forked from aprettyloner/Object-Detection-on-Thermal-Images
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
494 lines (417 loc) · 22.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
import argparse
import torch.distributed as dist
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import test # import test.py to get mAP after each epoch
from models import *
from utils.datasets import *
from utils.utils import *
mixed_precision = True
try: # Mixed precision training https://github.com/NVIDIA/apex
from apex import amp
except:
mixed_precision = False # not installed
wdir = 'weights' + os.sep # weights dir
last = wdir + 'last.pt'
best = wdir + 'best.pt'
results_file = 'results.txt'
# Hyperparameters (results68: 59.2 [email protected] yolov3-spp-416) https://github.com/ultralytics/yolov3/issues/310
hyp = {'giou': 3.31, # giou loss gain
'cls': 42.4, # cls loss gain
'cls_pw': 1.0, # cls BCELoss positive_weight
'obj': 52.0, # obj loss gain (*=img_size/416 if img_size != 416)
'obj_pw': 1.0, # obj BCELoss positive_weight
'iou_t': 0.213, # iou training threshold
'lr0': 0.00261, # initial learning rate (SGD=1E-3, Adam=9E-5)
'lrf': -4., # final LambdaLR learning rate = lr0 * (10 ** lrf)
'momentum': 0.949, # SGD momentum
'weight_decay': 0.000489, # optimizer weight decay
'fl_gamma': 0.5, # focal loss gamma
'hsv_h': 0.0103, # image HSV-Hue augmentation (fraction)
'hsv_s': 0.691, # image HSV-Saturation augmentation (fraction)
'hsv_v': 0.433, # image HSV-Value augmentation (fraction)
'degrees': 1.43, # image rotation (+/- deg)
'translate': 0.0663, # image translation (+/- fraction)
'scale': 0.11, # image scale (+/- gain)
'shear': 0.384} # image shear (+/- deg)
# Overwrite hyp with hyp*.txt (optional)
f = glob.glob('hyp*.txt')
if f:
print('Using %s' % f[0])
for k, v in zip(hyp.keys(), np.loadtxt(f[0])):
hyp[k] = v
def train():
cfg = opt.cfg
data = opt.data
img_size = opt.img_size
epochs = 1 if opt.prebias else opt.epochs # 500200 batches at bs 64, 117263 images = 273 epochs
batch_size = opt.batch_size
accumulate = opt.accumulate # effective bs = batch_size * accumulate = 16 * 4 = 64
weights = opt.weights # initial training weights
if 'pw' not in opt.arc: # remove BCELoss positive weights
hyp['cls_pw'] = 1.
hyp['obj_pw'] = 1.
# Initialize
init_seeds()
if opt.multi_scale:
img_sz_min = round(img_size / 32 / 1.5)
img_sz_max = round(img_size / 32 * 1.5)
img_size = img_sz_max * 32 # initiate with maximum multi_scale size
print('Using multi-scale %g - %g' % (img_sz_min * 32, img_size))
# Configure run
data_dict = parse_data_cfg(data)
train_path = data_dict['train']
nc = int(data_dict['classes']) # number of classes
# Remove previous results
for f in glob.glob('*_batch*.jpg') + glob.glob(results_file):
os.remove(f)
# Initialize model
model = Darknet(cfg, arc=opt.arc).to(device)
# Optimizer
pg0, pg1 = [], [] # optimizer parameter groups
for k, v in dict(model.named_parameters()).items():
if 'Conv2d.weight' in k:
pg1 += [v] # parameter group 1 (apply weight_decay)
else:
pg0 += [v] # parameter group 0
if opt.adam:
optimizer = optim.Adam(pg0, lr=hyp['lr0'])
# optimizer = AdaBound(pg0, lr=hyp['lr0'], final_lr=0.1)
else:
optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
del pg0, pg1
# https://github.com/alphadl/lookahead.pytorch
# optimizer = torch_utils.Lookahead(optimizer, k=5, alpha=0.5)
cutoff = -1 # backbone reaches to cutoff layer
start_epoch = 0
best_fitness = float('inf')
attempt_download(weights)
