forked from aman-saha/hate-speech-detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hate_speech_detection.py
217 lines (189 loc) · 9 KB
/
hate_speech_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#Author: Tommy Pawelski
#Created: July 13th 2018
import pandas as pd
import numpy as np
import nltk
import string
import csv
from sklearn.model_selection import train_test_split
from sklearn.ensemble import VotingClassifier
from mlxtend.classifier import StackingCVClassifier
#read in each of the feature csv files
class_labels = pd.read_csv('labels.csv',encoding='utf-8')
weighted_tfidf_score = pd.read_csv('tfidf_scores.csv',encoding='utf-8')
sentiment_scores = pd.read_csv('sentiment_scores.csv',encoding='utf-8')
dependency_features = pd.read_csv('dependency_features.csv',encoding='utf-8')
char_bigrams = pd.read_csv('char_bigram_features.csv',encoding='utf-8')
word_bigrams = pd.read_csv('word_bigram_features.csv',encoding='utf-8')
tfidf_sparse_matrix = pd.read_csv('tfidf_features.csv',encoding='utf-8')
#merge all feature data sets based on 'index' column sentiment_scores, dependency_features, char_bigrams, word_bigrams
df_list=[class_labels, weighted_tfidf_score,sentiment_scores, dependency_features, char_bigrams, word_bigrams, tfidf_sparse_matrix]
master = df_list[0]
for df in df_list[1:]:
master = master.merge(df, on='index')
master.columns.values
#ignore first two columns (index and tweet)
y=master.iloc[:,2] #class labels
X=master.iloc[:,3:] #all features
#create train and test sets: 80% train, 20% test
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
##########################################################################################
#NOW WE CAN START MODELING
from sklearn.metrics import roc_curve, auc, roc_auc_score, f1_score
from sklearn import model_selection
from sklearn.cross_validation import cross_val_score
from sklearn.linear_model import LogisticRegressionCV
from sklearn import svm
from sklearn.neural_network import MLPClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.ensemble import AdaBoostClassifier
from xgboost import XGBClassifier
import lightgbm as lgb
#Create a base training set to benchmark our performance (train set with hatespeech dictionary weighted tif-df score as only feature)
x_base = pd.DataFrame(X_train.loc[:,'weighted_TFIDF_scores'])
x_base_test = pd.DataFrame(X_test.loc[:,'weighted_TFIDF_scores'])
# created scaled version of training and test data
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
X_train_scale = scaler.transform(X_train)
X_test_scale = scaler.transform(X_test)
#initialize models
lr = LogisticRegression(multi_class='multinomial', solver='lbfgs')
gb = GradientBoostingClassifier(n_estimators=500, learning_rate=.025)
xgb = XGBClassifier(learning_rate=.025, max_features=100)
mlp = MLPClassifier(solver='lbfgs',hidden_layer_sizes=(80,40,40,10), activation='relu', random_state=1,learning_rate='adaptive', alpha=1e-6)
rf= RandomForestClassifier(n_estimators=100, max_features=500)
# 80,50,50,20
#asses model performances using 5-fold cross validation and f1-score micro aveage as metric
print("baseline model f1-score = ", cross_val_score(lr,x_base, y_train,cv=5,scoring="roc_auc").mean()) #benchmark model: linear regression using just tfidf score (weighted with hate dict)
print("gb cross validation f1-score = ", cross_val_score(gb,x_base, y_train,cv=5,scoring="f1_micro").mean()) #gradient boost with just tf-df score
print("rf cross validation f1-score = ", cross_val_score(rf,X_train,y_train,cv=5,scoring="f1_micro").mean()) #random forest with full train set (all features)
print("xgb cross validation f1-score = ", cross_val_score(xgb,X_train,y_train,cv=5,scoring="f1_micro").mean()) #xgboost with full train set (all features)
print("mlp cross validation f1-score = ", cross_val_score(mlp,X_train,y_train,cv=5,scoring="f1_micro").mean())
#initialize ensembles
estimators=[]
estimators.append(('mlp', mlp))
estimators.append(('rf', rf))
estimators.append(('xgb', xgb))
#voting ensemlbe
ensemble = VotingClassifier(estimators, voting='soft',weights=[1,1,1])
ensemble.fit(X_train, y_train)
pred = ensemble.predict(X_test)
print ('fscore:{0:.3f}'.format(f1_score(y_test, pred, average='micro')))
#meta classifier ensemble
stack = StackingCVClassifier(classifiers=[mlp, xgb, rf], cv=2,meta_classifier=lr, use_probas=True)
