forked from jhamman/DHSVM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRootBrent.c
executable file
·215 lines (185 loc) · 5.55 KB
/
RootBrent.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
/*
* SUMMARY: RootBrent.c - Determine surface temperature iteratively
* USAGE: Part of DHSVM
*
* AUTHOR: Bart Nijssen
* ORG: University of Washington, Department of Civil Engineering
* E-MAIL: [email protected]
* ORIG-DATE: Apr-96
* DESCRIPTION: Determine surface temperature iteratively using the Brent
* method.
* DESCRIP-END.
* FUNCTIONS: RootBrent()
* COMMENTS:
* $Id: RootBrent.c,v 1.4 2003/07/01 21:26:23 olivier Exp $
*/
#include <math.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "settings.h"
#include "brent.h"
#include "massenergy.h"
#include "functions.h"
#include "DHSVMerror.h"
/*****************************************************************************
GENERAL DOCUMENTATION FOR THIS MODULE
-------------------------------------
Source: Brent, R. P., 1973, Algorithms for minimization without derivatives,
Prentice Hall, Inc., Englewood Cliffs, New Jersey
Chapter 4
This source includes an implementation of the algorithm in ALGOL-60, which
was translated into C for this application.
The method is also discussed in:
Press, W. H., S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, 1992,
Numerical Recipes in FORTRAN, The art of scientific computing,
Second edition, Cambridge University Press
(Be aware that this book discusses a Brent method for minimization (brent),
and one for root finding (zbrent). The latter one is similar to the one
implemented here and is also copied from Brent [1973].)
The function returns the surface temperature, TSurf, for which the sum
of the energy balance terms is zero, with TSurf in the interval
[MinTSurf, MaxTSurf]. The surface temperature is calculated to within
a tolerance (6 * MACHEPS * |TSurf| + 2 * T), where MACHEPS is the relative
machine precision and T is a positive tolerance, as specified in brent.h.
The function assures that f(MinTSurf) and f(MaxTSurf) have opposite signs.
If this is not the case the program will abort. In addition the program
will perform not more than a certain number of iterations, as specified
in brent.h, and will abort if more iterations are needed.
******************************************************************************/
/*****************************************************************************
Function name: RootBrent()
Purpose : Calculate the surface temperature in the absence of snow
Required :
int y - Row number of current pixel
int x - Column number of current pixel
float LowerBound - Lower bound for root
float UpperBound - Upper bound for root
float (*Function)(float Estimate, va_list ap)
... - Variable arguments
The number and order of arguments has to be
appropriate for the Function pointed to, since
the list of arguments after Nargs will be passed
on to Function.
See the appropriate Function for the correct
arguments.
Returns :
float b - Effective surface temperature (C)
Modifies : none
Comments :
*****************************************************************************/
float RootBrent(int y, int x, float LowerBound, float UpperBound,
float (*Function) (float Estimate, va_list ap), ...)
{
const char *Routine = "RootBrent";
char ErrorString[MAXSTRING + 1];
va_list ap; /* Used in traversing variable argument list
*/
float a;
float b;
float c;
float d;
float e;
float fa;
float fb;
float fc;
float m;
float p;
float q;
float r;
float s;
float tol;
int i;
int j;
int eval = 0;
sprintf(ErrorString, "%s: y = %d, x = %d", Routine, y, x);
/* initialize variable argument list */
a = LowerBound;
b = UpperBound;;
va_start(ap, Function);
fa = Function(a, ap);
eval++;
va_start(ap, Function);
fb = Function(b, ap);
eval++;
/* if root not bracketed attempt to bracket the root */
j = 0;
while ((fa * fb) >= 0 && j < MAXTRIES) {
a -= TSTEP;
b += TSTEP;
va_start(ap, Function);
fa = Function(a, ap);
eval++;
va_start(ap, Function);
fb = Function(b, ap);
eval++;
j++;
}
if ((fa * fb) >= 0) {
ReportError(ErrorString, 34);
}
fc = fb;
for (i = 0; i < MAXITER; i++) {
if (fb * fc > 0) {
c = a;
fc = fa;
d = b - a;
e = d;
}
if (fabs(fc) < fabs(fb)) {
a = b;
b = c;
c = a;
fa = fb;
fb = fc;
fc = fa;
}
tol = 2 * MACHEPS * fabs(b) + T;
m = 0.5 * (c - b);
if (fabs(m) <= tol || fequal(fb, 0.0)) {
va_end(ap);
return b;
}
else {
if (fabs(e) < tol || fabs(fa) <= fabs(fb)) {
d = m;
e = d;
}
else {
s = fb / fa;
if (fequal(a, c)) {
/* linear interpolation */
p = 2 * m * s;
q = 1 - s;
}
else {
/* inverse quadratic interpolation */
q = fa / fc;
r = fb / fc;
p = s * (2 * m * q * (q - r) - (b - a) * (r - 1));
q = (q - 1) * (r - 1) * (s - 1);
}
if (p > 0)
q = -q;
else
p = -p;
s = e;
e = d;
if ((2 * p) < (3 * m * q - fabs(tol * q)) && p < fabs(0.5 * s * q))
d = p / q;
else {
d = m;
e = d;
}
}
a = b;
fa = fb;
b += (fabs(d) > tol) ? d : ((m > 0) ? tol : -tol);
va_start(ap, Function);
fb = Function(b, ap);
eval++;
}
}
ReportError(ErrorString, 33);
}