diff --git a/pyqchem/parsers/parser_cis.py b/pyqchem/parsers/parser_cis.py index 2b5fad0..f4126f3 100644 --- a/pyqchem/parsers/parser_cis.py +++ b/pyqchem/parsers/parser_cis.py @@ -46,7 +46,7 @@ def basic_cis(output): # Molecule data_dict['structure'] = read_input_structure(output) n_atoms = data_dict['structure'].get_number_of_atoms() - + # scf_energy enum = output.find('Total energy in the final basis set') try: @@ -99,6 +99,7 @@ def basic_cis(output): # old version of qchem (< 5.01) state_cis_words = output_cis[m.end():].split() mul = state_cis_words[13] + print(mul) trans_mom = [float(mom) for mom in [state_cis_words[16], state_cis_words[18], state_cis_words[20]]] @@ -175,95 +176,119 @@ def basic_cis(output): data_dict['excited_states'] = excited_states - # Spin-Orbit coupling - initial = output.find('*********SPIN-ORBIT COUPLING JOB BEGINS HERE*********') - final = output.find('*********SOC CODE ENDS HERE*********') - - data_interstate = {} - if initial > 0: - soc_section = output[initial:final] - - def label_states(excited_states): - labels = [] - ns = 1 - nt = 1 - for state in excited_states: - if state['multiplicity'].lower() == 'singlet': - labels.append('S{}'.format(ns)) - ns += 1 - elif state['multiplicity'].lower() == 'triplet': - labels.append('T{}'.format(nt)) - nt += 1 - else: - try: - m = float(state['multiplicity']) - if abs(m - 1) < 0.1: - labels.append('S{}'.format(ns)) - ns += 1 - if abs(m - 3) < 0.1: - labels.append('T{}'.format(nt)) - nt += 1 - state['multiplicity'] = m - - except ValueError: - raise ParserError('basic_cis', 'State multiplicity error', output) - - return labels, nt-1, ns-1 - - labels, n_triplet, n_singlet = label_states(excited_states) - - for i, label in enumerate(labels): - data_interstate[(i+1, 0)] = {'1e_soc_mat': [0j, 0j, 0j], 'soc_units': 'cm-1'} - data_interstate[(0, i+1)] = {'1e_soc_mat': [0j, 0j, 0j], 'soc_units': 'cm-1'} - for j, label2 in enumerate(labels): - if (label[0] == 'S' or label2[0] == 'S') and (label[0] != label2[0]): - data_interstate[(i+1, j+1)] = {'1e_soc_mat': [[0j, 0j, 0j]], 'soc_units': 'cm-1'} - elif label[0] == 'T' and label2[0] == 'T': - data_interstate[(i+1, j+1)] = {'1e_soc_mat': [[0j, 0j, 0j], [0j, 0j, 0j], [0j, 0j, 0j]], 'soc_units': 'cm-1'} - elif label[0] == 'S' and label2[0] == 'S': - data_interstate[(i+1, j+1)] = {'1e_soc_mat': [[0j]], 'soc_units': 'cm-1'} + # Multiplicity mapping for singlets, triplets... where multiplicity is indicated as "S1", "T1" in SOC section + + try: + test = float(data_dict['excited_states'][0]['multiplicity']) + except ValueError: + multiplicity_mapping = {'0': 0} + count_multiplicity = {'Singlet': 0, 'Triplet': 0, 'Quintet': 0, 'Heptet': 0} + for i, state in enumerate(data_dict['excited_states']): + count_multiplicity[state['multiplicity']] += 1 + multiplicity_mapping.update({state['multiplicity'][0]+str(count_multiplicity[state['multiplicity']]): i+1}) + + # SPIN-ORBIT COUPLINGS + + done_interstate_soc = bool(output.find('SPIN-ORBIT COUPLING JOB USING WIGNER–ECKART THEOREM BEGINS HERE')+1) + + if done_interstate_soc: + ini_section = output.find('SPIN-ORBIT COUPLING JOB USING WIGNER–ECKART THEOREM BEGINS HERE') + end_section = output.find('SPIN-ORBIT COUPLING JOB ENDS HERE') + soc_section = output[ini_section: end_section] + section_sizes = search_bars(soc_section, bar_type=r'\*'*50+'\n') + + interstate_dict = {} + + for i, m in enumerate(re.finditer('State A:', soc_section)): + section_length = section_sizes[i+1] - section_sizes[i] + section_pair = soc_section[m.start():m.start() + section_length] + + lines = section_pair.split('\n') + + try: # In doublets, where states can be taken as integers (0, 1..) + state_a = int(lines[0].split()[-1]) + state_b = int(lines[1].split()[-1]) + + except ValueError: # In singlets, where states cannot be taken as integers (S1, T1...) + if 'Ground state' in lines[0]: + state_a = 0 else: - raise ParserError('basic_cis', 'State multiplicity error', output) - - for i, label in enumerate(labels): - for k2, ms2 in enumerate([-1, 0, 1]): - for j, label2 in enumerate(labels): - if label[0] == 'T': - for k, ms in enumerate([-1, 0, 1]): - enum = soc_section.find('SOC between the {} (ms={}) state and excited triplet states (ms={})'.format(label, ms2, ms)) - for line in soc_section[enum:enum+80*(n_triplet+1)].split('\n'): - if len(line.split()) == 0: - break - if line.split()[0] == '{}(ms={})'.format(label2, ms): - data_interstate[(i+1, j+1)]['1e_soc_mat'][k2][k] = _list_to_complex(line.split()[1:4]) - data_interstate[(i+1, j+1)]['1e_soc_mat'][k][k2] = _list_to_complex(line.split()[1:4]) - data_interstate[(j+1, i+1)]['1e_soc_mat'][k2][k] = _list_to_complex(line.split()[1:4]) - data_interstate[(j+1, i+1)]['1e_soc_mat'][k][k2] = _list_to_complex(line.split()[1:4]) - break - - elif label[0] == 'S': - for k, ms in enumerate([-1, 0, 1]): - enum = soc_section.find('SOC between the {} state and excited triplet states (ms={})'.format(label, ms)) - for line in soc_section[enum:enum+80*(n_triplet+1)].split('\n'): - if len(line.split()) == 0: - break - if line.split()[0] == '{}(ms={})'.format(label2, ms): - data_interstate[(i+1, j+1)]['1e_soc_mat'][0][k] = _list_to_complex(line.split()[1:4]) - data_interstate[(j+1, i+1)]['1e_soc_mat'][0][k] = _list_to_complex(line.split()[1:4]) - break - else: - raise ParserError('basic_cis', 'SOC reading error', output) - - enum = soc_section.find('SOC between the singlet ground state and excited triplet states (ms={})'.format(ms2)) - for line in soc_section[enum:enum+80*(n_triplet+1)].split('\n'): - if len(line.split()) == 0: - break - if line.split()[0] == '{}(ms={})'.format(label, ms2): - data_interstate[(i+1, 0)]['1e_soc_mat'][k2] = _list_to_complex(line.split()[1:4]) - data_interstate[(0, i+1)]['1e_soc_mat'][k2] = _list_to_complex(line.split()[1:4]) - break - - data_dict['interstate_properties'] = data_interstate + state_a = multiplicity_mapping[lines[0].split()[-1]] + state_b = multiplicity_mapping[lines[1].split()[-1]] + + pair_dict = {} + for j, line in enumerate(lines): + if 'Ket state' in line and state_a == 0 and 'scf_multiplicity' not in data_dict: + data_dict['scf_multiplicity'] = int(float(line.split()[5])) + + if 'WARNING! Clebsh-Gordon coefficient is too small' in line: + pair_dict['1e_socc'] = 0 + pair_dict['1e_soc_mat'] = [0] + pair_dict['mf_socc'] = 0 + pair_dict['mf_soc_mat'] = [0] + + if 'One-electron SO (cm-1)' in line: + soc_keyword = '1e_socc' + soc_matrix_keyword = '1e_soc_mat' + elif 'Mean-field SO (cm-1)' in line: + soc_keyword = 'mf_socc' + soc_matrix_keyword = 'mf_soc_mat' + + if 'SOCC' in line: + pair_dict[soc_keyword] = float(line.split()[2]) + + if 'Actual matrix elements:' in line: + soc_matrix = [] + for soc_line in lines[j:]: + + if '') multi_data = section_state[n_multi:n_multi + 30].split(':')[1] @@ -287,6 +297,7 @@ def parser_rasci(output): 'total_energy_units': tot_energy_units, 'excitation_energy': exc_energy, 'excitation_energy_units': exc_energy_units, + 'symmetry': state_symmetry, 'multiplicity': state_multiplicity, 'dipole_moment': dipole_mom, 'transition_moment': trans_mom, diff --git a/pyqchem/parsers/tddft_tests/h2o_doublet.out b/pyqchem/parsers/tddft_tests/h2o_doublet.out new file mode 100644 index 0000000..a706fdf --- /dev/null +++ b/pyqchem/parsers/tddft_tests/h2o_doublet.out @@ -0,0 +1,1115 @@ + Welcome to Q-Chem + A Quantum Leap Into The Future Of Chemistry + + + Q-Chem 6.0 (devel), Q-Chem, Inc., Pleasanton, CA (2022) + + E. Epifanovsky, A. T. B. Gilbert, Xintian Feng, Joonho Lee, Yuezhi Mao, + N. Mardirossian, P. Pokhilko, A. White, M. Wormit, M. P. Coons, + A. L. Dempwolff, Zhengting Gan, D. Hait, P. R. Horn, L. D. Jacobson, + I. Kaliman, J. Kussmann, A. W. Lange, Ka Un Lao, D. S. Levine, Jie Liu, + S. C. McKenzie, A. F. Morrison, K. Nanda, F. Plasser, D. R. Rehn, + M. L. Vidal, Zhi-Qiang You, Ying Zhu, B. Alam, B. Albrecht, + A. Aldossary, E. Alguire, J. H. Andersen, V. Athavale, D. Barton, + K. Begam, A. Behn, N. Bellonzi, Y. A. Bernard, E. J. Berquist, + H. Burton, A. Carreras, K. Carter-Fenk, Romit Chakraborty, + Chandrima Chakravarty, Junhan Chen, A. D. Chien, K. D. Closser, + V. Cofer-Shabica, L. Cunha, S. Dasgupta, Jia Deng, M. de Wergifosse, + M. Diedenhofen, Hainam Do, S. Ehlert, Po-Tung Fang, S. Fatehi, + Qingguo Feng, T. Friedhoff, B. Ganoe, J. Gayvert, Qinghui Ge, + G. Gidofalvi, M. Goldey, J. Gomes, C. Gonzalez-Espinoza, S. Gulania, + A. Gunina, J. A. Gyamfi, M. W. D. Hanson-Heine, P. H. P. Harbach, + A. W. Hauser, M. F. Herbst, M. Hernandez Vera, M. Hodecker, + Z. C. Holden, S. Houck, Xunkun Huang, Kerwin Hui, B. C. Huynh, + K. Ikeda, M. Ivanov, Hyunjun Ji, Zuxin Jin, Hanjie Jiang, B. Kaduk, + S. Kaehler, R. Kang, K. Khistyaev, Jaehoon Kim, Yongbin Kim, + P. Klunzinger, Z. Koczor-Benda, Joong Hoon Koh, D. Kosenkov, + Saikiran Kotaru, L. Koulias, T. Kowalczyk, C. M. Krauter, K. Kue, + A. Kunitsa, T. Kus, A. Landau, K. V. Lawler, D. Lefrancois, S. Lehtola, + Rain Li, Shaozhi Li, Yi-Pei Li, Jiashu Liang, M. Liebenthal, + Hung-Hsuan Lin, You-Sheng Lin, Fenglai Liu, Kuan-Yu Liu, + M. Loipersberger, A. Luenser, C. Malbon, A. Manjanath, P. Manohar, + E. Mansoor, S. F. Manzer, Shan-Ping Mao, A. V. Marenich, T. Markovich, + S. Mason, F. Matz, S. A. Maurer, P. F. McLaughlin, M. F. S. J. Menger, + J.