forked from dmricciuto/OLMT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
plotcase.py
executable file
·784 lines (731 loc) · 36.2 KB
/
plotcase.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
#!/usr/bin/python
import os, sys, csv, glob
import numpy, scipy, math
from netCDF4 import Dataset
from optparse import OptionParser
import matplotlib as mpl
def getvar(fname, varname, npf, index, scale_factor):
nffile = Dataset(fname,"r")
var = nffile.variables[varname]
if (index < 0): #average over all sites/PFTs (not weighted)
varvals = numpy.nanmean(var[0:npf,:], axis=1) * scale_factor
else:
varvals = var[0:npf,index] * scale_factor
nffile.close()
return varvals
parser = OptionParser()
parser.add_option("--csmdir", dest="mycsmdir", default='', \
help = 'Base CESM directory (default = ..)')
parser.add_option("--runnames",dest="runnames",default='', \
help = "full case names (overrides prefix, site and compsets)")
parser.add_option("--cases", dest="mycase", default='', \
help = "name of case id prefixs to plot (comma delmited)")
parser.add_option("--compset", dest="compset", default="I20TRCLM45CN", \
help = "Compset to plot")
parser.add_option("--titles", dest="titles", default='', \
help = "titles of case to plot (for legend)")
parser.add_option("--sites", dest="site", default="none", \
help = 'site (to plot observations)')
parser.add_option("--obs", action="store_true", default=False, \
help = "plot observations", dest="myobs")
parser.add_option("--varfile", dest="myvarfile", default='varfile', \
help = 'file containing list of variables to plot')
parser.add_option("--vars", dest="myvar", default='', \
help="variable to plot (overrides varfile, " \
+"sends plot to screen")
parser.add_option("--model_name", dest="model_name", default='elm', \
help = 'model name in model output nc files')
# output timing
parser.add_option("--timezone", dest="timezone", default=0, \
help = 'time zone (relative to UTC')
parser.add_option("--avpd", dest="myavpd", default=1, \
help = 'averaging period in # of output timesteps' \
+' (default = 1)')
parser.add_option("--hist_mfilt", dest="myhist_mfilt", default=-999, \
help = 'beginning model year to plot')
parser.add_option("--hist_nhtfrq", dest="myhist_nhtfrq", default=-999, \
help = 'beginning model year to plot')
parser.add_option("--ystart", dest="myystart", default=1, \
help = 'beginning model year to plot')
parser.add_option("--yend", dest="myyend", default=9999, \
help = 'final model year to plot')
parser.add_option("--ystart_obs", dest="ystart_obs", default=0, \
help = 'beginning model year to plot')
parser.add_option("--yend_obs", dest="yend_obs", default=0, \
help = 'final model year to plot')
parser.add_option("--diurnal", dest="mydiurnal", default=False, \
action="store_true", help = 'plot diurnal cycle')
parser.add_option("--dstart", dest="dstart", default=1, \
help = 'beginning model DOY to plot (for diruanl average)')
parser.add_option("--dend", dest="dend", default=365, \
help = 'final model DOY to plot (for diurnal average)')
parser.add_option("--seasonal", dest="myseasonal", default=False, \
action="store_true", help = 'plot seasonal cycle')
parser.add_option("--h1", dest="h1", default=False, \
action="store_true", help = 'Use h1 history files')
parser.add_option("--h2", dest="h2", default=False, \
