-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
44 lines (33 loc) · 1.24 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import tensorflow
from tensorflow.keras.preprocessing import image
from tensorflow.keras.layers import GlobalMaxPooling2D
from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input
import numpy as np
from numpy.linalg import norm
import os
from tqdm import tqdm
import pickle
import PIL.Image
model = ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
model.trainable = False
model = tensorflow.keras.Sequential([
model,
GlobalMaxPooling2D()
])
# print(model.summary())
def extract_features(img_path,model):
img = image.load_img(img_path, target_size=(224, 224))
img_array = image.img_to_array(img)
expanded_img_array = np.expand_dims(img_array, axis=0)
preprocessed_img = preprocess_input(expanded_img_array)
result = model.predict(preprocessed_img).flatten()
normalized_result = result / norm(result)
return normalized_result
filenames = []
for file in os.listdir('images'):
filenames.append(os.path.join('images', file))
feature_list = []
for file in tqdm(filenames):
feature_list.append(extract_features(file, model))
pickle.dump(feature_list, open('embeddings.pkl', 'wb'))
pickle.dump(filenames, open('filenames.pkl', 'wb'))