-
Notifications
You must be signed in to change notification settings - Fork 19
/
utils.py
419 lines (375 loc) · 14.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
import struct
import time
import numpy as np
from dataclasses import dataclass
from typing import Dict, Union
from pathlib import Path
import torch
import math
from collections import defaultdict
from pprint import pprint
from kornia import create_meshgrid
@dataclass(frozen=True)
class CameraModel:
model_id: int
model_name: str
num_params: int
@dataclass(frozen=True)
class Camera:
id: int
model: str
width: int
height: int
params: np.ndarray
@dataclass(frozen=True)
class BaseImage:
id: int
qvec: np.ndarray
tvec: np.ndarray
camera_id: int
name: str
xys: np.ndarray
point3D_ids: np.ndarray
@dataclass(frozen=True)
class Point3D:
id: int
xyz: np.ndarray
rgb: np.ndarray
error: Union[float, np.ndarray]
image_ids: np.ndarray
point2D_idxs: np.ndarray
class Image(BaseImage):
def qvec2rotmat(self):
return qvec2rotmat(self.qvec)
CAMERA_MODELS = {
CameraModel(model_id=0, model_name="SIMPLE_PINHOLE", num_params=3),
CameraModel(model_id=1, model_name="PINHOLE", num_params=4),
CameraModel(model_id=2, model_name="SIMPLE_RADIAL", num_params=4),
CameraModel(model_id=3, model_name="RADIAL", num_params=5),
CameraModel(model_id=4, model_name="OPENCV", num_params=8),
CameraModel(model_id=5, model_name="OPENCV_FISHEYE", num_params=8),
CameraModel(model_id=6, model_name="FULL_OPENCV", num_params=12),
CameraModel(model_id=7, model_name="FOV", num_params=5),
CameraModel(model_id=8, model_name="SIMPLE_RADIAL_FISHEYE", num_params=4),
CameraModel(model_id=9, model_name="RADIAL_FISHEYE", num_params=5),
CameraModel(model_id=10, model_name="THIN_PRISM_FISHEYE", num_params=12),
}
CAMERA_MODEL_IDS = dict(
[(camera_model.model_id, camera_model) for camera_model in CAMERA_MODELS]
)
def read_next_bytes(fid, num_bytes, format_char_sequence, endian_character="<"):
"""Read and unpack the next bytes from a binary file.
:param fid:
:param num_bytes: Sum of combination of {2, 4, 8}, e.g. 2, 6, 16, 30, etc.
:param format_char_sequence: List of {c, e, f, d, h, H, i, I, l, L, q, Q}.
:param endian_character: Any of {@, =, <, >, !}
:return: Tuple of read and unpacked values.
"""
data = fid.read(num_bytes)
return struct.unpack(endian_character + format_char_sequence, data)
def read_cameras_text(path: Union[str, Path]) -> Dict[int, Camera]:
"""
see: src/base/reconstruction.cc
void Reconstruction::WriteCamerasText(const std::string& path)
void Reconstruction::ReadCamerasText(const std::string& path)
"""
cameras = {}
with open(path, "r") as fid:
while True:
line = fid.readline()
if not line:
break
line = line.strip()
if len(line) > 0 and line[0] != "#":
elems = line.split()
camera_id = int(elems[0])
model = elems[1]
width = int(elems[2])
height = int(elems[3])
params = np.array(tuple(map(float, elems[4:])))
cameras[camera_id] = Camera(
id=camera_id, model=model, width=width, height=height, params=params
)
return cameras
def read_cameras_binary(path_to_model_file: Union[str, Path]) -> Dict[int, Camera]:
"""
see: src/base/reconstruction.cc
void Reconstruction::WriteCamerasBinary(const std::string& path)
void Reconstruction::ReadCamerasBinary(const std::string& path)
"""
cameras = {}
with open(path_to_model_file, "rb") as fid:
num_cameras = read_next_bytes(fid, 8, "Q")[0]
for camera_line_index in range(num_cameras):
camera_properties = read_next_bytes(
fid, num_bytes=24, format_char_sequence="iiQQ"
)
camera_id = camera_properties[0]
model_id = camera_properties[1]
model_name = CAMERA_MODEL_IDS[camera_properties[1]].model_name
width = camera_properties[2]
height = camera_properties[3]
num_params = CAMERA_MODEL_IDS[model_id].num_params
params = read_next_bytes(
fid, num_bytes=8 * num_params, format_char_sequence="d" * num_params
)
cameras[camera_id] = Camera(
