-
Notifications
You must be signed in to change notification settings - Fork 2
/
federated_genetic_random_nodes.py
89 lines (62 loc) · 3.33 KB
/
federated_genetic_random_nodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# based on https://towardsdatascience.com/artificial-neural-networks-optimization-using-genetic-algorithm-with-python-1fe8ed17733e
# different crossover function: mean
from common import load_df, df_to_ML_data, timed_method, ts
from genetic import run_federated_evolution, individual_fitness_f1, initialize_evolution, individual_fitness_nmse
from genetic import federated_population_fitness_model_based, save_state, save_nodes
from node import NodeIteratorRandomSubset
from IPython.core.display import Javascript
from IPython.display import display
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import numpy as np
import pickle
import keras
from keras.models import model_from_json
from keras import metrics
import tensorflow as tf
from tqdm import tqdm_notebook as tqdm
import matplotlib
import matplotlib.pyplot
import logging
import random
import sys
logging.basicConfig(format='%(asctime)s | %(levelname)s : %(message)s',level=logging.INFO,
filename=__file__[:-3] + ts() + '.log', filemode='w+')
log = logging.getLogger(__name__)
if __name__ == "__main__":
config = tf.ConfigProto()#device_count = {'GPU': 0})
config.gpu_options.per_process_gpu_memory_fraction = 0.5
config.gpu_options.allow_growth = True
keras.backend.tensorflow_backend.set_session(tf.Session(config=config))
X_train, X_test, y_train, y_test, y_train_argmax, y_test_argmax = df_to_ML_data(load_df())
node_activation_ratio = 0.10
node_subset_change_interval = 10
population_size = 50
num_parents_mating = 8
num_generations = 5000
mutation_chance = 0.01
mutation_rate = 3
stuck_multiplier = 1
stuck_evasion_rate = 1.25
stuck_multiplier_max = 5
stuck_check_length = 30
save_interval = 5
plot_interval = 15
federated_population_fitness = federated_population_fitness_model_based
individual_fitness = individual_fitness_nmse
generation_start, best_fitness_of_each_generation, best_accuracy_of_each_generation, best_model_of_each_generation,\
population_weights = initialize_evolution(__file__, population_size)
nodes_iterator = NodeIteratorRandomSubset(X_train, y_train, node_subset_change_interval, node_activation_ratio)
with open(__file__ + '.nodes', 'rb') as f:
nodes = pickle.load(f)
nodes_iterator = nodes
run_federated_evolution(nodes_iterator=nodes_iterator,\
X_validate=X_test, y_validate=y_test,\
num_parents_mating=num_parents_mating, num_generations=num_generations,\
federated_population_fitness=federated_population_fitness, individual_fitness=individual_fitness,\
generation_start=generation_start, mutation_chance=mutation_chance, mutation_rate=mutation_rate,\
best_fitness_of_each_generation=best_fitness_of_each_generation, best_accuracy_of_each_generation=best_accuracy_of_each_generation,\
best_model_of_each_generation=best_model_of_each_generation, population_weights=population_weights,\
plot_interval=plot_interval, stuck_multiplier=stuck_multiplier, stuck_multiplier_max=stuck_multiplier_max,\
save_interval=save_interval, stuck_evasion_rate=stuck_evasion_rate, stuck_check_length=stuck_check_length,\
checkpoint_filename=__file__)