We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
在加载模型进行quantizer = torch_quantizer('calib', model, (input_args))时,
KeyError Traceback (最近调用最后) /tmp/ipykernel_222/3548169973.py in 3 test_data=test_data.unsqueeze(1) 4 input_args = test_data[0:100] # 确保它是一个 torch.张量 ----> 5 量化器 = torch_quantizer('calib', model, (input_args)) 6 torch.save(quant_model, 'vit1.10_model.pth')
/opt/vitis_ai/conda/envs/vitis-ai-pytorch/lib/python3.7/site-packages/pytorch_nndct/apis.py in init(self, quant_mode, module, input_args, state_dict_file, output_dir, bitwidth, mix_bit, device, lstm, app_deploy, qat_proc, custom_quant_ops, quant_config_file) 96 lstm_app = lstm_app, 97 custom_quant_ops = custom_quant_ops, ---> 98 quant_config_file = quant_config_file) 99 # 微调参数, 100 # 微调后,运行原始转发码进行校准
/opt/vitis_ai/conda/envs/vitis-ai-pytorch/lib/python3.7/site-packages/pytorch_nndct/qproc/base.py in init(self, quant_mode, module, input_args, state_dict_file, output_dir, bitwidth_w, bitwidth_a, mix_bit, device, lstm_app, custom_quant_ops, quant_config_file) 149 state_dict_file=state_dict_file, 150 quant_mode=qmode, --> 151 device=device) 152 153 # 启用每层的记录输出
/opt/vitis_ai/conda/envs/vitis-ai-pytorch/lib/python3.7/site-packages/pytorch_nndct/qproc/utils.py in prepare_quantizable_module (module, input_args, export_folder, state_dict_file, quant_mode, device) 191 # 解析原始模块到图 192 NndctScreenLogger().info(f“=>Parsing {_get_module_name(module)}...”) --> 193 graph = parse_module(module, input_args) 194 NndctScreenLogger().info(f“=>可量化模块生成。{export_file})”) 195 # 从 Graph 重新创建可量化模块
/opt/vitis_ai/conda/envs/vitis-ai-pytorch/lib/python3.7/site-packages/pytorch_nndct/qproc/utils.py in parse_module(module, input_args, enable_opt, graph_name) 81 parser = TorchParser() 82 graph = parser(_get_module_name(module) if graph_name is None else graph_name, ---> 83 module, input_args) 84 if enable_opt: 85 graph = quant_optimize(graph)
/opt/vitis_ai/conda/envs/vitis-ai-pytorch/lib/python3.7/site-packages/pytorch_nndct/parse/parser.py in call(self, graph_name, module, input_args) 75 unknown_op_type_check(nndct_graph) 76 self._convert_blob_tensor_type(nndct_graph) ---> 77 self._load_data(nndct_graph, module) 78 if NndctOption.nndct_parse_debug.value >= 2: 79 NndctDebugLogger.write(f“nndct 原始图:\n{nndct_graph}”)
/opt/vitis_ai/conda/envs/vitis-ai-pytorch/lib/python3.7/site-packages/pytorch_nndct/parse/parser.py in _load_data(graph, module) 344 else: 345 for param_name, tensor in node.op.params.items(): --> 346 data = module.state_dict()[get_short_name(tensor.name)].cpu().numpy() 347 tensor.from_ndarray(data) 348 tensor = tensor_util.convert_parameter_tensor_format(
KeyError: '1504' 出现这个错误,但是前提是vit模型,并且已经确保了模型的参数和结构一致,那么出现这种情况的原因是什么呢?有没有好心人解决一下,呜呜呜
The text was updated successfully, but these errors were encountered:
No branches or pull requests
在加载模型进行quantizer = torch_quantizer('calib', model, (input_args))时,
KeyError Traceback (最近调用最后)
/tmp/ipykernel_222/3548169973.py in
3 test_data=test_data.unsqueeze(1)
4 input_args = test_data[0:100] # 确保它是一个 torch.张量
----> 5 量化器 = torch_quantizer('calib', model, (input_args))
6 torch.save(quant_model, 'vit1.10_model.pth')
/opt/vitis_ai/conda/envs/vitis-ai-pytorch/lib/python3.7/site-packages/pytorch_nndct/apis.py in init(self, quant_mode, module, input_args, state_dict_file, output_dir, bitwidth, mix_bit, device, lstm, app_deploy, qat_proc, custom_quant_ops, quant_config_file)
96 lstm_app = lstm_app,
97 custom_quant_ops = custom_quant_ops,
---> 98 quant_config_file = quant_config_file)
99 # 微调参数,
100 # 微调后,运行原始转发码进行校准
/opt/vitis_ai/conda/envs/vitis-ai-pytorch/lib/python3.7/site-packages/pytorch_nndct/qproc/base.py in init(self, quant_mode, module, input_args, state_dict_file, output_dir, bitwidth_w, bitwidth_a, mix_bit, device, lstm_app, custom_quant_ops, quant_config_file)
149 state_dict_file=state_dict_file,
150 quant_mode=qmode,
--> 151 device=device)
152
153 # 启用每层的记录输出
/opt/vitis_ai/conda/envs/vitis-ai-pytorch/lib/python3.7/site-packages/pytorch_nndct/qproc/utils.py in prepare_quantizable_module (module, input_args, export_folder, state_dict_file, quant_mode, device)
191 # 解析原始模块到图
192 NndctScreenLogger().info(f“=>Parsing {_get_module_name(module)}...”)
--> 193 graph = parse_module(module, input_args)
194 NndctScreenLogger().info(f“=>可量化模块生成。{export_file})”)
195 # 从 Graph 重新创建可量化模块
/opt/vitis_ai/conda/envs/vitis-ai-pytorch/lib/python3.7/site-packages/pytorch_nndct/qproc/utils.py in parse_module(module, input_args, enable_opt, graph_name)
81 parser = TorchParser()
82 graph = parser(_get_module_name(module) if graph_name is None else graph_name,
---> 83 module, input_args)
84 if enable_opt:
85 graph = quant_optimize(graph)
/opt/vitis_ai/conda/envs/vitis-ai-pytorch/lib/python3.7/site-packages/pytorch_nndct/parse/parser.py in call(self, graph_name, module, input_args)
75 unknown_op_type_check(nndct_graph)
76 self._convert_blob_tensor_type(nndct_graph)
---> 77 self._load_data(nndct_graph, module)
78 if NndctOption.nndct_parse_debug.value >= 2:
79 NndctDebugLogger.write(f“nndct 原始图:\n{nndct_graph}”)
/opt/vitis_ai/conda/envs/vitis-ai-pytorch/lib/python3.7/site-packages/pytorch_nndct/parse/parser.py in _load_data(graph, module)
344 else:
345 for param_name, tensor in node.op.params.items():
--> 346 data = module.state_dict()[get_short_name(tensor.name)].cpu().numpy()
347 tensor.from_ndarray(data)
348 tensor = tensor_util.convert_parameter_tensor_format(
KeyError: '1504'
出现这个错误,但是前提是vit模型,并且已经确保了模型的参数和结构一致,那么出现这种情况的原因是什么呢?有没有好心人解决一下,呜呜呜
The text was updated successfully, but these errors were encountered: