-
Notifications
You must be signed in to change notification settings - Fork 11
/
testDirectIndirect.py
258 lines (207 loc) · 10.6 KB
/
testDirectIndirect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import utils
import torch
import numpy as np
import argparse
import random
import os
import models
import modelLight
import torchvision.utils as vutils
import dataLoader
import torch.nn as nn
from torch.utils.data import DataLoader
import torch.nn.functional as F
import os.path as osp
parser = argparse.ArgumentParser()
# The locationi of training set
parser.add_argument('--dataRoot',default='Dataset', help='path to input images')
parser.add_argument('--experimentBRDF', default=None, help='the path to store samples and models' )
parser.add_argument('--experiment', default=None, help='the path to store samples and models' )
parser.add_argument('--testRoot', default=None, help='the path to test results')
# The basic training setting
parser.add_argument('--nepochBRDF', type=int, default=15, help='the number of epochs for BRDF prediction')
parser.add_argument('--batchSize', type=int, default=1, help='input batch size' )
parser.add_argument('--imHeight', type=int, default=240, help='the height / width of the input image to network')
parser.add_argument('--imWidth', type=int, default=320, help='the height / width of the input image to network')
parser.add_argument('--envRow', type=int, default=120, help='the number of samples of envmaps in y direction')
parser.add_argument('--envCol', type=int, default=160, help='the number of samples of envmaps in x direction')
parser.add_argument('--deviceIds', type=int, nargs='+', default=[0], help='the gpus used for training network')
# Finetuning parameters
parser.add_argument('--iterId', type=int, default=180000, help='the iteration used for fine-tuning')
# The training weight
parser.add_argument('--shadingWeight', type=float, default=1, help='the weight for rendering error' )
parser.add_argument('--renderWeight', type=float, default=1, help='the weight for rendering error' )
# The detail network setting
opt = parser.parse_args()
print(opt )
opt.gpuId = opt.deviceIds[0]
torch.multiprocessing.set_sharing_strategy('file_system')
torch.autograd.set_detect_anomaly(True )
curDir = '/'.join(osp.abspath(__file__).split('/')[0:-1] )
if opt.experiment is None:
opt.experiment = 'check_directIndirect'
opt.experiment = osp.join(curDir, opt.experiment )
if opt.testRoot is None:
opt.testRoot = opt.experiment.replace('check_', 'test_')
os.system('mkdir {0}'.format(opt.testRoot ) )
os.system('cp %s/*.py %s' % (curDir, opt.testRoot ) )
opt.seed = 32
print("Random Seed: ", opt.seed )
random.seed(opt.seed )
torch.manual_seed(opt.seed )
# Network for BRDF prediction
encoder = models.encoder(isGtGeometry = True )
albedoDecoder = models.decoder(mode=0 )
normalDecoder = models.decoder(mode=1 )
roughDecoder = models.decoder(mode=2 )
indirectLightNet = modelLight.indirectLightNet()
indirectLightDict = torch.load('{0}/indirectLightNet_iter{1}.pth'.format(opt.experiment, opt.iterId ) )
indirectLightNet.load_state_dict(indirectLightDict['model'] )
for param in indirectLightNet.parameters():
param.requires_grad = False
if opt.experimentBRDF is None:
opt.experimentBRDF = 'check_brdf_w%d_h%d' % (opt.imWidth, opt.imHeight )
opt.experimentBRDF = osp.join(curDir, opt.experimentBRDF )
encoder.load_state_dict(
