-
Notifications
You must be signed in to change notification settings - Fork 2
/
utils.py
86 lines (66 loc) · 2.75 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import numpy as np
import torch
from scipy import signal
from PIL import Image
def matlab_style_gauss2D(shape=(3, 3), sigma=0.5):
"""
2D gaussian mask - should give the same result as MATLAB's fspecial('gaussian',[shape],[sigma])
Acknowledgement : https://stackoverflow.com/questions/17190649/how-to-obtain-a-gaussian-filter-in-python (Author@ali_m)
"""
m, n = [(ss - 1.) / 2. for ss in shape]
y, x = np.ogrid[-m:m + 1, -n:n + 1]
h = np.exp(-(x * x + y * y) / (2. * sigma * sigma))
h[h < np.finfo(h.dtype).eps * h.max()] = 0
sumh = h.sum()
if sumh != 0:
h /= sumh
return h
def calc_ssim(X, Y, sigma=1.5, K1=0.01, K2=0.03, R=255):
'''
X : y channel (i.e., luminance) of transformed YCbCr space of X
Y : y channel (i.e., luminance) of transformed YCbCr space of Y
Please follow the setting of psnr_ssim.m in EDSR (Enhanced Deep Residual Networks for Single Image Super-Resolution CVPRW2017).
Official Link : https://github.com/LimBee/NTIRE2017/tree/db34606c2844e89317aac8728a2de562ef1f8aba
The authors of EDSR use MATLAB's ssim as the evaluation tool,
thus this function is the same as ssim.m in MATLAB with C(3) == C(2)/2.
'''
gaussian_filter = matlab_style_gauss2D((11, 11), sigma)
X = X.astype(np.float64)
Y = Y.astype(np.float64)
window = gaussian_filter
ux = signal.convolve2d(X, window, mode='same', boundary='symm')
uy = signal.convolve2d(Y, window, mode='same', boundary='symm')
uxx = signal.convolve2d(X * X, window, mode='same', boundary='symm')
uyy = signal.convolve2d(Y * Y, window, mode='same', boundary='symm')
uxy = signal.convolve2d(X * Y, window, mode='same', boundary='symm')
vx = uxx - ux * ux
vy = uyy - uy * uy
vxy = uxy - ux * uy
C1 = (K1 * R) ** 2
C2 = (K2 * R) ** 2
A1, A2, B1, B2 = ((2 * ux * uy + C1, 2 * vxy + C2, ux ** 2 + uy ** 2 + C1, vx + vy + C2))
D = B1 * B2
S = (A1 * A2) / D
mssim = S.mean()
return mssim
def cal_psnr(img_1, img_2, benchmark=False):
assert img_1.shape[0] == img_2.shape[0] and img_1.shape[1] == img_2.shape[1]
img_1 = np.float64(img_1)
img_2 = np.float64(img_2)
diff = (img_1 - img_2) / 255.0
if benchmark:
gray_coeff = np.array([65.738, 129.057, 25.064]).reshape(1, 1, 3) / 255.0
diff = diff * gray_coeff
diff = diff[:, :, 0] + diff[:, :, 1] + diff[:, :, 2]
mse = np.mean(diff ** 2)
psnr = -10.0 * np.log10(mse)
return psnr
def load_img(img_file):
img = Image.open(img_file).convert('RGB')
img = np.array(img)
h, w, _ = img.shape
img = img[:h // 8 * 8, :w // 8 * 8, :]
img = np.array(img) / 255.
img = img.transpose((2, 0, 1))
img = torch.from_numpy(img).float().unsqueeze(0).cuda()
return img