stack.fit(X_train.values, y_train.values)
pred2=stack.predict(X_test.values)
print ('fscore:{0:.3f}'.format(f1_score(y_test, pred2, average='micro')))
from sklearn.metrics import confusion_matrix
confusion_lr = confusion_matrix(y_test, pred)
print(confusion_lr)
####################################################################################################################
#REPORT AND PLOT MICRO-AVERAGE ROC AUC FOR EACH MODEL
from sklearn.preprocessing import label_binarize
import matplotlib.pyplot as plt
from itertools import cycle
from sklearn.multiclass import OneVsRestClassifier
from scipy import interp
# Binarize the output
y = label_binarize(y, classes=[0, 1, 2])
n_classes = y.shape[1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Compute micro-average ROC curve and ROC area
classifier = OneVsRestClassifier(lr)
classifier2= OneVsRestClassifier(gb)
classifier3 = OneVsRestClassifier(xgb)
y_score = classifier.fit(x_base, y_train).decision_function(x_base_test)
y_score2= classifier.fit(X_train, y_train).decision_function(X_test)
y_score3= classifier2.fit(X_train, y_train).decision_function(X_test)
# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
fpr2 = dict()
tpr2 = dict()
roc_auc2 = dict()
fpr3 = dict()
tpr3 = dict()
roc_auc3 = dict()
for i in range(n_classes):
fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
fpr2[i], tpr2[i], _ = roc_curve(y_test[:, i], y_score2[:, i])
roc_auc2[i] = auc(fpr2[i], tpr2[i])
fpr3[i], tpr3[i], _ = roc_curve(y_test[:, i], y_score3[:, i])
roc_auc3[i] = auc(fpr3[i], tpr3[i])
fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
fpr2["micro"], tpr2["micro"], _ = roc_curve(y_test.ravel(), y_score2.ravel())
roc_auc2["micro"] = auc(fpr2["micro"], tpr2["micro"])
fpr3["micro"], tpr3["micro"], _ = roc_curve(y_test.ravel(), y_score2.ravel())
roc_auc3["micro"] = auc(fpr3["micro"], tpr3["micro"])
# Compute macro-average ROC curve and ROC area
# First aggregate all false positive rates
all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))
all_fpr2 = np.unique(np.concatenate([fpr2[i] for i in range(n_classes)]))
all_fpr3 = np.unique(np.concatenate([fpr3[i] for i in range(n_classes)]))
# Then interpolate all ROC curves at this points
mean_tpr = np.zeros_like(all_fpr)
mean_tpr2 = np.zeros_like(all_fpr2)
mean_tpr3 = np.zeros_like(all_fpr3)
for i in range(n_classes):
mean_tpr += interp(all_fpr, fpr[i], tpr[i])
mean_tpr2 += interp(all_fpr2, fpr2[i], tpr2[i])
mean_tpr3 += interp(all_fpr3, fpr3[i], tpr3[i])
# Finally average it and compute AUC
mean_tpr /= n_classes
mean_tpr2 /= n_classes
mean_tpr3 /= n_classes
fpr["micro"] = all_fpr
tpr["micro"] = mean_tpr
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
fpr2["micro"] = all_fpr2
tpr2["micro"] = mean_tpr2
roc_auc2["micro"] = auc(fpr2["micro"], tpr2["micro"])
fpr3["micro"] = all_fpr3
tpr3["micro"] = mean_tpr3
roc_auc3["micro"] = auc(fpr3["micro"], tpr3["micro"])
# Plot all ROC curves (cite: http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html)
plt.figure()
plt.plot(fpr["micro"], tpr["micro"],
label='Base model micro-average ROC curve (area = {0:0.2f})'
''.format(roc_auc["micro"]),
color='#EB7D3C', linestyle=':', linewidth=4)
plt.plot(fpr2["micro"], tpr2["micro"],
label='LR micro-average ROC curve (area = {0:0.2f})'
''.format(roc_auc2["micro"]),
color='#4674C1', linestyle=':', linewidth=4)
plt.plot(fpr3["micro"], tpr3["micro"],
label='XGBoost micro-average ROC curve (area = {0:0.2f})'
''.format(roc_auc3["micro"]),
color='#72AC48', linestyle=':', linewidth=4)
plt.plot([0, 1], [0, 1], 'k--', lw=2)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Micro-Average ROC ')
plt.legend(loc='upper center', bbox_to_anchor=(0.5, -.15),fancybox=True)
plt.show()
############## ROC values for just hate speech labels (class = 0)
plt.figure()
lw = 2
plt.plot(fpr[0], tpr[0], color='#EB7D3C',
lw=lw, label='Base model ROC curve (area = %0.2f)' % roc_auc[0])
plt.plot(fpr2[0], tpr2[0], color='#4674C1',
lw=lw, label='LR ROC curve (area = %0.2f)' % roc_auc2[0])
plt.plot(fpr3[0], tpr3[0], color='#72AC48',
lw=lw, label='XGBoost ROC curve (area = %0.2f)' % roc_auc3[0])
plt.plot([0, 1], [0, 1], color='black', lw=lw, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC for "Hatespeech" Label')
plt.legend(loc='upper center', bbox_to_anchor=(0.5, -.15),fancybox=True)
plt.show()