forked from TheAlgorithms/JavaScript
-
Notifications
You must be signed in to change notification settings - Fork 0
/
BinarySearchTree.js
158 lines (144 loc) · 3.53 KB
/
BinarySearchTree.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
/* Binary Search Tree!!
*
* Nodes that will go on the Binary Tree.
* They consist of the data in them, the node to the left, the node
* to the right, and the parent from which they came from.
*
* A binary tree is a data structure in which an element
* has two successors(children). The left child is usually
* smaller than the parent, and the right child is usually
* bigger.
*/
// class Node
const Node = (function Node() {
// Node in the tree
class Node {
constructor(val) {
this.value = val
this.left = null
this.right = null
}
// Search the tree for a value
search(val) {
if (this.value === val) {
return this
} else if (val < this.value && this.left !== null) {
return this.left.search(val)
} else if (val > this.value && this.right !== null) {
return this.right.search(val)
}
return null
}
// Visit a node
visit(output = (value) => console.log(value)) {
// Recursively go left
if (this.left !== null) {
this.left.visit()
}
// Print out value
output(this.value)
// Recursively go right
if (this.right !== null) {
this.right.visit()
}
}
// Add a node
addNode(n) {
if (n.value < this.value) {
if (this.left === null) {
this.left = n
} else {
this.left.addNode(n)
}
} else if (n.value > this.value) {
if (this.right === null) {
this.right = n
} else {
this.right.addNode(n)
}
}
}
// remove a node
removeNode(val) {
if (val === this.value) {
if (!this.left && !this.right) {
return null
} else {
if (this.left) {
const leftMax = maxVal(this.left)
this.value = leftMax
this.left = this.left.removeNode(leftMax)
} else {
const rightMin = minVal(this.right)
this.value = rightMin
this.right = this.right.removeNode(rightMin)
}
}
} else if (val < this.value) {
this.left = this.left && this.left.removeNode(val)
} else if (val > this.value) {
this.right = this.right && this.right.removeNode(val)
}
return this
}
}
// find maximum value in the tree
const maxVal = function (node) {
if (!node.right) {
return node.value
}
return maxVal(node.right)
}
// find minimum value in the tree
const minVal = function (node) {
if (!node.left) {
return node.value
}
return minVal(node.left)
}
// returns the constructor
return Node
})()
// class Tree
const Tree = (function () {
class Tree {
constructor() {
// Just store the root
this.root = null
}
// Inorder traversal
traverse() {
if (!this.root) {
// No nodes are there in the tree till now
return
}
this.root.visit()
}
// Start by searching the root
search(val) {
const found = this.root.search(val)
if (found !== null) {
return found.value
}
// not found
return null
}
// Add a new value to the tree
addValue(val) {
const n = new Node(val)
if (this.root === null) {
this.root = n
} else {
this.root.addNode(n)
}
}
// remove a value from the tree
removeValue(val) {
// remove something if root exists
this.root = this.root && this.root.removeNode(val)
}
}
// returns the constructor
return Tree
})()
export { Tree }