
}
uint64_t output_size;
if (!recv_data(sock->fd, &output_size, sizeof(output_size))) {
return false;
}
if (output_size == 0) {
output.clear();
return true;
}
output.resize(output_size);
if (!recv_data(sock->fd, output.data(), output_size)) {
return false;
}
return true;
}
// RPC client-side implementation
static std::shared_ptr<socket_t> get_socket(const std::string & endpoint) {
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
static std::unordered_map<std::string, std::weak_ptr<socket_t>> sockets;
static bool initialized = false;
auto it = sockets.find(endpoint);
if (it != sockets.end()) {
if (auto sock = it->second.lock()) {
return sock;
}
}
std::string host;
int port;
if (!parse_endpoint(endpoint, host, port)) {
return nullptr;
}
#ifdef _WIN32
if (!initialized) {
WSADATA wsaData;
int res = WSAStartup(MAKEWORD(2, 2), &wsaData);
if (res != 0) {
return nullptr;
}
initialized = true;
}
#else
UNUSED(initialized);
#endif
auto sock = socket_connect(host.c_str(), port);
if (sock == nullptr) {
return nullptr;
}
GGML_PRINT_DEBUG("[%s] connected to %s, sockfd=%d\n", __func__, endpoint.c_str(), sock->fd);
sockets[endpoint] = sock;
return sock;
}
GGML_CALL static const char * ggml_backend_rpc_buffer_get_name(ggml_backend_buffer_t buffer) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
return ctx->name.c_str();
}
GGML_CALL static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
// input serialization format: | remote_ptr (8 bytes) |
std::vector<uint8_t> input(sizeof(uint64_t), 0);
uint64_t remote_ptr = ctx->remote_ptr;
memcpy(input.data(), &remote_ptr, sizeof(remote_ptr));
std::vector<uint8_t> output;
bool status = send_rpc_cmd(ctx->sock, FREE_BUFFER, input, output);
GGML_ASSERT(status);
GGML_ASSERT(output.empty());
delete ctx;
}
GGML_CALL static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t buffer) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
if (ctx->base_cache.find(buffer) != ctx->base_cache.end()) {
return ctx->base_cache[buffer];
}
// input serialization format: | remote_ptr (8 bytes) |
std::vector<uint8_t> input(sizeof(uint64_t), 0);
uint64_t remote_ptr = ctx->remote_ptr;
memcpy(input.data(), &remote_ptr, sizeof(remote_ptr));
std::vector<uint8_t> output;
bool status = send_rpc_cmd(ctx->sock, BUFFER_GET_BASE, input, output);
GGML_ASSERT(status);
GGML_ASSERT(output.size() == sizeof(uint64_t));
// output serialization format: | base_ptr (8 bytes) |
uint64_t base_ptr;
memcpy(&base_ptr, output.data(), sizeof(base_ptr));
void * base = reinterpret_cast<void *>(base_ptr);
ctx->base_cache[buffer] = base;
return base;
}
static rpc_tensor serialize_tensor(const ggml_tensor * tensor) {
rpc_tensor result;
result.id = reinterpret_cast<uint64_t>(tensor);
result.type = tensor->type;
if (tensor->buffer) {
ggml_backend_buffer_t buffer = tensor->buffer;
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
result.buffer = ctx->remote_ptr;
} else {
result.buffer = 0;
}
for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) {
result.ne[i] = tensor->ne[i];
result.nb[i] = tensor->nb[i];
}
result.op = tensor->op;
for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) {
result.op_params[i] = tensor->op_params[i];
}
result.flags = tensor->flags;
for (uint32_t i = 0; i < GGML_MAX_SRC; i++) {
result.src[i] = reinterpret_cast<uint64_t>(tensor->src[i]);
}
result.view_src = reinterpret_cast<uint64_t>(tensor->view_src);
result.view_offs = tensor->view_offs;
result.data = reinterpret_cast<uint64_t>(tensor->data);
snprintf(result.name, GGML_MAX_NAME, "%s", tensor->name);
return result;
}
GGML_CALL static void ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
UNUSED(buffer);
if (ggml_is_quantized(tensor->type)) {
