Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

I am very eager to your reply #2

Open
FranNetty opened this issue Jun 1, 2017 · 0 comments
Open

I am very eager to your reply #2

FranNetty opened this issue Jun 1, 2017 · 0 comments

Comments

@FranNetty
Copy link

from tensorflow.examples.tutorials.mnist import input_data

import tensorflow as tf

def weight_varible(shape):
initial =tf.truncated_normal(shape,stddev=0.1)
return tf.Variable(initial)

def bias_variable(shape):
initial=tf.constant(0.1,shape=shape)
return tf.Variable(initial)

def conv2d(x,W):
return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')

def max_pool_2x2(x):
return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

mnist=input_data.read_data_sets('MNIST_data',one_hot=True)
sess=tf.InteractiveSession()

################ input,for 2 models i use the same input ################3
x=tf.placeholder(tf.float32,[None,784])
x_image=tf.reshape(x,[-1,28,28,1])

######################### the first model ########################################
W_conv1=weight_varible([5,5,1,32])
b_conv1=weight_varible([32])

h_conv1=tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)
h_pool1=max_pool_2x2(h_conv1)

W_conv2=weight_varible([5,5,32,64])
b_conv2=weight_varible([64])

h_conv2=tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2)
h_pool2=max_pool_2x2(h_conv2)

W_fc1=weight_varible([7764,1024])
b_fc1=weight_varible([1024])

h_pool2_flat=tf.reshape(h_pool2,[-1,7764])
h_fc1=tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)

keep_prob=tf.placeholder(tf.float32)
h_fc1_drop=tf.nn.dropout(h_fc1,keep_prob)

W_fc2=weight_varible([1024,10])
b_fc2=weight_varible([10])

y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2)
y_=tf.placeholder(tf.float32,[None,10])

cross_entropy=tf.reduce_sum(y_*tf.log(y_conv))
train_step=tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction=tf.equal(tf.argmax(y_conv,1),tf.argmax(y_,1))
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
sess.run(tf.initialize_all_variables())

################## the second parallel model,i use the same input as the first ###############################

W2_conv1=weight_varible([5,5,1,32])
b2_conv1=weight_varible([32])

x=tf.placeholder(tf.float32,[None,784])

x_image=tf.reshape(x,[-1,28,28,1])

h2_conv1=tf.nn.relu(conv2d(x_image,W2_conv1)+b2_conv1)
h2_pool1=max_pool_2x2(h2_conv1)

W2_conv2=weight_varible([5,5,32,64])
b2_conv2=weight_varible([64])

h2_conv2=tf.nn.relu(conv2d(h2_pool1,W2_conv2)+b2_conv2)
h2_pool2=max_pool_2x2(h2_conv2)

W2_fc1=weight_varible([7764,1024])
b2_fc1=weight_varible([1024])

h2_pool2_flat=tf.reshape(h2_pool2,[-1,7764])
h2_fc1=tf.nn.relu(tf.matmul(h2_pool2_flat,W2_fc1)+b2_fc1)

keep_prob=tf.placeholder(tf.float32)
h2_fc1_drop=tf.nn.dropout(h2_fc1,keep_prob)

W2_fc2=weight_varible([1024,10])
b2_fc2=weight_varible([10])

y2_=tf.placeholder(tf.float32,[None,10])
y2_conv=tf.nn.softmax(tf.matmul(h2_fc1_drop,W2_fc2)+b2_fc2)

cross_entropy=tf.reduce_sum(y2_*tf.log(y2_conv))
train_step=tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction=tf.equal(tf.argmax(y2_conv,1),tf.argmax(y2_,1))
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
sess.run(tf.initialize_all_variables())

##########################################################

for i in range(20000):
batch=mnist.train.next_batch(50)
if i%100==0:
train_accuracy=accuracy.eval(feed_dict={x:batch[0],y_:batch[1],keep_prob:1})
print('step %d,train accuracy %g'%(i,train_accuracy))
train_step.run([y_conv,y2_conv],feed_dict={x:batch[0],y_:batch[1],keep_prob:0.5})
print('test accuracy %g'%accuracy.eval(feed_dict={x:mnist.test.images,y_:mnist.test.labels,keep_prob:1.0}))

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant