forked from rheit/zdbsp
-
Notifications
You must be signed in to change notification settings - Fork 2
/
nodebuild_classify_sse2_vect.cpp
187 lines (161 loc) · 4.43 KB
/
nodebuild_classify_sse2_vect.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
/*
Determine what side of a splitter a seg lies on. (SSE2 version)
Copyright (C) 2002-2006 Randy Heit
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifndef DISABLE_SSE
#include "zdbsp.h"
#include "nodebuild.h"
#include <emmintrin.h>
#define FAR_ENOUGH 17179869184.f // 4<<32
// You may notice that this function is identical to ClassifyLine2.
// The reason it is SSE2 is because this file is explicitly compiled
// with SSE2 math enabled, but the other files are not.
extern "C" int ClassifyLineSSE2 (node_t &node, const FSimpleVert *v1, const FSimpleVert *v2, int sidev[2])
{
__m128d xy, dxy, xyv1, xyv2;
// Why does this intrinsic go through an MMX register, when it can just go through memory?
// That would let it work with x64, too. (This only applies to VC++. GCC
// is smarter and can load directly from memory without touching the MMX registers.)
xy = _mm_cvtpi32_pd(*(__m64*)&node.x); // d_y1 d_x1
dxy = _mm_cvtpi32_pd(*(__m64*)&node.dx); // d_dy d_dx
xyv1 = _mm_cvtpi32_pd(*(__m64*)&v1->x); // d_yv1 d_xv1
xyv2 = _mm_cvtpi32_pd(*(__m64*)&v2->x); // d_yv2 d_xv2
__m128d num1, num2, dyx;
dyx = _mm_shuffle_pd(dxy, dxy, _MM_SHUFFLE2(0,1));
num1 = _mm_mul_pd(_mm_sub_pd(xy, xyv1), dyx);
num2 = _mm_mul_pd(_mm_sub_pd(xy, xyv2), dyx);
__m128d pnuma, pnumb, num;
pnuma = _mm_shuffle_pd(num1, num2, _MM_SHUFFLE2(1,1));
pnumb = _mm_shuffle_pd(num1, num2, _MM_SHUFFLE2(0,0));
num = _mm_sub_pd(pnuma, pnumb);
// s_num1 is at num[0]; s_num2 is at num[1]
__m128d neg_enough, pos_enough;
__m128d neg_check, pos_check;
neg_enough = _mm_set1_pd(-FAR_ENOUGH);
pos_enough = _mm_set1_pd( FAR_ENOUGH);
// Why do the comparison instructions return __m128d and not __m128i?
neg_check = _mm_cmple_pd(num, neg_enough);
pos_check = _mm_cmpge_pd(num, pos_enough);
union
{
struct
{
double n[2], p[2];
};
struct
{
int ni[4], pi[4];
};
} _;
_mm_storeu_pd(_.n, neg_check);
_mm_storeu_pd(_.p, pos_check);
int nears = 0;
if (_.ni[0])
{
if (_.ni[2])
{
sidev[0] = sidev[1] = 1;
return 1;
}
if (_.pi[2])
{
sidev[0] = 1;
sidev[1] = -1;
return -1;
}
nears = 1;
}
else if (_.pi[0])
{
if (_.pi[2])
{
sidev[0] = sidev[1] = -1;
return 0;
}
if (_.ni[2])
{
sidev[0] = -1;
sidev[1] = 1;
return -1;
}
nears = 1;
}
else
{
nears = 2 | (((_.ni[2] | _.pi[2]) & 1) ^ 1);
}
__m128d zero = _mm_setzero_pd();
__m128d posi = _mm_cmpgt_pd(num, zero);
_mm_storeu_pd(_.p, posi);
int sv1 = _.pi[0] ? _.pi[0] : 1;
int sv2 = _.pi[2] ? _.pi[2] : 1;
if (nears)
{
__m128d sqnum = _mm_mul_pd(num, num);
__m128d sqdyx = _mm_mul_pd(dyx, dyx);
__m128d sqdxy = _mm_mul_pd(dxy, dxy);
__m128d l = _mm_add_pd(sqdyx, sqdxy);
__m128d dist = _mm_div_pd(sqnum, l);
__m128d epsilon = _mm_set1_pd(SIDE_EPSILON);
__m128d close = _mm_cmplt_pd(dist, epsilon);
_mm_storeu_pd(_.n, close);
if (nears & _.ni[0] & 2)
{
sv1 = 0;
}
if (nears & _.ni[2] & 1)
{
sv2 = 0;
}
}
sidev[0] = sv1;
sidev[1] = sv2;
if ((sv1 | sv2) == 0)
{ // seg is coplanar with the splitter, so use its orientation to determine
// which child it ends up in. If it faces the same direction as the splitter,
// it goes in front. Otherwise, it goes in back.
if (node.dx != 0)
{
if ((node.dx > 0 && v2->x > v1->x) || (node.dx < 0 && v2->x < v1->x))
{
return 0;
}
else
{
return 1;
}
}
else
{
if ((node.dy > 0 && v2->y > v1->y) || (node.dy < 0 && v2->y < v1->y))
{
return 0;
}
else
{
return 1;
}
}
}
else if (sv1 <= 0 && sv2 <= 0)
{
return 0;
}
else if (sv1 >= 0 && sv2 >= 0)
{
return 1;
}
return -1;
}
#endif