Inverse distance-weighted interpolation methods1
给定 $n$ 对控制点 $(\mathbf{p} _ i,\mathbf{q _ i})$ ,$\mathbf{p} _ i,\mathbf{q} _ i\in\mathbb{R}^2$,$i=1,\dots,n$
得到一个函数 $\mathbf{f}:\mathbb{R}^2\to\mathbb{R}^2$ ,满足插值条件,即 $\mathbf{f}(\mathbf{p} _ i)=\mathbf{q} _ i,i=1,\dots,n$
局部插值函数 $\mathbf{f} _ i(\mathbf{p}):\mathbb{R}^2\to\mathbb{R}^2$ 满足 $f _ i(\mathbf{p} _ i)=\mathbf{q} _ i$ ,具体为
$$
\mathbf{f} _ i(\mathbf{p})=\mathbf{q} _ i+\mathbf{D} _ i(\mathbf{p}-\mathbf{q} _ i)
$$
其中 $\mathbf{D} _ i:\mathbb{R}^2\to\mathbb{R}^2$ ,满足 $\mathbf{D} _ i(\mathbf{0})=\mathbf{0}$
可选 $\mathbf{D} _ i$ 为线性变换
插值函数为
$$
\mathbf{f}(\mathbf{x})=\sum _ {i=1}^n w _ i(\mathbf{x})\mathbf{f} _ i(\mathbf{x})
$$
其中 $w _ i:\mathbb{R}^2\to\mathbb{R}$ ,为
$$
w _ i(\mathbf{x})=\frac{\sigma _ i(\mathbf{x})}{\sum _ {j=1}^n \sigma _ j(\mathbf{p})}
$$
$$
\sigma _ i(\mathbf{x})=\frac{1}{\Vert\mathbf{x}-\mathbf{x} _ i\Vert^\mu}
$$
其中 $\mu>1$
显然 $0\le w _ i(\pmb{x})\le 1$ ,且 $\sum _ {i=1}^n w _ i(\mathbf{x})=1$
简单地,可直接取 $\mathbf{D} _ i=\mathbf{0}$ ,此时 $\mathbf{f}(\mathbf{x})=\sum _ {i=1}^n w _ i(\mathbf{x})\mathbf{q} _ i$
定义能量
$$
\begin{aligned}
E _ i(\mathbf{D} _ i)
=&\sum _ {j=1,j\neq i}^n w _ {ij}\left\Vert\mathbf{q} _ i+\left(\begin{array}{c}d _ {i,11} & d _ {i,12}\newline d _ {i,21} & d _ {i,22}\end{array}\right)(\mathbf{p} _ j-\mathbf{p} _ i)-\mathbf{q} _ j\right\Vert^2\newline
=&\sum _ {j=1,j\neq i}^n w _ {ij}(
(d _ {i,11}(p _ {j,1}-p _ {i,1})+d _ {i,12}(p _ {j,2}-p _ {i,2})+q _ {i,1}-q _ {j,1})^2+\newline
&(d _ {i,21}(p _ {j,1}-p _ {i,1})+d _ {i,22}(p _ {j,2}-p _ {i,2})+q _ {i,2}-q _ {j,2})^2)
\end{aligned}
$$
最小化该能量可求得 $\mathbf{D} _ i=\left(\begin{array}{c}d _ {i,11} & d _ {i,12}\newline d _ {i,21} & d _ {i,22}\end{array}\right)$