torch.load('{0}/encoder_{1}.pth'.format(opt.experimentBRDF, opt.nepochBRDF-1 ) ) )
albedoDecoder.load_state_dict(
torch.load('{0}/albedo_{1}.pth'.format(opt.experimentBRDF, opt.nepochBRDF-1 ) ) )
normalDecoder.load_state_dict(
torch.load('{0}/normal_{1}.pth'.format(opt.experimentBRDF, opt.nepochBRDF-1 ) ) )
roughDecoder.load_state_dict(
torch.load('{0}/rough_{1}.pth'.format(opt.experimentBRDF, opt.nepochBRDF-1 ) ) )
for param in encoder.parameters():
param.requires_grad = False
for param in albedoDecoder.parameters():
param.requires_grad = False
for param in normalDecoder.parameters():
param.requires_grad = False
for param in roughDecoder.parameters():
param.requires_grad = False
encoder = nn.DataParallel(encoder, device_ids = opt.deviceIds )
albedoDecoder = nn.DataParallel(albedoDecoder, device_ids = opt.deviceIds )
normalDecoder = nn.DataParallel(normalDecoder, device_ids = opt.deviceIds )
roughDecoder = nn.DataParallel(roughDecoder, device_ids = opt.deviceIds )
indirectLightNet = nn.DataParallel(indirectLightNet, device_ids = opt.deviceIds )
# Send things into GPU
encoder = encoder.cuda()
albedoDecoder = albedoDecoder.cuda()
normalDecoder = normalDecoder.cuda()
roughDecoder = roughDecoder.cuda()
indirectLightNet = indirectLightNet.cuda()
brdfDataset = dataLoader.BatchLoader( opt.dataRoot,
imWidth = opt.imWidth, imHeight = opt.imHeight, rseed = opt.seed,
isShading = True, isLightSrc = True, phase = 'TEST' )
brdfLoader = DataLoader(brdfDataset, batch_size = opt.batchSize,
num_workers = 0, shuffle = False, drop_last = False )
j = 0
shadingErrsNpList = np.ones( [1, 2], dtype = np.float32 )
nrow = opt.batchSize * 3
testingLog = open('{0}/testingLog_iter{1}.txt'.format(opt.testRoot, opt.iterId ), 'w')
for i, dataBatch in enumerate(brdfLoader ):
j += 1
# Load brdf
albedoBatch, normalBatch, roughBatch, \
depthBatch, depthOriginBatch, depthScaleBatch, \
segBRDFBatch, segAllBatch \
= dataLoader.getBRDF(dataBatch )
albedoSmallBatch = F.adaptive_avg_pool2d( albedoBatch, (opt.envRow, opt.envCol ) )
# Load image
im_cpu = dataBatch['im']
imBatch = im_cpu.cuda()
imDl_cpu = dataBatch['imDl']
imDlBatch = imDl_cpu.cuda()
imDm_cpu = dataBatch['imDm']
imDmBatch = imDm_cpu.cuda()
imBatch = torch.cat([imBatch, imDlBatch, imDmBatch], dim=0 )
lightOnMasks_cpu = dataBatch['lightOnMasks']
lightOnMasksBatch = lightOnMasks_cpu.cuda()
lightOnMasksDl_cpu = dataBatch['lightOnMasksDl']
lightOnMasksDlBatch = lightOnMasksDl_cpu.cuda()
lightOnMasksBatch = torch.cat([lightOnMasksBatch,
lightOnMasksDlBatch, lightOnMasksBatch ], dim=0 )
lightOnMasksSmallBatch = F.adaptive_avg_pool2d(lightOnMasksBatch, (opt.envRow, opt.envCol ) )
# Load shading
shadingBatch, shadingDirectBatch \
= dataLoader.getShading(dataBatch )
nameBatch = dataBatch['name']
batchSize = imBatch.size(0 )
# Predict the large BRDF
depthMax = torch.max(torch.max(depthBatch, dim=2, keepdim=True )[0], dim=3, keepdim=True )[0]
depthBatch = depthBatch * segAllBatch + (1 - segAllBatch ) * depthMax
inputBatch = torch.cat([imBatch, depthBatch], dim=1 )
# Predict the large BRDF
x1, x2, x3, x4, x5, x6 = encoder(inputBatch )
albedoPred, _ = albedoDecoder(x1, x2, x3,
x4, x5, x6, [opt.imHeight, opt.imWidth ] )
normalPred, _ = normalDecoder(x1, x2, x3,
x4, x5, x6, [opt.imHeight, opt.imWidth] )
roughPred, _ = roughDecoder(x1, x2, x3,
x4, x5, x6, [opt.imHeight, opt.imWidth] )
# Down sample the image and masks
segEnvBatch = F.adaptive_avg_pool2d(segBRDFBatch, (opt.envRow, opt.envCol ) )
