forked from AbdallahHemdan/Orchestra
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
156 lines (117 loc) · 5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
from preprocessing import *
from staff_removal import *
from helper_methods import *
import argparse
import os
import datetime
# Initialize parser
parser = argparse.ArgumentParser()
parser.add_argument("inputfolder", help = "Input File")
parser.add_argument("outputfolder", help = "Output File")
args = parser.parse_args()
with open(f"{args.outputfolder}/Output.txt", "w") as text_file:
text_file.write("Input Folder: %s" % args.inputfolder)
text_file.write("Output Folder: %s" % args.outputfolder)
text_file.write("Date: %s" % datetime.datetime.now())
# Threshold for line to be considered as an initial staff line #
threshold = 0.8
filename = 'model/model.sav'
model = pickle.load(open(filename, 'rb'))
accidentals = ['x', 'hash', 'b', 'symbol_bb', 'd']
def preprocessing(inputfolder, fn, f):
# Get image and its dimensions #
height, width, in_img = preprocess_img('{}/{}'.format(inputfolder, fn))
# Get line thinkness and list of staff lines #
staff_lines_thicknesses, staff_lines = get_staff_lines(width, height, in_img, threshold)
# Remove staff lines from original image #
cleaned = remove_staff_lines(in_img, width, staff_lines, staff_lines_thicknesses)
# Get list of cutted buckets and cutting positions #
cut_positions, cutted = cut_image_into_buckets(cleaned, staff_lines)
# Get reference line for each bucket #
ref_lines, lines_spacing = get_ref_lines(cut_positions, staff_lines)
return cutted, ref_lines, lines_spacing
def get_target_boundaries(label, cur_symbol, y2):
if label == 'b_8':
cutted_boundaries = cut_boundaries(cur_symbol, 2, y2)
label = 'a_8'
elif label == 'b_8_flipped':
cutted_boundaries = cut_boundaries(cur_symbol, 2, y2)
label = 'a_8_flipped'
elif label == 'b_16':
cutted_boundaries = cut_boundaries(cur_symbol, 4, y2)
label = 'a_16'
elif label == 'b_16_flipped':
cutted_boundaries = cut_boundaries(cur_symbol, 4, y2)
label = 'a_16_flipped'
else:
cutted_boundaries = cut_boundaries(cur_symbol, 1, y2)
return label, cutted_boundaries
def get_label_cutted_boundaries(boundary, height_before, cutted):
# Get the current symbol #
x1, y1, x2, y2 = boundary
cur_symbol = cutted[y1-height_before:y2+1-height_before, x1:x2+1]
# Clean and cut #
cur_symbol = clean_and_cut(cur_symbol)
cur_symbol = 255 - cur_symbol
# Start prediction of the current symbol #
feature = extract_hog_features(cur_symbol)
label = str(model.predict([feature])[0])
return get_target_boundaries(label, cur_symbol, y2)
def process_image(inputfolder, fn, f):
cutted, ref_lines, lines_spacing = preprocessing(inputfolder, fn, f)
last_acc = ''
last_num = ''
height_before = 0
if len(cutted) > 1:
f.write('{\n')
for it in range(len(cutted)):
f.write('[')
is_started = False
symbols_boundaries = segmentation(height_before, cutted[it])
symbols_boundaries.sort(key = lambda x: (x[0], x[1]))
for boundary in symbols_boundaries:
label, cutted_boundaries = get_label_cutted_boundaries(boundary, height_before, cutted[it])
if label == 'clef':
is_started = True
for cutted_boundary in cutted_boundaries:
_, y1, _, y2 = cutted_boundary
if is_started == True and label != 'barline' and label != 'clef':
text = text_operation(label, ref_lines[it], lines_spacing[it], y1, y2)
if (label == 't_2' or label == 't_4') and last_num == '':
last_num = text
elif label in accidentals:
last_acc = text
else:
if last_acc != '':
text = text[0] + last_acc + text[1:]
last_acc= ''
if last_num != '':
text = f'\meter<"{text}/{last_num}">'
last_num = ''
not_dot = label != 'dot'
f.write(not_dot * ' ' + text)
height_before += cutted[it].shape[0]
f.write(' ]\n')
if len(cutted) > 1:
f.write('}')
def main():
try:
os.mkdir(args.outputfolder)
except OSError as error:
pass
list_of_images = os.listdir(args.inputfolder)
for _, fn in enumerate(list_of_images):
# Open the output text file #
file_prefix = fn.split('.')[0]
f = open(f"{args.outputfolder}/{file_prefix}.txt", "w")
# Process each image separately #
try:
process_image(args.inputfolder, fn, f)
except Exception as e:
print(e)
print(f'{args.inputfolder}-{fn} has been failed !!')
pass
f.close()
print('Finished !!')
if __name__ == "__main__":
main()