action="store_true", help = 'Use h2 history files')
parser.add_option("--h3", dest="h3", default=False, \
action="store_true", help = 'Use h3 history files')
parser.add_option("--h4", dest="h4", default=False, \
action="store_true", help = 'Use h4 history files')
parser.add_option("--index", dest="index", help = 'index (site or pft)', \
default=0)
# plot configuration
parser.add_option("--spinup", dest="spinup", help = 'plot Ad and final spinup', \
default=False, action="store_true")
parser.add_option("--ad_Pinit", dest="ad_Pinit", default=False, action="store_true",\
help="AD spinup initialized with P pools (CN) but other cases use CNP mode")
parser.add_option("--scale_factor", dest="scale_factor", help = 'scale factor', \
default=-999)
parser.add_option("--ylog", dest="ylog", help="log scale for Y axis", \
action="store_true", default=False)
parser.add_option("--pdf", dest="pdf", help="save plot to pdf", \
action="store_true", default=False)
parser.add_option("--png", dest="png", help="save plot to png", \
action="store_true", default=False)
parser.add_option("--noplot", dest="noplot", help="Do not make plots", \
action="store_true", default=False)
parser.add_option("--nperpage", dest="nperpage", default=1, \
help = 'number of plots per page')
parser.add_option("--outputdir", dest="outputdir", default='', \
help = 'location for plots directory')
(options,args) = parser.parse_args()
cesmdir=os.path.abspath(options.mycsmdir)
if (options.pdf or options.png):
mpl.use('Agg')
import matplotlib.pyplot as plt
if (options.runnames != ''):
#User provides full case names
myrunnames = options.runnames.split(',')
mycases=[]
mysites=[]
mycompsets=[]
for i in myrunnames:
mycases.append(i.split('_')[0])
mysites.append('_'.join(i.split('_')[1:len(i.split('_'))-1]))
mycompsets.append(i.split('_')[-1])
else:
#User provides case prefix(es), site(s) and compset(s)
#Set up a factorial across these
mycases = options.mycase.split(',')
mysites = options.site.split(',')
mycompsets = options.compset.split(',')
mysites1 = numpy.char.add(mysites,'_')
mysites2 = mysites1
if (len(mycompsets) > 1):
for c in range(1,len(mycompsets)):
mysites2 = numpy.concatenate((mysites2,mysites1))
mycompsets1 = numpy.repeat(mycompsets, len(mysites) )
runnames = numpy.char.add(mysites2,mycompsets1)
mysites1 = mysites2
if (len(mycases) == 0):
if (mycases[0] != ''):
mycases1 = numpy.char.add(mycases,'_')
mycases2 = mycases1
for c in range(1,len(runnames)):
mycases2 = numpy.concatenate((mycases2,mycases1))
runnames = numpy.concatenate((mycases2,runnames))
mycases1 = mycases2
else:
mycases1 = mycases
for c in range(1,len(runnames)):
mycases1 = numpy.concatenate((mycases1,mycases))
else:
runnames1 = runnames
mysites3 = mysites2
mycompsets2 = mycompsets1
for c in range(1,len(mycases)):
runnames1 = numpy.concatenate((runnames1,runnames))
mysites3 = numpy.concatenate((mysites3,mysites2))
mycompsets2 = numpy.concatenate((mycompsets2,mycompsets1))
mysites1 = mysites3
mycompsets1 = mycompsets2
mycases1 = mycases.copy()
for c in range(0,len(mycases1)):
if (mycases1[c] != ''):
mycases1[c] = mycases1[c]+'_'
mycases1 = numpy.repeat(mycases1, len(runnames) )
runnames = numpy.char.add(mycases1,runnames1)
ncases = len(runnames)
if (options.titles != ''):
mytitles = options.titles.split(',')
else:
mytitles = runnames
print('')
print('')
print('Simulations that will be plotted:')
print(runnames)
print('')
obs = options.myobs
myobsdir = '/home/ac.ricciuto/fluxnet'
#get list of variables from varfile
myvars=[]
if (options.myvar == ''):
if os.path.isfile('./'+options.myvarfile):
input = open('./'+options.myvarfile)
for s in input:
myvars.append(s.strip())
else:
print('Error: invalid varfile')
sys.exit()
terminal = 'postscript'
else:
terminal=''
myvars = options.myvar.split(',')
avpd = int(options.myavpd) # desired averaging period in output timestep
ystart = int(options.myystart) # beginning year to plot/average
yend = int(options.myyend) # final year to plot/average
yend_all = yend # keep track of last year for which datasets exist
mylat_vals =[]
mylon_vals= []
avtype = 'default'
if (options.mydiurnal):
avtype = 'diurnal'
avpd=1
if (options.myseasonal):
avtype = 'seasonal'
#------------------------------------------------------------------------------
#site = options.site
#compset = options.compset
#dirs=[]
nvar = len(myvars)
x_toplot = numpy.zeros([ncases, 2000000], float)
data_toplot = numpy.zeros([ncases, nvar, 2000000], float)
obs_toplot = numpy.zeros([ncases, nvar, 2000000], float)+numpy.NaN
err_toplot = numpy.zeros([ncases, nvar, 2000000], float)+numpy.NaN
snum = numpy.zeros([ncases], int)
for c in range(0,ncases):
mydir = cesmdir+'/'+runnames[c]+'/run/'
# if (mycases[c] == ''):
# mydir = cesmdir+'/'+mysites[c]+'_'+mycompsets[c]+'/run/'
# else:
# mydir = cesmdir+'/'+mycases[c]+'_'+mysites[c]+'_'+mycompsets[c]+'/run/'
print('')
print('Processing '+mydir)
#if (os.path.exists(mydir)):
#else:
#query lnd_in file for output file information
if ((options.myhist_mfilt == -999 or options.myhist_nhtfrq == -999)):
#print('Obtaining output resolution information from lnd_in')
input = open(mydir+"/lnd_in")
npf=-999
tstep=-999
input = open(mydir+"/lnd_in")
for s in input:
if ('hist_mfilt' in s):
mfiltinfo = s.split()[2]
npf = int(mfiltinfo.split(',')[0])
if (options.h1):
npf = int(mfiltinfo.split(',')[1])
if (options.h2):
npf = int(mfiltinfo.split(',')[2])
if (options.h3):
npf = int(mfiltinfo.split(',')[3])
if (options.h4):
npf = int(mfiltinfo.split(',')[4])
if ('hist_nhtfrq' in s):
nhtfrqinfo = s.split()[2]
tstep = int(nhtfrqinfo.split(',')[0])
if (options.h1):
tstep = int(nhtfrqinfo.split(',')[1])
if (options.h2):
tstep = int(nhtfrqinfo.split(',')[2])
if (options.h3):
tstep = int(nhtfrqinfo.split(',')[3])
if (options.h4):
tstep = int(nhtfrqinfo.split(',')[4])
input.close()
else:
npf = int(options.myhist_mfilt)
tstep = int(options.myhist_nhtfrq)
if (npf == -999 or tstep == -999):
print('Unable to obtain output file information from lnd_in. Exiting')
sys.exit()
yststr=str(100000+ystart)
#determine type of file to plot
if (options.h4):
hst = 'h4'
elif (options.h3):
hst = 'h3'
elif (options.h2):
hst = 'h2'
elif (options.h1):
hst = 'h1'
else:
hst = 'h0'
if (tstep == 0):
ftype = 'default'
mytstep = 'monthly'
npy=12
else:
ftype = 'custom'
if (abs(npf) == 8760):
mytstep = 'halfhourly'
npy=8760
elif (abs(npf) == 365):
mytstep = 'daily'
npy=365
elif (abs(npf) == 1):
mytstep = 'annual'
npy=1
nhtot=-1*tstep*npf
nypf = max(1, nhtot/8760)
#initialize data arrays
mydata = numpy.zeros([nvar,2000000], float)
myobs = numpy.zeros([nvar,2000000], float)+numpy.NaN