albedoDS = F.adaptive_avg_pool2d(albedoPred, (opt.envRow, opt.envCol ) )
normalDS = F.adaptive_avg_pool2d(normalPred, (opt.envRow, opt.envCol ) )
roughDS = F.adaptive_avg_pool2d(roughPred, (opt.envRow, opt.envCol ) )
depthDS = F.adaptive_avg_pool2d(depthBatch, (opt.envRow, opt.envCol ) )
segEnvBatch = F.adaptive_avg_pool2d(segBRDFBatch, (opt.envRow, opt.envCol ) )
# Predict the global illumination
shadingDirectBatchInput = torch.atan(shadingDirectBatch ) / np.pi * 2.0
shadingIndirectPred = indirectLightNet(
albedoDS.detach(),
normalDS.detach(),
depthDS.detach(),
shadingDirectBatchInput.detach(),
lightOnMasksSmallBatch )
shadingPred = shadingIndirectPred + shadingDirectBatch.detach()
renderedPred = shadingPred * albedoDS
renderedGt = shadingBatch * albedoSmallBatch
shgErrs = []
loss1 = torch.mean( torch.abs(shadingPred - shadingBatch ) * segEnvBatch )
shgErrs.append(loss1 )
loss2 = torch.mean( torch.abs( renderedPred - renderedGt ) * segEnvBatch )
shgErrs.append(loss2 )
# Write errors to screen
utils.writeErrToScreen('shg', shgErrs, opt.iterId, j )
# Write errors to file
utils.writeErrToFile('shg', shgErrs, testingLog, opt.iterId, j )
# Accumulate errors
shadingErrsNpList = np.concatenate( [shadingErrsNpList, utils.turnErrorIntoNumpy( shgErrs ) ], axis=0 )
# Write errors to screen
utils.writeNpErrToScreen('shadingAccu', np.mean(shadingErrsNpList[1:j+1, :], axis=0), opt.iterId, j )
# Write errors to file
utils.writeNpErrToFile('shadingAccu', np.mean(shadingErrsNpList[1:j+1, :], axis=0), testingLog, opt.iterId, j )
if j == 1 or j% 200 == 0:
# Save the groundtruth results
vutils.save_image( ( (albedoBatch ) ** (1.0/2.2) ).data,
'{0}/{1}_albedoGt.png'.format(opt.testRoot, j), nrow=nrow )
vutils.save_image( ( 0.5*(normalBatch + 1) ).data,
'{0}/{1}_normalGt.png'.format(opt.testRoot, j), nrow=nrow )
vutils.save_image( ( 0.5*(roughBatch + 1) ).data,
'{0}/{1}_roughGt.png'.format(opt.testRoot, j), nrow=nrow )
depthOutGt = 1 / torch.clamp(depthBatch + 1, 1e-6, 10 )
vutils.save_image( ( depthOutGt ).data,
'{0}/{1}_depthGt.png'.format(opt.testRoot, j), nrow=nrow )
# Save the predicted BRDF
vutils.save_image( ( (albedoPred ) ** (1.0/2.2) ).data,
'{0}/{1}_albedoPred.png'.format(opt.testRoot, j), nrow=nrow )
vutils.save_image( ( 0.5*(normalPred + 1) ).data,
'{0}/{1}_normalPred.png'.format(opt.testRoot, j), nrow=nrow )
vutils.save_image( ( 0.5*(roughPred + 1) ).data,
'{0}/{1}_roughPred.png'.format(opt.testRoot, j), nrow=nrow )
# Output the groundtruth lighting and image
vutils.save_image( ( (imBatch )**(1.0/2.2) ).data,
'{0}/{1}_im.png'.format(opt.testRoot, j ), nrow=nrow )
vutils.save_image( ((shadingBatch)**(1.0/2.2) ).data,
'{0}/{1}_shadingGt.png'.format(opt.testRoot, j), nrow = nrow )
vutils.save_image( ((shadingDirectBatch )**(1.0/2.2) ).data,
'{0}/{1}_shadingDirectGt.png'.format(opt.testRoot, j), nrow = nrow )
vutils.save_image( ((renderedGt)**(1.0/2.2) ).data,
'{0}/{1}_renderedGt.png'.format(opt.testRoot, j), nrow = nrow )
vutils.save_image( ( (shadingPred )**(1.0/2.2) ).data,
'{0}/{1}_shadingPred.png'.format(opt.testRoot, j), nrow=nrow )
vutils.save_image( ( (renderedPred )**(1.0/2.2) ).data,
'{0}/{1}_renderedPred.png'.format(opt.testRoot, j), nrow=nrow )
testingLog.close()
# Save the error record
np.save('{0}/shadingError_iter{1}.npy'.format(opt.testRoot, opt.iterId ), shadingErrsNpList )