-M. Mewes, S. A. Mewes, P. Morgante, Mohammad Mostafanejad, + J. W. Mullinax, K. J. Oosterbaan, G. Paran, V. Parravicini, + Alexander C. Paul, Suranjan K. Paul, F. Pavosevic, Zheng Pei, S. Prager, + E. I. Proynov, E. Ramos, B. Rana, A. E. Rask, A. Rettig, R. M. Richard, + F. Rob, E. Rossomme, T. Scheele, M. Scheurer, M. Schneider, + P. E. Schneider, N. Sergueev, S. M. Sharada, Hengyuan Shen, + W. Skomorowski, D. W. Small, C. J. Stein, Yingli Su, Yu-Chuan Su, + E. J. Sundstrom, Zhen Tao, J. Thirman, Hung-Yi Tsai, T. Tsuchimochi, + N. M. Tubman, C. Utku, S. P. Veccham, O. Vydrov, J. Wenzel, + Jonathan Wong, J. Witte, A. Yamada, Chou-Hsun Yang, Kun Yao, + S. Yeganeh, S. R. Yost, A. Zech, F. Zeller, Igor Ying Zhang, + Xing Zhang, Yu Zhang, D. Zuev, A. Aspuru-Guzik, A. T. Bell, + N. A. Besley, K. B. Bravaya, B. R. Brooks, D. Casanova, Jeng-Da Chai, + Hsing-Ta Chen, S. Coriani, C. J. Cramer, A. E. DePrince, III, + R. A. DiStasio Jr., A. Dreuw, B. D. Dunietz, T. R. Furlani, + W. A. Goddard III, S. Grimme, S. Hammes-Schiffer, T. Head-Gordon, + W. J. Hehre, Chao-Ping Hsu, T.-C. Jagau, Yousung Jung, A. Klamt, + Jing Kong, D. S. Lambrecht, Xiangyuan Li, WanZhen Liang, N. J. Mayhall, + C. W. McCurdy, J. B. Neaton, T. Neudecker, C. Ochsenfeld, + J. A. Parkhill, R. Peverati, V. A. Rassolov, Haisheng Ren, Yihan Shao, + L. V. Slipchenko, R. P. Steele, J. E. Subotnik, A. J. W. Thom, + A. Tkatchenko, D. G. Truhlar, T. Van Voorhis, Fan Wang, + T. A. Wesolowski, K. B. Whaley, H. L. Woodcock III, P. M. Zimmerman, + S. Faraji, P. M. W. Gill, M. Head-Gordon, J. M. Herbert, A. I. Krylov + + Contributors to earlier versions of Q-Chem not listed above: + R. D. Adamson, B. Austin, R. Baer, J. Baker, G. J. O. Beran, + K. Brandhorst, S. T. Brown, E. F. C. Byrd, Arup K. Chakraborty, + G. K. L. Chan, Chun-Min Chang, Yunqing Chen, C.-L. Cheng, + Siu Hung Chien, D. M. Chipman, D. L. Crittenden, H. Dachsel, + R. J. Doerksen, A. D. Dutoi, R. G. Edgar, J. Fosso-Tande, + L. Fusti-Molnar, D. Ghosh, A. Ghysels, A. Golubeva-Zadorozhnaya, + J. Gonthier, M. S. Gordon, S. R. Gwaltney, G. Hawkins, J. E. Herr, + A. Heyden, S. Hirata, E. G. Hohenstein, G. Kedziora, F. J. Keil, + C. Kelley, Jihan Kim, R. A. King, R. Z. Khaliullin, P. P. Korambath, + W. Kurlancheek, A. Laurent, A. M. Lee, M. S. Lee, S. V. Levchenko, + Ching Yeh Lin, D. Liotard, E. Livshits, R. C. Lochan, I. Lotan, + L. A. Martinez-Martinez, P. E. Maslen, N. Nair, D. P. O'Neill, + D. Neuhauser, E. Neuscamman, C. M. Oana, R. Olivares-Amaya, R. Olson, + T. M. Perrine, B. Peters, P. A. Pieniazek, A. Prociuk, Y. M. Rhee, + J. Ritchie, M. A. Rohrdanz, E. Rosta, N. J. Russ, H. F. Schaefer III, + M. W. Schmidt, N. E. Schultz, S. Sharma, N. Shenvi, C. D. Sherrill, + A. C. Simmonett, A. Sodt, T. Stein, D. Stuck, K. S. Thanthiriwatte, + V. Vanovschi, L. Vogt, Tao Wang, A. Warshel, M. A. Watson, + C. F. Williams, Q. Wu, X. Xu, Jun Yang, W. Zhang, Yan Zhao + + Please cite Q-Chem as follows: + "Software for the frontiers of quantum chemistry: + An overview of developments in the Q-Chem 5 package" + J. Chem. Phys. 155, 084801 (2021) + https://doi.org/10.1063/5.0055522 (open access) + + Q-Chem 6.0.1 for Intel X86 EM64T Linux + + Parts of Q-Chem use Armadillo 9.900.5 (Nocturnal Misbehaviour). + http://arma.sourceforge.net/ + + Q-Chem begins on Wed Oct 30 11:40:38 2024 + + Host: hyperion-login-02 +0 + + Scratch files written to ./qchem1545902// + Processing $rem in /scratch/abel/SOFTWARE/qchem/config/preferences: + Processing $rem in /home/acebg/.qchemrc: + + Checking the input file for inconsistencies... ...done. + +-------------------------------------------------------------- +User input: +-------------------------------------------------------------- +$comment + TD-DFT/TDA CALCULATION +$end + +$molecule +1 2 +O 0.000000 0.000000 0.000000 +H 0.758602 0.000000 0.504284 +H -0.758602 0.000000 0.504284 +$end + +$rem +!**REFERENCE*** +JOBTYPE SP +EXCHANGE B3LYP +CORRELATION NONE +BASIS STO-3G +CIS_N_ROOTS 5 +!CIS_SINGLETS true +!CIS_TRIPLETS true +CALC_SOC 2 !not available in doublets in TDDFT +STS_ANGMOM true !orbit. ang. moment. between states +$end + +-------------------------------------------------------------- + ---------------------------------------------------------------- + Standard Nuclear Orientation (Angstroms) + I Atom X Y Z + ---------------------------------------------------------------- + 1 O 0.0000000000 0.0000000000 0.1008568000 + 2 H -0.7586020000 -0.0000000000 -0.4034272000 + 3 H 0.7586020000 0.0000000000 -0.4034272000 + ---------------------------------------------------------------- + Molecular Point Group C2v NOp = 4 + Largest Abelian Subgroup C2v NOp = 4 + Nuclear Repulsion Energy = 9.64357925 hartrees + There are 5 alpha and 4 beta electrons + Requested basis set is STO-3G + There are 4 shells and 7 basis functions + + Total QAlloc Memory Limit 2000 MB + Mega-Array Size 188 MB + MEM_STATIC part 192 MB + + + Distance Matrix (Angstroms) + O ( 1) H ( 2) + H ( 2) 0.910922 + H ( 3) 0.910922 1.517204 + + A cutoff of 1.0D-12 yielded 10 shell pairs + There are 34 function pairs + Smallest overlap matrix eigenvalue = 3.13E-01 + + Scale SEOQF with 1.000000e+00/1.000000e+00/1.000000e+00 + + Standard Electronic Orientation quadrupole field applied + Guess from superposition of atomic densities + Warning: Energy on first SCF cycle will be non-variational + SAD guess density has 10.000000 electrons + + ----------------------------------------------------------------------- + General SCF calculation program by + Eric Jon Sundstrom, Paul Horn, Yuezhi Mao, Dmitri Zuev, Alec White, + David Stuck, Shaama M.S., Shane Yost, Joonho Lee, David Small, + Daniel Levine, Susi Lehtola, Hugh Burton, Evgeny Epifanovsky, + Bang C. Huynh + ----------------------------------------------------------------------- + Exchange: 0.2000 Hartree-Fock + 0.0800 Slater + 0.7200 B88 + Correlation: 0.1900 VWN1RPA + 0.8100 LYP + Using SG-1 standard quadrature grid + A unrestricted SCF calculation will be + performed using DIIS + SCF converges when DIIS error is below 1.0e-08 + --------------------------------------- + Cycle Energy DIIS error + --------------------------------------- + 1 -75.3037953708 2.24e-01 + 2 -74.9073050951 2.56e-02 + 3 -74.9224130228 1.08e-02 + 4 -74.9259905136 5.93e-04 + 5 -74.9260066833 1.30e-04 + 6 -74.9260078786 5.81e-06 + 7 -74.9260078813 3.71e-07 + 8 -74.9260078813 2.78e-08 + 9 -74.9260078813 4.65e-10 Convergence criterion met + --------------------------------------- + SCF time: CPU 0.09s wall 1.00s + = 0.751440342 + SCF energy in the final basis set = -74.9260078813 + Total energy in the final basis set = -74.9260078813 + + MAX_CIS_SUBSPACE fits in available memory + Direct TDDFT/TDA calculation will be performed + Exchange: 0.2000 Hartree-Fock + 0.0800 Slater + 0.7200 B88 + Correlation: 0.1900 VWN1RPA + 0.8100 LYP + Using SG-1 standard quadrature grid + CIS energy converged when residual is below 10e- 6 + --------------------------------------------------- + Iter Rts Conv Rts Left Ttl Dev Max Dev + --------------------------------------------------- + 1 0 5 0.052213 0.021692 + 2 3 2 0.002102 0.001435 + 3 3 2 0.000214 0.000142 + 4 5 0 0.000000 0.000000 Roots Converged + --------------------------------------------------- + + --------------------------------------------------- + TDDFT/TDA Excitation Energies + --------------------------------------------------- + + Excited state 1: excitation energy (eV) = 1.9226 + Total energy for state 1: -74.85535524 au + : 0.7514 + Trans. Mom.: -0.0000 X -0.1829 Y 0.0000 Z + Strength : 0.0015752557 + D( 4) --> S( 1) amplitude = 0.9995 beta + + Excited state 2: excitation energy (eV) = 8.5405 + Total energy for state 2: -74.61215178 au + : 0.7509 + Trans. Mom.: 0.0000 X 0.0000 Y 0.0000 Z + Strength : 0.0000000000 + D( 3) --> S( 1) amplitude = 0.9989 beta + + Excited state 3: excitation energy (eV) = 15.4708 + Total energy for state 3: -74.35746802 au + : 2.7105 + Trans. Mom.: -0.0000 X -0.0000 Y 0.0373 Z + Strength : 0.0005268762 + S( 1) --> V( 1) amplitude = -0.5994 alpha + D( 4) --> V( 1) amplitude = 0.7949 beta + + Excited state 4: excitation energy (eV) = 17.2552 + Total energy for state 4: -74.29189107 au + : 0.7916 + Trans. Mom.: 0.0000 X -0.0000 Y 0.3050 Z + Strength : 0.0393164600 + S( 1) --> V( 1) amplitude = 0.7885 alpha + D( 4) --> V( 1) amplitude = 0.5951 beta + + Excited state 5: excitation energy (eV) = 17.2897 + Total energy for state 5: -74.29062289 au + : 0.7506 + Trans. Mom.: 0.0000 X 0.0976 Y 0.0000 Z + Strength : 0.0040327910 + D( 4) --> V( 1) amplitude = 0.9727 alpha + D( 2) --> S( 1) amplitude = -0.2321 beta + + --------------------------------------------------- + SETman timing summary (seconds) + CPU time 0.06s + System time 0.00s + Wall time 0.10s + + + + *********SPIN-ORBIT COUPLING JOB USING WIGNER–ECKART THEOREM BEGINS HERE********* + + Calculating one electron integrals: Completed calculation of one electron integrals! + Calculating MF integrals: Completed calculation of MF integrals! + Calculating S^2 values of the spin-states: S^2 values computed! + Computing transition densities and evaluating SOCME with Libwe: + +************************************************** + State A: Root 0 + State B: Root 1 + + + Analysing Sz ans S^2 of the pair of states... + Ket state: Computed S^2 = 0.7514403421 will be treated as 0.7500000000 Sz = 0.5000000000 + Bra state: Computed S^2 = 0.7514255692 will be treated as 0.7500000000 Sz = 0.5000000000 + Clebsh-Gordan coefficient: <0.500,0.500;1.000,0.000|0.500,0.500> = 0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (0.000000,-90.565934) + = (0.000000,-0.000000) + = (0.000000,90.565934) + + SOCC = 104.576533 + + + Actual matrix elements: + |Sz=-0.50> |Sz=0.50> + = (0.000000,-54.210708) + = (0.000000,-0.000000) + = (0.000000,55.277811) + + Singlet part of = (-0.000000,-0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (0.000000,-54.744259) + = (0.000000,54.744259) + + SOCC = 63.213226 + + + Actual matrix elements: + |Sz=-0.50> |Sz=0.50> + = 0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (0.000000,0.000000) + = (0.000000,-103.515112) + = (0.000000,-0.000000) + + SOCC = 84.519735 + + + Actual matrix elements: + |Sz=-0.50> |Sz=0.50> + = (0.000000,0.000000) + = (0.000000,-59.658333) + = (0.000000,-0.000000) + + Singlet part of = (-0.000000,-0.534887) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (0.000000,0.000000) + = (0.000000,-0.000000) + + SOCC = 48.710825 + + + Actual matrix elements: + |Sz=-0.50> |Sz=0.50> + = 0.816 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (-0.000000,-0.000000) + = (0.000000,0.000000) + = (-0.000000,0.000000) + + SOCC = 0.000000 + + + Actual matrix elements: + |Sz=-0.50> |Sz=0.50> + = (-0.000000,-0.000000) + = (0.000000,0.000000) + = (-0.000000,0.000000) + + Singlet part of = (-0.000000,-0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (-0.000000,-0.000000) + = (-0.000000,0.000000) + + SOCC = 0.000000 + + + Actual matrix elements: + |Sz=-0.50> |Sz=0.50> + = 0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (-0.000000,-0.000000) + = (0.000000,-0.000000) + = (-0.000000,0.000000) + + SOCC = 0.000000 + + + Actual matrix elements: + |Sz=-0.50> |Sz=0.50> + = (-0.000000,-0.000000) + = (0.000000,-0.000000) + = (-0.000000,0.000000) + + Singlet part of = (0.000000,0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (-0.000000,-0.000000) + = (-0.000000,0.000000) + + SOCC = 0.000000 + + + Actual matrix elements: + |Sz=-0.50> |Sz=0.50> + = 0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (-0.000000,44.393529) + = (0.000000,0.000000) + = (-0.000000,-44.393529) + + SOCC = 51.261232 + + + Actual matrix elements: + |Sz=-0.50> |Sz=0.50> + = (-0.000000,29.021696) + = (0.000000,0.000000) + = (-0.000000,-28.520718) + + Singlet part of = (-0.000000,-0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (-0.000000,28.771207) + = (-0.000000,-28.771207) + + SOCC = 33.222128 + + + Actual matrix elements: + |Sz=-0.50> |Sz=0.50> + = 0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (67.601811,-0.000000) + = (0.000000,0.000000) + = (67.601811,0.000000) + + SOCC = 78.059848 + + + Actual matrix elements: + |Sz=-0.50> |Sz=0.50> + = (41.063121,-0.000000) + = (0.000000,0.000000) + = (41.042728,0.000000) + + Singlet part of = (0.000000,0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (41.052925,-0.000000) + = (41.052925,0.000000) + + SOCC = 47.403834 + + + Actual matrix elements: + |Sz=-0.50> |Sz=0.50> + = 0.816 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (-0.000000,-29.872316) + = (0.000000,-0.000000) + = (-0.000000,29.872316) + + SOCC = 48.781288 + + + Actual matrix elements: + |Sz=-0.50> |Sz=0.50> + = (-0.000000,-18.990080) + = (0.000000,-0.000000) + = (-0.000000,19.251503) + + Singlet part of = (-0.000000,-0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (-0.000000,-19.120791) + = (-0.000000,19.120791) + + SOCC = 31.224121 + + + Actual matrix elements: + |Sz=-0.50> |Sz=0.50> + = 0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (0.000000,-30.551545) + = (0.000000,-0.000000) + = (0.000000,30.551545) + + SOCC = 35.277886 + + + Actual matrix elements: + |Sz=-0.50> |Sz=0.50> + = (0.000000,-19.457472) + = (0.000000,-0.000000) + = (0.000000,19.721853) + + Singlet part of = (-0.000000,-0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (0.000000,-19.589663) + = (0.000000,19.589663) + + SOCC = 22.620194 + + + Actual matrix elements: + |Sz=-0.50> |Sz=0.50> + = 0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (-0.000000,-0.000000) + = (0.000000,0.000000) + = (-0.000000,0.000000) + + SOCC = 0.000000 + + + Actual matrix elements: + |Sz=-0.50> |Sz=0.50> + = (-0.000000,-0.000000) + = (0.000000,0.000000) + = (-0.000000,0.000000) + + Singlet part of = (0.000000,0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (-0.000000,-0.000000) + = (-0.000000,0.000000) + + SOCC = 0.000000 + + + Actual matrix elements: + |Sz=-0.50> |Sz=0.50> + = 0.816 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (0.000000,-0.000000) + = (0.000000,-3.452747) + = (0.000000,0.000000) + + SOCC = 3.986888 + + + Actual matrix elements: + |Sz=-0.50> |Sz=0.50> + = (0.000000,-0.000000) + = (0.000000,-2.182716) + = (0.000000,0.000000) + + Singlet part of = (-0.000000,-0.017393) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (0.000000,-0.000000) + = (0.000000,0.000000) + + SOCC = 2.520383 + + + Actual matrix elements: + |Sz=-0.50> |Sz=0.50> + = 0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (0.000000,0.000000) + = (0.000000,14.125912) + = (0.000000,-0.000000) + + SOCC = 11.533759 + + + Actual matrix elements: + |Sz=-0.50> |Sz=0.50> + = (0.000000,0.000000) + = (0.000000,8.862613) + = (0.000000,-0.000000) + + Singlet part of = (0.000000,0.039578) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (0.000000,0.000000) + = (0.000000,-0.000000) + + SOCC = 7.236294 + + + Actual matrix elements: + |Sz=-0.50> |Sz=0.50> + = 0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (-2.407051,0.000000) + = (0.000000,0.000000) + = (-2.407051,-0.000000) + + SOCC = 2.779423 + + + Actual matrix elements: + |Sz=-0.50> |Sz=0.50> + = (-1.274812,0.000000) + = (0.000000,0.000000) + = (-1.272165,-0.000000) + + Singlet part of = (0.000000,0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (-1.273488,0.000000) + = (-1.273488,-0.000000) + + SOCC = 