-
Notifications
You must be signed in to change notification settings - Fork 339
/
Copy pathbenchmark_latency.py
67 lines (56 loc) · 2.4 KB
/
benchmark_latency.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from torchvision.models import resnet50 as model_entry
import sys, os
import time
sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))
import torch_pruning as tp
import torch
def main():
model = model_entry(pretrained=True).to('cuda:0')
example_input = torch.rand(32, 3, 224, 224).to('cuda:0')
importance = tp.importance.MagnitudeImportance(p=2)
iterative_steps = 20
pruner = tp.pruner.MagnitudePruner(
model = model,
example_inputs=example_input,
importance=importance,
pruning_ratio=1,
iterative_steps=iterative_steps,
round_to=2,
)
# Before Pruning
macs, params = tp.utils.count_ops_and_params(model, example_input)
latency_mu, latency_std = estimate_latency(model, example_input)
# print all with .2f
print(f"[Iter 0] \tPruning ratio: 0.00, \tMACs: {macs/1e9:.2f} G, \tParams: {params/1e6:.2f} M, \tLatency: {latency_mu:.2f} ms +- {latency_std:.2f} ms")
for iter in range(iterative_steps):
pruner.step()
_macs, _params = tp.utils.count_ops_and_params(model, example_input)
latency_mu, latency_std = estimate_latency(model, example_input)
current_pruning_ratio = 1 / iterative_steps * (iter + 1)
print(f"[Iter {iter+1}] \tPruning ratio: {current_pruning_ratio:.2f}, \tMACs: {_macs/1e9:.2f} G, \tParams: {_params/1e6:.2f} M, \tLatency: {latency_mu:.2f} ms +- {latency_std:.2f} ms")
# uncomment the following lines to profile
#with torch.autograd.profiler.profile(use_cuda=True) as prof:
# with torch.no_grad():
# for _ in range(50):
# _ = model(example_input)
#print(prof)
def estimate_latency(model, example_inputs, repetitions=50):
import numpy as np
starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
timings=np.zeros((repetitions,1))
for _ in range(5):
_ = model(example_inputs)
with torch.no_grad():
for rep in range(repetitions):
starter.record()
_ = model(example_inputs)
ender.record()
# WAIT FOR GPU SYNC
torch.cuda.synchronize()
curr_time = starter.elapsed_time(ender)
timings[rep] = curr_time
mean_syn = np.sum(timings) / repetitions
std_syn = np.std(timings)
return mean_syn, std_syn
if __name__=='__main__':
main()