forked from malin9402/tf20
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Linear_Regression.py
72 lines (55 loc) · 1.98 KB
/
Linear_Regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#! /usr/bin/env python
# coding=utf-8
#================================================================
# Copyright (C) 2019 * Ltd. All rights reserved.
#
# Editor : VIM
# File name : Linear_Regression.py
# Author : YunYang1994
# Created date: 2019-03-08 17:33:48
# Description :
#
#================================================================
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
# Define model and Loss
class Model(object):
def __init__(self):
self.W = tf.Variable(10.0)
self.b = tf.Variable(-5.0)
def __call__(self, inputs):
return self.W * inputs + self.b
def compute_loss(y_true, y_pred):
return tf.reduce_mean(tf.square(y_true-y_pred))
model = Model()
# Define True weight and bias
TRUE_W = 3.0
TRUE_b = 2.0
# Obtain training data, Let's synthesize the training data with some noise.
NUM_EXAMPLES = 1000
inputs = tf.random.normal(shape=[NUM_EXAMPLES])
noise = tf.random.normal(shape=[NUM_EXAMPLES])
outputs = inputs * TRUE_W + TRUE_b + noise
# Before we train the model let's visualize where the model stands right now.
# We'll plot the model's predictions in red and the training data in blue.
def plot(epoch):
plt.scatter(inputs, outputs, c='b')
plt.scatter(inputs, model(inputs), c='r')
plt.title("epoch %2d, loss = %s" %(epoch, str(compute_loss(outputs, model(inputs)).numpy())))
plt.legend()
plt.draw()
plt.ion() # replacing plt.show()
plt.pause(1)
plt.close()
# Define a training loop
learning_rate = 0.1
for epoch in range(30):
with tf.GradientTape() as tape:
loss = compute_loss(outputs, model(inputs))
dW, db = tape.gradient(loss, [model.W, model.b])
model.W.assign_sub(learning_rate * dW)
model.b.assign_sub(learning_rate * db)
print("=> epoch %2d: w_true= %.2f, w_pred= %.2f; b_true= %.2f, b_pred= %.2f, loss= %.2f" %(
epoch+1, TRUE_W, model.W.numpy(), TRUE_b, model.b.numpy(), loss.numpy()))
plot(epoch + 1)