forked from PaddlePaddle/Serving
-
Notifications
You must be signed in to change notification settings - Fork 0
/
web_service.py
61 lines (53 loc) · 2.21 KB
/
web_service.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle_serving_server.web_service import WebService, Op
import logging
import numpy as np
import sys
from paddle_serving_app.reader import ChineseBertReader
_LOGGER = logging.getLogger()
class BertOp(Op):
def init_op(self):
self.reader = ChineseBertReader({
"vocab_file": "vocab.txt",
"max_seq_len": 128
})
def preprocess(self, input_dicts, data_id, log_id):
(_, input_dict), = input_dicts.items()
print("input dict", input_dict)
batch_size = len(input_dict.keys())
feed_res = []
for i in range(batch_size):
feed_dict = self.reader.process(input_dict[str(i)].encode("utf-8"))
for key in feed_dict.keys():
feed_dict[key] = np.array(feed_dict[key]).reshape(
(1, len(feed_dict[key]), 1))
feed_res.append(feed_dict)
feed_dict = {}
for key in feed_res[0].keys():
feed_dict[key] = np.concatenate([x[key] for x in feed_res], axis=0)
print(key, feed_dict[key].shape)
return feed_dict, False, None, ""
def postprocess(self, input_dicts, fetch_dict, data_id, log_id):
new_dict = {}
new_dict["pooled_output"] = str(fetch_dict["pooled_output"])
new_dict["sequence_output"] = str(fetch_dict["sequence_output"])
return new_dict, None, ""
class BertService(WebService):
def get_pipeline_response(self, read_op):
bert_op = BertOp(name="bert", input_ops=[read_op])
return bert_op
bert_service = BertService(name="bert")
bert_service.prepare_pipeline_config("config.yml")
bert_service.run_service()