id=camera_id,
model=model_name,
width=width,
height=height,
params=np.array(params),
)
assert len(cameras) == num_cameras
return cameras
def read_images_text(path: Union[str, Path]) -> Dict[int, Image]:
"""
see: src/base/reconstruction.cc
void Reconstruction::ReadImagesText(const std::string& path)
void Reconstruction::WriteImagesText(const std::string& path)
"""
images = {}
with open(path, "r") as fid:
while True:
line = fid.readline()
if not line:
break
line = line.strip()
if len(line) > 0 and line[0] != "#":
elems = line.split()
image_id = int(elems[0])
qvec = np.array(tuple(map(float, elems[1:5])))
tvec = np.array(tuple(map(float, elems[5:8])))
camera_id = int(elems[8])
image_name = elems[9]
elems = fid.readline().split()
xys = np.column_stack(
[tuple(map(float, elems[0::3])), tuple(map(float, elems[1::3]))]
)
point3D_ids = np.array(tuple(map(int, elems[2::3])))
images[image_id] = Image(
id=image_id,
qvec=qvec,
tvec=tvec,
camera_id=camera_id,
name=image_name,
xys=xys,
point3D_ids=point3D_ids,
)
return images
def read_images_binary(path_to_model_file: Union[str, Path]) -> Dict[int, Image]:
"""
see: src/base/reconstruction.cc
void Reconstruction::ReadImagesBinary(const std::string& path)
void Reconstruction::WriteImagesBinary(const std::string& path)
"""
images = {}
with open(path_to_model_file, "rb") as fid:
num_reg_images = read_next_bytes(fid, 8, "Q")[0]
for image_index in range(num_reg_images):
binary_image_properties = read_next_bytes(
fid, num_bytes=64, format_char_sequence="idddddddi"
)
image_id = binary_image_properties[0]
qvec = np.array(binary_image_properties[1:5])
tvec = np.array(binary_image_properties[5:8])
camera_id = binary_image_properties[8]
image_name = ""
current_char = read_next_bytes(fid, 1, "c")[0]
while current_char != b"\x00": # look for the ASCII 0 entry
image_name += current_char.decode("utf-8")
current_char = read_next_bytes(fid, 1, "c")[0]
num_points2D = read_next_bytes(fid, num_bytes=8, format_char_sequence="Q")[
0
]
x_y_id_s = read_next_bytes(
fid,
num_bytes=24 * num_points2D,
format_char_sequence="ddq" * num_points2D,
)
xys = np.column_stack(
[tuple(map(float, x_y_id_s[0::3])), tuple(map(float, x_y_id_s[1::3]))]
)
point3D_ids = np.array(tuple(map(int, x_y_id_s[2::3])))
images[image_id] = Image(
id=image_id,
qvec=qvec,
tvec=tvec,
camera_id=camera_id,
name=image_name,
xys=xys,
point3D_ids=point3D_ids,
)
return images
def read_points3D_text(path: Union[str, Path]):
"""
see: src/base/reconstruction.cc
void Reconstruction::ReadPoints3DText(const std::string& path)
void Reconstruction::WritePoints3DText(const std::string& path)
"""
points3D = {}
with open(path, "r") as fid:
while True:
line = fid.readline()
if not line:
break
line = line.strip()
if len(line) > 0 and line[0] != "#":
elems = line.split()
point3D_id = int(elems[0])
xyz = np.array(tuple(map(float, elems[1:4])))
rgb = np.array(tuple(map(int, elems[4:7])))
error = float(elems[7])
image_ids = np.array(tuple(map(int, elems[8::2])))
point2D_idxs = np.array(tuple(map(int, elems[9::2])))
points3D[point3D_id] = Point3D(
id=point3D_id,
xyz=xyz,
rgb=rgb,
error=error,
image_ids=image_ids,
point2D_idxs=point2D_idxs,
)
return points3D
def read_points3d_binary(path_to_model_file: Union[str, Path]) -> Dict[int, Point3D]:
"""
see: src/base/reconstruction.cc
void Reconstruction::ReadPoints3DBinary(const std::string& path)
void Reconstruction::WritePoints3DBinary(const std::string& path)
"""
points3D = {}
with open(path_to_model_file, "rb") as fid:
num_points = read_next_bytes(fid, 8, "Q")[0]
for point_line_index in range(num_points):
binary_point_line_properties = read_next_bytes(
fid, num_bytes=43, format_char_sequence="QdddBBBd"
)
point3D_id = binary_point_line_properties[0]
xyz = np.array(binary_point_line_properties[1:4])
rgb = np.array(binary_point_line_properties[4:7])
error = np.array(binary_point_line_properties[7])
