-
Notifications
You must be signed in to change notification settings - Fork 29
/
evaluate_trustworthy.py
79 lines (70 loc) · 2.22 KB
/
evaluate_trustworthy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import torch
import os
from vbench2_beta_trustworthiness import VBenchTrustworthiness
from datetime import datetime
import argparse
def parse_args():
CUR_DIR = os.path.dirname(os.path.abspath(__file__))
parser = argparse.ArgumentParser(description='VBench')
parser.add_argument(
"--output_path",
type=str,
default='./evaluation_trustworthy_results/',
help="output path to save the evaluation results",
)
parser.add_argument(
"--full_json_dir",
type=str,
default=f'{CUR_DIR}/vbench2_beta_trustworthiness/vbench2_trustworthy.json',
help="path to save the json file that contains the prompt and dimension information",
)
parser.add_argument(
"--videos_path",
type=str,
required=True,
help="folder that contains the sampled videos",
)
parser.add_argument(
"--dimension",
nargs='+',
required=True,
help="list of evaluation dimensions, usage: --dimension <dim_1> <dim_2>",
)
parser.add_argument(
"--load_ckpt_from_local",
type=bool,
required=False,
help="whether load checkpoints from local default paths (assuming you have downloaded the checkpoints locally",
)
parser.add_argument(
"--read_frame",
type=bool,
required=False,
help="whether directly read frames, or directly read videos",
)
parser.add_argument(
"--custom_input",
action="store_true",
required=False,
help="whether use custom input prompt or vbench prompt"
)
args = parser.parse_args()
return args
def main():
args = parse_args()
print(f'args: {args}')
device = torch.device("cuda")
my_VBench = VBenchTrustworthiness(device, args.full_json_dir, args.output_path)
print(f'start evaluation')
current_time = datetime.now().strftime('%Y-%m-%d-%H:%M:%S')
my_VBench.evaluate(
videos_path = args.videos_path,
name = f'results_{current_time}',
dimension_list = args.dimension,
local=args.load_ckpt_from_local,
read_frame=args.read_frame,
custom_prompt=args.custom_input,
)
print('done')
if __name__ == "__main__":
main()