diff --git a/README.md b/README.md index 23f89ff..2e16f81 100644 --- a/README.md +++ b/README.md @@ -2,11 +2,11 @@ # gnlse-python -gnlse-python is a Python set of scripts for solving -Generalized Nonlinear Schrodringer Equation. It is one of the WUST-FOG students +gnlse-python is a Python set of scripts for solving +Generalized Nonlinear Schrodringer Equation. It is one of the WUST-FOG students projects developed by [Fiber Optics Group, WUST](http://www.fog.pwr.edu.pl/). -Complete documentation is available at +Complete documentation is available at [https://gnlse.readthedocs.io](https://gnlse.readthedocs.io) ## Installation @@ -15,7 +15,7 @@ Complete documentation is available at 2. Activate it with `. gnlse/bin/activate`. 3. Clone this repository `git clone https://github.com/WUST-FOG/gnlse-python.git` 4. Install the requirements in this directory `pip install -r requirements.txt`. -5. Install gnlse package `pip install .` or set `PYTHONPATH` enviroment variable +5. Install gnlse package `pip install .` (or `pip install -v -e .` for develop mode) or set `PYTHONPATH` enviroment variable ```bash python -m venv gnlse @@ -38,6 +38,7 @@ cd gnlse-python/examples python test_Dudley.py ``` + And you expect to visualise supercontinuum generation process in use of 3 types of pulses (simulation similar to Fig.3 of Dudley et. al, RMP 78 1135 (2006)): @@ -47,12 +48,12 @@ And you expect to visualise supercontinuum generation process in use of 3 types - **Modular Design** - Main core of gnlse module is derived from the RK4IP matlab script - written by J.C.Travers, H. Frosz and J.M. Dudley - that is provided in "Supercontinuum Generation in Optical Fibers", - edited by J. M. Dudley and J. R. Taylor (Cambridge 2010). + Main core of gnlse module is derived from the RK4IP matlab script + written by J.C.Travers, H. Frosz and J.M. Dudley + that is provided in "Supercontinuum Generation in Optical Fibers", + edited by J. M. Dudley and J. R. Taylor (Cambridge 2010). The toolbox prepares integration using SCIPYs ode solvers (adaptive step size). - We decompose the solver framework into different components + We decompose the solver framework into different components and one can easily construct a customized simulations by accounting different physical phenomena, ie. self stepening, Raman response. @@ -61,7 +62,13 @@ And you expect to visualise supercontinuum generation process in use of 3 types We implement three different raman response functions: - 'blowwood': Blow and D. Wood, IEEE J. of Quant. Elec., vol. 25, no. 12, pp. 2665–2673, Dec. 1989, - 'linagrawal': Lin and Agrawal, Opt. Lett., vol. 31, no. 21, pp. 3086–3088, Nov. 2006, - - 'hollenbeck': Hollenbeck and Cantrell J. Opt. Soc. Am. B / Vol. 19, No. 12 / December 2002. + - 'hollenbeck': Hollenbeck and Cantrell, J. Opt. Soc. Am. B, vol. 19, no. 12, Dec. 2002. + +- **Nonlinearity** + + We implement the possibility to account effective mode area's dependence on frequency: + - provide float value for gamma (effective nonlinear coefficient) + - 'NonlinearityFromEffectiveArea': introduce effective mode area's dependence on frequency (J. Laegsgaard, Opt. Express, vol. 15, no. 24, pp. 16110-16123, Nov. 2007). - **Dispersion operator** @@ -76,28 +83,33 @@ And you expect to visualise supercontinuum generation process in use of 3 types - plot_Raman_response.py: plots different Raman in temporal domain, - test_3rd_order_soliton.py: evolution of the spectral and temporal characteristics of the 3rd order soliton, - test_dispersion.py: example of supercontinuum generation using different dispersion operators, + - test_nonlinearity.py: example of supercontinuum generation using different GNLSE and M-GNLSE (take into account mode profile dispersion), - test_Dudley.py: example of supercontinuum generation with three types of input pulse, - test_gvd.py: example of impuls broadening due to group velocity dispersion, - test_import_export.py: example of saving file with `.mat` extension, - test_raman.py: example of soliton fision for diffrent raman response functions, - test_spm.py: example of self phase modulation, - test_spm+gvd.py: example of generation of 1st order soliton. - + ## Release History -v1.0.0 was released in 13/8/2020. +v1.1.0 was released in 21/8/2021. The master branch works with **python 3.7**. * **1.0.0 -> Aug 13th, 2020** * The first proper release * CHANGE: Complete documentation and code +* **1.1.0 -> Aug 21th, 2021** + * Modified-GNLSE extension + * CHANGE: Code refactor - relocate GNLSE's attribiutes setting into constructor + * ADD: Possibility to take into account the effective mode area's dependence on frequency ## Authors - [Adam Pawłowski](https://github.com/adampawl) - [Paweł Redman](https://redman.xyz/) - [Daniel Szulc](http://szulc.xyz/) -- Magda Zatorska +- [Magda Zatorska](https://github.com/magdazatorska) - [Sylwia Majchrowska](https://majsylw.netlify.app/) - [Karol Tarnowski](http://www.if.pwr.wroc.pl/~tarnowski/) @@ -134,4 +146,4 @@ what you would like to change. Please make sure to update example tests as appropriate. ## License -[MIT](https://choosealicense.com/licenses/mit/) \ No newline at end of file +[MIT](https://choosealicense.com/licenses/mit/) diff --git a/gnlse/gnlse.py b/gnlse/gnlse.py index e8fb609..a11394f 100644 --- a/gnlse/gnlse.py +++ b/gnlse/gnlse.py @@ -183,6 +183,7 @@ def __init__(self, setup): self.scale = 1 # Raman scattering + self.RW = None if setup.raman_model: self.fr, RT = setup.raman_model(self.t) if np.abs(self.fr) < np.finfo(float).eps: