forked from Gmgge/TrOCR-Seal-Recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
121 lines (97 loc) · 4.91 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import os
import argparse
from tool.dataset import trocrDataset, decode_text
from transformers import TrOCRProcessor
from transformers import VisionEncoderDecoderModel
from transformers import default_data_collator
from sklearn.model_selection import train_test_split
from transformers import Seq2SeqTrainer, Seq2SeqTrainingArguments
from datasets import load_metric
from tool.file_tool import get_image_file_list
from tool.image_aug import aug_sequential
def compute_metrics(pred):
"""
计算cer,acc
:param pred:
:return:
"""
labels_ids = pred.label_ids
pred_ids = pred.predictions
pred_str = [decode_text(pred_id, vocab, vocab_inp) for pred_id in pred_ids]
labels_ids[labels_ids == -100] = processor.tokenizer.pad_token_id
label_str = [decode_text(labels_id, vocab, vocab_inp) for labels_id in labels_ids]
cer = cer_metric.compute(predictions=pred_str, references=label_str)
acc = [pred == label for pred, label in zip(pred_str, label_str)]
print([pred_str[0], label_str[0]])
acc = sum(acc)/(len(acc)+0.000001)
return {"cer": cer, "acc": acc}
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='trocr fine-tune训练')
parser.add_argument('--cust_data_init_weights_path', default='./cust-data/weights', type=str,
help="初始化训练权重,用于自己数据集上fine-tune权重")
parser.add_argument('--checkpoint_path', default='./checkpoint/trocr', type=str, help="训练模型保存地址")
parser.add_argument('--dataset_path', default='./dataset/cust-data/', type=str, help="训练数据集")
parser.add_argument('--per_device_train_batch_size', default=32, type=int, help="train batch size")
parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help="eval batch size")
parser.add_argument('--max_target_length', default=128, type=int, help="训练文字字符数")
parser.add_argument('--num_train_epochs', default=10, type=int, help="训练epoch数")
parser.add_argument('--eval_steps', default=1000, type=int, help="模型评估间隔数")
parser.add_argument('--save_steps', default=1000, type=int, help="模型保存间隔步数")
parser.add_argument('--CUDA_VISIBLE_DEVICES', default='0,1', type=str, help="GPU设置")
args = parser.parse_args()
print("train param")
print(args)
os.environ["CUDA_VISIBLE_DEVICES"] = args.CUDA_VISIBLE_DEVICES
print("loading data .................")
paths = get_image_file_list(args.dataset_path)
print("data count: {}".format(len(paths)))
train_paths, test_paths = train_test_split(paths, test_size=0.05, random_state=10086)
print("train num:", len(train_paths), "test num:", len(test_paths))
# 图像预处理
processor = TrOCRProcessor.from_pretrained(args.cust_data_init_weights_path)
vocab = processor.tokenizer.get_vocab()
vocab_inp = {vocab[key]: key for key in vocab}
train_transformer = aug_sequential # 训练集数据增强
train_dataset = trocrDataset(paths=train_paths, processor=processor, max_target_length=args.max_target_length,
transformer=train_transformer)
eval_transformer = lambda x: x # 验证集数据增强 通常验证不做数据增强
eval_dataset = trocrDataset(paths=test_paths, processor=processor, max_target_length=args.max_target_length,
transformer=eval_transformer)
model = VisionEncoderDecoderModel.from_pretrained(args.cust_data_init_weights_path)
model.config.decoder_start_token_id = processor.tokenizer.cls_token_id
model.config.pad_token_id = processor.tokenizer.pad_token_id
model.config.vocab_size = model.config.decoder.vocab_size
model.config.eos_token_id = processor.tokenizer.sep_token_id
model.config.max_length = 256
model.config.early_stopping = True
model.config.no_repeat_ngram_size = 3
model.config.length_penalty = 2.0
model.config.num_beams = 4
cer_metric = load_metric("./tool/cer.py")
training_args = Seq2SeqTrainingArguments(
predict_with_generate=True,
evaluation_strategy="steps",
per_device_train_batch_size=args.per_device_train_batch_size,
per_device_eval_batch_size=8,
fp16=True,
output_dir=args.checkpoint_path,
logging_steps=10,
num_train_epochs=args.num_train_epochs,
save_steps=args.eval_steps,
eval_steps=args.eval_steps,
save_total_limit=5,
learning_rate=4e-4
)
# seq2seq trainer
trainer = Seq2SeqTrainer(
model=model,
tokenizer=processor.feature_extractor,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
data_collator=default_data_collator,
)
trainer.train()
trainer.save_model(os.path.join(args.checkpoint_path, 'last'))
processor.save_pretrained(os.path.join(args.checkpoint_path, 'last'))