myerr = numpy.zeros([nvar,2000000], float)+numpy.NaN
x = numpy.zeros([2000000], float)
nsteps=0
if (c == 0):
var_units=[]
var_long_names=[]
myscalefactors=[]
#Get observations
if (obs):
myobsfiles = os.listdir(myobsdir+'/'+mytstep+'/')
for f in myobsfiles:
if mysites[0] in f and '.csv' in f:
myobsfile = myobsdir+'/'+mytstep+'/'+f
avpd_obs = 1
if (mytstep == 'halfhourly' and '_HH_' in myobsfile):
avpd_obs = 2
if (os.path.exists(myobsfile) and ystart < 1900):
print ('Getting start and end year information from observation file')
thisrow=0
myobs_input = open(myobsfile)
for s in myobs_input:
if thisrow == 1:
ystart = int(s[0:4])
elif (thisrow > 1):
if (int(options.myyend) > 9000):
yend = min(int(s[0:4]), int(options.myyend))
thisrow=thisrow+1
myobs_input.close
for v in range(0,nvar):
if (os.path.exists(myobsfile)):
myobs_in = open(myobsfile)
thisrow=0
thisob=0
for s in myobs_in:
if (thisrow == 0):
header = s.split(',')
else:
myvals = s.split(',')
thiscol=0
if int(myvals[0][0:4]) >= ystart and int(myvals[0][0:4]) <= yend:
if (thisob == 0):
thisob = (int(myvals[0][0:4])-ystart)*npy*avpd_obs
if (thisob % avpd_obs == 0):
myobs[v,int(thisob/avpd_obs)] = 0.0
myerr[v,int(thisob/avpd_obs)] = 0.0
for h in header:
if (h.strip() == 'NEE_CUT_REF' and 'NEE' in myvars[v]):
myobs[v,thisob/avpd_obs] = myobs[v,thisob/avpd_obs] + float(myvals[thiscol])/avpd_obs
elif (h.strip () == 'NEE_CUT_REF_JOINTUNC' and \
'NEE' in myvars[v]):
myerr[v,thisob/avpd_obs] = myerr[v,thisob/avpd_obs] +float(myvals[thiscol])/avpd_obs
elif (h.strip() == 'GPP_NT_CUT_REF' and ('GPP' in myvars[v] or 'FPSN' in myvars[v])):
myobs[v,int(thisob/avpd_obs)] = myobs[v,int(thisob/avpd_obs)] +float(myvals[thiscol])/avpd_obs
elif (h.strip() == 'GPP_NT_CUT_SE' and ('GPP' in myvars[v] or 'FPSN' in myvars[v])):
myerr[v,int(thisob/avpd_obs)] = myerr[v,int(thisob/avpd_obs)] +float(myvals[thiscol])/avpd_obs
elif (h.strip() == 'RECO_NT_CUT_REF' and 'ER' in myvars[v]):
myobs[v,thisob/avpd_obs] = myobs[v,thisob/avpd_obs] +float(myvals[thiscol])/avpd_obs
elif (h.strip() == 'RECO_NET_CUT_SE' and 'ER' in myvars[v]):
myerr[v,thisob/avpd_obs] = myerr[v,thisob/avpd_obs] +float(myvals[thiscol])/avpd_obs
elif (h.strip() == 'LE_F_MDS' and 'EFLX_LH_TOT' in myvars[v]):
myobs[v,int(thisob/avpd_obs)] = myobs[v,int(thisob/avpd_obs)] +float(myvals[thiscol])/avpd_obs
elif (h.strip() == 'LE_RANDUNC' and 'EFLX_LH_TOT' in myvars[v]):
myerr[v,int(thisob/avpd_obs)] = myerr[v,int(thisob/avpd_obs)] +float(myvals[thiscol])/avpd_obs
elif (h.strip() == 'H_F_MDS' and 'FSH' in myvars[v]):
myobs[v,thisob/avpd_obs] = myobs[v,thisob/avpd_obs] +float(myvals[thiscol])/avpd_obs
elif (h.strip() == 'H_RANDUNC' and 'FSH' in myvars[v]):
myerr[v,thisob/avpd_obs] = myerr[v,thisob/avpd_obs] +float(myvals[thiscol])/avpd_obs
elif (h.strip() == 'TA_F_MDS' and 'TBOT' in myvars[v]):
myobs[v,int(thisob/avpd_obs)] = myobs[v,thisob/avpd_obs] +float(myvals[thiscol])/avpd_obs
elif (h.strip() == 'SWIN_F_MDS' and 'FSDS' in myvars[v]):
myobs[v,thisob/avpd_obs] = myobs[v,thisob/avpd_obs] +float(myvals[thiscol])/avpd_obs
elif (h.strip() == 'WS_F' and 'WIND' in myvars[v]):
myobs[v,thisob/avpd_obs] = myobs[v,thisob/avpd_obs] +float(myvals[thiscol])/avpd_obs
elif (h.strip() == 'P_F' and 'RAIN' in myvars[v]):
myobs[v,thisob/avpd_obs] = myobs[v,thisob/avpd_obs] +float(myvals[thiscol])/avpd_obs
