forked from Boomerific/rpi-rgb-led-matrix
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.cc
308 lines (270 loc) · 8.68 KB
/
main.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
#include "thread.h"
#include "led-matrix.h"
#include <assert.h>
#include <unistd.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <algorithm>
using std::min;
using std::max;
// Base-class for a Thread that does something with a matrix.
class RGBMatrixManipulator : public Thread {
public:
RGBMatrixManipulator(RGBMatrix *m) : running_(true), matrix_(m) {}
virtual ~RGBMatrixManipulator() { running_ = false; }
// Run() implementation needs to check running_ regularly.
protected:
volatile bool running_; // TODO: use mutex, but this is good enough for now.
RGBMatrix *const matrix_;
};
// Pump pixels to screen. Needs to be high priority real-time because jitter
// here will make the PWM uneven.
class DisplayUpdater : public RGBMatrixManipulator {
public:
DisplayUpdater(RGBMatrix *m) : RGBMatrixManipulator(m) {}
void Run() {
while (running_) {
matrix_->UpdateScreen();
}
}
};
// -- The following are demo image generators.
// Simple generator that pulses through RGB and White.
class ColorPulseGenerator : public RGBMatrixManipulator {
public:
ColorPulseGenerator(RGBMatrix *m) : RGBMatrixManipulator(m) {}
void Run() {
const int width = matrix_->width();
const int height = matrix_->height();
uint32_t count = 0;
while (running_) {
usleep(5000);
++count;
int color = (count >> 9) % 6;
int value = count & 0xFF;
if (count & 0x100) value = 255 - value;
int r, g, b;
switch (color) {
case 0: r = value; g = b = 0; break;
case 1: r = g = value; b = 0; break;
case 2: g = value; r = b = 0; break;
case 3: g = b = value; r = 0; break;
case 4: b = value; r = g = 0; break;
default: r = g = b = value; break;
}
for (int x = 0; x < width; ++x)
for (int y = 0; y < height; ++y)
matrix_->SetPixel(x, y, r, g, b);
}
}
};
class SimpleSquare : public RGBMatrixManipulator {
public:
SimpleSquare(RGBMatrix *m) : RGBMatrixManipulator(m) {}
void Run() {
const int width = matrix_->width();
const int height = matrix_->height();
// Diagonaly
for (int x = 0; x < width; ++x) {
matrix_->SetPixel(x, x, 255, 255, 255);
matrix_->SetPixel(height -1 - x, x, 255, 0, 255);
}
for (int x = 0; x < width; ++x) {
matrix_->SetPixel(x, 0, 255, 0, 0);
matrix_->SetPixel(x, height - 1, 255, 255, 0);
}
for (int y = 0; y < height; ++y) {
matrix_->SetPixel(0, y, 0, 0, 255);
matrix_->SetPixel(width - 1, y, 0, 255, 0);
}
}
};
// Simple class that generates a rotating block on the screen.
class RotatingBlockGenerator : public RGBMatrixManipulator {
public:
RotatingBlockGenerator(RGBMatrix *m) : RGBMatrixManipulator(m) {}
uint8_t scale_col(int val, int lo, int hi) {
if (val < lo) return 0;
if (val > hi) return 255;
return 255 * (val - lo) / (hi - lo);
}
void Run() {
const int cent_x = matrix_->width() / 2;
const int cent_y = matrix_->height() / 2;
// The square to rotate (inner square + black frame) needs to cover the
// whole area, even if diagnoal.
const int rotate_square = min(matrix_->width(), matrix_->height()) * 1.41;
const int min_rotate = cent_x - rotate_square / 2;
const int max_rotate = cent_x + rotate_square / 2;
// The square to display is within the visible area.
const int display_square = min(matrix_->width(), matrix_->height()) * 0.7;
const int min_display = cent_x - display_square / 2;
const int max_display = cent_x + display_square / 2;
const float deg_to_rad = 2 * 3.14159265 / 360;
int rotation = 0;
while (running_) {
++rotation;
usleep(15 * 1000);
rotation %= 360;
for (int x = min_rotate; x < max_rotate; ++x) {
for (int y = min_rotate; y < max_rotate; ++y) {
float disp_x, disp_y;
Rotate(x - cent_x, y - cent_y,
deg_to_rad * rotation, &disp_x, &disp_y);
if (x >= min_display && x < max_display &&
y >= min_display && y < max_display) { // within display square
matrix_->SetPixel(disp_x + cent_x, disp_y + cent_y,
scale_col(x, min_display, max_display),
255 - scale_col(y, min_display, max_display),
scale_col(y, min_display, max_display));
} else {
// black frame.