track_length = read_next_bytes(fid, num_bytes=8, format_char_sequence="Q")[
0
]
track_elems = read_next_bytes(
fid,
num_bytes=8 * track_length,
format_char_sequence="ii" * track_length,
)
image_ids = np.array(tuple(map(int, track_elems[0::2])))
point2D_idxs = np.array(tuple(map(int, track_elems[1::2])))
points3D[point3D_id] = Point3D(
id=point3D_id,
xyz=xyz,
rgb=rgb,
error=error,
image_ids=image_ids,
point2D_idxs=point2D_idxs,
)
return points3D
def qvec2rotmat(qvec):
return np.array(
[
[
1 - 2 * qvec[2] ** 2 - 2 * qvec[3] ** 2,
2 * qvec[1] * qvec[2] - 2 * qvec[0] * qvec[3],
2 * qvec[3] * qvec[1] + 2 * qvec[0] * qvec[2],
],
[
2 * qvec[1] * qvec[2] + 2 * qvec[0] * qvec[3],
1 - 2 * qvec[1] ** 2 - 2 * qvec[3] ** 2,
2 * qvec[2] * qvec[3] - 2 * qvec[0] * qvec[1],
],
[
2 * qvec[3] * qvec[1] - 2 * qvec[0] * qvec[2],
2 * qvec[2] * qvec[3] + 2 * qvec[0] * qvec[1],
1 - 2 * qvec[1] ** 2 - 2 * qvec[2] ** 2,
],
]
)
def q2r(qvec):
# qvec B x 4
qvec = qvec / qvec.norm(dim=1, keepdim=True)
rot = [
1 - 2 * qvec[:, 2] ** 2 - 2 * qvec[:, 3] ** 2,
2 * qvec[:, 1] * qvec[:, 2] - 2 * qvec[:, 0] * qvec[:, 3],
2 * qvec[:, 3] * qvec[:, 1] + 2 * qvec[:, 0] * qvec[:, 2],
2 * qvec[:, 1] * qvec[:, 2] + 2 * qvec[:, 0] * qvec[:, 3],
1 - 2 * qvec[:, 1] ** 2 - 2 * qvec[:, 3] ** 2,
2 * qvec[:, 2] * qvec[:, 3] - 2 * qvec[:, 0] * qvec[:, 1],
2 * qvec[:, 3] * qvec[:, 1] - 2 * qvec[:, 0] * qvec[:, 2],
2 * qvec[:, 2] * qvec[:, 3] + 2 * qvec[:, 0] * qvec[:, 1],
1 - 2 * qvec[:, 1] ** 2 - 2 * qvec[:, 2] ** 2,
]
rot = torch.stack(rot, dim=1).reshape(-1, 3, 3)
return rot
def jacobian_torch(a):
_rsqr = 1./(a[:, 0]**2 + a[:, 1]**2 + a[:, 2]**2).sqrt()
_res = [
1/a[:,2], torch.zeros_like(a[:,0]), -a[:,0]/(a[:,2]**2),
torch.zeros_like(a[:,0]), 1/a[:,2], -a[:,1]/(a[:,2]**2),
_rsqr * a[:, 0], _rsqr * a[:, 1], _rsqr * a[:, 2]
]
return torch.stack(_res, dim=-1).reshape(-1, 3, 3)
def initialize_sh(rgbs):
sh_coeff = torch.zeros(rgbs.shape[0], 3, 9, device=rgbs.device, dtype=rgbs.dtype)
sh_coeff[:, :, 0] = rgbs / 0.28209479177387814
return sh_coeff.flatten(1)
def inverse_sigmoid(y=0.001):
return -math.log(1/y - 1)
def inverse_sigmoid_torch(y):
return -torch.log(1/y - 1)
class Timer:
recorder = defaultdict(list)
def __init__(self, des="", verbose=False, record=True, debug=True) -> None:
self.des = des
self.verbose = verbose
self.record = record
self.debug = debug
def __enter__(self):
if not self.debug:
return self
self.start = time.time()
self.start_cuda = torch.cuda.Event(enable_timing=True)
self.end_cuda = torch.cuda.Event(enable_timing=True)
self.start_cuda.record()
return self
def __exit__(self, *args):
if not self.debug:
return
self.end = time.time()
self.end_cuda.record()
torch.cuda.synchronize()
self.interval = self.start_cuda.elapsed_time(self.end_cuda)/1000.
if self.verbose:
print(f"[cudasync]{self.des} consuming {self.interval:.8f}")
if self.record:
Timer.recorder[self.des].append(self.interval)
@staticmethod
def show_recorder():
pprint({k: np.mean(v) for k, v in Timer.recorder.items()})
def sample_two_point(gaussian_pos, gaussian_cov):
# gaussian_cov: (..., 3, 3)
# gaussian_pos: (..., 3)
# n_samples: (...)
# return: (..., n_samples, 3)
dist = torch.distributions.multivariate_normal.MultivariateNormal(
gaussian_pos,
gaussian_cov,
)
p1 = dist.sample()
p2 = dist.sample()
return p1, p2
def clamp(x):
return torch.clamp(x, min=0, max=1)
def get_rays_direction_in_camera_space(H, W, focal):
grid = create_meshgrid(H, W, normalized_coordinates=False)[0] + 0.5
i, j = grid.unbind(-1)
cent = [W/2, H/2]
directions = torch.stack([(i - cent[0]) / focal[0], (j - cent[1]) / focal[1], torch.ones_like(i)], -1)
return directions
def get_rays_direction(w2c_rot, H, W, focal):
c2w = torch.inverse(w2c_rot)
directions = get_rays_direction_in_camera_space(H, W, focal)
rays_d = directions @ c2w[:3, :3].T # (H, W, 3)
return rays_d