1.470497 + + + Actual matrix elements: + |Sz=-0.50> |Sz=0.50> + = -0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (0.000000,-0.000000) + = (0.000000,-0.000000) + = (0.000000,0.000000) + + SOCC = 0.000000 + + + Actual matrix elements: + |Sz=-1.50> |Sz=-0.50> |Sz=0.50> |Sz=1.50> + = (0.000000,-0.000000) + = (0.000000,-0.000000) + = (0.000000,0.000000) + + Singlet part of = (-0.000000,-0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (0.000000,-0.000000) + = (0.000000,0.000000) + + SOCC = 0.000000 + + + Actual matrix elements: + |Sz=-1.50> |Sz=-0.50> |Sz=0.50> |Sz=1.50> + = -0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (-0.000000,53.050674) + = (0.000000,0.000000) + = (-0.000000,-53.050674) + + SOCC = 61.257642 + + + Actual matrix elements: + |Sz=-1.50> |Sz=-0.50> |Sz=0.50> |Sz=1.50> + = (-0.000000,32.349310) + = (0.000000,0.000000) + = (-0.000000,-31.718136) + + Singlet part of = (0.000000,0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (-0.000000,32.033723) + = (-0.000000,-32.033723) + + SOCC = 36.989357 + + + Actual matrix elements: + |Sz=-1.50> |Sz=-0.50> |Sz=0.50> |Sz=1.50> + = 0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (-0.000000,67.901249) + = (0.000000,0.000000) + = (-0.000000,-67.901249) + + SOCC = 78.405609 + + + Actual matrix elements: + |Sz=-0.50> |Sz=0.50> + = (-0.000000,41.430895) + = (0.000000,0.000000) + = (-0.000000,-40.622352) + + Singlet part of = (-0.000000,-0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (-0.000000,41.026623) + = (-0.000000,-41.026623) + + SOCC = 47.373464 + + + Actual matrix elements: + |Sz=-0.50> |Sz=0.50> + V( 1) amplitude = 1.0000 + + Excited state 2: excitation energy (eV) = 12.4592 + Total energy for state 2: -74.83147211 au + Multiplicity: Triplet + Trans. Mom.: 0.0000 X 0.0000 Y 0.0000 Z + Strength : 0.0000000000 + D( 4) --> V( 1) amplitude = 0.9965 + + Excited state 3: excitation energy (eV) = 12.6550 + Total energy for state 3: -74.82427797 au + Multiplicity: Singlet + Trans. Mom.: 0.0000 X 0.1097 Y -0.0000 Z + Strength : 0.0037338842 + D( 5) --> V( 1) amplitude = 1.0000 + + Excited state 4: excitation energy (eV) = 14.5259 + Total energy for state 4: -74.75552488 au + Multiplicity: Singlet + Trans. Mom.: -0.0000 X 0.0000 Y 0.3790 Z + Strength : 0.0511186321 + D( 4) --> V( 1) amplitude = 0.9868 + + Excited state 5: excitation energy (eV) = 14.6121 + Total energy for state 5: -74.75235533 au + Multiplicity: Triplet + Trans. Mom.: 0.0000 X 0.0000 Y 0.0000 Z + Strength : 0.0000000000 + D( 5) --> V( 2) amplitude = 1.0000 + + Excited state 6: excitation energy (eV) = 15.8541 + Total energy for state 6: -74.70671388 au + Multiplicity: Singlet + Trans. Mom.: -0.0000 X 0.0000 Y 0.0000 Z + Strength : 0.0000000000 + D( 5) --> V( 2) amplitude = 1.0000 + + Excited state 7: excitation energy (eV) = 15.9778 + Total energy for state 7: -74.70216886 au + Multiplicity: Triplet + Trans. Mom.: 0.0000 X 0.0000 Y 0.0000 Z + Strength : 0.0000000000 + D( 3) --> V( 1) amplitude = 0.2159 + D( 4) --> V( 2) amplitude = 0.9764 + + Excited state 8: excitation energy (eV) = 19.1418 + Total energy for state 8: -74.58589240 au + Multiplicity: Singlet + Trans. Mom.: 0.4139 X 0.0000 Y 0.0000 Z + Strength : 0.0803538899 + D( 3) --> V( 1) amplitude = -0.3325 + D( 4) --> V( 2) amplitude = 0.9419 + + Excited state 9: excitation energy (eV) = 19.2877 + Total energy for state 9: -74.58052975 au + Multiplicity: Triplet + Trans. Mom.: 0.0000 X 0.0000 Y 0.0000 Z + Strength : 0.0000000000 + D( 3) --> V( 1) amplitude = 0.9732 + D( 4) --> V( 2) amplitude = -0.2161 + + Excited state 10: excitation energy (eV) = 23.4943 + Total energy for state 10: -74.42594217 au + Multiplicity: Singlet + Trans. Mom.: 1.4316 X 0.0000 Y -0.0000 Z + Strength : 1.1796886867 + D( 3) --> V( 1) amplitude = 0.9425 + D( 4) --> V( 2) amplitude = 0.3336 + + --------------------------------------------------- + SETman timing summary (seconds) + CPU time 0.09s + System time 0.00s + Wall time 0.17s + + + + *********SPIN-ORBIT COUPLING JOB USING WIGNER–ECKART THEOREM BEGINS HERE********* + + Calculating one electron integrals: Completed calculation of one electron integrals! + Calculating MF integrals: Completed calculation of MF integrals! + Calculating S^2 values of the spin-states: S^2 values computed! + Computing transition densities and evaluating SOCME with Libwe: + +************************************************** + State A: Ground state + State B: T1 + Analysing Sz ans S^2 of the pair of states... + Ket state: Computed S^2 = 0.0000000000 will be treated as 0.0000000000 Sz = 0.0000000000 + Bra state: Computed S^2 = 2.0000000000 will be treated as 2.0000000000 Sz = 0.0000000000 + Clebsh-Gordan coefficient: <0.000,0.000;1.000,0.000|1.000,0.000> = 1.000 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (0.000000,-49.982824) + = (0.000000,0.000000) + = (0.000000,49.982824) + + SOCC = 70.686387 + + + Actual matrix elements: + |Sz=0.00> + = (0.000000,-32.144081) + = (0.000000,0.000000) + = (0.000000,32.144081) + + Singlet part of = (-0.000000,0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (0.000000,-32.144081) + = (0.000000,32.144081) + + SOCC = 45.458595 + + + Actual matrix elements: + |Sz=0.00> + = 1.000 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (-0.000000,-0.000000) + = (0.000000,-0.000000) + = (-0.000000,0.000000) + + SOCC = 0.000000 + + + Actual matrix elements: + |Sz=0.00> + = (-0.000000,-0.000000) + = (0.000000,-0.000000) + = (-0.000000,0.000000) + + Singlet part of = (-0.000000,0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (-0.000000,-0.000000) + = (-0.000000,0.000000) + + SOCC = 0.000000 + + + Actual matrix elements: + |Sz=0.00> + = 1.000 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (0.000000,-0.000000) + = (0.000000,-103.968232) + = (0.000000,0.000000) + + SOCC = 103.968232 + + + Actual matrix elements: + |Sz=0.00> + = (0.000000,-0.000000) + = (0.000000,-65.718539) + = (0.000000,0.000000) + + Singlet part of = (-0.000000,0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (0.000000,-0.000000) + = (0.000000,0.000000) + + SOCC = 65.718539 + + + Actual matrix elements: + |Sz=0.00> + = 1.000 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (52.037297,-0.000000) + = (0.000000,0.000000) + = (52.037297,0.000000) + + SOCC = 73.591852 + + + Actual matrix elements: + |Sz=0.00> + = (32.147494,-0.000000) + = (0.000000,0.000000) + = (32.147494,0.000000) + + Singlet part of = (-0.000000,0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (32.147494,-0.000000) + = (32.147494,0.000000) + + SOCC = 45.463422 + + + Actual matrix elements: + |Sz=0.00> + = 1.000 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (-43.814192,-0.000000) + = (0.000000,0.000000) + = (-43.814192,0.000000) + + SOCC = 61.962625 + + + Actual matrix elements: + |Sz=0.00> + = (-26.573870,-0.000000) + = (0.000000,0.000000) + = (-26.573870,0.000000) + + Singlet part of = (-0.000000,0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (-26.573870,-0.000000) + = (-26.573870,0.000000) + + SOCC = 37.581127 + + + Actual matrix elements: + |Sz=0.00> + = 0.000 +WARNING! Clebsh-Gordon coefficient is too small to find a rotationally invariant part of triplet density. +Please use another EOM approach with non-zero Clebsh-Gordon coefficients +I am going to skip this state pair +_______________________________ + +************************************************** + +************************************************** + State A: Ground state + State B: S2 + Analysing Sz ans S^2 of the pair of states... + Ket state: Computed S^2 = 0.000 will be treated as 0.000 Sz = 0.000 + Bra state: Computed S^2 = 0.000 will be treated as 0.000 Sz = 0.000 + Clebsh-Gordan coefficient: <0.000,0.000;1.000,0.000|0.000,0.000> = 0.000 +WARNING! Clebsh-Gordon coefficient is too small to find a rotationally invariant part of triplet density. +Please use another EOM approach with non-zero Clebsh-Gordon coefficients +I am going to skip this state pair +_______________________________ + +************************************************** + +************************************************** + State A: Ground state + State B: S3 + Analysing Sz ans S^2 of the pair of states... + Ket