forked from codescoop/Play-with-Data-Structures
-
Notifications
You must be signed in to change notification settings - Fork 0
/
11_mid_point_runner_technique.cpp
462 lines (374 loc) · 10.4 KB
/
11_mid_point_runner_technique.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
/*
TOPIC: Mid Point of Linked List
(Runner Technique)
- Approach-I: Calculate length of linked list & then Iterate till "length/2".
So, time = l + l/2
Complexity O(N)
- Approach-II: With Runner Technique we can calculte mid point in single pass (i.e single iteration)
We will keep 2 pointers,
- Slow pointer [It will move by 1 step]
- Fast pointer [It will move by 2 steps]
Fast 2x --------------------------------> |>
Slow 1x ----------------> |
__________________________________|
Start Mid End
Eg: - For Odd number of nodes
F F F // F: Fast pointer (Speed 2x)
1 -> 2 -> 3 -> 4 -> 5
S S S // S: Slow Pointer (Speed 1x)
[mid]
- For Even number of nodes
Method 1:
F F F
1 -> 2 -> 3 -> 4 -> NULL
S S S
[mid]
Method 2: [Start "Fast pointer" 1 position ahead of "Slow pointer"]
F F
1 -> 2 -> 3 -> 4
S S
[mid]
*/
#include <iostream>
using namespace std;
class Node{
public:
int data;
Node *next;
// constructor
Node(int d)
{
data = d;
next = NULL;
}
};
// pass a pointer by reference (because we want to make changes to the original head pointer)
void insertAtHead(Node *&head, int d)
{
if(head == NULL)
{
head = new Node(d);
return;
}
Node *n = new Node(d);
n->next = head;
head = n;
}
// function to find length of linked list
int length(Node*head)
{
int cnt = 0;
while(head != NULL)
{
cnt++;
head = head->next;
}
return cnt;
}
// function to insert data at last position of linked list
void insertAtTail(Node*&head, int data)
{
// corner case
if(head == NULL)
{
// Node *n = new Node(data);
// head = n;
head = new Node(data);
return;
}
Node *tail = head; // using temp pointer
// Moving head towards tail
while(tail->next != NULL)
{
tail = tail->next;
}
// create & attach new node
tail->next = new Node(data);
}
// function to insert data at middle of linked list
void insertAtMiddle(Node*&head, int data, int pos)
{
//corner case
if(head==NULL or pos==0)
{
insertAtHead(head, data);
return;
}
else if (pos >= length(head))
{
insertAtTail(head, data);
return;
}
// take pos-1 jumps
int i=1;
Node *temp = head;
while(i < pos)
{
temp = temp->next;
i++;
}
// create a new node
Node *n = new Node(data);
n->next = temp->next;
temp->next = n;
}
// pass by value (because we don't want to change the original head pointer)
void print(Node *head)
{
while(head != NULL)
{
cout << head->data << " -> ";
head = head->next;
}
cout << endl;
}
// function to delete data at start of linked list
void deleteAtHead(Node*&head)
{
if(head == NULL)
{
return;
}
Node*temp = head->next; // temp pointer is static. So it will be deleted at the end of function call
delete head; // delete the Node whose address is stored in "head" pointer
head = temp;
}
// function to delete data at end of linked list
void deleteAtTail(Node*&head)
{
if(head == NULL)
{
return;
}
Node *tail = head;
Node *prev;
// moving towards the end of linked list
while(tail->next != NULL)
{
prev = tail;
tail = tail->next;
}
delete tail; // delete the Node whose address is stored in "tail" pointer
// delete prev->next; // prev->nex & tail are pointing towards same address
prev->next = NULL;
}
// function to delete data at end of linked list
void deleteAtMiddle(Node*&head, int pos)
{
if(head==NULL)
{
return;
}
else if(pos >= length(head))
{
return;
}
// jump towards pos
Node *temp = head;
Node *prev;
int i = 1;
while(i <= pos)
{
prev = temp;
temp = temp->next;
i++;
}
prev->next = temp->next;
delete temp; // delete the Node whose address is stored in "temp" pointer
}
// Search Operation
// Linear Search
bool search(Node*head, int key)
{
Node*temp = head;
while(temp != NULL)
{
if(temp->data == key)
{
return true;
}
temp = temp->next;
}
// if key not found
return false;
}
// Linear Search (recursively)
bool searchRecursive(Node*head, int key)
{
//base case
if(head == NULL)
{
return false;
}
//rec case
if(head->data == key)
{
return true;
}
return searchRecursive(head->next, key);
}
// Linked List User Input
void take_input(Node*&head)
{
//
}
// Linked List User Input
Node* take_input_2()
{
Node *head = NULL;
int data;
cin >> data;
while(data != -1)
{
insertAtHead(head, data);
// insertAtTail(head, data);
cin >> data;
}
return head;
/* NOTE: Since we are adding elements at "head" of linked list.