// TODO: this check is due to MATRIX_ROW_PADDING in CUDA and should be generalized
GGML_ASSERT(tensor->ne[0] % 512 == 0 && "unsupported quantized tensor");
}
}
GGML_CALL static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
// input serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) |
size_t input_size = sizeof(rpc_tensor) + sizeof(uint64_t) + size;
std::vector<uint8_t> input(input_size, 0);
rpc_tensor rpc_tensor = serialize_tensor(tensor);
memcpy(input.data(), &rpc_tensor, sizeof(rpc_tensor));
memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset));
memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), data, size);
std::vector<uint8_t> output;
bool status = send_rpc_cmd(ctx->sock, SET_TENSOR, input, output);
GGML_ASSERT(status);
}
GGML_CALL static void ggml_backend_rpc_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
// input serialization format: | rpc_tensor | offset (8 bytes) | size (8 bytes) |
int input_size = sizeof(rpc_tensor) + 2*sizeof(uint64_t);
std::vector<uint8_t> input(input_size, 0);
rpc_tensor rpc_tensor = serialize_tensor(tensor);
memcpy(input.data(), &rpc_tensor, sizeof(rpc_tensor));
memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset));
memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), &size, sizeof(size));
std::vector<uint8_t> output;
bool status = send_rpc_cmd(ctx->sock, GET_TENSOR, input, output);
GGML_ASSERT(status);
GGML_ASSERT(output.size() == size);
// output serialization format: | data (size bytes) |
memcpy(data, output.data(), size);
}
GGML_CALL static bool ggml_backend_rpc_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
// check if src and dst are on the same server
ggml_backend_buffer_t src_buffer = src->buffer;
ggml_backend_rpc_buffer_context * src_ctx = (ggml_backend_rpc_buffer_context *)src_buffer->context;
ggml_backend_buffer_t dst_buffer = dst->buffer;
ggml_backend_rpc_buffer_context * dst_ctx = (ggml_backend_rpc_buffer_context *)dst_buffer->context;
if (src_ctx->sock != dst_ctx->sock) {
return false;
}
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
// input serialization format: | rpc_tensor src | rpc_tensor dst |
int input_size = 2*sizeof(rpc_tensor);
std::vector<uint8_t> input(input_size, 0);
rpc_tensor rpc_src = serialize_tensor(src);
rpc_tensor rpc_dst = serialize_tensor(dst);
memcpy(input.data(), &rpc_src, sizeof(rpc_src));
memcpy(input.data() + sizeof(rpc_src), &rpc_dst, sizeof(rpc_dst));
std::vector<uint8_t> output;
bool status = send_rpc_cmd(ctx->sock, COPY_TENSOR, input, output);
GGML_ASSERT(status);
// output serialization format: | result (1 byte) |
GGML_ASSERT(output.size() == 1);
return output[0];
}
GGML_CALL static void ggml_backend_rpc_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
// serialization format: | bufptr (8 bytes) | value (1 byte) |
int input_size = sizeof(uint64_t) + sizeof(uint8_t);
std::vector<uint8_t> input(input_size, 0);
memcpy(input.data(), &ctx->remote_ptr, sizeof(ctx->remote_ptr));
memcpy(input.data() + sizeof(ctx->remote_ptr), &value, sizeof(value));
std::vector<uint8_t> output;
bool status = send_rpc_cmd(ctx->sock, BUFFER_CLEAR, input, output);
GGML_ASSERT(status);
}
static ggml_backend_buffer_i ggml_backend_rpc_buffer_interface = {
/* .get_name = */ ggml_backend_rpc_buffer_get_name,
/* .free_buffer = */ ggml_backend_rpc_buffer_free_buffer,
/* .get_base = */ ggml_backend_rpc_buffer_get_base,
/* .init_tensor = */ ggml_backend_rpc_buffer_init_tensor,
/* .set_tensor = */ ggml_backend_rpc_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_rpc_buffer_get_tensor,
/* .cpy_tensor = */ ggml_backend_rpc_buffer_cpy_tensor,
/* .clear = */ ggml_backend_rpc_buffer_clear,
/* .reset = */ NULL,
};
