-
Notifications
You must be signed in to change notification settings - Fork 4
/
multiobj-bb-cc.yaml
138 lines (124 loc) · 3.08 KB
/
multiobj-bb-cc.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
########################################################################################
#
# Example Usage:
#
# CUDA_VISIBLE_DEVICES=0 python experiments/inference.py \
# --config experiments/configs/demo/multiobj-bb-cc.yaml \
# --eval_steps 600 \
# --video_name bb-cc \
# --debug_views e_${VIEW} \
# --skip_frames 5
#
# MAKE SURE YOU HAVE DOWNLOADED PRETRAINED CHECKPOINTS STATED IN README.MD
#
########################################################################################
gpu: 0
seed: 42
debug: true
debug_views: ['e_2']
resume: false
overwrite: false
denormalize: false # Whether to denormalize the output to the original bounds when visualizing
video_data:
eval: false
camera_type: NeuMASynthetic
data:
path: /path/to/RubberPawn # Replace this with the path to the [RubberPawn] folder
transformsfile: eval_dynamic.json
white_background: true
init_frame: 0
exclude_steps: [-1]
used_views: [e_2]
camera:
resolution: 1
data_device: cpu
sim:
gravity:
- 0.0
- -9.8
- 0.0
bc: noslip # Chosen from [freeslip, noslip]
num_grids: 42
dt: 0.001
bound: 1 # This is the distance to the boundary
eps: 6e-7
skip_frame: 1
objects:
- sim_data_name: bouncyball
# pretrained weights of NCLaw
pretrained_ckpt: experiments/base_models/jelly_0300.pt
gaussian:
sh_degree: 3
particle_data:
shape:
asset_root: null
sort: null
ori_bounds:
- [-0.5, 0., -0.5]
- [0.5, 1., 0.5]
sim_bounds:
- [0.2, 0.53, 0.2]
- [0.8, 1.13, 0.8]
vel:
lin_vel: [0, -0.5, 0]
ang_vel: [0.0, 0.0, 0.0]
rho: 1e3
clip_bound: 0.1
constitution:
elasticity:
layer_widths: [64, 64]
norm: null
nonlinearity: gelu
no_bias: true
normalize_input: true
plasticity:
layer_widths: [64, 64]
norm: null
alpha: 1e-3
nonlinearity: gelu
no_bias: true
normalize_input: true
load_lora: experiments/logs/bouncyball-v1/finetune/1000_lora.pt
lora:
r: 16
alpha: 4
views: ['e_2']
- sim_data_name: claycat
# pretrained weights of NCLaw
pretrained_ckpt: experiments/base_models/plasticine_0300.pt
gaussian:
sh_degree: 3
particle_data:
shape:
asset_root: null
sort: null
ori_bounds:
- [-0.5, 0., -0.5]
- [0.5, 1., 0.5]
sim_bounds:
- [0.2, 0.08, 0.2]
- [0.8, 0.68, 0.8]
vel:
lin_vel: [0, -0.5, 0]
ang_vel: [0.0, 0.0, 0.0]
rho: 1e3
clip_bound: 0.1
constitution:
elasticity:
layer_widths: [64, 64]
norm: null
nonlinearity: gelu
no_bias: true
normalize_input: true
plasticity:
layer_widths: [64, 64]
norm: null
alpha: 1e-3
nonlinearity: gelu
no_bias: true
normalize_input: true
load_lora: experiments/logs/claycat-v1/finetune/1000_lora.pt
lora:
r: 16
alpha: 16
views: ['e_2']