So, we will be getting linked list in the reverse order.
*/
}
// Linked List User Input [When taking Input from a file]
Node* take_input_file()
{
Node *head = NULL;
int data;
// cin >> data;
while(cin >> data)
// while(data != -1)
{
insertAtHead(head, data);
// cin >> data;
}
return head;
/* NOTE: Since we are adding elements at "head" of linked list.
So, we will be getting linked list in the reverse order.
*/
}
/*
- Using "<<" for getting output
Eg: cout << head;
This will print the address of head.
But we want to print entire linked list uing "cout".
So, we will use operator overloading.
NOTE: cout << head;
| |
ostream Node
object object
So, "<<" operator will take 2 parameter.
One is Ostream object (for "cout")
Second is Node object (for "head")
*/
// // Opertor Overloading (i.e for cases like: cout << head;)
// void operator<<(ostream &os, Node *head)
// {
// print(head);
// return;
// }
// Cascading of Operators (i.e for cases like: cout << head << head2;)
ostream& operator<<(ostream &os, Node *head) // Both Return & Pass are by Reference
{
print(head);
return os; // returning "cout" by reference
/*
=> cout << head << head2;
|-----------|
return cout
=> cout << head2;
|------------|
return cout
=> cout; [OUTPUT]
NOTE: We will get "cout; as output.
"cout;" is a valid statement in C++ & writing it doesnot do anything.
*/
}
// Cascading of Operators (i.e for cases like: cin >> head >> head2;)
istream& operator>>(istream &is, Node *&head)
{
head = take_input_2();
return is;
}
// reverse a linked list [Complexity: O(N) time + O(1) space]
void reverse(Node *&head)
{
Node *curr = head; // for current node
Node *prev = NULL; // for previous node
Node *nxt; // for next node
while(curr != NULL)
{
nxt = curr->next; // save the next node
curr->next = prev; // make the current node point to previous node
prev = curr; // update previous node (for the next iteration)
curr = nxt; // update current node (for the next iteration)
}
head = prev; // update head
}
// recursively reverse a linked list [Complexity: O(N) time + O(N) space]
Node* recursive_reverse(Node *head)
{
// smallest linked list or when actual linked list is null
if(head->next == NULL or head == NULL)
{
return head;
}
// rec case
Node *smallhead = recursive_reverse(head->next);
// Node *temp = smallhead; // Before Optimization [Complexity: O(N^2) time] i.e O(N) for both recursion & Loop
// while(temp->next != NULL)
// {
// temp = temp->next;
// }
Node *temp = head->next; // After Optimization [Complexity: O(N) time]
temp->next = head;
head->next = NULL;
return smallhead;
/*
// NOTE: This is also correct.
Node *smallhead = recursive_reverse(head->next);
head->next->next = head;
head->next = NULL;
return smallhead;
*/
}
// Finding the mid point of linked list
Node* midpoint(Node *head)
{
// linked list with 0 or 1 node
if(head == NULL or head->next == NULL)
{
return head;
}
Node *slow = head;
Node *fast = head->next;
while(fast != NULL and fast->next != NULL) // checking 2 cases for fast pointer bcz fast takes 2 steps
{
fast = fast->next->next; // moving 2 steps
slow = slow->next; // moving 1 step
}
return slow; // returning the position where slow pointer stops (i.e mid point)
}
int main()
{
Node *head = NULL;
cout << "Enter Elements [Press -1 to Exit]: ";
cin >> head;
cout << "Linked List: ";
// print(head);
cout << head;
Node *mid = midpoint(head); // finding the mid point
cout << "Linked List [Midpoint]: ";
cout << mid->data << endl;
return 0;
}
/*
OUTPUT:
Case 1 [For Odd number of nodes in linked list]
Enter Elements [Press -1 to Exit] : 1 2 3 4 5 -1
Linked List : 5 -> 4 -> 3 -> 2 -> 1
Linked List [Midpoint] : 3
Case 2 [For Even number of nodes in linked list]
Enter Elements [Press -1 to Exit] : 1 2 3 4 -1
Linked List : 4 -> 3 -> 2 -> 1
Linked List [Midpoint] : 3
*/