if myobs[v,int(thisob/avpd_obs)] < -4000:
myobs[v,int(thisob/avpd_obs)] = numpy.NaN
thiscol=thiscol+1
thisob=thisob+1
thisrow = thisrow+1
myobs_in.close()
else:
print('Error reading observations for '+mysites[c])
#read monthly .nc files (default output)
if (ftype == 'default'):
for v in range(0,nvar):
nsteps = 0
for y in range(ystart,yend+1):
yst=str(10000+y)[1:5]
for m in range(0,12):
mst=str(101+m)[1:3]
#myfile = os.path.abspath(mydir+'/'+mycases[c]+'_'+mysites[c]+'_'+mycompsets[c]+ \
# ".clm2."+hst+"."+yst+"-"+mst+".nc")
#myfile = os.path.abspath(mydir+'/'+runnames[c]+".clm2."+hst+"."+yst+"-"+mst+".nc")
myfile = os.path.abspath(mydir+'/'+runnames[c]+"."+options.model_name+"."+hst+"."+yst+"-"+mst+".nc")
#get units/long names from first file
if (os.path.exists(myfile)):
if (y == ystart and m == 0 and c == 0):
nffile = Dataset(myfile,"r")
varout=nffile.variables[myvars[v]]
var_long_names.append(varout.long_name) #.decode('utf_8'))
if (float(options.scale_factor) < -900):
if ('gC/m^2/s' in str(varout.units)):
myscalefactors.append(3600*24)
var_units.append('g.C/m2/day')
elif ('mm/s' in str(varout.units)):
myscalefactors.append(3600*24)
var_units.append('mm/day')
else:
myscalefactors.append(1.0)
var_units.append(varout.units.replace('^',''))
else:
myscalefactors.append(float(options.scale_factor))
var_units.append(varout.units.replace('^',''))
nffile.close()
if (y == ystart and m == 0 and v == 0): # get lat/lon info
nffile = Dataset(myfile,"r")
mylat_vals.append(nffile.variables['lat'][0])
mylon_vals.append(nffile.variables['lon'][0])
nffile.close()
x[nsteps] = y+m/12.0
myvar_temp = getvar(myfile, myvars[v],npf,int(options.index), \
myscalefactors[v])
mydata[v,nsteps] = myvar_temp
if (myvars[v] == 'RAIN'):
myvar_temp2 = getvar(myfile,'SNOW',npf,int(options.index), \
myscalefactors[v])
mydata[v,nsteps] = mydata[v,nsteps]+myvar_temp2
else:
if (v == 0 and m == 0):
print('Warning: '+myfile+' does not exist')
x[nsteps] = y+m/12.0
mydata[v,nsteps] = numpy.NaN
if (y-1 < yend_all):
yend_all = y-1
nsteps = nsteps+1
#read annual .nc files
if (ftype == 'custom'):
for v in range(0,nvar):
nsteps=0
nfiles = int((yend-ystart)/nypf)
nc=1
starti=0
ylast=0
if (options.spinup):
nc=2
if (npf == 1):
starti = 1
for n in range(0,nc):
if ((options.spinup) and n== 0):
# if (mycases[c] == ''):
# if (options.ad_Pinit):
# mydir = cesmdir+'/'+mysites[c]+'_'+mycompsets[c]+'_ad_spinup/run/'
# else:
# mydir = cesmdir+'/'+mysites[c]+'_'+mycompsets[c].replace('CNP','CN')+ \
# '_ad_spinup/run/'
# else:
# if (options.ad_Pinit):
# mydir = cesmdir+'/'+mycases[c]+'_'+mysites[c]+'_'+ \
# mycompsets[c]+'_ad_spinup/run/'
# thiscompset = mycompsets[c]+'_ad_spinup'
# else:
# mydir = cesmdir+'/'+mycases[c]+'_'+mysites[c]+'_'+ \
# mycompsets[c].replace('CNP','CN')+'_ad_spinup/run/'
# thiscompset = mycompsets[c].replace('CNP','CN')+'_ad_spinup'
if (options.ad_Pinit):
mydir = cesmdir+'/'+mycases1[c]+mysites1[c]+mycompsets1[c]+'_ad_spinup/run/'
thiscompset = mycompsets1[c]+'_ad_spinup'
else:
mydir = cesmdir+'/'+mycases1[c]+mysites1[c]+ \
mycompsets1[c].replace('CNP','CN')+'_ad_spinup/run/'
thiscompset = mycompsets1[c].replace('CNP','CN')+'_ad_spinup'
else:
# if (mycases[c] == ''):
# mydir = cesmdir+'/'+mysites[c]+'_'+mycompsets[c]+'/run/'
# else:
# mydir = cesmdir+'/'+mycases[c]+'_'+mysites[c]+'_'+ \
# mycompsets[c]+'/run/'
# thiscompset = mycompsets[c]
mydir = cesmdir+'/'+mycases1[c]+mysites1[c]+mycompsets1[c]+'/run/'
thiscompset = mycompsets1[c]
for y in range(starti,nfiles+1): #skip first file in spinup
yst=str(10000+ystart+(y*nypf))[1:5]
# if (mycases[c].strip() == ''):
# myfile = os.path.abspath(mydir+'/'+mycases[c]+'_'+thiscompset+".clm2."+hst+ \
# "."+yst+"-01-01-00000.nc")
# else:
# myfile = os.path.abspath(mydir+'/'+mycases[c]+"_"+mysites[c]+'_'+thiscompset+ \
# ".clm2."+hst+"."+yst+"-01-01-00000.nc")
myfile = os.path.abspath(mydir+'/'+runnames[c]+ \
"."+options.model_name+"."+hst+"."+yst+"-01-01-00000.nc")
if (os.path.exists(myfile)):
if (n == 0):
ylast = y
if (y == starti and n == 0 and c == 0):
nffile = Dataset(myfile,"r")
varout=nffile.variables[myvars[v]]
var_long_names.append(varout.long_name) #.decode('utf_8'))
if (float(options.scale_factor) < -900):
if ('gC/m^2/s' in varout.units): #.decode('utf_8')):
if (npf >= 365):
myscalefactors.append(3600*24)
var_units.append('g.C/m2/day')
else:
myscalefactors.append(3600*24*365)
var_units.append('g.C/m2/yr')
else:
myscalefactors.append(1.0)
var_units.append(varout.units.replace('^',''))
else:
myscalefactors.append(float(options.scale_factor))
var_units.append(varout.units.replace('^',''))
nffile.close()
if (y == starti and n == 0 and v == 0): # get lat/lon info
nffile = Dataset(myfile,"r")
mylat_vals.append(nffile.variables['lat'][0])
mylon_vals.append(nffile.variables['lon'][0])
nffile.close()
myvar_temp = getvar(myfile,myvars[v],npf,int(options.index), \
myscalefactors[v])
if (myvars[v] == 'RAIN'):
myvar_temp2 = getvar(myfile,'SNOW',npf,int(options.index), \
myscalefactors[v])
if len(myvar_temp) == npf:
for i in range(0,npf):
myind = ylast*n*npf+y*npf+i
x[nsteps] = ystart+(ylast*n*nypf+y*nypf) + nypf*(i*1.0-0.5)/npf
mydata[v,nsteps] = myvar_temp[i]
if (myvars[v] == 'RAIN'): #add snow for total precip
mydata[v,nsteps] = mydata[v,nsteps]+myvar_temp2[i]
nsteps=nsteps+1
else:
for i in range(0,npf):
myind=ylast*n*npf+(y-1)*npf+i
x[myind] = ystart+(ylast*n*nypf+y*nypf) + nypf*(i*1.0-0.5)/npf
mydata[v,myind] = numpy.NaN
nsteps=nsteps+1
else:
if (v == 0):
print('Warning: '+myfile+' does not exist')
if (y-1 < yend_all):
yend_all = y-1
for i in range(0,npf):
if (n == nc-1):
myind=ylast*n*npf+y*npf+i
x[myind] = ystart+(ylast*n*nypf+y*nypf) + nypf*(i*1.0-0.5)/npf
mydata[v,myind] = numpy.NaN
nsteps=nsteps+1
#perform averaging and write output files
if (avtype == 'default'):
for v in range(0,nvar):
snum[c] = 0
for s in range(0,int(nsteps/avpd)):
x_toplot[c, snum[c]] = sum(x[s*avpd:(s+1)*avpd])/avpd
data_toplot[c, v, snum[c]] = sum(mydata[v,s*avpd:(s+1)*avpd])/avpd
obs_toplot[c, v, snum[c]] = sum(myobs[v,s*avpd:(s+1)*avpd])/avpd
if (min(myerr[v,s*avpd:(s+1)*avpd]) < -9000):
err_toplot[c,v,snum[c]] = 0
else:
err_toplot[c, v, snum[c]] = sum(myerr[v,s*avpd:(s+1)*avpd])/avpd
snum[c] = snum[c]+1
#diurnal average (must have hourly output)
if (avtype == 'diurnal'):
snum[c]=24
for v in range(0,nvar):
mysum = numpy.zeros(snum[c], float)
mysum_obs = numpy.zeros(snum[c], float)
myct = numpy.zeros(snum[c],float)
myct_obs = numpy.zeros(snum[c],float)
for y in range(0,(yend_all-ystart+1)):
for d in range (int(options.dstart),int(options.dend)):
for s in range(0,snum[c]):
h=s
if (h >= 24):