state: Computed S^2 = 0.000 will be treated as 0.000 Sz = 0.000 + Bra state: Computed S^2 = 0.000 will be treated as 0.000 Sz = 0.000 + Clebsh-Gordan coefficient: <0.000,0.000;1.000,0.000|0.000,0.000> = 0.000 +WARNING! Clebsh-Gordon coefficient is too small to find a rotationally invariant part of triplet density. +Please use another EOM approach with non-zero Clebsh-Gordon coefficients +I am going to skip this state pair +_______________________________ + +************************************************** + +************************************************** + State A: Ground state + State B: S4 + Analysing Sz ans S^2 of the pair of states... + Ket state: Computed S^2 = 0.000 will be treated as 0.000 Sz = 0.000 + Bra state: Computed S^2 = 0.000 will be treated as 0.000 Sz = 0.000 + Clebsh-Gordan coefficient: <0.000,0.000;1.000,0.000|0.000,0.000> = 0.000 +WARNING! Clebsh-Gordon coefficient is too small to find a rotationally invariant part of triplet density. +Please use another EOM approach with non-zero Clebsh-Gordon coefficients +I am going to skip this state pair +_______________________________ + +************************************************** + +************************************************** + State A: Ground state + State B: S5 + Analysing Sz ans S^2 of the pair of states... + Ket state: Computed S^2 = 0.000 will be treated as 0.000 Sz = 0.000 + Bra state: Computed S^2 = 0.000 will be treated as 0.000 Sz = 0.000 + Clebsh-Gordan coefficient: <0.000,0.000;1.000,0.000|0.000,0.000> = 0.000 +WARNING! Clebsh-Gordon coefficient is too small to find a rotationally invariant part of triplet density. +Please use another EOM approach with non-zero Clebsh-Gordon coefficients +I am going to skip this state pair +_______________________________ + +************************************************** + +************************************************** + State A: T1 + State B: T2 + Analysing Sz ans S^2 of the pair of states... + Ket state: Computed S^2 = 2.000 will be treated as 2.000 Sz = 0.000 + Bra state: Computed S^2 = 2.000 will be treated as 2.000 Sz = 0.000 + Clebsh-Gordan coefficient: <1.000,0.000;1.000,0.000|1.000,0.000> = 0.000 +WARNING! Clebsh-Gordon coefficient is too small to find a rotationally invariant part of triplet density. +Please use another EOM approach with non-zero Clebsh-Gordon coefficients +I am going to skip this state pair +_______________________________ + +************************************************** + +************************************************** + State A: T1 + State B: T3 + Analysing Sz ans S^2 of the pair of states... + Ket state: Computed S^2 = 2.000 will be treated as 2.000 Sz = 0.000 + Bra state: Computed S^2 = 2.000 will be treated as 2.000 Sz = 0.000 + Clebsh-Gordan coefficient: <1.000,0.000;1.000,0.000|1.000,0.000> = 0.000 +WARNING! Clebsh-Gordon coefficient is too small to find a rotationally invariant part of triplet density. +Please use another EOM approach with non-zero Clebsh-Gordon coefficients +I am going to skip this state pair +_______________________________ + +************************************************** + +************************************************** + State A: T1 + State B: T4 + Analysing Sz ans S^2 of the pair of states... + Ket state: Computed S^2 = 2.000 will be treated as 2.000 Sz = 0.000 + Bra state: Computed S^2 = 2.000 will be treated as 2.000 Sz = 0.000 + Clebsh-Gordan coefficient: <1.000,0.000;1.000,0.000|1.000,0.000> = 0.000 +WARNING! Clebsh-Gordon coefficient is too small to find a rotationally invariant part of triplet density. +Please use another EOM approach with non-zero Clebsh-Gordon coefficients +I am going to skip this state pair +_______________________________ + +************************************************** + +************************************************** + State A: T1 + State B: T5 + Analysing Sz ans S^2 of the pair of states... + Ket state: Computed S^2 = 2.000 will be treated as 2.000 Sz = 0.000 + Bra state: Computed S^2 = 2.000 will be treated as 2.000 Sz = 0.000 + Clebsh-Gordan coefficient: <1.000,0.000;1.000,0.000|1.000,0.000> = 0.000 +WARNING! Clebsh-Gordon coefficient is too small to find a rotationally invariant part of triplet density. +Please use another EOM approach with non-zero Clebsh-Gordon coefficients +I am going to skip this state pair +_______________________________ + +************************************************** + +************************************************** + State A: T1 + State B: S1 + Analysing Sz ans S^2 of the pair of states... + Ket state: Computed S^2 = 2.000 will be treated as 2.000 Sz = 0.000 + Bra state: Computed S^2 = 0.000 will be treated as 0.000 Sz = 0.000 + Clebsh-Gordan coefficient: <1.000,0.000;1.000,0.000|0.000,0.000> = 0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (-0.000000,-0.000000) + = (0.000000,-0.000000) + = (-0.000000,0.000000) + + SOCC = 0.000000 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = (-0.000000,-0.000000) + = (0.000000,-0.000000) + = (-0.000000,0.000000) + + Singlet part of = (-0.000000,0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (-0.000000,-0.000000) + = (-0.000000,0.000000) + + SOCC = 0.000000 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = 0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (0.000000,-81.852719) + = (0.000000,-0.000000) + = (0.000000,81.852719) + + SOCC = 66.832465 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = (0.000000,-50.582667) + = (0.000000,-0.000000) + = (0.000000,50.582667) + + Singlet part of = (-0.000000,0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (0.000000,-50.582667) + = (0.000000,50.582667) + + SOCC = 41.300575 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = 0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (54.708452,-0.000000) + = (0.000000,0.000000) + = (54.708452,0.000000) + + SOCC = 44.669264 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = (34.771812,-0.000000) + = (0.000000,0.000000) + = (34.771812,0.000000) + + Singlet part of = (-0.000000,0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (34.771812,-0.000000) + = (34.771812,0.000000) + + SOCC = 28.391066 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = 0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (-0.000000,0.000000) + = (0.000000,32.243225) + = (-0.000000,-0.000000) + + SOCC = 18.615635 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = (-0.000000,0.000000) + = (0.000000,18.984939) + = (-0.000000,-0.000000) + + Singlet part of = (-0.000000,0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (-0.000000,0.000000) + = (-0.000000,-0.000000) + + SOCC = 10.960960 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = 0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (0.000000,0.000000) + = (0.000000,-91.399111) + = (0.000000,-0.000000) + + SOCC = 52.769302 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = (0.000000,0.000000) + = (0.000000,-53.816159) + = (0.000000,-0.000000) + + Singlet part of = (-0.000000,0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (0.000000,0.000000) + = (0.000000,-0.000000) + + SOCC = 31.070774 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = 0.000 +WARNING! Clebsh-Gordon coefficient is too small to find a rotationally invariant part of triplet density. +Please use another EOM approach with non-zero Clebsh-Gordon coefficients +I am going to skip this state pair +_______________________________ + +************************************************** + +************************************************** + State A: T2 + State B: T4 + Analysing Sz ans S^2 of the pair of states... + Ket state: Computed S^2 = 2.000 will be treated as 2.000 Sz = 0.000 + Bra state: Computed S^2 = 2.000 will be treated as 2.000 Sz = 0.000 + Clebsh-Gordan coefficient: <1.000,0.000;1.000,0.000|1.000,0.000> = 0.000 +WARNING! Clebsh-Gordon coefficient is too small to find a rotationally invariant part of triplet density. +Please use another EOM approach with non-zero Clebsh-Gordon coefficients +I am going to skip this state pair +_______________________________ + +************************************************** + +************************************************** + State A: T2 + State