if weights.endswith('.pt'): # pytorch format
# possible weights are '*.pt', 'yolov3-spp.pt', 'yolov3-tiny.pt' etc.
chkpt = torch.load(weights, map_location=device)
# load model
try:
chkpt['model'] = {k: v for k, v in chkpt['model'].items() if model.state_dict()[k].numel() == v.numel()}
model.load_state_dict(chkpt['model'], strict=False)
# model.load_state_dict(chkpt['model'])
except KeyError as e:
s = "%s is not compatible with %s. Specify --weights '' or specify a --cfg compatible with %s. " \
"See https://github.com/ultralytics/yolov3/issues/657" % (opt.weights, opt.cfg, opt.weights)
raise KeyError(s) from e
# load optimizer
if chkpt['optimizer'] is not None:
optimizer.load_state_dict(chkpt['optimizer'])
best_fitness = chkpt['best_fitness']
# load results
if chkpt.get('training_results') is not None:
with open(results_file, 'w') as file:
file.write(chkpt['training_results']) # write results.txt
start_epoch = chkpt['epoch'] + 1
del chkpt
elif len(weights) > 0: # darknet format
# possible weights are '*.weights', 'yolov3-tiny.conv.15', 'darknet53.conv.74' etc.
cutoff = load_darknet_weights(model, weights)
if opt.transfer or opt.prebias: # transfer learning edge (yolo) layers
nf = int(model.module_defs[model.yolo_layers[0] - 1]['filters']) # yolo layer size (i.e. 255)
if opt.prebias:
for p in optimizer.param_groups:
# lower param count allows more aggressive training settings: i.e. SGD ~0.1 lr0, ~0.9 momentum
p['lr'] *= 100 # lr gain
if p.get('momentum') is not None: # for SGD but not Adam
p['momentum'] *= 0.9
for p in model.parameters():
if opt.prebias and p.numel() == nf: # train (yolo biases)
p.requires_grad = True
elif opt.transfer and p.shape[0] == nf: # train (yolo biases+weights)
p.requires_grad = True
else: # freeze layer
p.requires_grad = False
# Scheduler https://github.com/ultralytics/yolov3/issues/238
# lf = lambda x: 1 - x / epochs # linear ramp to zero
# lf = lambda x: 10 ** (hyp['lrf'] * x / epochs) # exp ramp
# lf = lambda x: 1 - 10 ** (hyp['lrf'] * (1 - x / epochs)) # inverse exp ramp
# scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
# scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=range(59, 70, 1), gamma=0.8) # gradual fall to 0.1*lr0
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[round(opt.epochs * x) for x in [0.8, 0.9]], gamma=0.1)
scheduler.last_epoch = start_epoch - 1
# # Plot lr schedule
# y = []
# for _ in range(epochs):
# scheduler.step()
# y.append(optimizer.param_groups[0]['lr'])
# plt.plot(y, label='LambdaLR')
# plt.xlabel('epoch')
# plt.ylabel('LR')
# plt.tight_layout()
# plt.savefig('LR.png', dpi=300)
# Mixed precision training https://github.com/NVIDIA/apex
if mixed_precision:
model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=0)
# Initialize distributed training
if device.type != 'cpu' and torch.cuda.device_count() > 1:
dist.init_process_group(backend='nccl', # 'distributed backend'
init_method='tcp://127.0.0.1:9999', # distributed training init method
world_size=1, # number of nodes for distributed training
rank=0) # distributed training node rank
model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=True)
model.yolo_layers = model.module.yolo_layers # move yolo layer indices to top level
# Dataset
dataset = LoadImagesAndLabels(train_path,
img_size,
batch_size,
augment=True,
hyp=hyp, # augmentation hyperparameters
rect=opt.rect, # rectangular training
image_weights=opt.img_weights,
cache_labels=True if epochs > 10 else False,
cache_images=False if opt.prebias else opt.cache_images)
# Dataloader
batch_size = min(batch_size, len(dataset))
dataloader = torch.utils.data.DataLoader(dataset,