GGML_CALL static const char * ggml_backend_rpc_buffer_type_name(ggml_backend_buffer_type_t buft) {
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
return buft_ctx->name.c_str();
}
GGML_CALL static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
// input serialization format: | size (8 bytes) |
int input_size = sizeof(uint64_t);
std::vector<uint8_t> input(input_size, 0);
memcpy(input.data(), &size, sizeof(size));
std::vector<uint8_t> output;
auto sock = get_socket(buft_ctx->endpoint);
bool status = send_rpc_cmd(sock, ALLOC_BUFFER, input, output);
GGML_ASSERT(status);
GGML_ASSERT(output.size() == 2*sizeof(uint64_t));
// output serialization format: | remote_ptr (8 bytes) | remote_size (8 bytes) |
uint64_t remote_ptr;
memcpy(&remote_ptr, output.data(), sizeof(remote_ptr));
size_t remote_size;
memcpy(&remote_size, output.data() + sizeof(uint64_t), sizeof(remote_size));
if (remote_ptr != 0) {
ggml_backend_buffer_t buffer = ggml_backend_buffer_init(buft,
ggml_backend_rpc_buffer_interface,
new ggml_backend_rpc_buffer_context{sock, {}, remote_ptr, "RPC[" + std::string(buft_ctx->endpoint) + "]"},
remote_size);
return buffer;
} else {
return nullptr;
}
}
static size_t get_alignment(const std::shared_ptr<socket_t> & sock) {
// input serialization format: | 0 bytes |
std::vector<uint8_t> input;
std::vector<uint8_t> output;
bool status = send_rpc_cmd(sock, GET_ALIGNMENT, input, output);
GGML_ASSERT(status);
GGML_ASSERT(output.size() == sizeof(uint64_t));
// output serialization format: | alignment (8 bytes) |
uint64_t alignment;
memcpy(&alignment, output.data(), sizeof(alignment));
return alignment;
}
GGML_CALL static size_t ggml_backend_rpc_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
return buft_ctx->alignment;
}
static size_t get_max_size(const std::shared_ptr<socket_t> & sock) {
// input serialization format: | 0 bytes |
std::vector<uint8_t> input;
std::vector<uint8_t> output;
bool status = send_rpc_cmd(sock, GET_MAX_SIZE, input, output);
GGML_ASSERT(status);
GGML_ASSERT(output.size() == sizeof(uint64_t));
// output serialization format: | max_size (8 bytes) |
uint64_t max_size;
memcpy(&max_size, output.data(), sizeof(max_size));
return max_size;
}
GGML_CALL static size_t ggml_backend_rpc_get_max_size(ggml_backend_buffer_type_t buft) {
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
return buft_ctx->max_size;
}
GGML_CALL static size_t ggml_backend_rpc_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
UNUSED(buft);
return ggml_nbytes(tensor);
}
static ggml_backend_buffer_type_i ggml_backend_rpc_buffer_type_interface = {
/* .get_name = */ ggml_backend_rpc_buffer_type_name,
/* .alloc_buffer = */ ggml_backend_rpc_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_rpc_buffer_type_get_alignment,
/* .get_max_size = */ ggml_backend_rpc_get_max_size,
/* .get_alloc_size = */ ggml_backend_rpc_buffer_type_get_alloc_size,
/* .is_host = */ NULL,
};
GGML_CALL static const char * ggml_backend_rpc_name(ggml_backend_t backend) {
ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
return rpc_ctx->name.c_str();
}
GGML_CALL static void ggml_backend_rpc_free(ggml_backend_t backend) {
ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
delete rpc_ctx;
delete backend;
}
GGML_CALL static ggml_backend_buffer_type_t ggml_backend_rpc_get_default_buffer_type(ggml_backend_t backend) {
ggml_backend_rpc_context * ctx = (ggml_backend_rpc_context *)backend->context;
return ggml_backend_rpc_buffer_type(ctx->endpoint.c_str());
}
GGML_CALL static void ggml_backend_rpc_synchronize(ggml_backend_t backend) {
UNUSED(backend);
// this is no-op because we don't have any async operations
}
static void add_tensor(ggml_tensor * tensor, std::vector<rpc_tensor> & tensors, std::unordered_set<ggml_tensor*> & visited) {
