-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
177 lines (139 loc) · 5.67 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import torch
from torch.utils.tensorboard import SummaryWriter
from torchmetrics.classification import MulticlassJaccardIndex
from tqdm import tqdm
import torch.nn as nn
import torch.optim as optim
import torchvision
from UNET import UNET
from UNET_Dropout import UNET_Dropout
import numpy as np
from utils import (load_checkpoint, save_checkpoint, get_loaders, save_predictions_as_imgs, test, create_writer, ensemble_predict)
import matplotlib as plt
# Hyperparameters etc.
LEARNING_RATE = 1e-4
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
BATCH_SIZE = 16
NUM_EPOCHS = 150
NUM_NETS = 1 # set to 1 if you don't want to use deep ensembles
NUM_WORKERS = 2
IMAGE_HEIGHT = 64
IMAGE_WIDTH = 64
PIN_MEMORY = True
LOAD_MODEL = False # decide if you want to use a saved model
## Choose model
architecture="UNET" # or "UNET_Dropout" or "FastSCNN"
## Choose how you will label the experiment
train_set = "assembly" # either "assembly" or "egohands"
test_set = "assembly" # either "assembly" or "egohands"
## Auto-set values that will be used to save your experiment
experiment_name=f"{architecture}_architecute"
model_name=f"{architecture}"
extra= f"{NUM_EPOCHS}-epochs_{train_set}-train_{test_set}-test"
def train_fn(loader, model, optimizer, loss_fn, scaler):
"""train_fn trains the model in model.py with the specified loader, model
optimizer, loss function, and scaler value
"""
train_loss, train_acc = 0, 0
loop = tqdm(loader)
for index, batch in enumerate(loop):
data, targets = batch
data = data.to(device=DEVICE)
targets = targets.to(device=DEVICE)
model = model.to(device=DEVICE)
weight1 = torch.sum(targets==0)
weight2 = torch.sum(targets==1)
weight3 = torch.sum(targets==2)
weights = torch.FloatTensor([weight1, weight2, weight3])
weights = torch.div(1.0, weights).to(device=DEVICE)
loss_fn = nn.CrossEntropyLoss(weight=weights)
with torch.cuda.amp.autocast():
predictions = model(data)
## just removed long
loss = loss_fn(predictions, targets.long())
train_loss+=loss.item()
## train accuracy and loss writing
predictions = torch.argmax(predictions, dim=1).detach() # removed an addition .cpu() at the end
predictions = predictions.to(device=DEVICE)
metric = MulticlassJaccardIndex(num_classes=3).to(device = DEVICE)
train_acc += metric(predictions, targets.long())
# backward
optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
# update tqdm loop
loop.set_postfix(loss=loss.item())
train_loss = train_loss/len(loader)
train_acc = train_acc / len(loader)
return train_loss, train_acc
def main():
nets = []
optimizers = []
for _ in range(NUM_NETS):
if architecture == "UNET_Dropout":
net = UNET_Dropout(in_channels=3, out_channels=3, droprate=0.5)
elif architecture == "UNET":
net = UNET(in_channels=3, out_channels=3)
elif architecture == "FastSCNN":
## adjust this when adding EgoHands to the Model
net = UNET(in_channels=3, out_channels=3)
nets.append(net)
optimizers.append(optim.Adam(net.parameters(), lr=LEARNING_RATE))
loss_fn = nn.CrossEntropyLoss()
train_loader, val_loader, clean_val_loader = get_loaders(BATCH_SIZE, train_set, test_set)
if LOAD_MODEL:
load_checkpoint(torch.load(experiment_name + model_name + extra), net)
scaler = torch.cuda.amp.GradScaler()
epochs = []
if LOAD_MODEL is not True:
results = {
"train_loss": [],
"train_acc": [],
"test_loss": [],
"test_acc": []
}
# Create an example writer
writer = create_writer(
experiment_name,
model_name,
extra
)
for i, net in enumerate(nets):
optimizer = optimizers[i]
model = nets[i].to(DEVICE)
for epoch in range(NUM_EPOCHS):
if LOAD_MODEL is not True:
model.train()
train_loss, train_acc = train_fn(train_loader, model, optimizer, loss_fn, scaler)
test_loss, test_acc = test(val_loader, model, loss_fn)
if LOAD_MODEL is not True:
results["train_loss"].append(train_loss)
results["train_acc"].append(train_acc)
results["test_loss"].append(test_loss)
results["test_acc"].append(test_acc)
writer.add_scalars(main_tag="Loss",
tag_scalar_dict={"train_loss": train_loss,
"test_loss": test_loss},
global_step=epoch)
# Add accuracy results to SummaryWriter
writer.add_scalars( main_tag="Accuracy",
tag_scalar_dict={"train_acc": train_acc,
"test_acc": test_acc},
global_step=epoch)
# save model
checkpoint = {
"state_dict": model.state_dict(),
"optimizer": optimizer.state_dict(),
}
save_checkpoint(checkpoint, filename = experiment_name + model_name + extra)
save_predictions_as_imgs(
train_set, clean_val_loader, val_loader, model, folder="saved_images/", device=DEVICE
)
if NUM_NETS > 1:
ensemble_predict(
val_loader, nets, folder="saved_images/", device=DEVICE
)
writer.close()
if __name__ == "__main__":
main()