batch_size=batch_size,
num_workers=min([os.cpu_count(), batch_size if batch_size > 1 else 0, 16]),
shuffle=not opt.rect, # Shuffle=True unless rectangular training is used
pin_memory=True,
collate_fn=dataset.collate_fn)
# Start training
model.nc = nc # attach number of classes to model
model.arc = opt.arc # attach yolo architecture
model.hyp = hyp # attach hyperparameters to model
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
torch_utils.model_info(model, report='summary') # 'full' or 'summary'
nb = len(dataloader)
maps = np.zeros(nc) # mAP per class
# torch.autograd.set_detect_anomaly(True)
results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
t0 = time.time()
print('Starting %s for %g epochs...' % ('prebias' if opt.prebias else 'training', epochs))
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
model.train()
print(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
# Freeze backbone at epoch 0, unfreeze at epoch 1 (optional)
freeze_backbone = False
if freeze_backbone and epoch < 2:
for name, p in model.named_parameters():
if int(name.split('.')[1]) < cutoff: # if layer < 75
p.requires_grad = False if epoch == 0 else True
# Update image weights (optional)
if dataset.image_weights:
w = model.class_weights.cpu().numpy() * (1 - maps) ** 2 # class weights
image_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w)
dataset.indices = random.choices(range(dataset.n), weights=image_weights, k=dataset.n) # rand weighted idx
mloss = torch.zeros(4).to(device) # mean losses
pbar = tqdm(enumerate(dataloader), total=nb) # progress bar
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
ni = i + nb * epoch # number integrated batches (since train start)
imgs = imgs.to(device)
targets = targets.to(device)
# Multi-Scale training
if opt.multi_scale:
if ni / accumulate % 10 == 0: # adjust (67% - 150%) every 10 batches
img_size = random.randrange(img_sz_min, img_sz_max + 1) * 32
sf = img_size / max(imgs.shape[2:]) # scale factor
if sf != 1:
ns = [math.ceil(x * sf / 32.) * 32 for x in imgs.shape[2:]] # new shape (stretched to 32-multiple)
imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
# Plot images with bounding boxes
if ni == 0:
fname = 'train_batch%g.jpg' % i
plot_images(imgs=imgs, targets=targets, paths=paths, fname=fname)
if tb_writer:
tb_writer.add_image(fname, cv2.imread(fname)[:, :, ::-1], dataformats='HWC')
# Hyperparameter burn-in
# n_burn = nb - 1 # min(nb // 5 + 1, 1000) # number of burn-in batches
# if ni <= n_burn:
# for m in model.named_modules():
# if m[0].endswith('BatchNorm2d'):
# m[1].momentum = 1 - i / n_burn * 0.99 # BatchNorm2d momentum falls from 1 - 0.01
# g = (i / n_burn) ** 4 # gain rises from 0 - 1
# for x in optimizer.param_groups:
# x['lr'] = hyp['lr0'] * g
# x['weight_decay'] = hyp['weight_decay'] * g
# Run model
pred = model(imgs)
# Compute loss
loss, loss_items = compute_loss(pred, targets, model)
if not torch.isfinite(loss):
print('WARNING: non-finite loss, ending training ', loss_items)
return results
# Scale loss by nominal batch_size of 64
loss *= batch_size / 64
# Compute gradient
if mixed_precision:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
# Accumulate gradient for x batches before optimizing
if ni % accumulate == 0:
optimizer.step()
optimizer.zero_grad()
# Print batch results
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
mem = torch.cuda.memory_cached() / 1E9 if torch.cuda.is_available() else 0 # (GB)
s = ('%10s' * 2 + '%10.3g' * 6) % (
'%g/%g' % (epoch, epochs - 1), '%.3gG' % mem, *mloss, len(targets), img_size)
pbar.set_description(s)