if (tensor == nullptr) {
return;
}
if (visited.find(tensor) != visited.end()) {
return;
}
visited.insert(tensor);
for (int i = 0; i < GGML_MAX_SRC; i++) {
add_tensor(tensor->src[i], tensors, visited);
}
add_tensor(tensor->view_src, tensors, visited);
tensors.push_back(serialize_tensor(tensor));
}
static void serialize_graph(const ggml_cgraph * cgraph, std::vector<uint8_t> & output) {
uint32_t n_nodes = cgraph->n_nodes;
std::vector<rpc_tensor> tensors;
std::unordered_set<ggml_tensor*> visited;
for (uint32_t i = 0; i < n_nodes; i++) {
add_tensor(cgraph->nodes[i], tensors, visited);
}
// serialization format:
// | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
uint32_t n_tensors = tensors.size();
int output_size = sizeof(uint32_t) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t) + n_tensors * sizeof(rpc_tensor);
output.resize(output_size, 0);
memcpy(output.data(), &n_nodes, sizeof(n_nodes));
for (uint32_t i = 0; i < n_nodes; i++) {
memcpy(output.data() + sizeof(n_nodes) + i * sizeof(uint64_t), &cgraph->nodes[i], sizeof(uint64_t));
}
uint32_t * out_ntensors = (uint32_t *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t));
*out_ntensors = n_tensors;
rpc_tensor * out_tensors = (rpc_tensor *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t));
memcpy(out_tensors, tensors.data(), n_tensors * sizeof(rpc_tensor));
}
GGML_CALL static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
std::vector<uint8_t> input;
serialize_graph(cgraph, input);
std::vector<uint8_t> output;
auto sock = get_socket(rpc_ctx->endpoint);
bool status = send_rpc_cmd(sock, GRAPH_COMPUTE, input, output);
GGML_ASSERT(status);
GGML_ASSERT(output.size() == 1);
return (enum ggml_status)output[0];
}
GGML_CALL static bool ggml_backend_rpc_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
UNUSED(backend);
UNUSED(op);
//TODO: call the remote backend and cache the results
return true;
}
GGML_CALL static bool ggml_backend_rpc_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
if (buft->iface.get_name != ggml_backend_rpc_buffer_type_name) {
return false;
}
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
return buft_ctx->endpoint == rpc_ctx->endpoint;
}
static ggml_backend_i ggml_backend_rpc_interface = {
/* .get_name = */ ggml_backend_rpc_name,
/* .free = */ ggml_backend_rpc_free,
/* .get_default_buffer_type = */ ggml_backend_rpc_get_default_buffer_type,
/* .set_tensor_async = */ NULL,
/* .get_tensor_async = */ NULL,
/* .cpy_tensor_async = */ NULL,
/* .synchronize = */ ggml_backend_rpc_synchronize,
/* .graph_plan_create = */ NULL,
/* .graph_plan_free = */ NULL,
/* .graph_plan_update = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_rpc_graph_compute,
/* .supports_op = */ ggml_backend_rpc_supports_op,
/* .supports_buft = */ ggml_backend_rpc_supports_buft,
/* .offload_op = */ NULL,
/* .event_new = */ NULL,
/* .event_free = */ NULL,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
/* .event_synchronize = */ NULL,
};
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint) {
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
// NOTE: buffer types are allocated and never freed; this is by design
static std::unordered_map<std::string, ggml_backend_buffer_type_t> buft_map;
auto it = buft_map.find(endpoint);
if (it != buft_map.end()) {
return it->second;
}
auto sock = get_socket(endpoint);
if (sock == nullptr) {
return nullptr;
}
size_t alignment = get_alignment(sock);
size_t max_size = get_max_size(sock);
ggml_backend_rpc_buffer_type_context * buft_ctx = new ggml_backend_rpc_buffer_type_context {
/* .endpoint = */ endpoint,
/* .name = */ "RPC[" + std::string(endpoint) + "]",
/* .alignment = */ alignment,
/* .max_size = */ max_size
};
