-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUNET_Dropout.py
86 lines (69 loc) · 2.63 KB
/
UNET_Dropout.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
"""model.py contains the UNet architecture"""
## dropout imports
import warnings
warnings.filterwarnings("ignore")
import torch
import torch.nn as nn
import torchvision.transforms.functional as TF
class DoubleConv(nn.Module):
## added droprate for dropout functionality
def __init__(self, in_channels, out_channels, droprate):
super(DoubleConv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 3, 1, 1, bias=False),
nn.Dropout2d(p=droprate),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Dropout(p=droprate),
nn.Conv2d(out_channels, out_channels, 3, 1, 1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Dropout(p=droprate),
)
def forward(self, x):
return self.conv(x)
class UNET_Dropout(nn.Module):
def __init__(
self, in_channels, out_channels, droprate, features=[64, 128, 256, 512],
):
super(UNET_Dropout, self).__init__()
self.ups = nn.ModuleList()
self.downs = nn.ModuleList()
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
# Down part of UNET
for feature in features:
self.downs.append(DoubleConv(in_channels, feature, droprate))
in_channels = feature
# Up part of UNET
for feature in reversed(features):
self.ups.append(
nn.ConvTranspose2d(
feature*2, feature, kernel_size=2, stride=2,
)
)
self.ups.append(DoubleConv(feature*2, feature, droprate))
self.bottleneck = DoubleConv(features[-1], features[-1]*2, droprate)
self.final_conv = nn.Conv2d(features[0], out_channels, kernel_size=1)
def forward(self, x):
skip_connections = []
for down in self.downs:
x = down(x)
skip_connections.append(x)
x = self.pool(x)
x = self.bottleneck(x)
skip_connections = skip_connections[::-1]
for idx in range(0, len(self.ups), 2):
x = self.ups[idx](x)
skip_connection = skip_connections[idx//2]
if x.shape != skip_connection.shape:
x = TF.resize(x, size=skip_connection.shape[2:])
concat_skip = torch.cat((skip_connection, x), dim=1)
x = self.ups[idx+1](concat_skip)
return self.final_conv(x)
def test():
x = torch.randn((7, 3, 161, 161))
model = UNET_Dropout(in_channels=3, out_channels=3)
preds = model(x)
print(preds.shape == x.shape)
if __name__ == "__main__":
test()