matrix_->SetPixel(disp_x + cent_x, disp_y + cent_y, 0, 0, 0);
}
}
}
}
}
private:
void Rotate(int x, int y, float angle,
float *new_x, float *new_y) {
*new_x = x * cosf(angle) - y * sinf(angle);
*new_y = x * sinf(angle) + y * cosf(angle);
}
};
class ImageScroller : public RGBMatrixManipulator {
public:
ImageScroller(RGBMatrix *m)
: RGBMatrixManipulator(m), image_(NULL), horizontal_position_(0) {
}
// _very_ simplified. Can only read binary P6 PPM. Expects newlines in headers
// Not really robust. Use at your own risk :)
bool LoadPPM(const char *filename) {
if (image_) {
delete [] image_;
image_ = NULL;
}
FILE *f = fopen(filename, "r");
if (f == NULL) return false;
char header_buf[256];
const char *line = ReadLine(f, header_buf, sizeof(header_buf));
#define EXIT_WITH_MSG(m) { fprintf(stderr, "%s: %s |%s", filename, m, line); \
fclose(f); return false; }
if (sscanf(line, "P6 ") == EOF)
EXIT_WITH_MSG("Can only handle P6 as PPM type.");
line = ReadLine(f, header_buf, sizeof(header_buf));
if (!line || sscanf(line, "%d %d ", &width_, &height_) != 2)
EXIT_WITH_MSG("Width/height expected");
int value;
line = ReadLine(f, header_buf, sizeof(header_buf));
if (!line || sscanf(line, "%d ", &value) != 1 || value != 255)
EXIT_WITH_MSG("Only 255 for maxval allowed.");
const size_t pixel_count = width_ * height_;
image_ = new Pixel [ pixel_count ];
assert(sizeof(Pixel) == 3); // we make that assumption.
if (fread(image_, sizeof(Pixel), pixel_count, f) != pixel_count) {
line = "";
EXIT_WITH_MSG("Not enough pixels read.");
}
#undef EXIT_WITH_MSG
fclose(f);
fprintf(stderr, "Read image with %dx%d\n", width_, height_);
horizontal_position_ = 0;
return true;
}
void Run() {
const int screen_height = matrix_->height();
const int screen_width = matrix_->width();
while (running_) {
if (image_ == NULL) {
usleep(100 * 1000);
continue;
}
usleep(30 * 1000);
for (int x = 0; x < screen_width; ++x) {
for (int y = 0; y < screen_height; ++y) {
const Pixel &p = getPixel((horizontal_position_ + x) % width_, y);
// Display upside down on my desk. Lets flip :)
int disp_x = screen_width - x;
int disp_y = screen_height - y;
matrix_->SetPixel(disp_x, disp_y, p.red, p.green, p.blue);
}
}
++horizontal_position_;
}
}
private:
struct Pixel {
uint8_t red;
uint8_t green;
uint8_t blue;
};
// Read line, skip comments.
char *ReadLine(FILE *f, char *buffer, size_t len) {
char *result;
do {
result = fgets(buffer, len, f);
} while (result != NULL && result[0] == '#');
return result;
}
const Pixel &getPixel(int x, int y) {
static Pixel dummy;
if (x < 0 || x > width_ || y < 0 || y > height_) return dummy;
return image_[x + width_ * y];
}
int width_;
int height_;
Pixel *image_;
uint32_t horizontal_position_;
};
int main(int argc, char *argv[]) {
int demo = 0;
if (argc > 1) {
demo = atoi(argv[1]);
}
fprintf(stderr, "Using demo %d\n", demo);
GPIO io;
if (!io.Init())
return 1;
RGBMatrix m(&io);
RGBMatrixManipulator *image_gen = NULL;
switch (demo) {
case 0:
image_gen = new RotatingBlockGenerator(&m);
break;
case 1:
if (argc > 2) {
ImageScroller *scroller = new ImageScroller(&m);
if (!scroller->LoadPPM(argv[2]))
return 1;
image_gen = scroller;
} else {
fprintf(stderr, "Demo %d Requires PPM image as parameter", demo);
return 1;
}
break;
case 2:
image_gen = new SimpleSquare(&m);
break;
default:
image_gen = new ColorPulseGenerator(&m);
break;
}
if (image_gen == NULL)
return 1;
RGBMatrixManipulator *updater = new DisplayUpdater(&m);
updater->Start(10); // high priority
image_gen->Start();
// Things are set up. Just wait for <RETURN> to be pressed.
printf("Press <RETURN> to exit and reset LEDs\n");
getchar();
// Stopping threads and wait for them to join.
delete image_gen;
delete updater;
// Final thing before exit: clear screen and update once, so that
// we don't have random pixels burn
m.ClearScreen();
m.UpdateScreen();
return 0;
}