ggml_backend_buffer_type_t buft = new ggml_backend_buffer_type {
/* .iface = */ ggml_backend_rpc_buffer_type_interface,
/* .context = */ buft_ctx
};
buft_map[endpoint] = buft;
return buft;
}
GGML_CALL ggml_backend_t ggml_backend_rpc_init(const char * endpoint) {
ggml_backend_rpc_context * ctx = new ggml_backend_rpc_context {
/* .endpoint = */ endpoint,
/* .name = */ "RPC[" + std::string(endpoint) + "]",
};
ggml_backend_t backend = new ggml_backend {
/* .guid = */ ggml_backend_rpc_guid(),
/* .interface = */ ggml_backend_rpc_interface,
/* .context = */ ctx
};
return backend;
}
GGML_API GGML_CALL bool ggml_backend_is_rpc(ggml_backend_t backend) {
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_rpc_guid());
}
static void get_device_memory(const std::shared_ptr<socket_t> & sock, size_t * free, size_t * total) {
// input serialization format: | 0 bytes |
std::vector<uint8_t> input;
std::vector<uint8_t> output;
bool status = send_rpc_cmd(sock, GET_DEVICE_MEMORY, input, output);
GGML_ASSERT(status);
GGML_ASSERT(output.size() == 2*sizeof(uint64_t));
// output serialization format: | free (8 bytes) | total (8 bytes) |
uint64_t free_mem;
memcpy(&free_mem, output.data(), sizeof(free_mem));
uint64_t total_mem;
memcpy(&total_mem, output.data() + sizeof(uint64_t), sizeof(total_mem));
*free = free_mem;
*total = total_mem;
}
GGML_API GGML_CALL void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total) {
auto sock = get_socket(endpoint);
if (sock == nullptr) {
*free = 0;
*total = 0;
return;
}
get_device_memory(sock, free, total);
}
// RPC server-side implementation
class rpc_server {
public:
rpc_server(ggml_backend_t backend) : backend(backend) {}
~rpc_server();
bool alloc_buffer(const std::vector<uint8_t> & input, std::vector<uint8_t> & output);
void get_alignment(std::vector<uint8_t> & output);
void get_max_size(std::vector<uint8_t> & output);
bool buffer_get_base(const std::vector<uint8_t> & input, std::vector<uint8_t> & output);
bool free_buffer(const std::vector<uint8_t> & input);
bool buffer_clear(const std::vector<uint8_t> & input);
bool set_tensor(const std::vector<uint8_t> & input);
bool get_tensor(const std::vector<uint8_t> & input, std::vector<uint8_t> & output);
bool copy_tensor(const std::vector<uint8_t> & input, std::vector<uint8_t> & output);
bool graph_compute(const std::vector<uint8_t> & input, std::vector<uint8_t> & output);
private:
ggml_tensor * deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor);
ggml_tensor * create_node(uint64_t id,
struct ggml_context * ctx,
const std::unordered_map<uint64_t, const rpc_tensor*> & tensor_ptrs,
std::unordered_map<uint64_t, struct ggml_tensor*> & tensor_map);
ggml_backend_t backend;
std::unordered_set<ggml_backend_buffer_t> buffers;
};
bool rpc_server::alloc_buffer(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
// input serialization format: | size (8 bytes) |
if (input.size() != sizeof(uint64_t)) {
return false;
}
uint64_t size;
memcpy(&size, input.data(), sizeof(size));
ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, size);
uint64_t remote_ptr = 0;
uint64_t remote_size = 0;
if (buffer != nullptr) {
remote_ptr = reinterpret_cast<uint64_t>(buffer);
remote_size = buffer->size;
GGML_PRINT_DEBUG("[%s] size: %" PRIu64 " -> remote_ptr: %" PRIx64 ", remote_size: %" PRIu64 "\n", __func__, size, remote_ptr, remote_size);
buffers.insert(buffer);
} else {
GGML_PRINT_DEBUG("[%s] size: %" PRIu64 " -> failed\n", __func__, size);
}
// output serialization format: | remote_ptr (8 bytes) | remote_size (8 bytes) |
output.resize(2*sizeof(uint64_t), 0);
memcpy(output.data(), &remote_ptr, sizeof(remote_ptr));
memcpy(output.data() + sizeof(uint64_t), &remote_size, sizeof(remote_size));
return true;
