From 6d0a49d5c12d4d4ab99f85f4709d1683f084deb4 Mon Sep 17 00:00:00 2001 From: Penelope Yong Date: Mon, 1 Jul 2024 23:19:08 +0800 Subject: [PATCH] Add run_job module Towards #123 --- pyproject.toml | 3 +- python/popgetter/run_job.py | 132 ++++++++++++++++++++++++++++++++++++ 2 files changed, 134 insertions(+), 1 deletion(-) create mode 100644 python/popgetter/run_job.py diff --git a/pyproject.toml b/pyproject.toml index 0426026..6e784b8 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -70,7 +70,8 @@ dev = [ "types-requests", # Required for type checking requests "urllib3<2", # Pin this, pending this PR for dagster https://github.com/dagster-io/dagster/pull/16738 "pre-commit", # Used for managing pre-commit hooks - "pyright >=1.1.339" # Used for static type checking (mypy is not yet compatible with Dagster) + "pyright >=1.1.339", # Used for static type checking (mypy is not yet compatible with Dagster) + "python-dotenv >=1.0.1", # For sourcing .env ] docs = [ "mkdocs >=1.6.0" diff --git a/python/popgetter/run_job.py b/python/popgetter/run_job.py new file mode 100644 index 0000000..4d245c9 --- /dev/null +++ b/python/popgetter/run_job.py @@ -0,0 +1,132 @@ +""" +run_job.py +---------- + +This module can be used to materialise all assets within a job in an +'intelligent' way. + +Specifically, this module was written to solve a specific problem. One can run +an _unpartitioned_ job using the Dagster CLI: + + dagster job launch -j + +However, that doesn't work for _partitioned_ assets. When it reaches the first +partitioned asset, the command will crash. For those you need to do: + + dagster job backfill -j --noprompt + +but if the partitioned assets depend on unpartitioned ones, the upstream +unpartitioned assets will be run one time for each partition, which is +extremely inefficient. + +This module provides a way to sequentially materialise assets within a job in +much the same way as one might do manually via the web UI: that is, +materialising the most upstream asset first, then its reverse dependencies, and +so on. It handles both assets that are unpartitioned as well as those with +dynamic partitions (static partitions are not supported, but popgetter does not +have any such assets, so this is not a problem for now). + +To use it, run: + + python -m popgetter.run_job + +Note that you must set a $DAGSTER_HOME environment variable, and any other +environment variables that are required for the job to run successfully. This +script will source a `.env` file in your working directory, which is similar to +Dagster's behaviour, so you can simply use that file. +""" + +from . import defs +import time +from dagster import materialize, DagsterInstance, DynamicPartitionsDefinition +import argparse +from dotenv import load_dotenv + +def find_materialisable_asset_names(dep_list, done_asset_names: set[str]) -> set[str]: + """Given a dictionary of {node: dependencies} and a set of asset names + which have already been materialised, return a set of asset names which + haven't been materialized yet but can now be. + + dep_list should be obtained from + defs.get_job_def(job_name)._graph_def._dependencies. + """ + materialisable_asset_names = set() + + for asset, dep_dict in dep_list.items(): + if asset.name in done_asset_names: + continue + + if all(dep.node in done_asset_names for dep in dep_dict.values()): + materialisable_asset_names.add(asset.name) + + return materialisable_asset_names + + +def run_job(job_name: str, delay: float): + load_dotenv() + job = defs.get_job_def(job_name) + + # Required for persisting outputs in $DAGSTER_HOME/storage + instance = DagsterInstance.get() + + dependency_list = job._graph_def._dependencies + all_assets = {node_handle.name: definition + for node_handle, definition in + job._asset_layer.assets_defs_by_node_handle.items()} + + materialised_asset_names = set() + while len(materialised_asset_names) < len(all_assets): + asset_names_to_materialise = find_materialisable_asset_names(dependency_list, materialised_asset_names) + + if len(asset_names_to_materialise) == 0: + print("No more assets to materialise") + break + + asset_name_to_materialise = asset_names_to_materialise.pop() + asset_to_materialise = all_assets.get(asset_name_to_materialise) + + print(f"Materialising: {asset_name_to_materialise}") + + partitions_def = asset_to_materialise.partitions_def + + if partitions_def is None: + # Unpartitioned + + # https://docs.dagster.io/_apidocs/execution#dagster.materialize -- note + # that the `assets` keyword argument needs to include upstream assets as + # well. We use `selection` to specify the asset that is actually being + # materialised. + materialize(assets=[asset_to_materialise, + *(all_assets.get(k) for k in materialised_asset_names)], + selection=[asset_to_materialise], + instance=instance) + time.sleep(delay) + materialised_asset_names.add(asset_name_to_materialise) + + else: + # Partitioned + if type(partitions_def) != DynamicPartitionsDefinition: + # Everything in popgetter is dynamically partitioned so we + # should not run into this. + raise NotImplementedError("Non-dynamic partitions not implemented yet") + partition_names = instance.get_dynamic_partitions(partitions_def.name) + + for partition in partition_names: + print(f" - with partition key: {partition}") + time.sleep(delay) + materialize(assets=[asset_to_materialise, + *(all_assets.get(k) for k in materialised_asset_names)], + selection=[asset_to_materialise], + partition_key=partition, + instance=instance) + materialised_asset_names.add(asset_name_to_materialise) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser(description="Run a job (in an intelligent way)") + parser.add_argument("job_name", type=str, + help="Name of the job to run") + parser.add_argument("--delay", type=float, default=0.5, + help="Delay between materialising successive assets") + args = parser.parse_args() + run_job(args.job_name, args.delay)