diff --git a/LeanAPAP/Integer.lean b/LeanAPAP/Integer.lean new file mode 100644 index 0000000000..65123147ef --- /dev/null +++ b/LeanAPAP/Integer.lean @@ -0,0 +1,7 @@ +import Mathlib.Analysis.SpecialFunctions.Pow.Real +import Mathlib.Combinatorics.Additive.AP.Three.Defs + +open Finset Real + +theorem int {A : Finset ℕ} {N : ℕ} (hAN : A ⊆ range N) (hA : ThreeAPFree (α := ℕ) A) : + ∃ c > 0, A.card ≤ N / exp (- c * log N ^ (12⁻¹ : ℝ)) := sorry diff --git a/blueprint/src/chapter/integers.tex b/blueprint/src/chapter/integers.tex index cd534fff58..ce770bb664 100644 --- a/blueprint/src/chapter/integers.tex +++ b/blueprint/src/chapter/integers.tex @@ -122,12 +122,15 @@ \chapter{The integer case} To do. \end{proof} -\begin{theorem}\label{3aps-in-ints} -If $A\subseteq \{1,\ldots,N\}$ contains no non-trivial three-term arithmetic progressions then -\[\lvert A\rvert \leq \frac{N}{\exp(-c(\log N)^{1/12})}\] -for some constant $c>0$. +\begin{theorem}[Integer case] + \label{int} + \uses{} + \lean{int} + \leanok + If $A\subseteq \{1,\ldots,N\}$ contains no non-trivial three-term arithmetic progressions then + \[\lvert A\rvert \leq \frac{N}{\exp(-c(\log N)^{1/12})}\] \end{theorem} \begin{proof} \uses{main-int-count} -To do. + To do. \end{proof}