}
void rpc_server::get_alignment(std::vector<uint8_t> & output) {
ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
size_t alignment = ggml_backend_buft_get_alignment(buft);
GGML_PRINT_DEBUG("[%s] alignment: %lu\n", __func__, alignment);
// output serialization format: | alignment (8 bytes) |
output.resize(sizeof(uint64_t), 0);
memcpy(output.data(), &alignment, sizeof(alignment));
}
void rpc_server::get_max_size(std::vector<uint8_t> & output) {
ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
size_t max_size = ggml_backend_buft_get_max_size(buft);
GGML_PRINT_DEBUG("[%s] max_size: %lu\n", __func__, max_size);
// output serialization format: | max_size (8 bytes) |
output.resize(sizeof(uint64_t), 0);
memcpy(output.data(), &max_size, sizeof(max_size));
}
bool rpc_server::buffer_get_base(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
// input serialization format: | remote_ptr (8 bytes) |
if (input.size() != sizeof(uint64_t)) {
return false;
}
uint64_t remote_ptr;
memcpy(&remote_ptr, input.data(), sizeof(remote_ptr));
GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 "\n", __func__, remote_ptr);
ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(remote_ptr);
if (buffers.find(buffer) == buffers.end()) {
GGML_PRINT_DEBUG("[%s] buffer not found\n", __func__);
return false;
}
void * base = ggml_backend_buffer_get_base(buffer);
// output serialization format: | base_ptr (8 bytes) |
uint64_t base_ptr = reinterpret_cast<uint64_t>(base);
output.resize(sizeof(uint64_t), 0);
memcpy(output.data(), &base_ptr, sizeof(base_ptr));
return true;
}
bool rpc_server::free_buffer(const std::vector<uint8_t> & input) {
// input serialization format: | remote_ptr (8 bytes) |
if (input.size() != sizeof(uint64_t)) {
return false;
}
uint64_t remote_ptr;
memcpy(&remote_ptr, input.data(), sizeof(remote_ptr));
GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 "\n", __func__, remote_ptr);
ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(remote_ptr);
if (buffers.find(buffer) == buffers.end()) {
GGML_PRINT_DEBUG("[%s] buffer not found\n", __func__);
return false;
}
ggml_backend_buffer_free(buffer);
buffers.erase(buffer);
return true;
}
bool rpc_server::buffer_clear(const std::vector<uint8_t> & input) {
// input serialization format: | remote_ptr (8 bytes) | value (1 byte) |
if (input.size() != sizeof(uint64_t) + sizeof(uint8_t)) {
return false;
}
uint64_t remote_ptr;
memcpy(&remote_ptr, input.data(), sizeof(remote_ptr));
uint8_t value;
memcpy(&value, input.data() + sizeof(uint64_t), sizeof(value));
GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 ", value: %u\n", __func__, remote_ptr, value);
ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(remote_ptr);
if (buffers.find(buffer) == buffers.end()) {
GGML_PRINT_DEBUG("[%s] buffer not found\n", __func__);
return false;
}
ggml_backend_buffer_clear(buffer, value);
return true;
}
ggml_tensor * rpc_server::deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor) {
ggml_tensor * result = ggml_new_tensor_4d(ctx, (ggml_type) tensor->type,
tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) {
result->nb[i] = tensor->nb[i];
}
result->buffer = reinterpret_cast<ggml_backend_buffer_t>(tensor->buffer);
if (result->buffer && buffers.find(result->buffer) == buffers.end()) {
return nullptr;
}
result->op = (ggml_op) tensor->op;
for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) {
result->op_params[i] = tensor->op_params[i];
}
result->flags = tensor->flags;
result->data = reinterpret_cast<void *>(tensor->data);
ggml_set_name(result, tensor->name);
return result;
}
bool rpc_server::set_tensor(const std::vector<uint8_t> & input) {
// serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) |