B: T5 + Analysing Sz ans S^2 of the pair of states... + Ket state: Computed S^2 = 2.000 will be treated as 2.000 Sz = 0.000 + Bra state: Computed S^2 = 2.000 will be treated as 2.000 Sz = 0.000 + Clebsh-Gordan coefficient: <1.000,0.000;1.000,0.000|1.000,0.000> = 0.000 +WARNING! Clebsh-Gordon coefficient is too small to find a rotationally invariant part of triplet density. +Please use another EOM approach with non-zero Clebsh-Gordon coefficients +I am going to skip this state pair +_______________________________ + +************************************************** + +************************************************** + State A: T2 + State B: S1 + Analysing Sz ans S^2 of the pair of states... + Ket state: Computed S^2 = 2.000 will be treated as 2.000 Sz = 0.000 + Bra state: Computed S^2 = 0.000 will be treated as 0.000 Sz = 0.000 + Clebsh-Gordan coefficient: <1.000,0.000;1.000,0.000|0.000,0.000> = 0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (-0.000000,85.241879) + = (0.000000,0.000000) + = (-0.000000,-85.241879) + + SOCC = 69.599703 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = (-0.000000,52.624865) + = (0.000000,0.000000) + = (-0.000000,-52.624865) + + Singlet part of = (-0.000000,0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (-0.000000,52.624865) + = (-0.000000,-52.624865) + + SOCC = 42.968022 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = 0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (0.000000,-0.000000) + = (0.000000,0.000000) + = (0.000000,0.000000) + + SOCC = 0.000000 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = (0.000000,-0.000000) + = (0.000000,0.000000) + = (0.000000,0.000000) + + Singlet part of = (-0.000000,0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (0.000000,-0.000000) + = (0.000000,0.000000) + + SOCC = 0.000000 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = 0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (-0.000000,0.000000) + = (0.000000,6.467510) + = (-0.000000,-0.000000) + + SOCC = 3.734018 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = (-0.000000,0.000000) + = (0.000000,3.808095) + = (-0.000000,-0.000000) + + Singlet part of = (-0.000000,0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (-0.000000,0.000000) + = (-0.000000,-0.000000) + + SOCC = 2.198605 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = 0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (30.132472,-0.000000) + = (0.000000,0.000000) + = (30.132472,0.000000) + + SOCC = 24.603060 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = (20.752494,-0.000000) + = (0.000000,0.000000) + = (20.752494,0.000000) + + Singlet part of = (-0.000000,0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (20.752494,-0.000000) + = (20.752494,0.000000) + + SOCC = 16.944340 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = 0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (67.221459,-0.000000) + = (0.000000,0.000000) + = (67.221459,0.000000) + + SOCC = 54.886092 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = (38.997637,-0.000000) + = (0.000000,-0.000000) + = (38.997637,0.000000) + + Singlet part of = (-0.000000,0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (38.997637,-0.000000) + = (38.997637,0.000000) + + SOCC = 31.841437 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = 0.000 +WARNING! Clebsh-Gordon coefficient is too small to find a rotationally invariant part of triplet density. +Please use another EOM approach with non-zero Clebsh-Gordon coefficients +I am going to skip this state pair +_______________________________ + +************************************************** + +************************************************** + State A: T3 + State B: T5 + Analysing Sz ans S^2 of the pair of states... + Ket state: Computed S^2 = 2.000 will be treated as 2.000 Sz = 0.000 + Bra state: Computed S^2 = 2.000 will be treated as 2.000 Sz = 0.000 + Clebsh-Gordan coefficient: <1.000,0.000;1.000,0.000|1.000,0.000> = 0.000 +WARNING! Clebsh-Gordon coefficient is too small to find a rotationally invariant part of triplet density. +Please use another EOM approach with non-zero Clebsh-Gordon coefficients +I am going to skip this state pair +_______________________________ + +************************************************** + +************************************************** + State A: T3 + State B: S1 + Analysing Sz ans S^2 of the pair of states... + Ket state: Computed S^2 = 2.000 will be treated as 2.000 Sz = 0.000 + Bra state: Computed S^2 = 0.000 will be treated as 0.000 Sz = 0.000 + Clebsh-Gordan coefficient: <1.000,0.000;1.000,0.000|0.000,0.000> = 0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (-54.708452,-0.000000) + = (0.000000,0.000000) + = (-54.708452,0.000000) + + SOCC = 44.669264 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = (-34.771812,0.000000) + = (0.000000,0.000000) + = (-34.771812,-0.000000) + + Singlet part of = (-0.000000,0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (-34.771812,0.000000) + = (-34.771812,-0.000000) + + SOCC = 28.391066 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = 0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (-0.000000,-0.000000) + = (0.000000,14.212649) + = (-0.000000,0.000000) + + SOCC = 8.205677 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = (-0.000000,-0.000000) + = (0.000000,8.368464) + = (-0.000000,0.000000) + + Singlet part of = (-0.000000,0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (-0.000000,-0.000000) + = (-0.000000,0.000000) + + SOCC = 4.831535 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = 0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (-0.000000,0.000000) + = (0.000000,-0.000000) + = (-0.000000,-0.000000) + + SOCC = 0.000000 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = (-0.000000,0.000000) + = (0.000000,-0.000000) + = (-0.000000,-0.000000) + + Singlet part of = (-0.000000,0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (-0.000000,0.000000) + = (-0.000000,-0.000000) + + SOCC = 0.000000 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = 0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (0.000000,-80.558763) + = (0.000000,-0.000000) + = (0.000000,80.558763) + + SOCC = 65.775955 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = (0.000000,-49.732172) + = (0.000000,-0.000000) + = (0.000000,49.732172) + + Singlet part of = (-0.000000,0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (0.000000,-49.732172) + = (0.000000,49.732172) + + SOCC = 40.606149 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = 0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (-0.000000,-27.793261) + = (0.000000,-0.000000) + = (-0.000000,27.793261) + + SOCC = 22.693102 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = (-0.000000,-17.172384) + = (0.000000,-0.000000) + = (-0.000000,17.172384) + + Singlet part of = (-0.000000,0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (-0.000000,-17.172384) + = (-0.000000,17.172384) + + SOCC = 14.021193 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = 0.000 +WARNING! Clebsh-Gordon coefficient is too small to find a rotationally invariant part of triplet density. +Please use another EOM approach with non-zero Clebsh-Gordon coefficients +I am going to skip this state pair +_______________________________ + +************************************************** + +************************************************** + State A: T4 + State B: S1 + Analysing Sz ans S^2 of the pair of states... + Ket state: Computed S^2 = 2.000 will be treated as 2.000 Sz = 0.000 + Bra state: Computed S^2 = 0.000 will be treated as 0.000 Sz = 0.000 + Clebsh-Gordan coefficient: <1.000,0.000;1.000,0.000|0.000,0.000> = 0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (0.000000,-0.000000) + = (0.000000,20.940509) + = (0.000000,0.000000) + + SOCC = 12.090008 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = (0.000000,-0.000000) + = (0.000000,12.329854) + = (0.000000,0.000000) + + Singlet part of = (-0.000000,0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (0.000000,-0.000000) + = (0.000000,0.000000) + + SOCC = 7.118645 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = 0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (-74.339771,0.000000) + = (0.000000,-0.000000) + = (-74.339771,-0.000000) + + SOCC = 60.698169 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = (-45.846113,0.000000) + = (0.000000,-0.000000) + = (-45.846113,-0.000000) + + Singlet part of = (-0.000000,0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (-45.846113,0.000000) + = (-45.846113,-0.000000) + + SOCC = 37.433194 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = 0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (0.000000,82.669225) + = (0.000000,0.000000) + = (0.000000,-82.669225) + + SOCC = 67.499140 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = (0.000000,51.053980) + = (0.000000,0.000000) + = (0.000000,-51.053980) + + Singlet part of = (-0.000000,0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (0.000000,51.053980) + = (0.000000,-51.053980) + + SOCC = 41.685400 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = 0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (-0.000000,0.000000) + = (0.000000,0.000000) + = (-0.000000,-0.000000) + + SOCC = 0.000000 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = (-0.000000,0.000000) + = (0.000000,0.000000) + = (-0.000000,-0.000000) + + Singlet part of = (-0.000000,0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (-0.000000,0.000000) + = (-0.000000,-0.000000) + + SOCC = 0.000000 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = 0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (0.000000,0.000000) + = (0.000000,-0.000000) + = (0.000000,-0.000000) + + SOCC = 0.000000 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = (0.000000,0.000000) + = (0.000000,-0.000000) + = (0.000000,-0.000000) + + Singlet part of = (-0.000000,0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (0.000000,0.000000) + = (0.000000,-0.000000) + + SOCC = 0.000000 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = 0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (0.000000,-0.000000) + = (0.000000,94.374856) + = (0.000000,0.000000) + + SOCC = 54.487349 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = (0.000000,0.000000) + = (0.000000,55.568289) + = (0.000000,-0.000000) + + Singlet part of = (-0.000000,0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (0.000000,0.000000) + = (0.000000,-0.000000) + + SOCC = 32.082367 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = 0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (-47.529358,-0.000000) + = (0.000000,-0.000000) + = (-47.529358,0.000000) + + SOCC = 38.807558 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = (-26.579021,-0.000000) + = (0.000000,-0.000000) + = (-26.579021,0.000000) + + Singlet part of = (-0.000000,0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (-26.579021,-0.000000) + = (-26.579021,0.000000) + + SOCC = 21.701680 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = 0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (0.000000,-16.565086) + = (0.000000,0.000000) + = (0.000000,16.565086) + + SOCC = 13.525336 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = (0.000000,-10.264486) + = (0.000000,0.000000) + = (0.000000,10.264486) + + Singlet part of = (-0.000000,0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (0.000000,-10.264486) + = (0.000000,10.264486) + + SOCC = 8.380918 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = 0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (0.000000,0.000000) + = (0.000000,0.000000) + = (0.000000,-0.000000) + + SOCC = 0.000000 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = (0.000000,0.000000) + = (0.000000,0.000000) + = (0.000000,-0.000000) + + Singlet part of = (-0.000000,0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (0.000000,0.000000) + = (0.000000,-0.000000) + + SOCC = 0.000000 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = 0.577 + +_______________________________ + One-electron SO (cm-1) + Reduced matrix elements: + = (0.000000,0.000000) + = (0.000000,-0.000000) + = (0.000000,-0.000000) + + SOCC = 0.000000 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = (0.000000,0.000000) + = (0.000000,-0.000000) + = (0.000000,-0.000000) + + Singlet part of = (-0.000000,0.000000) (excluded from all matrix elements) + L-/L+ Averaged reduced matrix elements: + = (0.000000,0.000000) + = (0.000000,-0.000000) + + SOCC = 0.000000 + + + Actual matrix elements: + |Sz=-1.00> |Sz=0.00> |Sz=1.00> + = 0.000 +WARNING! Clebsh-Gordon coefficient is too small to find a rotationally invariant part of triplet density. +Please use another EOM approach with non-zero Clebsh-Gordon coefficients +I am going to skip this state pair +_______________________________ + +************************************************** + +************************************************** + State A: S1 + State B: S3 + Analysing Sz ans S^2 of the pair of states... + Ket state: Computed S^2 = 0.000 will be treated as 0.000 Sz = 0.000 + Bra state: Computed S^2 = 0.000 will be treated as 0.000 Sz = 0.000 + Clebsh-Gordan coefficient: <0.000,0.000;1.000,0.000|0.000,0.000> = 0.000 +WARNING! Clebsh-Gordon coefficient is too small to find a rotationally invariant part of triplet density. +Please use another EOM approach with non-zero Clebsh-Gordon coefficients +I am going to skip this state pair +_______________________________ + +************************************************** + +************************************************** + State A: S1 + State B: S4 + Analysing Sz ans S^2 of the pair of states... + Ket state: Computed S^2 = 0.000 will be treated as 0.000 Sz = 0.000 + Bra state: Computed S^2 = 0.000 will be treated as 0.000 Sz = 0.000 + Clebsh-Gordan coefficient: <0.000,0.000;1.000,0.000|0.000,0.000> = 0.000 +WARNING! Clebsh-Gordon coefficient is too small to find a rotationally invariant part of triplet density. +Please use another EOM approach with non-zero Clebsh-Gordon coefficients +I am going to skip this state pair +_______________________________ + +************************************************** + +************************************************** + State A: S1 + State B: S5 + Analysing Sz ans S^2 of the pair of states... + Ket state: Computed S^2 = 0.000 will be treated as 0.000 Sz = 0.000 + Bra state: Computed S^2 = 0.000 will be treated as 0.000 Sz = 0.000 + Clebsh-Gordan coefficient: <0.000,0.000;1.000,0.000|0.000,0.000> = 0.000 +WARNING! Clebsh-Gordon coefficient is too small to find a rotationally invariant part of triplet density. +Please use another EOM approach with non-zero Clebsh-Gordon coefficients +I am going to skip this state pair +_______________________________ + +************************************************** + +************************************************** + State A: S2 + State B: S3 + Analysing Sz ans S^2 of the pair of states... + Ket state: Computed S^2 = 0.000 will be treated as 0.000 Sz = 0.000 + Bra state: Computed S^2 = 0.000 will be treated as 0.000 Sz = 0.000 + Clebsh-Gordan coefficient: <0.000,0.000;1.000,0.000|0.000,0.000> = 0.000 +WARNING! Clebsh-Gordon coefficient is too small to find a rotationally invariant part of triplet density. +Please use another EOM approach with non-zero Clebsh-Gordon coefficients +I am going to skip this state pair +_______________________________ + +************************************************** + +************************************************** + State A: S2 + State B: S4 + Analysing Sz ans S^2 of the pair of states... + Ket state: Computed S^2 = 0.000 will be treated as 0.000 Sz = 0.000 + Bra state: Computed S^2 = 0.000 will be treated as 0.000 Sz = 0.000 + Clebsh-Gordan coefficient: <0.000,0.000;1.000,0.000|0.000,0.000> = 0.000 +WARNING! Clebsh-Gordon coefficient is too small to find a rotationally invariant part of triplet density. +Please use another EOM approach with non-zero Clebsh-Gordon coefficients +I am going to skip this state pair +_______________________________ + +************************************************** + +************************************************** + State A: S2 + State B: S5 + Analysing Sz ans S^2 of the pair of states... + Ket state: Computed S^2 = 0.000 will be treated as 0.000 Sz = 0.000 + Bra state: Computed S^2 = 0.000 will be treated as 0.000 Sz = 0.000 + Clebsh-Gordan