Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update README.md: add cuda install hint #176

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -83,7 +83,7 @@ See the instructions [here](docs/install_ocrmypdf.md)
First, some configuration:

- Inspect the settings in `marker/settings.py`. You can override any settings with environment variables.
- Your torch device will be automatically detected, but you can override this. For example, `TORCH_DEVICE=cuda`.
- Your torch device will be automatically detected, but you can override this. For example, `TORCH_DEVICE=cuda`. (Should have cuda installed : `https://developer.nvidia.com/cuda-downloads`)
- If using GPU, set `INFERENCE_RAM` to your GPU VRAM (per GPU). For example, if you have 16 GB of VRAM, set `INFERENCE_RAM=16`.
- Depending on your document types, marker's average memory usage per task can vary slightly. You can configure `VRAM_PER_TASK` to adjust this if you notice tasks failing with GPU out of memory errors.
- By default, marker will use `surya` for OCR. Surya is slower on CPU, but more accurate than tesseract. If you want faster OCR, set `OCR_ENGINE` to `ocrmypdf`. This also requires external dependencies (see above). If you don't want OCR at all, set `OCR_ENGINE` to `None`.
Expand Down Expand Up @@ -206,4 +206,4 @@ This work would not have been possible without amazing open source models and da
- DocLayNet from IBM
- ByT5 from Google

Thank you to the authors of these models and datasets for making them available to the community!
Thank you to the authors of these models and datasets for making them available to the community!
Loading