# end batch ------------------------------------------------------------------------------------------------
# Update scheduler
scheduler.step()
# Process epoch results
final_epoch = epoch + 1 == epochs
if opt.prebias:
print_model_biases(model)
else:
# Calculate mAP (always test final epoch, skip first 10 if opt.nosave)
if not (opt.notest or (opt.nosave and epoch < 10)) or final_epoch:
with torch.no_grad():
results, maps = test.test(cfg,
data,
batch_size=batch_size,
img_size=opt.img_size,
model=model,
conf_thres=0.001 if final_epoch and epoch > 0 else 0.1, # 0.1 for speed
save_json=final_epoch and epoch > 0 and 'coco.data' in data)
# Write epoch results
with open(results_file, 'a') as f:
f.write(s + '%10.3g' * 7 % results + '\n') # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
if len(opt.name) and opt.bucket and not opt.prebias:
os.system('gsutil cp results.txt gs://%s/results%s.txt' % (opt.bucket, opt.name))
# Write Tensorboard results
if tb_writer:
x = list(mloss) + list(results)
titles = ['GIoU', 'Objectness', 'Classification', 'Train loss',
'Precision', 'Recall', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification']
for xi, title in zip(x, titles):
tb_writer.add_scalar(title, xi, epoch)
# Update best mAP
fitness = sum(results[4:]) # total loss
if fitness < best_fitness:
best_fitness = fitness
# Save training results
save = (not opt.nosave) or (final_epoch and not opt.evolve) or opt.prebias
if save:
with open(results_file, 'r') as f:
# Create checkpoint
chkpt = {'epoch': epoch,
'best_fitness': best_fitness,
'training_results': f.read(),
'model': model.module.state_dict() if type(
model) is nn.parallel.DistributedDataParallel else model.state_dict(),
'optimizer': None if final_epoch else optimizer.state_dict()}
# Save last checkpoint
torch.save(chkpt, last)
# Save best checkpoint
if best_fitness == fitness:
torch.save(chkpt, best)
# Save backup every 10 epochs (optional)
if epoch > 0 and epoch % 10 == 0:
torch.save(chkpt, wdir + 'backup%g.pt' % epoch)
# Delete checkpoint
del chkpt
# end epoch ----------------------------------------------------------------------------------------------------
# end training
if len(opt.name) and not opt.prebias:
fresults, flast, fbest = 'results%s.txt' % opt.name, 'last%s.pt' % opt.name, 'best%s.pt' % opt.name
os.rename('results.txt', fresults)
os.rename(wdir + 'last.pt', wdir + flast) if os.path.exists(wdir + 'last.pt') else None
os.rename(wdir + 'best.pt', wdir + fbest) if os.path.exists(wdir + 'best.pt') else None
# save to cloud
if opt.bucket:
os.system('gsutil cp %s %s gs://%s' % (fresults, wdir + flast, opt.bucket))
plot_results() # save as results.png
print('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
dist.destroy_process_group() if torch.cuda.device_count() > 1 else None
torch.cuda.empty_cache()
return results
def prebias():
# trains output bias layers for 1 epoch and creates new backbone
if opt.prebias:
a = opt.img_weights # save settings
opt.img_weights = False # disable settings
train() # transfer-learn yolo biases for 1 epoch
create_backbone(last) # saved results as backbone.pt
opt.weights = wdir + 'backbone.pt' # assign backbone
opt.prebias = False # disable prebias
opt.img_weights = a # reset settings
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--epochs', type=int, default=273) # 500200 batches at bs 16, 117263 images = 273 epochs
parser.add_argument('--batch-size', type=int, default=16) # effective bs = batch_size * accumulate = 16 * 4 = 64
parser.add_argument('--accumulate', type=int, default=4, help='batches to accumulate before optimizing')
parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='cfg file path')
parser.add_argument('--data', type=str, default='data/coco.data', help='*.data file path')
parser.add_argument('--multi-scale', action='store_true', help='adjust (67% - 150%) img_size every 10 batches')
parser.add_argument('--img-size', type=int, default=416, help='inference size (pixels)')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', action='store_true', help='resume training from last.pt')
parser.add_argument('--transfer', action='store_true', help='transfer learning')
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--notest', action='store_true', help='only test final epoch')
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
parser.add_argument('--img-weights', action='store_true', help='select training images by weight')
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
parser.add_argument('--weights', type=str, default='weights/ultralytics49.pt', help='initial weights')
parser.add_argument('--arc', type=str, default='default', help='yolo architecture') # defaultpw, uCE, uBCE
parser.add_argument('--prebias', action='store_true', help='transfer-learn yolo biases prior to training')
parser.add_argument('--name', default='', help='renames results.txt to results_name.txt if supplied')
parser.add_argument('--device', default='', help='device id (i.e. 0 or 0,1 or cpu)')
parser.add_argument('--adam', action='store_true', help='use adam optimizer')
parser.add_argument('--var', type=float, help='debug variable')
opt = parser.parse_args()
opt.weights = last if opt.resume else opt.weights
print(opt)
device = torch_utils.select_device(opt.device, apex=mixed_precision, batch_size=opt.batch_size)
if device.type == 'cpu':
mixed_precision = False
# scale hyp['obj'] by img_size (evolved at 416)
hyp['obj'] *= opt.img_size / 416.
tb_writer = None
if not opt.evolve: # Train normally
try:
# Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/
from torch.utils.tensorboard import SummaryWriter
tb_writer = SummaryWriter()
except:
pass
prebias() # optional
train() # train normally
else: # Evolve hyperparameters (optional)
opt.notest = True # only test final epoch
opt.nosave = True # only save final checkpoint
if opt.bucket:
os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
for _ in range(1): # generations to evolve
if os.path.exists('evolve.txt'): # if evolve.txt exists: select best hyps and mutate
# Select parent(s)
x = np.loadtxt('evolve.txt', ndmin=2)
parent = 'weighted' # parent selection method: 'single' or 'weighted'
if parent == 'single' or len(x) == 1:
x = x[fitness(x).argmax()]
elif parent == 'weighted': # weighted combination
n = min(10, x.shape[0]) # number to merge
x = x[np.argsort(-fitness(x))][:n] # top n mutations
w = fitness(x) - fitness(x).min() # weights
x = (x[:n] * w.reshape(n, 1)).sum(0) / w.sum() # new parent
for i, k in enumerate(hyp.keys()):
hyp[k] = x[i + 7]
# Mutate
np.random.seed(int(time.time()))
s = [.2, .2, .2, .2, .2, .2, .2, .0, .02, .2, .2, .2, .2, .2, .2, .2, .2, .2] # sigmas
for i, k in enumerate(hyp.keys()):
x = (np.random.randn(1) * s[i] + 1) ** 2.0 # plt.hist(x.ravel(), 300)
hyp[k] *= float(x) # vary by sigmas
# Clip to limits
keys = ['lr0', 'iou_t', 'momentum', 'weight_decay', 'hsv_s', 'hsv_v', 'translate', 'scale', 'fl_gamma']
limits = [(1e-5, 1e-2), (0.00, 0.70), (0.60, 0.98), (0, 0.001), (0, .9), (0, .9), (0, .9), (0, .9), (0, 3)]
for k, v in zip(keys, limits):
hyp[k] = np.clip(hyp[k], v[0], v[1])
# Train mutation
prebias()
results = train()
# Write mutation results
print_mutation(hyp, results, opt.bucket)
# Plot results
# plot_evolution_results(hyp)