-
Notifications
You must be signed in to change notification settings - Fork 9
/
translate.py
executable file
·157 lines (126 loc) · 5 KB
/
translate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#!/usr/bin/env python
from __future__ import division, unicode_literals
import os
import argparse
import math
import codecs
import torch
from itertools import count
import onmt.io
import onmt.translate
import onmt
import onmt.ModelConstructor
import onmt.modules
import opts
import sys
sys.path.append("./lm/")
import model
parser = argparse.ArgumentParser(
description='translate.py',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
opts.add_md_help_argument(parser)
opts.translate_opts(parser)
opt = parser.parse_args()
def _report_score(name, score_total, words_total):
print("%s AVG SCORE: %.4f, %s PPL: %.4f" % (
name, score_total / words_total,
name, math.exp(-score_total / words_total)))
def _report_bleu():
import subprocess
print()
res = subprocess.check_output(
"perl tools/multi-bleu.perl %s < %s" % (opt.tgt, opt.output),
shell=True).decode("utf-8")
print(">> " + res.strip())
def _report_rouge():
import subprocess
res = subprocess.check_output(
"python tools/test_rouge.py -r %s -c %s" % (opt.tgt, opt.output),
shell=True).decode("utf-8")
print(res.strip())
def main():
dummy_parser = argparse.ArgumentParser(description='train.py')
opts.model_opts(dummy_parser)
dummy_opt = dummy_parser.parse_known_args([])[0]
opt.cuda = opt.gpu > -1
if opt.cuda:
torch.cuda.set_device(opt.gpu)
# Load the model.
fields, model, model_opt = \
onmt.ModelConstructor.load_test_model(opt, dummy_opt.__dict__)
# Load lm_model
lm_model = None
if opt.mmi and opt.mmi_model != "":
with open(opt.mmi_model, 'rb') as f:
lm_model = torch.load(f)
# File to write sentences to.
out_file = codecs.open(opt.output, 'w', 'utf-8')
# Test data
data = onmt.io.build_dataset(fields, opt.data_type,
opt.src, opt.tgt,
src_dir=opt.src_dir,
sample_rate=opt.sample_rate,
window_size=opt.window_size,
window_stride=opt.window_stride,
window=opt.window,
use_filter_pred=False)
# Sort batch by decreasing lengths of sentence required by pytorch.
# sort=False means "Use dataset's sortkey instead of iterator's".
data_iter = onmt.io.OrderedIterator(
dataset=data, device=opt.gpu,
batch_size=opt.batch_size, train=False, sort=False,
sort_within_batch=True, shuffle=False)
# Translator
scorer = onmt.translate.GNMTGlobalScorer(opt.alpha, opt.beta)
translator = onmt.translate.Translator(model, lm_model, fields,
beam_size=opt.beam_size,
n_best=opt.n_best,
global_scorer=scorer,
max_length=opt.max_length,
copy_attn=model_opt.copy_attn,
cuda=opt.cuda,
beam_trace=opt.dump_beam != "",
mmi=opt.mmi,
mmi_g=opt.mmi_g,
mmi_lambda=opt.mmi_lambda,
mmi_gamma=opt.mmi_gamma,
min_length=opt.min_length)
builder = onmt.translate.TranslationBuilder(
data, translator.fields,
opt.n_best, opt.replace_unk, opt.tgt)
# Statistics
counter = count(1)
pred_score_total, pred_words_total = 0, 0
gold_score_total, gold_words_total = 0, 0
for batch in data_iter:
batch_data = translator.translate_batch(batch, data)
translations = builder.from_batch(batch_data)
for trans in translations:
pred_score_total += trans.pred_scores[0]
pred_words_total += len(trans.pred_sents[0])
if opt.tgt:
gold_score_total += trans.gold_score
gold_words_total += len(trans.gold_sent)
# nBest list
n_best_preds = [" ".join(pred)
for pred in trans.pred_sents[:opt.n_best]]
out_file.write('\n'.join(n_best_preds))
out_file.write('\n')
out_file.flush()
if opt.verbose:
sent_number = next(counter)
output = trans.log(sent_number)
os.write(1, output.encode('utf-8'))
_report_score('PRED', pred_score_total, pred_words_total)
if opt.tgt:
_report_score('GOLD', gold_score_total, gold_words_total)
if opt.report_bleu:
_report_bleu()
if opt.report_rouge:
_report_rouge()
if opt.dump_beam:
import json
json.dump(translator.beam_accum,
codecs.open(opt.dump_beam, 'w', 'utf-8'))
if __name__ == "__main__":
main()