coefficient: <0.000,0.000;1.000,0.000|0.000,0.000> = 0.000 +WARNING! Clebsh-Gordon coefficient is too small to find a rotationally invariant part of triplet density. +Please use another EOM approach with non-zero Clebsh-Gordon coefficients +I am going to skip this state pair +_______________________________ + +************************************************** + +************************************************** + State A: S3 + State B: S4 + Analysing Sz ans S^2 of the pair of states... + Ket state: Computed S^2 = 0.000 will be treated as 0.000 Sz = 0.000 + Bra state: Computed S^2 = 0.000 will be treated as 0.000 Sz = 0.000 + Clebsh-Gordan coefficient: <0.000,0.000;1.000,0.000|0.000,0.000> = 0.000 +WARNING! Clebsh-Gordon coefficient is too small to find a rotationally invariant part of triplet density. +Please use another EOM approach with non-zero Clebsh-Gordon coefficients +I am going to skip this state pair +_______________________________ + +************************************************** + +************************************************** + State A: S3 + State B: S5 + Analysing Sz ans S^2 of the pair of states... + Ket state: Computed S^2 = 0.000 will be treated as 0.000 Sz = 0.000 + Bra state: Computed S^2 = 0.000 will be treated as 0.000 Sz = 0.000 + Clebsh-Gordan coefficient: <0.000,0.000;1.000,0.000|0.000,0.000> = 0.000 +WARNING! Clebsh-Gordon coefficient is too small to find a rotationally invariant part of triplet density. +Please use another EOM approach with non-zero Clebsh-Gordon coefficients +I am going to skip this state pair +_______________________________ + +************************************************** + +************************************************** + State A: S4 + State B: S5 + Analysing Sz ans S^2 of the pair of states... + Ket state: Computed S^2 = 0.000 will be treated as 0.000 Sz = 0.000 + Bra state: Computed S^2 = 0.000 will be treated as 0.000 Sz = 0.000 + Clebsh-Gordan coefficient: <0.000,0.000;1.000,0.000|0.000,0.000> = 0.000 +WARNING! Clebsh-Gordon coefficient is too small to find a rotationally invariant part of triplet density. +Please use another EOM approach with non-zero Clebsh-Gordon coefficients +I am going to skip this state pair +_______________________________ + +************************************************** + + + *********SPIN-ORBIT COUPLING JOB ENDS HERE********* + + + + + STATE-TO-STATE TRANSITION ANGULAR MOMENTS +Note: values should be multiplied by complex "i" to account for the true operator + + + Angular Moments of Ground State + ----------------------------------------------------- + State X Y Z(a.u.) + ----------------------------------------------------- + 0 0.000000 -0.000000 0.667436 + ----------------------------------------------------- + + Within CIS/TDA Excited States: + + Angular Moments of Triplet Excited State + ----------------------------------------------------- + State X Y Z(a.u.) + ----------------------------------------------------- + 1 0.000000 -0.000000 0.667436 + 2 0.000000 -0.000000 0.667436 + 5 0.000000 -0.000000 0.667436 + 7 0.000000 -0.000000 0.667436 + 9 0.000000 -0.000000 0.667436 + ----------------------------------------------------- + + Transition Angular Moments Between Ground and Triplet Excited States + -------------------------------------------------------------------------------- + States X Y Z Length(a.u.) + -------------------------------------------------------------------------------- + 0 1 0.000000 0.000000 0.000000 0 + 0 2 0.000000 0.000000 0.000000 0 + 0 5 0.000000 0.000000 0.000000 0 + 0 7 0.000000 0.000000 0.000000 0 + 0 9 0.000000 0.000000 0.000000 0 + -------------------------------------------------------------------------------- + + Transition Angular Moments Between Triplet Excited States + -------------------------------------------------------------------------------- + States X Y Z Length(a.u.) + -------------------------------------------------------------------------------- + 1 2 -0.942061 0.000000 0.000000 0.9420609 + 1 5 -0.000000 -0.153979 0.000000 0.153979 + 1 7 -0.000000 0.000000 0.193638 0.1936377 + 1 9 0.000000 0.000000 0.872688 0.8726881 + 2 5 -0.000000 0.000000 -0.059805 0.05980532 + 2 7 0.000000 -0.018856 0.000000 0.01885578 + 2 9 0.000000 0.883392 0.000000 0.8833916 + 5 7 -0.915037 0.000000 0.000000 0.9150374 + 5 9 0.186123 0.000000 -0.000000 0.186123 + 7 9 -0.000000 0.000000 0.000000 1.49324E-15 + -------------------------------------------------------------------------------- + + Within CIS/TDA Excited States: + + Angular Moments of Singlet Excited State + ----------------------------------------------------- + State X Y Z(a.u.) + ----------------------------------------------------- + 3 0.000000 -0.000000 0.667436 + 4 0.000000 -0.000000 0.667436 + 6 0.000000 -0.000000 0.667436 + 8 0.000000 -0.000000 0.667436 + 10 0.000000 -0.000000 0.667436 + ----------------------------------------------------- + + Transition Angular Moments Between Ground and Singlet Excited States + -------------------------------------------------------------------------------- + States X Y Z Length(a.u.) + -------------------------------------------------------------------------------- + 0 3 -0.426029 -0.000000 -0.000000 0.4260288 + 0 4 -0.000000 -0.000000 0.000000 4.890209E-15 + 0 6 -0.000000 0.000000 0.626006 0.6260056 + 0 8 -0.000000 0.692931 -0.000000 0.6929308 + 0 10 0.000000 -0.000293 0.000000 0.0002932341 + -------------------------------------------------------------------------------- + + Transition Angular Moments Between Singlet Excited States + -------------------------------------------------------------------------------- + States X Y Z Length(a.u.) + -------------------------------------------------------------------------------- + 3 4 -0.908638 -0.000000 0.000000 0.9086375 + 3 6 0.000000 -0.153979 0.000000 0.153979 + 3 8 0.000000 -0.000000 -0.298154 0.2981544 + 3 10 0.000000 0.000000 0.845171 0.8451713 + 4 6 0.000000 0.000000 0.131425 0.1314249 + 4 8 -0.000000 -0.290936 0.000000 0.290936 + 4 10 -0.000000 0.745149 0.000000 0.7451491 + 6 8 -0.890152 -0.000000 -0.000000 0.8901521 + 6 10 -0.308273 -0.000000 0.000000 0.3082728 + 8 10 -0.000000 0.000000 -0.000000 2.907026E-16 + -------------------------------------------------------------------------------- + + END OF TRANSITION MOMENT CALCULATION + + + -------------------------------------------------------------- + Orbital Energies (a.u.) and Symmetries + -------------------------------------------------------------- + + Alpha MOs, Restricted + -- Occupied -- +-18.819 -0.948 -0.477 -0.205 -0.141 + 1 A1 2 A1 1 B1 3 A1 1 B2 + -- Virtual -- + 0.387 0.546 + 4 A1 2 B1 + + Beta MOs, Restricted + -- Occupied -- +-18.819 -0.948 -0.477 -0.205 -0.141 + 1 A1 2 A1 1 B1 3 A1 1 B2 + -- Virtual -- + 0.387 0.546 + 4 A1 2 B1 + -------------------------------------------------------------- + + Ground-State Mulliken Net Atomic Charges + + Atom Charge (a.u.) + ---------------------------------------- + 1 O -0.428128 + 2 H 0.214064 + 3 H 0.214064 + ---------------------------------------- + Sum of atomic charges = 0.000000 + + ----------------------------------------------------------------- + Cartesian Multipole Moments + ----------------------------------------------------------------- + Charge (ESU x 10^10) + -0.0000 + Dipole Moment (Debye) + X -0.0000 Y 0.0000 Z -1.6965 + Tot 1.6965 + Quadrupole Moments (Debye-Ang) + XX -4.1323 XY 0.0000 YY -6.0464 + XZ -0.0000 YZ 0.0000 ZZ -5.4925 + Octopole Moments (Debye-Ang^2) + XXX -0.0000 XXY 0.0000 XYY -0.0000 + YYY 0.0000 XXZ -0.5607 XYZ -0.0000 + YYZ -0.0290 XZZ -0.0000 YZZ 0.0000 + ZZZ -0.2121 + Hexadecapole Moments (Debye-Ang^3) + XXXX -6.1241 XXXY -0.0000 XXYY -1.7228 + XYYY -0.0000 YYYY -3.1791 XXXZ 0.0000 + XXYZ 0.0000 XYYZ 0.0000 YYYZ 0.0000 + XXZZ -1.6204 XYZZ -0.0000 YYZZ -1.2807 + XZZZ 0.0000 YZZZ 0.0000 ZZZZ -4.3791 + ----------------------------------------------------------------- + Total job time: 0.57s(wall), 0.24s(cpu) + Wed Oct 30 11:41:11 2024 + + ************************************************************* + * * + * Thank you very much for using Q-Chem. Have a nice day. * + * * + ************************************************************* + +