h=h-24
mysum[s] = mysum[s]+mydata[v,y*8760+(d-1)*24+h-int(options.timezone)+1]
myct[s] = myct[s]+1
if (myobs[v,y*8760+(d-1)*24+h] > -900):
mysum_obs[s] = mysum_obs[s]+myobs[v,y*8760+(d-1)*24+h]
myct_obs[s] = myct_obs[s]+1
for s in range(0,snum[c]):
if (myct_obs[s] > 0):
mysum_obs[s] = mysum_obs[s]/myct_obs[s]
else:
mysum_obs[s] = numpy.NaN
x_toplot[c,s] = s+1
obs_toplot[c, v, s] = mysum_obs[s]
data_toplot[c, v, s] = mysum[s]/myct[s]
#seasonal average (assumes default monthly output)
if (avtype == 'seasonal'):
for v in range(0,nvar):
snum[c] = 12
mysum=numpy.zeros(snum[c], float)
mysum_obs = numpy.zeros(snum[c], float)
mycount_obs = numpy.zeros(snum[c], numpy.int)
for y in range(0,(yend_all-ystart+1)):
for s in range(0,snum[c]):
mysum[s]=mysum[s]+mydata[v,(y*12+s)]/float(yend_all-ystart+1)
if (myobs[v,(y*12+s)] > -900):
mysum_obs[s]=mysum_obs[s]+myobs[v,(y*12+s)]
mycount_obs[s] = mycount_obs[s]+1
for s in range(0,snum[c]):
if (mycount_obs[s] > 0):
mysum_obs[s] = mysum_obs[s]/mycount_obs[s]
else:
mysum_obs[s] = numpy.NaN
x_toplot[c,s] = s+1.5
obs_toplot[c,v,s] = mysum_obs[s]
data_toplot[c,v,s] = mysum[s]
#diagnostics, outputs and plots
if (options.spinup):
analysis_type = 'spinup'
elif (options.mydiurnal):
analysis_type = 'diurnalcycle_'+str(options.dstart)+'_'+str(options.dend)
elif (options.myseasonal):
analysis_type = 'seasonalcycle'
elif (mytstep == 'halfhourly'):
analysis_type = 'hourly'
else:
analysis_type=mytstep
rmse = numpy.zeros([len(myvars),ncases],float)
bias = numpy.zeros([len(myvars),ncases],float)
corr = numpy.zeros([len(myvars),ncases],float)
options.nperpage=int(options.nperpage)
if (options.nperpage > 1):
nrow = 2
ncol = int(math.ceil(options.nperpage/2))
else:
ncol = 1
nrow = 1
for v in range(0,len(myvars)):
if (not options.noplot):
if (v % options.nperpage == 0):
fig = plt.figure(figsize=(11,8.5))
thisfig = v % options.nperpage+1
fignum = int(v/options.nperpage)
thiscol = (thisfig -1) % ncol
thisrow = (thisfig -1) / ncol
ax = plt.subplot(nrow*100+ncol*10+thisfig)
colors=['b','g','r','c','m','y','k','b','g','r','c','m','y','k','b','g','r','c','m','y','k']
styles=['-','-','-','-','-','-','-','--','--','--','--','--','--','--','-.','-.','-.','-.','-.','-.','-.']
for c in range(0,ncases):
#Output data in netcdf format
if (c == 0):
if (v == 0):
ftype_suffix=['model','obs']
if (options.outputdir == ''):
outputdir = cesmdir+'/'+runnames[0]+'/plots/'+analysis_type
else:
outputdir = options.outputdir+'/'+runnames[0]+'/'+analysis_type
os.system('mkdir -p '+outputdir)
print('Creating plots and output in '+outputdir)
for ftype in range(0,2):
outdata = Dataset(outputdir+'/'+mycases[0]+"_"+mysites[0]+'_'+mycompsets[0]+'_'+ftype_suffix[ftype]+".nc","w",mmap=False)
outdata.createDimension('time',snum[c])
#outdata.createDimension('lat',ncases)
#outdata.createDimension('lon',ncases)
outdata.createDimension('gridcell',ncases)
outdata.createDimension('strlen',6)
mylat = outdata.createVariable('lat','f',('gridcell',))
mylat.long_name='coordinate latitude'
mylat.units='degrees_north'
mylon = outdata.createVariable('lon','f',('gridcell',))
mylon.long_name='coordinate longitude'
mylon.units='degrees_east'
mytime = outdata.createVariable('time','f',('time',))
mytime.long_name='time'
mytime.units='days since '+str(ystart)+'-01-01 00:00:00'
mytime.calendar='noleap'
