This document has instructions for running Inception v3 inference using Intel-optimized PyTorch.
Follow link to install Conda and build Pytorch, IPEX, TorchVison and Jemalloc.
-
Set Jemalloc Preload for better performance
The jemalloc should be built from the General setup section.
export LD_PRELOAD="path/lib/libjemalloc.so":$LD_PRELOAD export MALLOC_CONF="oversize_threshold:1,background_thread:true,metadata_thp:auto,dirty_decay_ms:9000000000,muzzy_decay_ms:9000000000"
-
Set IOMP preload for better performance
IOMP should be installed in your conda env from the General setup section.
export LD_PRELOAD=path/lib/libiomp5.so:$LD_PRELOAD
-
Set ENV to use AMX if you are using SPR
export DNNL_MAX_CPU_ISA=AVX512_CORE_AMX
The ImageNet validation dataset is used to run Inception_v3 accuracy tests.
Download and extract the ImageNet2012 dataset from http://www.image-net.org/, then move validation images to labeled subfolders, using the valprep.sh shell script
A after running the data prep script, your folder structure should look something like this:
imagenet
└── val
├── ILSVRC2012_img_val.tar
├── n01440764
│ ├── ILSVRC2012_val_00000293.JPEG
│ ├── ILSVRC2012_val_00002138.JPEG
│ ├── ILSVRC2012_val_00003014.JPEG
│ ├── ILSVRC2012_val_00006697.JPEG
│ └── ...
└── ...
The folder that contains the val
directory should be set as the
DATASET_DIR
(for example: export DATASET_DIR=/home/<user>/imagenet
).
DataType | Throughput | Latency | Accuracy |
---|---|---|---|
FP32 | bash batch_inference_baremetal.sh fp32 | bash online_inference_baremetal.sh fp32 | bash accuracy_baremetal.sh fp32 |
BF16 | bash batch_inference_baremetal.sh bf16 | bash online_inference_baremetal.sh bf16 | bash accuracy_baremetal.sh bf16 |
Follow the instructions above to setup your bare metal environment, download and preprocess the dataset, and do the model specific setup. Once all the setup is done, the Model Zoo can be used to run a quickstart script. Ensure that you have enviornment variables set to point to the dataset directory and an output directory.
# Clone the model zoo repo and set the MODEL_DIR
git clone https://github.com/IntelAI/models.git
cd models
export MODEL_DIR=$(pwd)
# Env vars
export DATASET_DIR=#path_to_Imagenet_Dataset
export OUTPUT_DIR=#Where_to_save_log
# Run a quickstart script (for example, FP32 batch inference)
cd ${MODEL_DIR}/quickstart/image_recognition/pytorch/inception_v3/inference/cpu
bash batch_inference_baremetal.sh fp32