if (input.size() < sizeof(rpc_tensor) + sizeof(uint64_t)) {
return false;
}
const rpc_tensor * in_tensor = (const rpc_tensor *)input.data();
uint64_t offset;
memcpy(&offset, input.data() + sizeof(rpc_tensor), sizeof(offset));
size_t size = input.size() - sizeof(rpc_tensor) - sizeof(offset);
struct ggml_init_params params {
/*.mem_size =*/ ggml_tensor_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
struct ggml_context * ctx = ggml_init(params);
ggml_tensor * tensor = deserialize_tensor(ctx, in_tensor);
if (tensor == nullptr) {
GGML_PRINT_DEBUG("[%s] error deserializing tensor\n", __func__);
ggml_free(ctx);
return false;
}
GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %zu\n", __func__, (void*)tensor->buffer, tensor->data, offset, size);
const void * data = input.data() + sizeof(rpc_tensor) + sizeof(offset);
ggml_backend_tensor_set(tensor, data, offset, size);
ggml_free(ctx);
return true;
}
bool rpc_server::get_tensor(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
// serialization format: | rpc_tensor | offset (8 bytes) | size (8 bytes) |
if (input.size() != sizeof(rpc_tensor) + 2*sizeof(uint64_t)) {
return false;
}
const rpc_tensor * in_tensor = (const rpc_tensor *)input.data();
uint64_t offset;
memcpy(&offset, input.data() + sizeof(rpc_tensor), sizeof(offset));
uint64_t size;
memcpy(&size, input.data() + sizeof(rpc_tensor) + sizeof(offset), sizeof(size));
struct ggml_init_params params {
/*.mem_size =*/ ggml_tensor_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
struct ggml_context * ctx = ggml_init(params);
ggml_tensor * tensor = deserialize_tensor(ctx, in_tensor);
if (tensor == nullptr) {
GGML_PRINT_DEBUG("[%s] error deserializing tensor\n", __func__);
ggml_free(ctx);
return false;
}
GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %" PRIu64 "\n", __func__, (void*)tensor->buffer, tensor->data, offset, size);
// output serialization format: | data (size bytes) |
output.resize(size, 0);
ggml_backend_tensor_get(tensor, output.data(), offset, size);
ggml_free(ctx);
return true;
}
bool rpc_server::copy_tensor(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
// serialization format: | rpc_tensor src | rpc_tensor dst |
if (input.size() != 2*sizeof(rpc_tensor)) {
return false;
}
const rpc_tensor * rpc_src = (const rpc_tensor *)input.data();
const rpc_tensor * rpc_dst = (const rpc_tensor *)(input.data() + sizeof(rpc_src));
struct ggml_init_params params {
/*.mem_size =*/ 2*ggml_tensor_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
struct ggml_context * ctx = ggml_init(params);
ggml_tensor * src = deserialize_tensor(ctx, rpc_src);
ggml_tensor * dst = deserialize_tensor(ctx, rpc_dst);
if (src == nullptr || dst == nullptr) {
GGML_PRINT_DEBUG("[%s] error deserializing tensors\n", __func__);
ggml_free(ctx);
return false;
}
GGML_PRINT_DEBUG("[%s] src->buffer: %p, dst->buffer: %p\n", __func__, (void*)src->buffer, (void*)dst->buffer);
bool result = ggml_backend_buffer_copy_tensor(src, dst);
// output serialization format: | result (1 byte) |
output.resize(1, 0);
output[0] = result;
ggml_free(ctx);
return true;
}
ggml_tensor * rpc_server::create_node(uint64_t id,
struct ggml_context * ctx,
const std::unordered_map<uint64_t, const rpc_tensor*> & tensor_ptrs,
std::unordered_map<uint64_t, struct ggml_tensor*> & tensor_map) {
if (id == 0) {
return nullptr;
}
if (tensor_map.find(id) != tensor_map.end()) {
return tensor_map[id];
}
const rpc_tensor * tensor = tensor_ptrs.at(id);
struct ggml_tensor * result = deserialize_tensor(ctx, tensor);
if (result == nullptr) {
return nullptr;
}
tensor_map[id] = result;
for (int i = 0; i < GGML_MAX_SRC; i++) {
result->src[i] = create_node(tensor->src[i], ctx, tensor_ptrs, tensor_map);