mytime[:] = (x_toplot[0,0:snum[c]]-ystart)*365
#myname = outdata.createVariable('site_name','c',('lat','lon','strlen'))
myname = outdata.createVariable('site_name','c',('gridcell','strlen'))
myname[:,:] = ' ' #changed for gridcell
outdata.close()
for ftype in range(0,2):
outdata = Dataset(outputdir+'/'+mycases[0]+"_"+mysites[0]+'_'+mycompsets[0]+'_'+ftype_suffix[ftype]+".nc","a",mmap=False)
if (c == 0):
#myvar = outdata.createVariable(myvars[v],'f',('time','lat','lon'))
myvar = outdata.createVariable(myvars[v],'f',('time','gridcell'))
myvar.units=var_units[v]
myvar.missing_value=1.0e36
myvar[:,:]=myvar.missing_value #changed for gridcell
else:
myvar=outdata.variables[myvars[v]]
scalefac = 1.0
if (var_units[v] == 'g.C/m2/day'):
myvar.units = 'kg.C/m2/s'
scalefac = 1.0 / (3600*24*1000.0)
if (ftype == 0):
myvar[:,c] = data_toplot[c,v,0:snum[c]]*scalefac #changed for gridcell
if (ftype == 1):
myvar[:,c] = obs_toplot[c,v,0:snum[c]]*scalefac #changed for gridcell
if (v == 0):
myname = outdata.variables['site_name']
#myname[c,0:6] = str(mysites[c])[0:6] #changed for gridcell
myname[c,0:6] = str(mysites1[c])[0:6] #changed for gridcell
mylat = outdata.variables['lat']
mylat[c] = mylat_vals[c]
mylon = outdata.variables['lon']
mylon[c] = mylon_vals[c]
outdata.close()
#----------------------- plotting ---------------------------------
if (options.noplot == False):
gind=[]
for i in range(0,snum[c]):
if (obs_toplot[c,v,i] < -900):
obs_toplot[c,v,i] = numpy.nan
else:
gind.append(i)
rmse[v,c] = rmse[v,c] + (data_toplot[c,v,i]-obs_toplot[c,v,i])**2.0
bias[v,c] = bias[v,c] + (data_toplot[c,v,i]-obs_toplot[c,v,i])
rmse[v,c] = (rmse[v,c]/len(gind))**0.5
bias[v,c] = bias[v,c]/len(gind)
corr[v,c] = numpy.corrcoef(data_toplot[c,v,gind],obs_toplot[c,v,gind])[1,0]
if (options.ylog):
ax.plot(x_toplot[c, 0:snum[c]], abs(data_toplot[c,v,0:snum[c]]), label=mytitles[c], color=colors[c], \
linestyle=styles[c], linewidth=3)
else:
ax.plot(x_toplot[c, 0:snum[c]], (data_toplot[c,v,0:snum[c]]), label=mytitles[c], color=colors[c], \
linestyle=styles[c], linewidth=3)
if (options.myobs and c == 0):
ax.errorbar(x_toplot[c, 0:snum[c]], obs_toplot[c,v,0:snum[c]], yerr = err_toplot[c,v,0:snum[c]], \
color='k', fmt='o')
if (options.noplot == False):
if (thisrow+1 == nrow):
if (avtype == 'seasonal'):
plt.xlabel('Model Month')
elif (avtype == 'diurnal'):
plt.xlabel('Model Hour (LST)')
else:
plt.xlabel('Model Year')
plt.ylabel(myvars[v]+' ('+var_units[v]+')')
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
if (v % options.nperpage == options.nperpage-1):
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5),prop={'size': 10})
#if (v % options.nperpage == 0):
# ax.legend(loc='upper left', bbox_to_anchor=(0, 1.3), prop={'size': 8}, ncol=2)
plt.title(var_long_names[v]) #+' at '+mysites[0])
if (options.ylog):
plt.yscale('log')
if (options.nperpage == 1):
fig_filename = outputdir+'/'+myvars[v]
else:
fig_filename = outputdir+'/figure'+str(fignum+1)
if (int(options.index) < 0):
fig_filename = fig_filename+'_allindices'
elif (int(options.index) > 0):
fig_filename = fig_filename+'_index'+str(options.index)
if (options.pdf):
fig.savefig(fig_filename+'.pdf')
if (options.png):
fig.savefig(fig_filename+'.png')
if (not options.pdf and not options.noplot and not options.png):
plt.show()